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An efficient algorithm for partitioning the range of a continuous variable to a discrete
Ž .number of intervals, for use in the construction of Bayesian belief networks BBNs , is

presented here. The partitioning minimizes the information loss, relative to the number
of intervals used to represent the variable. Partitioning can be done prior to BBN
construction or extended for repartitioning during construction. Prior partitioning allows

Ž .either Bayesian or minimum descriptive length MDL metrics to be used to guide BBN
construction. Dynamic repartitioning, during BBN construction, is done with a MDL
metric to guide construction. The methods are demonstrated with data from two
epidemiological studies and these results are compared for all of the methods. The use of
the partitioning algorithm resulted in more sparsely connected BBNs, than with binary
partitioning, with little information loss from mapping continuous variables into discrete
ones. Q 2000 John Wiley & Sons, Inc.

I. INTRODUCTION

In the course of conducting clinical trials or epidemiological studies, a large
amount of data may be collected. Often, exploratory data analysis is done to get
an indication of the interactions of many study variables. This process is not an
exhaustive data analysis, but allows the construction of a model of the interac-
tions between study variables to guide further analysis.

Ž .This paper develops a general method for exploratory data analysis EDA
for medical studies, which provides a common scaling for all types of variables.
One of the major problems in this context is combining nominal, discrete, and
continuous variables in the same model. The following sections develop this

Ž .theme, using Bayesian belief networks BBNs , and emphasize methods to
convert continuous variables to discrete ones. New methods for discretization of
continuous variables, based upon information theory, are presented here. Also,
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these methods are applied using either a Bayesian or a minimum descriptive
Ž .length MDL metric to guide the discretization and the results are compared.

Pearl presents a Bayesian method for constructing a probabilistic network
from a database of records.1,2 The network can provide insight into the proba-
bilistic dependencies that exist among the variables in a database. The computer
program searches for a network structure that has a high posterior probability,
given the database, and outputs its structure and its probability. A Bayesian

Ž .belief structure is a directed acyclic graph DAG in which nodes represent
domain variables and arcs between nodes represent probabilistic dependencies.
Variables may be continuous or discrete. The representation of conditional
dependencies and independencies is an essential function of a belief network.
The belief structure is augmented by conditional probabilities to form a Bayesian
belief network. For each node in a belief network, there is a conditional-prob-

Ž .ability function that relates this node to its immediate predecessors parents .
In order to develop a general method using BBNs for exploratory data

analysis in large medical study databases with continuous measurements, the
characteristics of the continuous variable frequency distributions can be empiri-
cally used to preprocess the data and to augment BBN construction. This is
done to simplify and to clarify the network structure for a given database.

An efficient new algorithm is presented to partition the value range of a
continuous random variable. This algorithm uses the characteristics of the

Ž .information content entropy of the continuous variable for the partitioning
and does not require comparison with another variable, as do previous methods.
Test results show that BBNs, constructed from continuous variables discretized
by this algorithm, demonstrate stronger dependencies than comparable BBNs
with equal interval partitioning.

The method used above for entropy based discretization is extended to
dynamically repartition a continuous variable’s values in relation to another
variable. An information theoretic metric, which guides BBN construction, is
used to guide the repartitioning. BBNs constructed in this way show stronger,
and more unexpected, dependencies among variables than those constructed
with only entropy partitioning.

3 Ž .A continuous variable from the NHLBI growth and health study NGHS
study is used to briefly illustrate these methods. The variable is the first year’s
body mass index measurement. The original continuous frequency distribution is

Ž .shown in Figure 1 a , accompanied by the discrete distribution resulting from
binary equal interval partitioning. The split point for the partitioning is shown
on the original distribution.

A better partitioning of the continuous distribution uses equal frequency
Ž .intervals, which are quintiles in the example in Figure 1 b . However, the

resulting uniform distribution is not representative of the original one.
The algorithm for entropy discretization was used to partition the continu-

Ž .ous distribution in Figure 2 a . Here, the intervals are of varying lengths and
frequencies to minimize the information loss due to discretization. The discrete

Ž .distribution, in Figure 2 a , gives a very good approximation of the original
distribution.
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Ž .In Figure 2 b , the first year’s body mass index has been dynamically
repartitioned to better predict the value of the second year’s body mass index.
This is a result of a procedure to dynamically repartition continuous variables
during BBN construction. In this case, two partitions have been merged to
better represent the value range of the first variable in relation to the second
one.

These examples demonstrate the development of more representative
methods for the discretization of a continuous variable. A mapping of a
continuous variable into discrete values should approximate the continuous
frequency distribution with minimal loss of information.

The second section of this paper provides a review of previous methods.
Section III provides an overview of the K2 algorithm for BBN construction4 and
the development of the K2 Bayesian metric and of the minimum descriptive

Ž .length MDL metric used to guide BBN construction. Then, new methods for
repartitioning a continuous variable, both before and during BBN construction,
are presented. Section IV describes partitioning the range of a continuous
variable according to its information content, or entropy. The algorithm to find
the best balance between the information loss and a low number of partitions is
presented. In Section V, this procedure is extended for the dynamic discretiza-
tion of continuous variables during BBN construction. These procedures are
previously unpublished and represent a new contribution to machine learning
and to BBN construction methods. Both methods are tested upon data from the

3 5 Ž .NGHS and from the dietary intervention study in children DISC epidemio-
logical studies, as described later. The results of the testing are analyzed and
discussed. The conclusions for the use of these discretization methods are
presented in Section VI.

II. PREVIOUS METHODS FOR DISCRETIZATION OF
CONTINUOUS VARIABLES FOR CLASSIFICATION

A number of methods have been used to partition values of a continuous
variable into intervals, which can be used as discrete values to represent the

Žvariable. The most familiar ones create partitions of K equal lengths equal
. Ž .intervals or with K% of the total data equal frequencies . In each case, K is

chosen to provide a manageable number of discrete values, which give a fair
approximation of the continuous frequency distribution. However, these meth-
ods may overpartition the distribution, split relevant groupings, or combine
separate groupings of values.

Most methods used for discretizing a continuous variable use its relation-
ship to another variable to determine the partitions. This is often found in
classification procedures, such as decision trees6 ] 10 and in naive Bayesian
classifiers.11,12

An entropy based method, proposed by Fayyad and Irani,6 chooses the
Ž .partitioning point s in a sorted set of continuous values to minimize the joint

Ž Ž ..entropy H X, Y of the continuous variable and the classification variable.
This is applied to the creation of decision tree structures for classification by
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Ž .recursively finding more partitioning points top-down discretization . The
method is expanded to minimize a MDL metric to choose the partitioning
points.

Another MDL based method for discretization is described by Pfahringer.7

A set of the best partitioning points is determined by recursively partitioning the
Ž D .sorted variable values to a depth D 2 y 1 partitions in a binary tree. Then

the MDL metric is used in a best first search in this set to determine the best
partitions for decision tree classification.

A method that merges adjacent partitions of sorted variable values, accord-
ing to the x 2 statistical test, is described by Liu and Setiono.8 The variable
values are sorted and initially partitioned into, at most, N intervals. The
intervals are first recursively merged according to the lowest x 2 value until a
significance level of 0.05 is reached for each partition. The intervals are further
merged until a preset error rate with the classification variable is reached. If
there is only one resulting interval, the variable is not relevant to the classifica-
tion problem and is dropped. This method combines the discretization of
continuous variables with feature selection for classification.

Dougherty, Kohavi, and Sahami9 compared several discretization tech-
niques with decision trees and with naive Bayesian classifiers. They found that a
MDL metric, similar to that used by Fayyad and Irani,6 provided slightly better
classifications in both methods.

A metric for discretization, based upon a variable’s classification in relation
to other variables, is described by Hong.10 This metric is based upon a K
nearest neighbor clustering technique and is used to generate decision trees. An
interesting feature of this method is that it returns an optimal number of
partitions according to the metric. This is done by finding the ‘‘knee’’ of the
plotted curve of the score as a function of the number of partitions. The plot is a
concave function of the metric; the knee is the point on the plot where the

Ž .changes in the number of variable values X axis become greater than
Ž .the changes in the metric value Y axis . The concavity of a plot is exploited in

the information theoretic discretization methods developed in Section IV.
Subramonian, Venkata, and Chen,13 describe a visual framework for inter-

active discretization for decision tree classification. A user can choose between
several algorithms and metrics for a classification problem, instead of being
limited to one method and metric. The choice of metrics includes cross-entropy
and the L y 1 norm between two distributions.

Pazzani11 describes a technique for iterative discretization of continuous
variables for naive Bayesian classifiers. Each continuous variable is initially
divided into five partitions. For each variable, two partitions are then merged or
a partition is divided into two partitions to find a lower classification error. This
procedure is repeated for each continuous variable until the error rate can no
longer be reduced.

Another method for constructing naive Bayesian classifiers using a MDL
metric is presented by Friedman and Goldszmidt.12 This method begins by
finding the best initial partition of a continuous variable by dividing the range
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into two partitions and then iterating the partitioning until there is no further
Ž .improvement in the MDL score top-down partitioning . The MDL metric

includes all of the variables used for classification and is repeated for each
continuous variable. Given a BBN structure, this method discretizes each
continuous variable in the Markov blanket of each classification variable. This
procedure is iterated until there is no improvement in each local MDL score.

Friedman and Goldszmidt propose that this method can be adopted to
learning BBN structure by starting with some initial discretization of each
continuous variable, learning an initial structure, and then rediscretizing as
described above. While this technique optimizes the conditional probabilities, it
depends upon the initial approximate discretization of continuous variables to
learn the correct network structure.

Extensions to current discretization techniques for classification methods
have been proposed for BBNs, but none have currently been published. Meth-

Ž . Žods for both static done in data preprocessing and dynamic done during BBN
.construction discretization of continuous variables are presented in Sections IV

and V.
Often, a continuous variable has a normal, or Gaussian, frequency distribu-

tion. The characteristics of the normal distribution are well understood and a
unified heuristic method for finding a BBN structure with both discrete variables
and continuous variables with a Gaussian distribution is described by Hecker-
man and Geiger.14 This method requires the mean and variance of each
continuous variable’s values to parameterize the distribution.

The underlying frequency distribution cannot always be assumed to have a
normal form. An example is shown in Figure 1, where the distribution is
approximately bimodal. In this example, the choice of the number and length of
partitions to represent the distribution of body mass index is obviously not the
same as when body mass index has a normal distribution.

III. METHOD

A BBN is an easily understood and increasingly popular model, which
represents study variables and their conditional dependencies as nodes in a
graph connected by directed arcs.2 A node, or variable, is conditionally depen-
dent upon its parent nodes, i.e., other variables, given the database used for the
exploratory data analysis. This model partitions the joint probability distribution
over all of the variables investigated into a set of conditional probabilities, as

Ž .in 1 .

n

<P x , x , . . . , x s P x p 1Ž . Ž .Ž .Ł1 2 n i x i
is1

where p are the parents of variable x .x ii

Since these relationships between the variables are unknown or uncertain, a
method is needed to construct the network using only the available data. One
widely used method applies the K2 algorithm of Cooper and Herskovits.4 This
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algorithm, and many similar ones,15 ] 17 requires all of the variables to have
discrete values. Continuous variables can be transformed into discrete ones by
partitioning the range of values into intervals of equal case frequencies, e.g.,
quartiles,18 or into equal interval lengths. However, partitions of equal case
frequencies are represented as a uniform distribution of variable values in the
BBN node, which may not be representative of the underlying continuous
frequency distribution of the variable values.

A heuristic method to find the number of equal length partitions, which
provides a good mapping of continuous variables to discrete ones for construct-
ing a BBN, is used for comparison with heuristic methods used to find varying
length partitions. This method uses either the K2 metric4 or the minimum

Ž . 17descriptive length MDL metric to select the number of partitions, which best
approximates the underlying probability distribution of a continuously valued
variable, to be used in constructing a BBN.

A. Modified K2 Algorithm

The original K2 algorithm, proposed by Cooper and Herskovits,4 uses a
Bayesian measure to pick the most probable parents of each discrete variable
from the variable’s predecessors in a completely ordered list. Each variable is
represented by a node in the BBN.

The basic algorithm used here is essentially the same as K2, but with two
modifications. First, a partially ordered list of variables is used. This ordering is
based upon a temporal ordering of measurement variables, with measurements
taken at the same time placed at the same level in the ordering. Only nodes
from preceding levels can be considered as parents of a particular node.

ŽThe second modification is the discretization of continuous nodes varia-
.bles during the search for the parents of each node, as described in Section V.

This discretization is done to find the best partitioning of a continuous node’s
value range. The partitions result in discrete values, which may maximize the
evaluation metric for this node as a parent. This partitioning is done in relation
to the child node and its current set of parents.

The metric used for the K2 algorithm by Cooper and Herskovits,4 is based
upon the theorem for describing the joint probability of a BBN structure, B ,s

given a database, D. Thus

q rn i ir y 1 !Ž .i
P B , D s P B N ! 2Ž . Ž . Ž .Ł Ý Łs s i jkN q r y 1 !Ž .is1 ks1i j ijs1

Ž .where i refers to the ith variable x , n is the number of variables, q is the seti i

of instantiations the parents, p , of variable x can have, r is the set of valuesi i i

variable x can have, N is the number of cases with the kth of the r values ofi i jk i
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x and the jth of the q combination of values of the parents of x , andi i i

ri

N s NÝi j i jk
ks1

Ž .This theorem is based upon four assumptions: 1 all variables have discrete
Ž . Ž .values; 2 database cases occur independently; 3 there are no missing values;

Ž .and 4 the prior probabilities of all database structures are uniform.
Ž .The K2 metric, which is derived from 2 , is used to find a maximally

probable set of parents of a variable, based upon the set of conditional
probabilities for this structure found from the given data. The metric is

q ri ir y 1 !Ž .i
g i , p s N ! 3Ž . Ž .Ł Łi i jkN q r y 1 !Ž .js1 ks1i j i

This is used by the K2 algorithm in a greedy search to find the set of parents of
a variable which maximizes the metric’s value. Its value is approximately
proportional to the probability of each conditional probability distribution, for a
node and its parents, in a Dirichlet distribution. The metric value for a node is
initialized for the variable by itself, independent of other variables. This is used
as a starting point for the discretizing of continuous variables here.

The K2 metric, given a uniform probability distribution on a variable, gives
w Ž . Ž .xa greater value for a smaller number of partitions r in 2 and 3 than fori

more partitions. As the number of partitions decreases, the ŁN ! increases ati jk
Ž .a faster rate than the N q r y 1 ! term. This results in a higher metric scorei j i

for fewer partitions of a uniform distribution. In general, the K2 metric favors
fewer partitions of a variable, given the same data.

B. MDL Encoding for a BBN

The MDL19,20 encoding of a BBN combines a measure of the underlying
probability distributions of the data sample with a measure of the network
complexity. Both of these measures are proportional to the information content
of the BBN, in bits. The minimum of the sum of these measures describes a
BBN which closely models the underlying data but is not excessively complex.
Smaller conditional dependencies between variables, as described in the previ-
ous section, will usually not be represented in a BBN induced from the data
using the MDL encoding.

The MDL measure of a BBN maximizes the probability of the network
structure while minimizing the network complexity. It makes a tradeoff between
extreme accuracy, which may be specific to the data sample used for construc-
tion, and the BBN model usefulness. The MDL measure minimizes the sum of
the encoding lengths, in bits, of both the data and the BBN model. However,
finding the network which exactly minimizes these two sums is computationally
intractable. Therefore, search heuristics are used which find a low, but not
necessarily minimum, MDL encoding. The problem is reduced to using mea-
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sures that are proportional to the MDL encoding instead of measuring the
absolute value of the encoding.

Ž .To represent a particular BBN, it is necessary and sufficient to have a a
Ž .list of parents of each node and b the set of conditional probabilities associ-

ated with each node.
Ž .The descriptive length needed to encode these items is L B , D , where Bs s

is a BBN structure and D is the database. It is defined by Bouckaert17 as

1L B , D s log P B y N ? H B , D y k log N 4Ž . Ž . Ž . Ž .s 2 s s 22

Ž . Ž .where N is the number of cases, as in 2 , H B , D is the mutual informations
between a node and its parents over all nodes, and k is the cost of encoding the

Ž .table of conditional probabilities between a node and its parents. H B , D iss
defined as

q rn i i N Ni jk i jky log 5Ž .Ý Ý Ý 2N Ni jis1 js1 ks1

Ž .where i refers to the ith variable x , n is the number of variables, q is the seti i
of values the parents of variable x can have, r is the set of values variable xi i i
can have, N is the number of cases with the k th value of x and the jthi jk i
combination of values of the parents of x , andi

ri

N s NÝi j i jk
ks1

Ž . Ž .as in 2 . H B , D increases as arcs are added to a network structure, since qs i
increases with each parent node, indicated by an arc.

Ž .The k value in 4 is defined as

n

r y 1 r 6Ž . Ž .Ý Łi j
x gpis1 j i

This term increases when arcs are added, since more conditional probabilities
Ž .are needed for each parent node x g p .j i

Ž .The descriptive length equation 4 shows that highly connected networks
require longer encodings. Therefore, the MDL principle tends to favor networks

Ž .in which the nodes have a smaller number of parents less connected and in
which nodes taking on a large number of values are not parents of nodes that
also have a large number of values. This encoding scheme generates a prefer-
ence for more efficient networks. Since the encoding length of a model is
included in the descriptive length, a preference for networks that require the
storage of fewer probability parameters is enforced.

Ž .The a priori probability of a network structure, P B , is assumed to bes
equal to any other one when there is no prior information, so it is dropped from
the metric. The K2 Bayesian metric makes the same assumption.



BAYESIAN BELIEF NETWORKS 71

Ž .The MDL measure defined in 4 is similar to the one defined by Lam and
16 ŽBacchus. However, their algorithm searches a separate space of possible BBN
.structures for each network with the same number of connected nodes to find a

BBN structure.
The final MDL metric used by Bouckaert,17 for finding the local network of

a single node and its parents, is reduced to

q ri i N 1i jk
m i , p s N log y q ? r y 1 log N 7Ž . Ž . Ž .Ý Ýi i jk 2 i i 2N 2i jjs1 ks1

Ž . Ž . Ž .This is derived from Eq. 4 . The first term of 4 is dropped because P B iss
assumed to be equal for all networks, as mentioned above. The first group of

Ž .terms, in 7 , is the conditional entropy between a node and its parents. This is
Ž .derived from the second group of terms in 4 . The N in these terms does not

change, so it is dropped. The conditional entropy, for a node and its parents, is
proportional to the joint entropy.21 The second group is the number of bits
needed to encode the conditional probability table for the node, which is a

Ž .restatement of 6 . The metric is maximized in the heuristic search, since the
usual negation in conditional entropy is reversed.

The metric used by Lam and Bacchus16 is based upon the mutual informa-
tion between a node and its parents in a network.22 Since mutual information

Ž . Ž . Ž < . Ž .can be defined as I X ; Y s H X y H X Y and H X does not change, the
Ž < . Ž .negated conditional entropy yH X Y is proportional to I X ; Y .

C. Test Data for Discretization Method

A data sample of 704 cases was selected from a subset of an epidemiologi-
cal health study database to demonstrate this method. The sample is from the
NHLBI Growth and Health Study,3 a study of the development of obesity in
young black and white girls. It is not representative of the overall study data
since cases selected had no missing values and the data were selected to
specifically demonstrate the described method. The variables selected were race
Ž . Ž .categorical; range 1, 2 , maturation stage categorical; range 1]6 , Quetelet

Ž .index, a measure of body mass continuous , average daily caloric intake
Ž . Ž .continuous , measurement age continuous , and a psychological test measure-

Ž .ment of self worth categorical; range 1]4 . The girls were 9 or 10 years of age
at the first measurement. All variables used in this analysis, except race, were
repeatedly measured over 5 years, with age being the age at each year’s
measurement.

Another data sample of 466 cases was chosen from another epidemiological
database for demonstration. This sample is from the Dietary Intervention Study
in Children,5 a clinical trial designed to assess the efficacy of a lipid lowering
diet in 8]10 year old children. The sample is not representative of the overall
study, since cases selected had no missing values. One treatment group received
several sessions to teach the children and their parents the benefits and menus
of a low-fat diet. The other group received only general dietary information.
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Ž . ŽThe variables chosen were gender categorical; range 1, 2 , treatment cate-
. Ž . Žgorical; range 1, 2 , total cholesterol level continuous , body mass index con-

. Ž . Ž .tinuous , triglycerides continuous , activity level categorical; range 1]6 , and
Ž .measurement age continuous . Except for gender and treatment, all variables

were repeatedly measured at the child’s entrance into the study, after 12, 36,
and 60 months; again age is the child’s age at each measurement.

The modified K2 algorithm was implemented in the SASQIML program-
ming language on an IBM RS6355 workstation. SAS was used since the study
data analysis is done in this environment. This language is interpretive, so the
CPU times were excessive. Much shorter execution times would be expected
using a compiled language.

IV. ENTROPY BASED DISCRETIZATION OF CONTINUOUS
VARIABLES BEFORE BBN CONSTRUCTION

As mentioned above, most methods used for discretizing a continuous
variable use its relationship to another variable to determine the partitions. The
method proposed here is used to partition a continuous variable by itself. It is
based on finding an ‘‘optimal’’ discretization by minimizing both the loss of
information or entropy and the number of partitions. This procedure can be
used in a variety of machine learning and data mining problems, which require
discretization of a continuous variable.

A. Entropy Properties of a Continuous Variable

Initially, the range of a continuous variable, from a database sample, is
divided into intervals which contain at least one case each. This is done after

Ž Ž ..sorting on the variable values. At most, there would be m intervals O m for
Ž .m cases. This converts the continuous variable into a discrete one, with O m

values.
Entropy, or information, is maximized when the frequency]probability

distribution has the maximum number of values.21 Since there is a discrete
partition for every distinct value in the continuous distribution in the database,
there is no information or entropy loss from the database sample.

The entropy of a discrete random variable X is defined as

H X s y p x log p x 8Ž . Ž . Ž . Ž .Ý 2
xgX

Ž .This can also be written as H p .
21 Ž .Cover and Thomas define a function f x to be convex over an interval

Ž . Ž .a, b if for every x , x in a, b and 0 F l F 1,1 2

f l x q 1 y l x F l f x q 1 y l f x 9Ž . Ž . Ž . Ž . Ž .Ž .1 2 1 2

A function f is concave if yf is convex. Examples of convex and concave
Ž . 21functions are shown in Figure 3. H p is proven to be a concave function of p.

These definitions are applied in the following lemmas.
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Ž . Ž .Figure 3. Examples of convex a and concave b functions.

LEMMA 4.1. Let each distinct ¨alue of a continuous random ¨ariable X, in the
case database, be represented by a separate inter̈ al. Let the number of inter̈ als be

Ž .k, 1 F k F m for m cases. Let the probability of X in each inter̈ al be p i ,
Ž .1 F i F k. Let the entropy of the distribution of k discrete inter̈ als be H p . If twok

Ž . Ž .adjacent inter̈ als, i, i q 1, are chosen such that H p y H p is minimized,k ky1
Ž Ž . Ž ..then the change in the probability of the combined inter̈ al, p i q p i q 1 , is

monotonically nondecreasing.

Ž . Ž .Proof. To minimize H p y H p , i and i q 1 are chosen such that thek ky1
Ž . Ž . Ž .sum p i q p i q 1 is minimized. The minimum values of p i are set at the

initial partitioning of intervals for each distinct value of X. As adjacent intervals
are merged, the difference between adjacent interval probabilities can only

Ž .increase or remain the same. Therefore, the change in each combined p i is
monotonically nondecreasing. B

LEMMA 4.2. If X is a continuous random ¨ariable, in the case database, with k
Ž . Ž .distinct ¨alues 1 F k F m with an inter̈ al for each distinct ¨alue, then H p is ak

conca¨e function o¨er k, when each decrease in the number of inter̈ als is chosen to
Ž .minimize the change in H p .k

Proof. The maximum entropy of a sorted continuous random variable, in a
Ž .database of m cases, is the entropy H p when each distinct value is repre-

sented by a separate interval.
Starting at the point of maximum entropy and maximum number of k

Ž .intervals 2 F k F m , the two adjacent intervals are merged which result in the
Ž . Ž . Ž .smallest change in H p to give H p . This smallest change in H pk ky1 k

results from merging the two adjacent intervals with the smallest difference
Ž . Ž .between p i and p i q 1 . If this procedure is applied repeatedly, the size of

this sum is monotonically nondecreasing.
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Ž . Ž .Since H p is a concave function of p, H p is a concave function of pk k
Ž .in this procedure. Since each p represents k intervals in this procedure, H pk k

is a concave function of the number of decreasing intervals when the p isk
monotonically nondecreasing. B

The procedure of merging adjacent intervals, described above, is continued
until a stopping point is reached. The determination of this point is described
next.

Ž .As seen in Figure 3 b , a concave function, such as entropy, is monotoni-
cally increasing with an increase in X. However, its rate of increase is always
decreasing as it approaches the maximum value of X. The entropy over all
partitionings of the NGHS variable year 2 body mass index is shown in Figure 4.

As stated above, the maximum entropy occurs with the maximum number
of partitions. The best tradeoff between maximum information and a manage-
able number of partitions is reached when the change in X becomes greater
than the change in the entropy of X. This is at the knee of the function plot.

If a chord is drawn from the origin of the graph to the point of maximum
entropy and number of partitions, all of the points on the concave function plot
will be above the chord. The change in X becomes greater than the change in
the entropy of X at the point on the curve which is furthest from the chord.
This is displayed as the vertical line from the chord to the curve in Figure 4.

The maximum height of a point on the function curve above the chord is
proportional to x y y y x. Therefore, the stopping point for the merging ofmax max
adjacent intervals is reached just before the decrease in this score. A similar
method for determining discretization intervals relative to a classification vari-
able, using a metric based upon a sum of squares distance, is described by

Figure 4. Entropy over all partitionings of NGHS variable year 2 body mass index.
Chord shown with perpendicular line to indicate optimal number of partitions.
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Hong.10 However, this method, as well as all of the others referenced here,
bases discretization upon one variable’s relationship to another. Also, it makes
no use of the entropy measure.

Repeatedly merging adjacent intervals, as described above, gives the least
decrease in entropy and allows intervals with low frequency difference to be
merged prior to those with higher frequency differences. This method preserves
obvious groupings or clusters.

B. Discretization Procedure

This entropy discretization method was applied to the continuous variables
in both the NGHS and DISC datasets. For each continuous variable in a
dataset, the dataset was sorted on that variable and only the values of that
variable were input to the program.

The two adjacent values with the smallest entropy difference were found
and merged. If there was more than one pair of adjacent values with the
smallest entropy difference, one pair was randomly chosen. This procedure was
iterated until the stopping criteria, finding the knee of the concave function plot,

Žwas met. The initial variable values, which defined the partitions the split
.points , were then stored. After every continuous variable was partitioned in this

manner, the stored split points were written to an output file.
The procedure is implemented in the following algorithm:

1. procedure ENTD;
2. r* Input: a database, D, of m cases and n continuous variables;

Output: a file of partition split points for every continuous variable; *r
3. for i s 1 to n do; r* do for each continuous variable *r
4. sort D by continuous variable i;
5. read m cases of variable i into array X ;
6. accumulate frequency counts and save split points for each distinct k values

of X ;
7. oldent s entropy of X with k partitions;
8. initent s oldent;
9. init k s k;

10. oldchek s 0;
11. oktogo s TRUE;

Ž .12. while oktogo ; r* loop to find knee of entropy curve *r
13. find the 2 adjacent intervals, a, a q 1, with the minimum frequency differ-

ence;
14. merge intervals a, a q 1;

Ž .15. newent s entropy of X with intervals a, a q 1, merged k y 1 partitions ;
Ž . Ž Ž .. Ž .16. newchek s initk) newent y initent) k y 1 ; r* calculate max x y

Ž .ymax y x *r
Ž .17. if newchek ) oldchek r* check to continue *r
then do;

18. reset split points for X to reflect merger of a, a q 1;
19. reset interval frequencies;
20. oldent s newent;
21. k s k y 1;
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22. oldchek s newchek;
23. end;
24. else oktogo s FALSE;
25. end while;
26. save split points for X ;
27. end i loop;
28. output to file split points for all continuous variables;
29. end ENTD.

Ž .Sorting the dataset has O m log m computational complexity for m cases.2
Assuming a distinct value for each case, iteratively selecting and merging the

Ž Ž . Ž . .partitions takes 2 m q m y 1 q m y 2 q ??? 1 operations in the worst case.
Ž Ž .. Ž 2 .The number of operations is 2 m m y 1 r2 or O m . With n continuous

Ž Ž 2 ..variables, the worst case complexity is O n m log m q m .2
The partitioning of the NGHS year 1 body mass index is shown in Figure

Ž .2 a . The frequency distribution of the initial values is shown, with the split
points indicated, along with the discrete value frequency distribution.

The programs to implement the entropy discretization, for each dataset,
were written in SASQIML for use by statisticians. The execution times for
partitioning were 20 s for NGHS data and 10 s for DISC data.

C. Results for Entropy Discretization with K2 Bayesian Metric

The NGHS and DISC datasets, with their accompanying files of split points
for discretization of continuous variables, were input to the BBN construction
program, which used the K2 algorithm. The continuous variables were initially
partitioned according to their split points and the BBN was constructed.

The number of partitions for each NGHS continuous variable, after entropy
discretization, is shown in Table I. In 85% of the variables, the entropy
discretization resulted in 10 or fewer partitions over the range of continuous
variable values.

To provide bases for comparison, BBNs were constructed with equal length
interval partitioning of all continuous variables. The number of partitions, for

Žeach continuous variable, was chosen to maximize the current metric score K2
.Bayesian or MDL for the variable alone. The partitions were further divided

into twice as many equal length intervals if the metric score was increased with
the continuous variable as a parent of a particular other variable. The resulting
BBNs, according to metric and test data set, are compared with the BBNs
constructed with entropy partitioning.

The network structure, shown in Figure 6, is more sparsely connected then
Ž .for the BBN with initial and dynamic equal length partitions Fig. 5 . After the

partitioning of year 1 age into six intervals, it no longer was a parent of any year
1 measurements, as it was previously.

The K2 metric scores are presented in Table II, with the metric scores for
the initial and dynamic equal interval partitioning for comparison. For all of the
entropy partitioned continuous variables, the scores were much lower than the
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Table I. NGHS, number of partitions for entropy based
discretization of continuous variables.

Number of Partitions Using
Variable Entropy

Ž .Race 2 categorical
Ž .Age 1 6

Ž .Blood pressure 1 5
Ž .Body mass index 1 9
Ž . Ž .Maturation stage 1 6 categorical

Ž .Daily calories 1 8
Ž . Ž .Self worth 1 4 categorical

Ž .Age 2 8
Ž .Blood pressure 2 9
Ž .Body mass index 2 6
Ž . Ž .Maturation stage 2 6 categorical

Ž .Daily calories 2 10
Ž .Age 3 7

Ž .Blood pressure 3 9
Ž .Body mass index 3 10
Ž . Ž .Maturation stage 3 6 categorical

Ž .Daily calories 3 12
Ž . Ž .Self worth 3 4 categorical

Ž .Age 4 7
Ž .Blood pressure 4 9
Ž .Body mass index 4 8
Ž . Ž .Maturation stage 4 6 categorical

Ž .Daily calories 4 11
Ž .Age 5 9

Ž .Blood pressure 5 6
Ž .Body mass index 5 11
Ž . Ž .Maturation stage 5 6 categorical

Ž .Daily calories 5 8
Ž . Ž .Self worth 5 4 categorical

previous ones. This was caused by the increase in the number of partitions,
which brings a corresponding decrease in the K2 metric score.

The number of partitions for each DISC continuous variable, after entropy
discretization, is shown in Table III. In this dataset, all of the continuous
variables were partitioned into 10 or fewer intervals.

The network structure, shown in Figure 8, is again more sparsely connected
Ž .than the one for initial and dynamic equal interval partitioning Fig. 7 . One of

the main study interactions, the effect of treatment on the second total choles-
terol measurement, is not seen because of the partitioning of the value range
into five intervals instead of two.

The K2 metric scores are presented in Table IV, with the scores for the
initial and dynamic equal interval partitioning for comparison. The entropy
discretization scores are much lower, except for the third total cholesterol

Ž .measurement eight partitions and the fourth high density lipoprotein measure-
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Figure 5. NGHS network, K2 Bayesian metric, with all continuous variables initially
Ž .partitioned into two equal length intervals year 5 blood pressure three intervals .

Dynamically repartitioned into equal length intervals, as indicated by numbers adjacent
to directed arcs.

Figure 6. NGHS network, K2 Bayesian metric, with all continuous variables initially
partitioned using entropy.
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Table II. NGHS K2 metric scores for nodes with parents for equal interval and initial
aentropy based discretization.

All Continuous Initially and
Dynamically Partitioned with All Continuous Partitioned

Variable Equal Length Intervals Using Entropy

Race } }
Ž .Age 1 } }

Ž .Blood pressure 1 y191 }
Ž .Body mass index 1 y110 y644
Ž .Maturation stage 1 y351 y366

Ž .Daily calories 1 y77 }
Ž .Self worth 1 } }

Ž .Age 2 } }
Ž .Blood pressure 2 y176 y498
Ž .Body mass index 2 y58 y272
Ž .Maturation stage 2 y392 y392

Ž .Daily calories 2 } }
Ž .Age 3 } }

Ž .Blood pressure 3 y151 y418
Ž .Body mass index 3 y52 y462
Ž .Maturation stage 3 y388 y388

Ž .Daily calories 3 y83 }
Ž .Self worth 3 y289 y289

Ž .Age 4 } }
Ž .Blood pressure 4 y171 y418
Ž .Body mass index 4 y38 y238
Ž .Maturation stage 4 y339 y339

Ž .Daily calories 4 y25 y456
Ž .Age 5 } }

Ž .Blood pressure 5 y183 y300
Ž .Body mass index 5 y37 y436
Ž .Maturation stage 5 y268 y268

Ž .Daily calories 5 y33 y252
Ž .Self worth 5 y310 y310

aChanges from previous implementation are in bold face.

Ž .ment 10 partitions . The more precise partitioning of these variables and their
parents overcame the scoring handicap of more partitions.

The CPU execution times for network construction was 1320 min for
NGHS data and 176 min for DISC data. This great disparity is due to the higher
number of partitions of continuous variables for NGHS and to the greater
number of cases, as well as to slightly greater network complexity.

D. Results for Entropy Discretization with MDL Metric

Again, BBNs constructed with equal length interval partitioning of continu-
ous variables, as described in Section IV.C, were used for comparison.

The NGHS network constructed, using the MDL metric with entropy
discretization, is shown in Figure 10. It is more sparsely connected than the
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Table III. DISC, number of partitions for entropy based
discretization of continuous variables.

Number of Partitions Using
Variable Entropy

Ž .Gender 2 categorical
Ž .Treatment 2 categorical

Ž .Age 1 8
Ž .Total cholesterol 1 2

Ž .High density lipoprotein 1 4
Ž .Triglycerides 1 8

Ž .Body mass index 1 6
Ž . Ž .Activity level 1 5 categorical

Ž .Age 2 7
Ž .Total cholesterol 2 5

Ž .High density lipoprotein 2 4
Ž .Triglycerides 2 8

Ž .Body mass index 2 7
Ž . Ž .Activity level 2 5 categorical

Ž .Age 3 8
Ž .Total cholesterol 3 2

Ž .High density lipoprotein 3 5
Ž .Triglycerides 3 8

Ž .Body mass index 3 8
Ž . Ž .Activity level 3 5 categorical

Ž .Age 4 10
Ž .Total cholesterol 4 7

Ž .High density lipoprotein 4 2
Ž .Triglycerides 4 9

Ž .Body mass index 4 7
Ž . Ž .Activity level 4 5 categorical

Figure 7. DISC network, K2 Bayesian metric, with all continuous variables initially
partitioned into two equal length intervals. Dynamically repartitioned into equal length
intervals, as indicated by numbers adjacent to directed arcs.



BAYESIAN BELIEF NETWORKS 81

Figure 8. DISC network, K2 Bayesian metric, with all continuous variables initially
partitioned using entropy method.

Ž .BBN with initial and dynamic equal interval partitioning Fig. 9 . Major differ-
ences are the lack of year to year dependencies in blood pressure measurements
and maturation stage being the only race dependency.

The MDL metric scores are presented in the middle column of Table V,
with the scores of initial and dynamic equal interval partitioning for comparison.
The scores are much lower, due to the greater number of partitions.

The network constructed, with entropy discretization of DISC data, is
shown in Figure 12. It has almost half of the dependencies shown for continuous
variables, compared to the BBN for initial and dynamic equal length interval

Ž .partitions Fig. 11 . Most of the missing connections are for triglyceride mea-
surements, which are completely independent in this implementation.

The MDL metric scores are presented in the middle column of Table VI,
with the initial and dynamic equal interval partitioning scores for comparison.
All of the scores are much lower, except for the third total cholesterol measure-
ment and the fourth high density lipoprotein measurement. This decrease in the
MDL scores is consistent with the decrease in the K2 metric scores for these
variables.

The CPU execution time for network construction was 468 min for NGHS
data and 97 min for DISC data. These execution times for each dataset is
roughly proportional to the times using the K2 metric.

E. Discussion of Results

The entropy discretization method provides an optimal balance between
information loss and a manageable number of values for continuous variables.
Also, it can be done efficiently without comparison to another variable. In the
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Table IV. DISC K2 metric scores for nodes with parents for equal interval and initial
aentropy based discretization.

All Continuous
Initially and

Dynamically Partitioned All Continuous
with Equal Partitioned

Variable Length Intervals Using Entropy

Gender } }
Treatment } }

Ž .Age 1 } }
Ž .Total cholesterol 1 y134 }

Ž .High density lipoprotein 1 } }
Ž .Triglycerides 1 } }

Ž .Body mass index 1 } }
Ž .Activity level 1 } }

Ž .Age 2 } }
Ž .Total cholesterol 2 y122 }

Ž .High density lipoprotein 2 y78 y199
Ž .Triglycerides 2 y59 y391

Ž .Body mass index 2 y23 y191
Ž .Activity level 2 y226 y226

Ž .Age 3 } }
Ž .Total cholesterol 3 y122 y39

Ž .High density lipoprotein 3 y60 y250
Ž .Triglycerides 3 y17 y389

Ž .Body mass index 3 y122 y287
Ž .Activity level 3 y242 y242

Ž .Age 4 } }
Ž .Total cholesterol 4 y20 y357

Ž .High density lipoprotein 4 y76 y61
Ž .Triglycerides 4 y26 y388

Ž .Body mass index 4 y50 y167
Ž .Activity level 4 y243 y243

aChanges from previous implementation are in bold face.

two datasets used for testing, there were generally 10 or fewer partitions used to
represent the value range of a continuous variable.

The increased number of partitions led to more sparsely connected net-
works than those with equal length partitions for both the NGHS and DISC
datasets. The number of dependencies shown, involving continuous variables,
was nearly halved for both datasets. Also, the higher number of partitions
usually resulted in lower metric scores, as well as increased execution times for
network construction.

This method of discretization of continuous variables brings out the
strongest conditional dependencies in the data. These dependencies are stronger
since they exist through a more precise partitioning of data value ranges, than
for equal length interval partitioning.
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Figure 9. NGHS network, MDL metric, with all continuous variables initially parti-
Ž .tioned into two equal length intervals year 5 blood pressure three intervals . Dynamically

repartitioned into equal length intervals, as indicated by numbers adjacent to directed
arcs.

Figure 10. NGHS network, MDL metric, with all continuous variables initially parti-
tioned using the entropy method.
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Table V. NGHS MDL metric scores for nodes with parents for equal length interval
aand entropy based discretization.

All Continuous
Initially and All Continuous
Dynamically All Continuous Partitioned Using

Partitioned with Partitioned Entropy; Dynamically
Equal Length Using Repartitioned

Variable Intervals Entropy Using MDL

Race } } }
Ž .Age 1 } } }

Ž .Blood pressure 1 y637 } }
Ž .Body mass index 1 y367 } }
Ž .Maturation stage 1 y1221 y1222 y1222

Ž .Daily calories 1 } } }
Ž .Self worth 1 } } }

Ž .Age 2 } } }
Ž .Blood pressure 2 y591 } }
Ž .Body mass index 2 y191 y953 y935
Ž .Maturation stage 2 y1359 y1359 y1359

Ž .Daily calories 2 } } }
Ž .Age 3 } } }

Ž .Blood pressure 3 y518 } }
Ž .Body mass index 3 y175 y1642 y1620
Ž .Maturation stage 3 y1340 y1340 y1340

Ž .Daily calories 3 y289 } }
Ž .Self worth 3 y980 y980 y980

Ž .Age 4 } } }
Ž .Blood pressure 4 y585 } y1277
Ž .Body mass index 4 y134 y879 y861
Ž .Maturation stage 4 y1165 y1165 y1165

Ž .Daily calories 4 y82 y1832 y1752
Ž .Age 5 } } }

Ž .Blood pressure 5 y618 y1068 y1031
Ž .Body mass index 5 y121 y1698 y1667
Ž .Maturation stage 5 y928 y928 y928

Ž .Daily calories 5 y133 y1000 y974
Ž .Self worth 5 y1053 y1053 y1053

aChanges from previous implementation are in bold face.

V. DYNAMIC REPARTITIONING FOR BBNS BASED
ON THE MDL METRIC

A. Introduction

To further improve the accuracy of the BBNs constructed using entropy
based discretization of continuous variables, a method for dynamic repartition-
ing using the MDL metric was developed. Since higher metric scores result from

Ž .fewer variable values partitions and the initial discretization was not done in
relation to any other variables, this repartitioning merged existing partitions of
continuous variables to find more definitive conditional dependencies. This
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Figure 11. DISC network, MDL metric, with all continuous variables initially parti-
tioned into two equal length intervals. Dynamically repartitioned into equal length
intervals, as indicated by numbers adjacent to directed arcs.

procedure for dynamically repartitioning continuous variables during BBN con-
struction, using the MDL metric, is completely new. It could have wide use in
data mining applications using BBN models.

23 Ž .Bouckaert has shown that the MDL metric used here, Eq. 7 , is a
concave function in the number of partitions used in the conditional dependen-

Figure 12. DISC network, MDL metric, with all continuous variables initially parti-
tioned using entropy method.
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Table VI. DISC MDL metric scores for nodes with parents for equal interval and
aentropy based discretization.

All Continuous All Continuous
Initially and Partitioned Using
Dynamically Entropy;

Partitioned with All Continuous Dynamically
Equal Length Partitioned Repartitioned

Variable Intervals Using Entropy Using MDL

Gender } } }
Treatment } } }

Ž .Age 1 } } }
Ž .Total cholesterol 1 } } }

Ž .High density lipoprotein 1 } } }
Ž .Triglycerides 1 } } }

Ž .Body mass index 1 } } }
Ž .Activity level 1 } } }

Ž .Age 2 } } }
Ž .Total cholesterol 2 y407 } }

Ž .High density lipoprotein 2 y264 y680 y673
Ž .Triglycerides 2 y200 } }

Ž .Body mass index 2 y76 y685 y673
Ž .Activity level 2 y787 y787 y787

Ž .Age 3 } } }
Ž .Total cholesterol 3 y409 y140 y136

Ž .High density lipoprotein 3 y203 y853 y864
Ž .Triglycerides 3 y56 } }

Ž .Body mass index 3 y149 y1055 y984
Ž .Activity level 3 y839 y839 y839

Ž .Age 4 } } }
Ž .Total cholesterol 4 y66 y1220 y1220

Ž .High density lipoprotein 4 y265 y37 y47
Ž .Triglycerides 4 y92 } y1332

Ž .Body mass index 4 y168 y623 y609
Ž .Activity level 4 y842 y842 y842

aChanges from previous implementation are in bold face.

cies between parent and child nodes. This is based upon the concavity of the
conditional entropy used in the metric. Finding the knee of this function was
used as a stopping point for merging the partitions of continuous variables. This
was done by a method similar to the one used to stop the entropy based
partitioning of a single continuous variable. As described in Section IV.A, the
knee of the plot of the concave function is used as a stopping point for merging
partitions.

If there were no stopping points for mergers, all continuous variables would
reach a binary partitioning. This is a result of the MDL metric giving a higher
score to variables with fewer values. Two values were the minimum for a
measurement to remain a variable and not to become a constant.
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B. Method

As the set of parents of a variable was being found during BBN construc-
tion, each continuous variable was dynamically repartitioned to find the highest
MDL metric for this variable as a parent. If a continuous variable was being
considered as a parent, the two adjacent partitions with the lowest frequency
Ž .probability difference were merged. After this merging, a new MDL metric
value was found which used this variable, the child variable, and any other
previously established parent variables. The merging, of the adjacent partitions
with the lowest frequency difference, was based upon the heuristic that adjacent
variable values, with very similar frequencies, belong to the same value cluster
for predicting the value of another variable.

This merging was iterated until the knee of the MDL function was reached.
The resulting metric score was considered to be the best possible for this
continuous variable and was used for selecting it as a parent variable. If the
variable was not chosen as a parent, it retained its initial partitioning.

After the child variable and its parents were written to the output file, a
continuous parent variable reverted to its initial partitioning. In this way, each
dynamic repartitioning was independent of any others for the same variable and
the partitioning of the parent as a child node remained unchanged. In the
network structure, a new node can be created between the original node and the
child to represent this repartitioning. This new node is a direct parent of this
child node and only of this one child node.

C. Procedure

As described in Section IV.B, the NGHS or DISC dataset, with its accom-
panying file of continuous variable split points, was read into the program with
the basic K2 BBN construction algorithm. As each continuous variable was
considered as a parent, it was repartitioned, as described above, to find the best
partitioning relative to a child variable. If the continuous variable was selected
as a parent, it was listed in the output file as one, along with its current split
points and the number of partitions. The partitioning of a continuous variable
was always reset after it was considered as a parent. This procedure was used in
a modified version of the K2 algorithm, with the repartitioning done according
by merging the adjacent partitions with the lowest frequency difference, instead
of in the manner of the repartition function in the algorithm.

Aside from the complexity of the initial entropy discretization of the data,
this method of dynamic discretization significantly adds to the computational
complexity of the K2 based algorithm. With m cases, n variables, r values for a

wŽ . ŽŽ . .variable, and a maximum of c parents, this method uses c rm q r y 1 m
Ž .x ŽŽ Ž . . .q ??? 2m operations in the worst case. This comes to O r r y 1 r2 cm or

Ž 2 .O r cm operations for each variable. When combined with the initial complex-
Ž 4 .ity for the K2 algorithm of O mn r , this gives a worst case complexity of

Ž 2 4 3 .O m n r c .
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D. Results for Dynamic Repartitioning with the MDL Metric

The network constructed using dynamic repartitioning with the MDL
metric, for NGHS data, is shown in Figure 13. The only changes in network

Ž .structure, from using only entropy discretization Fig. 10 , are between blood
pressure measurements. There are two additional arcs and one arc that has
been deleted.

The MDL metric scores are presented in the third column of Table V.
These scores are higher than the scores using only initial entropy discretization,
since they represent fewer partitions.

The network constructed using dynamic repartitioning with the MDL
metric for DISC data is shown in Figure 14. There are two arcs added to the

Ž .network constructed with initial entropy discretization Fig. 12 , while one arc
was deleted.

The metric scores are presented in the third column of Table VI. They are
higher than the scores using only initial entropy discretization, except for the
last two measurements of high-density lipoprotein.

The execution times were 1101 min for NGHS data and 210 min for DISC
data.

Figure 13. NGHS network, MDL metric, with all continuous variables initially parti-
tioned using the entropy method, then dynamically repartitioned using MDL metric.
Number of partitions indicated by numbers adjacent to directed arcs.
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Figure 14. DISC network, MDL metric, with all continuous variables initially parti-
tioned using the entropy method, then dynamically repartitioned using MDL metric.
Number of partitions indicated by numbers adjacent to directed arcs.

E. Discussion

The dynamic discretization of continuous variables, using the MDL metric,
resulted in minor changes in BBN structure. However, metric scores were
generally higher and additional dependencies were found.

The use of dynamic repartitioning, in conjunction with entropy discretiza-
tion, brought out dependencies which were hidden in coarser representations of
continuous variables. The finding of unexpected results with a more flexible
discretization method justifies the increase in computational complexity.

VI. CONCLUSION

Methods for discretizing continuous variables for BBN construction were
developed here. An algorithm was developed for discretizing continuous vari-
ables according to the decreasing entropy, or information, contained in fewer
partitions. The partitioning is optimal in that it represents the best compromise
between information loss and a manageable number of partitions. This method
can be applied efficiently since it requires no other variable, or classifier, for
comparison during the discretization.

The resulting partitioning from entropy discretization was further modified,
during BBN construction, using the MDL scoring metric since it is a concave
function of the number of partitions. Adjacent partitions of a continuous
variable were merged to achieve an optimal metric score for local network
structure by adding that variable. The score was optimal in that it provided the
best balance of information loss and the number of partitions.



CLARKE AND BARTON90

These methods were demonstrated using selected data from two epidemio-
logical studies, NGHS and DISC. Two metrics to determine conditional depen-
dencies, K2 Bayesian and MDL, were applied for all applicable discretization
methods. The results were compared across methods and across metrics.

Dynamic repartitioning of continuous variables led to more sparsely con-
nected networks with equal length interval partitioning. However, dynamic
repartitioning of continuous variables, initially partitioned using entropy dis-
cretization, led to more highly connected networks. All methods of dynamic
repartitioning led to better representations of underlying dependencies among
variables in both NGHS and DISC data.

Pearson correlation coefficients were found for the continuous NGHS
Ž .variables with dependencies shown in Figure 13 Table VII . These are pre-

sented to compare the efficacy of the discretization methods presented here.
The high correlations between the initial continuous values of the variables,
which have no information loss from discretization, verify the dependencies. For
seven of eight pairs of variables, the correlations are much higher with entropy
discretization or with dynamic MDL repartitioning than with binary equal
interval discretization.

Table VII. NGHS Pearson correlation coefficients for pairs of continuous variables
aŽ .with relationships shown in Figure 4.20 BBN with dynamic MDL repartitioning .

All Continuous
All All Partitioned Using

Continuous Continuous Entropy
Initial Binary with Partitioned Dynamically

Continuous Equal Length Using Repartitioned
Correlation Variables Values Intervals Entropy Using MDL

Ž .Body mass index 1 = 0.956 0.785 0.870 0.840
Ž .Body mass index 2
Ž .Body mass index 2 = 0.957 0.762 0.888 0.891
Ž .Body mass index 3
Ž .Body mass index 3 = 0.960 0.821 0.773 0.792
Ž .Body mass index 4
Ž .Body mass index 3 = 0.920 0.703 0.877 0.877
Ž .Body mass index 5

Ž .Blood pressure 1 = 0.470 0.319 0.391 0.334
Ž .Blood pressure 4
Ž .Blood pressure 3 = 0.541 0.356 0.447 0.362
Ž .Blood pressure 5

Ž .Daily calories 3 = 0.845 0.540 0.815 0.802
Ž .Daily calories 4
Ž .Daily calories 4 = 0.930 0.653 0.877 0.872
Ž .Daily calories 5

aCoefficients shown for initial continuous values, and partitioning with binary equal interval,
entropy, and dynamic MDL repartitioning.
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While entropy discretization generally shows slightly higher correlations
than dynamic MDL repartitioning, the differences are not significant. Both
correlations are generally within one-tenth of the correlation of the continuous
values, with significantly fewer values. This shows that entropy discretization
provides a very good approximation of the underlying continuous distribution of
values in the sample data.

For both sets of data and for both metrics, the most complex BBNs were
found using the simplest methods for partitioning continuous variables. This
reflected the bias, in both metrics, in favor of fewer variable values. Dynamic
repartitioning of continuous variables, with the MDL metric, led to more highly
connected BBNs than with only entropy partitioning. This was the opposite of
the results for dynamic repartitioning with equal length interval partitioning.
The new methods presented here, for converting continuous variables into
discrete ones, led to better representations of the dependencies among variables
for data from both medical studies.

The methods presented here are well suited for exploratory data analysis.
Starting with the simplest discretization, relationships between variables can be
approximated. More computationally complex methods can be applied when
justified by more rigorous analysis requirements. The method for dynamic
repartitioning, using the MDL metric, can also be applied to discrete variables
to better represent their frequency distribution.

The use of entropy and MDL based partitioning of continuous variables
resulted in the clarification and simplification of the BBNs by providing an
optimal number of values to represent continuous variables.
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