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Abstract. One of the ways to solve classification problems with real-
value attributes using a Learning Classifier System is the use of a dis-
cretization algorithm, which enables traditional discrete knowledge rep-
resentations to solve these problems. A good discretization should bal-
ance losing the minimum of information and having a reasonable number
of cut points. Choosing a single discretization that achieves this balance
across several domains is not easy. This paper proposes a knowledge
representation that uses several discretization (both uniform and non-
uniform ones) at the same time, choosing the correct method for each
problem and attribute through the iterations. Also, the intervals pro-
posed by each discretization can split and merge among them along the
evolutionary process, reducing the search space where possible and ex-
panding it where necessary. The knowledge representation is tested across
several domains which represent a broad range of possibilities.

1 Introduction

The application of Genetic Algorithms (GA) [1,2] to classification problems is
usually known as Genetic Based Machine Learning (GBML) or Learning Clas-
sifier Systems (LCS), and traditionally it has been addressed from two different
points of view: the Pittsburgh approach (also known as Pittsburgh LCS), and the
Michigan approach (or Michigan LCS). Some representative systems of each ap-
proach are GABIL [3] and XCS [4]. The classical knowledge representation used
in these systems is a set of rules where the antecedent is defined by a prefixed
finite number of intervals to handle real-valued attributes. The performance of
these systems is tied to the right election of the intervals through the use of a
discretization algorithm.

There exist several good heuristic discretization methods which have good
performance on several domains. However, they lack robustness on some other
domains because they loose too much information from the original data. The
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alternative of a high number of simple uniform-width intervals usually expands
the size of the search space without a clear performance gain.

In a previous paper [5] we have proposed a representation called adaptive
discrete intervals (ADI) rule representation where several uniform-width dis-
cretizations are used at the same time. Thus, allowing the GA choose the correct
discretization for each rule and attribute. Also, the discretization intervals were
split and merged through the evolutionary process. This representation has been
used in our Pittsburgh approach LSC.

In this paper we generalize the ADI representation approach (proposing
ADI2 ) by also using heuristic non-uniform discretization methods. In our case
the well-known Fayyad & Irani discretization algorithm [6]. In our previous work
se reported that using only the Fayyad & Irani discretization can lead to a non-
robust system in some domains, but using it together with some uniform-width
discretizations improves the performance in some domains and, most important,
presents a robust behavior across most domains. Also, the probability that con-
trols the split and merge operators is redefined in order to simplify the tuning
needed to use the representation.

This rule representation is compared across different domains against the re-
sults of the original representation and also the XCSR representation [7] by Wil-
son which uses rules with real-valued intervals in the well known XCS Michigan
LCS [4]. We want to state clearly that we have integrated the XCSR represen-
tation into our Pittsburgh system, instead of using it inside XCS.

The paper is structured as follows. Section 2 presents some related work.
Then, we describe the framework of our classifier system in Sect. 3. The revision
of the ADI representation is explained in Sect. 4. Next, Sect. 5 describes the test
suite used in the comparison. The results obtained are summarized in Sect. 6.
Finally, Sect. 7 discusses the conclusions and some further work.

2 Related Work

There are several approaches to handle real-valued attributes in the LCS field.
These approaches can be classified in a simple manner into two groups: Sys-
tems that discretize or systems that work directly with real values. Reducing
the real-valued attributes to discrete values let the systems in the first group
use traditional symbolic knowledge representations. There are several types of
algorithms which can perform this reduction. Some heuristic examples are the
Fayyad & Irani method [6] which works with information entropy or the χ2

statistic measures [8].
Some specific GBML applications of discretization algorithms were presented

by Riquelme and Aguilar [9] and are similar to the representation proposed here.
Their system evolves conjunctive rules where each conjunct is associated to an
attribute and is defined as a range of adjacent discretization intervals. They use
their own discretization algorithm, called USD [10].

Lately, several alternatives to the discrete rules have been presented. There
are rules composed by real-valued intervals (XCSR [7] by Wilson or COGITO
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[11] by Aguilar and Riquelme). Also, Llorà and Garrell [12] proposed a knowledge
independent method for learning other knowledge representations like instance
sets or decision trees. Most of these alternatives have better accuracy than the
discrete rules, but usually they also have higher computational cost [11].

3 Framework

In this section we describe the main features of our classifier system which is a
Pittsburgh LCS based on GABIL [3]. Directly from GABIL we have borrowed
the semantically correct crossover operator and the fitness computation (squared
accuracy).

Matching Strategy: The matching process follows a “if ... then ... else if ...
then...” structure, usually called Decision List [13].

Mutation Operators: The system manipulates variable-length individuals,
making more difficult the tuning of the classic gene-based mutation probability.
In order to simplify this tuning, we define pmut as the probability of mutating
an individual. When an individual is selected for mutation (based on pmut), a
random gene is chosen inside its chromosome for mutation.

Control of the Individuals Length: Dealing with variable-length individuals
arises some serious considerations. One of the most important ones is the control
of the size of the evolving individuals [14]. This control is achieved using two
different operators:

– Rule deletion: This operator deletes the rules of the individuals that do
not match any training example. This rule deletion is done after the fitness
computation and has two constraints: (a) the process is only activated after
a predefined number of iterations, to prevent a massive diversity loss and
(b) the number of rules of an individual never goes below a lower threshold.

– Selection bias using the individual size: Selection is guided as usual by the
fitness (the accuracy of the individual). However, it also gives certain de-
gree of relevance to the size of the individuals, having a policy similar to
multi-objective systems. We use tournament selection because its local be-
havior lets us implement this policy. The criterion of the tournament is given
by our own operator called “hierarchical selection” [15]. This operator con-
siders two individuals “similar” if their fitness difference is below a certain
threshold (dcomp). Then, it selects the individual with fewer number of rules.
Our previous tests showed that sizing dcomp to 0.01 was quite good for real
problems and 0.001 was quite good for synthetic problems. Although a fine
tuning of this parameter probably would improve the performance for each
test domain, for the sake of simplicity we will use these values.
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4 The Adaptive Discretization Intervals (ADI) Rule
Representation

4.1 The Original ADI Representation

The general structure of each rule is taken from GABIL. That is, each rule
consists of a condition part and a classification part: condition → classification.
Each condition is a Conjunctive Normal Form (CNF) predicate defined as:

((A1 = V 1
1 ∨ . . . ∨ A1 = V 1

m)
∧

. . .
∧

(An = V n
2 ∨ . . . An = V b

m))

Where Ai is the ith attribute of the problem and V j
i is the j th value that can

take the ith attribute.
In the GABIL representation this kind of predicate can be encoded into a

binary string in the following way: if we have a problem with two attributes,
where each attribute can take three different values {1,2,3}, a rule of the form
“If the first attribute has value 1 or 2 and the second one has value 3 then
we assign class 1” will be represented by the string 110|001|1. For real-valued
attributes, each bit (except the class one) would be associated to a discretization
interval.

The intervals of the rules in the ADI representation are not static, but they
evolve splitting and merging among them (having a minimum size called micro-
intervals). Thus, the binary coding of the GABIL representation is extended as
represented in Fig. 1, also showing the split and merge operations.

The ADI representation is defined in depth as follows:

1. Each individual, initial rule and attribute term is assigned a number of
“low level” uniform-width and static discretization intervals (called micro-
intervals).

2. The intervals of the rule are built joining together adjacent micro-intervals.
3. Attributes with different number of micro-intervals can coexist in the pop-

ulation. The evolution will choose the correct number of micro-intervals for
each attribute.

Rule set

ClassRule

11 1 0Interval state
Attribute

Microinterval { Interval

Attribute

MergeSplit

11 1 0

Interval to mutate

1 1 0 0 1

Cut point Neighbour selected to merge

1 1 0

Fig. 1. Adaptive intervals representation and the split and merge operators
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4. For computational cost reasons, we will have an upper limit in the number
of intervals allowed for an attribute, which in most cases will be less than
the number of micro-intervals assigned to each attribute.

5. When we split an interval, we select a random point in its micro-intervals
to break it.

6. When we merge two intervals, the state (1 or 0) of the resulting interval is
taken from the one which has more micro-intervals. If both have the same
number of micro-intervals, the value is chosen randomly.

7. The number of micro-intervals assigned to each attribute term is chosen
from a predefined set.

8. The number and size of the initial intervals is selected randomly.
9. The cut points of the crossover operator can only take place in attribute

terms boundaries, not between intervals. This restriction takes place in order
to maintain the semantical correctness of the rules.

10. The hierarchical selection operator uses the length of the individuals (defined
as the sum of all the intervals of the individual) instead of the number of
rules as the secondary criteria. This change promotes simple individuals with
more reduced interval fragmentation.

In order to make the interval splitting and merging part of the evolutionary
process, we have to include it in the GAs genetic operators. We have chosen
to add to the GA cycle two special stages applied to the offspring population
after the mutation stage. For each stage (split and merge) we have a probability
(psplit or pmerge) of applying the operation to an individual. If an individual is
selected for split or merge, a random point inside its chromosome is chosen to
apply the operation.

4.2 Revisions to the Representation: ADI2

The first modification to the ADI representation affects the definition of the
split and merge probabilities. These probabilities were defined at an individual-
wise level, and needed an specific adjust for each domain that we want to solve.
The need of this fine-adjusting is motivated by the fact that this probability
definition does not take into account the number of attributes of the problem
nor its optimum number of rules. Thus, a problem having the double of attributes
than another problem would also need a probability two times higher. Also, it
was empirically determined that it was useful to split or merge more than once
for each individual, thus using an expected values instead of a probability to
control the operators.

Our proposal is a probability defined for each attribute term of each rule.
Thus, becoming independent of these two factors. The code for the merge oper-
ator probability is represented in Fig. 2. Code for the split operator is similar.
This redefinition allows us to use the same probability for all the test domains
with similar results to the original probability definition. The probability value
has been empirically defined as 0.05.
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ForEach Individual i of Population
ForEach Rule j of Population individual i

ForEach Attribute k of Rule j of Population individual i
If random [0..1] number < pmerge

Select one random interval of attribute term k
of rule j of individual i

Apply a merge operation to this interval
EndIf

EndForEach
EndForEach

EndForEach

Fig. 2. Code of the application of the merge operator

Our second modification is related to the kind of discretization that we use.
The experimentation reported of the original representation included a compari-
son with a discrete representation where the discretization intervals where given
by the Fayyad & Irani method [6]. This discrete representation performed bet-
ter than the adaptive intervals rule representation in some domains, but it was
significantly outperformed in some other domains, showing a lack of robustness.

Our aim is to modify the representation in order to include non-uniform
discretization into it, in a way that improves the performance of the system in
the problems where it is possible, but maintains a robust behavior in the kind of
problems where the systems using only heuristic representations fail. A graphical
representation of the two types of rules is in Fig. 3. The changes introduced to
the definition of the representation are minimum. A revised definition follows:

1. A set of static discretization intervals (called micro-intervals) is
assigned to each attribute term of each rule of each individual.

2. The intervals of the rule are built joining together micro-intervals.
3. Attributes with different number and sizes of micro-intervals can

coexist in the population. The evolution will choose the correct
discretization for each attribute.

4. For computational cost reasons, we will have an upper limit in the number
of intervals allowed for an attribute, which in most cases will be less than
the number of micro-intervals assigned to each attribute.

5. When we split an interval, we select a random point in its micro-intervals
to break it.

11 1 0 101 1 0 1 1 11 10
1

11 1 0 1 1 0 1 1 1
0

0 1 0
ADI2

10 uniform micro−intervals 3 non−uniform micro−intervals 4 uniform micro−intervals

ADI1

5 uniform micro−intervals 4 uniform micro−intervals 8 uniform micro−intervals10 uniform micro−intervals

7 non−uniform micro−intervals

Attribute terms with non−uniform discretizations

Fig. 3. Example of the differences between ADI1 and ADI2 rules



1824 J. Bacardit and J.M. Garrell

6. When we merge two intervals, the state (1 or 0) of the resulting interval is
taken from the one which has more micro-intervals. If both have the same
number of micro-intervals, the value is chosen randomly.

7. The discretization assigned in the initialization stage to each at-
tribute term is chosen from a predefined set.

8. The number and size of the initial intervals is selected randomly.
9. The cut points of the crossover operator can only take place in attribute

terms boundaries, not between intervals. This restriction takes place in order
to maintain the semantical correctness of the rules.

10. The hierarchical selection operator uses the length of the individuals (defined
as the sum of all the intervals of the individual) instead of the number of
rules as the secondary criteria. This change promotes simple individuals with
more reduced interval fragmentation.

5 Test Suite

This section summarizes the tests done in order to evaluate the accuracy and
efficiency of the method presented in this paper. We also compare it with some
alternative methods. The tests were conducted using several machine learning
problems which we also describe.

5.1 Test Problems

The selected test problems are the same that were used in the original version of
the representation being studied in this paper. The first problem is a synthetic
problem (tao [12]) that has non-orthogonal class boundaries. We also use several
problems provided by the University of California at Irvine (UCI) repository [16].
The problems selected are: Pima Indians Diabetes (pim), Iris (irs), Glass (gls)
and Winsconsin Breast Cancer (breast). Finally we will use three real problems
from private repositories. The first two deal with the diagnosis of breast cancer
based on biopsies (bps [17]) and on mammograms (mmg [18]), whereas the last
one is related to the prediction of student qualifications (lrn [19]). The charac-
teristics of the problems are listed in Table 1. The partition of the examples into
the train and test sets was done using stratified ten-fold cross-validation [20].

5.2 Configurations of the GA to Test

The main goal of the tests is to evaluate the performance of the changes done to
the ADI representation: the redefinition of the split and merge probabilities and
also the inclusion of non-uniform discretizations. Thus, we performed two kind
of tests: The first test (called ADI2) uses the new probabilities and only the
uniform discretizations. The second one (called ADI2+Fayyad) adds to the
configuration ADI2 the use of the Fayyad & Irani discretization method [6].

This revision of the ADI representation is compared to three more configu-
rations:
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Table 1. Characteristics of the test problems

Name ID. Instances Real attr Discrete attr. Type Classes
Tao tao 1888 2 - synthetic 2
Pima-Indians-Diabetes pim 768 8 - real 2
Iris irs 150 4 - real 3
Glass gls 214 9 - real 6
Winsconsin Breast Cancer bre 699 - 9 real 2
Biopsies bps 1027 24 - real 2
Mammograms mmg 216 21 - real 2
Learning lrn 648 4 2 real 5

– Non-adaptive discrete rules (using the GABIL representation) using the
Fayyad & Irani discretization method to determine the intervals used. This
test is labeled Fayyad.

– The original ADI representation with the old split and merge probability
definition and only using uniform discretizations (called ADI1 ).

– Rules with real-valued intervals using the XCSR representation [7] (called
XCSR).

We have decided not to add any other non-uniform discretization to ADI2+
Fayyad because the comparison of these tests with the Fayyad test would not
be fair if more non-uniform discretization methods were used.

The GA parameters are shown in Tables 2 and 3. The first one shows the
general parameters and the second one the domain-specific ones. The reader
can appreciate that the sizing of both psplit and pmerge is the same for all the
problems except the tao problem. Giving the same value to pmerge and psplit

produce solutions with too few rules and intervals, as well as less accurate than
the results obtained with the configuration shown in Table 3.

The reason of this fact comes from the definition of this synthetic problem
with only two attributes and rules with intervals as small as one 48th of an
attribute domain in the optimum rule set. The probability of generating these
very specific rules is very low because of the hierarchical selection operator used
to apply generalization pressure. The operator is still used because it is beneficial
for the rest of problems and we can fix this bad interaction by increasing psplit.
The characteristics of this problem explained here are also the reason of the
bad performance of the test using only the Fayyad & Irani intervals because the
discretization generates too few intervals and, as a consequence, loses too much
information from the original data.

6 Results

In this section we present the results obtained. The aim of the tests was to
compare the methods studied in this paper in three aspects: accuracy and size
of the solutions as well as the computational cost. For each method and test
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Table 2. Common parameters of the GA

Parameter Value
General parameters

Crossover probability 0.6
Selection algorithm Tournament
Tournament size 3
Population size 300
Probability of mutating an individual 0.6

Rule Deletion operator
Iteration of activation 30
Minimum number of rules before disabling the operator number of classes + 3

Hierarchical Selection
Iteration of activation 10

ADI rule representation
Number of intervals of the uniform discretizations 4,5,6,7,8,10,15,20,25

XCSR rule representation
Maximum radius size in initialization 0.7 of each attribute domain
Maximum center offset in mutation 0.7 of each attribute domain
Maximum radius offset in mutation 0.7 of each attribute domain

Table 3. Problem-specific parameters of the GA

Code Parameter
#iter Number of GA iterations
dcomp Distance parameter in the “size-based comparison” operator
psplit orig Expected value interval split in ADI1
pmerge orig Expected value of interval merging in ADI1
psplit Probability of splitting an interval in ADI2
pmerge Probability of merging an interval in ADI2

Problem Parameter
#iter dcomp pmerge orig psplit orig pmerge psplit

tao 900 0.001 1.3 2.6 0.05 0.25
pim 250 0.01 0.8 0.8 0.05 0.05
irs 275 0.01 0.5 0.5 0.05 0.05
gls 900 0.01 1.5 1.5 0.05 0.05
bre 300 0.01 3.2 3.2 0.05 0.05
bps 275 0.01 1.7 1.7 0.05 0.05
mmg 225 0.01 1.0 1.0 0.05 0.05
lrn 700 0.01 1.2 1.2 0.05 0.05

problem we show the average and standard deviation values of: (1) the cross-
validation accuracy, (2) the size of the best individual in number of rules and
number of intervals and (3) the execution time in seconds. Obviously, the XCSR
results lack the intervals per attribute column. The tests were executed in an
AMD Athlon 1700+ using Linux operating system and C++ language. Runs
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for each method, problem and fold has been repeated 15 times using different
random seeds and the results averaged. The full detail of the results is shown
in Table 4 and a summary of them taking the form of a methods ranking is in
Table 5. The ranking for each problem and method is based on the accuracy.
The global rankings are computed averaging the problem rankings. The results
were also analyzed using two-sided Student t-tests [20] with a significance level
of 1% in order to determine if there were significant outperformances between
the methods tested. The results of the t-tests are shown in Table 6. None of the
ADI was outperformed.

The results were also analyzed using the two-sided t-test [20] with a signifi-
cance level of 1% in order to determine if there were significant outperformances
between the methods tested.

The first interesting fact from the results is the comparison between ADI1
and ADI2, that is, the comparison between the split and merge probabilities
definitions. ADI2 the method that uses the same probabilities for all the do-
mains is always better (with only one exception) than ADI1, the method that
needed domain-specific probabilities. Thus, the gain is double, performance and
simplicity of use.

The performance of ADI2+Fayyad is also quite good, being the second
method in the overall ranking but very close to ADI2, the first one. The objec-
tive of increasing the ADI accuracy in the problems where the Fayyad discrete
rules alone performed well and, at the same time, maintain the accuracy in the
domains where Fayyad presented very poor performance has been achieved.

Also, the results of the XCSR representation show that the representa-
tions based on a discretization process, if well used, present good performance
compared to representations that evolve real-valued intervals. This observation
matches the ones reported by Riquelme and Aguilar [11].

The computational cost continues being the main drawback of the represen-
tation. The comparison of the ADI representation run time with the Fayyad
discrete rules is clearly favorable to Fayyad test. The comparison with XCSR,
however, is not so clear. In some domains one representation is faster and in
other domains it is the reverse situation.

7 Conclusions and Further Work

This paper focused on a revision and generalization of our previous work on
representations for real-valued attributes: the Adaptive Discretization Intervals
(ADI) rule representation. This representation evolves rules that can use mul-
tiple discretizations, letting the evolution choose the correct discretization for
each rule and attribute. Also, the intervals defined in each discretization can
split or merge among them through the evolution process, reducing the search
space where it is possible and expanding it where it is needed. This revision has
consisted of two parts: redefining the split and merge operators probabilities and
using non-uniform discretizations in the representation in addition of the exist-
ing uniform ones. The redefinition of the operators has simplified enormously
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Table 4. Mean and deviation of the accuracy, number of rules and intervals per at-
tribute for each method tested. Bold entries show the method with best results for each
test problem

Problem Configuration Accuracy Number of Rules Intervals per attribute Run time

tao

Fayyad 87.8±1.1 3.1±0.3 3.4±0.1 37.3±2.1
ADI1 94.3±1.0 19.5±4.9 6.0±0.6 145.6±20.9
ADI2 94.7±0.9 17.5±4.4 8.7±0.6 162.1±20.9
ADI2+Fayyad 94.0±0.9 15.6±4.4 7.6±1.0 150.5±23.4
XCSR 91.1±1.4 12.9±3.1 —— 110.6±14.5

pim

Fayyad 73.6±3.1 6.6±2.6 2.3±0.2 13.2±1.5
ADI1 74.4±3.1 5.8±2.2 1.9±0.4 29.9±4.5
ADI2 74.5±3.8 3.7±1.2 2.1±0.3 30.2±3.2
ADI2+Fayyad 74.5±3.3 3.6±0.9 2.0±0.3 32.1±3.0
XCSR 74.2±3.3 3.4±1.0 —— 18.7±2.9

irs

Fayyad 94.2±3.0 3.2±0.6 2.8±0.1 4.1±0.1
ADI1 96.2±2.2 3.6±0.9 1.3±0.2 6.2±0.6
ADI2 96.0±2.6 3.9±0.7 1.5±0.3 6.0±2.0
ADI2+Fayyad 96.3±2.4 3.7±0.7 1.5±0.2 6.4±2.1
XCSR 95.2±2.3 3.5±0.6 —— 3.5±0.1

gls

Fayyad 65.7±6.1 8.1±1.4 2.4±0.1 16.8±1.3
ADI1 65.2±4.1 6.7±2.0 1.8±0.2 46.1±6.0
ADI2 65.6±3.7 7.6±1.5 2.6±0.2 41.8±3.8
ADI2+Fayyad 66.2±3.6 7.7±1.6 2.5±0.2 42.7±3.5
XCSR 65.2±5.2 8.4±1.2 —— 37.5±4.9

bre

Fayyad 95.2±1.8 4.1±0.8 3.6±0.1 8.3±0.9
ADI1 95.3±2.3 2.6±0.9 1.7±0.2 25.0±1.4
ADI2 95.9±2.3 2.4±0.6 1.8±0.3 19.6±1.4
ADI2+Fayyad 95.7±2.4 2.4±0.6 1.8±0.3 22.8±1.6
XCSR 95.8±2.7 3.2±0.9 —— 21.4±2.9

bps

Fayyad 80.0±3.1 7.1±3.8 2.4±0.1 31.1±5.0
ADI1 80.1±3.3 5.1±2.0 2.0±0.3 99.6±17.0
ADI2 80.6±2.9 3.6±1.0 2.1±0.2 113.8±9.9
ADI2+Fayyad 80.3±2.9 3.6±1.0 2.0±0.2 119.2±7.7
XCSR 79.7±3.1 4.3±1.1 —— 151.6±13.4

mmg

Fayyad 65.3±11.1 2.3±0.5 2.0±0.1 3.8±0.3
ADI1 65.0±6.1 4.4±1.9 1.9±0.2 12.3±2.5
ADI2 65.6±5.7 4.9±1.0 2.3±0.1 13.7±1.2
ADI2+Fayyad 65.2±4.3 4.7±1.1 2.2±0.1 14.4±1.2
XCSR 63.1±4.1 5.6±1.6 —— 14.9±2.4

lrn

Fayyad 67.5±5.1 14.3±5.0 4.4±0.1 26.5±3.4
ADI1 66.7±4.1 11.6±4.1 3.4±0.2 53.9±7.2
ADI2 67.4±4.3 7.2±1.7 3.5±0.2 46.6±5.1
ADI2+Fayyad 67.6±4.6 6.9±1.4 3.4±0.2 45.9±5.0
XCSR 67.1±4.4 9.1±2.5 —— 52.6±7.5

the tuning needed to use the representation because we have converted an oper-
ator which needed domain-specific tuning into an operator which uses the same
probability for all the domains. The addition of non-uniform discretizations to
the representation has improved its performance in some domains while main-
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Table 5. Performance ranking of the tested methods. Lower number means better
ranking

Problem Fayyad ADI1 ADI2 ADI2+Fayyad XCSR
tao 5 2 1 3 4
pim 5 3 1 1 4
irs 5 2 3 1 4
gls 2 4 3 1 4
bre 5 4 1 3 2
bps 4 3 1 2 5
mmg 2 4 1 3 5
lrn 2 4 3 1 4
Average 3.75 3.25 1.75 1.875 4
Final rank 4 3 1 2 5

Table 6. Summary of the statistical two-sided t-test performed at the 1% significance
level. Each cell indicates how many times the method in the row outperforms the
method in the column

Method Fayyad ADI1 ADI2 ADI2+Fayyad XCSR Total
Fayyad - 0 0 0 0 0
ADI1 1 - 0 0 2 3
ADI2 1 0 - 0 2 3
ADI2+Fayyad 1 0 0 - 2 3
XCSR 1 0 0 0 - 1
Total 4 0 0 0 6

taining the robust behavior that presented the original version, according to the
statistical t-tests done.

The tests done show that the new version is always better than the original
one and also better than the other representations included in the comparison
when used in a Pittsburgh LCS. However, the computational cost continues
being a major drawback, compared to the discrete rules.

As a further work, other non-uniform discretization methods beside the
Fayyad & Irani one should be tested, to increase the range of problems where
this representation performs well. This search for more discretization methods,
however, should always have in mind maintaining the robustness behavior that
the representation has showed so far. On the other hand, the ADI representation
should be compared with other kind of representations dealing with real-valued
attributes, for example non-orthogonal ones.
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12. Llorà, X., Garrell, J.M.: Knowledge-independent data mining with fine-grained
parallel evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), Morgan Kaufmann (2001) 461–468

13. Rivest, R.L.: Learning decision lists. Machine Learning 2 (1987) 229–246
14. Soule, T., Foster, J.A.: Effects of code growth and parsimony pressure on popula-

tions in genetic programming. Evolutionary Computation 6 (1998) 293–309
15. Bacardit, J., Garrell, J.M.: Métodos de generalización para sistemas clasificadores

de Pittsburgh. In: Proceedings of the “Primer Congreso Español de Algoritmos
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