
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 1, FEBRUARY 2005 31

Handling Continuous Attributes in an
Evolutionary Inductive Learner

Federico Divina and Elena Marchiori

Abstract—This paper analyzes experimentally discretization
algorithms for handling continuous attributes in evolutionary
learning. We consider a learning system that induces a set of
rules in a fragment of first-order logic (evolutionary inductive
logic programming), and introduce a method where a given
discretization algorithm is used to generate initial inequalities,
which describe subranges of attributes’ values. Mutation oper-
ators exploiting information on the class label of the examples
(supervised discretization) are used during the learning process
for refining inequalities. The evolutionary learning system is used
as a platform for testing experimentally four algorithms: two
variants of the proposed method, a popular supervised discretiza-
tion algorithm applied prior to induction, and a discretization
method which does not use information on the class labels of the
examples (unsupervised discretization). Results of experiments
conducted on artificial and real life datasets suggest that the
proposed method provides an effective and robust technique for
handling continuous attributes by means of inequalities.

Index Terms—Discretization, evolutionary computation, induc-
tive concept learning (ICL).

I. INTRODUCTION

THE TASK OF learning a target concept in a given rep-
resentation language, from a set of positive and negative

realizations of that concept (examples) and some background
knowledge, is called inductive concept learning (ICL) [1]. If the
representation language is a fragment of first-order logic then it
is called inductive logic programming (ILP) [2].

Real-life learning tasks are often described by nominal as
well as continuous, real-valued, attributes. However, most in-
teger linear programming (ILP) systems treat all attributes as
nominal. Hence, such systems cannot exploit the linear order
of real values, if real values are treated as nominal ones. This
limitation may have a negative effect not only on the execution
speed but also on the learning capabilities of such systems.

In order to overcome these problems, more involved transfor-
mations of continuous-valued attributes into nominal ones are
applied. For instance, the range of the attribute’s values are split
in a finite number of intervals, which are treated as values of a
nominal attribute. Alternatively, continuous attributes are han-
dled by means of inequalities describing attribute subranges,
whose boundaries are computed during the learning process.
This process, called discretization, is supervised when it uses

Manuscript received September 23, 2003; revised March 3, 2004.
The authors are with the Department of Computer Science, Vrije

Universiteit van Amsterdam, 1081 HV Amsterdam, The Netherlands (e-mail:
divina@cs.vu.nl; elena@cs.vu.nl).

Digital Object Identifier 10.1109/TEVC.2004.837752

Fig. 1. A problem for which univariate discretization is unlikely to work.

the class labels of examples, and unsupervised, otherwise. Dis-
cretization can be applied prior to or during the learning process
(global and local discretization, respectively), and can either
discretize one attribute at a time (univariate discretization) or
take into account attributes interdependencies (multivariate dis-
cretization) [3].

Researchers in the machine learning community have intro-
duced many discretization algorithms. An overview of various
types of discretization algorithms can be found, e.g., in [4]–[7].
Most of these algorithms perform an iterative greedy heuristic
search in the space of candidate discretizations, using different
types of scoring functions for evaluating a discretization. For
instance, the popular Fayyad and Irani discretization algorithm
[8] considers one attribute at a time, uses an information class
entropy measure for choosing a cut point yielding a partition of
the attribute domain, applies recursively the procedure to both
the partitions, and uses the minimum description length as cri-
terion for stopping the recursion.

A typical example showing a drawback of univariate dis-
cretization methods based on class information entropy is the
problem of separating the two classes shown in the Fig. 1, where
positive and negative examples are labeled and .

Any cut point divides the domain of one attribute in two par-
titions having approximately the same class distribution as the
entire domain. Thus, a condition on a single attribute does not
improve class separation, so univariate supervised discretiza-
tion methods based on information class entropy are unlikely
to work.

An elegant and robust approach for overcoming this draw-
back is provided by evolutionary algorithms, which can be used

1089-778X/$20.00 © 2005 IEEE

32 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 1, FEBRUARY 2005

for performing local multivariate discretization during the evo-
lutionary learning process. Recently, several methods have been
introduced based on this approach. In these methods numerical
values are handled by means of inequalities that can be mod-
ified, by means of ad hoc operators, during the evolutionary
process. These methods differ among each other mainly in the
way inequalities, describing continuous attribute subranges, are
encoded, and in the definition of suitable genetic operators for
modifying inequalities. An overview of some of these methods
is given in Section V.

We will use evolutionary learners based on a more expres-
sive representation, like the ILP system, in this paper. Called
evolutionary concept learning (ECL) [9], it generally treats
continuous attributes as nominal ones or discretize them prior
to induction, e.g., using Fayyad and Irani algorithm. Recently
[10] proposed an unsupervised local multivariate discretization
method which is embedded in ECL. The resulting system, here
called ECL-LUD (ECL with local unsupervised discretiza-
tion), evolves rules containing inequalities. An inequality is
introduced in a rule each time a continuous attribute value
of an example is considered, and the inequality boundaries
are initialized to that value. Then, during evolution, mutation
operators using information about the density of the values
of an attribute, are applied for shifting the boundaries of the
inequalities. It is shown that this unsupervised local discretiza-
tion method improves the performance of ECL on a number of
classification tasks.

In this paper, we analyze experimentally the effect of other
discretization methods for ECL, in particular, local supervised
multivariate discretization and test, and compare experimentally
the resulting variants of ECL with other classification methods.

We propose a discretization method that uses the intervals
generated by a given (global supervised univariate discretiza-
tion) algorithm for initializing the inequalities introduced in
a rule, and refines these inequalities, during the evolutionary
process, by means of mutation operators, which use specific cut
points for shifting inequality boundaries. More specifically, we
consider the two following possible initializations of inequal-
ities: a fine-grain initialization, using intervals formed by two
consecutive boundary points, where a boundary point is the
midpoint of two consecutive attribute values having different
class labels [11], and a coarser grain initialization, using inter-
vals obtained from the Fayyad and Irani algorithm (outlined
above). During the evolutionary process the mutation operators
use the boundary points for modifying the inequalities. The
resulting ECL variants are called ECL-LSDf and ECL-LSDc,
respectively.

We compare experimentally four variants of ECL with
discretization: ECL with global univariate discretization
(ECL-GSD), which uses Fayyad and Irani algorithm prior to
evolution, ECL with local multivariate unsupervised discretiza-
tion (ECL-LUD), and ECL with the two variants (ECL-LSDf
and ECL-LSDc) of the proposed local supervised discretization
method.

We analyze experimentally the performance of the four ECL
variants on the nonlinearly separable problem described above
and on real-life propositional and relational datasets. On the

Fig. 2. Example of boundary points of an attribute: � denotes a value occurring
in a positive example, while � a value occurring in a negative one.

real-life datasets, ECL-LSDc is the best performing system.
However, as expected, it is unable to solve the nonlinearly sep-
arable problem, while ECL-LSDf is able to solve this problem,
but its fine-grain initialization of inequalities sometimes leads
the system to overfit the training data.

In general, the results of the experiments indicate that ini-
tializing inequalities using intervals obtained from Fayyad and
Irani algorithm [11] and then refining them during the learning
process in order to take into account the possible attribute in-
terdependencies, provides a robust and effective technique for
handling continuous attributes in evolutionary ILP learning.

The rest of the paper is organized as follows. In Section II,
we describe the two types of cut points used as boundaries of
inequalities and the operators for shifting inequalities bound-
aries employed in the mutation. Next, we briefly overview the
ECL system and its four extensions with discretization. In Sec-
tion IV, we report and discuss the results of experiments, and
we compare the best results obtained by the various settings of
ECL with results obtained by other ICL methods. In Section V,
we consider related work, and finally, in Section VI, we give
some conclusions.

II. GENERATING BOUNDARY POINTS FOR INEQUALITIES

The discretization method we propose uses the following two
types of cut points, called boundary and discretization points.

A. Boundary Points

Boundary points have been introduced and analyzed in [11].
Given a numeric attribute and a set of positive and negative
examples, the values of occurring in the examples are sorted
in increasing order. A boundary point is the midpoint of two suc-
cessive values of occurring in examples of different classes.
Here, we call boundary points also the smallest and biggest
value of , denoted by and , respectively.

Each pair of consecutive boundary points describes an in-
terval, which can be of three types: negative if its values occur
only in negative examples, positive if they occur only in positive
examples, and mixed if the interval contains just one value, and
this value occurs both in a positive and a negative example. An
example is shown in Fig. 2.

We denote by the sequence of boundary points of
sorted in increasing order, and call BP interval an interval de-
fined by two successive elements of . Boundary points
are sufficient for finding the minimum of class information en-
tropy, a measure used in the following discretization algorithm
[11].

B. Discretization Points

Fayyad and Irani discretization algorithm uses the class infor-
mation entropy of candidate intervals to select the boundaries of
the intervals for discretization.

DIVINA AND MARCHIORI: HANDLING CONTINUOUS ATTRIBUTES IN AN EVOLUTIONARY INDUCTIVE LEARNER 33

Fig. 3. (a) Application of enlarge. (b) Application of shrink. The inequality is
represented by a thick segment.

Given a set of instances, an attribute , and a threshold
point , the class information entropy of the partition induced
by is given by

Entropy Entropy

where and are the sets of instances whose values
of are in the first and second half of the partition.
Moreover, denotes the number of elements of and

with and
the proportions of positive and negative examples of .

The algorithm searches for a boundary point which
minimizes . Such , here called discretization
point, is selected as boundary of a binary discretization.
The method is applied recursively to both the partitions
induced by until a stopping criterion is satisfied. The
minimum description length principle [12] is used in the
stopping criterion. The recursive process within a set of
instances stops if is smaller than

, where
,

and is the number of class labels represented in .
In the discretization method of Fayyad and Irani, the intervals

of the final partition are treated as values of a nominal attribute.
We denote by the sequence of discretization points

sorted in increasing order, and call DP interval an interval de-
fined by two consecutive elements of .

C. Enlarging and Shrinking Inequalities

We handle a numeric attribute by means of inequalities of
the form , where are specific elements of

. An element of is called left-good if it is not the
left boundary of a negative interval, and right-good if it
is not the right boundary of a negative interval. We will
consider only inequalities with and left- and
right-good, describing intervals that do not start or end with a
negative interval.

For instance, assume the boundary points of are those in
Fig. 3. Then, is a legal inequality, while

is not legal, because it describes an interval that ends with a
negative interval.

Now, assume , and consider the in-
equality with and left-
and right-good. We introduce the following generalization and
specialization operators.
enlarge:

1) Randomly select either or .

2) a) If has been chosen, find the greatest such that
and is left-good. Set to . If such does

not exist (if or all intervals to the left of are
negative), then go to step b) if it was not already tried.

b) If has been chosen, find the smallest such that
and is right-good. Set to . If such

does not exist (if or all intervals to the right of
are negative), then go to step a) if it was not already

tried.
shrink:
This operator is applicable if .

1) Randomly select either or .

2) a) If has been chosen, find the smallest such that
and is left-good. Set to .

b) If has been chosen, find the greatest , where
and is right-good. Set to .

Notice that application of enlarge and shrink preserves the
left- and right-goodness of the boundaries of an inequality.

Fig. 3 illustrates the application of the enlarge and shrink
operators to inequalities represented by the thick lines. Enlarge
applied to shifts its left boundary to , while
shrink applied to shifts its left boundary to .

III. ECL PLUS DISCRETIZATION

Evolutionary concept learning (ECL) is an evolutionary ILP
learner, which takes as input a background knowledge here and
in the sequel denoted by BK, a set of positive and negative exam-
ples of the target concept, and outputs a set of rules in a fragment
of first-order logic, called clauses, that covers many positive ex-
amples and few negative ones.

The main features of ECL are: 1) a high-level encoding of
clauses which allows the direct application of standard ILP gen-
eralization and specialization operators; 2) a random sampling
mechanism for selecting a portion of the background knowl-
edge which improves efficiency; 3) greedy mutation operators
for guiding the search; and 4) a simple optimization procedure
applied to each individual after mutation. The system induces
an approximated model of the target concept.

Here, and in the sequel, we use Prolog convention where
variables and constants are denoted by words starting with a
capital and a lowercase letter, respectively.

ECL evolves rules of the form

where are atoms, consisting of a
predicate symbol and a number of arguments which may be
either variables or constants, is called the head and

the body of the clause. A clause has the
declarative interpretation in first-order logic

and the procedural one

in order to solve solve and

34 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 1, FEBRUARY 2005

Fig. 4. Overall learning algorithm ECL.

where each atom is viewed as a procedure call. A set of clauses
is called logic program and can directly be executed in the pro-
gramming language Prolog.

The background knowledge used by ECL consists of clauses
with empty body containing only constants as arguments, called
ground facts. A clause covers an example if the theory formed
by the clause and the background knowledge logically entails
the example.

A schematic illustration of ECL is given in pseudo-code in
Fig. 4. A main loop is used for constructing incrementally a
Final population as the union of max iter populations
computed at each iteration of the repeat statement.

At each iteration part of the BK is randomly sampled, using
a user defined parameter pbk which specifies the probability of
selection of a BK fact. This sampling is performed in order to re-
duce the computational effort required by the evaluation of indi-
viduals. By using a pbk smaller than one, part of the background
knowledge is not used in the evolutionary learning process. This
speeds up the evaluation of individuals but renders the evalua-
tion “incomplete.”

The resulting partial BK, and the examples that it covers, are
fed to an evolutionary algorithm (the while statement) that
induces a Population of clauses.

The fitness of a clause is equal to its accuracy, which is the
number of examples correctly classified by the clause divided by
the total number of examples. In order to establish the number of
examples correctly classified by a clause, Prolog is run with
the clause and the background knowledge as program and each
example as query.

The evolutionary process searches for clauses with the max-
imal fitness. The algorithm starts from an empty population
and evolves clauses using selection, mutation, and optimization.
ECL does not use any crossover operator. The reason behind this
choice is that it is difficult to design an effective crossover op-
erator with the high level representation adopted by ECL. Some
experiments were conducted with a uniform crossover, but the
results of such experiments did not justify its use.

At each generation, a number specified by a user defined pa-
rameter sel—of offspring is generated and inserted in the actual
population as follows. An individual of the population is chosen

using a slight modification, introduced in [13] and extensively
validated in [14], of the so-called universal suffrage (US) selec-
tion operator [15]. This operator works in two steps: first, a posi-
tive example is selected by a mechanism that favors “harder” ex-
amples, that is, covered by few clauses. In order to determine the
“hardness” of an example, a weight is assigned to each example,
and is adjourned at every generation. The weight depends on the
number of individuals covering the example. This is different
from the standard US selection operator, where examples are
randomly chosen. Next, a roulette wheel is performed on the in-
dividuals of the actual Population covering that example. If
the selected example is not covered by any individual (for in-
stance when the population is empty) then a new clause is cre-
ated as follows. The example becomes the head of the clause,
and suitable elements of the (partial) background knowledge
BK having arguments in common with those of the example
are added to the body of the emerging clause. As in most ILP
systems, a maximum number of body atoms is allowed, which
is specified by a user defined parameter . All individuals try
to predict the same class in the same run. This means that the
head of the clause contains the same predicate symbol for all the
individuals throughout a run. This implies that when a -class,

, problem is tackled, ECL is run times, once per each
class. The learned theories are then combined as described in
Section IV-D.

Mutation uses standard ILP generalization and specialization
operators. A clause is generalized using either the “delete an
atom” operator which removes an atom from its body, or the
“constant into variable” operator which turns a constant into a
variable. Dually, a clause is specialized using either the “add an
atom” operator which adds an atom to the body of the clause, or
the “variable into constant” operator which turns a variable into
a constant. The choice of which operator to apply is random.
The user can tune the greediness of each operator by means of
a parameter (is associated to “delete an atom,”

to “constant into variable,” to “add an atom,” and
to “variable into constant”). Each specifies the number of
clauses that are generated by applying the corresponding oper-
ator. The best (in terms of fitness) of the generated clauses
is chosen as offspring.

Optimization consists of the repeated application of gener-
alization and specialization operators, while the fitness remains
equal or improves and a given maximum number of applications
is not reached.

Each mutated and optimized individual is inserted in the pop-
ulation as follows: if the actual population has not yet reached its
maximum size then the new individual is just added, otherwise,
the new individual replaces an individual of the actual popula-
tion chosen using four—tournament selection. The tournament
size was experimentally determined.

At the end of the repeat statement, after max iter evolu-
tionary algorithms have been executed, using possibly different
portions of BK, and the resulting populations have been joined
in Final Population, the system extracts a final set of
clauses—a Prolog program—from Final Population.
Such a set is incrementally constructed from the empty set as

DIVINA AND MARCHIORI: HANDLING CONTINUOUS ATTRIBUTES IN AN EVOLUTIONARY INDUCTIVE LEARNER 35

follows [16]. A clause with maximum precision1 is moved from
Final Population to the actual final set of clauses (in case
of ties, the clause covering more positive examples is chosen),
the examples covered by this clause are discarded, and the
precision of the remaining clauses in Final Population is
recomputed. The process is iterated, while the accuracy of the
actual final set of clauses does not decrease.

In [10], another method is used for extracting the final solu-
tion, which uses only information about the accuracy of a clause
and produces results of inferior quality.

A. Four Variants of ECL for Discretization

We have embedded four discretization methods in ECL. The
user can select the preferred method by setting a corresponding
parameter when running the system.

1) ECL-GSD, where Fayyad and Irani discretization algo-
rithm (described in Section II-B) is applied prior to in-
duction.

2) ECL-LUD [10], with local unsupervised discretization,
described in Section I.

3) ECL-LSDc, with local supervised discretization and a
coarse initialization of inequalities using DP points.

4) ECL-LSDf, as the previous variant but with a fine initial-
ization of inequalities using BP points.

The last three methods use inequalities, which are introduced
in a clause when an atom containing a numeric value is added
to its body. This happens when the clause is generated or during
clause evolution, as illustrated in the following example.

Assume the clause

target

is constructed with the example as seed. If the spe-
cialization operator “add an atom” is chosen and the BK fact

is selected, then the clause becomes

target

in ECL-LUD

target

in ECL-LSDf, where are boundaries of the BP interval con-
taining 8.23, and

target

in ECL-LSDc, where are boundaries of the DP interval con-
taining 8.23.

The same operators are used in ECL-LSDf and ECL-LSDc
for evolving rules. If the generalization operator “delete an
atom” is chosen and is selected for deletion, then

and the corresponding inequality are removed from the
clause. The other possible generalization operator consists of
a random choice between the “constant into variable,” which

1Measures often used for evaluating a clause are recall = TP=(TP +
FN); precision = TP=(FP + TP), and accuracy = (TP + TN)=(TP +
TN + FP + FN), where TP and TN are the number of positive and negative
examples correctly classified, and FP and FN are the number of negative and
positive examples wrongly classified.

replaces one of the constants with a variable, and the “en-
large” operator, which enlarges one boundary of the inequality.
If the specialization operator “variable into constant” is chosen
and the variable is selected, then the “shrink” operator is
applied to the relative inequality.

In ECL-LUD suitable operators defined on an inequality
modify its boundaries using information, on the distribution of
the values of the corresponding attribute, obtained by clustering
the values with the expectation-maximization algorithm [17].

IV. EXPERIMENTS

First, we use the artificial dataset discussed in the Introduction
for analyzing the behavior of the four ECL variants on this non-
linearly separable problem. Next, we consider real-life learning
tasks and perform experiments on propositional and relational
datasets, chosen for the high presence of numeric attributes.
After this, the results obtained by ECL are compared with those
obtained by other systems for ICL.

A. Artificially Generated Dataset

In this experiment, 50 positive and 50 negative examples of
the target concept described in Section I are fed to the system.
So examples of the positive class are realizations of the target
concept. Each example is described by two attributes that can
take values in . The system is run with population size
equal to 100, for 50 generations and with 30 individuals selected
at each generation, while the greediness of the mutation op-
erators and the maximum length of a clause are set to 3. All
the background knowledge is used, thus, is set to 1, and a
maximum of ten optimization steps is performed. ECL is used
for inducing rules predicting the positive examples.

ECL-GSD is not able to solve this problem because no dis-
cretization point is found by the Fayyad and Irani method. For
the same reason, ECL-LSDc has scarce performance, as shown
in Fig. 5(a), where the average accuracy, precision, and recall
over five runs of the extracted solution are plotted at each gen-
eration, indicating that there is no evolution.

The other two ECL variants, ECL-LUD and ECL-LSDf, have
satisfactory performance. Fig. 5(b) shows the average results
of five runs of ECL-LUD, where the accuracy of the extracted
solution can be seen to increase, even if rather slowly, during
the generations, and it becomes practically constant after about
40 generations, where all the properties become about 0.97.

Fig. 6 shows the average accuracy, precision, and recall of the
solution extracted at each of the 50 generations of five runs of
ECL-LSDf. It can be seen that after some oscillations a perfect
solution is found, like the one consisting of the following two
clauses.

Fig. 7(a) shows the average number of positive and negative
examples covered by the individuals of the population at every

36 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 1, FEBRUARY 2005

Fig. 5. Average accuracy, precision, and recall of the solution found at
every generation of five runs of ECL-LSDc and ECL-LUD. (a) ECL-LSDc.
(b) ECL-LUD.

Fig. 6. Average accuracy, precision, and recall of the solutions found at every
generation of five runs of ECL-LSDf.

generation, and Fig. 7(b) the average and best fitness at each
generation. The fine initialization of inequalities with BP inter-
vals allows the algorithm to progressively enlarge the bound-
aries of inequalities and correctly classify more and more ex-
amples until a solution is found.

Thus, ECL-LSDf seems the best choice for handling this type
of problems. However, we will see in the next sections that on
real-life datasets, ECL-LSDc yields the best accuracy.

B. Propositional Datasets

In this section, we test the four ECL variants on the ten propo-
sitional datasets described in Table I, which are publicly avail-
able from the UCI Repository of machine learning databases
[18]. In the last column of the table, the number of facts that
form the background knowledge of each dataset is given.

Table II contains the parameter settings of the experiments
for each dataset, obtained after performing a small number of
runs, in the order of ten, on the training sets with ECL-LUD.
The choice of ECL-LUD for tuning the parameters is moti-
vated by the fact that we focus on the effect of the discretization
methods, so we would like to use a common parameter setting
for ECL, which is not biased toward one of the local discretiza-
tion methods. In all the experiments a maximum of ten applica-
tions of generalization/specialization in the optimization proce-
dure are performed.

In Table II, controls the probability that each fact in the
BK has of being selected and used at each iteration. We have per-
formed several experiments in order to verify if a best value of

can be set, but from the results it emerged the domain depen-
dency of , whose value has then to be experimentally tuned.
We emphasize that the parameter settings chosen were the ones
which led to the best classification accuracy in the training set,
i.e., the test set was never accessed during the runs allocated for
parameter setting.

We use tenfold cross validation, where each dataset is divided
in ten disjoint sets of similar size, and the algorithm is run ten
times. In each run, one of these ten sets forms the test set, and the
union of the remaining nine the training set. Each ECL variant is
run three times, using different random seeds, on each training
set and its output Prolog program is evaluated on the corre-
sponding test set (so each algorithm is run 30 times per dataset).

Table IV reports the results of the experiments on the test
sets. ECL-LSDc achieves the best accuracy in most of the cases,
with simplicity (that is, the number of clauses of the output
program) that is second best after ECL-GSD. ECL-LSDf pro-
duces best results on the echocardiogram and hepatitis datasets,
ECL-GSD on Glass2, but the results are only slightly better than
those of ECL-LSDc. The unsupervised variant ECL-LUD pro-
duces satisfactory approximate solutions, yet of quality inferior
to that of the other methods. The training time of the four al-
gorithms is comparable, where ECL-LSDc and ECL-GSD are
slightly faster than the other variants. The average times em-
ployed by ECL-LSDc, ECL-LSDf, ECL-LUD, and ECL-GSD
on the propositional datasets are, in seconds: 2095.36, 2266.17,
2738.38, and 2112.32, respectively. These times were computed
on a Sun Ultra 250, UltraSPARC-II 400 MHz. Table III contains
the total number of DP and BP points of the datasets, showing
that in general the latter is much bigger than the former.

In order to summarize the performance of the four variants
and the significance of the results with respect to the accuracy,
we compute the ranking and the statistical paired two-tailed
t-test with confidence level of 1% and 5%. The t-test is per-
formed on the 30 results obtained from the ten folds and the
three random seeds.

From Table V, we can extract the following hierarchy of the
methods: ECL-LSDc, ECL-LSDf, ECL-GSD, and ECL-LUD.
Using 1% confidence level, we get that ECL-LSDc is never
outperformed, while it is significantly better than the other
methods on the Pima-Indians dataset, better than ECL-GSD
on the breast dataset, and better than ECL-LUD on the Iono-
sphere dataset, together with ECL-LSDf and ECL-GSD. If we
increase the confidence level to 5%, then we get that ECL-LUD
and ECL-LSDc are significantly better than ECL-LSDf on the

DIVINA AND MARCHIORI: HANDLING CONTINUOUS ATTRIBUTES IN AN EVOLUTIONARY INDUCTIVE LEARNER 37

Fig. 7. Graphs for five runs of ECL-LSDf. Vertical bars show standard deviation. In (b) an accuracy of 0.75 means that an individual correctly identifies a sector
of Fig. 1. (a) Average coverage of individuals. (b) Average and best fitness of individuals.

TABLE I
CHARACTERISTICS OF THE DATASETS. FROM LEFT TO RIGHT: NUMBER OF

EXAMPLES (POSITIVE, NEGATIVE), OF CONTINUOUS ATTRIBUTES,
OF NOMINAL ATTRIBUTES, AND OF ELEMENTS OF THE BK

TABLE II
PARAMETER SETTINGS USED IN THE EXPERIMENTS: GEN IS THE NUMBER

OF GENERATIONS PERFORMED BY THE GA, SEL IS THE NUMBER OF

INDIVIDUALS SELECTED PER GENERATION, N ; I 2 [1; 4], ARE

THE GREEDINESS PARAMETERS OF THE MUTATION OPERATORS,
LC IS THE MAXIMUM LENGTH OF A CLAUSE, AND PBK IS

THE PROBABILITY OF SELECTING A BK FACT

Australian dataset, ECL-LSDf becomes also significantly better
than ECL-GSD on the breast dataset, and ECL-LSDc (together
with ECL-GSD) becomes significantly better than ECL-LSDf
and ECL-LUD on the German dataset. The other datasets
(echocardiogram, glass 2, heart, and hepatitis) are small, and
the results of the experiments are not normally distributed, so
the t-test cannot be applied.

In general, simple solutions are obtained using Fayyad and
Irani discretization applied either prior to induction (ECL-GSD)
or in the initialization of the inequalities (ECL-LSDc). The sim-
plicity column of the results also indicates that the solutions pro-
duced by ECL-LSDf are in general more complex than those

TABLE III
TOTAL NUMBER OF DP AND BP POINTS PER DATASET

generated by the other methods, due to the initialization of the
inequalities to rather small intervals. The best tradeoff between
simplicity and accuracy is obtained by ECL-LSDc. In the two
cases where ECL-LSDf yields accuracy better than ECL-LSDc,
the program induced by ECL-LSDf contains many more rules.
ECL-GSD obtains best simplicity on all datasets, but on at least
three datasets its accuracy is significantly worse than the one of
ECL-LSDc.

In summary, the results of the experiments on these proposi-
tional datasets seem to indicate that an effective search strategy
for discretizing continuous attributes in an evolutionary learner
consists of starting from large intervals for initializing inequali-
ties, and then refine them during the evolutionary process using
the boundary points for enlarging and shrinking the intervals.
The results also indicate that the supervised methods obtain in
general better performance than the unsupervised one. For this
reason, we will not consider ECL-LUD in the experiments on
relational datasets described in the next section.

C. Relational Datasets

Table VI shows the characteristics of the relational datasets
and Table VII shows the parameter settings used in the ex-
periments, obtained after performing few runs on the training
sets using ECL-GSD. As for the experiments performed on the
propositional datasets, a maximum of ten optimization steps
are performed. These datasets are used as benchmark problems
for ILP systems (see, e.g., [19]). Table VIII contains the total
number of DP and BP points per dataset.

38 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 1, FEBRUARY 2005

TABLE IV
RESULTS FOR THE VARIOUS METHODS ON THE PROPOSITIONAL DATASETS:

AVERAGE ACCURACY ON THE TEST SETS AND NUMBER OF CLAUSES

(SIMPLICITY) WITH STANDARD DEVIATION BETWEEN BRACKETS

The mutagenesis dataset [20] originates from the problem in
organic chemistry of learning the mutagenic activity of nitroaro-
matic compounds, described as a binary classification problem.

The traffic dataset [21], [22] describes the task of detecting
sections of roads where a traffic problem—an accident or a con-
gestion—has occurred at a specific time.

The biodegradability dataset [23] originates from the task
of predicting the half-life time in water for aerobic aqueous
biodegradation of a compound. It consists of four classes: fast
if the biodegradation time of a compound is up to seven days,
moderate if the biodegradation time is 1–4 weeks, slow if the
biodegradation time is 1–6 months, and resistant in the other
cases.

We consider each class of the traffic and the biodegradability
datasets as a separate learning task, thus obtaining a total of
seven binary classification problems. For the traffic dataset, we
report the results only for two classes. In particular, we report
results regarding the classes identifying traffic problems. In
Section IV-D, we describe how the theories induced for each
of the classification problems are combined for handling the
multiclass classification problems.

TABLE V
RESULTS OF THE TWO-TAILED PAIRED T-TEST WITH 1% CONFIDENCE LEVEL:

EACH ENTRY CONTAINS THE NUMBER OF DATASETS ON WHICH THE

ALGORITHM IN THE ROW IS SIGNIFICANTLY BETTER THAN THE

ONE IN THE COLUMN. THE RESULTS OF THE TEST USING 5%
CONFIDENCE LEVEL ARE REPORTED BETWEEN BRACKETS WHEN

THEY DIFFER FROM THOSE USING 1% CONFIDENCE LEVEL. THE

TESTS ARE PERFORMED ON THE ACCURACIES OBTAINED ON TEST SET

TABLE VI
CHARACTERISTICS OF THE RELATIONAL DATASETS. FROM LEFT TO RIGHT:

DATASET NAME; TOTAL NUMBER OF EXAMPLES AND, BETWEEN BRACKETS,
NUMBER OF EXAMPLES PER CLASS; NUMBER OF CONTINUOUS AND NOMINAL

ATTRIBUTES; AND NUMBER OF FACTS IN THE BK

TABLE VII
PARAMETERS USED IN THE EXPERIMENTS ON ILP DATASETS

TABLE VIII
TOTAL NUMBER OF DP AND BP POINTS PER DATASET

In the experiments, we use tenfold cross-validation on all
datasets and each ECL variant is run three times with different
random seeds except on the biodegradability one, where the
same splitting of data as in [23] is applied, consisting of five
different tenfold cross-validation sets. Table IX shows the re-
sults obtained on the test sets.

On the training set ECL-LSDc yields the best average ac-
curacy on the first three datasets, ECL-LSDf outperforms the
other algorithms on the last four datasets, and ECL-GSD yields
reasonable results, slightly inferior to those of ECL-LSDc. The
training time of the algorithms is comparable. However, the
higher complexity of the solutions found by ECL-LSDf, con-
taining on average twice the number of clauses of the other
algorithms, penalizes its performance on the test sets.

On the mutagenesis dataset the accuracies obtained on the
test sets by the three systems are comparable, with ECL-LSDf
performing slightly better than ECL-LSDc and ECL-GSD.

On the traffic dataset the best results are produced by ECL-
LSDc, while ECL-LSDf obtains the worst performance.

DIVINA AND MARCHIORI: HANDLING CONTINUOUS ATTRIBUTES IN AN EVOLUTIONARY INDUCTIVE LEARNER 39

Fig. 8. Some clauses generated by ECL-LSDc on the traffic dataset.

TABLE IX
RESULTS OF EXPERIMENTS ON THE RELATIONAL DATASETS: AVERAGE

ACCURACY ON THE TEST SETS AND SIMPLICITY OF THE SOLUTION

(STANDARD DEVIATIONS BETWEEN BRACKETS)

In [21] and [22], a discretization provided by experts in the
field was used for the three numerical arguments of the traffic
dataset. Using the same discretization, ECL-GSD obtained re-
sults that are slightly superior to those obtained using Fayyad
and Irani algorithm [on the accidents dataset, the average accu-
racy on the test and training sets is 0.92 (0.03) and 0.94 (0.02)
and the average simplicity is 5.10 (0.93). On the congestions
dataset, the average accuracy on the test and training sets is 0.93
(0.02) and 0.95 (0.00) and the average simplicity is 3.23 (0.21)].
The two discretizations produce similar partitions for two of the
three attributes.

Fig. 8 shows four clauses generated by ECL-LSDc.
The first clause states that there is an accident on section

at time if the occupancy rate of at time is greater than
651.25, the flow rate of at time is less than 47.0625, and
on a following section at time the occupancy rate is less
than 777.625. This clause illustrates the ability of ECL to handle
interdependencies between arguments.

On the biodegradability dataset ECL-LSDc obtains the best
results on two of the four binary classification problems, and has
slightly inferior performance on the bio-slow class.

Similar to the propositional datasets, we analyze further the
accuracy results by means of the statistical paired two-tailed
t-test with 1% and 5% confidence levels. The results of the
tests are reported in Table X. Also in this case, ECL-LSDc

TABLE X
RESULTS OF THE TWO-TAILED PAIRED T-TEST WITH 1% CONFIDENCE LEVEL:

EACH ENTRY CONTAINS THE NUMBER OF DATASETS ON WHICH THE

ALGORITHM IN THE ROW IS SIGNIFICANTLY BETTER THAN THE ONE IN THE

COLUMN. THE RESULTS OF THE TEST USING 5% CONFIDENCE LEVEL

ARE REPORTED BETWEEN BRACKETS WHEN THEY DIFFER FROM

THOSE USING 1% CONFIDENCE LEVEL

turns out to be the best algorithm. ECL-LSDc is never out-
performed, and using 1% confidence level it is significantly
better than ECL-LSDf on three datasets (accidents, congestion,
and bio-fast), and significantly better than ECL-GSD on two
datasets (bio-moderate, bio-resistant). Moreover, ECL-GSD is
significantly better than ECL-LSDf on two datasets (bio-fast,
congestions), while it is outperformed by ECL-LSDf on the
bio-slow dataset.

In summary, for the relational datasets, we can draw the same
conclusions as for the propositional ones. Namely, that a good
performance in terms of accuracy and simplicity is obtained by
embedding in ECL a discretization method which initializes in-
equalities using Fayyad and Irani algorithm, and then refines
the inequalities during the learning process using smaller in-
tervals in order to take into account interdependencies between
attributes.

D. Comparison With Other Systems

Although the focus of this paper is not to globally assess the
performance of ECL with discretization, it is nevertheless in-
teresting to briefly compare the results of the various settings
of ECL with those obtained by other popular propositional and
ILP learners.

In Table XI, we compare the results obtained by ECL on
the propositional datasets against the results onbtained by four
nonevolutionary systems for ICL, C4.5 [24], Naive Bayes
[25], SMO [26], and IB1 [27], and two evolutionary algo-
rithms, HIDER* [28] and GAssist [29]. C4.5 is a decision tree
algorithm, Naive Bayes uses the Baye’s rule of conditional
probabilities to estimate the predicted class, SMO implements
the sequential minimal optimization algorithm for training
a support vector classifier, and IB1 uses a simple distance
measure to find the training instance closest to the given test
instance, and predicts the same class as this training instance.
For these systems, we used the Weka [30] implementation

40 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 1, FEBRUARY 2005

TABLE XI
AVERAGE ACCURACIES ACHIEVED BY VARIOUS PROPOSITIONAL LEARNERS. STANDARD DEVIATION BETWEEN BRACKETS

with default parameter settings. Both HIDER* and GAssist are
briefly described in Section V.

From the results, it emerges that ECL performs generally
better than C4.5 and IB1 on the propositional datasets. Naive
Bayes obtains better results on three datasets and in two of these
cases the results are comparable. Naive Bayes is outperformed
by ECL in five cases, and in some cases, e.g., on Glass2, the
difference of accuracy is evident. On the same dataset, ECL
outperforms SMO as well, while on the other cases the results
achieved by the two systems are comparable. The results ob-
tained by the evolutionary algorithms are also comparable to the
ones achieved by ECL, with GAssist performing slightly better.

For the relational datasets, we have compared the results
obtained by ECL with those obtained by Progol [31], [32],
Tilde [33], and ICL [34]. Here, we consider the traffic and the
biodegradability datasets as multiclass classification problems.
In order to do so, ECL is run on each class, using the posi-
tive examples of the other classes as negative examples. The
obtained rules are then combined and a evaluation procedure
similar to the one adopted by CN2 [35] is used for assessing
the accuracy of the resulting theory: all rules whose conditions
apply to a test example are used and the number of training ex-
amples of each class covered by the rules are summed up. The
class with the largest sum is assigned to the testing example.

The same procedure is used for Progol.
Progol uses inverse entailment and an AQ approach for in-

ducing first order rules.
Tilde and ICL are part of the ACE-ilProlog data mining

system [36].
Tilde is an upgrade of C4.5 toward relational data mining. It

builds decision trees that allow to predict the value of a certain
attribute in a relation from other information in the database.
Unlike most ILP systems it uses the learning from interpreta-
tions setting, which aims more specifically at classification than
the classical ILP settings.
ICL represents an upgrade of CN2 in order to learn first-

order rules. CN2 is a propositional learner, that combines the
advantages of the rule learner AQ and of the decision tree learner
ID3 [37], i.e., it produces understandable rules and can cope
with noisy data.

The three ILP systems allow a more expressive background
knowledge, which may contain also theories expressing some a
priori known structures of the background knowledge.

The results obtained by the four systems on the relational
datasets are reported in Table XII. ECL outperforms the other
systems on the mutagenesis dataset, while on the traffic and

TABLE XII
AVERAGE ACCURACIES OBTAINED ON THE RELATIONAL DATASETS BY ECL

AND OTHER ILP LEARNERS. STANDARD DEVIATION BETWEEN BRACKETS

biodegradability datasets the results of ECL are comparable to
those of other ILP learners. Moreover, the simplicity of the so-
lutions found by ECL and the other ILP learners is similar.
The training time of ECL on the relational dataset (average of
785.54 s), is higher than the one of ICL and Tilde, and is com-
parable to that of Progol.

In summary, the experimental comparison suggests that ECL
is competitive with state-of-the-art propositional and ILP sys-
tems with respect to accuracy and simplicity of the solutions
generated by the systems.

V. RELATED WORK

Recent methods based on evolutionary algorithms per-
forming multivariate discretization during the learning process
are [29], [38], and [39], where the evolutionary algorithms
for classification GIL [40] and GABIL [41] are extended
into the systems EDRL-MD and GAssit, respectively. In both
EDRL-MD and GAssist, an individual encodes a set of rules,
and continuous attributes are handled by means of inequalities
that can be modified during the evolutionary process.

In EDRL-MD, candidate solutions are encoded by means of
string chromosomes. The string is composed by n substrings,
each encoding a condition related to one attribute. In case of
continuous attributes, the relative substring encodes the lower
and the upper thresholds of an interval describing the allowed
subrange of values for the described attribute. GAssist evolves
individuals that are ordered variable-length rule sets. The
knowledge representation for real-valued attributes is called
adaptive discretization intervals (ADIs) rule representation.
This representation uses the same form of rules as GABIL
(conjunctive normal form) but uses nonstatic intervals formed
by joining several neighbor discretization intervals. The repre-
sentation can also combine several discretizations at the same
time, allowing the system to choose the correct discretizer for
each attribute.

Another EA system adopting a similar method for dealing
with numerical values is HIDER* [28]. HIDER* is an exten-
sion of HIDER [42]–[44], and utilizes the USD [45] discretizer

DIVINA AND MARCHIORI: HANDLING CONTINUOUS ATTRIBUTES IN AN EVOLUTIONARY INDUCTIVE LEARNER 41

in order to find a number of boundary points that are used as
limits of intervals describing subranges of values for numerical
attributes. The USD discretizer divides the domains of contin-
uous attributes in a finite number of intervals with maximum
goodness, so that the average-goodness of the final set of in-
tervals will be the highest. The main process is divided in two
different parts: first, it calculates the initial intervals by means of
projections, which will be refined later, depending on the good-
nesses obtained after carrying out two possible actions: to join
or not adjacent intervals. The main features of the USD are: it
is deterministic, does not need any user-parameter, and its com-
plexity is subquadratic. An important feature of HIDER* is its
encoding method: each attribute is encoded with only one gene,
reducing considerably the length of the individuals and, there-
fore, the search space size, making the algorithm faster, while
maintaining its prediction accuracy. In this coding, inequalities
are represented as natural numbers, and can be easily modified
during the evolutionary process.

To the best of our knowledge, the only evolutionary algorithm
for ILP that adopts some dynamic methods for dealing with nu-
merical values is SIA01 [46]. SIA01 uses intervals for numerical
attributes, which are randomly created and modified during the
evolutionary process.

Discretization is not the only way to handle real-valued
attributes in evolutionary computation applied to ICL. Some
examples of alternative ways are induction of decision trees
(either axis-parallel or oblique), by either generating a full tree
by means of genetic programming operators, as it happens in
GALE [47], [48] or using a heuristic method to generate the
tree and later a genetic algorithm or an evolutionary strategy to
optimize the test performed at each node [49]. Another example
is represented by the XCS system [50], [51]. XCS induces rules
with real-valued intervals represented as a , where and

are real numbers, which represents the center and radius of
the interval . Another strategy is generating an
instance set used as the core of a k-NN classifier [47].

In this paper, we have used discretization algorithms based
on Fayyad and Irani’s method. In the literature, several other
discretization algorithms are reported. Among these the Mán-
taras discretizer [52] which is similar to the Fayyad and Irani’s
algorithm, but uses a different formulation of the entropy min-
imization. Another example of discretization method similar to
the Fayyad and Irani’s [11], but not relying on entropy, is repre-
sented by the Holte’s discretization method [53]. This method,
used in IB1 [27], attempts to divide the domain of every contin-
uous attributes into pure bins, each containing a strong majority
of one particular class with the constraint that each bin must
include at least some prespecified number of instances. Yet, an-
other example is ChiMerge [54]. This discretizer creates an ini-
tial pool of cut points containing the real values in the domain to
discretize, and iteratively merges neighbor intervals that make
true a certain criterion based on the statistical test.

VI. CONCLUSION

This paper analyzed experimentally the effect of different
types of discretization techniques on the performance of the evo-
lutionary ILP system ECL. The results of the experiments in-

dicate that a good technique for treating numeric attributes by
means of inequalities employs Fayyad and Irani algorithm for
initializing the inequalities when they are introduced in a rule,
and uses knowledge based mutation operators for refining the
inequalities of a rule during the learning process.

The experimental comparison suggests that ECL-LSDc is
competitive with state-of-the-art propositional and ILP sys-
tems with respect to accuracy and simplicity of the solutions
generated by the systems. However, ECL-LSDc is rather slow,
especially when compared with propositional learners. The
inefficiency of ECL-LSDc is mainly caused by the evaluation
of clauses: in order to evaluate a clause, Prolog is called
on that clause for every example in the training set. Since the
communication protocol actually used is rather simple and
not optimized, evaluation requires a high computation time.
We intend to optimize the code and develop a faster ad-hoc
evaluation procedure.

We conclude by describing some issues which can be ad-
dressed in future work.

The type of cut points used in our local discretization methods
is based on Fayyad and Irani discretization. However, many
other choices are possible (cf., e.g., the survey [7]), like for
instance, the statistics-based ChiMerge algorithm [54], or the
USD discretizer [45].

We have experimented with two types of initialization of in-
equalities, a fine and a coarse grain one. Other initializations are
possible, for instance the one that randomly chooses boundary
points. A possible variant of ECL-LUD could be designed, by
changing the way in which the operators adopted for modifying
inequalities act, in order to exploit information on the class
of examples, turning in this way ECL-LUD into a supervised
discretization method. This could be done, e.g., by estimating
the density distribution of positive and negative examples in-
side each cluster, and then use this information when modifying
inequalities.

Alternative discretization methods based on evolutionary al-
gorithms can evolve a global discretization of the continuous
attributes instead of treating directly continuous attributes by
means of inequalities, like we did in this paper. For instance,
an evolutionary system could co-evolve two populations, one
containing individuals which describe (global multivariate) dis-
cretizations of continuous attributes, and another one containing
individuals which describe rules. The two populations could in-
teract by means of their fitness function, where the fitness of a
discretization would be computed by evaluating the quality of
the rules in the actual population when continuous attributes un-
dergo that discretization, and the fitness of a rule would involve
the discretizations in the actual population.

The system ECL with the discretization methods described in
this paper is available for academic use on request, by sending
an e-mail to the authors.

ACKNOWLEDGMENT

The authors would like to thank M. Keijzer for his con-
tribution to an earlier version of this work, R. Giráldez and
J. Aguilar–Ruiz for helping in the experiments with HIDER*,
and the referees for their constructive suggestions.

42 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 1, FEBRUARY 2005

REFERENCES

[1] T. Mitchell, Machine Learning, ser. Computer Science. New York:
McGraw-Hill, 1997.

[2] S. Muggleton and L. D. Raedt, “Inductive logic programming: Theory
and methods,” J. Logic Prog., vol. 19–20, pp. 669–679, 1994.

[3] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and unsupervised
discretization of continuous features,” in Proc. In. Conf. Mach. Learn.,
1995, pp. 194–202.

[4] A. Freitas, Data Mining and Knowledge Discovery with Evolu-
tionary Algorithms, ser. Natural Computing. Berlin, Germany:
Springer-Verlag, 2002.

[5] A. Freitas and S. Lavington, Mining Very Large Databases with Parallel
Processing. Norwell, MA: Kluwer, 1998.

[6] R. Kohavi and M. Sahami, “Error-based and entropy-based discretiza-
tion of continuous features,” in Proc. 2nd Int. Conf. Knowl. Discovery
Data Mining, 1996, pp. 114–119.

[7] H. Liu, F. Hussain, C. Tan, and M. Dash, “Discretization: An enabling
technique,” J. Data Mining Knowl. Discovery, vol. 6, no. 4, pp. 393–23,
2002.

[8] U. Fayyad and K. Irani, “Multi-interval discretization of continues at-
tributes as preprocessing for classification learning,” in Proc. 13th Int.
Joint Conf. Artif. Intell.. San Mateo, CA, 1993, pp. 1022–1027.

[9] F. Divina and E. Marchiori, “Evolutionary concept learning,” in Proc.
Genetic Evol. Comput. Conf., Jul. 9–13, 2002, pp. 343–350.

[10] F. Divina, M. Keijzer, and E. Marchiori, “A method for handling numer-
ical attributes in GA-based inductive concept learners,” in Proc. Genetic
Evol. Comput. Conf., Chicago, IL, Jul. 12–16, 2003, pp. 898–908.

[11] U. Fayyad and K. Irani, “On the handling of continuous-valued attributes
in decision tree generation,” Mach. Learn., vol. 8, pp. 87–102, 1992.

[12] J. Rissanen, Stochastic Complexity in Statistical Inquiry. River Edge,
NJ: World Scientific, 1989.

[13] F. Divina, M. Keijzer, and E. Marchiori, “Non-universal suffrage se-
lection operators favor population diversity in genetic algorithms,” in
Proc. Genetic Evol. Comput. Conf., Chicago, IL, Jul. 12–16, 2003, pp.
1571–1573.

[14] F. Divina and E. Marchiori, Knowledge-Based Evolutionary Search for
Inductive Concept Learning. Berlin, Germany: Springer-Verlag, 2004,
ch. III, pp. 237–254.

[15] A. Giordana and F. Neri, “Search-intensive concept induction,” Evol.
Comput., vol. 3, no. 4, pp. 375–16, 1996.

[16] F. Divina, M. Keijzer, and E. Marchiori, “Evolutionary concept learning
with constraints for numerical attributes,” in Proc. Belgian–Dutch Conf.
Artif. Intell., Utrecht, The Netherlands, Oct. 23–24, 2003, pp. 107–114.

[17] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. Royal Stat. Soci.y, vol.
39, pp. 1–38, 1977.

[18] C. Blake and C. Merz. (1998) UCI repository of machine learning
databases. [Online]. Available: http://www.ics.uci.edu/~mlearn/ML
Repository.html

[19] W. Van Laer, “From prepositional to first order logic in machine learning
and data mining—induction of first order rules with ICL,” Ph.D. Disser-
tation, Dept. Comput. Sci., K. U. Leuven, Leuven, Belgium, Jun. 2002.

[20] A. Debnath, R. L. de Compadre, G. Debnath, A. Schusterman, and C.
Hansch, “Structure-activity relationship of mutagenic aromatic and het-
eroaromatic nitro compounds. Correlation with molecular orbital ener-
gies and hydrophobicity,” J. Med. Chem., vol. 34, no. 2, pp. 786–797,
1991.

[21] S. Dzeroski, N. Jacobs, M. Molina, and C. Moure, “ILP experiments in
detecting traffic problems,” in Proc. Eur. Conf. Mach. Learn., 1998, pp.
61–66.

[22] S. Dzeroski, N. Jacobs, M. Molina, C. Moure, S. Muggleton, and W.
V. Laer, “Detecting traffic problems with ILP,” in Proc. Int. Workshop
Inductive Logic Program., 1998, pp. 281–290.

[23] S. Dzeroski, H. Blockeel, B. Kompare, S. Kramer, B. Pfahringer, and
W. V. Laer, “Experiments in predicting biodegradability,” in Proc. Int.
Workshop Inductive Logic Program., 1999, pp. 80–91.

[24] J. Quinlan, C4.5: Programs for Machine Learning, ser. Machine
Learning. San Mateo, CA: Morgan Kaufmann, 1993.

[25] G. H. John and P. Langley, “Estimating continuous distributions in
Bayesian classifiers,” in Proc. 11th Conf. Uncertainty Artif. Intell.,
1995, pp. 338–345.

[26] J. C. Platt, “Fast training of support vector machines using sequential
minimal optimization,” Adv. Kernel Methods: Support Vector Learn., pp.
185–208, 1999.

[27] D. W. Aha, D. Kibler, and M. Albert, “Instance-based learning algo-
rithms,” Mach. Learn., vol. 6, pp. 37–66, 1991.

[28] R. Giráldez, J. S. Aguilar-Ruiz, and J. C. Riquelme, “Natural coding: A
more efficient representation for evolutionary learning,” in Proc. Genetic
Evol. Comput. Conf., Chicago, IL, July 12–16, 2003, pp. 979–990.

[29] J. Bacardit and J. M. Garrel, “Evolving multiple discretizations with
adaptive intervals for a Pittsburgh rule-based genetic learning classifier
system,” in Proc. Genetic Evol. Comput. Conf., 2003, pp. 1818–1831.

[30] I. Witten and E. Frank, WEKA Machine Learning Algorithms in
Java. San Mateo, CA: Morgan Kaufmann, 2000, ch. 8, pp. 265–320.

[31] S. Muggleton, “Inverse entailment and Progol,” New Generation
Comput. (Special Issue on Inductive Logic Programming), vol. 13, no.
3–4, pp. 245–286, 1995.

[32] , “Learning from positive data,” in Proc. 6th Int. Workshop Induc-
tive Logic Program., S. Muggleton, Ed., 1996, pp. 225–244.

[33] H. Blockeel and L. D. Raedt, “Top-down induction of first-order logical
decision trees,” Artif. Intell., vol. 101, no. 1–2, pp. 285–297, 1998.

[34] L. De Raedt and W. Van Laer, “Inductive constraint logic,” in Lecture
Notes in Artificial Intelligence. Berlin, Germany: Springer-Verlag,
1995, vol. 997, Proc. 6th Conf. Algorithmic Learning Theory, pp.
80–94.

[35] P. Clark and R. Boswell, “Rule induction with CN2: Some recent
improvements,” in Proc. 5th Eur. Working Session Learn., 1991, pp.
151–163.

[36] H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Mon, and H.
Vandecasteele, “Improving the efficiency of inductive logic program-
ming through the use of query packs,” J. Artif. Intell. Res., vol. 16, pp.
135–166, 2002.

[37] J. R. Quinlan, “Induction of decision trees,” Readings in Mach. Learn.,
vol. 1, pp. 81–106, 1986. Originally published in Machine Learning.

[38] W. Kwedlo and M. Kretowski, “An evolutionary algorithm using
multivariate discretization for decision rule induction,” Principles Data
Mining Knowl. Discovery, pp. 392–397, 1999.

[39] J. Bacardit and J. M. Garrell, “Evolution of multi-adaptive discretization
intervals for a rule-based genetic learning system,” in Lecture Notes in
Artificial Intelligence. Berlin, Germany: Springer-Verlag, 2002, vol.
2527, Proc. Iberoamerican Conf. Artif. Intell. (IBERAMIA’2002), pp.
350–360.

[40] C. Janikow, “A knowledge intensive genetic algorithm for supervised
learning,” Mach. Learn., vol. 13, pp. 198–228, 1993.

[41] K. D. Jong, W. Spears, and D. Gordon, “Using genetic algorithms for
concept learning,” Mach. Learn., vol. 13, no. 1/2, pp. 155–188, 1993.

[42] J. S. Aguilar-Ruiz, J. C. Riquelme, and M. Toro, “Evolutionary learning
of hierarchical decision rules,” IEEE Trans. Syst., Man, Cybern. B, Cy-
bern., vol. 33, no. 2, pp. 324–331, Apr. 2003.

[43] J. C. Riquelme, J. S. Aguilar-Ruiz, and C. D. Valle, “Supervised learning
by means of accuracy-aware evolutionary algorithms,” Inf. Sci., vol. 156,
no. 3–4, pp. 173–188, 2003.

[44] J. S. Aguilar-Ruiz, “Removing examples and discovering hierarchical
decision rules with evolutionary algorithms,” Artif. Intell. Commun., vol.
14, no. 4, pp. 231–233, 2002.

[45] R. Giráldez, J. S. Aguilar-Ruiz, J. C. Riquelme, F. Ferrer-Troyano, and
D. Rodriguez, “Discretization oriented to decision rules generation,”
Frontiers Artif. Intell. Applicat., vol. 82, pp. 275–279, 2002.

[46] S. Augier, G. Venturini, and Y. Kodratoff, “Learning first order logic
rules with a genetic algorithm,” in Proc. 1st Int. Conf. Knowl. Discovery
Data Mining, U. M. Fayyad and R. Uthurusamy, Eds., 20–21, 1995, pp.
21–26.

[47] X. Llorá and J. M. Garrell et al., “Knowledge-independent data mining
with fine-grained parallel evolutionary algorithms,” in Proc. Genetic
Evol. Comput. Conf., L. Spector et al., Eds., Jul. 7–11, 2001, pp.
461–468.

[48] , “Inducing partially-defined instances with evolutionary algo-
rithms,” in Proc. 18th Int. Conf. Mach. Learn., 2001, pp. 337–344.

[49] E. Cantu-Paz and C. Kamath, “Inducing oblique decision trees with evo-
lutionary algorithms,” IEEE Trans. Evol. Comput., vol. 7, no. 1, pp.
54–68, Feb. 2003.

[50] C. Stone and L. Bull, “For real! XCS with continuous—Valued inputs,”
Evol. Comput. J.l, vol. 11, no. 3, pp. 298–336, 2003.

[51] S. W. Wilson et al., “Generalization in the XCS classifier system,”
in Proc. 3rd Annu. Conf. Genetic Program., J. R. Koza et al., Eds..
Madison, WI, 22–25, 1998, pp. 665–674.

[52] R. L. De Mántaras, “A distance-based attribute selection measure for
decision tree induction,” Mach. Learn., vol. 6, no. 1, pp. 81–92, 1991.

[53] R. C. Holte, “Very simple classification rules perform well on most
commonly used datasets,” Mach. Learn., vol. 11, no. 1, pp. 63–90,
1993.

[54] R. Kerber, “ChiMerge: Discretization of numeric attributes,” in Proc.
10th Nat. Conf. Artif. Intell., 1992, pp. 123–127.

DIVINA AND MARCHIORI: HANDLING CONTINUOUS ATTRIBUTES IN AN EVOLUTIONARY INDUCTIVE LEARNER 43

Federico Divina received the degree in com-
puter science from the Ca’ Foscari University of
Venice, Venice, Italy, and the Ph.D. degree from the
Department of Computer Science, Free University
of Amsterdam, The Netherlands, with a dissertation
on the use of hybrid evolutionary computation for
inductive logic programming.

He was a Visiting Researcher at the Machine
Learning Group, University of Seville, Seville,
Spain. Since September 2004, he has been a
Postdoctoral at Tilburg University, Tilburg, The

Netherlands, in the European Project NEW TIES. His research interests include
evolutionary computation, machine learning, bioinformatics, and artificial
societies.

Elena Marchiori received the M.S. and Ph.D.
degrees from the Department of Mathematics,
University of Padova, Padova, Italy.

She has been working at the Center for Wiskunde
en Informatica, University of Leiden, Amsterdam,
The Netherlands, and at the University Ca’ Foscari
of Venice, Venice, Italy. She is currently an Assistant
Professor in the Department of Computer Science,
Free University Amsterdam, The Netherlands. Her
main research interests are in optimization and
machine learning, using heuristic algorithms based

on computational intelligence. In particular, she is involved in research on
pattern classification and feature selection applied to medical data.

	toc
	Handling Continuous Attributes in an Evolutionary Inductive Lear
	Federico Divina and Elena Marchiori
	I. I NTRODUCTION

	Fig.€1. A problem for which univariate discretization is unlikel
	Fig.€2. Example of boundary points of an attribute: \circ deno
	II. G ENERATING B OUNDARY P OINTS FOR I NEQUALITIES
	A. Boundary Points
	B. Discretization Points

	Fig.€3. (a) Application of enlarge. (b) Application of shrink. T
	C. Enlarging and Shrinking Inequalities
	III. ECL P LUS D ISCRETIZATION
	Fig.€4. Overall learning algorithm ECL.
	A. Four Variants of ECL for Discretization

	IV. E XPERIMENTS
	A. Artificially Generated Dataset

	Fig.€5. Average accuracy, precision, and recall of the solution
	Fig.€6. Average accuracy, precision, and recall of the solutions
	B. Propositional Datasets

	Fig.€7. Graphs for five runs of ECL-LSDf. Vertical bars show sta
	TABLE I C HARACTERISTICS OF THE D ATASETS . F ROM L EFT TO R IGH
	TABLE II P ARAMETER S ETTINGS U SED IN THE E XPERIMENTS: G EN I
	TABLE III T OTAL N UMBER OF DP AND BP P OINTS P ER D ATASET
	C. Relational Datasets

	TABLE IV R ESULTS FOR THE V ARIOUS M ETHODS ON THE P ROPOSITIONA
	TABLE V R ESULTS OF THE T WO -T AILED P AIRED T-T EST W ITH 1% C
	TABLE VI C HARACTERISTICS OF THE R ELATIONAL D ATASETS . F ROM L
	TABLE VII P ARAMETERS U SED IN THE E XPERIMENTS ON ILP D ATASETS
	TABLE VIII T OTAL N UMBER OF DP AND BP P OINTS P ER D ATASET
	Fig.€8. Some clauses generated by ECL-LSDc on the traffic datase
	TABLE IX R ESULTS OF E XPERIMENTS ON THE R ELATIONAL D ATASETS:
	TABLE X R ESULTS OF THE T WO -T AILED P AIRED T-T EST W ITH 1% C
	D. Comparison With Other Systems

	TABLE XI A VERAGE A CCURACIES A CHIEVED BY V ARIOUS P ROPOSITION
	TABLE XII A VERAGE A CCURACIES O BTAINED ON THE R ELATIONAL D AT
	V. R ELATED W ORK
	VI. C ONCLUSION
	T. Mitchell, Machine Learning, ser. Computer Science. New York:
	S. Muggleton and L. D. Raedt, Inductive logic programming: Theor
	J. Dougherty, R. Kohavi, and M. Sahami, Supervised and unsupervi
	A. Freitas, Data Mining and Knowledge Discovery with Evolutionar
	A. Freitas and S. Lavington, Mining Very Large Databases with Pa
	R. Kohavi and M. Sahami, Error-based and entropy-based discretiz
	H. Liu, F. Hussain, C. Tan, and M. Dash, Discretization: An enab
	U. Fayyad and K. Irani, Multi-interval discretization of continu
	F. Divina and E. Marchiori, Evolutionary concept learning, in Pr
	F. Divina, M. Keijzer, and E. Marchiori, A method for handling n
	U. Fayyad and K. Irani, On the handling of continuous-valued att
	J. Rissanen, Stochastic Complexity in Statistical Inquiry . Rive
	F. Divina, M. Keijzer, and E. Marchiori, Non-universal suffrage
	F. Divina and E. Marchiori, Knowledge-Based Evolutionary Search
	A. Giordana and F. Neri, Search-intensive concept induction, Evo
	F. Divina, M. Keijzer, and E. Marchiori, Evolutionary concept le
	A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood
	C. Blake and C. Merz . (1998) UCI repository of machine learning
	W. Van Laer, From prepositional to first order logic in machine
	A. Debnath, R. L. de Compadre, G. Debnath, A. Schusterman, and C
	S. Dzeroski, N. Jacobs, M. Molina, and C. Moure, ILP experiments
	S. Dzeroski, N. Jacobs, M. Molina, C. Moure, S. Muggleton, and W
	S. Dzeroski, H. Blockeel, B. Kompare, S. Kramer, B. Pfahringer,
	J. Quinlan, C4.5: Programs for Machine Learning, ser. Machine Le
	G. H. John and P. Langley, Estimating continuous distributions i
	J. C. Platt, Fast training of support vector machines using sequ
	D. W. Aha, D. Kibler, and M. Albert, Instance-based learning alg
	R. Giráldez, J. S. Aguilar-Ruiz, and J. C. Riquelme, Natural cod
	J. Bacardit and J. M. Garrel, Evolving multiple discretizations
	I. Witten and E. Frank, WEKA Machine Learning Algorithms in Java
	S. Muggleton, Inverse entailment and Progol, New Generation Comp
	H. Blockeel and L. D. Raedt, Top-down induction of first-order l
	L. De Raedt and W. Van Laer, Inductive constraint logic, in Lect
	P. Clark and R. Boswell, Rule induction with CN2: Some recent im
	H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Mon, and H.
	J. R. Quinlan, Induction of decision trees, Readings in Mach. Le
	W. Kwedlo and M. Kretowski, An evolutionary algorithm using mult
	J. Bacardit and J. M. Garrell, Evolution of multi-adaptive discr
	C. Janikow, A knowledge intensive genetic algorithm for supervis
	K. D. Jong, W. Spears, and D. Gordon, Using genetic algorithms f
	J. S. Aguilar-Ruiz, J. C. Riquelme, and M. Toro, Evolutionary le
	J. C. Riquelme, J. S. Aguilar-Ruiz, and C. D. Valle, Supervised
	J. S. Aguilar-Ruiz, Removing examples and discovering hierarchic
	R. Giráldez, J. S. Aguilar-Ruiz, J. C. Riquelme, F. Ferrer-Troya
	S. Augier, G. Venturini, and Y. Kodratoff, Learning first order
	X. Llorá and J. M. Garrell et al., Knowledge-independent data mi
	E. Cantu-Paz and C. Kamath, Inducing oblique decision trees with
	C. Stone and L. Bull, For real! XCS with continuous Valued input
	S. W. Wilson et al., Generalization in the XCS classifier system
	R. L. De Mántaras, A distance-based attribute selection measure
	R. C. Holte, Very simple classification rules perform well on mo
	R. Kerber, ChiMerge: Discretization of numeric attributes, in Pr

