Supplementary Material - Artificial Intelligence in Medicine

This website contains supplementary material to the paper:

A. Torres-Martos, A. Anguita-Ruiz, M. Bustos-Aibar, A. Ramírez-Mena, M. Arteaga, G. Bueno, R. Leis, C.M. Aguilera, R. Alcalá, J. Alcalá-Fdez. Multiomics and eXplainable artificial intelligence for decision support in insulin resistance early diagnosis: A pediatric population-based longitudinal study. Artificial Intelligence in Medicine 156 (2024) 102962. doi: 10.1016/j.artmed.2024.102962

Summary:

 

Datasets

The variables from the different datasets used in this work are included for the purpose of future replication (see Table S1). The Materials and Methods section of the original manuscript provides a more detailed description of the methodology used to obtain the different data layers.

Gen Epi Clin
rs683135_A cg09954592 origin
rs10493846_T cg04610178 sex
rs2125421_T cg22699462 age_years
rs10923931_T cg03161621 bmi_zscore
rs9425291_A cg22006088 sistolic_blood_pressure_mm_hg
rs234668_G cg18522464 distolic_blood_pressure_mm_hg
rs4846565_A cg01183586 waist_circumference_cm
rs7578597_C cg19194924 waist_to_height_ratio
rs2249105_G cg16887640 glucose_mg_dl
rs3218878_A cg23391907 insulin_mu_l
rs3218883_A cg16740586_ABCG1 quantitative_insulin_sensitivity_check_index
rs3218885_G cg20075442_ABCG1 homeostasis_model_assessment
rs3218888_C cg03565996_ABCG1 leptin_adiponectin_ratio
rs3218892_A cg17279138_ABCG1 total_cholesterol_mg_dl
rs2236926_C cg21960597_ABTB2 triglycerides_mg_dl
rs10195252_C cg19829455_ABTB2 hdl_mg_dl
rs4675095_T cg06197201_ACOXL ldl_mg_dl
rs1801282_G cg17778515_ACOXL urea_mg_dl
rs4607103_T cg20759084_ADCY2 creatinine_mg_dl
rs11708067_G cg18771566_ADCY5 uric_acid_mg_dl
rs11920090_A cg09357953_ADCY5 blood_proteins_g_dl
rs1470579_C cg00978808_ADCY5 iron_ug_dl
rs2699429_C cg26840099_AP2A2 ferritin_ng_ml
rs4699837_C cg01532463_AP2A2 gamma_glutamyl_transferase_u_l
rs477451_T cg06037759_AP3B1 alkaline_phosphatase_u_l
rs6822892_G cg09210323_AP3B1 adiponectin_mg_l
rs4976033_G cg07894717_APITD1 resistin_ug_l
rs6887914_T cg18233538_APITD1 interleukin_8_ng_l
rs1045241_T cg21498950_APLP2 leptin_ug_l
rs6596013_C cg17857742_APLP2 monocyte_chemoattractant_protein_1_ng_l
rs6596020_G cg08740063_ATF1 tumor_necrosis_factor_ng_l
rs252128_C cg01050076_ATG2B myeloperoxidase_ug_l
rs11167682_T cg12913090_ATG2B soluble_intercellular_adhesion_molecule_1_mg_l
rs2434612_G cg09719210_BMP6 plasminogen_activator_inhibitor_1_ug_l
rs966544_G cg15331578_BMPER  
rs7756992_G cg15168723_BRD1  
rs9368558_G cg16053902_BRD1  
rs1233604_A cg17827055_BRD1  
rs1233608_G cg17982459_C10orf78  
rs1233609_A cg26874450_CAPN11  
rs209151_C cg17580480_CASP7  
rs3129084_T cg21935427_CASP7  
rs2523780_G cg00383117_CASP7  
rs2523778_C cg16370441_CDC42BPB  
rs2523773_T cg15888803_CDC42BPB  
rs9260919_T cg13800228_CDC42BPB  
rs9260923_T cg18505004_CDC42BPB  
rs9260931_C cg09262100_CDC42BPB  
rs9260933_G cg25069618_CEMIP  
rs9260934_A cg04655241_CEMIP  
rs9260937_T cg10560689_CEMIP  
rs9260946_A cg20401955_CHODL  
rs9260951_C cg03886449_CHODL  
rs9260953_C cg15744837_CHST11  
rs9260954_G cg00917561_CLASP1  
rs9260955_T cg10937973_CLASP1  
rs9260957_A cg16219124_CLPTM1L  
rs9260959_T cg26624881_CLPTM1L  
rs9260963_A cg21891499_CLPTM1L  
rs9260968_A cg11043559_CNBD2  
rs9260998_G cg17388678_CORO2B  
rs9261041_G cg14986447_CORO2B  
rs9261043_T cg23320834_COX19  
rs9261045_A cg16306644_COX19  
rs9261080_G cg16051296_CPXM2  
rs9261093_C cg03073429_CPXM2  
rs9261095_C cg01008023_CTBP2  
rs9261096_C cg00152126_CTBP2  
rs9261108_A cg00499954_CTBP2  
rs9261130_A cg05749728_CTBP2  
rs9261151_A cg04537602_CXCR5  
rs9261156_T cg18432572_CYFIP2  
rs9261171_G cg03639328_CYTH3  
rs9261174_C cg17681447_CYTH3  
rs9261203_G cg19534242_DHX35  
rs9261207_C cg06267617_DNM3  
rs9261216_G cg13791888_DNM3  
rs9261218_A cg04058399_DNMT3A  
rs9261219_A cg00439752_DNMT3A  
rs9261224_T cg03516256_EBF1  
rs9261257_A cg17009297_EBF1  
rs9261261_G cg08554794_EEFSEC  
rs9261265_C cg18073874_EEFSEC  
rs9261291_T cg24700695_EIF4ENIF1  
rs9261307_T cg05245958_EIF4ENIF1  
rs9261309_G cg08541862_ELOVL1  
rs9261360_T cg09872701_ENTPD6  
rs9261361_G cg16721101_ENTPD6  
rs9261365_T cg21608605_ESR1  
rs9261370_G cg12001846_ESR1  
rs9261372_G cg12435492_EXD3  
rs9276820_A cg13489501_EXD3  
rs9276827_A cg17198123_EXOC4  
rs9276842_A cg10880863_EXOC4  
rs9276847_T cg23379806_FAM107B  
rs9276859_A cg11562025_FAM107B  
rs9276863_G cg21579701_FGD4  
rs9276881_A cg03418231_FGD4  
rs9276899_T cg20484181_FGD4  
rs12525532_T cg20320283_FOXE3  
rs2745353_T cg20505490_FOXN3  
rs9492443_T cg13679772_FOXN3  
rs3861397_G cg18159533_GOLGA3  
rs17169104_G cg21561989_GOLGA3  
rs864745_C cg18444028_GPR160  
rs4607517_A cg24500314_GPR160  
rs2237447_T cg18431100_GPR160  
rs1228913_C cg22151387_GRID1  
rs1228897_A cg06979680_GRID1  
rs6947696_A cg10648542_GRM6  
rs41939_T cg21496785_GRM6  
rs41948_A cg13811955_HCCA2  
rs41955_G cg11762807_HDAC4  
rs41960_G cg22877230_HDAC4  
rs2189125_A cg26118367_HDAC4  
rs1011685_T cg01390479_HDAC4  
rs4738141_G cg07893471_HDAC4  
rs13266634_T cg08867705_HIVEP3  
rs11558471_G cg24694032_HIVEP3  
rs7005992_C cg16786843_HIVEP3  
rs7034200_A cg20463298_HMCN1  
rs10811661_C cg10987850_HMCN1  
rs498313_G cg15386846_IFI44  
rs6479526_T cg02102832_IFT140  
rs327967_T cg08880369_IFT140  
rs327960_C cg02981208_IFT140  
rs10819101_C cg04727332_IGFBP3  
rs12779790_G cg14625938_IGFBP3  
rs304500_A cg12363898_IL17RB  
rs1111875_T cg11510999_ITGB7  
rs4506565_T cg04972065_ITGB7  
rs7903146_T cg02213678_KIAA0513  
rs2237892_T cg06772671_KIAA0513  
rs11605924_C cg03669668_KIAA0513  
rs7944584_T cg00041759_KLC2  
rs174550_C cg24014143_KLHL1  
rs11231693_A cg26675212_KLHL29  
rs10830963_G cg07797772_KLHL29  
rs17402950_G cg21564952_KLHL29  
rs718314_G cg24383069_LARP1B  
rs7973683_A cg06683362_LARP1B  
rs588262_C cg20329510_LIMS2  
rs7323406_A cg03689092_LIMS2  
rs11071657_G cg24354819_LIN7A  
rs8032586_T cg00242263_LINC01088  
rs9939609_A cg20382995_LINC01088  
rs4789670_C cg09050582_LIPJ  
rs7227237_T cg23354250_LOC221442  
rs2258135_A cg16340935_MAD1L1  
rs2258617_T cg10571824_MAD1L1  
rs6066149_A cg11994639_MAD1L1  
  cg19419389_MAD1L1  
  cg04887094_MAP4  
  cg14299905_MAP4  
  cg19139111_MATN2  
  cg07792979_MATN2  
  cg26735856_MATN2  
  cg00259388_MATN2  
  cg21811896_MEGF6  
  cg00418943_MEGF6  
  cg23792592_MIR1.1  
  cg03110787_MLLT1  
  cg27138059_MLLT1  
  cg16892627_MTHFD1L  
  cg18624512_MTHFD1L  
  cg20391058_MYT1L  
  cg13687935_MYT1L  
  cg16282160_NCOA2  
  cg02256034_NCOA2  
  cg23202420_NPBWR2  
  cg01971435_NSMCE2  
  cg01046943_NUP210  
  cg12444628_NUP210  
  cg21549415_P4HB  
  cg01947482_PACS2  
  cg12158535_PACS2  
  cg11825883_PAPD4  
  cg11106252_PCDH1  
  cg01555560_PDE10A  
  cg02235848_PDE10A  
  cg25434773_PEBP4  
  cg06649546_PEPD  
  cg08085561_PEPD  
  cg23600944_PHACTR3  
  cg08830808_PHACTR3  
  cg10415497_PIAS1  
  cg26090563_PLEKHA6  
  cg04214142_PPP1R1C  
  cg12037512_PPP1R1C  
  cg23209375_PRKAR1B  
  cg11327004_PRKAR1B  
  cg03141724_PRKCQ  
  cg03993163_PRKCQ  
  cg04177456_PTPRN2  
  cg16486501_PTPRN2  
  cg21279840_PTPRN2  
  cg02802834_PTPRN2  
  cg02214305_PTPRN2  
  cg04976245_PTPRN2  
  cg21024835_PTPRN2  
  cg02818143_PTPRN2  
  cg14362920_PTPRN2  
  cg20985897_PTPRN2  
  cg08663875_RAD51B  
  cg16017181_RAD51B  
  cg15186771_RAD51B  
  cg12700273_RAPGEF4  
  cg02121596_RASGRF1  
  cg27147114_RASGRF1  
  cg20048664_RGS6  
  cg14698775_RGS6  
  cg11078674_RGS6  
  cg00065128_RSPH1  
  cg13050504_RSPH1  
  cg09890930_SARNP  
  cg22225546_SARNP  
  cg15434576_SCN1A  
  cg19002845_SCN1A  
  cg20995689_SDCCAG8  
  cg15059429_SDCCAG8  
  cg21153648_SEPT1  
  cg20872261_SLC37A2  
  cg25711726_SLC37A2  
  cg10017118_SLC5A5  
  cg21133868_SLC6A19  
  cg10880944_SLC6A19  
  cg13964568_SLC9A9  
  cg05415931_SMOC1  
  cg00629021_SMOC1  
  cg02474195_SNRK  
  cg04244171_SNRK  
  cg26009180_SOX6  
  cg13153055_SOX6  
  cg00163006_SPNS2  
  cg18517961_SPNS2  
  cg15221261_STAT2  
  cg02283975_STK36  
  cg17316030_SYNE2  
  cg14412857_SYNE2  
  cg00755751_SYNE2  
  cg00044323_TCF7L2  
  cg20911025_TCF7L2  
  cg02117132_TCF7L2  
  cg03921156_TCF7L2  
  cg07504762_TINAGL1  
  cg20378147_TINAGL1  
  cg06073355_TMEM30C  
  cg16416464_TNXB  
  cg07148038_TNXB  
  cg15179921_TNXB  
  cg24252708_TNXB  
  cg17979173_TNXB  
  cg09109553_TOLLIP  
  cg10583204_TOLLIP  
  cg27398230_TOLLIP  
  cg15569354_TRAPPC9  
  cg22637435_TRAPPC9  
  cg20379250_TXNDC11  
  cg01851968_VASN  
  cg00041083_VASN  
  cg12828331_VIPR1  
  cg25597253_VIPR1  
  cg01919863_VIPR1  
  cg10956605_VIPR2  
  cg24654877_VPS13D  
  cg19428841_ZC3H7A  
  cg10719664_ZNF280B  

Table S1. Variables from the different datasets used in this work.

The statistical distribution of the features belonging to the clinical dataset in the IR and non-IR classes can be seen in Table S2 below and can also be downloaded in docx format by clicking this icon Word icon

Clinical features IR, N = 261 non-IR, N = 641 p-value2
Hospital center     0.4
    Córdoba 5 (19%) 6 (9.4%)  
    Santiago de Compostela 13 (50%) 32 (50%)  
    Zaragoza 8 (31%) 26 (41%)  
Sex     0.11
    Female 17 (65%) 30 (47%)  
    Male 9 (35%) 34 (53%)  
Age (years) 7.80 (7.50, 8.48) 8.20 (7.28, 9.33) 0.3
BMI zscore 2.60 (2.06, 3.26) 1.64 (-0.25, 2.87) 0.005
Systolic blood pressure (mmHg) 106 (97, 111) 105 (98, 114) 0.7
Diastolic blood pressure (mmHg) 62 (56, 67) 64 (58, 68) 0.5
Waist circumference (cm) 78 (71, 84) 71 (58, 81) 0.030
Waist to height ratio 0.61 (0.57, 0.63) 0.55 (0.46, 0.62) 0.007
Glucose (mg/dl) 83 (78, 87) 82 (79, 86) 0.7
Insulin (mU/l) 11 (7, 14) 7 (3, 11) 0.012
Quantitative Insulin Sensitivity Check Index 0.34 (0.32, 0.36) 0.37 (0.34, 0.41) 0.007
Homeostasis Model Assessment 2.10 (1.46, 2.99) 1.31 (0.72, 2.21) 0.009
Leptin adiponectin ratio 1.21 (0.93, 1.77) 0.55 (0.21, 1.25) <0.001
Total cholesterol (mg/dl) 160 (146, 177) 170 (145, 189) 0.3
Triglycerides (mg/dl) 60 (38, 80) 52 (41, 62) 0.4
HDL (mg/dl) 48 (39, 60) 58 (48, 65) 0.007
LDL (mg/dl) 98 (82, 110) 99 (79, 110) 0.9
Urea (mg/dl) 31.0 (28.0, 37.8) 31.0 (27.8, 35.5) 0.8
Creatinine (mg/dl) 0.50 (0.41, 0.55) 0.47 (0.40, 0.53) 0.7
Uric acid (mg/dl) 4.45 (4.00, 5.10) 4.00 (3.50, 4.70) 0.11
Blood proteins (g/dl) 7.35 (7.03, 7.78) 7.40 (7.10, 7.60) 0.8
Iron (ug/dl) 68 (51, 87) 84 (71, 107) 0.008
Ferritin (ng/ml) 41 (32, 59) 48 (32, 62) 0.5
Gamma Glutamyl Transferase (U/l) 14.0 (11.3, 15.8) 12.0 (9.8, 15.0) 0.071
Alkaline phosphatase (U/l) 316 (235, 531) 367 (230, 513) >0.9
Adiponectin (mg/l) 12 (7, 17) 13 (9, 19) 0.3
Resistin (ug/l) 20 (13, 28) 17 (12, 26) 0.6
Interleukin 8 (ng/l) 1.60 (1.13, 3.12) 1.76 (1.23, 2.65) 0.7
Leptin (ug/l) 15 (11, 20) 8 (2, 15) <0.001
Monocyte Chemoattractant Protein 1 (ng/l) 104 (78, 123) 92 (74, 125) 0.8
Tumor Necrosis Factor (ng/l) 3.00 (2.23, 4.04) 3.09 (2.06, 4.33) 0.9
Myeloperoxidase (ug/l) 31 (18, 44) 27 (13, 53) 0.7
Soluble Intercellular Adhesion Molecule 1 (mg/l) 0.10 (0.08, 0.16) 0.10 (0.07, 0.14) 0.5
Plasminogen Activator Inhibitor 1 (ug/l) 17 (13, 29) 15 (10, 27) 0.2
1 n (%); Median (IQR); 2 Fisher’s exact test; Pearson’s Chi-squared test; Wilcoxon rank sum test

Table S2. The distribution of clinical features in both classes.

Performance measures

Analyzing the predictive ability of the algorithms in our case study is a difficult task due to the presence of class imbalance. The use of some widely used measures such as Accuracy are strongly affected by the prediction of the majority class. To avoid this problem, we propose to use the classical measures such as Accuracy, Sensitivity, Specificity and the area under the ROC curve (AUC), together with some innovative ones such as G-mean that are less affected by class imbalance. These measures are calculated from the information obtained from the confusion matrix (see Figure S1). Thus, in a classification problem with two classes (positive and negative, in our case IR and non_IR respectively), True Positive (TP) represents the examples of the positive class correctly classified by the model, True Negative (TN) represents the examples of the negative class correctly classified by the model, False Negative (FN) represents the examples of the positive class incorrectly classified by the model, and False Positives (FN) represents the examples of the negative class incorrectly classified by the model.

 

Confusion matrix

Figure S1. Confusion matrix.

 

From the confusion matrix, the measures employed in our experimental analysis are defined as follows:

  • Accuracy: indicates the proportion of correct predictions irrespective of class. This measure is defined as:
    (TP + TN) / (TP + TN + FP + FN)
  • Sensitivity: measures the proportion of positives that the classifier predicts correctly. This measure is defined as:
    TP / (TP + FN)
  • Specificity: measures the proportion of negatives that the classifier predicts correctly. This measure is defined as:
    TN / (TN + FP)
  • AUC: calculate the area under a ROC (Receiver Operator Characteristic) curve for a classifier. This measure is defined as:
    (1 + Sensitivity - (1 - Specificity)) / 2
  • G-mean: is the geometric mean between sensitivity and specificity, penalising the lower value. This measure is defined as:
    Sensitivity * Specificity

All the presented classification measures take values in the range [0.0,1.0], representing a value of 1 in these measures the best predictive ability of the model and 0 the worst. In order to correctly evaluate the classifiers generated by a particular algorithm, the average of the measures together with their standard deviation must be studied in a statistically appropriate methodology known as k fold cross validation. Furthermore, it should be kept in mind that data limitations such as low sample size or high dimensionality can negatively affect the predictive quality of the classifier by showing lower values, on the other hand very high measure values are often an indicator of overfitting of the classifier and for this reason should be monitored [3].

 

Resampling methods

Other drawbacks to consider are class imbalance and low sample size, previously mentioned in the Section Introduction. The main issue of class imbalance is the learning process of ML algorithms that generate overfitted models toward the majority class examples. It results in that the minority examples are not well modelled and reflecting it in the classification measures by classes. To solve this limitation, we used different sampling methods (oversampling and undersampling) over the training folds to provide a balanced data distribution improving the learning process and the overall performance of classifiers [4]. Below, we described several resampling methods used in this work:

  • SMOTE: a classical method inspired in k nearest neighbors that over-sampled by creating artificial examples belonging to the minority class.
  • SMOTE-NC: a extension of the previous one that can handle categorical features.
  • ADASYN: a improved version of the first one that randomly modifies the values slightly to make them more realistic.
  • ROSE: this method generates new examples from the minority class estimating the conditional density of the two classes.
  • NearMiss: this method uses the k nearest neighbors approach to select a subset of the majority class examples.
  • TomeK: a technique that detects the Tomek's link between two examples of differentes classes and removed them.

 

Predictive methods analyzed

The classification algorithms used have been selected from a comparative study in which 179 classifiers from 17 families were evaluated. We chose algorithms from 5 different families such as the well-known interpretable decision trees, and the accurate Random Forest, Support Vector Machine and Neural Network. The algorithms chosen from the different families were:

  • C4.5 [9]: This is a classical algorithm developed by Ross Quinlan that generates decision trees.
  • Random Forest [6,8]: It is an algorithm that performs a random selection of variables to generate a large number of decision trees that are subsequently combined to carry out the prediction.
  • xgBoost [1]: An algorithm generates a boosting type ensemble with the well-known gradient boosting cost function.
  • svmRadialCost [5]: It is an algorithm that searches for the optimal hyperplane through a kernel function of the radial type, generating a model that usually discriminates classes quite successfully.
  • avNNet [10]: It is an algorithm that creates a model based on a committee of several multi-layer perceptrons trained with different weight initializations.

 

Results

We used 5-fold cross validation with 5 repeats (25 executions in total) for each algorithm and resampling strategy during the training phase. We show the average results obtained (and standard deviation) for each quality measure on the test data sets when the models have been learned from the balanced training sets using each of the methods mentioned in the previous section. Note that, the table of results obtained using the NearMiss method is available in the paper since it is the resampling method that has allowed the different Machine Learning techniques to learn the best performing models on the test sets.

It should be noted that several classifiers were evaluated with the resampling methods explored in the different omics data layers (Gen; Genomic data, Epi; Epigenomic data and Clin; Clinical data). In addition, the predictive ability of the different combinations of omics data (Gen + Epi, Gen + Clin, Epi + Clin and All) was also evaluated under the same conditions. 

Moreover, performance results are available for download in xls and csv files by clicking the icons iconExcel.jpg and iconZip.png, respectively.

 

SMOTE

    Classification measures
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Gen     RF 0.72 (0.04) 0.09 (0.10) 0.98 (0.04) 0.53 (0.05) 0.21 (0.22)
xgBoost 0.69 (0.10) 0.29 (0.19) 0.85 (0.11) 0.57 (0.11) 0.44 (0.23)
C4.5 0.61 (0.09) 0.33 (0.17) 0.72 (0.13) 0.53 (0.09) 0.46 (0.15)
svmRadial 0.72 (0.10) 0.28 (0.21) 0.90 (0.11) 0.59 (0.12) 0.44 (0.26)
avNNet 0.71 (0.07) 0.42 (0.21) 0.83 (0.09) 0.62 (0.10) 0.56 (0.17)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Epi     RF 0.70 (0.08) 0.18 (0.17) 0.90 (0.10) 0.54 (0.09) 0.31 (0.25)
xgBoost 0.75 (0.09) 0.51 (0.24) 0.84 (0.10) 0.67 (0.12) 0.62 (0.20)
C4.5 0.63 (0.10) 0.38 (0.21) 0.73 (0.12) 0.55 (0.12) 0.47 (0.23)
svmRadial 0.71 (0.10) 0.33 (0.23) 0.87 (0.12) 0.60 (0.12) 0.48 (0.25)
avNNet 0.39 (0.20) 0.86 (0.32) 0.20 (0.38) 0.53 (0.11) 0.11 (0.26)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Clin     RF 0.66 (0.10) 0.44 (0.26) 0.75 (0.12) 0.59 (0.14) 0.53 (0.21)
xgBoost 0.61 (0.10) 0.36 (0.19) 0.71 (0.13) 0.53 (0.11) 0.46 (0.20)
C4.5 0.61 (0.09) 0.42 (0.21) 0.69 (0.10) 0.56 (0.12) 0.51 (0.19)
svmRadial 0.65 (0.12) 0.47 (0.21) 0.72 (0.17) 0.59 (0.12) 0.56 (0.13)
avNNet 0.69 (0.05) 0.02 (0.09) 0.96 (0.10) 0.49 (0.03) 0.04 (0.12)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Gen + Epi     RF 0.72 (0.05) 0.13 (0.14) 0.95 (0.05) 0.54 (0.07) 0.25 (0.25)
xgBoost 0.71 (0.09) 0.37 (0.23) 0.85 (0.10) 0.61 (0.12) 0.52 (0.22)
C4.5 0.63 (0.08) 0.35 (0.21) 0.74 (0.12) 0.55 (0.10) 0.45 (0.22)
svmRadial 0.71 (0.09) 0.31 (0.20) 0.87 (0.11) 0.59 (0.10) 0.46 (0.23)
avNNet 0.59 (0.20) 0.55 (0.36) 0.61 (0.39) 0.58 (0.11) 0.37 (0.30)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Gen + Clin     RF 0.72 (0.07) 0.23 (0.18) 0.91 (0.08) 0.57 (0.09) 0.39 (0.25)
xgBoost 0.64 (0.10) 0.31 (0.19) 0.77 (0.12) 0.54 (0.11) 0.46 (0.17)
C4.5 0.65 (0.09) 0.35 (0.25) 0.77 (0.11) 0.56 (0.12) 0.45 (0.25)
svmRadial 0.71 (0.09) 0.42 (0.28) 0.83 (0.11) 0.62 (0.13) 0.53 (0.25)
avNNet 0.50 (0.16) 0.47 (0.31) 0.50 (0.28) 0.49 (0.12) 0.35 (0.24)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Epi + Clin     RF 0.73 (0.06) 0.29 (0.20) 0.91 (0.08) 0.60 (0.09) 0.45 (0.23)
xgBoost 0.69 (0.08) 0.41 (0.19) 0.81 (0.09) 0.61 (0.10) 0.55 (0.16)
C4.5 0.65 (0.08) 0.39 (0.25) 0.76 (0.10) 0.57 (0.12) 0.49 (0.22)
svmRadial 0.73 (0.07) 0.38 (0.26) 0.87 (0.11) 0.63 (0.10) 0.51 (0.24)
avNNet 0.46 (0.16) 0.61 (0.33) 0.40 (0.31) 0.51 (0.11) 0.37 (0.20)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
All     RF 0.74 (0.05) 0.19 (0.17) 0.96 (0.05) 0.57 (0.08) 0.34 (0.27)
xgBoost 0.69 (0.08) 0.36 (0.17) 0.82 (0.09) 0.59 (0.09) 0.51 (0.18)
C4.5 0.65 (0.10) 0.38 (0.22) 0.75 (0.12) 0.57 (0.11) 0.49 (0.21)
svmRadial 0.72 (0.08) 0.31 (0.24) 0.89 (0.08) 0.60 (0.12) 0.45 (0.27)
avNNet 0.51 (0.12) 0.51 (0.33) 0.51 (0.22) 0.51 (0.13) 0.40 (0.23)

Table S3. Average and standard deviations results for each algorithm in the training stage (5-fold cross validation with 5 repeats) for each layer or data fusion using the oversampling method SMOTE. iconExcel.jpg iconZip.png

SMOTE_NC

    Classification measures    
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Gen     RF 0.72 (0.03) 0.08 (0.11) 0.98 (0.03) 0.53 (0.05) 0.18 (0.22)
xgBoost 0.66 (0.07) 0.23 (0.13) 0.83 (0.10) 0.53 (0.07) 0.39 (0.19)
C4.5 0.59 (0.10) 0.31 (0.18) 0.71 (0.12) 0.51 (0.10) 0.43 (0.17)
svmRadial 0.71 (0.08) 0.30 (0.23) 0.88 (0.11) 0.59 (0.11) 0.43 (0.27)
avNNet 0.69 (0.06) 0.37 (0.24) 0.82 (0.09) 0.60 (0.10) 0.49 (0.23)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Epi     RF 0.70 (0.06) 0.20 (0.15) 0.91 (0.08) 0.56 (0.07) 0.36 (0.22)
xgBoost 0.71 (0.10) 0.43 (0.23) 0.82 (0.11) 0.62 (0.13) 0.56 (0.19)
C4.5 0.60 (0.12) 0.37 (0.20) 0.70 (0.15) 0.54 (0.12) 0.48 (0.18)
svmRadial 0.70 (0.11) 0.38 (0.26) 0.83 (0.12) 0.60 (0.14) 0.49 (0.26)
avNNet 0.38 (0.18) 0.90 (0.25) 0.16 (0.34) 0.53 (0.08) 0.11 (0.25)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Clin     RF 0.66 (0.09) 0.35 (0.20) 0.78 (0.12) 0.57 (0.11) 0.49 (0.19)
xgBoost 0.60 (0.10) 0.36 (0.23) 0.70 (0.12) 0.53 (0.12) 0.43 (0.24)
C4.5 0.61 (0.09) 0.37 (0.25) 0.71 (0.08) 0.54 (0.13) 0.47 (0.22)
svmRadial 0.64 (0.12) 0.47 (0.19) 0.71 (0.16) 0.59 (0.12) 0.56 (0.13)
avNNet 0.68 (0.09) 0.06 (0.21) 0.93 (0.21) 0.50 (0.02) 0.04 (0.13)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Gen + Epi     RF 0.72 (0.05) 0.11 (0.13) 0.96 (0.06) 0.54 (0.07) 0.22 (0.24)
xgBoost 0.70 (0.08) 0.37 (0.23) 0.84 (0.10) 0.60 (0.11) 0.51 (0.21)
C4.5 0.61 (0.08) 0.37 (0.18) 0.71 (0.11) 0.54 (0.08) 0.48 (0.14)
svmRadial 0.69 (0.12) 0.34 (0.25) 0.83 (0.14) 0.58 (0.14) 0.47 (0.25)
avNNet 0.58 (0.21) 0.56 (0.29) 0.59 (0.37) 0.58 (0.11) 0.42 (0.27)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Gen + Clin     RF 0.69 (0.07) 0.17 (0.16) 0.91 (0.08) 0.54 (0.08) 0.32 (0.23)
xgBoost 0.66 (0.09) 0.35 (0.25) 0.78 (0.13) 0.57 (0.12) 0.45 (0.26)
C4.5 0.66 (0.09) 0.42 (0.28) 0.77 (0.12) 0.59 (0.12) 0.50 (0.25)
svmRadial 0.74 (0.07) 0.42 (0.27) 0.87 (0.09) 0.65 (0.12) 0.55 (0.23)
avNNet 0.52 (0.17) 0.54 (0.34) 0.51 (0.34) 0.53 (0.11) 0.36 (0.26)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Epi + Clin     RF 0.74 (0.07) 0.28 (0.22) 0.92 (0.08) 0.60 (0.10) 0.44 (0.25)
xgBoost 0.70 (0.09) 0.39 (0.19) 0.82 (0.11) 0.60 (0.10) 0.54 (0.14)
C4.5 0.67 (0.08) 0.41 (0.21) 0.77 (0.09) 0.59 (0.11) 0.53 (0.19)
svmRadial 0.76 (0.08) 0.37 (0.27) 0.92 (0.10) 0.64 (0.12) 0.50 (0.27)
avNNet 0.46 (0.14) 0.62 (0.29) 0.39 (0.27) 0.50 (0.10) 0.39 (0.19)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
All     RF 0.73 (0.06) 0.20 (0.16) 0.95 (0.07) 0.58 (0.08) 0.35 (0.26)
xgBoost 0.70 (0.07) 0.36 (0.16) 0.84 (0.09) 0.60 (0.08) 0.53 (0.15)
C4.5 0.64 (0.11) 0.37 (0.18) 0.75 (0.13) 0.56 (0.11) 0.51 (0.16)
svmRadial 0.72 (0.08) 0.33 (0.22) 0.88 (0.10) 0.60 (0.10) 0.47 (0.24)
avNNet 0.50 (0.14) 0.46 (0.28) 0.52 (0.22) 0.49 (0.13) 0.40 (0.22)

Table S4. Average and standard deviations results for each algorithm in the training stage (5-fold cross validation with 5 repeats) for each layer or data fusion using the oversampling method SMOTE_NC. iconExcel.jpg iconZip.png

ADASYN

    Classification measures
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Gen     RF 0.72 (0.04) 0.09 (0.11) 0.98 (0.04) 0.53 (0.06) 0.18 (0.23)
xgBoost 0.66 (0.08) 0.26 (0.16) 0.83 (0.09) 0.54 (0.09) 0.42 (0.21)
C4.5 0.59 (0.07) 0.28 (0.22) 0.71 (0.10) 0.50 (0.10) 0.38 (0.22)
svmRadial 0.68 (0.09) 0.28 (0.20) 0.84 (0.10) 0.56 (0.11) 0.43 (0.24)
avNNet 0.65 (0.07) 0.41 (0.20) 0.74 (0.11) 0.58 (0.09) 0.51 (0.18)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Epi     RF 0.71 (0.07) 0.18 (0.12) 0.92 (0.09) 0.55 (0.07) 0.36 (0.20)
xgBoost 0.72 (0.10) 0.47 (0.19) 0.82 (0.13) 0.65 (0.10) 0.60 (0.18)
C4.5 0.63 (0.13) 0.40 (0.19) 0.73 (0.15) 0.56 (0.13) 0.51 (0.17)
svmRadial 0.72 (0.10) 0.39 (0.26) 0.85 (0.13) 0.62 (0.13) 0.52 (0.24)
avNNet 0.40 (0.19) 0.82 (0.32) 0.23 (0.38) 0.53 (0.07) 0.13 (0.26)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Clin     RF 0.63 (0.09) 0.37 (0.15) 0.74 (0.11) 0.55 (0.10) 0.50 (0.14)
xgBoost 0.59 (0.10) 0.30 (0.20) 0.71 (0.13) 0.50 (0.11) 0.41 (0.21)
C4.5 0.60 (0.10) 0.39 (0.24) 0.68 (0.11) 0.54 (0.13) 0.47 (0.22)
svmRadial 0.63 (0.12) 0.49 (0.14) 0.69 (0.19) 0.59 (0.10) 0.57 (0.10)
avNNet 0.68 (0.10) 0.05 (0.20) 0.93 (0.21) 0.49 (0.05) 0.03 (0.12)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Gen + Epi     RF 0.72 (0.05) 0.10 (0.14) 0.97 (0.05) 0.53 (0.08) 0.20 (0.24)
xgBoost 0.71 (0.10) 0.40 (0.20) 0.84 (0.10) 0.62 (0.12) 0.55 (0.18)
C4.5 0.59 (0.10) 0.37 (0.20) 0.68 (0.14) 0.53 (0.11) 0.47 (0.18)
svmRadial 0.69 (0.09) 0.33 (0.18) 0.83 (0.12) 0.58 (0.09) 0.49 (0.19)
avNNet 0.56 (0.20) 0.55 (0.38) 0.56 (0.38) 0.56 (0.12) 0.32 (0.32)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Gen + Clin     RF 0.72 (0.07) 0.20 (0.20) 0.92 (0.07) 0.56 (0.10) 0.34 (0.28)
xgBoost 0.67 (0.11) 0.36 (0.23) 0.80 (0.15) 0.58 (0.12) 0.50 (0.18)
C4.5 0.67 (0.12) 0.41 (0.30) 0.77 (0.12) 0.59 (0.16) 0.49 (0.29)
svmRadial 0.72 (0.10) 0.38 (0.26) 0.87 (0.11) 0.62 (0.13) 0.51 (0.26)
avNNet 0.56 (0.15) 0.42 (0.35) 0.61 (0.31) 0.51 (0.09) 0.33 (0.24)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Epi + Clin     RF 0.74 (0.05) 0.28 (0.19) 0.92 (0.07) 0.60 (0.09) 0.45 (0.23)
xgBoost 0.69 (0.09) 0.39 (0.18) 0.82 (0.12) 0.60 (0.09) 0.54 (0.16)
C4.5 0.66 (0.12) 0.46 (0.24) 0.74 (0.12) 0.60 (0.15) 0.55 (0.21)
svmRadial 0.72 (0.05) 0.37 (0.27) 0.87 (0.10) 0.62 (0.10) 0.49 (0.25)
avNNet 0.43 (0.14) 0.66 (0.29) 0.34 (0.23) 0.50 (0.14) 0.40 (0.20)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
All     RF 0.73 (0.05) 0.19 (0.15) 0.95 (0.06) 0.57 (0.07) 0.35 (0.24)
xgBoost 0.70 (0.08) 0.42 (0.20) 0.82 (0.11) 0.62 (0.10) 0.55 (0.19)
C4.5 0.64 (0.11) 0.38 (0.21) 0.74 (0.14) 0.56 (0.12) 0.50 (0.18)
svmRadial 0.73 (0.06) 0.34 (0.21) 0.88 (0.09) 0.61 (0.09) 0.49 (0.22)
avNNet 0.48 (0.13) 0.46 (0.33) 0.49 (0.22) 0.48 (0.13) 0.36 (0.23)

Table S5. Average and standard deviations results for each algorithm in the training stage (5-fold cross validation with 5 repeats) for each layer or data fusion using the oversampling method ADASYN. iconExcel.jpg iconZip.png

ROSE

    Classification measures     
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Gen     RF 0.33 (0.09) 0.86 (0.15) 0.12 (0.13) 0.49 (0.09) 0.24 (0.19)
xgBoost 0.32 (0.06) 0.93 (0.13) 0.07 (0.06) 0.50 (0.07) 0.20 (0.15)
C4.5 0.31 (0.07) 0.91 (0.16) 0.07 (0.05) 0.49 (0.09) 0.21 (0.14)
svmRadial 0.57 (0.16) 0.59 (0.21) 0.57 (0.22) 0.58 (0.14) 0.54 (0.18)
avNNet 0.56 (0.12) 0.63 (0.19) 0.53 (0.15) 0.58 (0.12) 0.56 (0.12)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Epi     RF 0.42 (0.12) 0.93 (0.11) 0.21 (0.16) 0.57 (0.11) 0.40 (0.20)
xgBoost 0.47 (0.10) 0.77 (0.19) 0.35 (0.14) 0.56 (0.10) 0.49 (0.12)
C4.5 0.45 (0.09) 0.76 (0.20) 0.32 (0.13) 0.54 (0.10) 0.47 (0.14)
svmRadial 0.59 (0.14) 0.69 (0.23) 0.55 (0.18) 0.62 (0.14) 0.59 (0.15)
avNNet 0.30 (0.03) 0.99 (0.04) 0.01 (0.06) 0.50 (0.01) 0.02 (0.10)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Clin     RF 0.48 (0.11) 0.79 (0.18) 0.36 (0.15) 0.57 (0.11) 0.51 (0.12)
xgBoost 0.51 (0.14) 0.58 (0.20) 0.49 (0.19) 0.54 (0.12) 0.50 (0.16)
C4.5 0.45 (0.13) 0.62 (0.24) 0.38 (0.17) 0.50 (0.13) 0.46 (0.14)
svmRadial 0.53 (0.13) 0.64 (0.20) 0.49 (0.15) 0.56 (0.14) 0.55 (0.15)
avNNet 0.30 (0.06) 0.92 (0.17) 0.05 (0.12) 0.48 (0.05) 0.07 (0.15)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Gen + Epi     RF 0.35 (0.10) 0.91 (0.16) 0.12 (0.10) 0.52 (0.11) 0.29 (0.18)
xgBoost 0.30 (0.07) 0.90 (0.18) 0.06 (0.08) 0.48 (0.09) 0.17 (0.16)
C4.5 0.31 (0.07) 0.90 (0.18) 0.07 (0.09) 0.48 (0.09) 0.17 (0.16)
svmRadial 0.60 (0.11) 0.56 (0.25) 0.62 (0.16) 0.59 (0.12) 0.55 (0.17)
avNNet 0.46 (0.18) 0.74 (0.28) 0.35 (0.32) 0.54 (0.10) 0.32 (0.30)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Gen + Clin     RF 0.33 (0.09) 0.86 (0.18) 0.11 (0.10) 0.48 (0.11) 0.25 (0.18)
xgBoost 0.30 (0.07) 0.90 (0.18) 0.06 (0.08) 0.48 (0.09) 0.17 (0.16)
C4.5 0.31 (0.07) 0.90 (0.18) 0.07 (0.09) 0.48 (0.09) 0.17 (0.16)
svmRadial 0.59 (0.12) 0.45 (0.27) 0.65 (0.16) 0.55 (0.13) 0.48 (0.22)
avNNet 0.28 (0.02) 0.96 (0.09) 0.01 (0.03) 0.49 (0.03) 0.02 (0.08)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Epi + Clin     RF 0.44 (0.09) 0.89 (0.16) 0.25 (0.12) 0.57 (0.09) 0.45 (0.12)
xgBoost 0.49 (0.14) 0.79 (0.19) 0.37 (0.18) 0.58 (0.12) 0.52 (0.14)
C4.5 0.46 (0.13) 0.75 (0.20) 0.34 (0.17) 0.54 (0.12) 0.48 (0.14)
svmRadial 0.61 (0.12) 0.67 (0.19) 0.58 (0.14) 0.62 (0.13) 0.61 (0.13)
avNNet 0.28 (0.02) 0.96 (0.16) 0.01 (0.05) 0.48 (0.06) 0.01 (0.04)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
All     RF 0.37 (0.10) 0.91 (0.16) 0.15 (0.10) 0.53 (0.11) 0.34 (0.17)
xgBoost 0.30 (0.07) 0.90 (0.18) 0.06 (0.08) 0.48 (0.09) 0.16 (0.16)
C4.5 0.31 (0.07) 0.90 (0.18) 0.07 (0.09) 0.48 (0.09) 0.17 (0.16)
svmRadial 0.61 (0.14) 0.64 (0.21) 0.60 (0.18) 0.62 (0.13) 0.60 (0.14)
avNNet 0.30 (0.05) 0.97 (0.07) 0.03 (0.08) 0.50 (0.03) 0.07 (0.15)

Table S6. Average and standard deviations results for each algorithm in the training stage (5-fold cross validation with 5 repeats) for each layer or data fusion using the oversampling method ROSE. iconExcel.jpg iconZip.png

Tomek

    Classification measures
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Gen     RF 0.72 (0.02) 0.02 (0.06) 1 (0) 0.51 (0.03) 0.05 (0.14)
xgBoost 0.68 (0.08) 0.21 (0.17) 0.87 (0.10) 0.54 (0.09) 0.35 (0.24)
C4.5 0.58 (0.10) 0.20 (0.16) 0.74 (0.13) 0.47 (0.09) 0.32 (0.21)
svmRadial 0.75 (0.05) 0.14 (0.14) 0.99 (0.02) 0.57 (0.07) 0.27 (0.26)
avNNet 0.73 (0.07) 0.24 (0.18) 0.92 (0.09) 0.58 (0.08) 0.40 (0.23)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Epi     RF 0.71 (0.03) 0.01 (0.04) 0.99 (0.03) 0.50 (0.02) 0.02 (0.09)
xgBoost 0.70 (0.07) 0.18 (0.17) 0.91 (0.09) 0.55 (0.09) 0.32 (0.26)
C4.5 0.63 (0.10) 0.28 (0.17) 0.78 (0.14) 0.53 (0.10) 0.43 (0.17)
svmRadial 0.77 (0.10) 0.39 (0.23) 0.92 (0.09) 0.66 (0.14) 0.55 (0.25)
avNNet 0.71 (0.02) 0 (0) 1 (0) 0.50 (0) 0 (0)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Clin     RF 0.68 (0.06) 0.05 (0.10) 0.94 (0.08) 0.49 (0.06) 0.09 (0.19)
xgBoost 0.65 (0.09) 0.21 (0.16) 0.83 (0.10) 0.52 (0.10) 0.37 (0.21)
C4.5 0.62 (0.08) 0.28 (0.23) 0.76 (0.10) 0.52 (0.11) 0.40 (0.22)
svmRadial 0.68 (0.08) 0.01 (0.04) 0.96 (0.10) 0.48 (0.06) 0.02 (0.09)
avNNet 0.71 (0.02) 0 (0) 1 (0) 0.50 (0) 0 (0)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Gen + Epi     RF 0.71 (0.02) 0 (0) 1 (0.02) 0.50 (0.01) 0 (0)
xgBoost 0.70 (0.08) 0.21 (0.19) 0.90 (0.09) 0.55 (0.10) 0.33 (0.27)
C4.5 0.60 (0.11) 0.23 (0.19) 0.75 (0.12) 0.49 (0.12) 0.35 (0.24)
svmRadial 0.72 (0.08) 0.18 (0.17) 0.94 (0.12) 0.56 (0.09) 0.32 (0.26)
avNNet 0.71 (0.02) 0 (0) 1 (0) 0.50 (0) 0 (0)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Gen + Clin     RF 0.71 (0.03) 0.04 (0.08) 0.98 (0.04) 0.51 (0.04) 0.09 (0.18)
xgBoost 0.69 (0.06) 0.21 (0.19) 0.88 (0.09) 0.55 (0.08) 0.34 (0.25)
C4.5 0.64 (0.07) 0.24 (0.20) 0.80 (0.11) 0.52 (0.09) 0.35 (0.24)
svmRadial 0.70 (0.08) 0.07 (0.12) 0.95 (0.12) 0.51 (0.07) 0.14 (0.22)
avNNet 0.71 (0.02) 0 (0) 1 (0) 0.50 (0) 0 (0)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
Epi + Clin     RF 0.70 (0.02) 0 (0) 0.99 (0.03) 0.49 (0.01) 0 (0)
xgBoost 0.68 (0.07) 0.14 (0.11) 0.89 (0.10) 0.52 (0.07) 0.29 (0.21)
C4.5 0.63 (0.10) 0.33 (0.23) 0.75 (0.12) 0.54 (0.12) 0.44 (0.23)
svmRadial 0.74 (0.07) 0.30 (0.22) 0.93 (0.08) 0.61 (0.10) 0.45 (0.26)
avNNet 0.71 (0.02) 0 (0) 1 (0) 0.50 (0) 0 (0)
Fusion Methods Accuracy Sensitivity Specificity AUC G_mean
All     RF 0.70 (0.03) 0.01 (0.04) 0.99 (0.03) 0.50 (0.03) 0.02 (0.09)
xgBoost 0.69 (0.06) 0.16 (0.12) 0.90 (0.09) 0.53 (0.06) 0.32 (0.21)
C4.5 0.65 (0.09) 0.37 (0.23) 0.76 (0.10) 0.57 (0.11) 0.48 (0.22)
svmRadial 0.70 (0.07) 0.15 (0.17) 0.92 (0.12) 0.53 (0.08) 0.25 (0.26)
avNNet 0.71 (0.02) 0 (0) 1 (0) 0.50 (0) 0 (0)

Table S7. Average and standard deviations results for each algorithm in the training stage (5-fold cross validation with 5 repeats) for each layer or data fusion using the oversampling method Tomek. iconExcel.jpg iconZip.png

 

Explainability

Understanding the hidden reason why a black box model makes a prediction is vital in many applications. However, interpreting these complex classifiers has been the bottleneck for many years, making practitioners opt for simpler models in search of that understanding. In response, innovative methodologies have been developed, such as SHAP, which assigns each variable a value of importance for the prediction of each specific example [2]. 

Table S8 shows the top features sorted according to their importance in our final classifier (RF generated with all the dataset using NearMiss method), showing the mean, mininum, maximum, median, quantiles 1 and 3 contributions of each feature, ranked according to their importance. This table is available for download in xls and csv files by clicking the icons iconExcel.jpg and iconZip.png, respectively.

 

SHAP values    
Feature Min Q1 Median Mean Q3 Max
cg11762807_HDAC4 -0.0383836 -0.0188528 0.0109172 -0.0000344 0.0182584 0.0224375
cg04976245_PTPRN2 -0.0220381 -0.0133175 0.0058597 -0.0000203 0.0111599 0.0151985
cg27147114_RASGRF1 -0.0194180 -0.0078942 0.0034873 0.0000426 0.0101327 0.0130818
cg07792979_MATN2 -0.0180166 -0.0113417 0.0044036 0.0000043 0.0085169 0.0137533
cg03516256_EBF1 -0.0114256 -0.0086135 -0.0040286 0.0000015 0.0095440 0.0137712
Leptin_adiponectin_ratio -0.0234292 -0.0094655 0.0050250 -0.0000530 0.0080091 0.0096243
cg16486501_PTPRN2 -0.0120017 -0.0078438 0.0023604 0.0000191 0.0071751 0.0117088
cg19194924 -0.0087772 -0.0071610 -0.0040971 0.0000387 0.0104498 0.0159478
BMI_zscore -0.0186424 -0.0050623 0.0037218 0.0000396 0.0070041 0.0095406
Iron_(ug/dl) -0.0070307 -0.0061667 -0.0029898 0.0000729 0.0075218 0.0147095
cg02818143_PTPRN2 -0.0146732 -0.0056237 -0.0004137 -0.0000404 0.0069536 0.0123840
Leptin_(ug/l) -0.0179066 -0.0036802 0.0033796 -0.0000486 0.0059580 0.0080283
cg14299905_MAP4 -0.0069842 -0.0055708 -0.0034039 0.0000342 0.0075290 0.0135848
cg10937973_CLASP1 -0.0103603 -0.0045720 -0.0003926 0.0000375 0.0055592 0.0075534
HDLc_(mg/dl) -0.0069388 -0.0046289 -0.0018813 -0.0000338 0.0042094 0.0110115
cg13687935_MYT1L -0.0109815 -0.0054153 0.0000000 -0.0000583 0.0038894 0.0086981
cg21549415_P4HB -0.0078892 -0.0051169 0.0000000 0.0000214 0.0027630 0.0111581
cg10987850_HMCN1 -0.0160627 -0.0090381 0.0015998 -0.0000447 0.0034693 0.0181333
cg23792592_MIR1-1 -0.0081381 -0.0048317 0.0020805 0.0000072 0.0039073 0.0071372
cg00152126_CTBP2 -0.0126719 -0.0036879 0.0024147 0.0000400 0.0042828 0.0060726
cg16892627_MTHFD1L -0.0094311 -0.0030475 0.0009467 -0.0000316 0.0038131 0.0068254
cg16306644_COX19 -0.0090327 -0.0032348 0.0000000 -0.0000402 0.0040988 0.0087172
cg15168723_BRD1 -0.0071609 -0.0035901 -0.0018249 0.0000442 0.0042765 0.0089177
Blood_proteins_(g/dl) -0.0063810 -0.0039973 -0.0026415 0.0000155 0.0002278 0.0177570
cg12913090_ATG2B -0.0110450 -0.0018779 0.0024910 -0.0000281 0.0037767 0.0054184
cg02283975_STK36 -0.0082249 -0.0037287 0.0017228 0.0000433 0.0034778 0.0052090
cg22151387_GRID1 -0.0101193 -0.0036806 0.0018482 -0.0000090 0.0032653 0.0052139
cg18073874_EEFSEC -0.0128491 -0.0013090 0.0019578 -0.0000273 0.0037237 0.0055908
cg12700273_RAPGEF4 -0.0068050 -0.0035348 0.0011904 -0.0000557 0.0027735 0.0046711
cg26624881_CLPTM1L -0.0052119 -0.0029128 0.0000000 -0.0000364 0.0033781 0.0045530

Table S8. Summary of feature contributions to the final classifier for IR and non-IR samples. Mean, mininum, maximum, median, quantiles 1 and 3 are shown for each sample group.  iconExcel.jpg iconZip.png

 

Table S8 can be divided into two further tables showing the contribution of variables in examples predicted as IR or non-IR, which are shown below (Table S9 and Table S10).

IR children (positive class) SHAP values     
Feature Min Q1 Median Mean Q3 Max
cg11762807_HDAC4 -0.0188115 0.0165476 0.0182611 0.0142781 0.0189999 0.0224375
cg04976245_PTPRN2 -0.0120716 0.0079529 0.0112535 0.0081016 0.0133654 0.0151985
cg27147114_RASGRF1 -0.0121908 0.0042595 0.0101629 0.0071670 0.0112826 0.0130818
cg07792979_MATN2 -0.0107621 0.0063719 0.0085562 0.0062697 0.0101399 0.0137533
cg03516256_EBF1 -0.0067574 -0.0040903 0.0095992 0.0055053 0.0112740 0.0137712
Leptin_adiponectin_ratio -0.0117891 0.0072796 0.0080141 0.0064348 0.0081895 0.0096243
cg16486501_PTPRN2 -0.0073085 0.0020884 0.0072084 0.0046759 0.0086099 0.0117088
cg19194924 -0.0050127 -0.0035934 0.0104603 0.0052300 0.0115948 0.0159478
BMI_zscore -0.0050450 0.0050537 0.0070662 0.0053662 0.0080135 0.0095406
Iron_(ug/dl) -0.0050651 -0.0027281 0.0037389 0.0045182 0.0120790 0.0147095
cg02818143_PTPRN2 -0.0052860 -0.0013407 0.0064526 0.0048223 0.0096586 0.0123840
Leptin_(ug/l) -0.0067801 0.0043171 0.0059613 0.0047006 0.0065667 0.0080283
cg14299905_MAP4 -0.0043411 -0.0029141 0.0013899 0.0036786 0.0109645 0.0135848
cg10937973_CLASP1 -0.0062389 -0.0007581 0.0055336 0.0031173 0.0065030 0.0075534
HDLc_(mg/dl) -0.0038964 -0.0019338 0.0033388 0.0034011 0.0083342 0.0110115
cg13687935_MYT1L -0.0061502 0.0004643 0.0029174 0.0030014 0.0070400 0.0086981
cg21549415_P4HB -0.0058478 0.0003801 0.0020388 0.0029504 0.0086974 0.0111581
cg10987850_HMCN1 -0.0098640 0.0027177 0.0033632 0.0060354 0.0124037 0.0181333
cg23792592_MIR1-1 -0.0052182 0.0022786 0.0038804 0.0026138 0.0052978 0.0071372
cg00152126_CTBP2 -0.0057207 0.0020824 0.0042952 0.0029977 0.0047255 0.0060726
cg16892627_MTHFD1L -0.0059823 0.0009204 0.0037073 0.0025945 0.0051562 0.0068254
cg16306644_COX19 -0.0051809 0.0004819 0.0020038 0.0027195 0.0063704 0.0087172
cg15168723_BRD1 -0.0035890 -0.0012459 0.0035216 0.0025307 0.0063327 0.0089177
Blood_proteins_(g/dl) -0.0045786 -0.0024739 -0.0016179 0.0035056 0.0102915 0.0177570
cg12913090_ATG2B -0.0099877 0.0031880 0.0038345 0.0024982 0.0046933 0.0054184
cg02283975_STK36 -0.0058603 0.0010109 0.0033797 0.0020969 0.0042491 0.0052090
cg22151387_GRID1 -0.0058345 0.0029527 0.0032684 0.0024585 0.0038226 0.0052139
cg18073874_EEFSEC -0.0039874 0.0021219 0.0037700 0.0029569 0.0045166 0.0055908
cg12700273_RAPGEF4 -0.0045228 0.0009512 0.0025905 0.0017059 0.0037901 0.0046711
cg26624881_CLPTM1L -0.0038782 -0.0011913 0.0033814 0.0015581 0.0039827 0.0045530

Table S9. Summary of feature contributions to classify only the IR samples (positive class). Mean, mininum, maximum, median, quantiles 1 and 3 are shown for each sample group.  iconExcel.jpg iconZip.png

 

non-IR children (negative class) SHAP values     
Feature Min Q1 Median Mean Q3 Max
cg11762807_HDAC4 -0.0383836 -0.0302649 -0.0184324 -0.0143469 0.0092447 0.0154607
cg04976245_PTPRN2 -0.0220381 -0.0174677 -0.0136642 -0.0081423 0.0053669 0.0077917
cg27147114_RASGRF1 -0.0194180 -0.0162005 -0.0073698 -0.0070818 0.0013892 0.0066686
cg07792979_MATN2 -0.0180166 -0.0134771 -0.0114146 -0.0062611 0.0042198 0.0078432
cg03516256_EBF1 -0.0114256 -0.0100163 -0.0086414 -0.0055024 -0.0031085 0.0094488
Leptin_adiponectin_ratio -0.0234292 -0.0164214 -0.0067583 -0.0065409 0.0040630 0.0057018
cg16486501_PTPRN2 -0.0120017 -0.0094996 -0.0079066 -0.0046378 0.0023731 0.0056767
cg19194924 -0.0087772 -0.0078403 -0.0071658 -0.0051526 -0.0061566 0.0077164
BMI_zscore -0.0186424 -0.0121274 -0.0049649 -0.0052870 0.0035660 0.0048982
Iron_(ug/dl) -0.0070307 -0.0065105 -0.0062286 -0.0043724 -0.0036977 0.0094322
cg02818143_PTPRN2 -0.0146732 -0.0104662 -0.0056833 -0.0049032 -0.0002069 0.0071148
Leptin_(ug/l) -0.0179066 -0.0145355 -0.0003457 -0.0047979 0.0030969 0.0040474
cg14299905_MAP4 -0.0069842 -0.0060009 -0.0055828 -0.0036103 -0.0045769 0.0109190
cg10937973_CLASP1 -0.0103603 -0.0054846 -0.0038570 -0.0030422 -0.0001963 0.0056231
HDLc_(mg/dl) -0.0069388 -0.0054848 -0.0047046 -0.0034688 -0.0016245 0.0080487
cg13687935_MYT1L -0.0109815 -0.0070234 -0.0024031 -0.0031180 0.0000000 0.0081157
cg21549415_P4HB -0.0078892 -0.0063268 -0.0028286 -0.0029076 -0.0000867 0.0052602
cg10987850_HMCN1 -0.0160627 -0.0126649 -0.0047670 -0.0061248 0.0000000 0.0034734
cg23792592_MIR1-1 -0.0081381 -0.0064783 -0.0040098 -0.0025994 0.0018634 0.0052135
cg00152126_CTBP2 -0.0126719 -0.0075975 -0.0014192 -0.0029177 0.0024256 0.0036737
cg16892627_MTHFD1L -0.0094311 -0.0070890 -0.0006060 -0.0026577 0.0013058 0.0043743
cg16306644_COX19 -0.0090327 -0.0069342 -0.0016842 -0.0027999 -0.0001328 0.0045547
cg15168723_BRD1 -0.0071609 -0.0043915 -0.0035617 -0.0024424 -0.0021409 0.0051696
Blood_proteins_(g/dl) -0.0063810 -0.0047039 -0.0039464 -0.0034747 -0.0035514 0.0044198
cg12913090_ATG2B -0.0110450 -0.0087866 0.0000000 -0.0025543 0.0023160 0.0031167
cg02283975_STK36 -0.0082249 -0.0060866 -0.0011295 -0.0020103 0.0020215 0.0036802
cg22151387_GRID1 -0.0101193 -0.0059081 -0.0018677 -0.0024766 0.0013720 0.0024151
cg18073874_EEFSEC -0.0128491 -0.0085995 -0.0008336 -0.0030115 0.0019675 0.0027597
cg12700273_RAPGEF4 -0.0068050 -0.0052438 -0.0001982 -0.0018172 0.0012666 0.0033085
cg26624881_CLPTM1L -0.0052119 -0.0041168 -0.0020159 -0.0016309 0.0000000 0.0030700

Table S10. Summary of feature contributions to classify only the non-IR samples (negative class). Mean, mininum, maximum, median, quantiles 1 and 3 are shown for each sample group.  iconExcel.jpg iconZip.png

 

The overall contribution of each variable to the classifier's prediction can be seen more intuitively in Figure S2. In this figure the dotplot represents with each dot the contribution of that variable to a specific example while the violinplot represents a histogram of those dots where the association between the predictor variable and the outcome is more clearly visualised [7].

Figure S2a. Shap attribution dotplot. Figure S2b. Shap attribution violinplot.

Figure S2. Shap attribution for every feature in the full set of samples included in our dataset.

We generated two force plots with all the examples used to generate the final model, distinguishing the negative class (noIR = 0) and the positive class (IR = 1). This plot shows the model output (f(x)) on the y-axis and each of the examples on the x-axis. Each bar in the plot represents the contribution of each variable to the model prediction, where the length of the bar is equal to the importance of the contribution. In other words, the most important contributions are represented by wider bars. On the other hand, the color of the bars indicates the directionality of the contribution. If the color is blue, the contribution represented by the SHAP value is negative, while if it is red, it is positive. The final predicted value is the sum of all contributions, i.e. the positive and negative SHAP values. The graph is interactive, so the reader can select each example, it interactively shows which variable contributed most to the prediction of each example and its directionality. By default, the samples are sorted by similarity, but it is possible to sort them by output value or original order.

Figure S3. Force-plot of the SHAP values, showing the contribution of each feature and the directionality of the association, in all IR examples.

Figure S4. Force-plot of the SHAP values, showing the contribution of each feature and the directionality of the association, in all noIR examples.

Another capability of these interactive graphs is the possibility to extract the cut points used by the model to assign SHAP values based on the directionality of a variable. For instance, it is possible to select the options "cg11762807_HDAC4" and "cg11762807_HDAC4 effects" on the x and y axis, respectively. This graph shows the examples on the x-axis ordered by the value of the variable "cg11762807_HDAC4" and on the y-axis the output value that the model would obtain with the single contribution of "cg11762807_HDAC4" at a base value of 0.5. The SHAP values' directionality as a function of the variable's values is also displayed. In this case, the forceplot for both positive and negative examples shows that the model assigns positive SHAP values to examples with cg_11762807_HDAC4 methylation values below 5.15 and negative values to those above the threshold. This process can be repeated for all variables used in the final model.

Attached are graphs comparing examples where the model fails to those where it does not, focusing on clinical data variables with a simpler biological interpretation than methylation patterns. These plots demonstrate that individuals who were misclassified as having a high risk of pubertal insulin resistance, but who experienced weight loss resulting in the normalization of their metabolic values by the time they reached puberty, are individuals in whom the model failed.

Figure S5. The violin plots represent the Leptin/adiponectin ratio on the x-axis and the pubertal prediction on the y-axis (blue = non-IR and pink = IR). Therefore, the nine mispredicted children are marked in pink. Figure 5A and 5B distinguish prepubertal and pubertal Leptin/adiponectin ratio, respectively. Figure S6. The violin plots represent the Leptin levels on the x-axis and the pubertal prediction on the y-axis (blue = non-IR and pink = IR). Therefore, the nine mispredicted children are marked in pink. Figure 6A and 6B distinguish prepubertal and pubertal Leptin levels, respectively.
Figure S7. The violin plots represent the prepubertal and pubertal HOMA-IR index on the x-axis and the pubertal prediction on the y-axis (blue = non-IR and pink = IR). Therefore, the nine mispredicted children are marked in pink. Figure 7A and 7B distinguish prepubertal and pubertal HOMA-IR index, respectively. Figure S8. The violin plots represent the prepubertal and pubertal HDL levels on the x-axis and the pubertal prediction on the y-axis (blue = non-IR and pink = IR). Therefore, the nine mispredicted children are marked in pink. Figure 8A and 8B distinguish prepubertal and pubertal HDL levels, respectively.

Functional analysis and pathways

It is worth noting that several CpG sites that ranked 30 in Table S8 could be involved in some key functions: 1) transcriptional regulation by RNA polymerase II (HDAC4, EBF1, MYT1L, CTBP2, COX19 and MIR1-1), 2) regulation of actin cytoskeleton organization (MAP4, CLASP1 and P4HB) and 3) regulation of insulin release (PTPRN2 up to 4 CpG sites, RASGRF1, ATG2B and STK36) and 4) extracellular matrix organization (MATN2, HMCN1 and P4HB). Interestingly, some of the genes involved in the cytoskeleton organization could be related to the release of insulin granules. However, the most relevant function of this set of genes is the transcriptional regulation by RNA polymerase II which is involved in the synthesis of messenger or non-coding RNA. This relationship proposes that the epigenetic changes trigger modifications in the gene expression patterns of molecular pathways related to the physiopathology of IR.

At a molecular level, HDAC4 is part of a protein complex that inhibits through its recruitment, the MEF2 (Myocyte Enhancer Factor 2A) the expression of MEF2 (Myocyte Enhancer Factor 2A)-dependent genes involved in various responses to exercise, such as mitochondrial biogenesis muscle hypertrophy and glucose uptake. Energy and exercise sensors such as PRKA (Protein Kinase AMP-Activated) and CAMKK2 (Calcium/Calmodulin Dependent Protein Kinase Kinase 2) can selectively phosphorylate HDAC4 inducing the separation of MEF2, nuclear export and MEF2-dependent transcription, e.g., SLC2A4 or GLUT4 (Solute Carrier Family 2 Member 4) which is a high relevant glucose transport for glucose uptake in an energy-requiring situation. Another additional mechanism of regulation involved in the pubertal IR could be interaction between FOXO (Forkhead Box O) and HDAC4. Additionally, functional assays suggested that HDAC4 had an inhibitory effect on NKkB.

At a molecular level, PTPRN2 interacts with its paralog PTPRN and regulates the insulin secretion mediated by glucose stimuli, as well as, the number of dense core vesicles from the insulin granules. PTPRN is intimately linked to pubertal development in females by participating in the normal accumulation and secretion of LH (Luteinizing Hormone) and FSH (Follicle-Stimulating Hormone). A better understanding of PRPRN2, PRPTN and the role of their interaction in the IR during pubertal development is required.

References

  1. Chen, T. et al. Xgboost: Extreme gradient boosting. (2022). Doi: 10.1145/2939672.2939785
  2. Barredo Arrieta, A. et al. Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 58 (2020) 82–115. Doi: 10.1016/j.inffus.2019.12.012
  3. Fernández, A. et al. Performance measures. In: A. Fernandez, S. Garcia, M. Galar, R.C. Prati, B. Krawczyk, F. Herrera (eds.): Learning from imbalanced data sets, Springer International Publishing, 2018, 47–61. ISBN: 978-3-030-07446-3. Doi: 10.1007/978-3-319-98074-4_3
  4. Fernández, A. et al. Data level preprocessing methods. In: A. Fernandez, S. Garcia, M. Galar, R.C. Prati, B. Krawczyk, F. Herrera (eds.): Learning from imbalanced data sets, Springer International Publishing, 2018, 79–121. ISBN: 978-3-030-07446-3. Doi: 10.1007/978-3-319-98074-4_5
  5. Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A. Kernlab – an S4 package for kernel methods in R. Journal of Statistical Software 11, 1–20 (2004). Doi: 10.18637/jss.v011.i09
  6. Liaw, A., Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
  7. Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence 2 (2020) 56–67. Doi: 10.1038/s42256-019-0138-9
  8. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F. e1071: Misc functions of the department of statistics, probability theory group (formerly: E1071), TU wien. (2022).
  9. Salzberg, S.L. C4.5: Programs for machine learning by j. Ross quinlan. Morgan kaufmann publishers, inc., 1993. Mach. Learn. 16, 235–240 (1994). Doi: 10.1007/BF00993309
  10. Venables, W.N., Ripley, B.D. Modern applied statistics with s. (Springer, 2002).