Publications Listing
Filter Publications:
Papers published in Journals (D. Peralta)
Number of Results: 14
Jump to Year: 2018, 2017, 2016, 2015, 2014
2018 (1)
- [2364] D. Peralta, I. Triguero, S. García, Y. Saeys, J.M. Benítez, F. Herrera. On the use of convolutional neural networks for robust classiffication of multiple fingerprint captures. International Journal of Intelligent Systems 33:1 (2018) 213–230. doi: 10.1002/int.21948
2017 (3)
- [2151] D. Peralta, I. Triguero, S. García, Y. Saeys, J.M. Benítez, F. Herrera. Distributed incremental fingerprint identification with reduced database penetration rate using a hierarchical classification based on feature fusion and selection. Knowledge-Based Systems 126 (2017) 91-103. doi: 10.1016/j.knosys.2017.03.014
- [2154] D. Peralta, S. García, J.M. Benítez, F. Herrera. Minutiae-Based Fingerprint Matching Decomposition: Methodology for Big Data Frameworks. Information Sciences 408 (2017) 198-212. doi: 10.1016/j.ins.2017.05.001
- [2190] S. Tabik, D. Peralta, A. Herrera-Poyatos, F. Herrera. A snapshot of image pre-processing for convolutional neural networks: case study of MNIST. International Journal of Computational Intelligence Systems 10 (2017) 555-568.
2016 (2)
- [2071] M. Lozano, F. J. Rodriguez, D. Peralta, C. García-Martínez. Randomized Greedy Multi-Start Algorithm for the Minimum Common Integer Partition Problem. Engineering Applications of Artificial Intelligence 50 (2016) 226-235. doi: 10.1016/j.engappai.2016.01.037
- [2075] D. Peralta, I. Triguero, S. García, F. Herrera, J.M. Benítez. DPD-DFF: A Dual Phase Distributed Scheme with Double Fingerprint Fusion for Fast and Accurate Identification in Large Databases. Information Fusion 32 (2016) 40–51. doi: 10.1016/j.inffus.2016.03.002
2015 (5)
- [1769] I. Triguero, D. Peralta, J. Bacardit, S. García, F. Herrera. MRPR: A MapReduce Solution for Prototype Reduction in Big Data Classification. Neurocomputing 150 (2015), 331-345. doi: 10.1016/j.neucom.2014.04.078
- [1890] M. Galar, J. Derrac, D. Peralta, I. Triguero, D. Paternain, C. Lopez-Molina, S. García, J.M. Benítez, M. Pagola, E. Barrenechea, H. Bustince, F. Herrera. A Survey of Fingerprint Classification Part I: Taxonomies on Feature Extraction Methods and Learning Models. Knowledge-Based Systems 81 (2015) 76-97. doi: 10.1016/j.knosys.2015.02.008
- [1891] M. Galar, J. Derrac, D. Peralta, I. Triguero, D. Paternain, C. Lopez-Molina, S. García, J.M. Benítez, M. Pagola, E. Barrenechea, H. Bustince, F. Herrera. A Survey of Fingerprint Classification Part II: Experimental Analysis and Ensemble Proposal. Knowledge-Based Systems 81 (2015) 98-116. doi: 10.1016/j.knosys.2015.02.015
COMPLEMENTARY MATERIAL to the paper: datasets, experimental results and source codes - [1921] D. Peralta, M. Galar, I. Triguero, D. Paternain, S. García, E. Barrenechea, J. M. Benítez, H. Bustince, F. Herrera. A Survey on Fingerprint Minutiae-based Local Matching for Verification and Identification: Taxonomy and Experimental Evaluation. Information Sciences 315 (2015) 67-87. doi: 10.1016/j.ins.2015.04.013
COMPLEMENTARY MATERIAL to the paper: experimental results and statistical tests - [1939] D. Peralta, S. Río, S. Ramírez-Gallego, I. Triguero, J.M. Benítez, F. Herrera. Evolutionary Feature Selection for Big Data Classification: A MapReduce Approach. Mathematical Problems in Engineering, vol. 2015, Article ID 246139 (2015) 11 pages. doi: 10.1155/2015/246139
2014 (3)
- [1670] D. Peralta, I. Triguero, R. Sanchez-Reillo, F. Herrera, J.M. Benítez. Fast Fingerprint Identification for Large Databases. Pattern Recognition 47:2 (2014) 588–602. doi: 10.1016/j.patcog.2013.08.002
COMPLEMENTARY MATERIAL to the paper: datasets, experimental results and source codes - [1740] D. Peralta, M. Galar, I. Triguero, O. Miguel-Hurtado, J.M. Benítez, F. Herrera. Minutiae Filtering to Improve Both Efficacy and Efficiency of Fingerprint Matching Algorithms. Engineering Applications of Artificial Intelligence, 32 (2014) 37-53. doi: 10.1016/j.engappai.2014.02.016
- [1782] A. Fernandez, D. Peralta, J.M. Benítez, F. Herrera. E-learning and educational data mining in cloud computing: an overview. International Journal of Learning Technology, 9:1 (2014) 25-52.