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Abstract

We present a greedy algorithm for supervised discretization using a metric defined on the space of partitions of a set of objects.

This proposed technique is useful for preparing the data for classifiers that require nominal attributes. Experimental work on deci-

sion trees and naı̈ve Bayes classifiers confirm the efficacy of the proposed algorithm.
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1. Introduction

Frequently data sets have attributes with numerical

domains which makes them unsuitable for certain data

mining algorithms that deal mainly with nominal attri-

butes, such as decision trees and naı̈ve Bayes classifiers.

To use such algorithms we need to replace numerical

attributes with nominal attributes that represent inter-
vals of numerical domains with discrete values. This

process, known to as ‘‘discretization,’’ has received a

great deal of attention in the data mining literature

and includes a variety of ideas ranging from fixed k-in-

terval discretization [1], fuzzy discretization (see [2,3]),

Shannon-entropy discretization due to Fayyad and Irani

presented in [4,5], proportional k-interval discretization

(see [6,7]), or techniques that are capable of dealing with
highly dependent attributes (cf. [8]).

The discretization process can be described generi-

cally as follows. Let B be a numerical attribute of a set

of objects. The set of values of the components of these
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objects that correspond to the B attribute is the active

domain of B and is denoted by adom(B).

To discretize B we select a sequence of numbers

t1 < t2 <� � �< t‘ in adom(B). Next, the attribute B is re-

placed by the nominal attribute B̂ that has ‘ + 1 distinct

values in its active domain {k0, k1, . . . ,k‘}. Each B-com-

ponent b of an object o is replaced by the discretized

B̂-component k defined by

k ¼
k0 if b 6 t1;

ki if ti < b 6 tiþ1 for 1 6 i 6 ‘� 1;

k‘ if t‘ < b:

8><
>:

The numbers t1, t2, . . . , t‘ define the discretization

process and they will be referred to as class separators.

We review briefly the terminology used in this paper.

A partition of a non-empty set S is a non-empty collec-

tion of non-empty subsets of S indexed by a set I,

p = {Pi | i 2 I} such that ¨{Pi | i 2 I} = S, and i, j 2 I,

i „ j implies Pi \ Pj = ;. The sets Pi are referred to as

the blocks of the partition p. The set of partitions of S
is denoted by PART(S).

The starting point of our result is the observation that

every nominal attribute A of a set of objects S induces a

partition jA of the set S such that the objects t, s belong
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to the same block of the partition jA if their A-compo-

nents are equal. Recall that SQL computes the partition

jA using the group by A option of a select phrase.

There are two types of discretization [9]: unsupervised

discretization, where the discretization takes place with-

out any knowledge of the classes to which objects be-
long, and supervised discretization which takes into

account the classes of the objects. Our approach in-

volves supervised discretization. Within our framework,

to discretize an attribute B amounts to constructing a

partition of the active domain adom(B) taking into ac-

count the partition jA determined by the nominal class

attribute A.

A partition p = {P1, . . . ,Pk} of a finite set S generates
a random variable

X p ¼
1 2 � � � k

p1 p2 � � � pk

� �
;

where pi ¼ jP i j
jSj . This allows us to define Shannon�s entro-

py of p as the entropy of the random variable Xp,

namely

HðpÞ ¼ �
Xk
i¼1

pilog2pi:

For a subset L of S the trace of the partition p on the set

L is the partition

pL ¼ fP i \ L j 1 6 i 6 k and P i \ L 6¼ ;g:
Entropy measures the dispersion of values of a random

variable. The maximum entropy for a k-valued random

variable is obtained when p1 ¼ � � � ¼ pk ¼ 1
k and equals

log2k. Thus, the entropy of a partition pL serves to mea-

sure the scattering of the set L across the blocks of p,
that is, the impurity of the set L relative to the partition

p: the larger the entropy, the more L is scattered among
the blocks of p. If p, r are two partitions in PART(S),
the average impurity of the blocks of r relative to p is

the conditional entropy of p relative to r:

HðpjrÞ ¼
Xm
j¼1

jQjj
jSj HðpQj

Þ;

where r = {Q1, . . . ,Qm} and pQj = {Pi \ Qj |Pi 2 p and

Pi \ Qj „ ;}.
López de Màntaras [10] proved that the function

d : PARTðSÞ � PARTðSÞ ! R defined by: dðp; rÞ ¼ H
ðpjrÞ þHðrjpÞ, where H is Shannon�s entropy is a

metric on PART(S) (see [10]). Several authors have
introduced generalizations of entropy (see [11–13]).

The common nature of these generalizations have been

highlighted by us in [14], where a unified axiomatization

was introduced. Daróczy�s b-entropy for a partition

p = {P1, . . . ,Pk} 2 PART(S) is

HbðpÞ ¼
1

1� 21�b 1�
Xk
i¼1

jP ij
jSj

� �b
 !

;

where b is a positive number. It can be shown that

limb!1HbðpÞ is Shannon�s entropy.
For r,p 2 PART(S), where p = {P1, . . . ,Pk} and

r = {Q1, . . . ,Qm}, Daróczy�s conditional b-entropy
HbðpjrÞ is given by

HbðpjrÞ ¼
Xm
j¼1

jQjj
jSj

� �b

HbðpQj
Þ:

Since

HbðpQj
Þ ¼ 1

1� 21�b 1�
Xk
i¼1

jP i [ Qjj
jQjj

 !b
0
@

1
A;

we have

HbðpjrÞ ¼
1

1� 21�b

Xm
j¼1

jQjj
jSj

� �b

1�
Xk
i¼1

jP i [Qjj
jQjj

 !b
0
@

1
A;

which yields the useful equivalent expression

HbðpjrÞ ¼
1

ð1� 21�bÞjSjb
Xm
j¼1

jQjj
b�
Xk
i¼1

Xm
j¼1

jP i \Qjj
b

 !
:

A related result obtained in [15] shows that the function

db : PARTðSÞ � PARTðSÞ ! R given by

dbðp;rÞ ¼ HbðpjrÞ þHbðrjpÞ

¼ 1

ð1� 21�bÞjSjb
Xm
j¼1

jQjj
b �

Xk
i¼1

Xm
j¼1

jP i \ Qjj
b

 

þ
Xk
i¼1

jP ijb �
Xk
i¼1

Xm
j¼1

jP i \ Qjj
b

!

¼ 1

ð1� 21�bÞjSjb
Xn
i¼1

jP ijb þ
Xm
j¼1

jQjj
b

 

� 2 �
Xk
i¼1

Xm
j¼1

jP i \ Qjj
b

!
; ð1Þ

is a metric. This distance was used in [15] to obtain small

and accurate decision trees in an extension of López de

Màntaras (see [10]) algorithm for building decision trees

that makes use of Shannon�s entropy.
For p, r 2 PART(S) we write p 6 r if each block of p

is included in a block of r, or equivalently, if each block

of r is an union of blocks of p. The partition r covers the
partition p (denoted by p p r) if p 6 r and there is no

partition h 2 PART(S) � {p, r} such that p 6 h 6 r.
This is equivalent to saying that r is obtained from p
by fusing together two blocks of p. If p1, p2 2 PART(S),
then we denote by p1 � p2 the partition whose blocks are

all non-empty intersections of the form K \ H, where

K 2 p1 and H 2 p2. The least partition of PART(S) is

the partition iS = {{x}|x 2 S} whose blocks are the sin-
gletons of S; the largest partition of PART(S) is the

one-block partition xS = {S}.
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The generalized conditional entropy is dually

monotonic in its first argument and monotonic in its

second, that is p 6 p 0 implies HbðpjrÞPHbðp0jrÞ
and r 6 r 0 implies HbðpjrÞ 6 Hbðpjr0Þ, as we have

shown in [15].

Partitions of active attribute domains induce parti-
tions on the set of objects. Namely, the partition of

the set of objects S that corresponds to a partition p
of adom(B), where B is a numerical attribute, is denoted

by p*. A block of p* consists of all objects whose B-com-

ponents belong to the same block of p. For the special

case when p = iadom(B) observe that p* = jB.
Let T = (t1, . . . , t‘) be the sequence of class separators

of the active domain of an attribute B, where t1 < t2 <� � �
< t‘. This set of cutpoints creates a partition pT

B ¼ fQ0;
. . . ;Q‘g of adom(B), where Qi = {b 2 adom(B)|ti 6 b <

ti + 1} for 0 6 i 6 ‘, where t0 = �1 and t‘ + 1 = +1.

It is immediate that for two sets of cutpoints T, T 0 we

have pT[T0
B ¼ pT

B ^ pT0
B . If the sequence T consists of a sin-

gle cutpoint t we shall denote pT
B simply by pt

B. The dis-

cretization process consists of replacing each value that

falls in the block Qi of pT
B by i for 0 6 i 6 ‘.

Suppose that the list of objects sorted on the values of

a numerical attribute B is o1, . . . ,on and let

o1[B], . . . ,on[B] be the sequence of B-components of

those objects, where o1[B] 6 o2[B] 6� � �6 on[B]. For a

nominal attribute A define the partition pB,A of adom(B)

as follows. A block of pB,A consists of a maximal subse-

quence oi[B], . . . ,ol[B] of the previous sequence such

that every object oi, . . . ,ol of this subsequence belongs
to the same block K of the partition jA. If x 2 adom(B),

we shall denote the block of pB,A that contains x by Æxæ.
The boundary points of the partition pB,A are the least

and the largest elements of each of the blocks of the par-

tition pB,A. The least and the largest elements of Æxæ are
denoted by xfl and x›, respectively. It is clear that

pB,A* 6 jA for any attribute B.
Example 1.1. Let o1, . . . ,o9 be a collection of nine
objects such that the sequence o1[B], . . . ,o9[B] is sorted
in increasing order of the value of the B-components:
� � �
 B
 � � �
 A
o1
 � � �
 95.2
 � � �
 Y
o2
 � � �
 110.1
 � � �
 N
o3
 � � �
 120.0
 � � �
 Y
o4
 � � �
 125.5
 � � �
 Y

o5
 � � �
 130.1
 � � �
 N
o6
 � � �
 140.0
 � � �
 N
o7
 � � �
 140.5
 � � �
 Y
o8
 � � �
 168.2
 � � �
 Y
o9
 � � �
 190.5
 � � �
 Y
The partition jA has two blocks corresponding to the

values �Y� and �N� and is given by
jA ¼ ffo1; o3; o4; o7; o8; o9g; fo2; o5; o6gg:
The partition pB,A* is:

pB;A� ¼ ffo1g; fo2g; fo3; o4g; fo5; o6g; fo7; o8; o9gg:
The blocks of this partition correspond to the longest

subsequences of the sequence o1, . . . ,o9 that consists

of objects that belong to the same A-class.

Fayyad [4] showed that to obtain the least value of

the Shannon�s conditional entropy HðpAjpT
B� Þ the cut-

points t of Tmust be chosen among the boundary points

of the the partition pB,A. This is a powerful result that
limits drastically the number of possible cut points and

improves the tractability of the discretization.

We present two new basic ideas: a generalization of

Fayyad–Irani discretization techniques that relies on a

metric on partitions defined by Daróczy�s generalized

entropy, and a new geometric criterion for halting the

discretization process. With an appropriate choice of

the parameters of the discretization process the resulting
decision trees are smaller, have fewer leaves, and display

higher levels of accuracy as verified by stratified cross-

validation; similarly, naı̈ve Bayes classifiers applied to

data discretized by our algorithm yield smaller error

rates.

Our main results show that the same choice of cut-

points must be made for a broader class of impurity

measures, namely the impurity measures related to gen-
eralized conditional entropy. Moreover, when the purity

of the partition pA is replaced as a discretization crite-

rion by the minimality of the entropic distance between

the partitions pA and pT
B;� (introduced in [15]) the same

method for selecting the cutpoint can be applied. This

is a generalization of the approach proposed by Cerqu-

ides and López de Màntaras in [16].
2. A generalization of Fayyad�s result

We are concerned with supervised discretization, that

is, with discretization of attributes that takes into ac-

count the classes where the objects belong. Suppose that

the class of objects is determined by the nominal attri-

bute A and we need to discretize a numerical attribute
B. The discretization of B aims to construct a set T of

cutpoints of adom(B) such that the blocks of jA are as

pure as possible relative to the partition pT
B� , that is,

the conditional entropy HbðjAjpT
B� Þ is minimal.

The following theorem extends a result of Fayyad

(Theorem 5.4.1 of [4]):

Theorem 2.1. Let S be a collection of objects where the

class of an object is determined by the attribute A and let

b 2 (1,2]. IfT is a set of cutpoints such that the conditional

entropy HbðjAjpTB� Þ is minimal among the set of cutpoints
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with the same number of elements, then T consists of

boundary points of the partition pB,A of adom(B).

Proof. See Appendix A.1 h.

The next theorem is a companion to Fayyad�s result
and makes use of the same hypothesis as Theorem 2.1.

Theorem 2.2. Let b be a number, b 2 (1,2]. If T is a set

of cutpoints of adom(B) such that the distance dbðjA; pTB� Þ
is minimal among the set of cutpoints with the same

number of elements, then T consists of boundary points of

the partition pB,A of adom(B).

Proof. The argument for this statement is given in
Appendix A.2 h.

This result will play a key role in the algorithm that
we propose in this paper. To discretize adom(B) we shall

seek a set of cutpoints T such that dbðjA; pT
B� Þ ¼

HbðjAjpT
B� Þ þHbðpT

B� jjAÞ is minimal. In other words,

we shall seek a set of cutpoints such that the partition

pT
B� induced on the set of objects S is as close as possible

to the target partition jA.
Initially, before adding cutpoints, we have T = ;,

pT
B� ¼ xS ¼ fSg, and therefore HbðjAjxSÞ ¼ HbðjAÞ.

Observe that when the set T grows the entropy

HbðjAjpT
B� Þ decreases. Note that the use of conditional

entropy HbðjAjpT
B� Þ tends to favor large cutpoint sets

for which the partition pT
B� is small in the partial ordered

set (PART(T),6). In the extreme case, every point would

be a cutpoint, a situation that is clearly unacceptable.

Fayyad–Irani technique halts the discretization process

using the principle of minimum description. We adopt
another technique that has the advantage of being

geometrically intuitive and produces very good experi-

mental results.

Using the distance dbðjA; pT
B� Þ ¼ HbðjAjpT

B� Þ þ
HbðpT

B� jjAÞ the decrease of HbðjAjpT
B� Þ when the set of

cutpoints grows is balanced by the increase in

HbðpT
B� jjAÞ. Note that initially we have HbðxS jjAÞ ¼

0. The discretization process can thus be halted
when the distance dbðjA; pT

B� Þ stops decreasing. Thus,

we retain as a set of cutpoints for discretization the set

T that determines the closest partition to the class parti-

tion jA. As a result, we obtain good discretizations (as

evaluated through the results of various classifiers that

use the discretize data) with relatively small cutpoint sets.
Fig. 1. Variation of distance with the size of the set of cutpoints.
3. Discretization algorithm and experimental results

The greedy algorithm shown below is used for dis-

cretizing an attribute B. It makes successive passes over

the table and, at each pass it adds a new cutpoint chosen

among the boundary points of pB,A.
Input: A table S, a class attribute A,
and a real-valued attribute B.
Output:
 A discretized attribute B.
Method:
 sort table S on attribute B;
compute the set BP of boundary

points of partition pB,A;

T = ;; d = 1;
while BP „ ; do

let t ¼ arg mint2BPdbðjA; pT[ftgB� Þ;

if dP dbðjA; pT[ftgB� Þthen
begin
T = T [ {t};
BP = BP � {t};
d ¼ dbðjA; pTB� Þ

end
else
exit while loop;
end while
for pTB� ¼ fQ0; . . . ;Q‘g replace
every attribute in Qi by i for 06 i6 ‘.
The while loop is running for as long as there exist

candidate boundary points and it is possible to find a

new cutpoint t such that the distance dbðjA; p
T[ftg
B� Þ is less

than the previous distance dbðjA; pT
B� Þ. An experiment

performed on a synthetic database shows that a substan-
tial amount of time (about 78% of the total time) is

spent on decreasing the distance by the last 1% (see

Fig. 1). Therefore, in practice we run a search for a

new cutpoint only if jd � dbðjA; p
T[ftg
B� Þj > 0:01d.

To form an idea on the evolution of the distance be-

tween jA and the partition of objects determined by the

cutpoints pT
B� let t 2 BP be a new cutpoint added to the

set T. It is clear that the partition pT
B� covers the partition

pT[ftg
B� because pT[ftg

B� is obtained by splitting a block of

pT
B� . Without loss of generality we assume that the blocks

Qm�1 and Qm of pT[ftg
B� result from the split of the block

Qm�1 [ Qm of pT
B� :

jA ¼ fP 1; . . . ; Png;
pT
B� ¼ fQ1; . . . ;Qm�2;Qm�1 [ Qmg;

pT[ftg
B� ¼ fQ1; . . . ;Qm�2;Qm�1;Qmg:



Table 1

Comparative experimental results for decision trees

Database Experimental results

Discretization

method

Size Number

of leaves

Accuracy (stratified

cross-validation)

Heart-c Standard 51 30 79.20

b = 1.5 20 14 77.36

b = 1.8 28 18 77.36

b = 1.9 35 22 76.01

b = 2.0 54 32 76.01

Glass Standard 57 30 57.28

b = 1.5 32 24 71.02

b = 1.8 56 50 77.10

b = 1.9 64 58 67.57

b = 2.0 92 82 66.35

Ionosphere Standard 35 18 90.88

b = 1.5 15 8 95.44

b = 1.8 19 12 88.31

b = 1.9 15 10 90.02

b = 2.0 15 10 90.02

Iris Standard 9 5 95.33

b = 1.5 7 5 96

b = 1.8 7 5 96

b = 1.9 7 5 96

b = 2.0 7 5 96

Diabetes Standard 43 22 74.08

b = 1.8 5 3 75.78

b = 1.9 7 4 75.39

b = 2.0 14 10 76.30
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Since b > 1, by Equality (1), we have dbðjA; p
T[ftg
B� Þ <

dbðjA; pT
B� Þ if and only ifXn

i¼1

jP ijb þ
Xm
j¼1

jQjj
b � 2 �

Xn
i¼1

Xm
j¼1

jP 1 \ Qjj
b

<
Xn
i¼1

jP ijb þ
Xm�2

j¼1

jQjj
b þ jQm�1 [ Qmj

b

� 2 �
Xn
i¼1

Xm�2

j¼1

jP i \ Qjj
b � 2 �

Xn
i¼1

jP i \ ðQm�1 [ QmÞj
b
;

which is equivalent to

jQm�1j
b þ jQmj

b � 2 �
Xn
i¼1

jP i \ Qm�1j
b � 2 �

Xn
i¼1

jP i \ Qmj
b

< jQm�1 [ Qmj
b � 2 �

Xn
i¼1

jP i \ Qm�1j þ jP i \ Qmjð Þb:

Suppose that Qm�1 [ Qm is intersected by only by P1

and P2 and that b = 2. Then, the previous inequality that
describes the condition under which a decrease of

dbðjA; d
T
� Þ can be obtained becomes

ðjP 1 \ Qm�1j � jP 2 \ Qm�1jÞðjP 1 \ Qmj � jP 2 \ QmjÞ < 0;

ð2Þ
and so, the distance may be decreased by splitting a

block Qm�1 [ Qm into Qm�1 and Qm, only when the dis-

tribution of the fragments of the blocks P1 and P2 in the

prospective blocks Qm�1 and Qm satisfies condition (2).

If the block Qm�1 [ Qm of the partition pT
B� contains a

unique boundary point, then choosing that boundary

point as a cutpoint will decrease the distance. Indeed,

in this case we have |P1 \ Qm�1| > 0, |P1 \ Qm| = 0, and
|P2 \ Qm�1| = 0, |P2 \ Qm| > 0, which guarantees that

condition (2) is satisfied.

We tested our discretization algorithm on several ma-

chine learning data sets from UCI data sets [17] that

have numerical attributes. After discretizations per-

formed with several values of b (typically b 2 {1.5, 1.8,

1.9, 2}) we built the decision trees on the discretized data

sets using the WEKA J48 variant of C4.5 [9]. The size,
number of leaves and accuracy of the trees are described

in Table 1, where trees built using the Fayyad–Irani dis-

cretization method of J48 are designated as ‘‘standard.’’

It is clear that the discretization technique has a sig-

nificant impact of the size and accuracy of the decision

trees. The experimental results suggest that an appropri-

ate choice of b can reduce significantly the size and num-

ber of leaves of the decision trees, roughly maintaining
the accuracy (measured by stratified fivefold cross-vali-

dation) or even increasing the accuracy as shown by

the experiments on the glass data set (see Fig. 2).

Our supervised discretization algorithm that discret-

izes each attribute B based on the relationship between

the partition pB and pA (where A is the attribute that
specifies the class of the objects). Thus, the discretization

process of an attribute is carried out independently of

similar processes performed on other attributes. As a re-

sult, our algorithm is particularly efficient for naı̈ve

Bayes classifiers, which rely on the essential assumption

of attribute independence. The error rates of naı̈ve

Bayes classifiers obtained for different discretization

methods are shown in Table 2.
We applied the proposed discretization method to a

data set [18] that is obtained from the use of microarray

technology and is used in the diagnostic of differential

diagnosis of small round-blue cell tumors (SRCBCF)

of childhood: neuroblastoma (NB), rhabdomyosarcoma

(RMS), Burkitt lymphoma (BL), and the Ewing family

of tumors (EWS). The training data include 63 samples

(23 EWS, 20 RMS, 12 NB, and 8 BL) with 6567 genes
used in the model; the test data include 25 samples (6

EWS, 5 RMS, 6NB, 3BL, and 5 ‘‘noise samples’’ origi-

nating in other tissues). An investigation of this set of

data was carried out in [19] using fuzzy logic.

For each gene G involved we computed the distance

db(pG, pD) (where D is the diagnosis attribute). The dis-

cretization process involved 30 genes G having the least

30 values for db(pG, pD). We applied discretization to the
training set for several values of b and stopped the dis-

cretization algorithm after the first two cutting points

were detected. Then, in each case, a naı̈ve Bayes classi-



Fig. 2. Experimental results for the heart-c and glass data sets.

Table 2

Error rate for naı̈ve Bayes classifiers

Discretization method Diabetes Glass Ionosphere Iris

b = 1.5 34.9 25.2 4.8 2.7

b = 1.8 24.2 22.4 8.3 4

b = 1.9 24.9 23.4 8.5 4

b = 2.0 25.4 24.3 9.1 4.7

Weighted proportional 25.5 38.4 10.3 6.9

Proportional 26.3 33.6 10.4 7.5

Table 3

Accuracy rate on test set on Khan�s data

Discretization

method

Accuracy rate

on test set (%)

Misclassified

‘‘Noise’’ cases Regular cases

b = 1.3 76 5 1

b = 1.35 60 4 6

b = 1.4 84 3 1

b = 1.5 80 2 3
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fier was constructed using the WEKA package [9]. The

results are shown in Table 3. The results suggest that

the optimal value of b for this data set is 1.4.
4. Conclusions and open problems

The use of the metric space of partitions of the data

set in discretization is helpful in preparing the data for

classifiers. With an appropriate choice of the parameter

b that defines the metric used in discretization, standard
classifiers such as C4.5 or J48 generate smaller decision

trees with comparable or better levels of accuracy when

applied to data discretized with our technique.

An important open issue is determining characteris-

tics of data sets that will inform the choice of an optimal

value for the b parameter.

Also, investigating metric discretization for data with

missing values seems to present particular challenges
that we intend to consider in our future work.
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Appendix A. Proofs of Theorems

A.1. Proof of Theorem 2.1

The proof is by induction on the number of cutpoints

‘ = |T|. If ‘ = 0, the statement is immediate since in this
case pT

B� is the one-class partitionxS of the set of objectsS.

Suppose that the statement holds for set of cutpoints

that contain ‘ elements and let Z = T [ {t}, where

T = {t1, . . . , t‘} is a set of cutpoints that is a subset of

the set of boundary points of pB,A, |T| = ‘ and t 62 T.

Let jA = {P1, . . . ,Pk} and pT
B� ¼ fQ0; . . . ;Q‘g, where

jA, pT
B� 2 PARTðSÞ. The conditional entropy

HbðjAjpT
B� Þ is given by:
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HbðjAjpT
B� Þ ¼

1

ð1� 21�bÞjSjb

�
X‘
j¼0

jQjj
b �

Xk
i¼1

X‘
j¼0

jP i \ Qjj
b

 !
:

Suppose that the new cut point t is placed between th�1

and th. Then, the partition pZ
B� is obtained from pT

B� by

splitting Qh in Q0
h and Q00

h. Also, t is located between two

cutpoints t› and tfl of the partition pB,A. Since pB,A* 6 pA
the set of objects whose B-component is included in the

interval Ætæ = [tfl, t›] is a subset of a block Pg of the parti-

tion jA.
The variation of the entropy caused by the introduc-

tion of the split in Qh is given by

HbðjAjpZ
B� Þ �HbðjAjpT

B� Þ

¼ 1

ð1� 21�bÞjSjb
X‘

j¼0;j 6¼h

jQjj
b �

Xk
i¼1

X‘
j¼0;j 6¼h

jP i \ Qjj
b

 !

þ 1

ð1� 21�bÞjSjb

� jQ0
hj
b þ jQ00

hj
b �

Xk
i¼1

jP i \ Q0
hj
b þ

Xk
i¼1

jP i \ Q00
hj

b

 !

� 1

ð1� 21�bÞjSjb
X‘
j¼0

jQjj
b �

Xk
i¼1

X‘
j¼0

jP i \ Qjj
b

 !
:

Since the partition pT
B� is such thatHbðjAjpT

B� Þ achieves a
local minimum, it follows that the difference

HbðjAjpZ
B� Þ �HbðjAjpT

B� Þ needs to have a local minimum
in order for HbðjAjpZ

B� Þ to achieve a local minimum.

The number of objects in the sets Pi \ Qj for i „ g and

j „ h is unaffected by the split of Qh since Ætæ ˝ Pg. There

is a constant K (independent of t) such that the variation

in entropy can be written as

HbðjAjpZ
B� Þ �HbðjAjpT

B� Þ

¼ 1

ð1� 21�bÞjSjb

� jQ0
hj
b þ jQ00

hj
b

�
�K � jPg \ Q0

hj
b � jPg \ Q00

hj
b
�
:

Denote n = |Ætæ|, and let l be the number of objects

whose B-component is in (tfl, t]. Then, the number of ob-

jects whose B-component is in (t, t›] is n � l. Let a, b be

the numbers of objects in Q0
h and Q00

h whose B-compo-

nent is less than tfl and t›, respectively. With these nota-
tions we can write

HbðjAjpZ
B� Þ �HbðjAjpT

B� Þ

¼ 1

ð1� 21�bÞjSjb

� ðaþ lÞb þ ðbþ n� lÞb
�

�K � lb � ðn� lÞb
�
;

If we regard l as a continuous variable varying in the

interval [0, n] we need to examine the variation of the

real-valued function
F ðlÞ ¼ 1

ð1� 21�bÞjSjb

� ðaþ lÞb þ ðbþ n� lÞb � K � lb � ðn� lÞb
� �

;

on the interval [0, n]. The second derivative of this func-

tion is

F 00ðlÞ¼ bðb�1Þ
ð1�21�bÞjAjb

� ðaþlÞb�2þðbþn�lÞb�2
�

�lb�2�ðn�lÞb�2
�
:

Since b > 1 we have bðb�1Þ
1�21�b > 0. Also, for 1 6 b < 2 we

have both lb�2�(a + l)b�2 > 0 and (n�l)b�2�
(b + n�l)b�2 > 0, which imply that the second derivative

is negative on [0, n]. This proves that the minimum of this

function is attained either for l = 0 or for l = n, that is,

in one of the pB,A-boundary points.

The case b = 2 is immediate since in this situation F is

a linear function of l. h

A.2. Proof of Theorem 2.2

As before, the argument is by induction on |T| and the

base case |T| = 0 is vacuous. Suppose that the statement

is true for |T| = ‘, so T consists of boundary points of the

partition pB,A.
The conditional entropy HðpT

B� jjAÞ is given by

HbðpT
B� jjAÞ ¼

1

ð1� 21�bÞjSjb

�
Xk
i¼1

jP ijb �
Xk
i¼1

X‘
j¼0

jP i \ Qjj
b

 !
:

If we add a new cutpoint t between the boundary points

th�1 and th to obtain the new set of cutpoints
Z = T [ {t}, the new value of the conditional entropy is

HbðpZ
B� jjAÞ ¼

1

ð1� 21�bÞjSjb

�
Xk
i¼1

jP ijb �
Xk
i¼1

X‘
j¼0;j 6¼h

jP i \ Qjj
b

 

�
Xk
i¼1

jP i \ Q0
hj
b �

Xk
i¼1

jP i \ Q00
hj

b

!
:

Thus, we have

HbðpZ
B� jjAÞ �HbðpT

B� jjAÞ

¼ 1

ð1� 21�bÞjSjb

�
Xk
i¼1

jP i \ Q0
hj
bþ

 Xk
i¼1

jP i \ Q00
hj

b þ
Xk
i¼1

jP i \ Qhj
b

!
:

Since Ætæ ˝ Pg only the intersections that contain Pg de-

pend on the position of the new cutpoint t. Therefore,
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the variation of the conditional entropy can be written

as

HbðpZ
B� jjAÞ �HbðpT

B� jjAÞ

¼ 1

ð1� 21�bÞjSjb

� H þ jPg \ Qhj
b � jPg \ Q0

hj
b � jPg \ Q00

hj
b

� �
;

where H is a constant that does not depend on t. Using

the notation previously introduced we have

HbðpZ
B� jjAÞ �HbðpT

B� jjAÞ

¼ 1

ð1� 21�bÞjSjb
H þ nb � lb � ðn� lÞb
� �

:

The second derivative of the real-valued function G

defined by

GðlÞ ¼ 1

ð1� 21�bÞjSjb
H þ nb � lb � ðn� lÞb
� �

for l 2 (0, n] is

G00ðlÞ ¼ � bðb� 1Þ
ð1� 21�bÞjSjb

lb�2 þ ðn� lÞb�2
� �

and is clearly negative.

The variation of the distance

dbðjA; pZ
B� Þ � dbðjA; pT

B� Þ is the sum of the variations

of the entropies HbðjAjpZ
B� Þ �HbðjAjpT

B� Þ and
HbðpZ

B� jjAÞ �HbðpT
B� jjAÞ. With the above notation,

this variation equals F(l) + G(l), where F is the func-

tion introduced in the proof of Theorem 2.1. Since

F00(l) + G00(l) < 0, the minimum value of the distance

can be attained only when t coincides with either tfl

or with t›. h
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