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Abstract
Fingerprint classification is one of the most com-

mon approaches to accelerate the identification in large

databases of fingerprints. Fingerprints are grouped into dis-

joint classes, so that an input fingerprint is compared only

with those belonging to the predicted class, reducing the

penetration rate of the search. The classification procedure

usually starts by the extraction of features from the finger-

print image, frequently based on visual characteristics. In

this work, we propose an approach to fingerprint classifica-

tion using convolutional neural networks, which avoid the

necessity of an explicit feature extraction process by incor-

porating the image processing within the training of the

classifier. Furthermore, such an approach is able to predict

a class even for low-quality fingerprints that are rejected

by commonly used algorithms, such as FingerCode. The

study gives special importance to the robustness of the clas-

sification for different impressions of the same fingerprint,

aiming to minimize the penetration in the database. In our

experiments, convolutional neural networks yielded better

accuracy and penetration rate than state-of-the-art classi-

fiers based on explicit feature extraction. The tested net-

works also improved on the runtime, as a result of the joint

optimization of both feature extraction and classification.
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1 INTRODUCTION

Fingerprint identification has become the most widespread manner to implement biometric

authentication,1 by virtue of the desirable properties of fingerprints including uniqueness, universal-

ity, and invariability. Given a database of template fingerprints, the identification consists of finding

the template that corresponds to the identity of an input fingerprint. Multiple fingerprint matching and

identification algorithms have been published along the past two decades.2–4 Each of them has dif-

ferent properties, which in turn yield different trade-offs between efficiency and accuracy.5 However,

in a basic identification framework the input fingerprint must be compared with every template in the

database, a procedure that becomes prohibitively time consuming when dealing with extremely large

databases. Therefore, it is necessary to combine these approaches with additional processing steps

aimed at reducing the so-called database penetration rate.

Fingerprint classification is one of the most popular ways to achieve this goal.6 Several classes of

fingerprints are established, and the input fingerprint is classified prior its identification. Then, it is

compared only to the templates belonging to the predicted class.1

Traditionally, an expert manually labels every template fingerprint in the database. Then, the clas-

sifier is trained on the obtained labeled data set, with the aim of assigning to each input fingerprint

the same label that was manually established for the corresponding template. This is a laborious and

human-dependent process. Therefore, although in this paper we still consider this evaluation proce-

dure to allow for comparison with other works on the topic, we also focus on the classification robust-
ness, which we define as the capacity of assigning the same class to different impressions of the same

fingerprint, independently of the manual label. This enables the possibility of further increasing the

performance for fingerprints that fall close to the frontier between classes.

The overall fingerprint classification process is composed of two main steps6: feature extraction and

the classification itself. First, the captured image of the fingerprint is processed to extract meaningful

features that can lead to a high discernibility between the classes. These features are frequently repre-

sented in the form of a numeric vector.6 Second, the feature vector is used to perform the classification,

either by a set of fixed rules or by training a model in a supervised manner.

Various fingerprint classification approaches have been proposed so far, based on different features

such as orientation maps,7 singular points,8,9 ridge structure7,10 and filter-based response,8,11 and dif-

ferent ways to extract them. Most methods apply general-purpose classification algorithms such as

𝑘 nearest-neighbors (𝑘-NN)12 or support vector machines (SVMs).13 Others provide fixed classifica-

tion rules that do not require a training procedure.14,15

The main benefit of this two-step structure is the possibility of using highly accurate machine learn-

ing classifiers. However, the manually designed feature extraction process focuses on specific features

of the fingerprint pattern, which can lead to some information loss due to the discarding of subtler

shapes. Owing to the visual definition of the classes, the extraction of a numerical feature vector is a

complex task for which many aspects of the image can be considered. In this context, some feature

extraction algorithms reject fingerprints when the image does not comply with certain quality require-

ments, such as being properly centered in the image. The rejection of a fingerprint aims to increase the

reliability of the classification, but also hinders the database penetration rate reduction.1

Deep neural networks (DNNs)16,17 have attracted a lot of attention from the scientific community

along the past few years due to their high capability for complex pattern recognition. They have been

applied over multiple problems, such as image classification18 and fusion,19 digit recognition,20,21

feature extraction,22,23 echocardiography classification24 or gas recognition,25 among others. One of

the advantages of DNNs is that the neuron layers implicitly extract the information from the raw input

patterns. This allows for a generic learning process that does not depend on explicitly chosen nor
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previously extracted features. Another advantage is the possibility of applying the networks directly on

the input images, usually by convolutional neural networks (CNNs). Finally, the function computed by

neural networks is defined for any input pattern, which in a fingerprint classification context allows for

the elimination of the rejection rate.

All these properties highlight DNNs and CNNs as potentially promising models for fingerprint clas-

sification. Some authors have published proposals in this direction, such as a succession of an autoen-

coder and a neural network classifier26 or a succession of one-layer autoencoders followed by a DNN

that performs the classification.27 However, there is a lack of a complete and systematic study over the

capabilities of DNNs for the fingerprint classification problem.

In this paper, we propose to use CNNs on the fingerprint classification problem with the following

aims:

• to evaluate the accuracy of CNNs against that of state-of-the-art classifiers based on feature extrac-

tion,

• to increase the classification robustness when dealing with different impressions of the same finger-

prints, and

• to minimize the penetration rate that is expected after the application of the classifier, along with the

identification time.

Several fingerprint databases with different qualities and characteristics are used in the analysis,

replicating the baseline study proposed in Ref. 28. Some of these databases were synthetically gen-

erated with the SFinGe software with realistic parameters and different quality settings. The publicly

available NIST-DB4 database is also used.

The remainder of this paper is structured as follows: Section 2 presents some background knowl-

edge on fingerprint classification and deep learning. Section 3 describes the different classification

approaches taken into consideration in this study. The analysis of the accuracy of the proposed neural

network is carried out in Section 4. Section 5 describes the robustness of the classification on different

fingerprint impressions and the penetration rate obtained when performing identifications. Finally, the

conclusions of the study are presented in Section 6.

2 BACKGROUND

This section provides background information about the fingerprint classification problem (Sec-

tion 2.1), detailing the state-of-the-art approaches that will be considered in the analysis (Section 2.2).

Section 2.3 describes the deep learning paradigm, and Section 2.4 presents previous work on applying

deep learning models to fingerprint recognition and other biometric problems.

2.1 Fingerprint classification
Fingerprint classification is the most common approach to reduce the database penetration rate of a

fingerprint identification system.6 The five-class system proposed by Henry29 is still applied by most

authors. These classes present different visual patterns and are unequally distributed, as shown in

Figure 1.

Fingerprint classification algorithms are based on the global-level features of the fingerprint

images1: orientation maps, ridge structure, and singular points, shown in Figure 2. There are many

methods that extract these features, each of which provides different nuances or follows a different
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F I G U R E 1 Five fingerprint classes defined by Henry29 and their frequencies

F I G U R E 2 Main types of global fingerprint features1

extraction approach. For instance, singular points are most commonly detected by the Poincaré

method. Some feature extractors that apply this method are described in Refs. 10,30 and 31. Complex

filters are also widely used for this purpose.9,32,33 Orientation maps are usually extracted by gradient-

based methods,11,31,34 although there are other proposals such as slits-based7 or skeleton tracing35

approaches.

Some of these extraction methods require the fingerprint to meet certain quality conditions for the

extraction to be performed. This behavior ensures a meaningful feature extraction, as well as a higher

classification accuracy rate for the fingerprints that are not rejected.1 However, in an automatic fin-

gerprint identification system the rejection can lead to a performance loss, as the reduction of the

search space cannot be performed for fingerprints whose features cannot be extracted. Therefore, it is

important to find extraction methods that lead to a high accuracy, while minimizing or eliminating the

rejection rate.

Once the features have been extracted, they are used to carry out the classification itself. In many

cases, the features are encoded into a numeric vector so that general-purpose classifiers, such as

SVMs,36,37 neural networks,7,38 or 𝑘-NN,39,40 can be directly trained and applied over them. Other

approaches follow a more specific classification procedure. Fixed classification implements a set of

fixed criteria to determine the class of a fingerprint without any training procedure.10,14,15 Structural

models rely on decision trees and hidden Markov models.41,42 In general, however, many fingerprint

classification proposals in the literature combine several of the previous systems to achieve better

results.

The penetration rate of the identification search that is carried out after the classification can be

estimated from the class distribution and the confusion matrix of the classifier. The estimated average

penetration rate for an input fingerprint of class 𝑖, within a setting with𝑚 classes, is shown in Equation 1,



PERALTA ET AL. 217

where 𝑝𝑖 is the proportion of fingerprints belonging to class 𝑖 and 𝑞𝑖 is the accuracy rate for that class.

In the best possible scenario, 𝑞𝑖 = 1 and 𝑟𝑖 = 𝑝𝑖, that is, the classifier never misclassifies inputs of class

𝑖 and therefore the penetration rate for that class is always 𝑝𝑖. Equation 2 shows the formula for the

estimated penetration rate, averaged throughout all possible classes:

𝑟𝑖 = 1 + 𝑞𝑖(1 − 𝑝𝑖) 𝑖 ∈ {1, ..., 𝑚} (1)

�̄� =
𝑚∑

𝑖=1
𝑝𝑖𝑟𝑖 (2)

2.2 Feature extractors and classifiers compared in the study
To meaningfully evaluate the performance of the deep learning approaches studied in this paper, sev-

eral other fingerprint classification techniques from the state of the art will be tested. In particular, we

selected the classifiers and feature extractors that obtained the best results in Ref. 28, selecting algo-

rithms with a variety of different characteristics. Three different feature extractors have been consid-

ered, which will henceforth be referred to with the name of the first author and the year of publication.

Cappelli et al.43 proposed a method based on the orientation map, which is registered using the core

point detected by the Poincaré method.10 A dynamic mask is applied for each class, producing a vector

of size five. The orientations are also stored into the feature vector. Hong et al.8 extend the FingerCode

feature vector11 (based on Gabor filters) with the pseudoridges traced from the center of the finger-

print, the number of singular points (cores and deltas), and the distance and location between them.

Liu's approach9 extracts the singular points and builds a feature vector based on relative measures

among them.

Three general-purpose classifiers will be applied to the vectors produced by the aforementioned

feature extractors. Again, we selected classifiers with very different learning procedures so as to carry

out a generic study:

• SVM13: The original feature space is mapped to a higher dimensional space by means of a kernel

function, to make it linearly separable. The separating hyperplane is computed by maximizing the

margin to the training instances in the target space.

• Decision tree (C4.5)44: Classification rules are extracted by building a decision tree from the training

set, which is built in a top-down manner. At each node of the tree, the attribute with maximum

difference in entropy is used to split the data. C4.5 also involves a pruning procedure.

• 𝑘-NN12: The 𝑘 nearest neighbors of a test instance are computed. Then, the most frequent class

among these neighbors is returned for the test instance. Therefore, the distance metric and the value

of 𝑘 strongly determine the behavior of this classifier.

2.3 Classification with deep neural networks
Neural networks have been used for decades to model all kinds of problems, due to their interesting

properties, the main of which is that they are universal approximators.45. Although there are multiple

types of neural networks, in this paper we focus on feed-forward networks for supervised classifica-

tion, as they adapt naturally to the fingerprint classification problem. A feed-forward neural network is

formed by a set of layers or neurons, each of which is connected to the neurons of the previous layer

by a vector of weights, so that the value of a neuron is computed as a weighted sum of the values of
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the neurons in the previous layer. Additionally, neurons can apply an activation function to introduce a

nonlinearity. In a classification context, the instance that must be classified is used to set the values of

the first layer of the network (input layer). The values are propagated along the network through one

or more hidden layers until the final layer (output layer) contains the predicted class.

A DNN is a network with many hidden layers, each of which extracts—broadly speaking—a certain

level of abstraction from the input pattern. Therefore, a higher number of layers allows the DNN to

learn more complex and generic patterns.46. There are different types of neuron layers for DNN20,46:

• Fully connected layers: Each neuron is connected with weights to all the neurons in the previous

layer.

• Convolutional layers: Each neuron is connected to a patch of neurons in the previous layer. The

weights are shared among all the neurons of the same layer, reducing the search space of the learning

process.

• Pooling layers: They are usually located after a convolutional layer. As in these, each neuron is

connected to a patch of the previous layer and computes the maximum or average of those values.

In practice, networks that combine all three types of layers are called CNNs. They are well adapted

to the processing of images and structures with some spatial relation, as shown by the good results

obtained in different competitions.18,47,48

When a network is used as a classifier for a problem with classes 𝑐1, ..., 𝑐𝑚, the output layer contains

one neuron per class, forming a vector 𝐚 = (𝑎1, ..., 𝑎𝑚). The SoftMax function (Equation 3) is used to

convert these values into probabilities, where SoftMax(𝑎𝑖) is the probability of the input to belong to

class 𝑐𝑖. Therefore, for each instance we intend all the output neurons to produce values close to zero,

except the neuron of the correct class, which should be close to one:

SoftMax(𝑎𝑖) =
𝑒𝑎𝑖

𝑚∑
𝑗=1

𝑒𝑎𝑗

, 𝑖 = 1, ..., 𝑚 (3)

The activation function used to model nonlinearity is usually the rectified linear unit (ReLU), which

can be computed faster than the traditionally used sigmoid or hyperbolic tangent functions and also

offers interesting convergence properties.49

The training of a network consists of optimizing the weights of each neuron so as to obtain the

desired output for each input. Therefore, the dimensionality of the search space is as high as the total

number of weights. The reference algorithm for the training is back propagation with gradient descent

(GD).50

However, GD becomes computationally expensive when applied to a DNN, due to the high dimen-

sionality of the search space. Stochastic gradient descent (SGD) can reduce this limitation by using only

a subset (or batch) of the training instances in each iteration, so that the computing of the error is biased

with respect to the optimum but can be performed much faster. Each iteration over the entire training

set (epoch) requires multiple iterations over the small batches. This algorithm, along with the recent

advances on graphical processing units (GPUs) and the availability of large data sets, has allowed for

the implementation and training of DNN with very good results.46

2.4 Fingerprint classification with deep neural networks
Despite the power that deep learning approaches offer for many classification problems, they have been

scarcely applied so far to the fingerprint classification problem.
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In Ref. 26, two single hidden layer perceptrons are used to classify the fingerprints into the five

usual classes. The input images are cropped to 16 × 16 pixels, so that only a small neighborhood of

the reference point of the fingerprint is taken into account. The first perceptron is an autoencoder,

whose hidden layer is used as the input of the second perceptron, which performs the classification.

The authors report a test accuracy of 92%, although they do not specify the database used. In Ref.

27, a set of stacked one-hidden layer autoencoders is used to learn an approximation of the identity

function, so as to enhance the orientation field of the fingerprint images. Then, a three-hidden layer

neural network is applied to carry out the classification. The reported accuracy over NIST-DB4 is

93.1%, with a 1.8% rejection. Other authors focus on the feature extraction step. For instance, in Ref.

51 good quality fingerprint images are manually selected so as to train a DNN that extracts orientations

and frequencies. In Ref. 52, the authors decompose and add noise to rolled fingerprints to train a DNN

aimed to perform the orientation field estimation. A regularization of an already extracted orientation

field is carried out in Ref. 53 by using autoencoders. Finally, Ref. 54 describes a deep deconvolutional

neural network to enhance the quality of fingerprint images before minutiae extraction.

Several proposals apply DNNs over the fingerprint images for the liveness detection problem.55–58

In these proposals, the fingerprint images are divided into smaller patches that are processed indepen-

dently, so as to increase the number of training examples and to simplify the processing. However, this

strategy cannot be used for classification, as the class is derived from the global pattern shape of the

fingerprint.

DNNs have also been applied for the recognition of other biometric characteristics, such as

signature,59 finger vein,60,61 or electrocardiography.62 However, to the best of our knowledge there

is no complete study of the possibilities offered by deep learning when applied to the fingerprint clas-

sification problem. This paper aims to provide a first systematic study on the field, to analyze strengths

and weaknesses of DNNs in this context.

3 FINGERPRINT CLASSIFICATION STRATEGIES WITH
DEEP LEARNING

The study carried out on this paper involved several DNN architectures, described in Section 3.1. The

experimental setup is detailed in Section 3.2.

3.1 Deep and convolutional neural networks
DNN architectures are usually divided into two categories: fully connected DNNs and CNNs. Although

the former are in theory able to learn much more complex functions, their search space can become

very large, especially when working with images, due to the enormous number of weights when the

size of the neuron layers is increased. On the other hand, CNNs are very suited to work with images,

limiting the computing requirements and reducing the search space of the training process of the neural

network.

In the context of fingerprint classification, we have started from images fitted to a size of 227 ×
227 pixels. This size provides sufficient quality to determine the class, without being excessively large.

Therefore, the neural networks considered in the remainder of this paper involve a total of 51 529 input

neurons.

Preliminary studies carried out allowed us to discard fully connected networks for this problem, as

the number of connections that have to be optimized becomes enormous even for a low number of

layers. The training of such networks cannot be tackled within a single machine and would require a
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T A B L E 1 Topology of the used CaffeNet variant

Layer type Size Stride Grouping Activation
Convolutional 11 × 11 × 96 4 – ReLU

Pooling 3 × 3 2 – –

Convolutional 5 × 5 × 256 1 2 ReLU

Pooling 3 × 3 2 – –

Convolutional 3 × 3 × 384 1 – ReLU

Convolutional 3 × 3 × 384 1 2 ReLU

Convolutional 3 × 3 × 256 1 2 ReLU

Pooling 3 × 3 2 – –

Fully connected 4096 – – ReLU+Dropout

Fully connected 512 – – ReLU+Dropout

Fully connected 5 – – SoftMax

T A B L E 2 Topology of the proposed network

Layer type Size Stride Grouping Activation
Convolutional 11 × 11 × 48 4 – ReLU

Pooling 3 × 3 2 – –

Convolutional 5 × 5 × 128 1 2 ReLU

Pooling 3 × 3 2 – –

Convolutional 3 × 3 × 192 1 – ReLU

Convolutional 3 × 3 × 128 1 2 ReLU

Pooling 3 × 3 2 – –

Fully connected 2096 – – ReLU + Dropout

Fully connected 256 – – ReLU + Dropout

Fully connected 5 – – SoftMax

high-cost hardware support. Therefore, in this paper we focus on CNNs, which are much better suited

to image processing.

Small CNNs such as the well-known LeNet20 are not powerful enough to tackle the fingerprint

classification problem. This network was designed to recognize 28 × 28 handwritten digits and obtains

a great performance on them; however, their abstraction capacity is not enough to extract the more

complex patterns present in 227 × 227 fingerprint images.

We have considered two different CNNs for the experiments in this paper:

• CaffeNet: It is a variant of the famous AlexNet,18 which obtained a very good performance on the

ImageNet data set.63 Note that we adapted the original CaffeNet so as to better fit the image sizes

and number of classes of the fingerprint classification problem. The resulting topology is shown in

Table 1.

• Proposal: We also developed a network with the topology shown in Table 2. The number of units is

smaller than that of CaffeNet, which is intended at simplifying the search space of the neural network

training and to accelerate the training and its convergence.

Both networks are trained with the SGD algorithm. The input images are grayscale values between

0 and 256. The global average value of the images of the training set is first computed, and then
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T A B L E 3 Parameters of the classifiers

Algorithm Parameters
SGD (CaffeNet) Batch size = 256, iterations = 2000,

learning rate = 0.01, momentum = 0.9, 𝛾 = 0.1,

step size = 500, weight decay = 0.001

SGD ( Proposal) Batch size = 128, learning rate = 0.01,

momentum = 0.9, 𝛾 = 0.1, weight decay = 0.0005,

iterations = 4000 (1300 for NIST-DB4),

step size = 1000 (220 for NIST-DB4)

C4.5 Prune = true, confidence level = 0.25,

minimum number of item-sets per leaf = 2

SVM Kernel = polynomial/RBF, C = 1.0,

tolerance parameter = 0.001, 𝜖 = 10−12

polynomial degree = 1, fit logistic models = true

𝑘-NN Distance metric = Euclidean, 𝑘 = 5

T A B L E 4 Parameter specification used with the SFinGe tool

Scanner parameters Generation parameters
Acquisition area: 14.6 mm 19.6 mm Impressions per finger: 4

Resolution: 500 dpi Class distribution: natural

Image size: 288 384 Save ISO templates: enabled

Background type: optical Generate pores: enabled

Background noise: default Output file type: WSQ

Crop borders: 0 0

subtracted from the images that are passed as input to the network, so that the input has a zero average,

which facilitates the convergence of the learning process.

3.2 Experimental setup
The classification algorithms described in Sections 2.2 and 3.1 have been applied to five different fin-

gerprint databases, replicating the experimental setup presented in Ref. 28. The parameters used for the

experiments are listed in Table 3. The publicly available KEEL software64 was used in the experiments

for the SVM, decision trees, and 𝑘-NN. The CNNs were implemented using the Caffe library.65 All the

experiments were carried out in a single computer with an Intel Core i7-3820 processor (3.60 GHz)

and 24 GB RAM. The CNNs were run on a single Nvidia GeForce GTX TITAN GPU (2688 cores,

6144 MB GDDR5 RAM).

These are the databases used for the study:

• SFinGe: To replicate the experiments carried out in Ref. 28, we used the SFinGe software1,66 to gen-

erate three different databases of synthetic fingerprints with different qualities following the natural

class distribution. This approach enables a meaningful comparison of the tested classifiers according

to a common measure of quality of the fingerprints. All the fingerprints of the three databases were

generated using the parameters shown in Table 4; the only difference between them is the quality

of the generated images (see Figure 3): high quality with no perturbations (HQNoPert), default or
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F I G U R E 3 Example of the quality of the three SFinGe databases

T A B L E 5 Class distribution of NIST-DB4 after removing the fingerprints with two labels

Class Number of fingerprints
Arch 380

Left 378

Right 373

Tented 123

Whorl 396

varying quality and perturbations (VQAndPert). Each of the three generated databases contains four

captures of 10,000 different fingerprints.

• NIST-DB4: This publicly available database67 has been extensively used by other authors to test fin-

gerprint classification approaches. It is composed of two impressions of 2000 rolled fingerprints,

manually labeled and evenly distributed among the five classes. Among them, 350 fingerprints

have two labels because the visual discernibility between the classes is not absolute. Different

authors treat this special case differently, so we followed the approach in Ref. 28 and removed these

fingerprints from the database. Therefore, the resulting database is composed by two impressions of

1650 fingerprints (with the class distribution shown in Table 5), for a total of 3300 images.

4 ANALYSIS OF THE CLASSIFICATION ACCURACY

This section evaluates the performance obtained with the CNNs developed in this work. The experi-

mental study carried out in Ref. 28 has been replicated, to enable a fair comparison between the tested

CNNs and the state-of-the-art fingerprint classification methods. The feature extractors and classifiers

described in preceding sections, which obtained the best results in the aforementioned study, have been

applied to the described databases for a comparison of their accuracy. For this study, a single impres-

sion of each fingerprint in the SFinGe databases was used. Likewise, NIST-DB4 was split into two

different databases, one for each impression. This makes a total of five databases for the experiments:

three SFinGe databases with 10,000 images and two NIST databases with 1650 images. The results

presented in this section have been obtained with a fivefold cross-validation scheme (5-fcv),68 where

each database is randomly split into five subsets with an identical class distribution. The presented
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T A B L E 6 Average cross-validation test accuracy (in percentage) of different classifiers, feature extractors, and

ensembles. Only the best combinations are shown. In due case, the rejection rate is shown between brackets

Feature extraction + classifier Ensembles DNNs
Cappelli02 Hong08 Liu10
SVM-RBF SVM-Poly C4.5 HLZC-Cons HLC-Maj CaffeNet

Proposed
network

HQNoPert 93.87 97.32 (1.44) 94.75 99.47 (17.49) 97.53 (2.27) 98.94 99.07

Default 92.10 96.29 (5.38) 93.96 99.53 (27.78) 97.29 (6.56) 98.06 98.58

VQAndPert 86.21 92.92 (15.90) 90.15 99.10 (43.34) 95.38 (17.89) 97.08 97.54

NIST-DB4_F 87.45 89.49 (1.45) 82.67 98.69 (30.24) 92.84 (4.36) 85.09 90.73

NIST-DB4_S 87.03 85.29 (1.94) 80.61 98.45 (34.97) 91.61 (5.45) 85.52 88.91

accuracy values for each database and classifier are therefore averages in test over five different execu-

tions.

Table 6 presents the accuracy obtained for the different classification methods, split into three groups

of columns. The first group shows the feature extraction methods published in the literature in combi-

nation with the classifier that obtained the best result in each case in Ref. 28. Note that for the sake of

simplicity, only the best performing classifier is included in the table. The second group includes two

ensembles presented in Ref. 28, which obtained the best accuracy and the best rejection, respectively.

Finally, the third group includes the two DNNs designed in this study. The columns corresponding to

Hong's feature extractor and the ensembles also show the rejection rate in brackets, that is, the propor-

tion of fingerprints whose features could not be extracted by Hong's algorithm. The main conclusions

from the table are as follows:

• The accuracy obtained by the proposed network is better than that of the larger CaffeNet, despite its

smaller number of layers and neurons. Although a larger network can offer better learning potential

for complex problems, in this case the smaller search space provided by the proposed architecture

allows for a better convergence of the learning process, yielding a very good accuracy which is far

above any of those obtained by the individual classifiers with feature extraction. This result highlights

the capabilities of the intrinsic feature extraction process of the DNN, which outperforms those

manually designed independently of the subsequent classification step.

• The proposed network also overcomes the accuracy obtained by the ensemble HLC-Maj for the

SFinGe databases, despite the fact that it does not reject any fingerprint. In opposite, the ensem-

ble HLZC-Cons, with a very large rejection rate, and HLC-Maj for NIST-DB4, are able to obtain

accuracies larger than those yielded by the tested DNN. Nevertheless, in a practical environment it

is usually preferable to eliminate such a high rejection rate at the cost of a slight reduction of the

accuracy.

5 ROBUST CLASSIFICATION OF DIFFERENT
FINGERPRINT IMPRESSIONS AND PENETRATION RATE
REDUCTION

The preceding section highlighted CNNs as a powerful approach from a classic machine learning

perspective. However, the biometric identification problem presents some particularities that should

be taken into account when new techniques are evaluated. In practice, the template fingerprints that

are stored after the enrollment of the users are grouped according to their class and used to train the
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T A B L E 7 Accuracy and penetration rate of the reference methods over the 4 tested databases

SVM-Poly C4.5 KNN
Training Test P. rate Training Test P. rate Training Test P. rate Rejection

Cappelli02

HQNoPert 99.71 92.11 36.63% 99.27 94.97 33.85% 88.46 86.03 41.89% –

Default 98.93 90.38 38.09% 99.14 93.27 35.56% 86.79 82.14 46.78% –

VQAndPert 94.69 83.83 46.35% 98.70 89.80 40.77% 86.95 79.76 51.51% –

NISTDB4 100.00 86.42 34.61% 98.48 88.24 34.17% 84.06 83.70 37.11% –

Hong08

HQNoPert 98.41 98.07 35.49% 99.23 96.19 37.27% 96.48 97.59 36.29% 6.71%

Default 97.67 96.90 43.97% 99.01 94.54 46.01% 96.54 96.58 44.87% 18.15%

VQAndPert 95.44 91.95 61.55% 98.48 91.30 62.38% 94.32 92.37 61.94% 40.11%

NISTDB4 98.00 89.65 35.63% 97.76 86.78 39.41% 91.08 87.72 39.49% 2.79%

Liu10

HQNoPert 94.61 96.72 32.40% 98.06 95.14 33.75% 94.64 95.78 33.28% –

Default 93.84 93.96 34.17% 97.52 93.67 35.04% 94.23 93.48 34.74% –

VQAndPert 91.84 88.16 39.38% 96.53 90.49 38.05% 92.08 88.37 39.03% –

NISTDB4 90.36 85.03 37.79% 93.03 86.55 37.00% 87.76 81.09 41.63% –

classifier. When an input fingerprint is received, the goal of the fingerprint classifier is to determine

the group in which the template of the same fingerprint is stored. There exists the possibility that when

a template is misclassified, a corresponding input might be misclassified in the same way. In these

cases, a natural way to improve the penetration is to establish the template groups not according to

the manually established label of the fingerprints, but to the class that is predicted by the classifier

trained upon them. Thus, if the template and input impressions of a same fingerprint are both wrongly

assigned the same class, the searched would still be carried out in the group of its corresponding tem-

plate. The aim of this section is to evaluate the compared classification methods from this point of

view, which we refer to as robustness of the classification. The runtime of the different methods is also

discussed.

For this purpose, we used the three SFinGe databases of different qualities described in Section 3.2;

each of them composed by four impressions of the same 10,000 fingerprints, and the NIST-DB4

database, composed by two impressions of 1650 fingerprints. For each of these databases, the first

impression of each fingerprint was used as training set (templates), whereas the remaining impres-

sions were stripped of their manually established labels and conformed the test set (inputs). After the

classifier is trained, every fingerprint was relabeled according to the class assigned by the classifier

to the impression in the training set. In this manner, the accuracy reported throughout this section

corresponds to the percentage of impressions that are classified into the same class as the template

impression, independently of the manually established label. For the methods that reject fingerprints,

only the fingerprints with no rejected impressions were considered.

The results obtained with the reference feature extractors using several classifiers are presented in

Table 7. The estimated penetration rates were calculated following Equation 2. The best result obtained

for each database is presented in bold letters. Clearly, Hong's extractor obtains a better accuracy than

the rest, especially in combination with the SVM classifier, at the cost of rejecting some fingerprints.

Although C4.5 can obtain a very good training accuracy, the difference with respect to the test values

is larger than those obtained by other classifiers, denoting overfitting. However, the penetration rate
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T A B L E 8 Accuracy and penetration rate of the CNNs

CaffeNet Proposed network
Training Test P. rate Training Test P. rate

HQNoPert 100.00 99.35 29.99% 100.00 99.60 29.79%
Default 100.00 97.22 31.59% 100.00 98.07 31.01%
VQAndPert 100.00 95.73 32.77% 100.00 96.40 32.27%
NISTDB4 100.00 90.24 30.89% 100.00 91.09 30.32%

T A B L E 9 Confusion matrix of the proposed network on HQNoPert

Predicted class
True class A L R T W
A 1110 0 0 0 0

L 0 10,095 0 30 15

R 0 0 9500 10 0

T 0 40 0 830 0

W 0 25 0 0 8345

F I G U R E 4 Some examples of fingerprints misclassified by the proposed network. The true class is shown in

brackets

yielded by Hong's method is higher than with other extractors at the cost of a nonnegligible rejection

rate.

Table 8 shows the accuracy and penetration rate obtained with the DNNs. Note that the training

accuracy was 100% in all cases, so the original label was kept for all fingerprints. Despite what is

seemingly an extreme case of overfitting, the test results outperform those obtained with any of the

combinations in Table 7, assessing the high robustness of deep learning approaches for this problem.

Moreover, these accuracy values were obtained without rejecting any fingerprint, which gives a very

low penetration rate. Even though both tested networks obtain the maximum training accuracy, The

proposed network performs better for the test sets due to its smaller size and the subsequent better

generalization capability.

Note that the proposed network obtains 99.60% accuracy for the HQNoPert database, which corre-

sponds to only 120 failures among the 30,000 fingerprints of the test set. The confusion matrix shown

in Table 9 reflects clearly the structure of the fingerprint classes: class Arch is well differentiated from

the others—to the point that the network classifies correctly all 1110 test fingerprints of this class—

whereas Tented is somewhat overlapped with left and right loop. Some examples of failed fingerprints,

along with the classes that were wrongly assigned, are shown in Figure 4.

Finally, Tables 10 and 11 show the runtime in seconds of the different feature extractors and clas-

sifiers. Liu's extractor is the fastest, followed by Hong and Cappelli. The runtime of the classifiers
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T A B L E 1 0 Runtime (in seconds) of the feature extractors and the classifiers

Feature extractor Database Feature extraction SVM-Poly C4.5 KNN
Cappelli02 HQNoPert 11,275 155 391 375

Default 11,377 88 410 372

VQAndPert 11,358 760 389 373

NISTDB4 1,880 12 17 9

Hong08 HQNoPert 3,469 12 51 81

Default 3,381 16 66 103

VQAndPert 3,139 10 29 40

NISTDB4 615 2 4 1

Liu10 HQNoPert 507 13 33 25

Default 499 12 31 26

VQAndPert 519 15 32 26

NISTDB4 70 2 1 1

T A B L E 1 1 Runtime (in s) of the DNNs

CaffeNet Proposed network
HQNoPert 2306 960

Default 2329 957

VQAndPert 2328 960

NISTDB4 2322 487

themselves is determined by the size of the feature vectors, so that again Liu is the fastest approach.

As for the DNNs, the simpler proposed architecture allows for a better learning time despite the fact

that it involves a higher number of iterations than CaffeNet. Note that for the proposal the number

of iterations of the learning process was set lower for NIST-DB4 than for SFinGe due to the smaller

size of the database; this allows to further reduce the time needed for the training of the network while

maintaining a high accuracy. In general, the network is able to learn a better model than the approaches

using Cappelli's or Hong's features in a lower time. Liu's extractor is however yet faster, although the

accuracy gain obtained by the CNN is high enough so as to make this time consumption acceptable.

Note that an ensemble using several feature extractors would consume at least the sum of their run-

times, highlighting the power of CNNs. Moreover, the rejection carried out by some feature extractors

can further increase the time as a new capture of the fingerprint might be needed.

6 CONCLUSIONS

Fingerprint classification is a key component in automatic fingerprint identification systems that deal

with very large-scale databases, as it enables the reduction of the database penetration of the identifica-

tion process. A good accuracy rate for the classification is critical to maximize this reduction. Although

some feature extractors and classifiers reject fingerprints to increase the accuracy rate, this rejection

can also have a negative impact on the throughput of such an identification system.

In this paper, we have presented a study over the performance that can be expected from

deep learning approaches when applied to the fingerprint classification problem. Several state-of-

the-art fingerprint feature extractors and classifiers have been compared with two different CNN
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architectures, in an experimental study involving three artificially generated databases of different qual-

ities and the well-known NIST-DB4. Also, the experiments have been focused on both the accuracy

of the classification process and the robustness when dealing with several impressions of the same

fingerprints.

The obtained results highlighted that DNNs outperformed all the compared approaches. The classi-

fication accuracy reached by CNNs was superior to that obtained by any of the combinations of feature

extractors and classifiers. Moreover, CNNs do not reject any fingerprints, but still obtained better accu-

racy than feature extractors with a certain rejection rate. The robustness experiments also showed that

the deep learning strategy was able to obtain a very high test accuracy, assessing that the models learned

the underlying structure of the fingerprints better than state-of-the-art feature extractors and classifiers.

The runtime required by CNNs was also very competitive with respect to that needed by the combina-

tion of explicit feature extraction and classification, outperforming most approaches, and in particular

the most accurate ones.
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