Gets the number of folds
getKavlr() - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
Gets the matrix with the positions of non-missing values
getKernel() - Method in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
Returns the kernel to use
getKernel() - Method in class keel.Algorithms.SVM.SMO.SMO
Returns the kernel to use
getKernel() - Method in class keel.Algorithms.SVM.SMO.SMOreg
Gets the kernel to use.
getKernel() - Method in class keel.Algorithms.SVM.SMO.SVMreg
Returns the kernel to use
getKernelEvaluations() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
returns the number of kernel evaluations
getKey(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Score
Returns the value at a given position of the vector
(inverse method of findKey).
getKey() - Method in class keel.Algorithms.Rule_Learning.Ripper.Trio
Returns the attribute's value.
getKey(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Score
Returns the value at a given position of the vector
(inverse method of findKey).
getKey() - Method in class keel.Algorithms.Rule_Learning.Slipper.Trio
Returns the attribute's value.
getKind() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
Gets the kind of the dataset we are considering (training, reference, test)
getKind() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
Gets the kind of the dataset we are considering (training, reference, test)
getKmisr() - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
Gets the matrix with the positions of missing values
getKValue() - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
Get the value of K.
getKValue() - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
Get the value of K.
getKValue() - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
Get the value of K.
getL() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.CholeskyDecomposition
Return triangular factor.
getL() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
Deprecated.
Returns the L part of the matrix.
getL() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.LUDecomposition
Return lower triangular factor
getL() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Gene
getL() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Gene
getL() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Gene
getLabel() - Method in class keel.Algorithms.Instance_Generation.GMCA.Cluster
Gets the label of all prototypes of the cluster.
getLabel() - Method in class keel.Algorithms.Instance_Generation.VQ.Cluster
Get the class of the cluster.
getLabel() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.FuzzyRegion
It returns the label associated with a fuzzy region
getLabel() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.FuzzyRegion
It returns the label associated with a fuzzy region
getLabel() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.FuzzyRegion
It returns the label associated with a fuzzy region
getLabel() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.FuzzyRegion
It returns the label associated with a fuzzy region
getLabel() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.Item
It returns the label associated with an item
getLabel() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.Item
It returns the label associated with an item
getLagrangeMultipliers() - Method in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
This method returns the Lagrange Multipliers obtained for each instance.
getLambda() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
Gets the lambda constant used in the string kernel
getLaplace() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.Rule
It returns the Laplace accuracy of the rule
getLaplaceAcc() - Method in class keel.Algorithms.Hyperrectangles.RISE.Rule
Returns the Laplace accuracy of the rule
getLastAV() - Method in class keel.Algorithms.Rule_Learning.Rules6.Regla
Returns the last pair attribute - values from the antecedents list.
getLastAV() - Method in class keel.Algorithms.Rule_Learning.SRI.Regla
Returns the last pair attribute - values from the antecedents list.
getLastChangeEval() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Population
Return the number of the evaluation with the last change
getLastElement(short[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
Gets the last element in the given item set, or '0' if the itemset is
empty.
getLastError() - Method in interface keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IOptimizableFunc
Last error of the model
getLastError() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.MSEOptimizablePUNeuralNetClassifier
Last error of the model
getLastError() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.MSEOptimizableSigmNeuralNetClassifier
Last error of the model
getLastError() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.MSEOptimizablePUNeuralNetRegressor
Last error of the model
getLastError() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.MSEOptimizableSigmNeuralNetRegressor
Last error of the model
getLastIterations() - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
Gets the last number of iterations performed
getLastRule() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.ruleSet
It returns the last rule (it is supossed to be the one with less strength)
getLastRule() - Method in class keel.Algorithms.Hyperrectangles.EACH.RuleSet
Returns the last rule(normally the one with best weight)
getLastRule() - Method in class keel.Algorithms.Rule_Learning.AQ.ruleSet
It returns the last rule (normally, the one with best weight)
getLastRule() - Method in class keel.Algorithms.Rule_Learning.CN2.ruleSet
It returns the last rule (normally, the one with best weight)
getLastToken(StreamTokenizer, boolean) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
Gets token and checks if its end of line.
getLeafs() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
Gets the number of leaf nodes from this node and its descendants
getLeafs() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
Gets the number of leaf nodes from this node and its descendants
getLeastFrequentClass() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_aggregated
getLeft() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
Gets the left descendant of the node, if it is not a leaf node
getLeft() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
Gets the left descendant of the node, if it is not a leaf node
getLeft() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Intervals
getLeft() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Interval
It returns the left bound of an interval
getLeft() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Intervals
getLeftChild() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
getLeftSon() - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
It gets the left son of the current node
getLeftTail() - Static method in class keel.GraphInterKeel.statistical.tests.WilcoxonDistribution
Returns left-tailed p-value of the last comparison
getLenghtElite() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
Methods to get the lenght of the elite population
getLenghtPop() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
Methods to get the lenght of the population
getLenghtPop() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Methods to get the lenght of the population
getLength() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier
getLength() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
getLength() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierADI
getLength() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierGABIL
getLength() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierUBR
getLength() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
getLength() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierADI
getLength() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierGABIL
getLength() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
getLength() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
getLengthAnt() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
getLengthAnt() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
getLengthAnt() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
getLengthAntecedent() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
getLengthAntecedent() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
getLengthAntecedent() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
getLengthConsequent() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
getLengthPopulation() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
Gets the lenght of the population
getLengthRule() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
getLengthRule() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
getLevel() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
Obtains the level of this rule; 1 for general rules, 2 for specific rules
getLevel() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
Obtains the level of this rule; 1 for general rules, 2 for specific rules
getLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.FARFingrams
getLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.AssociationRule
It returns the lift of an association rule
getLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AssociationRule
It returns the lift of an association rule
getLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
getLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
getLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.AssociationRule
It returns the lift of an association rule
getLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
It returns the lift of an association rule
getLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
getLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
getLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
getLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
getLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
getLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
getLimitHigh() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.LimitRoulette
getLimitLow() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.LimitRoulette
getLimits(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.Rule
Returns the bounds of the attribute in the rule
getLimits(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.Rule
Returns the bounds of the attribute in the rule
getLine() - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
Deprecated.
getLine() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceParser
This method reads one valid line of the file.
getLine() - Static method in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
Deprecated.
getLine() - Method in class keel.Dataset.InstanceParser
This method reads one valid line of the file.
getLine() - Static method in class keel.Dataset.SimpleCharStream
Deprecated.
getLink(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
Returns the link with the neuron specified (0 is bias neuron)
getLinks() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
Returns the links array
getListFilas() - Method in class keel.Algorithms.Rule_Learning.LEM2.Atributo_valor
getListValues() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Gets for each attribute the sorted list of its possible values
getListValues() - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Gets for each attribute the ordered list of the possible values
getListValues() - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
Gets for each attribute the sorted list of its possible values
getLiteralsMatrix() - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Literals
It returns the matrix of literals
getLocalHierarchicalMeasure() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
Obtains the local hierarchical measure associated to this rule, computed with the compute hierarchical measures procedure
getLocator(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeLocator
Returns the AttributeLocator at the given index.
getLocatorIndices() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeLocator
Returns the indices of the AttributeLocator objects.
getLogger() - Method in exception keel.Algorithms.Rule_Learning.Swap1.DatasetException
Gets the vector with the errors.
getLogger() - Method in exception keel.Dataset.DatasetException
Gets the vector with the errors.
getLost(int, int) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Calculate
Returns if the value of the gen of an example is a lost value or not
lost = max value of the variable + 1
getLost(TableVar, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableDat
Returns if the value of the gen of an example is a lost value or not
lost = max value of the variable + 1
getLost(int, int) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Calculate
Returns if the value of the gen of an example is a lost value or not
lost = max value of the variable + 1
getLost(TableVar, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableDat
Returns if the value of the gen of an example is a lost value or not
lost = max value of the variable + 1
getLost(int, int) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Calculate
Returns if the value of the gen of an example is a lost value or not
lost = max value of the variable + 1
getLost(TableVar, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableDat
Returns if the value of the gen of an example is a lost value or not
lost = max value of the variable + 1
getLower_aproximation(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsCuttoff
getLowerAllele() - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Attribute
It returns the lower allele.
getLowerAllele() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
Returns the lower real value of the representation
getLowerAllele() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
getLowerAllele() - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
It returns the lower allele.
getLowerAllele() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
Returns the lower real value of the representation
getLowerAllele() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
Returns the lower real value of the representation
getLowerAllele(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
Returns the value of the alelle
getLowerAllele() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
getLowerAndUpperValues(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Hyperrectangle
Returns the positions of the minimum and maximum value of the attribute id in the hyperrectangle
getLowerBound() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Condition
It returns the lower bound
getLowerBound() - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.Gcvfctn
Gets the lower bound of the evaluation
getLowerBound(int) - Method in interface keel.Algorithms.Preprocess.Missing_Values.EM.util.MultivariateFunction
get lower bound of argument n
getLowerBound() - Method in interface keel.Algorithms.Preprocess.Missing_Values.EM.util.UnivariateFunction
getLowerBound() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
It returns the lower bound of the interval stored in a gene
getLowerBound() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
It returns the lower bound of the interval stored in a gene
getLowerBound() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Gene
It returns the lower bound of the interval stored in a gene
getLowerNumericBound() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
Returns the lower bound of a numeric attribute.
getLowerQuartile() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Histogram
Returns the lower quartile.
getLowerrealBound() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
Returns the lower bound of a real attribute.
getLowerValues() - Method in class keel.Algorithms.Hyperrectangles.EACH.Hyperrectangle
getLSearch() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Methods to get if local search must be performed
getLSup() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.QualityMeasures
Method to return the value of the local support
getMacroClFitness() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Classifier
Returns the fitness of the "macro-classifier"
getMacroClFitness() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
Returns the fitness of the current macro-classifier.
getMacroClSum() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
Returns the number of macro classifiers in the set.
getMacroClSum() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
Returns the number of macro classifiers in the set.
getMajorOutputClass() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Node
Gets the output class of the majority of the instances.
getMark() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
It returns the mark of the rule.
getMark() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
It returns the mark of the rule
getMatrix() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
Deprecated.
returns the internal matrix
getMatrix(int, int, int, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
Get a submatrix.
getMatrix(int[], int[]) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
Get a submatrix.
getMatrix(int, int, int[]) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
Get a submatrix.
getMatrix(int[], int, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
Get a submatrix.
getMatrixRulesXExamples() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
Returns the matrix that stores the examples that fire the rules.
getMax(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
Gets the maximum value of the variable as argument.
getMax(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
It returns the maximum value of the given attribute
getMax(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
It returns the maximum value of the given attribute
getMax(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
It returns the maximum value of the given attribute
getMax(int, int) - Method in class keel.Algorithms.Complexity_Metrics.Statistics
It returns the maximum of the given attribute within the given class
getMax(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
It returns the maximum value of the given attribute
getMax(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
Gets the maximum value of the variable as argument.
getMax(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
It returns the maximum value of the attribute specified
getMax() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
Gets the maximum value for the attribute if it is not a nominal attribute
getMax() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
Gets the maximum value for the attribute if it is not a nominal attribute
getMax(int) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
It returns the maximum value of the given attribute
getMax(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
It returns the maximum value of the given attribute
getMax(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
It returns the maximum value of the given attribute
getMax(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
It returns the maximum value of the attribute "variable"
getMax(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
It returns the maximum value of the attribute "variable"
getMax(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
It returns the maximum value of the attribute "variable"
getMax(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
It returns the maximum value of the attribute "variable"
getMax(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
It returns the maximum value of the attribute "variable"
getMax(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
It returns the maximum value of the attribute "variable"
getMax(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
It returns the maximum value of the given attribute
getMax(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
It returns the maximum value of the given attribute
getMax(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
It returns the maximum value of the given attribute
getMax(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
It returns the maximum value of the given attribute
getMax(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
It returns the maximum value of the attribute "variable"
getMax(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
It returns the maximum value of the attribute specified
getMax(double[], long) - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Returns the index where is the maximum in an array of doubles
getMax(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
It returns the maximum value of the given attribute
getMax(int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
It returns the maximum value of the attribute specified
getmax() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.Interval
getmax() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.Interval
getmax() - Method in class keel.Algorithms.LQD.methods.FGFS_Original.Interval
getmax() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.Interval
getmax() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.Interval
getmax() - Method in class keel.Algorithms.LQD.preprocess.Expert.interval
getmax() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.interval
getmax() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.interval
getmax() - Method in class keel.Algorithms.LQD.tests.IntermediateBoost.interval
getMax() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
Returns the maximum value of all samples.
getMax(int) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
It returns the maximum value of the attribute "variable"
getMax(int) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
It returns the maximum value of the attribute "variable"
getMax(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
It returns the maximum value of the attribute specified
getMax(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
Returns the maximum valid value for the variable "pos"
getMax() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeVar
Gets the maximum value for the variable
getMax(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
Returns the maximum valid value for the variable "pos"
getMax() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeVar
Gets the maximum value for the variable
getMax(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
Returns the maximum valid value for the variable "pos"
getMax() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeVar
Gets the maximum value for the variable
getMax(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
It returns the upper bound of the variable
<(p>
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
It returns the upper bound of the variable
getMax(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
It returns the upper bound of the variable
getMax_attr() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
getMax_attr() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
getMaxAccuracy() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.populationWrapper
getMaxAttribute() - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
It returns the maximum possible value in a integer or real attribute
getMaxAttribute() - Method in class keel.Dataset.Attribute
It returns the maximum possible value in a integer or real attribute
getMaxDepth() - Method in class keel.Algorithms.Decision_Trees.CART.CART
It returns the maximal depth
getMaxDepth() - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
Get the maximum depth of trh tree, 0 for unlimited.
getMaxDepth() - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
Get the maximum depth of trh tree, 0 for unlimited.
getMaxDepth() - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
Get the maximum depth of trh tree, 0 for unlimited.
getMaxim(double[], long) - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Returns the index where is the maximum of a double array
If there are more than one. returns one of them
* @param num array of doubles given.
getMaximo(double[], long) - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
Returns the index where is the maximum in an array of doubles
getMaximum(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Classifier.Classifier
public method to obtain the class which performs with maximum membership value
for the given example .
getMaximum() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Returns an array with the maximum values of the in-put attributes
getMaximum(int[], long) - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Returns the index where is the maximum of an array of integers
If there are more than one, returns one of them
getMaximumDelta() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
Returns the maximum delta value, that is, the maximum increment or
step size of the corresponding coefficients
getMaximumDistance() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
Returns the maximum distance between train data
getMaxInfoGain() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Antd
getMaxIterations() - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
Gets the maximum number of allowed iterations
getMaxIts() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
Get the value of MaxIts.
getMaxLabel() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
Returns the maximum number of labels of all the variables
getMaxLabel() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
Returns the maximum number of labels of all the variables
getMaxLabel() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
Returns the maximum number of labels of all the variables
getMaxLabels() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.FuzzyAntecedent
Obtains the maximum number of labels this fuzzy antecedent can handle
getMaxLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.FARFingrams
getMaxLinksAdd() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
Returns the maximum number of links to add in mutations
getMaxLinksDel() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
Returns the maximum number of links to remove in mutations
getMaxNeuronsAdd() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
Returns the maximum number of neurons to add in mutations
getMaxNeuronsDel() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
Returns the maximum number of neurons to remove in mutations
getMaxnofneurons() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.ILayer
Returns the maximum number of neurons of this layer
getMaxnofneurons() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputLayer
Returns the maximum number of neurons of this layer
getMaxnofneurons() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
Returns the maximum number of neurons of this layer
getMaxOfGenerations() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
Get the maximum number of iterations for this algorithm
getMaxPayoff() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.DECEnvironment
Returns the environment maximum payoff
getMaxPayoff() - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Environment
Returns the environment maximum payoff
getMaxPayoff() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MPEnvironment
Returns the environment maximum payoff
getMaxPayoff() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MSEnvironment
Returns the environment maximum payoff
getMaxPayoff() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.PAREnvironment
Returns the environment maximum payoff
getMaxPayoff() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.POSEnvironment
Returns the environment maximum payoff
getMaxPayoff() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.SSFileEnvironment
Does return the environment maximum payoff
getMaxRange() - Method in class keel.Algorithms.Decision_Trees.C45.Attribute
Gets the bigger value of a continuous attribute.
getMaxRange() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Attribute
Gets the bigger value of a continuous attribute.
getMaxRange() - Method in class keel.Algorithms.Decision_Trees.ID3.Attribute
Gets the bigger value of a continuous attribute.
getMaxRange() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Attribute
Gets the bigger value of a continuous attribute.
getMaxRange() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
Gets the bigger value of a continuous attribute.
getMaxRange() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA_Attribute
Gets the bigger value of a continuous attribute.
getMaxRange() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyAttribute
Gets the bigger value of a continuous attribute.
getMaxRange() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Attribute
Gets the bigger value of a continuous attribute.
getMaxRange() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Attribute
Gets the bigger value of a continuous attribute.
getMaxRange() - Method in class keel.Algorithms.Rule_Learning.ART.Attribute
Gets the bigger value of a continuous attribute.
getMaxRange() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyAttribute
Gets the bigger value of a continuous attribute.
getMaxRange() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyAttribute
Gets the bigger value of a continuous attribute.
getMaxRange() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Attribute
Gets the bigger value of a continuous attribute.
getMaxRange() - Method in class keel.Algorithms.Rule_Learning.PART.MyAttribute
Gets the bigger value of a continuous attribute.
getMaxSize() - Method in class keel.Algorithms.Rule_Learning.ART.TBAR
getMaxSubsequenceLength() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
Returns the maximum length of the subsequence
getMaxSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.FARFingrams
getMaxVal() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
Returns the maximum number of values of all the variables
getMaxVal() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
Returns the maximum number of values of all the variables
getMaxVal() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
Returns the maximum number of values of all the variables
getMaxValue(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
It returns the maximum value of the attribute specified
getMaxValueOf(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
Returns the maximum value of a specific variable
getMaxX() - Method in class keel.GraphInterKeel.experiments.Graph
Gets the maximum X value of the graph
getMaxY() - Method in class keel.GraphInterKeel.experiments.Graph
Gets the maximum Y value of the graph
getMDL(MyDataset, Mask, Mask) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Rule
Returns the Minimum Data Length of a dataset given a theory (this rule).
getMDL(MyDataset, int, int, int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Rule
Static version.
getMDL(MyDataset, Mask, Mask) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Ruleset
Returns the Minimum Data Length of a dataset given a theory (this ruleset).
getMDL(MyDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Ruleset
Returns the Minimum Data Length of a dataset given a theory (this ruleset).
getMDL(MyDataset, Mask, Mask) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Rule
Returns the Minimum Data Length of a dataset given a theory (this rule).
getMDL(MyDataset, int, int, int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.PART.Rule
Static version.
getMDL(MyDataset, Mask, Mask) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Ruleset
Returns the Minimum Data Length of a dataset given a theory (this ruleset).
getMDL(MyDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Ruleset
Returns the Minimum Data Length of a dataset given a theory (this ruleset).
getMDL(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Ruleset
Returns the Minimum Data Length of a dataset given a theory (this ruleset).
getMDL(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Ruleset
Returns the Minimum Data Length of a dataset given a theory (this ruleset).
getMDL(MyDataset, Mask, Mask) - Method in class keel.Algorithms.Rule_Learning.PART.Rule
Returns the Minimum Data Length of a dataset given a theory (this rule).
getMDL(MyDataset, int, int, int, int) - Static method in class keel.Algorithms.Rule_Learning.PART.Rule
Static version.
getMDL(MyDataset, Mask, Mask) - Method in class keel.Algorithms.Rule_Learning.PART.Ruleset
Returns the Minimum Data Length of a dataset given a theory (this ruleset).
getMDL(MyDataset) - Method in class keel.Algorithms.Rule_Learning.PART.Ruleset
Returns the Minimum Data Length of a dataset given a theory (this ruleset).
getMDL(MyDataset, Mask, Mask) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ruleset
Returns the Minimum Data Length of a dataset given a theory (this ruleset).
getMDL(MyDataset) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ruleset
Returns the Minimum Data Length of a dataset given a theory (this ruleset).
getMDL(MyDataset, Mask, Mask, IncrementalMask) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ruleset
Returns the Minimum Data Length of a dataset given a theory (this ruleset).
getMean(int, int) - Method in class keel.Algorithms.Complexity_Metrics.Statistics
It returns the mean of the given attribute within the given class
getMean() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
Returns the mean
getMean(double, double) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
Returns a Confidence Interval for the mean value with the given confidence and sigma.
getMean(double) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
Returns a Confidence Interval for the mean value with the given confidence.
getMean() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.NormalDistribution
Returns the mean value of the distribution.
getMean() - Method in class keel.GraphInterKeel.statistical.tests.NormalDistribution
Get the mean of the distribution
getMeanSquares() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
Returns the mean of the samples squares.
getMeanValue(int) - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
Does return the mean value for that attribute.
getMeanValue(int) - Method in class keel.Dataset.Attribute
Does return the mean value for that attribute.
getMeasure(String) - Method in class keel.Algorithms.Decision_Trees.M5.M5
Returns the value of the named measure
getMeasure(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
Returns the value of the named measure
getMeasure(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
Returns the value of the named measure
getMeasure(String) - Method in interface keel.Algorithms.SVM.SMO.core.AdditionalMeasureProducer
Returns the value of the named measure
getMeasure(String) - Method in class keel.Algorithms.SVM.SMO.SVMreg
Returns the value of the named measure
getMeasures() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
Return the quality measure of the individual
getMeasureValue(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
Gets the value of the quality measure in the position pos
getMedian() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Histogram
Returns the median.
getMedidas(Genetic) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Individual
Return the quality measures of the individual
getMedidas(Genetic, int, String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Population
Get the measurements of a single rule
getMedidas() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Individual
Return the quality measure of the individual
getMedidas(int, String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Population
Get the measurements of a single rule
getMejor() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.Poblacion
getMejor() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.Poblacion
Returns the best solution obtained by the GA.
getMejorPosicion() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
Returns the best position of the particle.
getMembershipFunctions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Gene
It returns the membership functions of a gene
getMembershipFunctions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Gene
It returns the membership functions of a gene
getMembershipOf(int, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.fuzzygCenter
Returns the membership degree of the instance for a given cluster
getMessage() - Method in exception keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParseException
This method has the standard behavior when this object has been
created using the standard constructors.
getMessage() - Method in error keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.TokenMgrError
You can also modify the body of this method to customize your error messages.
getMessage() - Method in exception keel.Algorithms.Rule_Learning.Swap1.ParseException
This method has the standard behavior when this object has been
created using the standard constructors.
getMessage() - Method in error keel.Algorithms.Rule_Learning.Swap1.TokenMgrError
You can also modify the body of this method to customize your error messages.
getMessage() - Method in exception keel.Dataset.ParseException
This method has the standard behavior when this object has been
created using the standard constructors.
getMessage() - Method in error keel.Dataset.TokenMgrError
You can also modify the body of this method to customize your error messages.
getMetadata() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
Returns the properties supplied for this attribute.
getMetadata() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
Returns the properties supplied for this attribute.
getMetadata() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset
Access to this dataset specification
getMetadata() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset
Access to this dataset specification
getMicroClFitness() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Classifier
Returns the fitness of the "micro-classifier"
getMicroClFitness() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
Returns the fitness of the current micro-classifier.
getMicroClSum() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
Returns the number of micro classifiers in the set.
getMicroClSum() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
Returns the number of micro classifiers in the set.
getMin(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
Gets the minimum value of the variable as argument.
getMin(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
It returns the minimum value of the given attribute
getMin(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
It returns the minimum value of the given attribute
getMin(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
It returns the minimum value of the given attribute
getMin(int, int) - Method in class keel.Algorithms.Complexity_Metrics.Statistics
It returns the minimum of the given attribute within the given class
getMin(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
It returns the minimum value of the given attribute
getMin(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
Gets the minimum value of the variable as argument.
getMin(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
It returns the minimum value of the attribute specified
getMin() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
Gets the minimum value for the attribute if it is not a nominal attribute
getMin() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
Gets the minimum value for the attribute if it is not a nominal attribute
getMin(int) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
It returns the minimum value of the given attribute
getMin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
It returns the minimum value of the given attribute
getMin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
It returns the minimum value of the given attribute
getMin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
It returns the minimum value of the attribute "variable"
getMin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
It returns the minimum value of the attribute "variable"
getMin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
It returns the minimum value of the attribute "variable"
getMin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
It returns the minimum value of the attribute "variable"
getMin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
It returns the minimum value of the attribute "variable"
getMin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
It returns the minimum value of the attribute "variable"
getMin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
It returns the minimum value of the given attribute
getMin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
It returns the minimum value of the given attribute
getMin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
It returns the minimum value of the given attribute
getMin(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
It returns the minimum value of the given attribute
getMin(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
It returns the minimum value of the attribute "variable"
getMin(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
It returns the minimum value of the given attribute
getMin(int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
It returns the minimum value of the attribute specified
getmin() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.Interval
getmin() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.Interval
getmin() - Method in class keel.Algorithms.LQD.methods.FGFS_Original.Interval
getmin() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.Interval
getmin() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.Interval
getmin() - Method in class keel.Algorithms.LQD.preprocess.Expert.interval
getmin() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.interval
getmin() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.interval
getmin() - Method in class keel.Algorithms.LQD.tests.IntermediateBoost.interval
getMin() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
Returns the minimum value of all samples.
getMin(int) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
It returns the minimum value of the attribute "variable"
getMin(int) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
It returns the minimum value of the attribute "variable"
getMin(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
It returns the minimum value of the attribute specified
getMin(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
Returns the minimum valid value for the variable "pos"
getMin() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeVar
Gets the minimum value for the variable
getMin(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
Returns the minimum valid value for the variable "pos"
getMin() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeVar
Gets the minimum value for the variable
getMin(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
Returns the minimum valid value for the variable "pos"
getMin() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeVar
Gets the minimum value for the variable
getMin(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
It returns the lower bound of the variable
getMin(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
It returns the lower bound of the variable
getMin_attr() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
getMin_attr() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
getMinAttribute() - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
It returns the minimum possible value in a integer or real attribute
getMinAttribute() - Method in class keel.Dataset.Attribute
It returns the minimum possible value in a integer or real attribute
getMinCnf() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
Gets the minimum confidence
getMinConf() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
Methods to get the value for the minimum confidence of the rules to be generated
getMinConf() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Methods to get the value for the minimum confidence of the rules to be generated
getMinFC() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Individual
Function to return the minimum confidence of the individual
getMinFS() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Individual
Function to return the minimum support of the individual
getMinFunction() - Method in class keel.Algorithms.MIL.Diverse_Density.Optimization.Optimization
getMinFunction() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
Get the minimal function value
getMinimum() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Returns an array with the minimum values of the in-put values
getMinimumDelta() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
Returns the minimum delta value, that is, the minimum increment or
step size of the corresponding coefficients
getMinLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.FARFingrams
getMinLinksAdd() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
Returns the minimum number of links to add in mutations
getMinLinksDel() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
Returns the minimum number of links to remove in mutations
getMinNeuronsAdd() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
Returns the minimum number of neurons to add in mutations
getMinNeuronsDel() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
Returns the minimum number of neurons to remove in mutations
getMinNo() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
Gets the minimum total weight of the instances in a rule
getMinnofneurons() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
Returns the minimum number of neurons of this layer
getMinNum() - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
Get the value of MinNum.
getMinNum() - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
Get the value of MinNum.
getMinNum() - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
Get the value of MinNum.
getMinPayoff() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.DECEnvironment
Returns the environment minimum payoff
getMinPayoff() - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Environment
Returns the environment minimum payoff
getMinPayoff() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MPEnvironment
Returns the environment minimum payoff
getMinPayoff() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MSEnvironment
Returns the environment minimum payoff
getMinPayoff() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.PAREnvironment
Returns the environment minimum payoff
getMinPayoff() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.POSEnvironment
Returns the environment minimum payoff
getMinPayoff() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.SSFileEnvironment
Does return the environment minimum payoff
getMinRange() - Method in class keel.Algorithms.Decision_Trees.C45.Attribute
Returns the minor value of a continuous attribute.
getMinRange() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Attribute
Returns the minor value of a continuous attribute.
getMinRange() - Method in class keel.Algorithms.Decision_Trees.ID3.Attribute
Returns the minor value of a continuous attribute.
getMinRange() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Attribute
Returns the minor value of a continuous attribute.
getMinRange() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
Returns the minor value of a continuous attribute.
getMinRange() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA_Attribute
Returns the minor value of a continuous attribute.
getMinRange() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyAttribute
Returns the minor value of a continuous attribute.
getMinRange() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Attribute
Returns the minor value of a continuous attribute.
getMinRange() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Attribute
Returns the minor value of a continuous attribute.
getMinRange() - Method in class keel.Algorithms.Rule_Learning.ART.Attribute
Returns the minor value of a continuous attribute.
getMinRange() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyAttribute
Returns the minor value of a continuous attribute.
getMinRange() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyAttribute
Returns the minor value of a continuous attribute.
getMinRange() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Attribute
Returns the minor value of a continuous attribute.
getMinRange() - Method in class keel.Algorithms.Rule_Learning.PART.MyAttribute
Returns the minor value of a continuous attribute.
getMinSupp() - Method in class keel.Algorithms.Rule_Learning.ART.TBAR
getMinSupport() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
Returns the minimum support threshold value in terms of a number
records.
getMinSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.FARFingrams
getMinValue(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
It returns the minimum value of the attribute specified
getMinValueOf(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
Returns the minimum value of a specific variable
getMisses() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Itemset
It returns the number of misses of the itemset against the training set.
getMisses() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Itemset
It returns the number of misses of the itemset against the training set
getMissing(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
It returns an array showing if the value of each attribute for the instance "pos" is missing (TRUE) or not (FALSE)
getMissing(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
It returns an array showing if the value of each attribute for the instance "pos" is missing (TRUE) or not (FALSE)
getMissing(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
It returns an array with boolean values stating the missing values for an individual
getMissing(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
It returns an array showing if the value of each attribute for the instance "pos" is missing (TRUE) or not (FALSE)
getMissing(int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
It returns an array with boolean values stating the missing values for an individual
getMissing(int) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
It returns an array showing if the value of each attribute for the instance "pos" is missing (TRUE) or not (FALSE)
getMissing(int) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
It returns an array showing if the value of each attribute for the instance "pos" is missing (TRUE) or not (FALSE)
getMissing(int) - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
It gets an array that indicates the possible missing values for an example
getMissing(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissing(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
It returns an array indicating the position of the missing values on a specific example
getMissingValue() - Static method in class keel.Algorithms.Decision_Trees.C45.Itemset
Returns the missing value.
getMissingValue() - Static method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
Returns the missing value.
getMissingValue() - Static method in class keel.Algorithms.Decision_Trees.ID3.Itemset
Returns the missing value.
getMissingValue() - Static method in class keel.Algorithms.Decision_Trees.SLIQ.Itemset
Returns the missing value.
getMissingValue() - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
Returns the missing value.
getMissingValue() - Static method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
Returns the missing value.
getMissingValue() - Static method in class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
Returns the missing value.
getMissingValue() - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
Returns the missing value.
getMissingValue() - Static method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
Returns the missing value.
getMissingValue() - Static method in class keel.Algorithms.Rule_Learning.ART.Itemset
Returns the missing value.
getMissingValue() - Static method in class keel.Algorithms.Rule_Learning.C45Rules.Itemset
Returns the missing value.
getMissingValue() - Static method in class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
Returns the missing value.
getMissingValue() - Static method in class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
Returns the missing value.
getMissingValue() - Static method in class keel.Algorithms.Rule_Learning.PART.Itemset
Returns the missing value.
getMissingValue() - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
Returns the missing value.
getMissingVector() - Method in class keel.GraphInterKeel.experiments.DataSet
Gets the missing partitions vector
getMistakeClass() - Method in class keel.Algorithms.Statistical_Tests.Shared.StatTest.InformationAboutClass
Returns the list of mistaken classes
getMistakeClassifications() - Method in class keel.Algorithms.Statistical_Tests.Shared.StatTest.InformationAboutClass
Returns the number of incorrect classifications done.
getMode() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Histogram
Returns the mode.
getModelResultFile() - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
It gets the model result file
getModelTime() - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.Timer
Get model time
getModelTime() - Static method in class keel.Algorithms.RST_Learning.Timer
Get model time
getModelType() - Method in class keel.Algorithms.Decision_Trees.M5.M5
Get the value of Model.
getModified() - Method in class keel.GraphInterKeel.experiments.Graph
Gets the current modified status
getMogbest() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
Returns maximum number of generations allowed without
improving best fitness
getMogmean() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
Returns maximum number of generations allowed without
improving mean fitness
getMostFrequentClass() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_aggregated
getMostFrequentClass() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
Returns the most frequent class.
getMostFrequentClass() - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
Returns the most frequent class.
getMostFrequentClass() - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Returns the class most frecuent of the set of instances
getMostFrequentValue(int) - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
It does return the value most frequent for the class
getMostFrequentValue(int) - Method in class keel.Dataset.Attribute
It does return the value most frequent for the class
getMu() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Cochromosome
Gets the mu parameter
getMu(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Population
Gets the mu value of one subpopulation
getMuest() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Instance
It returns the example itself (array of values)
getMuest() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Instance
It returns the example itself (array of values)
getMuest() - Method in class keel.Algorithms.Rule_Learning.AQ.Instance
It returns the example itself (array of values)
getMuest() - Method in class keel.Algorithms.Rule_Learning.CN2.Instance
It returns the example itself (array of values)
getMuest() - Method in class keel.Algorithms.Rule_Learning.Prism.Muestra
Returns the attributes(array of values)
getMuest() - Method in class keel.Algorithms.Rule_Learning.UnoR.Muestra
Returns the attributes(array of values)
getMuest() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Muestra
Returns the attributes(array of values)
getMuest() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Muestra
Returns the attributes(array of values)
getMuest() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Instance
It returns the example itself (array of values)
getMultiInstanceData() - Method in class keel.Algorithms.MIL.Diverse_Density.EMDD.EMDD
getMutationProbability() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
getMutationRate() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
getMutator1() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
Returns first individual mutator
getMutator2() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
Returns first second mutator
getN() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.PNArray
It returns the value of the negative weight of the PNArray
getN(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.PNArray
It returns the negative weight of a given literal
getN() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeVariable
This method returns the variable number
getN() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
getN() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the number of samples.
getN_e() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Individual
It checks if the chromosome has been evaluated
getN_etiquetas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
getN_etiquetas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
getN_etiquetas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
getN_etiquetas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
getN_etiquetas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
getN_etiquetas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
getN_etiquetas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
getN_etiquetas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
getN_etiquetas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
getN_etiquetas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
getN_etiquetas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
getN_etiquetas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
getN_etiquetas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
getN_etiquetas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
getN_etiquetas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
getN_etiquetas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
getN_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
getN_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
getN_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
getN_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
getN_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
getN_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
getN_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
getN_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
getN_var_estado() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
getN_var_estado() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
getN_var_estado() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
getN_var_estado() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
getN_var_estado() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
getN_var_estado() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
getN_var_estado() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
getN_var_estado() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
getN_variables() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
getN_variables() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
getN_variables() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
getN_variables() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
getN_variables() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
getN_variables() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
getN_variables() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
getN_variables() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
getnActive() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Mask
Return the number of active entries
getnActive() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Mask
Return the number of active entries
getnActive() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Mask
Return the number of active entries
getnActive() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Mask
Return the number of active entries
getnActive() - Method in class keel.Algorithms.Rule_Learning.PART.Mask
Return the number of active entries
getnActive() - Method in class keel.Algorithms.Rule_Learning.Ripper.Mask
Return the number of active entries
getnActive() - Method in class keel.Algorithms.Rule_Learning.Slipper.Mask
Return the number of active entries
getNAlgorithms() - Static method in class keel.GraphInterKeel.statistical.Configuration
Gets the number of algorithms of the test
getName() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Fuzzy
It returns the name of the fuzzy set
getName() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Fuzzy
It returns the name of the fuzzy set
getName() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Fuzzy
It returns the name of the fuzzy set
getName() - Method in class keel.Algorithms.Decision_Trees.C45.Dataset
Returns the name of the dataset.
getName() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Dataset
Returns the name of the dataset.
getName() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
Gets the name of the attribute
getName() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
Gets the name of the dataset
getName() - Method in class keel.Algorithms.Decision_Trees.ID3.Dataset
Returns the name of the dataset.
getName() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
Gets the name of the attribute
getName() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
Gets the name of the dataset
getName() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Dataset
Returns the name of the dataset.
getName() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Fuzzy
It returns the name of the fuzzy set
getName() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
Returns the name of the dataset.
getName() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Dataset
Returns the name of the dataset.
getName() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
Returns the name of the dataset.
getName() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Dataset
Returns the name of the dataset.
getName() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Dataset
Returns the name of the dataset.
getName(int) - Method in class keel.Algorithms.Instance_Generation.utilities.Parameters
Returns and specified name of a parameter.
getName() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractAttribute
Access to the attribute name
*
getName() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset
Get name of this dataset
getName() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IAttribute
Access to the attribute name
getName() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset
Get name of this dataset
getName() - Method in class keel.Algorithms.Rule_Learning.ART.Dataset
Returns the name of the dataset.
getName() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
Returns the name of the dataset.
getName() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
Returns the name of the dataset.
getName() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Dataset
Returns the name of the dataset.
getName() - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
Returns the name of the dataset.
getName() - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
It gets the attribute name
getName() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Dataset
Returns the name of the dataset.
getName(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
Returns and specified name of a parameter.
getName() - Method in class keel.Algorithms.Statistical_Tests.Shared.StatTest.InformationAboutClass
Returns the algorithm's name.
getName() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeVar
Gets the name of the variable
getName() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeVar
Gets the name of the variable
getName() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeVar
Gets the name of the variable
getName() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fuzzy
It returns the name of the fuzzy set
getName() - Method in class keel.Dataset.Attribute
It gets the attribute name
getName() - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
Gets the name of the object at the active layer
Currently, only layer 0 is used in KEEL
getName(int) - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
The name of the object at the layer indicated
getName() - Method in class keel.GraphInterKeel.experiments.Graph
Gets the name of this graph
getName() - Method in class keel.GraphInterKeel.experiments.UseCase
getNameClass() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Individual
Returns the string with the name of the class of the individual
getNameClass() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Individual
Returns the string with the name of the class of the individual
getNameClass() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Individual
Returns the string with the name of the class of the individual
getNameClassObj() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
Returns the name of the class of the target variable
getNameClassObj() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
Returns the name of the class of the target variable
getNameClassObj() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
Returns the name of the class of the target variable
getNameExperiment() - Method in class keel.GraphInterKeel.experiments.EducationalReport
Get name of the experiments
getNameObj(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
Method to get the name of the objective indicated
getNames() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
It returns the attribute labels for the input features
getNames() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Returns the name of the problem's variables
getNamesLength() - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
Gets the size of the names array
getNameVar(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
It returns the name of the variable in "pos"
getNameVar(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
It returns the name of the variable in "pos"
getNameVar(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
It returns the name of the variable in "pos"
getNameVar(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
It returns the name of the variable in "pos"
getNameVar(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
It returns the name of the variable in "pos"
getNameVar(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
It returns the name of the variable in "pos"
getNameVar(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
It returns the name of the variable in "pos"
getNameVar(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
It returns the name of the variable in "pos"
getNameVar(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
It returns the name of the variable in "pos"
getnAnts() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.Rule
It returns the number of antecedents of the rule
getnAnts() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
getnAnts() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
getnAnts() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
getnAnts() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
getnAnts() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
getnAnts() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
getnAnts() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
getNatributos() - Method in class keel.Algorithms.Rule_Learning.Prism.Muestra
Returns the number of attributes of the example
getNatributos() - Method in class keel.Algorithms.Rule_Learning.UnoR.Muestra
Returns the number of attributes of the example
getNatributos() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Muestra
Returns the number of attributes of the example
getNatributos() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Muestra
Returns the number of attributes of the example
getNattributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Instance
It returns the number of attributes of the example
getNattributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Instance
It returns the number of attributes of the example
getNAttributes() - Method in class keel.Algorithms.Hyperrectangles.EACH.Sample
Returns the number of attributes of the example
getNattributes() - Method in class keel.Algorithms.Rule_Learning.AQ.Instance
It returns the number of attributes of the example
getNattributes() - Method in class keel.Algorithms.Rule_Learning.CN2.Instance
It returns the number of attributes of the example
getNattributes() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Instance
It returns the number of attributes of the example
getNC() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.agentPerformance
getNC() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.agentPerformanceTraining
getNChildren() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
Returns the number of children of the root.
getNChildren() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Tree
Returns the number of children of the root.
getNChildren() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Tree
Returns the number of children of the root.
getNChildren() - Method in class keel.Algorithms.Rule_Learning.PART.Tree
Returns the number of children of the root.
getnclases() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnclases() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnclases() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnclases() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnclases() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getNClases() - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
Returns the number of classes of the problem
getNClases() - Method in class keel.Algorithms.Rule_Learning.Prism.Complejo
Returns the number of classes of the problem
getnclases() - Method in class keel.Algorithms.Rule_Learning.Prism.Dataset
Returns the total number of classes
getNClases() - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
Return the number of classes
getNClases() - Method in class keel.Algorithms.Rule_Learning.UnoR.Complejo
Return the number of classes
getnclases() - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
Returns the total number of classes
getnclases() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Dataset
It returns the total number of classes
getNClases() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Complejo
Return the number of classes
getnclases() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Dataset
It returns the total number of classes
getnClass() - Method in class keel.Algorithms.Rule_Learning.SRI.Instances
Returns the number of classes or output values.
getNClass() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
Returns the number of classes of the target variable
getNClass() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
Returns the number of classes of the target variable
getNClass() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
Return the number of classes
getNClass() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
Returns the number of classes of the target variable
getnClasses() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification).
getnClasses() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Dataset
It returns the total number of classes
getnClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Dataset
It returns the total number of classes
getNClasses() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Returns the total number of classes
getnClasses() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnclasses() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.ProcDataset
Returns the number of classes.
getnclasses() - Method in class keel.Algorithms.Neural_Networks.RBFN.ProcDataset
Returns the number of classes.
getnclasses() - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.ProcDataset
Returns the number of classes.
getnclasses() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.ProcDataset
Returns the number of classes.
getnclasses() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.ProcDataset
Returns the number of classes.
getnclasses() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.ProcDataset
Returns the number of classes.
getnclasses() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.ProcDataset
Returns the number of classes.
getNclasses() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
Returns the number of classes for classification problems.
getnClasses() - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getNclasses() - Method in class keel.Algorithms.Rule_Learning.AQ.Complex
It returns the number of classes
getnClasses() - Method in class keel.Algorithms.Rule_Learning.AQ.Dataset
It returns the total number of classes
getNclasses() - Method in class keel.Algorithms.Rule_Learning.CN2.Complex
It returns the number of classes
getnClasses() - Method in class keel.Algorithms.Rule_Learning.CN2.Dataset
It returns the total number of classes
getnClasses() - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getNClasses() - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Returns the total number of classes
getnClasses() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getnClasses() - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getNclasses() - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
Returns the number of classes for classification problems.
getnClasses() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Dataset
It returns the total number of classes
getnCond() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
Obtains the number of different conditions used in this rule antecedent
getnCond() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
Obtains the number of different conditions used in this rule antecedent
getnCons() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
getnData() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
It gets the size of the data-set.
getnData() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
It gets the size of the data-set
getNData() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Return the number of examples
getnData() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
It gets the size of the data-set
getndata() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.ProcDataset
Returns the number of examples.
getndata() - Method in class keel.Algorithms.Neural_Networks.RBFN.ProcDataset
Returns the number of examples.
getndata() - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.ProcDataset
Returns the number of examples.
getndata() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.ProcDataset
Returns the number of examples.
getndata() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.ProcDataset
Returns the number of examples.
getndata() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.ProcDataset
Returns the number of examples.
getndata() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.ProcDataset
Returns the number of examples.
getNdata() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
Returns the size of input data.
getnData() - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
It gets the size of the data-set
getNData() - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Returns the number of examples
getnData() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
It gets the size of the data-set
getnData() - Method in class keel.Algorithms.Rule_Learning.SRI.Instances
Returns the number of examples.
getnData() - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
It gets the size of the data-set
getNdata() - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
Returns the size of input data.
getnData() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
It gets the size of the data-set
getNData() - Method in class keel.GraphInterKeel.datacf.util.Dataset
Return example/patterns number
getNDatasets() - Static method in class keel.GraphInterKeel.statistical.Configuration
Gets the number of data sets of the test
getndatos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.myDataset
It gets the size of the data-set
getndatos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.myDataset
It gets the size of the data-set
getndatos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.myDataset
It gets the size of the data-set
getndatos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.myDataset
It gets the size of the data-set
getndatos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Dataset
It returns the number of examples
getNdatos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
It gets the size of the data-set
getndatos() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.myDataset
It gets the size of the data-set
getndatos() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Dataset
It returns the number of examples
getndatos() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.OpenDataset
Gets the number of examples
getndatos() - Method in class keel.Algorithms.Neural_Networks.gann.OpenDataset
Access to ndatos
getndatos() - Method in class keel.Algorithms.Neural_Networks.gmdh.OpenDataset
Gets the number of examples
getndatos() - Method in class keel.Algorithms.Neural_Networks.net.OpenDataset
Gets the number of examples
getndatos() - Method in class keel.Algorithms.Rule_Learning.AQ.Dataset
It returns the number of examples
getndatos() - Method in class keel.Algorithms.Rule_Learning.CN2.Dataset
It returns the number of examples
getndatos() - Method in class keel.Algorithms.Rule_Learning.Prism.Dataset
Return the number of examples
getndatos() - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
Return the number of examples
getndatos() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Dataset
It returns the number of examples
getndatos() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Dataset
It returns the number of examples
getndatos() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Dataset
It returns the number of examples
getNearest(Prototype, PrototypeSet, boolean) - Static method in class keel.Algorithms.Instance_Generation.utilities.KNN.KNN
Return the nearest prototype to another with the same of different class
getNearest(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.utilities.KNN.KNN
Return the nearest prototype to another in a set.
getNearest(Prototype, PrototypeSet, boolean) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.KNN.KNN
Return the nearest prototype to another with the same of different class
getNearest(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.KNN.KNN
Return the nearest prototype to another in a set.
getNearestNeighbors(Prototype, PrototypeSet, int) - Static method in class keel.Algorithms.Instance_Generation.utilities.KNN.KNN
Return some nearest prototypes to another with different class
getNearestNeighbors(Prototype, PrototypeSet, int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.KNN.KNN
Return some nearest prototypes to another with different class
getNearestNeighborsWithDifferentClassAs(Prototype, PrototypeSet, int) - Static method in class keel.Algorithms.Instance_Generation.utilities.KNN.KNN
Return some nearest prototypes to another with different class
getNearestNeighborsWithDifferentClassAs(Prototype, PrototypeSet, int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.KNN.KNN
Return some nearest prototypes to another with different class
getNearestNeighborsWithSameClassAs(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.utilities.KNN.KNN
Return the nearest prototypes to another with the same class
getNearestNeighborsWithSameClassAs(Prototype, PrototypeSet, int) - Static method in class keel.Algorithms.Instance_Generation.utilities.KNN.KNN
Return some nearest prototypes to another with the same class
getNearestNeighborsWithSameClassAs(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.KNN.KNN
Return the nearest prototypes to another with the same class
getNearestNeighborsWithSameClassAs(Prototype, PrototypeSet, int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.KNN.KNN
Return some nearest prototypes to another with the same class
getNearestWithDifferentClassAs(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.utilities.KNN.KNN
Return the nearest prototype to another with the same class
getNearestWithDifferentClassAs(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.KNN.KNN
Return the nearest prototype to another with the same class
getNearestWithSameClassAs(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.utilities.KNN.KNN
Return the nearest prototype to another with the same class.
getNearestWithSameClassAs(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.KNN.KNN
Return the nearest prototype to another with the same class.
getNegationBit() - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Gene
Obtains the status of the negation bit
getNegative(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Score
Returns the number of negative instances of the dataset
that contains the value at a given position of the vector.
getNegative(double) - Method in class keel.Algorithms.Rule_Learning.Ripper.Score
Returns the number of negative instances that contains the given value.
getNegative() - Method in class keel.Algorithms.Rule_Learning.Ripper.Trio
Returns the number of negative instances of a given dataset that contains the value.
getNegative(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Score
Returns the number of negative instances of the dataset
that contains the value at a given position of the vector.
getNegative(double) - Method in class keel.Algorithms.Rule_Learning.Slipper.Score
Returns the number of negative instances that contains the given value.
getNegative() - Method in class keel.Algorithms.Rule_Learning.Slipper.Trio
Returns the number of negative instances of a given dataset that contains the value.
getNegativeEta() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
Returns the negative eta value, that is, the increment
of the step size at each ephoc
getNegEx() - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.pnPair
It returns the negEx value
getNeighbourSet(double[], int) - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Calculates the neighbour of one test example
getnentradas() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.myDataset
It gets the number of input attributes of the data-set
getnentradas() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.myDataset
It gets the number of input attributes of the data-set
getnentradas() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.myDataset
It gets the number of input attributes of the data-set
getnentradas() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.myDataset
It gets the number of input attributes of the data-set
getnentradas() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Dataset
It returns the number of input variables
getnentradas() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.myDataset
It gets the number of input attributes of the data-set
getnentradas() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Dataset
It returns the number of input variables
getnentradas() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.OpenDataset
Gets the number of inputs
getNEntradas() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.SMOTE_RSB
getnentradas() - Method in class keel.Algorithms.Neural_Networks.gann.OpenDataset
Access to nentradas
getnentradas() - Method in class keel.Algorithms.Neural_Networks.gmdh.OpenDataset
Gets the number of inputs
getnentradas() - Method in class keel.Algorithms.Neural_Networks.net.OpenDataset
Gets the number of inputs
getnentradas() - Method in class keel.Algorithms.Rule_Learning.AQ.Dataset
It returns the number of input variables
getnentradas() - Method in class keel.Algorithms.Rule_Learning.CN2.Dataset
It returns the number of input variables
getnentradas() - Method in class keel.Algorithms.Rule_Learning.Prism.Dataset
Return the number of in-put variables
getnentradas() - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
Return the number of input variables
getnentradas() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Dataset
It returns the number of input variables
getnentradas() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Dataset
It returns the number of input variables
getnentradas() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Dataset
It returns the number of input variables
getnetConf() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.AssociationRule
It returns the Netconf of an association rule
getNetConf() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AssociationRule
It returns the netconf of an association rule
getNetConf() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
getNetConf() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
getNetConf() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.AssociationRule
It returns the netconf of an association rule
getNetConf() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
It returns the netconf of an association rule
getNetConf() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
getNetConf() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
getNetConf() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
getNetConf() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
getNetConf() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
getNetConf() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
getNetConf() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
getNetConf() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
getNeuralNetType() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
Returns a neural net type
getNeuron(int) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.ILayer
Returns a neuron of the layer, using its index
getNeuron(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputLayer
Returns a neuron of the layer using its index
getNeuron(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
Returns a neuron of the layer using its index
getNeuronTypes(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
Returns an array of neuron types of a concrete layer
(this is an hibrid layer)
getNeuronTypes(int) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.INeuralNetSpecies
Returns an array of neuron types of a concrete layer
getNEval() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
Methods to get the number of evaluation to perform in an iteration of the GA
getNEval() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
Gets the number of evalutions of the algorithms
getNEval() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
Returns the number of evaluation when the individual was created
getNEval() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Methods to get the number of evaluation to perform in an iteration of the GA
getNewHeader() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
It does return a new header (not necessary the same header as the
input file one).
getNewHeader() - Method in class keel.Dataset.InstanceSet
It does return a new header (not necessary the same header as the
input file one).
getNewInstancesIndex() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsCuttoff
getNewRule(int) - Method in class keel.Algorithms.Rule_Learning.AQ.ruleSet
It returns the rule as a new copy
getNewRule(int) - Method in class keel.Algorithms.Rule_Learning.CN2.ruleSet
It returns the rule as a new copy
getNewTree(Dataset) - Method in class keel.Algorithms.Decision_Trees.C45.Tree
Function to create a new tree.
getNewTree(Dataset) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Tree
Function to create a new tree.
getNewTree(MyDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
Function to create a new tree.
getNewTree(Dataset) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Tree
Function to create a new tree.
getNewTree(Dataset) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Tree
Function to create a new tree.
getNewTree(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Tree
Function to create a new tree.
getNewTree(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Tree
Function to create a new tree.
getNewTree(MyDataset) - Method in class keel.Algorithms.Rule_Learning.PART.Tree
Function to create a new tree.
getNewTree(Dataset) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
Function to create a new tree.
getNewValuesInTest() - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
It returns a vector with all new nominal values read in test.
getNewValuesInTest() - Method in class keel.Dataset.Attribute
It returns a vector with all new nominal values read in test.
getNEx() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableDat
Returns the number of examples of the DataSet
getNEx() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableDat
Returns the number of examples of the DataSet
getNEx() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableDat
Returns the number of examples of the DataSet
getNext(int) - Method in class keel.Algorithms.SVM.SMO.supportVector.SMOset
Gets the next element in the set. -1 gets the first one.
getNextAsDouble() - Method in class keel.Algorithms.Instance_Generation.utilities.Parameters
Return next parameter as double.
getNextAsDouble() - Method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
Return next parameter as double.
getNextAsInt() - Method in class keel.Algorithms.Instance_Generation.utilities.Parameters
Return next parameter as int.
getNextAsInt() - Method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
Return next parameter as int.
getNextAsString() - Method in class keel.Algorithms.Instance_Generation.utilities.Parameters
Return next parameter as string.
getNextAsString() - Method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
Return next parameter as string.
getNextAsStringArray() - Method in class keel.Algorithms.Instance_Generation.utilities.Parameters
Return next parameter as string.
getNextAsStringArray() - Method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
Return next parameter as string.
getNextToken(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.C45.Algorithm
Puts the tokenizer in the first token of the next line.
getNextToken(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
Puts the tokenizer in the first token of the next line.
getNextToken(StreamTokenizer) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
Puts the tokenizer in the first token of the next line.
getNextToken() - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
getNextToken() - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserTokenManager
getNextToken(StreamTokenizer) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
Puts the tokenizer in the first token of the next line.
getNextToken(StreamTokenizer) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
Puts the tokenizer in the first token of the next line.
getNextToken(StreamTokenizer) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
Gets next token, checking for a premature and of line.
getNextToken(StreamTokenizer) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Algorithm
Puts the tokenizer in the first token of the next line.
getNextToken(StreamTokenizer) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Algorithm
Puts the tokenizer in the first token of the next line.
getNextToken(StreamTokenizer) - Method in class keel.Algorithms.Rule_Learning.PART.Algorithm
Puts the tokenizer in the first token of the next line.
getNextToken() - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
getNextToken() - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParserTokenManager
getNextToken() - Static method in class keel.Dataset.DataParser
getNextToken() - Static method in class keel.Dataset.DataParserTokenManager
getnFeatures() - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
getnFeatures() - Static method in class keel.Algorithms.RST_Learning.RSTData
getNGenerations() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
getNGenes() - Method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.Chromosome
Get the number of genes selected
getNiche() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
getNiche() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierADI
getNiche() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierGABIL
getNiche() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierUBR
getNiche() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
getNiche() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierADI
getNiche() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierGABIL
getnInputs() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
It gets the number of input attributes of the data-set.
getnInputs() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
It gets the number of input attributes of the data-set
getNInPuts() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Return the number of in-put variables
getnInputs() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
It gets the number of input attributes of the data-set
getninputs() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.ProcDataset
Returns the number of input attributes.
getninputs() - Method in class keel.Algorithms.Neural_Networks.RBFN.ProcDataset
Returns the number of input attributes.
getninputs() - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.ProcDataset
Returns the number of input attributes.
getninputs() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.ProcDataset
Returns the number of input attributes.
getninputs() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.ProcDataset
Returns the number of input attributes.
getninputs() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.ProcDataset
Returns the number of input attributes.
getninputs() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.ProcDataset
Returns the number of input attributes.
getNinputs() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
Returns the number of input variables.
getnInputs() - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
It gets the number of input attributes of the data-set
getnInputs() - Method in class keel.Algorithms.Rule_Learning.SRI.Instances
Returns the number of attributes of the dataset.
getnInputs() - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
It gets the number of input attributes of the data-set
getNinputs() - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
Returns the number of input variables.
getnInputs() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
It gets the number of input attributes of the data-set
getNInputs() - Method in class keel.GraphInterKeel.datacf.util.Dataset
Return input variable number
getnInstances() - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
getNInstancesI(int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
Gets the number of instances of each class that there are in the dataset
getNInstancesI(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
Gets the number of instances of each class that there are in the dataset
getnIntervals() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.DataB
getnIntervals() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.DataB
getnJobs() - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
This method get number of jobs
getNLabel() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
Returns the number of labels for all the continuous variables
getNLabel() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
Returns the number of labels for all the continuous variables
getNLabel() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
Returns the number of labels for all the continuous variables
getnLabels() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.DataBase
It return the whole array of number of labels for every attribute
getnLabels() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.DataBase
It return the whole array of number of labels for every attribute
getnLabels() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.DataBase
It return the whole array of number of labels for every attribute
getnLabels() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.DataBase
It return the whole array of number of labels for every attribute
getnLabels() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.DataBase
It return the whole array of number of labels for every attribute
getnLabels() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.DataBase
It return the whole array of number of labels for every attribute
getnLabels() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.DataBase
It return the whole array of number of labels for every attribute
getnLabels() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.FuzzyAntecedent
Obtains the number of labels used in this fuzzy antecedent as condition
getnLabels() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.DataBase
getnLabels() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.FuzzyAntecedent
Obtains the number of labels used in this fuzzy antecedent as condition
getNLabels() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeVar
Gets the number of labels used by the continuous variable
getNLabels() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeVar
Gets the number of labels used by the continuous variable
getNLabels() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeVar
Gets the number of labels used by the continuous variable
getnLabels() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.DataBase
Returns the number of labels of each variable.
getNLabelsOfAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
Outputs the number of labels for all attributes in the dataset.
getnLabelsReal() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.DataBase
Returns the number of total real labels held by the input attributes.
getnLabelsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.DataBase
getnLabelsReal() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.DataBase
Returns the number of real labels
getNLabelVar(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
Returns the number of labels of the var indicated by "pos"
getNLabelVar(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
Returns the number of labels of the var indicated by "pos"
getNLabelVar(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
Returns the number of labels of the var indicated by "pos"
getNN(double[], int) - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Calculates the k examples most near of the set
getNObjectives() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
Retuns the number of objectives used
getNObjectives(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
Gets the name of the objective
getnoCruce() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
getnoCruce() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
getnoCruce() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
getnoCruce() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
getnoCruceR() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
getnoCruceR() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
getNode(int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
Searches a descendant node from this node with a specific id
getNode(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
Searches a descendant node from this node with a specific id
getNode() - Method in class keel.GraphInterKeel.experiments.Joint
getNodeAt(int) - Method in class keel.GraphInterKeel.experiments.Graph
Returns the node at position indicated
getNodeColor() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.InfoNode
Returns the Color of the node.
getNodeError() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
Obtains the error of a leave node in a the tree from all the instances in the leaf in
a two number array
getNodeInfo() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.InfoNode
Returns Info printed in the node
getNodeInfoToolTipText() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.InfoNode
Returns Text showed when moving the mouse over a node.
getNodes() - Method in class keel.GraphInterKeel.experiments.Graph
Gets all the nodes from this graph
getNodeSize() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.InfoNode
Returns Size of the node.
getNOfHiddenLayers() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
Returns number of hidden layers of the neural nets
getNOfHiddenLayers() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.INeuralNetSpecies
Returns number of hidden layers of the neural nets
getNofhlayers() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
Returns the number of hidden layers of the neural net
getNofhlayers() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuralNet
Returns the current number of hidden layers of the neural net
getNofhneurons() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
Returns the number of hidden neurons of this neural net
getNofhneurons() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuralNet
Returns the number of hidden neurons of this neural net
getNOfInputs() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
Returns number of inputs of the neural nets
getNofinputs() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
Returns the number of inputs of the observations stored in the data set
getNOfInputs() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.INeuralNetSpecies
Returns number of inputs of the neural nets
getNoflinks() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
Returns the number of effective links of this neural net
getNoflinks() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuralNet
Returns the number of effective links of this neural net
getNoflinks() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
Returns the number of effective links of the layer
getNoflinks() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
Returns the number of effective links of the neuron
getNofneurons() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.ILayer
Returns the number of neurons of this layer
getNofneurons() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputLayer
Returns the number of neurons of this layer
getNofneurons() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
Returns the number of neurons of this layer
getNofobservations() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
Returns the number of observations stored in the data set
getNOfOutputs() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
Returns number of outputs of the neural nets
getNofoutputs() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
Returns the number of outputs of the observations stored in the data set
getNOfOutputs() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.INeuralNetSpecies
Returns number of outputs of the neural nets
getNOfPartitions() - Method in class keel.GraphInterKeel.datacf.partitionData.HoldOutOptionsJDialog
Gets the number of partitions to be performed, i.e. the number of times
that a random division using the configuration selected is going
to be performed.
getNofvariables() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
Returns the number of variables stored in the data set
getNogbest() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
Returns current number of generations without
improving best fitness
getNogmean() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
Returns current number of generations without
improving mean fitness
getNoisyInstances() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ConjGradNN
Returns a vector with the noisy instances.
getNoisyInstances() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.GCNet
getNombres() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
getNominales() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Dataset
Returns an array of booleans that indicates for each variable wether it is nominal or not
getNominals() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
It computes an array that stores a boolean value that indicates if a given attribute
has nominal type or not
getNominals() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
It computes an array that stores a boolean value that indicates if a given attribute
has nominal type or not
getNominals() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
It computes an array that stores a boolean value that indicates if a given attribute
has nominal type or not
getNominals() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
It computes an array that stores a boolean value that indicates if a given attribute
has nominal type or not
getNominalValue(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.InstanceWrapper
getNominalValue(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.InstanceWrapper
getNominalValue(int) - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
It returns de ith value of that nominal attribute
getNominalValue(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
It returns the nominal value "id_val" within the attribute "id_attr"
getNominalValue(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
It returns the nominal value "id_val" within the attribute "id_attr"
getNominalValue(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
It returns the nominal value "id_val" within the attribute "id_attr"
getNominalValue(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
It returns the nominal value "id_val" within the attribute "id_attr"
getNominalValue(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
It returns the nominal value "id_val" within the attribute "id_attr"
getNominalValue(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
It returns the nominal value "id_val" within the attribute "id_attr"
getNominalValue(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
It returns the nominal value "id_val" within the attribute "id_attr"
getNominalValue(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
It returns the nominal value "id_val" within the attribute "id_attr"
getNominalValue(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
It returns the nominal value "id_val" within the attribute "id_attr"
getNominalValue(int) - Method in class keel.Dataset.Attribute
It returns de ith value of that nominal attribute
getNominalValues() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.InstanceWrapper
getNominalValues() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.InstanceWrapper
getNominalValuesList() - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
Returns all the possible nominal values
getNominalValuesList() - Method in class keel.Dataset.Attribute
Returns all the possible nominal values
getNormalizedInputValues() - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
It does return the normalized values in a double[].
getNormalizedInputValues(InstanceAttributes) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
Obtains the normalized input attributes from a InstanceAttribute definition
getNormalizedInputValues() - Method in class keel.Dataset.Instance
It does return the normalized values in a double[].
getNormalizedInputValues(InstanceAttributes) - Method in class keel.Dataset.Instance
Obtains the normalized input attributes from a InstanceAttribute definition
getNormalizedOutputValues() - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
It does return the normalized values in a double[].
getNormalizedOutputValues(InstanceAttributes) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
Obtains the normalized output attributes from a InstanceAttribute definition
getNormalizedOutputValues() - Method in class keel.Dataset.Instance
It does return the normalized values in a double[].
getNormalizedOutputValues(InstanceAttributes) - Method in class keel.Dataset.Instance
Obtains the normalized output attributes from a InstanceAttribute definition
getNormalizer() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
Returns the normalizer associated to the trainData DataSet
getNotClassified(int) - Method in class keel.Algorithms.Statistical_Tests.Shared.StatTest.InformationAboutClass
Sets the number of not classified examples with the one given.
getNotClassified() - Method in class keel.Algorithms.Statistical_Tests.Shared.StatTest.InformationAboutClass
Returns the number of not classified examples
getnOutput() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
It gets the number of output variables
getNOutputFiles() - Method in class keel.Algorithms.Rule_Learning.Ripper.parseParameters
It returns the number of output files
getnOutputs() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
It gets the number of output attributes of the data-set (for example number of classes in classification)
getNOutputs() - Method in class keel.GraphInterKeel.datacf.util.Dataset
Return output variable number
getNParameters() - Method in class keel.Algorithms.Rule_Learning.Ripper.parseParameters
It returns the number of parameters
getNParticion() - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
This method return number of th actual partition
getNRealPartition() - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
Get number partition of a experiment (not global partition)
getNreglasTotal() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
getNreglasTotal() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
getNreglasTotal() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
getNreglasTotal() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
getNreglasTotal() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
getNreglasTotal() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
getnReplace() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
It returns the size of the Replace list in the rule.
getnReplace() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
It returns the size of the Replace list in the rule
getnsalidas() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.OpenDataset
Gets the number of outputs
getnsalidas() - Method in class keel.Algorithms.Neural_Networks.gann.OpenDataset
Access to nsalidas
getnsalidas() - Method in class keel.Algorithms.Neural_Networks.gmdh.OpenDataset
Gets the number of outputs
getnsalidas() - Method in class keel.Algorithms.Neural_Networks.net.OpenDataset
Gets the number of outputs
getnSelected() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Individual
Returns the number of genes selected.
getnSelected() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Individual
getnSV(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_model
getnSV(int) - Method in class org.libsvm.svm_model
getnTrans() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
It gets the size of the data-set
getnTrans() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
It gets the size of the data-set
getNuevaRegla(int) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.ConjReglas
Returns a rule as a copy of the list
getNumAliveRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
getNumAliveRules() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PerformanceAgent
getNumAliveRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
getNumAliveRules() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PerformanceAgent
getNumArguments() - Method in interface keel.Algorithms.Preprocess.Missing_Values.EM.util.MultivariateFunction
get number of arguments
getNumAtr() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
Gets the number of attributes that the dataset has
getNumAtr() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
Gets the number of attributes that the dataset has
getNumAtributos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
getNumAttribute(String) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Calculate
It returns the number (position) of the attribute name indicated.
getNumAttribute(String) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Calculate
It returns the number (position) of the attribute name indicated.
getNumAttribute(String) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Calculate
It returns the number (position) of the attribute name indicated.
getNumAttributes() - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
It return the total number of attributes in the API
getNumAttributes() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
It return the total number of attributes in the API
getNumAttributes() - Static method in class keel.Dataset.Attributes
It return the total number of attributes in the API
getNumAttributes() - Method in class keel.Dataset.InstanceAttributes
It return the total number of attributes in the API
getNumber() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Cluster
Gets the number of this cluster
getNumberAntecedents() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
Returns the number of antecedents of the rules.
getNumberCategories() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.CategoricalAttribute
Access to Number of categories
getNumberExamples() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
Returns the number of examples managed.
getNumberFeatures() - Method in class keel.Algorithms.MIL.AbstractMIAlgorithm
getNumberMatches() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
Gets the number of matches of the classifier.
getNumberMatches() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
Gets the number of matches of the classifier.
getNumberOfExamples() - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Environment
It returns the number of examples of the database.
getNumberOfExamples() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.MPEnvironment
It returns the number of examples of the database.
getNumberOfExamples() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.SSFileEnvironment
It return the number of the examples of the database.
getNumberOfExamples() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.DECEnvironment
It returns the number of examples of the database.
getNumberOfExamples() - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Environment
It returns the number of examples of the database.
getNumberOfExamples() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MPEnvironment
It returns the number of examples of the database.
getNumberOfExamples() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MSEnvironment
It returns the number of examples of the database.
getNumberOfExamples() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.PAREnvironment
It returns the number of examples of the database.
getNumberOfExamples() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.POSEnvironment
It returns the number of examples of the database.
getNumberOfExamples() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.SSFileEnvironment
It return the number of the examples of the database.
getNumberOfFuzzyAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.FuzzyDataset
It returns the number of fuzzy attributes composing a fuzzy dataset
getNumberOfFuzzyAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.FuzzyDataset
It returns the number of fuzzy attributes composing a fuzzy dataset
getNumberOfFuzzyAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.FuzzyDataset
It returns the number of fuzzy attributes composing a fuzzy dataset
getNumberOfFuzzyRegions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.FuzzyAttribute
It returns the number of fuzzy regions composing a fuzzy attribute
getNumberOfFuzzyRegions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.FuzzyDataset
It returns the number of fuzzy regions of each involved fuzzy attributes
getNumberOfFuzzyRegions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.FuzzyAttribute
It returns the number of fuzzy regions composing a fuzzy attribute
getNumberOfFuzzyRegions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.FuzzyDataset
It returns the number of fuzzy regions of each involved fuzzy attributes
getNumberOfFuzzyRegions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.FuzzyAttribute
It returns the number of fuzzy regions composing a fuzzy attribute
getNumberOfFuzzyRegions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.FuzzyDataset
It returns the number of fuzzy regions of each involved fuzzy attributes
getNumberofJobFinished() - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
Get the number of Jobs that is finished actually
getNumberOfNodes() - Static method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TtreeNode
It returns the number of nodes in a T-tree
getNumberOfNodes() - Static method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.TtreeNode
It returns the number of nodes.
getNumberOfNodes() - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.TtreeNode
It returns the number of nodes.
getNumberOfOneFrequentItemsets() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.AlcalaetalProcess
It returns the number of 1-Frequent Itemsets
getNumberOfOneFrequentItemsets() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.FuzzyAprioriProcess
It returns the number of 1-Frequent Itemsets
getNumberOfOneFrequentItemsets() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.GeneticFuzzyAprioriProcess
It returns the number of 1-Frequent Itemsets
getNumberOfOneFrequentItemsets() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.GeneticFuzzyAprioriDCProcess
It returns the number of 1-Frequent Itemsets
getNumberOfSubfronts() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Ranking
Returns the total number of subFronts founds.
getNumberRules() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
Returns the number of rules of the system.
getNumberViolatedConstraints() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
Returns the numberOfViolatedConstraints of the individual
getNumBins() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Histogram
Returns the number of the bins.
getNumBits() - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Gene
Obtains the number of bits (computed from the attribute associated)
getNumClass() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Individual
Returns the number of the class of the individual
getNumClass() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Individual
Returns the number of the class of the individual
getNumClass() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Individual
Returns the number of the class of the individual
getNumClasses() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
Gets the number of different classes that there are in the dataset
getNumClasses() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
Gets the number of different classes in the node
getNumClasses() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
Gets the number of different classes that there are in the dataset
getNumClasses() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Node
Gets the number of different classes in the node
getNumClassifiers() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_aggregated
getNumClassObj() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
Returns the number of the class of the target variable
getNumClassObj() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
Returns the number of the class of the target variable
getNumClassObj() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
Returns the number of the class of the target variable
getNumCMAR_CRs() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
Returns the number of generated CMAR classification rules.
getNumCond() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
Returns the number of possible conditions.
getNumCond() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
Returns the number of possible conditions.
getNumCond() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
Returns the number of possible conditions.
getNumConsequents() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Classifier.FuzzyClassifier
This method returns the
RuleBase
number of consequents.
getNumCRs() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
Returns the number of generated rules (usually used in
conjunction with classification rule mining algorithms rather than ARM
algorithms).
getNumDimensions() - Method in class keel.Algorithms.Discretizers.UCPD.PCA
It returns the number of dimensions
getNumDiscretizers() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.DiscretizationManager
getNumDiscretizers() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.DiscretizationManager
getNumEjemplos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
getNumElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.VAList
This method returns the total of elements ever added to this list.
getNumElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.VAList
This method returns the total of elements ever added to this list.
getNumElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.VAList
This method returns the total of elements ever added to this list.
getNumElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.VAList
This method returns the total of elements ever added to this list.
getNumElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.VAList
This method returns the total of elements ever added to this list.
getNumElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.VAList
This method returns the total of elements ever added to this list.
getNumElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.VAList
This method returns the total of elements ever added to this list.
getNumElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.VAList
This method returns the total of elements ever added to this list.
getNumerosity() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Classifier
Returns the numerosity of the classifier.
getNumerosity() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
Returns the numerosity of the classifier.
getNumerosity() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
Returns the numerosity of the classifier.
getNumerosity() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
Returns the numerosity of the classifier.
getNumError() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.agentPerformance
getNumErrors() - Method in class keel.Algorithms.Rule_Learning.Swap1.FormatErrorKeeper
Returns the number of errors.
getNumErrors() - Method in class keel.Dataset.FormatErrorKeeper
Returns the number of errors.
getNumExamples() - Method in class keel.Algorithms.Hyperrectangles.EACH.Hyperrectangle
getNumFolds() - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
Get the value of NumFolds.
getNumFolds() - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
Get the value of NumFolds.
getNumFolds() - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
Get the value of NumFolds.
getNumFolds() - Method in class keel.Algorithms.SVM.SMO.SMO
Get the value of numFolds.
getNumFreqSets() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
Returns number of frequent/large (supported) sets in T-tree.
getNumFreqSets() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.TotalSupportTree
Commences the process of counting and returning number of supported
nodes in the T-tree.
getNumFreqSets() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.TotalSupportTree
Commences the process of counting and returning number of supported
nodes in the T-tree.
getNumGenes() - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Chromosome
the number of genes of this individual
getNumGenes() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Chromosome
Gets the number of genes of this chromosome
getNumGenes() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Cochromosome
Gets the TOTAL number of genes across all chromosomes in this object
getNumGenes(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Population
Gets the number of genes of one subpopulation
getNumGenes() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Subpopulation
Gets the TOTAL number of genes of this subpopulation
getNumIndiv() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Population
Return the number of individuals of the population
getNumInputs() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGPRegSym
Returns the number of inputs
getNumInputs() - Method in class keel.GraphInterKeel.experiments.Parameters
return number of input connections
getNumIns() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
Gets the number of instances that the dataset has
getNumIns() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
Gets the number of instances that the dataset has
getNumInstances() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.instanceSet
getNumInstances() - Method in class keel.Algorithms.Rule_Learning.Riona.Selector
Returns the numebr of instances
getNumInstances() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
It returns the number of instances.
getNumInstances() - Method in class keel.Dataset.InstanceSet
It returns the number of instances.
getNumInstancesOfIteration() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.instanceSet
getNumInstancesOfIteration() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Windowing
getNumInstancesOrig() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.instanceSet
getNumIntervals(int) - Method in class keel.Algorithms.Discretizers.Basic.Discretizer
Returns the number of intervals in the given attribute.
getNumIntervals(int) - Method in class keel.Algorithms.Discretizers.Chi2_Discretizer.Discretizer
Returns the number of intervals in the given attribute.
getNumIntervals(int) - Method in class keel.Algorithms.Discretizers.ExtendedChi2_Discretizer.Discretizer
Returns the number of intervals in the given attribute.
getNumIntervals(int) - Method in class keel.Algorithms.Discretizers.ModifiedChi2_Discretizer.Discretizer
Returns the number of intervals in the given attribute.
getNumIntervals(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Basic.Discretizer
getNumIntervals(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Discretizer
getNumItemsClassI(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Node
Gets the number of items that belongs to class i
getNumKO() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.agentPerformanceTraining
getNumLiterals() - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Literals
It returns the number the literals
getNumNC() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.agentPerformance
getNumNegExamples(Complex) - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Calculates the number of negative examples that match with the rule
getNumNiches() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
getNumNiches() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierADI
getNumNiches() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierGABIL
getNumNiches() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierUBR
getNumNiches() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
getNumNiches() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierADI
getNumNiches() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierGABIL
getNumNodes() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
Gets the number of internal nodes from this node and its descendants.
getNumNodes() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
Gets the number of internal nodes from this node and its descendants.
getNumNominalValues() - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
It returns the number of different values that can take a nominal attribute.
getNumNominalValues(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
It returns the number of different values that can take a nominal attribute.
getNumNominalValues() - Method in class keel.Dataset.Attribute
It returns the number of different values that can take a nominal attribute.
getNumObjectives() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
Gets the number of objectives
getNumObjectives() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.QualityMeasures
Returns the num_objetivos of the individual
getNumOfFeatures() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
getNumOfGenerations() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
getNumOfRuns() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
getNumOK() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.agentPerformanceTraining
getNumOneFrequentItemsets() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Chromosome
It returns the number of 1-frequent itemsets of a chromosome
getNumOneFrequentItemsets() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Chromosome
It returns the number of 1-frequent itemsets of a chromosome
getNumOneFrequentItemsets() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Chromosome
It returns the number of 1-frequent itemsets of a chromosome
getNumOutputs() - Method in class keel.GraphInterKeel.experiments.Parameters
return number of extra outputs
getNumOutputValue() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
It returns the number of different values that can take the class.
getNumParameters() - Method in class keel.GraphInterKeel.experiments.Parameters
Gets the number of parameters
getNumPos() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.agentPerformanceTraining
getNumPosExamples(Complex) - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Calculates the number of positive examples the math with the rule
getNumPtreeNodes() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.PartialSupportTree
Gets number of nodes in P-tree.
getNumRegisters() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Node
Gets the number of different registers of data that there are in the node
getNumRules() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.FuzzyRuleSet
This method returns the number of rules of this Rule Set
getNumRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Cochromosome
Gets the number of rules (chromosomes)
getNumRules(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Population
Gets the number of rules of the specified subpopulation
getNumRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Subpopulation
Gets the number of rules of this subpopulation
getNumRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
getNumRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierADI
getNumRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierGABIL
getNumRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierUBR
getNumRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
getNumRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierADI
getNumRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierGABIL
getNumRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ruleOrderAgent
getNumSupOneItemSets() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
Gets number of supported attributess (note this is not necessarily
the same as the number of columns/attributes in the input set) plus the
number of classifiers.
getNumSupOneItemSets() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
Gets number of supported single item sets (note this is not necessarily
the same as the number of columns/attributes in the input set).
getNumSupOneItemSets() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
Gets number of supported single item sets (note this is not necessarily
the same as the number of columns/attributes in the input set).
getNumSupOneItemSets() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
Gets number of supported single item sets (note this is not necessarily
the same as the number of columns/attributes in the input set).
getNumTotal() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.agentPerformanceTraining
getNumVA() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.VAList
This method gives the number of VA elements stored (i.e. the number of different values)
getNumVA() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.VAList
This method gives the number of VA elements stored (i.e. the number of different values)
getNumVA() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.VAList
This method gives the number of VA elements stored (i.e. the number of different values)
getNumVA() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.VAList
This method gives the number of VA elements stored (i.e. the number of different values)
getNumVA() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.VAList
This method gives the number of VA elements stored (i.e. the number of different values)
getNumVA() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.VAList
This method gives the number of VA elements stored (i.e. the number of different values)
getNumVA() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.VAList
This method gives the number of VA elements stored (i.e. the number of different values)
getNumVA() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.VAList
This method gives the number of VA elements stored (i.e. the number of different values)
getNumValues() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Returns for each attribute the number of different values
getNumValues() - Method in class keel.Algorithms.Hyperrectangles.EACH.Selector
Returns the number of values for this selector
getNumValues() - Method in class keel.Algorithms.Rule_Learning.Riona.Selector
Returns the number of values
getNumValues() - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
Returns for each attribute the number of different values
getNumValues() - Method in class keel.Algorithms.Rule_Learning.UnoR.Interval
Returns the number of values in it.
getNumValues2() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Returns for each attribute the number of different values
getNumValues2() - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Returns for each attributes the number of values for the set
getNumValues2() - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
Returns for each attribute the number of different values
getNumVar() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Individual
Returns the number of variables of the rule (including the consequent)
getNumVar() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Individual
Returns the number of variables of the rule (including the consequent)
getNumVar() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Individual
Returns the number of variables of the rule (including the consequent)
getnv(String) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.MultipleClassifierSystem
getnVA(int) - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.VAList
This method returns the valueAssociations object which is in position 'i'.
getnVA(int) - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.VAList
This method returns the valueAssociations object which is in position 'i'.
getnVA(int) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.VAList
This method returns the valueAssociations object which is in position 'i'.
getnVA(int) - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.VAList
This method returns the valueAssociations object which is in position 'i'.
getnVA(int) - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.VAList
This method returns the valueAssociations object which is in position 'i'.
getnVA(int) - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.VAList
This method returns the valueAssociations object which is in position 'i'.
getnVA(int) - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.VAList
This method returns the valueAssociations object which is in position 'i'.
getnVA(int) - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.VAList
This method returns the valueAssociations object which is in position 'i'.
getNValOutput() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
It gets the number of values for the target variable
getNValue() - Method in class keel.Algorithms.Hyperrectangles.EACH.Selector
Returns the nominal value of the associated value
getNValue() - Method in class keel.Algorithms.Rule_Learning.Riona.Selector
Returns the nominal value of the attribute
getnValues() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Condition
getNValues() - Method in class keel.Algorithms.Hyperrectangles.EACH.Selector
Return the set of nominal values of the selector
getNValues() - Method in class keel.Algorithms.Rule_Learning.Riona.Selector
Returns the set of nominal values ofthe selector
getnVar() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
Obtains the number of variables used in this rule antecedent
getnVar() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
Obtains the number of variables used in this rule antecedent
getnvariables() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.myDataset
It gets the number of variables of the data-set (including the output)
getnvariables() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.myDataset
It gets the number of variables of the data-set (including the output)
getnvariables() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.myDataset
It gets the number of variables of the data-set (including the output)
getnvariables() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.myDataset
It gets the number of variables of the data-set (including the output)
getnvariables() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Dataset
It returns the number of variables
getNvariables() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
It gets the number of variables of the data-set (including the output)
getnvariables() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.myDataset
It gets the number of variables of the data-set (including the output)
getnvariables() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Dataset
It returns the number of variables
getNVariables() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Returns the number of variables
getnvariables() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.OpenDataset
Gets the number of variables
getnvariables() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.ProcDataset
Returns the number of variables.
getnvariables() - Method in class keel.Algorithms.Neural_Networks.gann.OpenDataset
Access to nvariables
getnvariables() - Method in class keel.Algorithms.Neural_Networks.gmdh.OpenDataset
Gets the number of variables
getnvariables() - Method in class keel.Algorithms.Neural_Networks.net.OpenDataset
Gets the number of variables
getnvariables() - Method in class keel.Algorithms.Neural_Networks.RBFN.ProcDataset
Returns the number of variables.
getnvariables() - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.ProcDataset
Returns the number of variables.
getnvariables() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.ProcDataset
Returns the number of variables.
getnvariables() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.ProcDataset
Returns the number of variables.
getnvariables() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.ProcDataset
Returns the number of variables.
getnvariables() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.ProcDataset
Returns the number of variables.
getNvariables() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
Returns the number of input variables plus output variables.
getnvariables() - Method in class keel.Algorithms.Rule_Learning.AQ.Dataset
It returns the number of variables
getnvariables() - Method in class keel.Algorithms.Rule_Learning.CN2.Dataset
It returns the number of variables
getnvariables() - Method in class keel.Algorithms.Rule_Learning.Prism.Dataset
Returns the number of variables
getNVariables() - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Returns the number of variables
getnvariables() - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
Returns the number of variables
getNvariables() - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
Returns the number of input variables plus output variables.
getnvariables() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Dataset
It returns the number of variables
getnvariables() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Dataset
It returns the number of variables
getnvariables() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Dataset
It returns the number of variables
getNVariables() - Method in class keel.GraphInterKeel.datacf.util.Dataset
Return variable number
getnVars() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
It gets the number of variables of the data-set (including the output).
getnVars() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
It gets the number of variables of the data-set (including the output)
getnVars() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
It gets the number of variables of the data-set (including the output)
getNVars() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
Returns the number of variables
getNVars() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
Returns the number of variables
getNVars() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
Returns the number of variables
getnVars() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
It gets the number of variables of the data-set
getnVars() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
It gets the number of variables of the data-set
getNVisibleParams() - Method in class keel.GraphInterKeel.experiments.Parameters
Gets the number of visible paramters
getObj(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
Method to get the name of the quality measure in position pos
getObj(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Methods to get the name of the quality measure as objective in a position
getObj1() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Methods to get the name of the quality measure as objective 1
getObj2() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Methods to get the name of the quality measure as objective 2
getObj3() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Methods to get the name of the quality measure as objective 3
getObject() - Method in class keel.Algorithms.Decision_Trees.M5.SerializedObject
Gets the object stored in this SerializedObject.
getObject() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.SerializedObject
Returns a serialized object.
getObject() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SerializedObject
Returns a serialized object.
getObject() - Method in class keel.Algorithms.SVM.SMO.core.SerializedObject
Returns a serialized object.
getObjective(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
getObjective(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
getObjective(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
getObjective() - Method in class keel.GraphInterKeel.experiments.UseCase
getObjective() - Static method in class keel.GraphInterKeel.statistical.Configuration
Gets the objective of the test
getObjectives() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
It returns the objectives of a chromosome
getObjectives() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
It returns the objectives of a chromosome
getObjectives() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
It returns the objectives of a chromosome
getObjectiveValue(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.QualityMeasures
Gets the value of the objective pos
getObservation(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
Returns an specified observation
getObservationsOf(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
Returns all the values of a variable in the data set
getObserved(String, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Cluster
Returns the number of times a determined attribute value appears in the instances of this cluster
getomax() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.ProcDataset
Returns the maximum value of the output.
getomax() - Method in class keel.Algorithms.Neural_Networks.RBFN.ProcDataset
Returns the maximum value of the output.
getomax() - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.ProcDataset
Returns the maximum value of the output.
getomax() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.ProcDataset
Returns the maximum value of the output.
getomax() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.ProcDataset
Returns the maximum value of the output.
getomax() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.ProcDataset
Returns the maximum value of the output.
getomax() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.ProcDataset
Returns the maximum value of the output.
getOmaximum() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
Returns maximum value for output.
getOmaximum() - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
Returns maximum value for output.
getOmega() - Method in class keel.Algorithms.SVM.SMO.supportVector.Puk
Gets the omega value.
getomin() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.ProcDataset
Returns the minimun value of the output.
getomin() - Method in class keel.Algorithms.Neural_Networks.RBFN.ProcDataset
Returns the minimun value of the output.
getomin() - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.ProcDataset
Returns the minimun value of the output.
getomin() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.ProcDataset
Returns the minimun value of the output.
getomin() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.ProcDataset
Returns the minimun value of the output.
getomin() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.ProcDataset
Returns the minimun value of the output.
getomin() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.ProcDataset
Returns the minimun value of the output.
getOminimum() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
Returns maximum value for output.
getOminimum() - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
Returns maximum value for output.
getOperacion(String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.FuncionEvaluacionBean
getOperacion() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
getOperador() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Condicion
Returns the operator of this condition.
getOperador() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Condicion
Returns the operator of this condition.
getOperador() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Condicion
Returns the operator of this condition.
getOperador() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Condicion
Returns the operator of this condition.
getOperador() - Method in class keel.Algorithms.Rule_Learning.Prism.Selector
Return the operator's id
getOperador() - Method in class keel.Algorithms.Rule_Learning.UnoR.Selector
Return the operator's id
getOperador() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Selector
Return the operator's id
getOperador() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Selector
Return the id of the operator
getOperator() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleRule
Returns the operator of the rule
getOperator() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.SimpleRule
Returns the operator of the rule
getOperator() - Method in class keel.Algorithms.Hyperrectangles.EACH.Selector
Return the operator's id
getOperator(int) - Method in class keel.Algorithms.PSO_Learning.REPSO.Particle
getOperator() - Method in class keel.Algorithms.Rule_Learning.AQ.Selector
It return the operator id (!
getOperator() - Method in class keel.Algorithms.Rule_Learning.C45Rules.SimpleRule
Returns the operator of the rule
getOperator() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.SimpleRule
Returns the operator of the rule
getOperator() - Method in class keel.Algorithms.Rule_Learning.CN2.Selector
It return the operator id (!
getOperator() - Method in class keel.Algorithms.Rule_Learning.PART.SimpleRule
Returns the operator of the rule
getOperator() - Method in class keel.Algorithms.Rule_Learning.Riona.Selector
Returns the id of the operator
getOperator() - Method in class keel.Algorithms.Rule_Learning.Ripper.SimpleRule
Returns the operator of the rule
getOperator() - Method in class keel.Algorithms.Rule_Learning.Slipper.SimpleRule
Returns the operator of the rule
getOperator() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Gene
It returns the operator used.
getOptClass() - Method in class keel.Algorithms.Discretizers.OneR.Opt
Computes the optimum class for the explanatory value
getOptimalClass() - Method in class keel.Algorithms.Rule_Learning.UnoR.Interval
Returns the optimal class.
getOptimalPopulation - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
It's set to true if the optimal population has to be read from a file.
GETOPTIMALPOPULATION - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
getOptimizations() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
Gets the the number of optimization runs
getOptimumClass(int[][][], long) - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Returns a vector with the optimum class for each pair attribute-value
getOptimumClass(int[][][], long) - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Returns a vector with the class for each pair attribute-value
getOption(char, String[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
Gets an option indicated by a flag "-Char" from the given array
of strings.
getOption(char, String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
Gets an option indicated by a flag "-Char" from the given array
of strings.
getOption(String, String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
Gets an option indicated by a flag "-String" from the given array
of strings.
getOption(char, String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
Gets an option indicated by a flag "-Char" from the given array
of strings.
getOption(char, String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
Gets an option indicated by a flag "-Char" from the given array
of strings.
getOption(String, String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
Gets an option indicated by a flag "-String" from the given array
of strings.
getOption(char, String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
Gets an option indicated by a flag "-Char" from the given array
of strings.
getOption(String, String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
Gets an option indicated by a flag "-String" from the given array
of strings.
getOption(char, String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
Gets an option indicated by a flag "-Char" from the given array
of strings.
getOption(String, String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
Gets an option indicated by a flag "-String" from the given array
of strings.
getOption(char, String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
Gets an option indicated by a flag "-Char" from the given array
of strings.
getOption(String, String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
Gets an option indicated by a flag "-String" from the given array
of strings.
getOption(char, String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
Gets an option indicated by a flag "-Char" from the given array
of strings.
getOption(String, String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
Gets an option indicated by a flag "-String" from the given array
of strings.
getOption(char, String[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
Gets an option indicated by a flag "-Char" from the given array
of strings.
getOption(String, String[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
Gets an option indicated by a flag "-String" from the given array
of strings.
getOptionPos(char, String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
Gets the index of an option or flag indicated by a flag "-Char" from
the given array of strings.
getOptionPos(String, String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
Gets the index of an option or flag indicated by a flag "-String" from
the given array of strings.
getOptionPos(char, String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
Gets the index of an option or flag indicated by a flag "-Char" from
the given array of strings.
getOptionPos(String, String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
Gets the index of an option or flag indicated by a flag "-String" from
the given array of strings.
getOptionPos(char, String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
Gets the index of an option or flag indicated by a flag "-Char" from
the given array of strings.
getOptionPos(String, String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
Gets the index of an option or flag indicated by a flag "-String" from
the given array of strings.
getOptionPos(char, String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
Gets the index of an option or flag indicated by a flag "-Char" from
the given array of strings.
getOptionPos(String, String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
Gets the index of an option or flag indicated by a flag "-String" from
the given array of strings.
getOptionPos(char, String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
Gets the index of an option or flag indicated by a flag "-Char" from
the given array of strings.
getOptionPos(String, String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
Gets the index of an option or flag indicated by a flag "-String" from
the given array of strings.
getOptionPos(char, String[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
Gets the index of an option or flag indicated by a flag "-Char" from
the given array of strings.
getOptionPos(String, String[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
Gets the index of an option or flag indicated by a flag "-String" from
the given array of strings.
getOptions() - Method in class keel.Algorithms.Decision_Trees.M5.M5
Gets the current settings of the Classifier.
getOptions() - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
Gets the current settings of the filter.
getOptions() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Classifier
Gets the current settings of the Classifier.
getOptions() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
Gets the current settings of the Classifier.
getOptions() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
getOptions() - Method in interface keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.OptionHandler
Gets the current option settings for the OptionHandler.
getOptions() - Method in interface keel.Algorithms.Statistical_Classifiers.Logistic.core.OptionHandler
Gets the current option settings for the OptionHandler.
getOptions() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
Gets the current settings of the classifier.
getOptions() - Method in class keel.Algorithms.SVM.SMO.core.Check
Gets the current settings of the CheckClassifier.
getOptions() - Method in interface keel.Algorithms.SVM.SMO.core.OptionHandler
Gets the current option settings for the OptionHandler.
getOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.CachedKernel
Gets the current settings of the Kernel.
getOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.Kernel
Gets the current settings of the Kernel.
getOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
Gets the current settings of the Kernel.
getOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.PolyKernel
Gets the current settings of the Kernel.
getOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.Puk
Gets the current settings of the Kernel.
getOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.RBFKernel
Gets the current settings of the Kernel.
getOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
Gets the current settings of the classifier.
getOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
Gets the current settings of the classifier.
getOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
Gets the current settings of the object.
getOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
Gets the current settings of the Kernel.
getOptionValue(String) - Method in class keel.GraphInterKeel.datacf.util.OptionsDialog
Returns the value of an option
getOrderAttribute(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.DataBase
It returns the sum of the number of labels until a given attribute
getOrderClas() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.DataBase
It returns the sum of the number of labels until a given attribute
getOrigin() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.Link
Returns the origin neuron of the link, used to obtain its output value
getOriginalElementsIndex() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.SMOTE_RSB
getOriginalHeaderWithoutInOut() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
It does return the original header definiton but
without @input and @output in there
getOriginalHeaderWithoutInOut() - Method in class keel.Dataset.InstanceSet
It does return the original header definiton but
without @input and @output in there
getOrigInstances() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.instanceSet
getOSup() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
Retuns the value of the original support measure
getOutAttribute() - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanel
Returns the index of the output attribute
getOuterBorder() - Method in class keel.Algorithms.Lazy_Learning.NSC.Cluster
Get the outer border of the cluster
getOutOfRange() - Method in class keel.GraphInterKeel.experiments.ParametersTable
EDUCATIONAL KEEL ****************************
getOutput(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Random_Sets.FSS98.RSFSS
This methods returns a evaluation of the given example using all the clusters found.
getOutput() - Method in class keel.Algorithms.Hyperrectangles.BNGE.Rule
Returns the output class of the rule
getOutput() - Method in class keel.Algorithms.Hyperrectangles.INNER.Rule
Returns the output class of the rule
getOutput() - Method in class keel.Algorithms.Hyperrectangles.RISE.Rule
Returns the output class of the rule
getOutput(int) - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
Returns a specific output of the protoype.
getOutput(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
Returns all the values of an output in the data set
getOutput(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
Returns a specific output of the protoype.
getOutputAsInteger() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
Returns the output of the data-set as integer values.
getOutputAsInteger(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
It returns the output value of the example "pos".
getOutputAsInteger() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
It returns the output value of the example "pos"
getOutputAsInteger() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
Returns the output of the data-set as integer values
getOutputAsInteger(int) - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
It returns the output value of the example "pos"
getOutputAsNominal(int) - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
Return an output as nominal.
getOutputAsNominal(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
Return an output as nominal.
getOutputAsReal() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
Returns the output of the data-set as real values.
getOutputAsReal(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
It returns the output value of the example "pos".
getOutputAsReal() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
It returns the output value of the example "pos"
getOutputAsReal() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
Returns the output of the data-set as real values
getOutputAsReal(int) - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
Returns the output of the data-set as nominal values.
getOutputAsString(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
It returns the output value of the example "pos".
getOutputAsString() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
It returns the output value of the example "pos"
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.MyDataset
Return the output value of the example in position "pos"
getOutputAsString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
It returns the output value of the example "pos"
getOutputAsString(int) - Method in class keel.Algorithms.Rule_Learning.SRI.Instances
Returns the output value of the example in the position given.
getOutputAsString() - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
It returns the output value of the example "pos"
getOutputAsString() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
Returns the output of the data-set as nominal values
getOutputAsString(int) - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
It returns the output value of the example "pos"
getOutputAttribute() - Static method in class keel.Algorithms.Decision_Trees.CART.dataset.DataSetManager
It returns the output attribute
getOutputAttribute() - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
If returns the output attribute
getOutputAttribute() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
Gets all the information about the output attribute of the dataset
getOutputAttribute() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
Gets all the information about the output attribute of the dataset
getOutputAttribute() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlusReporterClas
Returns output attribute metadata
getOutputAttribute() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.IRPropPlusReporterRegr
Returns output attribute metadata
getOutputAttribute() - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.listener.NeuralNetReporterClas
Returns output attribute metadata
getOutputAttribute() - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.listener.NeuralNetReporterRegr
Returns output attribute metadata
getOutputAttribute(int) - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
It returns the output attribute being int the position passed as an argument.
getOutputAttribute(int) - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
It returns the output attribute being int the position passed as an argument.
getOutputAttribute(int) - Static method in class keel.Dataset.Attributes
It returns the output attribute being int the position passed as an argument.
getOutputAttribute(int) - Method in class keel.Dataset.InstanceAttributes
It returns the output attribute being int the position passed as an argument.
getOutputAttributes() - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
It does return all the output attributes.
getOutputAttributes() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
It does return all the output attributes.
getOutputAttributes() - Static method in class keel.Dataset.Attributes
It does return all the output attributes.
getOutputAttributes() - Method in class keel.Dataset.InstanceAttributes
It does return all the output attributes.
getOutputAttributesHeader() - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
It does return a String with all the output attributes definition in keel
format.
getOutputAttributesHeader() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
It does return a String with all the output attributes definition in keel
format.
getOutputAttributesHeader() - Static method in class keel.Dataset.Attributes
It does return a String with all the output attributes definition in keel
format.
getOutputAttributesHeader() - Method in class keel.Dataset.InstanceAttributes
It does return a String with all the output attributes definition in keel
format.
getOutputBuffer() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.ThreadedStreamHandler
getOutputClass() - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
getOutputClass() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
Gets the output class stored for the node.
getOutputClass() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Node
Gets the output class of the first register of the node.
getOutputClass() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Register
Gets the class of the register
getOutputClass() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
Gets the output class stored for the node.
getOutputFile(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.parseParameters
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.parseParameters
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.parseParameters
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.parseParameters
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.parseParameters
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.parseParameters
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.parseParameters
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.parseParameters
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.parseParameters
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.parseParameters
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Decision_Trees.Target.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.parseParameters
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.parseParameters
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.parseParameters
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.ParametersParser
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.parseParameters
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.parseParameters
obtains the output file of index pos
getOutputFile(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.PSO_Learning.CPSO.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.PSO_Learning.REPSO.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Rule_Learning.LEM1.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Rule_Learning.LEM2.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Rule_Learning.PART.parseParameters
It returns the output file of the specified index
getOutputFile(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Rule_Learning.Ritio.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Rule_Learning.Rules6.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Rule_Learning.SRI.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.SVM.C_SVM.parseParameters
obtains the output file of index pos
getOutputFile(int) - Method in class keel.Algorithms.SVM.EPSILON_SVR.parseParameters
obtains the output file of index pos
getOutputFile(int) - Method in class keel.Algorithms.SVM.NU_SVM.parseParameters
obtains the output file of index pos
getOutputFile(int) - Method in class keel.Algorithms.SVM.NU_SVR.parseParameters
obtains the output file of index pos
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.parseParameters
It returns the output file in the position "pos"
getOutputFile(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.parseParameters
It returns the output file in the position "pos"
getOutputFilePaths() - Method in class keel.GraphInterKeel.experiments.EducationalReport
Return array of strings with file output paths
getOutputFiles() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.parseParameters
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.parseParameters
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.parseParameters
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.parseParameters
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.parseParameters
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.parseParameters
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.parseParameters
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.parseParameters
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Decision_Trees.DT_GA.parseParameters
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.parseParameters
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Decision_Trees.Target.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.parseParameters
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.parseParameters
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.parseParameters
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.ParametersParser
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.parseParameters
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.parseParameters
Obtains all the output files
getOutputFiles() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.PSO_Learning.CPSO.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.PSO_Learning.REPSO.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Rule_Learning.C45Rules.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Rule_Learning.LEM1.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Rule_Learning.LEM2.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Rule_Learning.PART.parseParameters
It returns the output files
getOutputFiles() - Method in class keel.Algorithms.Rule_Learning.Ripper.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Rule_Learning.Ritio.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Rule_Learning.Rules6.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Rule_Learning.Slipper.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Rule_Learning.SRI.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.SVM.C_SVM.parseParameters
Obtains all the output files
getOutputFiles() - Method in class keel.Algorithms.SVM.EPSILON_SVR.parseParameters
Obtains all the output files
getOutputFiles() - Method in class keel.Algorithms.SVM.NU_SVM.parseParameters
Obtains all the output files
getOutputFiles() - Method in class keel.Algorithms.SVM.NU_SVR.parseParameters
Obtains all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.parseParameters
It returns all the output files
getOutputFiles() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.parseParameters
It returns all the output files
getOutputFileTra() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.parseParameters
Gets the name of the output for train file
getOutputFileTst() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.parseParameters
Gets the name of the output for test file
getOutputFormat() - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
Gets the format of the output instances.
getOutputFormat() - Method in class keel.Algorithms.Decision_Trees.M5.ReplaceMissingValuesFilter
Returns the output format.
getOutputHeader() - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
It does return an String with the @outputs in keel format.
getOutputHeader() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
It does return an String with the @outputs in keel format.
getOutputHeader() - Static method in class keel.Dataset.Attributes
It does return an String with the @outputs in keel format.
getOutputHeader() - Method in class keel.Dataset.InstanceAttributes
It does return an String with the @outputs in keel format.
getOutputI(int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
Gets the class of each instance in the dataset
getOutputI(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
Gets the class of each instance in the dataset
getOutputInterval() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.problem.IProblem
Returns the input interval of normalized data
getOutputInterval() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
Returns the input interval of normalized data
getOutputLayer() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
Returns the output layer of this neural net
getOutputLayer() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuralNet
Returns the output layer of this neural net
getOutputLayerInitiator() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
Returns initiator of neurons of the output layer
getOutputLayerInitiator() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.INeuralNetSpecies
Returns initiator of neurons of the output layer
getOutputLayerType() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
Returns type of neurons of the output layer
getOutputLayerType() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.INeuralNetSpecies
Returns type of neurons of the output layer
getOutputLayerWeightRange(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
Returns weight range of the output layer
getOutputLayerWeightRange(int) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.INeuralNetSpecies
Returns weight range of the output layer
getOutputMean(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
Returns the mean of a specific number of output
getOutputMissingValues() - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
Get Output Missing Values
getOutputMissingValues(int) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
Get Output Missing Values
getOutputMissingValues() - Method in class keel.Dataset.Instance
Get Output Missing Values
getOutputMissingValues(int) - Method in class keel.Dataset.Instance
Get Output Missing Values
getOutputName() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
Returns the class name.
getOutputNominalValue(int, int) - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
Returns the value of a nominal output attribute of an instance in the
instanceSet.
getOutputNominalValue(int, int) - Method in class keel.Dataset.InstanceSet
Returns the value of a nominal output attribute of an instance in the
instanceSet.
getOutputNominalValues() - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
Get Output Nominal Values
getOutputNominalValues(int) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
Get Output Nominal Values
getOutputNominalValues() - Method in class keel.Dataset.Instance
Get Output Nominal Values
getOutputNominalValues(int) - Method in class keel.Dataset.Instance
Get Output Nominal Values
getOutputNominalValuesInt(int) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
It does return the output value at the specified position
getOutputNominalValuesInt() - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
It does return the output value at the specified position
getOutputNominalValuesInt(int) - Method in class keel.Dataset.Instance
It does return the output value at the specified position
getOutputNominalValuesInt() - Method in class keel.Dataset.Instance
It does return the output value at the specified position
getOutputNumAttributes() - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
It return the number of output attributes in the API
getOutputNumAttributes() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
It return the number of output attributes in the API
getOutputNumAttributes() - Static method in class keel.Dataset.Attributes
It return the number of output attributes in the API
getOutputNumAttributes() - Method in class keel.Dataset.InstanceAttributes
It return the number of output attributes in the API
getOutputNumericValue(int, int) - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
Returns the value of an integer or a real output attribute of an instance
in the instanceSet.
getOutputNumericValue(int, int) - Method in class keel.Dataset.InstanceSet
Returns the value of an integer or a real output attribute of an instance
in the instanceSet.
getOutputRealValues() - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
Get Output Real Values
getOutputRealValues(int) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
Get Output Real Values
getOutputRealValues() - Method in class keel.Dataset.Instance
Get Output Real Values
getOutputRealValues(int) - Method in class keel.Dataset.Instance
Get Output Real Values
getOutputs() - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
Returns the outputs of the protoype.
getOutputs(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
Returns the outputs of an specified observation
getOutputs() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
Returns the outputs of the protoype.
getOutputs() - Method in class keel.GraphInterKeel.datacf.util.Dataset
Return a vector that contains output variables
getOutputStringIndex() - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
Returns an array containing the indices of all string attributes in the
output format.
getOutputValue(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
Returns the nominal output value which corresponds to the integer passed as argument.
getOutputValue(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
It returns the output value (string) which matchs with a given integer value
getOutputValue(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
It returns the output value (string) which matchs with a given integer value
getOutputValue(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
It returns the output value (string) which matchs with a given integer value
getOutputValue(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
It returns the output value (string) which matchs with a given integer value
getOutputValue() - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
getOutputValue(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
Returns the nominal output value which corresponds to the integer passed as argument.
getOutputValue(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
It returns the class label (string) given a class id (int)
getOutputValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
It returns the output value (string) which matchs with a given integer value
getOutputValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
It returns the output value (string) which matchs with a given integer value
getOutputValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
It returns the nominal value for the class in the position "intValue"
getOutputValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
It returns the nominal value for the class in the position "intValue"
getOutputValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
It returns the nominal value for the class in the position "intValue"
getOutputValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
It returns the nominal value for the class in the position "intValue"
getOutputValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
It returns the nominal value for the class in the position "intValue"
getOutputValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
It returns the nominal value for the class in the position "intValue"
getOutputValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
It returns the output value (string) which matchs with a given integer value
getOutputValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
It returns the output value (string) which matchs with a given integer value
getOutputValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
It returns the output value (string) which matchs with a given integer value
getOutputValue(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
It returns the output value (string) which matchs with a given integer value
getOutputValue(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
It returns the output value (string) which matchs with a given integer value
getOutputValue(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
It returns the nominal value for the class in the position "intValue"
getOutputValue(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
It returns the output value (string) which matchs with a given integer value
getOutputValue(int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
It returns the nominal value for the class in the position "intValue"
getOutputValue(int) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
It returns the nominal value for the class in the position "intValue"
getOutputValue(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
It returns the name of the class of index intValue
getOutputValue(int) - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
It gets the string value for the class number specified in the parameter
getOverallConstraintViolation() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
Returns the overallConstraintViolation of the individual
getOverlapping(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
Return the class-overlapping rate
getP() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.PNArray
It returns the value of the positive weight of the PNArray
getP(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.PNArray
It returns the positive weight of a given literal
getP() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Chc
FIN DEL FICHERO
getP() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Chc
FIN DEL FICHERO
getP() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Chc
FIN DEL FICHERO
getP() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Chc
FIN DEL FICHERO
getP() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Chc
FIN DEL FICHERO
getP() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Chc
getP() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Chc
FIN DEL FICHERO
getP() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Chc
FIN DEL FICHERO
getPairFreq(String, String) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqListPair
Searches for the first pair which has its elements equals to the provided ones,
and return it frequency
getParameter(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.parseParameters
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.parseParameters
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.parseParameters
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.parseParameters
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.parseParameters
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.parseParameters
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.parseParameters
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.parseParameters
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.parseParameters
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.parseParameters
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Decision_Trees.Target.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.parseParameters
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.parseParameters
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.parseParameters
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.ParametersParser
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.parseParameters
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.parseParameters
Returns the parameter of index pos
getParameter(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.PSO_Learning.CPSO.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.PSO_Learning.REPSO.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Rule_Learning.LEM1.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Rule_Learning.LEM2.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Rule_Learning.PART.parseParameters
It returns the name of the parameter specified
getParameter(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Rule_Learning.Ritio.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Rule_Learning.Rules6.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Rule_Learning.SRI.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.parseParameters
Gets a string with the parameter of a determined position used by the algorithm
getParameter(int) - Method in class keel.Algorithms.SVM.C_SVM.parseParameters
Returns the parameter of index pos
getParameter(int) - Method in class keel.Algorithms.SVM.EPSILON_SVR.parseParameters
Returns the parameter of index pos
getParameter(int) - Method in class keel.Algorithms.SVM.NU_SVM.parseParameters
Returns the parameter of index pos
getParameter(int) - Method in class keel.Algorithms.SVM.NU_SVR.parseParameters
Returns the parameter of index pos
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.parseParameters
It returns the parameter in the position "pos"
getParameter(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.parseParameters
It returns the parameter in the position "pos"
getParameters() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.parseParameters
It returns the name of the parameters
getParameters() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.parseParameters
It returns the name of the parameters
getParameters() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.parseParameters
It returns the name of the parameters
getParameters() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.parseParameters
It returns the name of the parameters
getParameters() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.parseParameters
It returns the name of the parameters
getParameters() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.parseParameters
It returns the name of the parameters
getParameters() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.parseParameters
It returns the name of the parameters
getParameters() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.parseParameters
It returns the name of the parameters
getParameters() - Method in class keel.Algorithms.Decision_Trees.DT_GA.parseParameters
It returns the name of the parameters
getParameters() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.parseParameters
It returns the name of the parameters
getParameters() - Method in class keel.Algorithms.Decision_Trees.Target.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.parseParameters
It returns the name of the parameters
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.parseParameters
It returns the name of the parameters
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.parseParameters
It returns the name of the parameters
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.ParametersParser
Returns the parameters obtained.
getParameters() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.parseParameters
It returns the name of the parameters
getParameters() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.parseParameters
Gets all the parameters lines from the file
getParameters() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.PSO_Learning.CPSO.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.PSO_Learning.REPSO.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Rule_Learning.C45Rules.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Rule_Learning.LEM1.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Rule_Learning.LEM2.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Rule_Learning.PART.parseParameters
It returns the name of the parameters
getParameters() - Method in class keel.Algorithms.Rule_Learning.Ripper.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Rule_Learning.Ritio.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Rule_Learning.Rules6.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Rule_Learning.Slipper.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Rule_Learning.SRI.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.parseParameters
Gets an array with the parameters used by the algorithm
getParameters() - Method in class keel.Algorithms.SVM.C_SVM.parseParameters
Gets all the parameters lines from the file
getParameters() - Method in class keel.Algorithms.SVM.EPSILON_SVR.parseParameters
Gets all the parameters lines from the file
getParameters() - Method in class keel.Algorithms.SVM.NU_SVM.parseParameters
Gets all the parameters lines from the file
getParameters() - Method in class keel.Algorithms.SVM.NU_SVR.parseParameters
Gets all the parameters lines from the file
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.parseParameters
It returns all the parameters as an array of Strings
getParameters() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.parseParameters
It returns all the parameters as an array of Strings
getparameters() - Method in class keel.GraphInterKeel.experiments.Joint
getParameters() - Method in class keel.GraphInterKeel.experiments.UseCase
getParametersP(int) - Method in class keel.GraphInterKeel.experiments.Joint
getParametersToString() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.ParametersParser
It returns the name of the parameters
getParameterType(int) - Method in class keel.GraphInterKeel.experiments.Parameters
return parameter name for parameter at index position
getParameterTypes() - Method in class keel.GraphInterKeel.experiments.Parameters
return parameter types
getParameterValue(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.ParametersParser
Returns the parameter value of a given parameter name.
GetParamFloat(StringTokenizer) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Utils
Gets an float from param file, skiping "="
getParamFloat(StringTokenizer) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Utils
Gets an float from param file, skiping "="
GetParamFloat(StringTokenizer) - Static method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Utils
Gets an float from param file, skiping "="
GetParamFloat(StringTokenizer) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Utils
Gets an float from param file, skiping "="
GetParamInt(StringTokenizer) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Utils
Gets an integer from param file, skiping "="
getParamInt(StringTokenizer) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Utils
Gets an integer from param file, skiping "="
GetParamInt(StringTokenizer) - Static method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Utils
Gets an integer from param file, skiping "="
GetParamInt(StringTokenizer) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Utils
Gets an integer from param file, skiping "="
GetParamString(StringTokenizer) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Utils
Gets an String from param file, skiping "="
getParamString(StringTokenizer) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Utils
Gets an String from param file, skiping "="
GetParamString(StringTokenizer) - Static method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Utils
Gets an String from param file, skiping "="
GetParamString(StringTokenizer) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Utils
Gets an String from param file, skiping "="
getParent() - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
It gets the parent of the current node
getParent() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Node
Returns the father node.
getParentRef() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
Returns a reference of the parent set.
getParentRef() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
Returns a reference of the parent set.
getParetos() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
getParetos() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_GhoshProcess
getParetos() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_GoshProcess
getParetos() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.MOPNARProcess
getParetos() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.QAR_CIP_NSGAIIProcess
getPartitionOfInstance(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.PartitionScheme
Returns the partition where the instance with the given index belongs to.
getPartitionOfInstance(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.PartitionScheme
Returns the partition where the instance with the given index belongs to.
getPartitionOfInstance(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.PartitionScheme
Returns the partition where the instance with the given index belongs to.
getPartitions() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.PartitionScheme
It returns the indexes of the original instances in all partitions
getPartitions() - Method in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.PartitionScheme
It returns the indeces of the original instances in all partitions
getPartitions() - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.PartitionScheme
It returns the indexes of the original instances in all partitions
getPartitions() - Method in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.PartitionScheme
It returns the indeces of the original instances in all partitions
getPartitions() - Method in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.PartitionScheme
It returns the indeces of the original instances in all partitions
getPartitions() - Method in class keel.GraphInterKeel.datacf.partitionData.PartitioningSchemes.DistanceBased_best
It returns the indexes of the original instances in all partitions
getPartitionTime() - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
This method return the compute time for a partition
getPartitionType() - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
This methos get type partitions, k-fold or 5x2
getPath() - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
Gets the path at the active layer
getPath(int) - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
Get the path from the indicated layer
getPath() - Static method in class keel.GraphInterKeel.statistical.Configuration
Gets the path of the file to store the results of the test
getPath() - Static method in class keel.GraphInterKeel.util.Path
Get the path
getPathResultFilesTxt() - Method in class keel.GraphInterKeel.experiments.EducationalFSReport
Return paths of result.txt files
GetPattern() - Method in class keel.Algorithms.Neural_Networks.ensemble.Sample
Return a random pattern
getPatternIndex(int) - Method in class keel.GraphInterKeel.datacf.util.Dataset
Return example/pattern at index position
getPatterns() - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
getPenalizedFitness() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
Obtains the penalized fitness associated to this rule, computed with the token competition procedure
getPenalizedFitness() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
Obtains the penalized fitness associated to this rule, computed with the token competition procedure
getPenaltyFactor() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
getPer() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Itemset
It returns the Pessimistic Error Rate of the itemset.
getPer() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Itemset
It returns the Pessimistic Error Rate of the itemset
getPercentages(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
Returns an array of percentages of a concrete layer
(this is an hibrid layer)
getPercentages(int) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.INeuralNetSpecies
Returns an array of percentages of a concrete layer
for an hibrid layer
getPercentageSecondMutator() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
Returns percentage of census selected to be mutated
with second mutator
getPercentile(double) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Histogram
Returns percentile value with the percentage given.
getPerf() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Individual
It gets the fitness value for the chromosome
getpeso() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
getpeso() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
getpeso() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
getpeso() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
getPivot() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.LUDecomposition
Return pivot permutation vector
getPNpairs(IntegerSet, Instance[], int) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.pnPair
Returns the PN pairs with the integer set and instances given.
getPobBestPerf() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Population
Gets the fitness of the best individual of the population
getPobBestPerf() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Population
Gets the fitness of the best individual of the population
getPobBestPerf() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Population
Gets the fitness of the best individual of the population
getPoblacion() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
getPoblacion(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
getPoblacion() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
getPoblacion(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
getPoblacion() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
getPoblacion(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
getPoblacion() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
getPoblacion(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
getPoblacion() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
getPoblacion(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
getPoblacion() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
getPoblacion(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
getPoblacion() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
getPoblacion(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
getPoblacion() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
getPoblacion(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
getPopBestGuy() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Population
Gets the position of the best individual of the population
getPopBestGuy() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Population
Gets the position of the best individual of the population
getPopBestGuy() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Population
Gets the position of the best individual of the population
getPopsize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
getPOPSIZE() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
getPopsize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
getPOPSIZE() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
getPopsize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
getPOPSIZE() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
getPopsize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
getPOPSIZE() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
getPopsize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
getPOPSIZE() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
getPopsize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
getPOPSIZE() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
getPopsize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
getPOPSIZE() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
getPopsize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
getPOPSIZE() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
getPopSize() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
getPopulationSize() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
getPopulationSize() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
getPopulationSize() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
Returns population size of the algorithm
getPorcCob() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
Gets the percentage of biased initialisation in the re-initialisation based on coverage
getPos() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Cover
Returns the position of the covered example.
getPos() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Cover
Returns the position stored.
getPosActive(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Rule
It returns the number of valid labels for the rule until a given position
getPosActual() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
Returns the actual position of the particle.
getPosEx() - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.pnPair
It returns the posEx value
getPosFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Instance
It returns the position of the example in the input data file
getPosFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Instance
It returns the position of the example in the input data file
getPosFile() - Method in class keel.Algorithms.Hyperrectangles.EACH.Sample
Returns the position of the example inf the in-put file of data
getPosFile() - Method in class keel.Algorithms.Rule_Learning.AQ.Instance
It returns the position of the example in the input data file
getPosFile() - Method in class keel.Algorithms.Rule_Learning.CN2.Instance
It returns the position of the example in the input data file
getPosFile() - Method in class keel.Algorithms.Rule_Learning.Prism.Muestra
Returns the position of the example inf the in-put file of data
getPosFile() - Method in class keel.Algorithms.Rule_Learning.UnoR.Muestra
Returns the position of the example inf the in-put file of data
getPosFile() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Muestra
Returns the position of the example inf the in-put file of data
getPosFile() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Muestra
Returns the position of the example inf the in-put file of data
getPosFile() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Instance
It returns the position of the example in the input data file
getPosibleValuesOfOutput() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
Return all the existing classes in our universe.
getPosibleValuesOfOutput() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
Return all the existing classes in our universe.
getPosicion() - Method in class keel.GraphInterKeel.experiments.Node
Gets the current position of the node
getPosition() - Method in class keel.GraphInterKeel.experiments.Node
Gets the current position of the node
getPositionRuleMatch() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
positionRuleMatch contains the position within the classifier
(e.g. the rule) that matched the last classified input
instance
getPositionRuleMatch() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
positionRuleMatch contains the position within the classifier
(e.g. the rule) that matched the last classified input
instance
getPositive(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Score
Returns the number of positive instances of the dataset
that contains the value at a given position of the vector.
getPositive(double) - Method in class keel.Algorithms.Rule_Learning.Ripper.Score
Returns the number of positive instances that contains the given value.
getPositive() - Method in class keel.Algorithms.Rule_Learning.Ripper.Trio
Returns the number of positive instances of a given dataset that contains the value.
getPositive(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Score
Returns the number of positive instances of the dataset
that contains the value at a given position of the vector.
getPositive(double) - Method in class keel.Algorithms.Rule_Learning.Slipper.Score
Returns the number of positive instances that contains the given value.
getPositive() - Method in class keel.Algorithms.Rule_Learning.Slipper.Trio
Returns the number of positive instances of a given dataset that contains the value.
getPositiveEta() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
Returns the positive eta value, that is, the increment
of the step size at each epoch
getPosListFilas(int) - Method in class keel.Algorithms.Rule_Learning.LEM2.Atributo_valor
getPossibleInstancesOfRule(int, int[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ruleOrderAgent
getPossibleLabelConclusions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
Returns the Set of label conclusions that can appear.
getPossibleVbleConclusions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.FARFingrams
getPosString(Vector, String) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Utils
Returns the position of the element at the vector, -1 if does not appear
getposString(Vector, String) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Utils
Returns the position of the element at the vector, -1 if does not appear
getPosString(Vector, String) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Utils
Returns the position of the element at the vector, -1 if does not appear
getposString(Vector, String) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Utils
Returns the position of the element at the vector, -1 if does not appear
getposString(Vector, String) - Static method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Utils
Returns the position of the element at the vector, -1 if does not appear
getPosString(Vector, String) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Utils
Returns the position of the element at the vector, -1 if does not appear
getposString(Vector, String) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Utils
Returns the position of the element at the vector, -1 if does not appear
getPredError() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
Returns the prediction error of the classifier.
getPredError() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
Returns the prediction error of the classifier.
getPredErrorAverage() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
It is used by specify.
getPredicted() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexResult
getPrediction() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
Returns the prediction of the classifier.
getPrediction() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
Returns the prediction of the classifier.
getPrediction() - Method in class keel.Algorithms.ImbalancedClassification.Auxiliar.AUC.PredPair
Provides the predicted class associated to a given instance
getPredictions() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.C45
Returns the predicted classes for each test instance.
getPredictions() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
Returns the predicted classes for each test instance.
getPredictions() - Method in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.C45
Returns the predicted classes for each test instance.
getPredictions() - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.C45
Returns the predicted classes for each test instance.
getPredictions() - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
Returns the predicted classes for each test instance.
getPredictions() - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.LDA
Returns the predicted classes for each test instance.
GetPredictions(String, int) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.MultipleClassifierSystem
getPredictions() - Method in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.C45
Returns the predicted classes for each test instance.
getPredictions() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.C45
Predicted classes for the test instances.
getPredictions(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerCSVM
Returns the predictions for a given partition.
getPredictions() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerNB
Returns the predictions for each instance.
getPredictions(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerSMO
Returns the predictions for a given partition.
getPredictions() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.NumericalNaiveBayes
Returns the predicted classes for each test instance.
getPreferredScrollableViewportSize() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
getPreferredScrollableViewportSize() - Method in class keel.GraphInterKeel.experiments.GraphPanel
getPreferredScrollableViewportSize() - Method in class keel.GraphInterKeel.experiments.SelectData
scroll control
getPreviousBest() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
Returns previous best fitness
getPreviousMean() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
Returns previous mean fitness
getPriorProbabilities() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.C45
Returns the prior probabilities
getProb() - Method in class keel.Algorithms.ImbalancedClassification.Auxiliar.AUC.PosProb
Provides the probability associated to a given instance
getProbabilities() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.C45
Classes probabilities for the test instances.
getProbabilities() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerCSVM
Returns the classes probabilities.
getProbabilities() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerNB
Returns the classes probabilities.
getProbabilities() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerSMO
Returns the classes probabilities.
getProbabilities() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.NumericalNaiveBayes
Returns the classes probabilities for each test instance.
getProbability(double) - Method in class keel.Algorithms.Decision_Trees.M5.M5Kernel
Get a probability estimate for a value.
getProbability(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.NormalDistribution
Returns the probability for the given value.
getProbability(double) - Method in class keel.GraphInterKeel.statistical.tests.NormalDistribution
Computes punctual probability for a given point
getProbCross() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
Methods to get the value for the crossover probability
getProbCross() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
Gets the cross probability
getProbCross() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Methods to get the value for the crossover probability
getproblem() - Method in class keel.GraphInterKeel.experiments.Joint
getProblemType() - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
Return type of problem
getProbMut() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
Methods to get the value for the mutation probability
getProbMut() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Methods to get the value for the mutation probability
getProbMutacion() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
getProbMutation() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
Gets the mutation probability
getProbMutExtremo() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
getProperties() - Method in class keel.Algorithms.Lazy_Learning.NSC.Cluster
See if values calculated for the cluster are valid
getPrototypeSet() - Method in class keel.Algorithms.Instance_Generation.GMCA.Cluster
Gets the prototype set of the cluster.
getPrototypeSet() - Method in class keel.Algorithms.Instance_Generation.VQ.Cluster
Get the elements of the cluster.
getPrototypeWithSelectedInputs(ArrayList<Integer>) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
Returns the prototype selected inputs of the prototype specified in lista.
getProvider() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
Returns individual provider
getPruneExamplesFactor() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
getPruningFactor() - Method in class keel.Algorithms.Decision_Trees.M5.M5
Get the value of PruningFactor.
getPruningFactor() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
Get the value of PruningFactor.
getPruningMethod() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
Gets the method used for pruning.
getQ() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.QRDecomposition
Generate and return the (economy-sized) orthogonal factor
getQg() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
Return the value of Qg
getQualityMeasures(int, String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
Get the measurements of a single rule of the main population
getQualityMeasures(int, String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Get the measures of a single rule of the main population
getQualityMeasuresElite(int, String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
Get the measurements of a single rule of the elite population
getR() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the correlation value R.
getR() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.QRDecomposition
Return the upper triangular factor
getRadius() - Method in class keel.Algorithms.Instance_Generation.GMCA.Cluster
Gets the radius of the cluster.
getRadius() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbf
Gets the radius of a neuron
getRadius() - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbf
Gets the radius of a neuron
getRadius() - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbf
Gets the radius of a neuron
getRadius() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbf
Gets the radius of a neuron
getRadius() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbf
Gets the radius of a neuron
getRadius() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbf
Gets the radius of a neuron
getRadius() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbf
Gets the radius of a neuron
getRadiusLength() - Method in class keel.Algorithms.Instance_Generation.GMCA.Cluster
Gets the radius length of the cluster.
getRandgen() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ExpNeuronParametricMutator
Returns the random generator used in mutation
getRandgen() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.LinearNeuronParametricMutator
Returns the random generator used in mutation
getRandgen() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.SigmNeuronParametricMutator
Returns the random generator used in mutation
getRandgen() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.ExpNeuronStructuralMutator
Returns the random generator used in mutation
getRandgen() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.LinearNeuronStructuralMutator
Returns the random generator used in mutation
getRandgen() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.SigmNeuronStructuralMutator
Returns the random generator used in mutation
getRandGenFactory() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
Returns randgen factory
getRandom() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
Get a random prototype
getRandom() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
Get a random prototype
getRandomNumberGenerator(long) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
Returns a random number generator.
getRandomNumberGenerator(long) - Method in class keel.Algorithms.SVM.SMO.core.Instances
Returns a random number generator.
getRandomSeed() - Method in class keel.Algorithms.SVM.SMO.SMO
Get the value of randomSeed.
getRange() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
Returns the range (max-min).
getRange(int) - Method in class keel.GraphInterKeel.datacf.util.Dataset
Return range of index variable
getRangeOutput() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.OpenDataset
It returns the list of values for the output class
getRangeOutput() - Method in class keel.Algorithms.Neural_Networks.net.OpenDataset
It returns the list of values for the output class
getRanges() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
Returns the minimum and maximum values of every attributes as a matrix.
getRanges() - Method in class keel.Algorithms.Decision_Trees.M5.Interval
Gets the string representing the selected range of values
getRanges() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
It returns the discourse universe for the input and output variables
getRanges() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
It returns the discourse universe for the input and output variables
getRanges() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
It returns the discourse universe for the input and output variables
getRanges() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
It returns the discourse universe for the input and output variables
getRanges() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Range
Gets the string representing the selected range of values
getRanges() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Dataset
It returns the upper and lower ranges for each attribute of the data-set
getRanges() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
It returns the discourse universe for the input and output variables
getRanges() - Method in class keel.GraphInterKeel.datacf.util.Dataset
Return a vector of vectors in which each vector contains the ranges
for the variable
getRangesEnum(int, int) - Method in class keel.GraphInterKeel.datacf.util.Dataset
Returns range value at index of var variable
getRangesInt(int, int) - Method in class keel.GraphInterKeel.datacf.util.Dataset
Return range value at index of var variable
getRangesReal(int, int) - Method in class keel.GraphInterKeel.datacf.util.Dataset
Return range value at index of var variable
getRangesVar(String) - Method in class keel.GraphInterKeel.datacf.util.Dataset
Return the range of a variable
getRangos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
getRangos(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
getRangos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
Returns the minimum and maximum values of every attributes as a matrix.
getRangos() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
getRangos() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
getRangos() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
getRangos() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
getRangos() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
getRangos() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
getRangos() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
getRangos() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
getRangosEnum(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
getRangosVar(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.OpenDataset
It returns the nominal value list of an attribute
getRangosVar(int) - Method in class keel.Algorithms.Neural_Networks.gann.OpenDataset
It returns the list of nominal values of an attribute
getRangosVar(int) - Method in class keel.Algorithms.Neural_Networks.gmdh.OpenDataset
Returns the nominal value list of an attribute
getRangosVar(int) - Method in class keel.Algorithms.Neural_Networks.net.OpenDataset
It returns the nominal value list of an attribute
getRank() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
Returns the rank of the individual
getRank() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Chromosome
getRank() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
getRank() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
getRank() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
getRank() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
getRank() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
getRank() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
getRanking() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.Individuo
getRanks() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
Returns the minimum and maximum values of every attributes as a matrix.
getRanks() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
Returns the minimum and maximum values of every attributes as a matrix.
getRanks() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
Returns the minimum and maximum values of every attributes as a matrix.
getRbf(String) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
Gets an RBF from the net given its identifier
getRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbfn
Gets an RBF from the net given its identifier
getRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
Gets an RBF from the net given its identifier
getRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
Gets an RBF from the net given its identifier
getRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
Gets an RBF from the net given its identifier
getRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
Gets an RBF from the net given its identifier
getRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
Gets an RBF from the net given its identifier
getReadable() - Method in class keel.Algorithms.Decision_Trees.M5.Association
Gets the string description of the Association.
getReadable() - Method in class keel.Algorithms.SVM.SMO.core.Tag
Gets the string description of the Tag.
getReal() - Static method in class keel.Algorithms.Genetic_Rule_Learning.Globals.Rand
Returns a random real between [0,1)
getReal() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Rand
Returns a random real between [0,1)
GetReal1() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.genetcode
GetReal1() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.genetcode
GetReal1() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.genetcode
GetReal2() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.genetcode
GetReal2() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.genetcode
GetReal2() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.genetcode
GetReal3() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.genetcode
GetReal3() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.genetcode
GetReal3() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.genetcode
getRealEigenvalues() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.EigenvalueDecomposition
Return the real parts of the eigenvalues
getRealTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
Outputs an array of transactions with their corresponding attribute values.
getRealTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
Outputs an array of transactions with their corresponding attribute values.
getRealTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
Outputs an array of transactions with their corresponding attribute values.
getRealTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
Outputs an array of transactions with their corresponding attribute values.
getRealTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
Outputs an array of transactions with their corresponding attribute values.
getRealValue() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Gene
Retrieves the real value of this gene
getRealValue(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.InstanceWrapper
getRealValue(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.InstanceWrapper
getRealValue(int, String) - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Gets the real value
getRealValues() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.InstanceWrapper
getRealValues() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.InstanceWrapper
getRecall() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.agentPerformanceTraining
getReduccionIni() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
getReduccionIni() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
getReduccionIni() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
getReduccionIni() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
getReduccionR() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
getReduccionR() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
getReducedStepSize() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
Returns an array of booleans, indicating which coefficients
have to be treated as more sensible, using reduced step size
for these coefficients
getReferences() - Method in class keel.GraphInterKeel.experiments.UseCase
getregla() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.IndMichigan
getregla() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.IndMichigan
getregla() - Method in class keel.Algorithms.LQD.methods.FGFS_Original.IndMichigan
getregla() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.IndMichigan
getregla() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.IndMichigan
getRegla(int) - Method in class keel.Algorithms.Rule_Learning.Prism.ConjReglas
Returns a rule of the list
getRegla(int) - Method in class keel.Algorithms.Rule_Learning.UnoR.ConjReglas
Returns a rule of the list
getRegla(int) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.ConjReglas
Returns a rule of the list
getRegla(int) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.ConjReglas
Returns a rule of the list
getReglasOutputFile() - Method in class keel.Algorithms.Rule_Learning.LEM1.parseParameters
It returns the name of the file containing the rules
getReglasOutputFile() - Method in class keel.Algorithms.Rule_Learning.LEM2.parseParameters
It returns the name of the file containing the rules
getReglasOutputFile() - Method in class keel.Algorithms.Rule_Learning.Ritio.parseParameters
It returns the name of the file containing the rules
getReglasOutputFile() - Method in class keel.Algorithms.Rule_Learning.Rules6.parseParameters
It returns the name of the file containing the rules
getReglasOutputFile() - Method in class keel.Algorithms.Rule_Learning.SRI.parseParameters
It returns the name of the file containing the rules
getRegOptimizer() - Method in class keel.Algorithms.SVM.SMO.SVMreg
returns the learning algorithm
getRegressionResults(DoubleTransposedDataSet) - Method in class keel.Algorithms.Decision_Trees.CART.CART
It gets the regression results
getReInitCob() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
Gets if the algorithm uses re-initialisation based on coverage
getRelacion() - Method in class keel.GraphInterKeel.datacf.util.Dataset
Return the relation name
getRelation() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.SMOTE_RSB
getRelation() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
Returns the last token after read the last relation in results file.
getRelation() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceParser
It returns the relation name
getRelation() - Method in class keel.Algorithms.Shared.Parsing.ProcessConfig
Returns the last token after read the last relation in results file.
getRelation() - Method in class keel.Dataset.InstanceParser
It returns the relation name
getRelationName() - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
It gets the relation name.
getRelationName() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
It gets the relation name.
getRelationName() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
It gets the relation name.
getRelationName() - Static method in class keel.Dataset.Attributes
It gets the relation name.
getRelationName() - Method in class keel.Dataset.InstanceAttributes
It gets the relation name.
getRemainingParameters() - Method in class keel.Algorithms.Instance_Generation.utilities.Parameters
Returns the remained not parsed parameters
getRemainingParameters() - Method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
Returns the parameters that have not been parsed yet.
getRemoved(int) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
Returns True if the i-th instance was removed, false otherwise.
getRemoved(int) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
Returns True if the i-th instance was removed, false otherwise.
getRemoved(int) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
Returns True if the i-th instance was removed, false otherwise.
getRep() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
Returns the representation of the classifier.
getReplace(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
It returns the Replace element of the rule in the position "pos".
getReplace(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
It returns the Replace element of the rule in the position "pos"
getRepresentative() - Method in class keel.Algorithms.Instance_Generation.GMCA.Cluster
Gets the representative of the cluster
getResultingAccuracy(String, String, int, PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
Internal function that gets only the accuracy of the condensation.
getResultingAccuracy(String, int, PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
Internal function that gets only the accuracy of the condensation.
getResultingAccuracy(String, String, int, PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
Internal function that gets only the accuracy of the condensation.
getResults(String, String, int, int, PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
Internal function that gets the parameters of accuracy of the condensation.
getResultsOfAccuracy(String, int, PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
Internal function that gets the parameters of accuracy of the condensation.
getResultsOfAccuracy(String, String, PrototypeSet, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
Internal function that gets the parameters of accuracy of the condensation.
getResultsOfAccuracy(String, String, PrototypeSet, PrototypeSet) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
Internal function that gets the parameters of accuracy of the condensation.
getReturnValue(int) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
Recursion-ending function that is called at the end of each
recursion branch.
getRevision() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RipperRule
String "1.0"
getRevision() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
Returns revision ( string "1.0")
getRidge() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
Gets the ridge in the log-likelihood.
getRight() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
Gets the right descendant of the node, if it is not a leaf node
getRight() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
Gets the right descendant of the node, if it is not a leaf node
getRight() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Intervals
getRight() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Interval
It returns the right bound of an interval
getRight() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Intervals
getRightChild() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
getRightN() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
It returns the number of right of the rule
getRightSon() - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
getRightTail() - Static method in class keel.GraphInterKeel.statistical.tests.WilcoxonDistribution
Returns right-tailed p-value of the last comparison
getRoot() - Method in class keel.Algorithms.Decision_Trees.CART.tree.DecisionTree
It returns the root of the tree
getRoot() - Method in class keel.Algorithms.Rule_Learning.ART.TBAR
getRootNode() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGAP
This method returns the root node.
getRootNode() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGP
This method returns the root node.
getRootNode() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGPRegSym
This method returns the root node.
getRow(int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
Deprecated.
Gets a row of the matrix and returns it as double array.
getRow(int) - Method in class keel.GraphInterKeel.datacf.util.AttributeTable
Returns a row of the table as a vector
getRowCount() - Method in class keel.GraphInterKeel.datacf.util.AttributeTable
Returns the number of rows
getRowCount() - Method in class keel.GraphInterKeel.datacf.util.DatasetTable
getRowCount() - Method in class keel.GraphInterKeel.datacf.util.VariableTable
Gets the number of rows
getRowCount() - Method in class keel.GraphInterKeel.experiments.ParametersTable
Gets the number of rows (i.e. the number of visible parameters)
getRowCount() - Method in class keel.GraphInterKeel.statistical.statTableModel
Gets the number of rows of the table
getRowDimension() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
Get row dimension.
getRowPackedCopy() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
Make a one-dimensional row packed copy of the internal array.
getRule() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Selected
It returns the rule in the structure.
getRule() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Selected
It returns the rule in the structure
getRule(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Population
Gets the indicated rule
getRule(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Population
Gets one rule using its global index, that is, the index across all subpopulations
getRule(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Subpopulation
Gets a rule from this subpopulation
getRule() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.Rule
getRule(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.RuleSet
getRule() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Rule
getRule(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.RuleSet
getRule(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Ruleset
Returns the rule in the i-th position of the ruleset.
getRule(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierGABIL
getRule(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ruleOrderAgent
getRule(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Ruleset
Returns the rule in the i-th position of the ruleset.
getRule(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.ruleSet
It returns the i-th rule
getRule(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.RuleSet
Returns a rule of the list
getRule(int) - Method in class keel.Algorithms.Rule_Learning.AQ.ruleSet
Returns the rule of the list with the index given.
getRule(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Ruleset
Returns the rule in the i-th position of the ruleset.
getRule(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Ruleset
Returns the rule in the i-th position of the ruleset.
getRule(int) - Method in class keel.Algorithms.Rule_Learning.CN2.ruleSet
Returns the rule of the list with the given index.
getRule(int) - Method in class keel.Algorithms.Rule_Learning.PART.Ruleset
Returns the rule in the i-th position of the ruleset.
getRule(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ruleset
Returns the rule in the i-th position of the ruleset.
getRule(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Ruleset
Returns the rule in the i-th position of the ruleset.
getRule(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.SetRules
Return a complex of the rule
getRuleCF() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
getRuleConfidence() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
It returns the confidence of the association rule represented by a chromosome
getRuleConfidence() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Chromosome
getRuleConv() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
getRuleLift() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
getRuleNetconf() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
getRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
getRules() - Method in class keel.Algorithms.Hyperrectangles.BNGE.BNGE
Extract the rules from the training set.
getRules() - Method in class keel.Algorithms.Hyperrectangles.INNER.INNER
The core of INNER algorithm.
getRules() - Method in class keel.Algorithms.Hyperrectangles.RISE.RISE
Extract the rules from the training set.
getRules() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.ARMMGAProcess
Returns the mined association rules
getRuleset() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
Get the ruleset of the stats
getRuleset() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
Get the ruleset generated by Ripper
getRuleSet() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.RuleSet
getRuleSet() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.RuleSet
getRuleSet() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.ruleSet
It returns the whole rule set
getruleSet() - Method in class keel.Algorithms.Rule_Learning.AQ.ruleSet
It returns the complete rule-set
getruleSet() - Method in class keel.Algorithms.Rule_Learning.CN2.ruleSet
It returns the complete rule-set
getRulesetMask(MyDataset) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ruleset
Returns the combine mask of all the rules in the set.
getRulesetSize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
Get the size of the ruleset in the stats
getRulesIdentifiers() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
Returns the Rules identifiers
getRulesRep() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
Gets the representation of the rules
getRulesRep() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
Gets the rules representation of the algorithm
getRulesRep() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Gets the representation of the rules
getRulesSet() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
It constructs a rules set once the algorithm has been carried out.
getRulesSet() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.AlcalaetalProcess
It returns a rules set once the algorithm has been carried out
getRulesSet() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.FuzzyAprioriProcess
It returns a rules set once the algorithm has been carried out
getRulesSet() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.GeneticFuzzyAprioriProcess
It returns a rules set once the algorithm has been carried out
getRulesSet() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.GeneticFuzzyAprioriDCProcess
It returns a rules set once the algorithm has been carried out
getRulesSet() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
It constructs a rules set once the algorithm has been carried out.
getRulesStage1() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Apriori
Returns the rules generated on the Stage 1.
getRulesStage1() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Apriori
getRuleStats(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
Get the statistics of the ruleset in the given position
getRuleSupport() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.AssociationRule
It returns the support of an association rule
getRuleSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.AssociationRule
It returns the support of an association rule
getRuleSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.AssociationRule
It returns the support of an association rule
getRuleSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.AssociationRule
It returns the support of an association rule
getRuleSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.AssociationRule
It returns the support of an association rule
getRuleSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
It returns the support of the association rule represented by a chromosome
getRuleSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AssociationRule
It returns the support of an association rule
getRuleSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.AssociationRule
It returns the support of an association rule
getRuleSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.AssociationRule
It returns the support of an association rule
getRuleSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Chromosome
getRuleWeight(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypePitts
This method returns the weight of a rule
getRuleYulesQ() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
getRunkeel() - Method in class keel.GraphInterKeel.experiments.EducationalRunkeelEvent
Return a runkeel Class
getRunkeel() - Method in class keel.GraphInterKeel.experiments.RunkeelEvent
getS() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.SingularValueDecomposition
Return the diagonal matrix of singular values
getSalida() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.SMOTE_RSB
getSalidaPDEF() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
getSalidaPDEF() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
getSalidaPDEF() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
getSalidaPDEF() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
getSalidaPDEF() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
getSalidaPDEF() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
getSalidaPDEF() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
getSalidaPDEF() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
getSample() - Method in class keel.Algorithms.Discretizers.UCPD.Sampling
It returns one value of the sampling
getSample() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Sampling
getSample() - Method in class keel.Algorithms.Genetic_Rule_Learning.Globals.Sampling
getSample() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Sampling
Returns a sample contained sampling vector. if the Sampling vector is not instantiated, the function will do it.
getSample() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Sampling
getSample() - Method in class keel.Algorithms.Hyperrectangles.EACH.Sample
Returns the attributes(array of values)
getSample(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Sample
Returns the value of the attribute 'i' of the example
getSample() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
getSample() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
getSample() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
getSample() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
getSample() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
getSample() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
getSample() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
getSample() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
getSampleSize() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
Returns the number of samples.
getScaledFitness() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier
getScaledSocialNetwork() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
Returns the matrix that stores the scaled social network
getScore(Instances) - Method in class keel.Algorithms.Rule_Learning.SRI.Regla
Computes the quality of the rule with the m-probability-estimation.
getScore() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
Compute the value of the objective function.
getScoringFunction() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
getScrollableBlockIncrement(Rectangle, int, int) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
getScrollableBlockIncrement(Rectangle, int, int) - Method in class keel.GraphInterKeel.experiments.GraphPanel
getScrollableBlockIncrement(Rectangle, int, int) - Method in class keel.GraphInterKeel.experiments.SelectData
getScrollableTracksViewportHeight() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
getScrollableTracksViewportHeight() - Method in class keel.GraphInterKeel.experiments.GraphPanel
getScrollableTracksViewportHeight() - Method in class keel.GraphInterKeel.experiments.SelectData
getScrollableTracksViewportWidth() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
getScrollableTracksViewportWidth() - Method in class keel.GraphInterKeel.experiments.GraphPanel
getScrollableTracksViewportWidth() - Method in class keel.GraphInterKeel.experiments.SelectData
getScrollableUnitIncrement(Rectangle, int, int) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
getScrollableUnitIncrement(Rectangle, int, int) - Method in class keel.GraphInterKeel.experiments.GraphPanel
getScrollableUnitIncrement(Rectangle, int, int) - Method in class keel.GraphInterKeel.experiments.SelectData
getScrollPane() - Method in class keel.GraphInterKeel.datacf.editData.EditDataPanel
Return datajScrollPane
getSeBeta0() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the Standard errors intercept - Se(beta0)
getSeBeta1() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the Standard errors slope - Se(beta1)
getSecond() - Method in class keel.Algorithms.Instance_Generation.utilities.Pair
Get second element of the pair.
getSecond() - Method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Pair
Get second element of the pair.
getSecondTimeLimit() - Method in class keel.Algorithms.Lazy_Learning.IDIBL.IDIBL
Get second tunning algorithm time limit
getSeed() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
Gets the current seed value to use in randomizing the data
getSeed() - Static method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
Get the seed of the random generator.
getSeed() - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
Gets the seed for the random number generations
getSeed() - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
Get the seed of the random generator.
getSeed() - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
Gets the seed for the random number generations
getSeed() - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
Gets the seed for the random number generations
getSeed() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
Gets the current seed value for the random number generator
getSeed() - Method in class keel.GraphInterKeel.experiments.Graph
Gets the seed of this graph
getSeed(int) - Method in class keel.GraphInterKeel.experiments.Parameters
return seed at index position
getSeeds() - Method in class keel.GraphInterKeel.experiments.Parameters
return actual seeds
getSeizedSamples() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
Computes the number of training samples that match this rule.
getSelectedTag() - Method in class keel.Algorithms.Decision_Trees.M5.SelectedAssociation
Gets the selected Tag.
getSelectedTag() - Method in class keel.Algorithms.SVM.SMO.core.SelectedTag
Gets the selected Tag.
getSelection() - Method in class keel.Algorithms.Decision_Trees.M5.Interval
Gets an array containing all the selected values, in the order
that they were selected (or ascending order if range inversion is on)
getSelection() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Range
Gets an array containing all the selected values, in the order
that they were selected (or ascending order if range inversion is on)
getSelectionAlgorithm() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
getSelector(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
Returns the selector in a position given the complex
getSelector(int) - Method in class keel.Algorithms.Rule_Learning.AQ.Complex
It returns one of the selectors associated to the complex
getSelector(int) - Method in class keel.Algorithms.Rule_Learning.CN2.Complex
It returns one of the selectors associated to the complex
getSelector(int) - Method in class keel.Algorithms.Rule_Learning.Prism.Complejo
Returns the selector in a position given the complex
getSelector(int) - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
Return a selector in one position by giving a complex
getSelector(int) - Method in class keel.Algorithms.Rule_Learning.UnoR.Complejo
Return a selector in one position by giving a complex
getSelector(int) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Complejo
Return a selector in one position by giving a complex
getSelector(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
Get a selector
getSelectorTabbedPane() - Method in class keel.GraphInterKeel.datacf.DataCFFrame
Returns Selector Tabbed Pane
getSelectorToolbar() - Method in class keel.GraphInterKeel.datacf.DataCFFrame
Returns Selector ToolBar
getSequentialState() - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Environment
It returns the new Example of a single step file environment.
getSequentialState() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.MPEnvironment
It returns the new Example of a single step file environment.
getSequentialState() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.SSFileEnvironment
It returns the new Example of a single step file environment.
getSequentialState() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.DECEnvironment
It returns the new Example of a single step file environment.
getSequentialState() - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Environment
It returns the new Example of a single step file environment.
getSequentialState() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MPEnvironment
It returns the new Example of a single step file environment.
getSequentialState() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MSEnvironment
It returns the new Example of a single step file environment.
getSequentialState() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.PAREnvironment
It returns the new Example of a single step file environment.
getSequentialState() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.POSEnvironment
It returns the new Example of a single step file environment.
getSequentialState() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.SSFileEnvironment
It returns the new Example of a single step file environment.
getSet() - Method in class keel.Algorithms.Instance_Generation.GMCA.Cluster
Gets the prototype set of the cluster.
getSetRules() - Method in class keel.Algorithms.Hyperrectangles.EACH.RuleSet
Returns the complet set if rules
getSetRules(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.EARMGAProcess
getSetRules(double, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.GARProcess
Returns the rules that have their confidence and support values higher than the minimum ones given.
getSetRules(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.GENARProcess
Returns the rules that have their support values higher than the minimum given.
getSetSizeFromPercentage(double) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
Number of prototypes corresponding of the desired percentage of the reduced set.
getSetSizeFromPercentage(PrototypeSet, double) - Static method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
Number of prototypes corresponding of the desired percentage of the reduced set.
getSetSizeFromPercentage(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
Number of prototypes corresponding of the desired percentage of the reduced set.
getSetSizeFromPercentage(PrototypeSet, double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
Number of prototypes corresponding of the desired percentage of the reduced set.
getSigma() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.NormalDistribution
Returns the sigma value of the distribution.
getSigma() - Method in class keel.Algorithms.SVM.SMO.supportVector.Puk
Gets the sigma value.
getSigma() - Method in class keel.GraphInterKeel.statistical.tests.NormalDistribution
Get the sigma value of the distribution
getSigmaSq() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the variance error (sigma^2)
getSign() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
Retuns the value of SIGN
getSignificativeWeight() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.initiators.RandomInitiator
Access to significative weight value
getSignificativeWeigth() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.ExpNeuronStructuralMutator
Returns the minimum value of new weigths
getSignificativeWeigth() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.LinearNeuronStructuralMutator
Returns the minimum value of new weigths
getSignificativeWeigth() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.SigmNeuronStructuralMutator
Returns the minimum value of new weigths
getSignificativeWeigth() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
Returns the significative weigth for new links
getSilent() - Method in class keel.Algorithms.SVM.SMO.core.Check
Get whether silent mode is turned on
getSimpleRule(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Rule
Returns the i-ieth simple rule of this rule.
getSimpleRule(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Rule
Returns the i-ieth simple rule of this rule.
getSimpleRule(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Rule
Returns the i-ieth simple rule of this rule.
getSimpleRule(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Rule
Returns the i-ieth simple rule of this rule.
getSimpleRule(int) - Method in class keel.Algorithms.Rule_Learning.PART.Rule
Returns the i-ieth simple rule of this rule.
getSimpleRule(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Rule
Returns the i-ieth simple rule of this rule.
getSimpleRule(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Rule
Returns the i-ieth simple rule of this rule.
getSimpleStats(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
Get the simple stats of one rule, including 6 parameters:
0: coverage; 1:uncoverage; 2: true positive; 3: true negatives;
4: false positives; 5: false negatives
getSingleIndex() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.SingleIndex
Gets the string representing the selected range of values
getSingularValues() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.SingularValueDecomposition
Return the one-dimensional array of singular values
getSize() - Method in class keel.Algorithms.Instance_Selection.IGA.Cromosoma
Returns the size of the chromosome
getSize() - Method in class keel.Algorithms.Lazy_Learning.IDIBL.NQueue
Get actual size of the queue
getSize() - Method in class keel.Algorithms.Lazy_Learning.NSC.Cluster
See size.
getSize() - Method in class keel.Algorithms.Preprocess.Instance_Selection.IGA.Cromosoma
Chromosome size
getSize() - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.Chromosome
Returns the size of the chromosome.
getSize() - Static method in class keel.Algorithms.RST_Learning.EIS_RFS.Chromosome
Returns the size of the chromosome.
getSize() - Method in class keel.Algorithms.Rule_Learning.AQ.Complex
It returns the number of selectors of the complex
getSize() - Method in class keel.Algorithms.Rule_Learning.CN2.Complex
It returns the number of selectors of the complex
getSizeAntecedentes() - Method in class keel.Algorithms.Rule_Learning.Rules6.Regla
Returns the size of the antecedents list.
getSizeAntecedentes() - Method in class keel.Algorithms.Rule_Learning.SRI.Regla
Returns the size of the antecedents list.
getSizeCondition() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Condition
getSlope() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the regression Slope (Beta1)
getSmoothedFunction() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
getSnextNminus(double[][], double[][], int[][], boolean[][], int[], boolean, Vector) - Method in class keel.Algorithms.Instance_Selection.ZhangTS.Cromosoma
Function that returns the best neighbor in N-
getSnextNminus(double[][], double[][], int[][], boolean[][], int[], boolean, Vector) - Method in class keel.Algorithms.Preprocess.Instance_Selection.ZhangTS.Cromosoma
Function that returns the best neighbor in N-
getSnextNplus(double[][], double[][], int[][], boolean[][], int[], boolean, Vector) - Method in class keel.Algorithms.Instance_Selection.ZhangTS.Cromosoma
Function that returns the best neighbor in N+
getSnextNplus(double[][], double[][], int[][], boolean[][], int[], boolean, Vector) - Method in class keel.Algorithms.Preprocess.Instance_Selection.ZhangTS.Cromosoma
Function that returns the best neighbor in N+
getSocialNetwork() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
Returns the matrix that stores the complete social network.
getSolicitaGarbageColector() - Method in class keel.Algorithms.Semi_Supervised_Learning.CoBC.CoBCGenerator
Asks for the garbage collector
getSolicitaGarbageColector() - Method in class keel.Algorithms.Semi_Supervised_Learning.CoTraining.CoTrainingGenerator
Asks for the garbage collector.
getSolicitaGarbageColector() - Method in class keel.Algorithms.Semi_Supervised_Learning.DE_TriTraining.DE_TriTrainingGenerator
Asks for the garbage collector.
getSolicitaGarbageColector() - Method in class keel.Algorithms.Semi_Supervised_Learning.Democratic.DemocraticGenerator
Asks for the garbage collector.
getSolicitaGarbageColector() - Method in class keel.Algorithms.Semi_Supervised_Learning.RASCO.RASCOGenerator
Asks for the garbage collector.
getSolicitaGarbageColector() - Method in class keel.Algorithms.Semi_Supervised_Learning.Rel_RASCO.Rel_RASCOGenerator
Asks for the garbage collector.
getSolicitaGarbageColector() - Method in class keel.Algorithms.Semi_Supervised_Learning.SelfTraining.SelfTrainingGenerator
Asks for the garbage collector.
getSolicitaGarbageColector() - Method in class keel.Algorithms.Semi_Supervised_Learning.TriTraining.TriTrainingGenerator
Asks for the garbage collector.
getSource() - Method in class keel.GraphInterKeel.experiments.Arc
Gets the source node of this arc
getSource2() - Method in class keel.GraphInterKeel.experiments.Arc
Gets the source node of this arc
getSpecialImpurityLevel(Rule[]) - Method in class keel.Algorithms.Hyperrectangles.INNER.Rule
Computes the impurity level of a rule, by considering only those instances which are not already covered by other rules
getSpecies() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.KEELIRPropPlusWrapperClas
Access to system species.
getSpecies() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.KEELIRPropPlusWrapperRegr
Access to system species.
getSpecies() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
Access to system species
getSplitingAttribute() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
getSplitingValue() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
getSplitPoint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.NumericAntd
Get split point of this numeric antecedent
getSSe() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the sum of squared errors (SSe)
getSSEadj() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ConjGradNN
Returns the SSE statistical variable
getSSr() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the sum of squares due to regression (SSr)
getStagnationTolerance() - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
Gets the stagnation tolerance
getStandardDeviation() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
Returns the Standard deviation.
getStandardDeviation(double) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
Returns a Confidence Interval for the standard deviation value with the given confidence.
getStandardErrorFromCommand() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.SystemCommandExecutor
getStandardOutputFromCommand() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.SystemCommandExecutor
getStartOfPtree() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.PartialSupportTree
Gets reference to start of P-tree.
getState() - Method in class keel.Algorithms.Genetic_Rule_Learning.Globals.MTwister
getState() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.MTwister
getState() - Method in class org.core.MTwister
getStateAddButton() - Method in class keel.GraphInterKeel.datacf.editData.EditDataPanel
Gets the state of Add Button
getStateDeleteButton() - Method in class keel.GraphInterKeel.datacf.editData.EditDataPanel
Gets the state of Delete Button
getStdDev() - Method in class keel.Algorithms.Lazy_Learning.NSC.Cluster
Get stdDev of the cluster
getStdErrorIntercept() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the Standard errors intercept - Se(beta0)
getStdErrorSlope() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the Standard errors slope - Se(beta1)
getStdPerClass() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
Returns the standard deviation per class.
getStdPerClass() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
Returns the standard deviation per class.
getSteps() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
It returns an array with the step values of each attribute depending on the chosen number of partitions
getSteps() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
It returns an array with the step values of each attribute depending on the chosen number of partitions
getSteps() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
It returns an array with the step values of each attribute depending on the chosen number of partitions
getSteps() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
It returns an array with the step values of each attribute depending on the chosen number of partitions
getStrength() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Rule
It gets the strength of the rule
getStrictDominance() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
Gets if the algorithm considers strict dominance
getStringIndices(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
Gets an array containing the indices of all string attributes.
getStringIndices(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.ReplaceMissingValuesFilter
Returns the indeces of the given instances.
getStringValue(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
Returns the value of the given attribute.
getStringValue(MyAttribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
Returns the value of the given attribute.
getSubDirectories(String, File, HashSet) - Static method in class keel.Algorithms.SVM.SMO.core.ClassDiscovery
adds all the sub-directories recursively to the list
getSubfront(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Ranking
Returns a Population containing the solutions of a given rank.
getSubsequenceLength() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
Returns the length of the subsequence
getSubset(Vector, int, int) - Method in class keel.Algorithms.Decision_Trees.ID3.ID3
Function to returns a subset of data.
getSubtype() - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
Gets the subtype of this object
getSubtypelqd() - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
Gets the subtype of this object
getSuccessRatio() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricSRMutator
Returns the success ratio of last generation
GetSuffix(int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
GetSuffix(int) - Static method in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
GetSuffix(int) - Static method in class keel.Dataset.SimpleCharStream
getSuitability() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Chromosome
It returns the suitability of a chromosome
getSuitability() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Chromosome
It returns the suitability of a chromosome
getSuitability() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Chromosome
It returns the suitability of a chromosome
getSum() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
Returns the summation of samples values.
getSumFuzzySupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Chromosome
It returns the sum of fuzzy supports of the 1-Frequent Itemsets covered by a chromosome
getSumInterval() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
getSumInterval() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
getSumInterval() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
getSumInterval() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
getSumSquares() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
Returns the summation of the samples squares.
getSup() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ApproximateSets
getSup() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
Return the value of Sup
getSup() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.QualityMeasures
Method to return the value of the support
getSupport() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Itemset
It returns the support of the antecedent of the itemset.
getSupport() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
It returns the Support of the rule.
getSupport() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Itemset
It returns the support of the antecedent of the itemset
getSupport() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
It returns the Support of the rule
getSupport() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Itemset
It returns the support of the antecedent of the itemset
getSupport() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
It returns the support of the rule
getSupport() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Itemset
It returns the support of the antecedent of the itemset
getSupport() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Rule
It returns the support of the rule
getSupport() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Itemset
It returns the support of the antecedent of the itemset
getSupport() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Rule
It returns the support of the rule
getSupport() - Method in class keel.Algorithms.Discretizers.UCPD.Itemset
It returns the support of this itemset
getSupport() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Itemset
getSupport() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Rule
getSupport() - Method in class keel.Algorithms.Rule_Learning.ART.Rule
getSupport() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Item
Returns the support value for the item.
getSupport() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Regla
Returns the support value of the rule.
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Itemset
It returns the support of an itemset
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.FARFingrams
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Itemset
It returns the support of an itemset
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.Itemset
It returns the support of an itemset
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Itemset
It returns the support of an itemset
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Itemset
It returns the support of an itemset
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.AssociationRule
It returns the support of an association rule
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.Item
It returns the support of an item
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
It returns the support of an association rule
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.Item
It returns the support of an item
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
It returns the support of an association rule
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
It returns the support of the association rule represented by a chromosome
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
It returns the support of an association rule
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
It returns the support of the association rule represented by a chromosome
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
It returns the support of an association rule
getSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
It returns the support of the association rule represented by a chromosome
getSupport_Ant() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
getSupport_Ant() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
getSupport_cons() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
getSupport_cons() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
It returns the consequent support of an association rule
getSupport_cons() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
getSupport_consq() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
getSupport_consq() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
getSupportAll() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
getSupportAll() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
getSupportAnt() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
getSupportAnt() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
getSupportClass() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Itemset
It returns the support of the itemset for its related output class.
getSupportClass() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Itemset
It returns the support of the itemset for its related output class
getSupportClass() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Itemset
It returns the support of the itemset for its related output class
getSupportClass() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Itemset
It returns the support of the itemset for its related output class
getSupportClass() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Itemset
It returns the support of the itemset for its related output class
getSupportClass() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Itemset
getSupportCon() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
getSupportCon() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
getSupportForItemSetInTtree(short[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
Commences process for finding the support value for the given item set
in the T-tree.
getSupportForItemSetInTtree(short[]) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.TotalSupportTree
Commences process for finding the support value for the given item set
in the T-tree (which is know to exist in the T-tree).
getSupportForItemSetInTtree(short[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.TotalSupportTree
Commences process for finding the support value for the given item set
in the T-tree (which is know to exist in the T-tree).
getSupportVectors() - Method in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
This method returns the support vectors
getSV() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_model
getSV() - Method in class org.libsvm.svm_model
getSxx() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the statistical Sxx.
getSxy() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the statistical Sxy.
getSyy() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the statistical Syy.
getT() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
getT0() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the statistical T0.
getTablaDataset() - Method in class keel.GraphInterKeel.datacf.editData.EditDataPanel
Return tablaDataset
getTable() - Static method in class keel.GraphInterKeel.statistical.tests.WilcoxonDistribution
Get the inner table
getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class keel.GraphInterKeel.datacf.util.EachRowEditor
getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class keel.GraphInterKeel.statistical.StatCellEditor
Gets the cell editor component used
gettableVector() - Method in class keel.GraphInterKeel.experiments.Joint
getTabSize(int) - Static method in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
getTabSize(int) - Static method in class keel.Dataset.SimpleCharStream
getTags() - Method in class keel.Algorithms.Decision_Trees.M5.SelectedAssociation
Gets the set of all valid Tags.
getTags() - Method in class keel.Algorithms.SVM.SMO.core.SelectedTag
Gets the set of all valid Tags.
getTarget() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.Link
Returns the target neuron of the link
getTechnicalInformation() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
getTechnicalInformation() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in interface keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformationHandler
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in interface keel.Algorithms.SVM.SMO.core.TechnicalInformationHandler
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class keel.Algorithms.SVM.SMO.SMO
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class keel.Algorithms.SVM.SMO.SMOreg
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class keel.Algorithms.SVM.SMO.supportVector.Puk
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class keel.Algorithms.SVM.SMO.SVMreg
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
getTemperExponent() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
Returns the temperature exponent to be used in the mutations
getTemperExponent() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
Returns the temperature exponent to be used in the mutations
getTest() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.SMOTE_RSB
getTestAt(int) - Method in class keel.GraphInterKeel.experiments.DataSet
Get the test file at the indicated position
getTestAUC() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.C45CS
Calculates the AUC for the test set
getTestAUC() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svmClassifierCost
Calculates the AUC for the test set
getTestClassificationBehaviorArray(IClassifier) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.ClassificationProblemEvaluator
Returns an array with the bevavior of the classifier with
test dataset
getTestClassificationBehaviorMatrix(IClassifier, IClassifier) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.ClassificationProblemEvaluator
Returns a matrix with the comparative bevavior of two
classifiers in the test dataset
getTestClassificationError(IClassifier, IErrorFunction<byte[][]>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.ClassificationProblemEvaluator
Returns the test error value of a neural net with an specified
error function
getTestData() - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
It gets the test data
getTestData() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.problem.IProblem
Returns the test data associated to this problem
getTestData() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
Returns the test data associated to this evaluator
getTestFiles() - Method in class keel.GraphInterKeel.experiments.Parameters
return original test files
getTestInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.parseParameters
getTestInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.parseParameters
It returns the test input file
getTestInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.parseParameters
It returns the test input file
getTestInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.parseParameters
It returns the test input file
getTestInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.parseParameters
It returns the test input file
getTestInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.parseParameters
It returns the test input file
getTestInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.parseParameters
It returns the test input file
getTestInputFile() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.parseParameters
It returns the test input file
getTestInputFile() - Method in class keel.Algorithms.Decision_Trees.DT_GA.parseParameters
It returns the test input file
getTestInputFile() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.parseParameters
It returns the test input file
getTestInputFile() - Method in class keel.Algorithms.Decision_Trees.Target.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.parseParameters
It returns the test input file
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.parseParameters
It returns the test input file
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.parseParameters
It returns the test input file
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.ParametersParser
It returns the test input file
getTestInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.parseParameters
It returns the test input file
getTestInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.parseParameters
Gets the path of the test input file
getTestInputFile() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.PSO_Learning.CPSO.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.PSO_Learning.REPSO.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Rule_Learning.C45Rules.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Rule_Learning.LEM1.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Rule_Learning.LEM2.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Rule_Learning.PART.parseParameters
It returns the test input file
getTestInputFile() - Method in class keel.Algorithms.Rule_Learning.Ripper.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Rule_Learning.Ritio.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Rule_Learning.Rules6.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Rule_Learning.Slipper.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Rule_Learning.SRI.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.parseParameters
It returns the name of the file containing the test data
getTestInputFile() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.parseParameters
Gets the name of the test file
getTestInputFile() - Method in class keel.Algorithms.SVM.C_SVM.parseParameters
Gets the path of the test input file
getTestInputFile() - Method in class keel.Algorithms.SVM.EPSILON_SVR.parseParameters
Gets the path of the test input file
getTestInputFile() - Method in class keel.Algorithms.SVM.NU_SVM.parseParameters
Gets the path of the test input file
getTestInputFile() - Method in class keel.Algorithms.SVM.NU_SVR.parseParameters
Gets the path of the test input file
getTestOutputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.parseParameters
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.parseParameters
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.parseParameters
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.parseParameters
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.parseParameters
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.parseParameters
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.parseParameters
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.parseParameters
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Decision_Trees.DT_GA.parseParameters
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.parseParameters
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Decision_Trees.Target.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.parseParameters
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.parseParameters
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.parseParameters
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.ParametersParser
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.parseParameters
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.parseParameters
Gets the path of the test output file
for printing the results (from the test file)
getTestOutputFile() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.PSO_Learning.CPSO.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.PSO_Learning.REPSO.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Rule_Learning.C45Rules.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Rule_Learning.LEM1.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Rule_Learning.LEM2.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Rule_Learning.PART.parseParameters
It returns the test output file
getTestOutputFile() - Method in class keel.Algorithms.Rule_Learning.Ripper.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Rule_Learning.Ritio.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Rule_Learning.Rules6.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Rule_Learning.Slipper.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Rule_Learning.SRI.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.parseParameters
It returns the name of the file containing the output for the test data
getTestOutputFile() - Method in class keel.Algorithms.SVM.C_SVM.parseParameters
Gets the path of the test output file
for printing the results (from the test file)
getTestOutputFile() - Method in class keel.Algorithms.SVM.EPSILON_SVR.parseParameters
Gets the path of the test output file
for printing the results (from the test file)
getTestOutputFile() - Method in class keel.Algorithms.SVM.NU_SVM.parseParameters
Gets the path of the test output file
for printing the results (from the test file)
getTestOutputFile() - Method in class keel.Algorithms.SVM.NU_SVR.parseParameters
Gets the path of the test output file
for printing the results (from the test file)
getTestOutputFiles() - Method in class keel.GraphInterKeel.experiments.Parameters
return .tst output files
getTestPartition(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.PartitionScheme
It returns the test partition specified
getTestPartition(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.PartitionScheme
It returns the test partition specified
getTestPartition(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.PartitionScheme
It returns the test partition specified
getTestPartition(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.PartitionScheme
It returns the test partition specified
getTestPartition(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.PartitionScheme
It returns the test partition specified
getTestPartition(int) - Method in class keel.GraphInterKeel.datacf.partitionData.PartitioningSchemes.DistanceBased_best
It returns the test partition specified
getTestQStatistic(IClassifier, IClassifier) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.ClassificationProblemEvaluator
Returns the diversity measure Q statistic of two classifiers
in test data set
getTestQStatistic(List<IClassifier>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.ClassificationProblemEvaluator
Returns the diversity measure Q statistic of two classifiers
in test data set
getTestRegressionError(IRegressor, IErrorFunction<double[]>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.problem.regression.RegressionProblemEvaluator
Returns the test error value of a neural net with an specified
error function
getTestResultFile() - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
It gets the test result file
getTestResultFile() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlusReporterClas
Returns file name where the testing results of best model
obtained will be written
getTestResultFile() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.IRPropPlusReporterRegr
Returns file name where the testing results of best model
obtained will be written
getTestResultFile() - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.listener.NeuralNetReporterClas
Returns file name where the testing results of best model
obtained will be written
getTestResultFile() - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.listener.NeuralNetReporterRegr
Returns file name where the testing results of best model
obtained will be written
getTestTime() - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.Timer
Get test time
getTestTime() - Static method in class keel.Algorithms.RST_Learning.Timer
Get test time
getTextRules() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
Returns the matrix that stores the text of all the rules.
getTheoryCost(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Ruleset
The description length of the theory for the ruleset.
getTheoryCost(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Ruleset
The description length of the theory for the ruleset.
getTheoryCost(MyDataset) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ruleset
The description length of the theory for the ruleset.
getTheoryLength() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier
getTheoryLength() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
getTheoryLength() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
getTHRESHOLD() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
getTHRESHOLD() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
getTHRESHOLD() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
getTHRESHOLD() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
getTHRESHOLD() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
getTHRESHOLD() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
getTHRESHOLD() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
getTHRESHOLD() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
getThreshold() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
getTHRESHOLDR() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
getTHRESHOLDR() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
getTIDList() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
It outputs an array of attribute values with their corresponding TIDs
getTIDList() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
It outputs an array of attribute values with their corresponding TIDs
getTIDList() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
It outputs an array of attribute values with their corresponding TIDs
getTIDList() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
It outputs an array of attribute values with their corresponding TIDs
getTime() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
It returns the time of the rule.
getTime() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
It returns the time of the rule
getTime() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
It returns the time of the rule
getTime() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Classifier
Returns the time stamp of the classifier.
getTime() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
Returns the time of the classifier.
getTime() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
Returns the time stamp of the classifier.
getTime() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
Returns the time of the classifier.
getTime() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
Tell the time elapsed.
getTime() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
Tell the time elapsed.
gettimes() - Method in class keel.GraphInterKeel.experiments.Joint
getTipifiedProbability(double, boolean) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.NormalDistribution
Computes cumulative N(0,1) distribution.
getTipifiedProbability(double, boolean) - Method in class keel.GraphInterKeel.statistical.tests.NormalDistribution
Computes cumulative N(0,1) distribution.
getTipo(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
Returns the type of the attribute with index passed as argument.
getTipo(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
It returns the type of an attribute
getTipo(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
It returns the type of an attribute
getTipo(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
It returns the type of an attribute
getTipo(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
It returns the type of an attribute
getTipo(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
Returns the type of the attribute with index passed as argument.
getTipo(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
It returns the type of an attribute
getTipo(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
It returns the type of an attribute
getTipo(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
It returns the type of an attribute
getTipo(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
It returns the type of the attribute specified
getTipo() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Atributo
Returns the attribute type.
getTipo() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Atributo
Returns the attribute type.
getTipo() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Atributo
Returns the attribute type.
getTipo(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
It returns the type of an attribute
getTipo(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
It returns the type of an attribute
getTipo(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
It returns the type of an attribute
getTipo(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
It returns the type of the attribute specified
getTipo() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Atributo
Returns the attribute type.
getTipo(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
It returns the type of an attribute
getTipo(int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
It returns the type of the attribute specified
getTipo(int) - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
It returns the type of the attribute specified
getTipos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
getTipos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
Returns the types of every attribute.
getTiposAt(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.OpenDataset
Return type (0 nominal, 1 integer, 2 float,..) of attribute at index.
getTiposAt(int) - Method in class keel.Algorithms.Neural_Networks.gann.OpenDataset
Return type (0 nominal, 1 integer, 2 float,..) of the attribute at index
getTiposAt(int) - Method in class keel.Algorithms.Neural_Networks.gmdh.OpenDataset
Return type (0 nominal, 1 integer, 2 float,..) of attribute at index.
getTiposAt(int) - Method in class keel.Algorithms.Neural_Networks.net.OpenDataset
Return type (0 nominal, 1 integer, 2 float,..) of attribute at index.
getTiposIndex(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
Returns the type of the given attribute index.
getTiposIndex(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
Returns the type of the attribute given.
getTiposIndex2(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
Returns the type of the attribute given.
getTMtablaAtributos() - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelAttribute
Get the Attributes Table
getTodo() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Individual
It returns the whole chromosome
getToken(int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
getToken(int) - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
getToken(int) - Static method in class keel.Dataset.DataParser
getTolerance() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
returns the current tolerance
getToleranceParameter() - Method in class keel.Algorithms.SVM.SMO.SMO
Get the value of tolerance parameter.
getToleranceParameter() - Method in class keel.Algorithms.SVM.SMO.SMOreg
Get the value of tolerance parameter.
getTotal() - Method in class keel.Algorithms.Decision_Trees.C45.Classification
Returns total weight of itemsets.
getTotal() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
Returns total weight of itemsets.
getTotal() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
Returns total weight of itemsets.
getTotal() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
Returns total weight of itemsets.
getTotal() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
Returns total weight of itemsets.
getTotal() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
Returns total weight of itemsets.
getTotal() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
Returns total weight of itemsets.
getTotal() - Method in class keel.Algorithms.Rule_Learning.PART.Classification
Returns total weight of itemsets.
getTotal(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Score
Returns the total number of instances of the dataset
that contains the value at a given position of the vector.
getTotal(double) - Method in class keel.Algorithms.Rule_Learning.Ripper.Score
Returns the total number of instances that contains the given value.
getTotal(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Score
Returns the total number of instances of the dataset
that contains the value at a given position of the vector.
getTotal(double) - Method in class keel.Algorithms.Rule_Learning.Slipper.Score
Returns the total number of instances that contains the given value.
getTotal() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
Returns total weight of itemsets.
getTotalClass() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Individual
Returns the number of the class of the invividual
getTotalClass() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Individual
Returns the number of the class of the invividual
getTotalClass() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Individual
Returns the number of the class of the invividual
getTotalErrors() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Selected
It returns the total of errors in the structure.
getTotalErrors() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Selected
It returns the total of errors in the structure
getTotalexperiments() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Chc
getTotalexperiments() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Chc
getTotalexperiments() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Chc
getTotalexperiments() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Chc
getTotalexperiments() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Chc
getTotalexperiments() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Chc
getTotalexperiments() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Chc
getTotalexperiments() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Chc
getTotalFiringDegrees() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
Returns the Vector that contains the total firing degrees of rules.
getTotalFractions() - Method in class keel.GraphInterKeel.datacf.partitionData.HoldOutOptionsJDialog
Gets the number of fractions of the hold-out process.
getTotalNumberClass() - Method in class keel.Algorithms.Statistical_Tests.Shared.StatTest.InformationAboutClass
Returns the total number of classes of the problem.
getTotalPartitions() - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
This methos return the partition total number
getTotaltrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Chc
getTotaltrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Chc
getTotaltrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Chc
getTotaltrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Chc
getTotaltrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Chc
getTotaltrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Chc
getTotaltrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Chc
getTotaltrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Chc
getTotalWeight() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.PRM
It returns the total weight of the positive classification
getTP() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
Return the value of TP
getTrainAUC() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.C45CS
Calculates the AUC for the training set
getTrainAUC() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svmClassifierCost
Calculates the AUC for the training set
getTrainClassificationBehaviorArray(IClassifier) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.ClassificationProblemEvaluator
Returns an array with the bevavior of the classifier with
train dataset
getTrainClassificationBehaviorMatrix(IClassifier, IClassifier) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.ClassificationProblemEvaluator
Returns a matrix with the comparative bevavior of two
classifiers in the train dataset
getTrainClassificationError(IClassifier, IErrorFunction<byte[][]>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.ClassificationProblemEvaluator
Returns the train error value of a neural net with an specified
error function
getTrainData() - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
Ir returns the training data
getTrainData() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.problem.IProblem
Returns the train data associated to this problem
getTrainData() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
Returns the train data associated to this evaluator
getTrainingAt(int) - Method in class keel.GraphInterKeel.experiments.DataSet
Get the training file at the indicated position
getTrainingInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.parseParameters
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.parseParameters
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.parseParameters
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.parseParameters
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.parseParameters
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.parseParameters
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.parseParameters
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.parseParameters
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Decision_Trees.DT_GA.parseParameters
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.parseParameters
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Decision_Trees.Target.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.parseParameters
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.parseParameters
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.parseParameters
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.ParametersParser
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.parseParameters
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.parseParameters
Gets the path of the training input file
getTrainingInputFile() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.PSO_Learning.CPSO.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.PSO_Learning.REPSO.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Rule_Learning.C45Rules.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Rule_Learning.LEM1.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Rule_Learning.LEM2.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Rule_Learning.PART.parseParameters
It returns the training input file
getTrainingInputFile() - Method in class keel.Algorithms.Rule_Learning.Ripper.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Rule_Learning.Ritio.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Rule_Learning.Rules6.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Rule_Learning.Slipper.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Rule_Learning.SRI.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.parseParameters
It returns the name of the file containing the training data
getTrainingInputFile() - Method in class keel.Algorithms.SVM.C_SVM.parseParameters
Gets the path of the training input file
getTrainingInputFile() - Method in class keel.Algorithms.SVM.EPSILON_SVR.parseParameters
Gets the path of the training input file
getTrainingInputFile() - Method in class keel.Algorithms.SVM.NU_SVM.parseParameters
Gets the path of the training input file
getTrainingInputFile() - Method in class keel.Algorithms.SVM.NU_SVR.parseParameters
Gets the path of the training input file
getTrainingOutputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.parseParameters
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.parseParameters
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.parseParameters
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.parseParameters
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.parseParameters
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.parseParameters
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.parseParameters
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.parseParameters
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Decision_Trees.DT_GA.parseParameters
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.parseParameters
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Decision_Trees.Target.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.parseParameters
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.parseParameters
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.parseParameters
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.ParametersParser
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.parseParameters
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.parseParameters
Gets the path of the training output file
for printing the results (from the validation file)
getTrainingOutputFile() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.PSO_Learning.CPSO.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.PSO_Learning.REPSO.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Rule_Learning.C45Rules.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Rule_Learning.LEM1.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Rule_Learning.LEM2.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Rule_Learning.PART.parseParameters
It returns the training output file
getTrainingOutputFile() - Method in class keel.Algorithms.Rule_Learning.Ripper.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Rule_Learning.Ritio.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Rule_Learning.Rules6.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Rule_Learning.Slipper.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Rule_Learning.SRI.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.parseParameters
It returns the name of the file containing the output for the training data
getTrainingOutputFile() - Method in class keel.Algorithms.SVM.C_SVM.parseParameters
Gets the path of the training output file
for printing the results (from the validation file)
getTrainingOutputFile() - Method in class keel.Algorithms.SVM.EPSILON_SVR.parseParameters
Gets the path of the training output file
for printing the results (from the validation file)
getTrainingOutputFile() - Method in class keel.Algorithms.SVM.NU_SVM.parseParameters
Gets the path of the training output file
for printing the results (from the validation file)
getTrainingOutputFile() - Method in class keel.Algorithms.SVM.NU_SVR.parseParameters
Gets the path of the training output file
for printing the results (from the validation file)
getTrainingOutputFiles() - Method in class keel.GraphInterKeel.experiments.Parameters
return .tra output files
getTrainingSetDocumentsID() - Static method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.WrapperManager
getTrainingTime() - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.Timer
Get training time
getTrainingTime() - Static method in class keel.Algorithms.RST_Learning.Timer
Get training time
getTrainingValidationFiles() - Method in class keel.GraphInterKeel.experiments.Parameters
return training files to validate
getTrainInstances() - Method in class keel.Algorithms.MIL.AbstractMIAlgorithm
getTrainPartition(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.PartitionScheme
It returns the training partition specified
getTrainPartition(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.PartitionScheme
It returns the training partition specified
getTrainPartition(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.PartitionScheme
It returns the training partition specified
getTrainPartition(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.PartitionScheme
It returns the training partition specified
getTrainPartition(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.PartitionScheme
It returns the training partition specified
getTrainPartition(int) - Method in class keel.GraphInterKeel.datacf.partitionData.PartitioningSchemes.DistanceBased_best
It returns the training partition specified
getTrainQStatistic(IClassifier, IClassifier) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.ClassificationProblemEvaluator
Returns the diversity measure Q statistic of two classifiers
in train dataset
getTrainQStatistic(List<IClassifier>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.ClassificationProblemEvaluator
Returns the diversity measure Q statistic of a list of classifiers
in train dataset
getTrainRegressionError(IRegressor, IErrorFunction<double[]>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.problem.regression.RegressionProblemEvaluator
Returns the train error value of a neural net with an specified
error function
getTrainResultFile() - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
It returns the training results file
getTrainResultFile() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlusReporterClas
Returns file name where the training results of best model
obtained will be written
getTrainResultFile() - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.IRPropPlusReporterRegr
Returns file name where the training results of best model
obtained will be written
getTrainResultFile() - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.listener.NeuralNetReporterClas
Returns file name where the training results of best model
obtained will be written
getTrainResultFile() - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.listener.NeuralNetReporterRegr
Returns file name where the training results of best model
obtained will be written
getTransactionsInputFile() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.parseParameters
Gets the name of the train file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.parseParameters
It returns the name of the transactions input file
getTransactionsInputFile() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.parseParameters
It returns the name of the transactions input file
getTransAt(int) - Method in class keel.GraphInterKeel.experiments.DataSet
Get the transductive file file at the indicated position
getTree() - Method in class keel.Algorithms.Decision_Trees.CART.CART
It returns the decision tree
getTree() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
getTree() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.C45
Returns the C4.5 tree
getTree() - Method in class keel.Algorithms.Rule_Learning.C45Rules.C45
Returns the C4.5 tree
getTree() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.C45
Returns the C4.5 tree
getTree() - Method in class keel.Algorithms.Rule_Learning.PART.C45
Returns the C4.5 tree
getTreeCellRendererComponent(JTree, Object, boolean, boolean, boolean, int, boolean) - Method in class keel.GraphInterKeel.experiments.KeelTreeCellRenderer
Get the base component of the tree
getTreeError() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
Obtains the general error of the tree from all its leaves in a two number array
getTrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
getTrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
getTrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
getTrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
getTrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
getTrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
getTrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
getTrials() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
getTrials() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
Gets the number of trials in the algorithm
getTrueTransactions() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
Outputs an array of transactions with their corresponding attribute values.
getTrueTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
Outputs an array of transactions with their corresponding attribute values.
getTrueTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
Outputs an array of transactions with their corresponding attribute values.
getTrueTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
Outputs an array of transactions with their corresponding attribute values.
getTrueTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
Outputs an array of transactions with their corresponding attribute values.
getTrueTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
Outputs an array of transactions with their corresponding attribute values.
getTrueTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
Outputs an array of transactions with their corresponding attribute values.
getTrueTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
Outputs an array of transactions with their corresponding attribute values.
getTrueTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
Outputs an array of transactions with their corresponding attribute values.
getTrueTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
Outputs an array of transactions with their corresponding attribute values.
getTrueTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
Outputs an array of transactions with their corresponding attribute values.
getTrueTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
Outputs an array of transactions with their corresponding attribute values.
getTrueTransactions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
Outputs an array of transactions with their corresponding attribute values.
getType(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
It returns the type of the variable
getType(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
It returns the type of an attribute
getType(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
It returns the type for the attribute "variable"
getType(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
It returns the type for the attribute "variable"
getType(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
It returns the type for the attribute "variable"
getType(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
It returns the type for the attribute "variable"
getType(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
It returns the type for the attribute "variable"
getType(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
It returns the type for the attribute "variable"
getType() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeLocator
returns the type of attribute that is located
getType() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Condition
Returns the type of the condition (gene)
getType(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
It returns the type for the attribute "variable"
getType() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
Gets the type of the attribute (CONTINUOUS or DISCRET).
getType() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Ruleset
Returns the common output (consecuent) of the rules in the ruleset.
getType() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Rule
It returns the right side (class) of the rule.
getType() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Ruleset
Returns the common output (consecuent) of the rules in the ruleset.
getType() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Condition
It gets the type of the condition
getType() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractAttribute
Access to the attribute type
getType() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.CategoricalAttribute
Access to the attribute type
getType() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IAttribute
Access to the attribute type
getType() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.IntegerNumericalAttribute
Access to the attribute type
getType() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.RealNumericalAttribute
Access to the attribute type
getType() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
Returns the type of this layer
getType(int) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
It returns the type for the attribute "variable"
getType(int) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
It returns the type for the attribute "variable"
getType() - Method in class keel.Algorithms.Rule_Learning.AQ.Instance
It returns the type of the instance
getType() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Rule
It returns the right side (class) of the rule.
getType() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Ruleset
Returns the common output (consecuent) of the rules in the ruleset.
getType() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Rule
It returns the right side (class) of the rule.
getType() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Ruleset
Returns the common output (consecuent) of the rules in the ruleset.
getType() - Method in class keel.Algorithms.Rule_Learning.PART.Rule
It returns the right side (class) of the rule.
getType() - Method in class keel.Algorithms.Rule_Learning.PART.Ruleset
Returns the common output (consecuent) of the rules in the ruleset.
getType(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
It returns the type of the attribute specified
getType() - Method in class keel.Algorithms.Rule_Learning.Ripper.Rule
It returns the right side (class) of the rule.
getType() - Method in class keel.Algorithms.Rule_Learning.Ripper.Ruleset
Returns the common output (consecuent) of the rules in the ruleset.
getType() - Method in class keel.Algorithms.Rule_Learning.Slipper.Rule
It returns the right side (class) of the rule.
getType() - Method in class keel.Algorithms.Rule_Learning.Slipper.Ruleset
Returns the common output (consecuent) of the rules in the ruleset.
getType() - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
It does return the type of the attribute
getType() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation
returns the type of this technical information
getType(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
Returns the type of the variable "pos"
getType() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeVar
Gets the char with the type used in the variable
getType(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
Returns the type of the variable "pos"
getType() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeVar
Gets the char with the type used in the variable
getType(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
Returns the type of the variable "pos"
getType() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeVar
Gets the char with the type used in the variable
getType() - Method in class keel.Algorithms.SVM.SMO.core.TechnicalInformation
returns the type of this technical information
getType(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
It returns the type of the attribute specified
getType() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
getType() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Gene
getType(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
This function return the type of the attribute
getType() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Gene
getType(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
It returns the type of the attribute specified
getType() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Gene
getType() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Gene
getType() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Gene
getType() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
getType() - Method in class keel.Dataset.Attribute
It does return the type of the attribute
getType() - Method in class keel.GraphInterKeel.experiments.Graph
Gets the type of this graph
getType() - Method in class keel.GraphInterKeel.experiments.Node
Gets the type of the node
getType() - Method in class keel.GraphInterKeel.experiments.UseCase
getTypeInference() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.RuleBase
Returns the type of inference used to build the rules.
getTypeInference() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.RuleBase
gettypelqd() - Method in class keel.GraphInterKeel.experiments.Joint
getTypelqd() - Method in class keel.GraphInterKeel.experiments.Node
Gets the type of the node
getTypeOfAttribute(int) - Static method in class keel.Algorithms.Instance_Generation.Basic.Prototype
Return the type of the attribute.
getTypeOfAttribute(int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
Return the type of the attribute.
getTypeRelation() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
Returns the Relation value.
getTypes() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Dataset
It returns the attribute type
getTypes() - Method in class keel.GraphInterKeel.datacf.util.Dataset
Return a vector with variable types (integer, real, nominal)
getU() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
Deprecated.
Returns the U part of the matrix.
getU() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.LUDecomposition
Return upper triangular factor
getU() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.SingularValueDecomposition
Return the left singular vectors
getU() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Gene
getU() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Gene
getU() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Gene
getUID(String) - Static method in class keel.Algorithms.SVM.SMO.core.SerializationHelper
reads or creates the serialVersionUID for the given class
getUID(Class) - Static method in class keel.Algorithms.SVM.SMO.core.SerializationHelper
reads or creates the serialVersionUID for the given class
getUltimaRegla() - Method in class keel.Algorithms.Rule_Learning.Prism.ConjReglas
Returns the last rule(normally the one with best weight)
getUltimaRegla() - Method in class keel.Algorithms.Rule_Learning.UnoR.ConjReglas
Returns the last rule(normally the one with best weight)
getUltimaRegla() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.ConjReglas
Returns the last rule(normally the one with best weight)
getUltimaRegla() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.ConjReglas
Returns the last rule(normally the one with best weight)
getUltimaRegla() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.SetRules
Return the last rule
getUncover() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.RuleBase
Returns the number of examples uncovered by the rules
getUncover() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.RuleBase
getUndefinedAttribute(int) - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
It returns the undefined attribute being int the position passed as an argument.
getUndefinedAttribute(int) - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
It returns the undefined attribute being int the position passed as an argument.
getUndefinedAttribute(int) - Static method in class keel.Dataset.Attributes
It returns the undefined attribute being int the position passed as an argument.
getUndefinedAttribute(int) - Method in class keel.Dataset.InstanceAttributes
It returns the undefined attribute being int the position passed as an argument.
getUndefinedAttributes() - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
It does return all the undefined attributes
getUndefinedAttributes() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
It does return all the undefined attributes
getUndefinedAttributes() - Static method in class keel.Dataset.Attributes
It does return all the undefined attributes
getUndefinedAttributes() - Method in class keel.Dataset.InstanceAttributes
It does return all the undefined attributes
getUndefinedAttributesHeader() - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
It does return a String with all the undefined attributes definition
in keel format.
getUndefinedAttributesHeader() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
It does return a String with all the undefined attributes definition
in keel format.
getUndefinedAttributesHeader() - Static method in class keel.Dataset.Attributes
It does return a String with all the undefined attributes definition
in keel format.
getUndefinedAttributesHeader() - Method in class keel.Dataset.InstanceAttributes
It does return a String with all the undefined attributes definition
in keel format.
getUndefinedNumAttributes() - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
It return the number of undefined attributes in the API
getUndefinedNumAttributes() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
It return the number of undefined attributes in the API
getUndefinedNumAttributes() - Static method in class keel.Dataset.Attributes
It return the number of undefined attributes in the API
getUndefinedNumAttributes() - Method in class keel.Dataset.InstanceAttributes
It return the number of undefined attributes in the API
getUniformFuzzyAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.AlcalaetalProcess
It returns the uniform fuzzy attributes before running the genetic learning process
getUnscaledMax() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
Returns the array of maximum values in datasets
getUnscaledMin() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
Returns the array of minimum values in datasets
getUnscaledTestData() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
Returns the DataSet associated to the evaluator as unscaled test data
getUnscaledTrainData() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
Returns the DataSet associated to the evaluator as unscaled train data
getUnsmoothedFunction() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
getUnus() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
Retuns the value of UNUS
getUpper_aproximation(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsCuttoff
getUpperAllele() - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Attribute
It returns the upper allele.
getUpperAllele() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
Returns the upper real value of the representation
getUpperAllele() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
getUpperAllele() - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
It returns the upper allele.
getUpperAllele() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
Returns the upper real value of the representation
getUpperAllele() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
Returns the upper real value of the representation
getUpperAllele(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
Returns the value of the alelle
getUpperAllele() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
getUpperBound() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Condition
It returns the upper bound
getUpperBound() - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.Gcvfctn
Gets the upper bound of the evaluation
getUpperBound(int) - Method in interface keel.Algorithms.Preprocess.Missing_Values.EM.util.MultivariateFunction
get upper bound of argument n
getUpperBound() - Method in interface keel.Algorithms.Preprocess.Missing_Values.EM.util.UnivariateFunction
getUpperBound() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
It returns the upper bound of the interval stored in a gene
getUpperBound() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
It returns the upper bound of the interval stored in a gene
getUpperBound() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Gene
It returns the upper bound of the interval stored in a gene
getUpperNumericBound() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
Returns the upper bound of a numeric attribute.
getUpperQuartile() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Histogram
Returns the upper quartile.
getUpperrealBound() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
Returns the upper bound of a real attribute.
getUpperValues() - Method in class keel.Algorithms.Hyperrectangles.EACH.Hyperrectangle
getURL(String, String) - Static method in class keel.Algorithms.SVM.SMO.core.ClassDiscovery
If the given package can be found in this part of the classpath then
an URL object is returned, otherwise null
.
getUsedConstants() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGPRegSym
This method returns the list of used constants.
getUsedConsts() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.RegSymFuzzyGP
This method returns information about used constant
getUsedElite() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
Method to get the number of different individuals in the final elite population
getUseful() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
Gets the useful parameter of the classifier.
getUseful() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
Gets the useful parameter of the classifier.
getUsefulTimes() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
Gets the useful times parameter of the classifier.
getUsefulTimes() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
Returns the useful time parameter of the classifier
getUseLowerOrder() - Method in class keel.Algorithms.SVM.SMO.supportVector.PolyKernel
Gets whether lower-order terms are used.
getUseNormalization() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
Returns whether normalization is used.
getUserOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.KernelEvaluation
returns the options the user supplied for the kernel
getUseRuleStretching() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
Gets whether pruning is performed
getUseUnsmoothed() - Method in class keel.Algorithms.Decision_Trees.M5.M5
Get the value of UseUnsmoothed.
getUseUnsmoothed() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
Get the value of UseUnsmoothed.
getV() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.EigenvalueDecomposition
Return the eigenvector matrix
getV() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.SingularValueDecomposition
Return the right singular vectors
getVA(double) - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.VAList
this method returns a object with the frequencies list associated to
the value passed as parameter
getVA(double) - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.VAList
this method returns a object with the frequencies list associated to
the value passed as parameter
getVA(double) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.VAList
this method returns a object with the frequencies list associated to
the value passed as parameter
getVA(double) - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.VAList
this method returns a object with the frequencies list associated to
the value passed as parameter
getVA(double) - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.VAList
this method returns a object with the frequencies list associated to
the value passed as parameter
getVA(double) - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.VAList
this method returns a object with the frequencies list associated to
the value passed as parameter
getVA(double) - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.VAList
this method returns a object with the frequencies list associated to
the value passed as parameter
getVA(double) - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.VAList
this method returns a object with the frequencies list associated to
the value passed as parameter
getVal3() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.QualityMeasures
Method to return the value of the objective 3
getValEnum() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
getValid() - Method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.Chromosome
Tests if the chromosome is valid
getValidationInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.parseParameters
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.parseParameters
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.parseParameters
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.parseParameters
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.parseParameters
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.parseParameters
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.parseParameters
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.parseParameters
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Decision_Trees.DT_GA.parseParameters
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.parseParameters
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Decision_Trees.Target.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.parseParameters
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.parseParameters
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.parseParameters
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.ParametersParser
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.parseParameters
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.parseParameters
Gets the path of the validation input file
getValidationInputFile() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.PSO_Learning.CPSO.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.PSO_Learning.REPSO.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Rule_Learning.C45Rules.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Rule_Learning.LEM1.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Rule_Learning.LEM2.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Rule_Learning.PART.parseParameters
It returns the validation input file
getValidationInputFile() - Method in class keel.Algorithms.Rule_Learning.Ripper.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Rule_Learning.Ritio.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Rule_Learning.Rules6.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Rule_Learning.Slipper.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Rule_Learning.SRI.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.parseParameters
It returns the name of the file containing the validation data
getValidationInputFile() - Method in class keel.Algorithms.SVM.C_SVM.parseParameters
Gets the path of the validation input file
getValidationInputFile() - Method in class keel.Algorithms.SVM.EPSILON_SVR.parseParameters
Gets the path of the validation input file
getValidationInputFile() - Method in class keel.Algorithms.SVM.NU_SVM.parseParameters
Gets the path of the validation input file
getValidationInputFile() - Method in class keel.Algorithms.SVM.NU_SVR.parseParameters
Gets the path of the validation input file
getValor() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Atributo
Returns the assigned value of the attribute.
getValor() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Condicion
Returns the value for the attribute of this condition.
getValor(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Muestra
Returns the value for the attribute/condition in the given position.
getValor() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Atributo
Returns the assigned value of the attribute.
getValor() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Condicion
Returns the value for the attribute of this condition.
getValor(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Muestra
Returns the value for the attribute/condition in the given position.
getValor() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Atributo
Returns the assigned value of the attribute.
getValor(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Muestra
Returns the value for the attribute/condition in the given position.
getValor() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Atributo
Returns the assigned value of the attribute.
getValor() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Condicion
Returns the value for the attribute of this condition.
getValor(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Muestra
Returns the value for the attribute/condition in the given position.
getValor() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Entero
getValor() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Atributo
Returns the assigned value of the attribute.
getValor() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Condicion
Returns the value for the attribute of this condition.
getValor(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Muestra
Returns the value for the attribute/condition in the given position.
getValor() - Method in class keel.Algorithms.Rule_Learning.LEM2.Atributo_valor
getValor() - Method in class keel.Algorithms.Rule_Learning.Prism.Selector
Return the attribute's value associated
getValor() - Method in class keel.Algorithms.Rule_Learning.Rules6.Atributo_valor
Returns the value of the attribute stored.
getValor() - Method in class keel.Algorithms.Rule_Learning.SRI.Atributo_valor
Returns the value of the attribute stored.
getValor() - Method in class keel.Algorithms.Rule_Learning.UnoR.Selector
Return the attribute's value associated
getValor() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Selector
Return the attribute's value associated
getValor() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Selector
Return the value associated with the attribute
getValorConstante() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
getValores() - Method in class keel.Algorithms.Rule_Learning.Prism.Selector
Returns the set of values of the selector
getValores() - Method in class keel.Algorithms.Rule_Learning.UnoR.Selector
Returns the set of values of the selector
getValores() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Selector
Returns the set of values of the selector
getValores() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Selector
Return the set of values for the selector
getValoresInvalidos() - Method in class keel.Algorithms.Rule_Learning.Rules6.Regla
Returns the list with the invalid values for the rule.
getValoresInvalidos() - Method in class keel.Algorithms.Rule_Learning.SRI.Regla
Returns the list with the invalid values for the rule.
getValoresN() - Method in class keel.Algorithms.Rule_Learning.Prism.Selector
Return the set of nominal values of the selector
getValoresN() - Method in class keel.Algorithms.Rule_Learning.UnoR.Selector
Return the set of nominal values of the selector
getValorN() - Method in class keel.Algorithms.Rule_Learning.Prism.Selector
Returns the nominal value of the associated value
getValorN() - Method in class keel.Algorithms.Rule_Learning.UnoR.Selector
Returns the nominal value of the associated value
getValorOperacion1() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
getValorOperacion2() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
getValTrueTransactions(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
Outputs an array of transactions with their corresponding attribute values.
getValue() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Item
It returns the value of the item.
getValue() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Item
It returns the value of the item
getValue() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.Literal
It returns the value of the attribute stored in the literal
getValue() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Item
It returns the value of the item
getValue() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Item
It returns the value of the item
getValue() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Item
It returns the value of the item
getValue(int) - Method in class keel.Algorithms.Decision_Trees.C45.Itemset
Returns the value of the given attribute.
getValue() - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
getValue(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
Returns the value of the given attribute.
getValue(int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
Gets the value of a nominal attribute from the position in the list of possible values
getValue() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.Split
Gets the value of the attribute for the split
getValue(int) - Method in class keel.Algorithms.Decision_Trees.ID3.Itemset
Returns the value of the given attribute.
getValue(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
Gets the value of a nominal attribute from the position in the list of possible values
getValue() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Split
Gets the value of the attribute for the split
getValue(int) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Itemset
Returns the value of the given attribute.
getValue() - Method in class keel.Algorithms.Discretizers.OneR.Opt
Gets the explanatory value associated
GetValue(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
GetValue(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationinteger
GetValue(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationinteger
getValue() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Item
getValue() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.Condition
getValue(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
Returns the value of the given attribute.
getValue(MyAttribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
Returns the value of the given attribute.
getValue() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleRule
Returns the value of the attribute
getValue(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
Returns the value of the given attribute.
getValue(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
Returns the value of the given attribute.
getValue() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.SimpleRule
Returns the value of the attribute
getValue() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Condition
It returns the value for the attribute
getValue(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
Returns the value of the given attribute.
getValue(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
Returns the value of the given attribute.
getValue(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset.Instance
Returns vector's attribute value in internal format
getValue(IAttribute) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset.Instance
Returns value at specified attribute
getValue(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset.Instance
Returns value at specified attribute name
getValue(int) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset.IInstance
Returns vector's attribute value in internal format
getValue(IAttribute) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset.IInstance
Returns value at specified attribute
getValue(String) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset.IInstance
Returns value at specified attribute name
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.ValueFreq
Returns the value of this object (the string)
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.valueAssociations
The reference value of this object
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.ValueFreq
Returns the value of this object (the string)
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.valueAssociations
The reference value of this object
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.ValueFreq
Returns the value of this object (the string)
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.valueAssociations
The reference value of this object
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.ValueFreq
Returns the value of this object (the string)
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.valueAssociations
The reference value of this object
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.ValueFreq
Returns the value of this object (the string)
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.valueAssociations
The reference value of this object
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.ValueFreq
Returns the value of this object (the string)
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.valueAssociations
The reference value of this object
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.ValueFreq
Returns the value of this object (the string)
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.ValueFreq
Returns the value of this object (the string)
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.valueAssociations
The reference value of this object
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.ValueFreq
Returns the value of this object (the string)
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.valueAssociations
The reference value of this object
getValue() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.ValueFreq
Returns the value of this object (the string)
getValue() - Method in class keel.Algorithms.Rule_Learning.AQ.Selector
It returns the value of the associated attribute
getValue(int) - Method in class keel.Algorithms.Rule_Learning.ART.Itemset
Returns the value of the given attribute.
getValue(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Itemset
Returns the value of the given attribute.
getValue() - Method in class keel.Algorithms.Rule_Learning.C45Rules.SimpleRule
Returns the value of the attribute
getValue(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
Returns the value of the given attribute.
getValue() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.SimpleRule
Returns the value of the attribute
getValue() - Method in class keel.Algorithms.Rule_Learning.CN2.Selector
It returns the value of the associated attribute
getValue(int) - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
Returns the value of the given attribute.
getValue(int) - Method in class keel.Algorithms.Rule_Learning.PART.Itemset
Returns the value of the given attribute.
getValue() - Method in class keel.Algorithms.Rule_Learning.PART.SimpleRule
Returns the value of the attribute
getValue() - Method in class keel.Algorithms.Rule_Learning.Ripper.SimpleRule
Returns the value of the attribute
getValue() - Method in class keel.Algorithms.Rule_Learning.Slipper.SimpleRule
Returns the value of the attribute
getValue(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
Returns the value of the given attribute.
getValue(TechnicalInformation.Field) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation
returns the value associated with the given field, or empty if field is
not currently stored.
getValue(TechnicalInformation.Field) - Method in class keel.Algorithms.SVM.SMO.core.TechnicalInformation
returns the value associated with the given field, or empty if field is
not currently stored.
getValue() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Item
It returns the ID of the label involved in the item
getValue() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Gene
getValue(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Gene
getValue() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Gene
getValue(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Gene
getValue() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Gene
It returns the value stored in a gene
getValue(int) - Method in class keel.GraphInterKeel.experiments.Parameters
return actual value for parameter at index position
getValue1() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.ValuesFreq
Returns the first value of this object (the first string)
getValue2() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.ValuesFreq
Returns the second value of the object (the second string)
getValueAt(int, int) - Method in class keel.GraphInterKeel.datacf.util.AttributeTable
Returns the value of an element of the table
getValueAt(int, int) - Method in class keel.GraphInterKeel.datacf.util.DatasetTable
getValueAt(int, int) - Method in class keel.GraphInterKeel.datacf.util.VariableTable
Returns the value of a cell
getValueAt(int, int) - Method in class keel.GraphInterKeel.experiments.ParametersTable
Returns the value of the parameter especified
getValueAt(int, int) - Method in class keel.GraphInterKeel.statistical.statTableModel
Gets the value of a cell
GetValueBinary(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.genetcode
GetValueBinary(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.genetcode
GetValueBinary(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.genetcode
GetValueInteger(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.genetcode
GetValueInteger(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.genetcode
GetValueInteger(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.genetcode
getValueKFoldCross() - Method in class keel.GraphInterKeel.experiments.SelectExp
Gets number of folds
getValueObj(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
Method to get the value of the objective indicated
getValueObj(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
Method to get the value of the objective with the name indicated
GetValueReal(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.genetcode
GetValueReal(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.genetcode
GetValueReal(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.genetcode
getValues() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
Gets an array of possible values if it is a nominal attribute
getValues() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
Gets an array of possible values if it is a nominal attribute
getValues() - Method in class keel.Algorithms.Hyperrectangles.EACH.Selector
Returns the set of values of the selector
getValues() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset.Instance
Get value array of the this instance
getValues() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset.IInstance
Get value array of the this instance
getValues() - Method in class keel.Algorithms.Rule_Learning.AQ.Selector
It returns the set of values of the selector
getValues() - Method in class keel.Algorithms.Rule_Learning.ART.Rule
getValues() - Method in class keel.Algorithms.Rule_Learning.CN2.Selector
It returns the set of values of the selector
getValues() - Method in class keel.Algorithms.Rule_Learning.Riona.Selector
Returns the set of values of the selector
getValues() - Method in class keel.Algorithms.Rule_Learning.UnoR.Interval
Returns the values of the interval.
getValues() - Method in class keel.GraphInterKeel.experiments.Parameters
return actual values
getValueSparse(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
Returns an instance's attribute value in internal format.
getVar(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
Obtains the ith variable used in this rule antecedent
getVar(int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
Obtains the ith variable used in this rule antecedent
getVarbValues() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
Get the variable values.
getVariable() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Item
It returns the variable of the item.
getVariable() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Item
It returns the variable of the item
getVariable() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.Literal
It returns the attribute stored in the literal
getVariable() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Item
It returns the variable of the item
getVariable() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Item
It returns the variable of the item
getVariable() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Item
It returns the variable of the item
getVariable() - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
getVariable() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Item
getVariable() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Item
It returns the ID of the attribute involved in the item
getVariableTable() - Method in class keel.GraphInterKeel.datacf.editData.EditVariablePanel
Gets the current VariableTable
getVariance(int, int) - Method in class keel.Algorithms.Complexity_Metrics.Statistics
It returns the variance of the given attribute within the given class
getVariance() - Method in class keel.Algorithms.Lazy_Learning.NSC.Cluster
Get variance of the cluster
getVariance() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
Returns the variance.
getVariance(double) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
Returns a Confidence Interval for the variance value with the given confidence.
getVarValues() - Method in class keel.Algorithms.MIL.Diverse_Density.Optimization.Optimization
getVecino(int, int) - Method in class keel.Algorithms.Instance_Generation.SSMALVQ3.Cromosoma
Get the neighbour with the given indeces.
getVecino(int, int) - Method in class keel.Algorithms.Instance_Generation.SSMAPSO.Cromosoma
Get the neighbour with the given indeces.
getVecino(int, int) - Method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.Cromosoma
Get the neighbour with the given indeces.
getVecino(int, int) - Method in class keel.Algorithms.Instance_Selection.SSMA.Cromosoma
Get the j-neighbour of a given instance
getVecino(int, int) - Method in class keel.Algorithms.Preprocess.Instance_Selection.SSMA.Cromosoma
Get the j-neighbour of a given instance
getVectorsNeighbors() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
getVectorsNeighbors(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
getVerbosity() - Method in class keel.Algorithms.Decision_Trees.M5.M5
Get the value of Verbosity.
getVerbosity() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
Get the value of Verbosity.
getVerbosity() - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
Returns verbosity value
getVerbosity() - Static method in class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
Returns verbosity value
getVerbosity() - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
Returns verbosity value
getVerbosity() - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
Returns verbosity value
getVerbosity() - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
Returns verbosity value
getVerbosity() - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
Returns verbosity value
getVerbosity() - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
Returns verbosity value
getVolume() - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
Returns the volume value of the complex object.
getVolume() - Method in class keel.Algorithms.Hyperrectangles.EACH.Hyperrectangle
getVolume() - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
getVotingValue() - Method in class keel.Algorithms.ImbalancedClassification.Auxiliar.AUC.PredPair
Provides the value of the voting procedure associated to a given instance
getW(MyDataset, Mask, double[]) - Method in class keel.Algorithms.Rule_Learning.Slipper.Rule
Computes W+ or W- for this rule,
according to the function W=sum(Di) i e R
getW(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Methods to get the value for the weight of the objective in a position
getW() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.MembershipFunction
It returns the spread of an isosceles-triangle
getW() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.MembershipFunction
It returns the spread of an isosceles-triangle
getW1() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Methods to get the value for the weight of the objective 1
getW2() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Methods to get the value for the weight of the objective 2
getW3() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
Methods to get the value for the weight of the objective 3
getWeight(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
It returns the weight of the given example
getWeight() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.ExampleWeight
Returns the weight given to the pattern.
getWeight() - Method in class keel.Algorithms.Decision_Trees.C45.Itemset
Returns the itemset weight.
getWeight() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
Returns the itemset weight.
getWeight() - Method in class keel.Algorithms.Decision_Trees.ID3.Itemset
Returns the itemset weight.
getWeight() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Itemset
Returns the itemset weight.
getWeight(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
It returns the weight of the given class
getWeight() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
Obtains the weight associated to this rule
getWeight() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.ExampleWeight
getWeight() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
Returns the itemset weight.
getWeight() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
Returns the itemset weight.
getWeight() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
Returns the itemset weight.
getWeight() - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
Returns the weight value of the complex object.
getWeight() - Method in class keel.Algorithms.Hyperrectangles.EACH.Hyperrectangle
getWeight() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
Returns the itemset weight.
getWeight() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
Returns the itemset weight.
getWeight() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
Obtains the weight associated to this rule
getWeight(int) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbf
Gets the i-th weight of a neuron
getWeight() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset.Instance
Returns the weight of this instance
getWeight() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset.IInstance
Returns the weight of this instance
getWeight() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.Link
Returns the weight associated to this link, used to obtain the output value of the destiny neuron
getWeight(int) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbf
Gets the ith weight of a neuron
getWeight(int) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbf
Gets the ith weight of a neuron
getWeight(int) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbf
Gets the ith weight of a neuron
getWeight(int) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbf
Gets the ith weight of a neuron
getWeight(int) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbf
Gets the ith weight of a neuron
getWeight(int) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbf
Gets the ith weight of a neuron
getWeight() - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.pnPair
It returns the weight value
getWeight() - Method in class keel.Algorithms.Rule_Learning.AQ.Complex
It returns the weight of the complex (LEF function)
getWeight() - Method in class keel.Algorithms.Rule_Learning.ART.Itemset
Returns the itemset weight.
getWeight() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Itemset
Returns the itemset weight.
getWeight() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
Returns the itemset weight.
getWeight() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
Returns the itemset weight.
getWeight() - Method in class keel.Algorithms.Rule_Learning.PART.Itemset
Returns the itemset weight.
getWeight() - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
getWeight() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
Returns the itemset weight.
getWeight() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
Informs of the weight of the prototype.
getWeightAttributes() - Method in class keel.Algorithms.Hyperrectangles.EACH.HyperrectangleSet
Return the weight for each attribute
getWeightRange() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
Returns the weight range associated to the links
getWeights() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbf
Gets the weights of a neuron
getWeights() - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbf
Gets the weights of a neuron
getWeights() - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbf
Gets the weights of a neuron
getWeights() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbf
Gets the weights of a neuron
getWeights() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbf
Gets the weights of a neuron
getWeights() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbf
Gets the weights of a neuron
getWeights() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbf
Gets the weights of a neuron
getWeights(double[]) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ConjGradNN
Returns a copy of weights in vector p.
getWeights(double[]) - Method in class keel.Algorithms.Shared.ClassicalOptim.ConjGradNN
Returns a copy of weights in vector p.
getWeightsAsString() - Method in class keel.Algorithms.Shared.ClassicalOptim.ConjGradNN
Return the weights as a String to print them
getWeightVector() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
getWeightVector(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
getWk() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
getWorst(Classifier[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PopulationWrapper
Obtains the worst classifier of population.
getWorst(Classifier[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PopulationWrapper
Obtains the worst classifier of population.
getWorst() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
getWorst() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
getWorst() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
getWorst() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
getWorst() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
getWorst() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
getWorst() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
getWorst() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
getWorstPopulation() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.populationWrapper
getWracc() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Rule
It returns the Wracc of the rule
getWracc() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Rule
getWrongN() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
It returns the number of wrong of the rule
getwRule() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Structure
It returns the position of the first rule that wrongly classifies the example stored in the structure
getwRule() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Structure
It returns the position of the first rule that wrongly classifies the example stored in the structure
getX() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Dataset
It returns the values of the input attributes
getX() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Dataset
It returns the values of the input attributes
getX() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Return the values of the in-put attributes
getX(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Return the values of the in-put attributes for an instance
getX() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.IndMichigan
getX() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.IndMichigan
getX() - Method in class keel.Algorithms.LQD.methods.FGFS_Original.IndMichigan
getX() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.IndMichigan
getX() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.IndMichigan
getX() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.ProcDataset
Returns the whole input data.
getX() - Method in class keel.Algorithms.Neural_Networks.RBFN.ProcDataset
Returns the whole input data.
getX() - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.ProcDataset
Returns the whole input data.
getX() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.ProcDataset
Returns the whole input data.
getX() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.ProcDataset
Returns the whole input data.
getX() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.ProcDataset
Returns the whole input data.
getX() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.ProcDataset
Returns the whole input data.
getX() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the summation of X samples values.
getX() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
Returns input examples.
getX() - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Rule_Learning.AQ.Dataset
It returns the values of the input attributes
getX() - Method in class keel.Algorithms.Rule_Learning.CN2.Dataset
It returns the values of the input attributes
getX() - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Rule_Learning.Prism.Dataset
Return the values of the in-put attributes
getX(int) - Method in class keel.Algorithms.Rule_Learning.Prism.Dataset
Return the values of the in-put attributes for an instance
getX() - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Return the values of in-put attributes
getX(int) - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Return the values of the in-put attributes for an instance
getX() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
It returns the values of the input attributes
getX(int) - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
Return the values of the in-put attributes for an instance
getX() - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
Returns input examples.
getX() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
Outputs an array of examples with their corresponding attribute values.
getX() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Dataset
It returns the values of the input attributes
getX() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Dataset
It returns the values of the input attributes
getX() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Dataset
It returns the values of the input attributes
getX0() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Fuzzy
Methods to get the value of x0
getX0(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
Method to return the value of the cut points X0
getX0() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Fuzzy
Methods to get the value of x0
getX0(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
Method to return the value of the cut points X0
getX0() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Fuzzy
Methods to get the value of x0
getX0(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
Method to return the value of the cut points X0
getX0() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.FuzzyRegion
It returns the X0 value of a fuzzy region
getX0() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.FuzzyRegion
It returns the X0 value of a fuzzy region
getX0() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.FuzzyRegion
It returns the X0 value of a fuzzy region
getX0() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.FuzzyRegion
It returns the X0 value of a fuzzy region
getX1() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Fuzzy
Methods to get the value of x1
getX1(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
Method to return the value of the cut points X1
getX1() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Fuzzy
Methods to get the value of x1
getX1(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
Method to return the value of the cut points X1
getX1() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Fuzzy
Methods to get the value of x1
getX1(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
Method to return the value of the cut points X1
getX1() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.FuzzyRegion
It returns the X1 value of a fuzzy region
getX1() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.FuzzyRegion
It returns the X1 value of a fuzzy region
getX1() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.FuzzyRegion
It returns the X1 value of a fuzzy region
getX1() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.FuzzyRegion
It returns the X1 value of a fuzzy region
getX2() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Return the values of the in-put attributes
getX2() - Method in class keel.Algorithms.Rule_Learning.Prism.Dataset
Return the string values of the in-put attributes
getX2() - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Return the values of the in-put attributes
getX2() - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
Return the values of the in-put attributes
getX3() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Fuzzy
Methods to get the value of x3
getX3(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
Method to return the value of the cut points X3
getX3() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Fuzzy
Methods to get the value of x3
getX3(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
Method to return the value of the cut points X3
getX3() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Fuzzy
Methods to get the value of x3
getX3(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
Method to return the value of the cut points X3
getX3() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.FuzzyRegion
It returns the X3 value of a fuzzy region
getX3() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.FuzzyRegion
It returns the X3 value of a fuzzy region
getX3() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.FuzzyRegion
It returns the X3 value of a fuzzy region
getX3() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.FuzzyRegion
It returns the X3 value of a fuzzy region
getXavg() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the X values mean
getXNor(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Return the normalized values of the in-put attributes for an instance
getXNor(int) - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Return the normalized values of the in-put attributes for an instance
getXOver() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
getXOverRate() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
getXs() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
Outputs an array of examples with their corresponding attribute values.
getXX() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the summation of the X samples squares.
getXXavg() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the mean of the X samples squares.
getXY() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the summation of the X-Y products.
getXYavg() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the mean of the X-Y products.
gety() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Replace
It returns the class for the example stored in the structure.
gety() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Structure
It returns the class for the example stored in the structure
gety() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Replace
It returns the class for the example stored in the structure
gety() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Structure
It returns the class for the example stored in the structure
getY() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.IndMichigan
getY() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.IndMichigan
getY() - Method in class keel.Algorithms.LQD.methods.FGFS_Original.IndMichigan
getY() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.IndMichigan
getY() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.IndMichigan
getY() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.ProcDataset
Returns the outputs of each example (regression).
getY() - Method in class keel.Algorithms.Neural_Networks.RBFN.ProcDataset
Returns the outputs of each example (regression).
getY() - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.ProcDataset
Returns the outputs of each example (regression).
getY() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.ProcDataset
Returns the outputs of each example (regression).
getY() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.ProcDataset
Returns the outputs of each example (regression).
getY() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.ProcDataset
Returns the outputs of each example (regression).
getY() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.ProcDataset
Returns the outputs of each example (regression).
getY() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the summation of Y samples values.
getY() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
Returns input examples.
getY() - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
Returns input examples.
getY() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.FuzzyRegion
It returns the Y value of a fuzzy region
getY() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.FuzzyRegion
It returns the Y value of a fuzzy region
getY() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.FuzzyRegion
It returns the Y value of a fuzzy region
getY() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.FuzzyRegion
It returns the Y value of a fuzzy region
getYavg() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the Y values mean
getYo() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForModels
This method return the result of the model
getYo() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForSymbRegr
This method obtain a crips output that we can compare to punctual models
getyulesQ() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.AssociationRule
It returns the yulesQ of an association rule
getYulesQ() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AssociationRule
It returns the yulesQ of an association rule
getYulesQ() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
getYulesQ() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
getYulesQ() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.AssociationRule
It returns the yulesQ of an association rule
getYulesQ() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
It returns the yulesQ of an association rule
getYulesQ() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
getYulesQ() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
getYulesQ() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
getYulesQ() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
getYulesQ() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
getYulesQ() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
getYulesQ() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
getYulesQ() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
getYY() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the summation of the Y samples squares.
getYYavg() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
Returns the mean of the Y samples squares.
getZero() - Method in class keel.Algorithms.MIL.Diverse_Density.Optimization.Optimization
getZeroValue() - Method in class keel.Algorithms.Hyperrectangles.EACH.Selector
Return the attribute's value associated
getZeroValue() - Method in class keel.Algorithms.Rule_Learning.Riona.Selector
Returns the value or less extrem of the associated attribute
GFS_AllPositive_APR - Class in keel.Algorithms.MIL.APR.GFS_AllPositive_APR
GFS_AllPositive_APR() - Constructor for class keel.Algorithms.MIL.APR.GFS_AllPositive_APR.GFS_AllPositive_APR
GFS_ElimCount_APR - Class in keel.Algorithms.MIL.APR.GFS_ElimCount_APR
GFS_ElimCount_APR() - Constructor for class keel.Algorithms.MIL.APR.GFS_ElimCount_APR.GFS_ElimCount_APR
GFS_Kde_APR - Class in keel.Algorithms.MIL.APR.GFS_Kde_APR
GFS_Kde_APR() - Constructor for class keel.Algorithms.MIL.APR.GFS_Kde_APR.GFS_Kde_APR
GFS_RB_MF - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF
Title: GFS_RB_MF
Description: It contains the implementation of the GFS RB MF algorithm
Company: KEEL
GFS_RB_MF() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.GFS_RB_MF
Default constructor
GFS_RB_MF(parseParameters) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.GFS_RB_MF
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
GG - Class in keel.Algorithms.Instance_Selection.GG
File: GG.java
The GG Instance Selection algorithm.
GG(String) - Constructor for class keel.Algorithms.Instance_Selection.GG.GG
Default constructor.
GG - Class in keel.Algorithms.Preprocess.Instance_Selection.GG
File: GG.java
The GG Instance Selection algorithm.
GG(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.GG.GG
Default constructor.
GGA - Class in keel.Algorithms.Instance_Selection.GGA
File: GGA.java
Generational Genetic algorithm for Instance Selection.
GGA(String) - Constructor for class keel.Algorithms.Instance_Selection.GGA.GGA
Default builder.
GGA - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GGA
File: GGA.java
A Generational Genetic algorithm for Feature Selection
GGA(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GGA.GGA
Builder.
GGA - Class in keel.Algorithms.Preprocess.Instance_Selection.GGA
File: GGA.java
Generational Genetic algorithm for Instance Selection.
GGA(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.GGA.GGA
Default builder.
GGABinaryIncon - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_BinCod.filter
Main class of Generational Genetic Algorithm for feature selection using inconsistency ratio as evaluation measure
This class implements a Generational GA with binary representation for feature selection Inconsistency ratio (FILTER)
Inputs: nearest neighbours for K-NN, k value for k-Tournamentvalor, crossover probability,
mutation probability, seed, population size, number of evaluations, alfa value for fitness balancing
Encoding: Binary
Selection: k-Tournament
Replacement: Descendants always replaces parents
Crossover and mutation in one point
Fitness: (1-alfa)*%hits + alfa*features_selected
Stopping criteria: number of evaluations
GGABinaryIncon(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_BinCod.filter.GGABinaryIncon
Creates a new instance of GGABinaryIncon
GGABinaryLVO - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_BinCod.wrapper
MAIN CLASS OF GENERATIONAL GENETIC ALGORITHM FOR FEATURES SELECTION
USING LVO WRAPPER METHOD
GGABinaryLVO(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_BinCod.wrapper.GGABinaryLVO
Creates a new instance of GGABinaryLVO
GGAIntegerIncon - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_IntCod.filter
MAIN CLASS OF GENERATIONAL GENETIC ALGORITHM FOR FEATURES SELECTION
USING INCONSISTENCY RATIO AS EVALUATION MEASURE
GGAIntegerIncon(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_IntCod.filter.GGAIntegerIncon
Creates a new instance of GGAIntegerIncon
GGAIntegerLVO - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_IntCod.wrapper
MAIN CLASS OF GENERATIONAL GENETIC ALGORITHM FOR FEATURES SELECTION
USING LVO AS WRAPPER ALGORITHM
GGAIntegerLVO(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_IntCod.wrapper.GGAIntegerLVO
Creates a new instance of GGAIntegerLVO
GI_CUSTOM_CESAR - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OperatorIdent
Identifier for local optimization (GI_CUSTOM_CESAR).
GI_CUSTOM_CESAR - Static variable in class keel.Algorithms.Shared.Parsing.OperatorIdent
Identifier for local optimization (GI_CUSTOM_CESAR).
GI_STANDARD - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OperatorIdent
Identifier for local optimization (GI_STANDARD).
GI_STANDARD - Static variable in class keel.Algorithms.Shared.Parsing.OperatorIdent
Identifier for local optimization (GI_STANDARD).
GIL - Class in keel.Algorithms.Genetic_Rule_Learning.GIL
Title: Algorithm
Description: It contains the implementation of the algorithm
Company: KEEL
GIL() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GIL.GIL
Default constructor
GIL(parseParameters) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GIL.GIL
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
Gini - Class in keel.Algorithms.Decision_Trees.CART.impurities
Implementation of GINI impurity Function
Gini() - Constructor for class keel.Algorithms.Decision_Trees.CART.impurities.Gini
giveClasses() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
Returns teh value of the classes
giveClasses() - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Returns the value of the classes
giveNames() - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
Returns the name of the problem variables
global - Static variable in class keel.Algorithms.Decision_Trees.C45.Tree
To compute the average attributes per rule
global - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
To compute the average attributes per rule
globalInfo() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ApproximateSets
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Arrays
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
Returns a string describing classifier
globalInfo() - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
Returns a string describing classifier
globalInfo() - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
Returns a string describing classifier
globalInfo() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
Returns a string describing this classifier
globalInfo() - Method in class keel.Algorithms.SVM.SMO.SMO
Returns a string describing classifier
globalInfo() - Method in class keel.Algorithms.SVM.SMO.SMOreg
Returns a string describing classifier
globalInfo() - Method in class keel.Algorithms.SVM.SMO.supportVector.Kernel
Returns a string describing the kernel
globalInfo() - Method in class keel.Algorithms.SVM.SMO.supportVector.NormalizedPolyKernel
Returns a string describing the kernel
globalInfo() - Method in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
Returns a string describing the kernel
globalInfo() - Method in class keel.Algorithms.SVM.SMO.supportVector.PolyKernel
Returns a string describing the kernel
globalInfo() - Method in class keel.Algorithms.SVM.SMO.supportVector.Puk
Returns a string describing the kernel
globalInfo() - Method in class keel.Algorithms.SVM.SMO.supportVector.RBFKernel
Returns a string describing the kernel
globalInfo() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
Returns a string describing classifier
globalInfo() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
Returns a string describing the object
globalInfo() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
Returns a string describing the kernel
globalInfo() - Method in class keel.Algorithms.SVM.SMO.SVMreg
Returns a string describing classifier
globalIterationsSinceBest - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.timerEvolutionStats
Globals_ADI - Class in keel.Algorithms.Genetic_Rule_Learning.GAssist
Computes and maintains global information for the ADI KR
Globals_ADI() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_ADI
Globals_ADI - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
Computes and maintains global information for the ADI KR
Globals_ADI() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_ADI
Globals_DefaultC - Class in keel.Algorithms.Genetic_Rule_Learning.GAssist
Computes and maintains global information for the Default C
Globals_DefaultC() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_DefaultC
Globals_DefaultC - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
Computes and maintains global information for the DefaultC KR
Globals_DefaultC() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_DefaultC
Globals_GABIL - Class in keel.Algorithms.Genetic_Rule_Learning.GAssist
Computes and maintains global information for the GABIL KR
Globals_GABIL() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_GABIL
Globals_GABIL - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
Computes and maintains global information for the GABIL KR
Globals_GABIL() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_GABIL
Globals_MDL - Class in keel.Algorithms.Genetic_Rule_Learning.GAssist
Computes and maintains global information for the MDL KR
Globals_MDL() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_MDL
Globals_MDL - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
Computes and maintains global information for the MDL KR
Globals_MDL() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_MDL
Globals_UBR - Class in keel.Algorithms.Genetic_Rule_Learning.GAssist
Computes and maintains global information for the UBR KR
Globals_UBR() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_UBR
globalWilcoxonC - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
Classification Wilcoxon Stat-test identifier.
globalWilcoxonI - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
Imbalanced Wilcoxon Stat-test identifier.
globalWilcoxonR - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
Regression Wilcoxon Stat-test identifier.
GMCAAlgorithm - Class in keel.Algorithms.Instance_Generation.GMCA
GMCA algorithm calling.
GMCAAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.GMCA.GMCAAlgorithm
GMCAGenerator - Class in keel.Algorithms.Instance_Generation.GMCA
Implements GMCAGenerator algorithm.
GMCAGenerator(PrototypeSet) - Constructor for class keel.Algorithms.Instance_Generation.GMCA.GMCAGenerator
Basic constructor
GMCAGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.GMCA.GMCAGenerator
Constructor
gmdh - Class in keel.Algorithms.Neural_Networks.gmdh
Class representing the gmdh algorithm
gmdh() - Constructor for class keel.Algorithms.Neural_Networks.gmdh.gmdh
Empty constructor
GMEAN - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
Geometric mean measurement identifier.
goout(String) - Static method in class keel.Algorithms.Instance_Generation.utilities.Debug
Shows a message and ends the program.
goout(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Debug
Shows a message and ends the program.
GP_COACH - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH
Title: GP-COACH
Description: It contains the implementation of the GP-COACH algorithm
Company: KEEL
GP_COACH() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.GP_COACH
Default constructor
GP_COACH(parseParameters) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.GP_COACH
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
GP_COACH_H - Class in keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H
Title: GP-COACH
Description: It contains the implementation of the GP-COACH algorithm
Company: KEEL
GP_COACH_H() - Constructor for class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.GP_COACH_H
Default constructor
GP_COACH_H(parseParameters) - Constructor for class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.GP_COACH_H
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
gr(double, double) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
Tests if a is greater than b.
gr(double, double) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
Tests if a is greater than b.
gr(double, double) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
Tests if a is smaller than b.
gr(double, double) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
Tests if a is greater than b.
gr(double, double) - Static method in class keel.Algorithms.Rule_Learning.Slipper.Utilities
Tests if a is greater than b.
gr(double, double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
Tests if a is greater than b.
gr(double, double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
Tests if a is greater than b.
gr(double, double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
Tests if a is greater than b.
gr(double, double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
Tests if a is greater than b.
gr(double, double) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
Tests if a is greater than b.
Grade_Is_Covered(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
Grade_Is_Covered(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.example_set
Grade_Is_Covered(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.example_set
Grade_Is_Negative_Covered(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
Grade_Is_Positive_Covered(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
Grade_Is_Positive_Covered(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.example_set
gradient(double[]) - Method in class keel.Algorithms.MIL.Diverse_Density.Optimization.DDoptimization
gradient(double[]) - Method in class keel.Algorithms.MIL.Diverse_Density.Optimization.EMDDoptimization
gradient(double[]) - Method in class keel.Algorithms.MIL.Diverse_Density.Optimization.Optimization
gradient(double[][], double[][]) - Method in interface keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IOptimizableFunc
Returns the gradient vector of the derivative of an error function (E)
with respect to each coefficient of the model, using an input observation
matrix (x[]) and an expected output matrix (y[]).
gradient(double[][], double[][]) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.MSEOptimizablePUNeuralNetClassifier
Returns the gradient vector of the derivative of MSE error function
with respect to each coefficient of the model, using an input observation
matrix (x[]) and an expected output matrix (y[])
gradient(double[][], double[][]) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.MSEOptimizableSigmNeuralNetClassifier
Returns the gradient vector of the derivative of MSE error function
with respect to each coefficient of the model, using an input observation
matrix (x[]) and an expected output matrix (y[])
gradient(double[][], double[][]) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.MSEOptimizablePUNeuralNetRegressor
Returns the gradient vector of the derivative of MSE error function
with respect to each coefficient of the model, using an input observation
matrix (x[]) and an expected output matrix (y[])
gradient(double[][], double[][]) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.MSEOptimizableSigmNeuralNetRegressor
Returns the gradient vector of the derivative of MSE error function
with respect to each coefficient of the model, using an input observation
matrix (x[]) and an expected output matrix (y[])
gradient(MultivariateFunction, double[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EM.util.NumericalDerivative
determine gradient
gradient(MultivariateFunction, double[], double[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EM.util.NumericalDerivative
determine gradient
GradoEmp - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Sel
Empirical Grade for each rule.
GradoEmp - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Tun
Empirical Grade for each rule.
Graph - Class in keel.GraphInterKeel.experiments
Graph() - Constructor for class keel.GraphInterKeel.experiments.Graph
Builder
graphDiagramINNER - Variable in class keel.GraphInterKeel.experiments.Experiments
GraphInterKeel - Class in keel.GraphInterKeel.menu
GraphInterKeel
GraphInterKeel() - Constructor for class keel.GraphInterKeel.menu.GraphInterKeel
Builder
GraphPanel - Class in keel.GraphInterKeel.experiments
GraphPanel(Experiments, Graph) - Constructor for class keel.GraphInterKeel.experiments.GraphPanel
Builder
GraphPanel() - Constructor for class keel.GraphInterKeel.experiments.GraphPanel
Builder
GraspIncon - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.filter.inconsistency
MAIN CLASS OF GRASP ALGORITHM USING INCONSISTENCY RATIO
AS EVALUATION MEASURE
GraspIncon(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.filter.inconsistency.GraspIncon
Creates a new instance of GraspIncon
GraspLVO - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.wrapper
MAIN CLASS OF GRASP ALGORITHM USING LVO CLASSIFIER
AS WRAPPER METHOD
GraspLVO(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.wrapper.GraspLVO
Creates a new instance of GraspLVO
GraspMI - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.filter.im
Main class of Grasp Algorithm using mutual information as evaluation mesure
GraspMI(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.filter.im.GraspMI
Creates a new instance of GraspMI
GREATER - Static variable in class keel.Algorithms.Decision_Trees.C45_Binarization.Selector
Number to represent greater.
GREATER - Static variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Rule
number to indentify the operator >.
GREATER - Static variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleRule
number to indentify the operator >.
GREATER - Static variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Rule
number to indentify the operator >.
GREATER - Static variable in class keel.Algorithms.Genetic_Rule_Learning.PART.SimpleRule
number to indentify the operator >.
GREATER - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Selector
Number to represent greater.
GREATER - Static variable in class keel.Algorithms.Rule_Learning.C45Rules.Rule
Flag for greater operator
GREATER - Static variable in class keel.Algorithms.Rule_Learning.C45Rules.SimpleRule
Flag for greater operator
GREATER - Static variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Rule
Flag for greater operator
GREATER - Static variable in class keel.Algorithms.Rule_Learning.C45RulesSA.SimpleRule
Flag for greater operator
GREATER - Static variable in class keel.Algorithms.Rule_Learning.PART.Rule
Flag for greater operator
GREATER - Static variable in class keel.Algorithms.Rule_Learning.PART.SimpleRule
Flag for greater operator
GREATER - Static variable in class keel.Algorithms.Rule_Learning.Ripper.Rule
Flag for greater operator
GREATER - Static variable in class keel.Algorithms.Rule_Learning.Ripper.SimpleRule
Flag for greater operator
GREATER - Static variable in class keel.Algorithms.Rule_Learning.Slipper.Rule
Flag for greater operator
GREATER - Static variable in class keel.Algorithms.Rule_Learning.Slipper.SimpleRule
Flag for greater operator
greedyFeatureSelection(double[][], int) - Method in class keel.Algorithms.MIL.APR.AbstractAPR
greedyMODL(int, int[], int, int) - Method in class keel.Algorithms.Discretizers.MODL.MODL
This method implements the greedy version of the MODL discretizer.
grOrEq(double, double) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
Tests if a is greater or equal to b.
grOrEq(double, double) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
Tests if a is greater or equal to b.
grOrEq(double, double) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
Tests if a is greater or equal to b.
grOrEq(double, double) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
Tests if a is greater or equal to b.
grOrEq(double, double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
Tests if a is greater or equal to b.
grOrEq(double, double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
Tests if a is greater or equal to b.
grOrEq(double, double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
Tests if a is greater or equal to b.
grOrEq(double, double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
Tests if a is greater or equal to b.
grOrEq(double, double) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
Tests if a is greater or equal to b.
grouping(boolean) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.FlexibleDecimalFormat
Sets the grouping flag with the value given.
grow(Instances) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RipperRule
Build one rule using the growing data
grow(Instances) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Rule
Build this rule
grow(int, double, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Rule
Adds a simple rule to this rule.
grow(SimpleRule) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Rule
Adds a simple rule to this rule.
grow(int, double, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Rule
Adds a simple rule to this rule.
grow(SimpleRule) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Rule
Adds a simple rule to this rule.
grow(int, double, int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Rule
Adds a simple rule to this rule.
grow(SimpleRule) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Rule
Adds a simple rule to this rule.
grow(int, double, int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Rule
Adds a simple rule to this rule.
grow(SimpleRule) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Rule
Adds a simple rule to this rule.
grow(int, double, int) - Method in class keel.Algorithms.Rule_Learning.PART.Rule
Adds a simple rule to this rule.
grow(SimpleRule) - Method in class keel.Algorithms.Rule_Learning.PART.Rule
Adds a simple rule to this rule.
grow(MyDataset, Mask, Mask) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ripper
It grows a rule maximizing the following heuristic:
h= p*(log(p/t)-log(P/T))
p/t: number of positive/total instances covered by the current rule
P/T: number of positive/total instances
grow(Rule, MyDataset, Mask, Mask) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ripper
It expands a rule, greedily adding simple rules, maximizing the following heuristic:
h= p*(log(p/t)-log(P/T))
p/t: number of positive/total instances covered by the current rule
P/T: number of positive/total instances
grow(int, double, int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Rule
Adds a simple rule to this rule.
grow(SimpleRule) - Method in class keel.Algorithms.Rule_Learning.Ripper.Rule
Adds a simple rule to this rule.
grow(int, double, int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Rule
Adds a simple rule to this rule.
grow(SimpleRule) - Method in class keel.Algorithms.Rule_Learning.Slipper.Rule
Adds a simple rule to this rule.
grow(MyDataset, Mask, Mask, double[]) - Static method in class keel.Algorithms.Rule_Learning.Slipper.Slipper
It expands a rule, greedily adding simple rules, maximizing the following heuristic:
Z=sqrt(W+)-sqrt(W_)
W+: sum of the weights of the positive instances that are covered by the current rule
W_: sum of the weights of the negative instances that are covered by the current rule
growTree(TreeNode) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.FunctionalTrees
Builds the tree from a tree node that functions as a root node, with all the data stored in
the class
GWS - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
H
- hacerGenetico() - Method in class keel.Algorithms.Decision_Trees.Target.Poblacion
-
Executes the genetic algorithm over the population.
- HALF - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Fuzzy_Ish
-
Configuration flags.
- hammingDistance(CHC_Chromosome, int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.CHC_Chromosome
-
Obtains the Hamming distance between this and another chromosome
- HandlerCSVM - Class in keel.Algorithms.Semi_Supervised_Learning.Basic
-
HandlerCSVM for C support vector machine algorithm.
- HandlerCSVM(int, int, String) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerCSVM
-
Parameter constructor.
- HandlerCSVM(InstanceSet, InstanceSet, int, String) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerCSVM
-
Parameter constructor.
- HandlerNB - Class in keel.Algorithms.Semi_Supervised_Learning.Basic
-
Handler for Naive Bayes algorithm.
- HandlerNB() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerNB
-
Default constructor.
- HandlerNB(String, String, int, int) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerNB
-
Parameter constructor.
- HandlerNB(InstanceSet, InstanceSet) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerNB
-
Parameter constructor.
- HandlerNB(double[][], int[], double[][], int[], int) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerNB
-
Parameter constructor.
- HandlerSMO - Class in keel.Algorithms.Semi_Supervised_Learning.Basic
-
Handler for SMO algorithm.
- HandlerSMO(int, int, String) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerSMO
-
Parameter constructor.
- HandlerSMO(InstanceSet, InstanceSet, int, String) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerSMO
-
Parameter constructor.
- hardCorrect(Prototype, PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQ2_1
-
Corrects a prototype of a set.
- hasAdditional() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation
-
returns true if there are further technical informations stored in this
- hasAdditional() - Method in class keel.Algorithms.SVM.SMO.core.TechnicalInformation
-
returns true if there are further technical informations stored in this
- hasAntds() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RipperRule
-
Whether this rule has antecedents, i.e. whether it is a default rule
- hasAntds() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Rule
-
Whether this rule has antecedents, i.e. whether it is a default rule
- hasChildren() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.Item
-
It returns whether an item has children items
- hasChildren() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.Item
-
It returns whether an item has children items
- hasClassUncovered(int[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.RuleBase
-
Indentifies how many classes are uncovered with a selection of rules.
- hasClassUncovered(int[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.RuleBase
-
- hasDefaultClass() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_ADI
-
- hasDefaultClass() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_GABIL
-
- hasDefaultClass() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_UBR
-
- hasDefaultClass() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_ADI
-
- hasDefaultClass() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_GABIL
-
- hasEnumAttr(M5Instances) - Static method in class keel.Algorithms.Decision_Trees.M5.M5
-
Tests if enumerated attribute(s) exists in the instances
- hasEnumAttr(MyDataset) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
Tests if enumerated attribute(s) exists in the itemsets
- hashCode() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
-
Hash-code function for the class that is used when object is inserted in a structure like a hashtable
- hashCode() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
-
Hash-code function for the class that is used when object is inserted in a structure like a hashtable
- hashCode() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.Split
-
Hash-code function for the class that is used when object is inserted in a structure like a hashtable
- hashCode() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Hash-code function for the class that is used when object is inserted in a structure like a hashtable
- hashCode() - Method in class keel.Algorithms.Decision_Trees.M5.SerializedObject
-
Returns a hashcode for this object.
- hashCode() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
-
Hash-code function for the class that is used when object is inserted in a structure like a hashtable
- hashCode() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
-
Hash-code function for the class that is used when object is inserted in a structure like a hashtable
- hashCode() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Node
-
Hash-code function for the class that is used when object is inserted in a structure like a hashtable
- hashCode() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Register
-
Hash-code function for the class that is used when object is inserted in a structure like a hashtable
- hashCode() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Split
-
Hash-code function for the class that is used when object is inserted in a structure like a hashtable
- hashCode() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
-
Hash-code function for the class that is used when object is inserted in a structure like a hashtable
- hashCode() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.SerializedObject
-
Returns a hashcode for this object.
- hashCode() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Fuzzy
-
Computes the hash code associated to the current fuzzy label
- hashCode() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.FuzzyAntecedent
-
Computes the hash code associated to the current FuzzyAntecedent
- hashCode() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
-
Computes the hash code associated to the current rule
- hashCode() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SerializedObject
-
Returns a hashcode for this object.
- hashCode() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
-
Returns an integer number that identifies the neural net
- hashCode() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.ILayer
-
Returns an integer number that identifies the layer
- hashCode() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuralNet
-
Returns an integer number that identifies the neural net
- hashCode() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuron
-
Returns an integer number that identifies the neuron
- hashCode() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputLayer
-
Returns an integer number that identifies the layer
- hashCode() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputNeuron
-
Returns an integer number that identifies the neuron
- hashCode() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.Link
-
Returns an integer number that identifies the link
- hashCode() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Returns an integer number that identifies the layer
- hashCode() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Returns an integer number that identifies the neuron
- hashCode() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.util.random.RanNnep
-
Returns a hashcode identifier of the random generator
- hashCode() - Method in class keel.Algorithms.SVM.SMO.core.SerializedObject
-
Returns a hashcode for this object.
- HashSparseMatrix<IndexType,ElementType> - Class in keel.Algorithms.Instance_Generation.utilities
-
- HashSparseMatrix() - Constructor for class keel.Algorithms.Instance_Generation.utilities.HashSparseMatrix
-
- HashSparseMatrix<IndexType,ElementType> - Class in keel.Algorithms.Semi_Supervised_Learning.utilities
-
Hash Sparse Matrix implementation.
- HashSparseMatrix() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.utilities.HashSparseMatrix
-
- hasIntegerAttributes() - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
-
The function returns if there is any integer attribute.
- hasIntegerAttributes() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
-
The function returns if there is any integer attribute.
- hasIntegerAttributes() - Static method in class keel.Dataset.Attributes
-
The function returns if there is any integer attribute.
- hasIntegerAttributes() - Method in class keel.Dataset.InstanceAttributes
-
The function returns if there is any integer attribute.
- hasInterface(String, String) - Static method in class keel.Algorithms.SVM.SMO.core.ClassDiscovery
-
Checks whether the given class implements the given interface.
- hasInterface(Class, Class) - Static method in class keel.Algorithms.SVM.SMO.core.ClassDiscovery
-
Checks whether the given class implements the given interface.
- hasMissing(M5Instances) - Static method in class keel.Algorithms.Decision_Trees.M5.M5
-
Tests if missing value(s) exists in the instances
- hasMissing(MyDataset) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
Tests if missing value(s) exists in the itemsets
- hasMissingAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
It checks if the data-set has any missing value.
- hasMissingAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
-
It checks if the data-set has any missing value
- hasMissingAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
-
It checks if the data-set has any missing value
- hasMissingValue() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Tests whether an instance has a missing value.
- hasMissingValue() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Tests whether an instance has a missing value.
- hasMissingValue() - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Tests whether an instance has a missing value.
- hasMissingValues() - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
-
The function returns if there is any missing value
- hasMissingValues() - Static method in class keel.Dataset.Attributes
-
The function returns if there is any missing value
- hasMoreElements() - Method in class keel.Algorithms.Decision_Trees.M5.M5Vector.FastVectorEnumeration
-
Tests if there are any more elements to enumerate.
- hasMoreElements() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.FastVector.FastVectorEnumeration
-
Tests if there are any more elements to enumerate.
- hasMoreElements() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.FastVector.FastVectorEnumeration
-
Tests if there are any more elements to enumerate.
- hasMoreElements() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.FastVector.FastVectorEnumeration
-
Tests if there are any more elements to enumerate.
- hasMoreElements() - Method in class keel.Algorithms.SVM.SMO.core.FastVector.FastVectorEnumeration
-
Tests if there are any more elements to enumerate.
- hasNominalAttributes() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It checks if the data-set has any nominal value
- hasNominalAttributes() - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
-
The function returns if there is any nominal attribute
- hasNominalAttributes() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
-
The function returns if there is any nominal attribute
- hasNominalAttributes() - Static method in class keel.Dataset.Attributes
-
The function returns if there is any nominal attribute
- hasNominalAttributes() - Method in class keel.Dataset.InstanceAttributes
-
The function returns if there is any nominal attribute
- hasNumericalAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
Checks if the data-set has any numeric value.
- hasNumericalAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
Checks if the data-set has any numeric value.
- hasNumericalAttributes() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
-
It checks if the data-set has any numerical (real or integer) value
- hasNumericalAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
-
It checks if the data-set has any numerical (real or integer) value
- hasNumericalAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
-
It checks if the data-set has any numerical (real or integer) value
- hasNumericalAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
-
It checks if the data-set has any numerical (real or integer) value
- hasNumericalAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
-
It checks if the data-set has any numerical (real or integer) value
- hasNumericalAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
-
It checks if the data-set has any numerical (real or integer) value
- hasNumericalAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
It checks if the data-set has any numerical (real or integer) value
- hasNumericalAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
-
It checks if the data-set has any numerical (real or integer) value
- hasNumericalAttributes() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
-
It checks if the data-set has any numerical (real or integer) value
- hasNumericalAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
It checks if the data-set has any missing value
- hasNumericalAttributes() - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
-
It checks if the data-set has any numerical value
- hasNumericalAttributes() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasNumericalAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
-
It checks if the data-set has any numerical value (real or integer)
- hasRealAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
It checks if the data-set has any real value.
- hasRealAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
-
The function returns if there is any real attribute.
- hasRealAttributes() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
-
The function returns if there is any real attribute.
- hasRealAttributes() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
-
It checks if the data-set has any real value
- hasRealAttributes() - Static method in class keel.Dataset.Attributes
-
The function returns if there is any real attribute.
- hasRealAttributes() - Method in class keel.Dataset.InstanceAttributes
-
The function returns if there is any real attribute.
- hasRuleUncoveredExamples() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.FARFingrams
-
- hasRuleUncoveredExamples() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
- hasUID(String) - Static method in class keel.Algorithms.SVM.SMO.core.SerializationHelper
-
checks whether the given class contains a serialVersionUID
- hasUID(Class) - Static method in class keel.Algorithms.SVM.SMO.core.SerializationHelper
-
checks whether the given class contains a serialVersionUID
- hasUncover() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.RuleBase
-
Checks if there are examples uncovered by the rules.
- hasUncover() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.RuleBase
-
- hasUncoverClass(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Apriori
-
Indentifies how many times a class has been uncovered.
- hasUncoverClass(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Apriori
-
- hasZeropoint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns whether the attribute has a zeropoint and may be
added meaningfully.
- hasZeropoint() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns whether the attribute has a zeropoint and may be added
meaningfully.
- HausdorffMaxDistance - Variable in class keel.Algorithms.MIL.Nearest_Neighbour.AbstractNearestNeighbour
-
- HausdorffMaxDistance(ArrayList<IInstance>, ArrayList<IInstance>) - Method in class keel.Algorithms.MIL.Nearest_Neighbour.AbstractNearestNeighbour
-
- HausdorffMinDistance(ArrayList<IInstance>, ArrayList<IInstance>) - Method in class keel.Algorithms.MIL.Nearest_Neighbour.AbstractNearestNeighbour
-
- hayAtributosContinuos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.myDataset
-
It checks if the data-set has any real value
- hayAtributosContinuos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.myDataset
-
It checks if the data-set has any real value
- hayAtributosContinuos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.myDataset
-
It checks if the data-set has any real value
- hayAtributosContinuos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.myDataset
-
It checks if the data-set has any real value
- hayAtributosContinuos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Dataset
-
It checks if in the data-set there is any continous input
- hayAtributosContinuos() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.myDataset
-
It checks if the data-set has any real value
- hayAtributosContinuos() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Dataset
-
It checks if in the data-set there is any continous input
- hayAtributosContinuos() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
-
Checks if in the data base there is a in-put type real or continous
- hayAtributosContinuos() - Method in class keel.Algorithms.Rule_Learning.AQ.Dataset
-
It checks if in the data-set there is any continous input
- hayAtributosContinuos() - Method in class keel.Algorithms.Rule_Learning.CN2.Dataset
-
It checks if in the data-set there is any continous input
- hayAtributosContinuos() - Method in class keel.Algorithms.Rule_Learning.Prism.Dataset
-
Checks if in the data base there is a in-put type real or continous
- hayAtributosContinuos() - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
-
Checks if in the data base there is a in-put type real or continous
- hayAtributosContinuos() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Dataset
-
It checks if in the data-set there is any continous input
- hayAtributosContinuos() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Dataset
-
It checks if in the data-set there is any continous input
- hayAtributosContinuos() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Dataset
-
It checks if in the data-set there is any continous input
- hayAtributosDiscretos() - Method in class keel.Algorithms.Rule_Learning.Prism.Dataset
-
Checks if in the data base there is an in-put type integer
- hayInstanciasDeClaseC(int) - Method in class keel.Algorithms.Rule_Learning.Prism.Dataset
-
Checks if in the instance set the are instances of a one determinet class
- hayInstanciasDeClaseC(int) - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
-
Checks if in the instances set left instances of a determined class
- hazUniforme(Dataset) - Method in class keel.Algorithms.Rule_Learning.Prism.ConjDatos
-
Adapt the examples to the [0,1] interval
- hazUniforme(Dataset) - Method in class keel.Algorithms.Rule_Learning.UnoR.ConjDatos
-
Adapt the examples to the [0,1] interval
- hazUniforme(Dataset) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.ConjDatos
-
Adapt the examples to the [0,1] interval
- HDD - Class in keel.Algorithms.Discretizers.HDD
-
This class implements the HDD discretizer.
- HDD(double) - Constructor for class keel.Algorithms.Discretizers.HDD.HDD
-
Builder
- header() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
-
It returns the header.
- HeaderFormatException - Exception in keel.Dataset
-
HeaderFormatException
Exception thrown when the header is not in the correct format
- HeaderFormatException() - Constructor for exception keel.Dataset.HeaderFormatException
-
Creates a new instance of HeaderFormatException
- HeaderFormatException(String) - Constructor for exception keel.Dataset.HeaderFormatException
-
Creates a new instance of HeaderFormatException with a message given.
- headerParse(String, boolean) - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
It's the parser main method.
- headerParse(String, boolean) - Static method in class keel.Dataset.DataParser
-
It's the parser main method.
- headerTable - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.FPtree
-
Start reference for header table.
- headerTable - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.FPtree
-
Start reference for header table.
- headLegend(int, String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.AdministrativeStaff
-
- headToString() - Static method in class keel.Algorithms.Decision_Trees.M5.M5
-
Prints the head lines of the output
- heapSize - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- HellingerBD - Class in keel.Algorithms.Discretizers.HellingerBD
-
This class implements the HellingerBD discretizer
- HellingerBD() - Constructor for class keel.Algorithms.Discretizers.HellingerBD.HellingerBD
-
Constructor of the class
- help() - Method in class keel.GraphInterKeel.datacf.DataCFFrame
-
Shows help
- help_mouseEntered(MouseEvent) - Method in class keel.GraphInterKeel.menu.Frame
-
Enter in help button
- help_mouseExited(MouseEvent) - Method in class keel.GraphInterKeel.menu.Frame
-
Exit from help button
- help_mouseReleased(MouseEvent) - Method in class keel.GraphInterKeel.menu.Frame
-
Show main help
- HelpContent - Class in keel.GraphInterKeel.datacf.help
-
- HelpContent() - Constructor for class keel.GraphInterKeel.datacf.help.HelpContent
-
Constructor that initializes the panel
- helpContent - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- HelpContent - Class in keel.GraphInterKeel.help
-
File: HelpFrame.java
A class for managing the contents of the help
- HelpContent() - Constructor for class keel.GraphInterKeel.help.HelpContent
-
Builder
- HelpContent - Class in keel.GraphInterKeel.statistical.help
-
File: HelpContent.java
This class shows the help panel of the module
- HelpContent() - Constructor for class keel.GraphInterKeel.statistical.help.HelpContent
-
Constructor that initializes the panel
- HelpFrame - Class in keel.GraphInterKeel.datacf.help
-
- HelpFrame() - Constructor for class keel.GraphInterKeel.datacf.help.HelpFrame
-
Constructor that initializes the frame
- HelpFrame - Class in keel.GraphInterKeel.help
-
File: HelpFrame.java
A class for managing the help frame
- HelpFrame() - Constructor for class keel.GraphInterKeel.help.HelpFrame
-
Builder
- HelpOptions - Class in keel.GraphInterKeel.datacf.help
-
- HelpOptions(HelpFrame) - Constructor for class keel.GraphInterKeel.datacf.help.HelpOptions
-
Constructor that initializes the frame
- HelpOptions - Class in keel.GraphInterKeel.help
-
File: HelpOptions.java
A class for managing options for help
- HelpOptions(HelpFrame) - Constructor for class keel.GraphInterKeel.help.HelpOptions
-
Builder
- HelpSheet - Class in keel.GraphInterKeel.datacf.help
-
- HelpSheet(String, String) - Constructor for class keel.GraphInterKeel.datacf.help.HelpSheet
-
Constructor that initializes the sheet using a file
- HelpSheet(String, URL) - Constructor for class keel.GraphInterKeel.datacf.help.HelpSheet
-
Constructor that initializes the sheet using an URL address
- HelpSheet - Class in keel.GraphInterKeel.help
-
File: HelpSheet.java
A class for managing help sheets
- HelpSheet(String, String) - Constructor for class keel.GraphInterKeel.help.HelpSheet
-
Builder
- HelpSheet(String, URL) - Constructor for class keel.GraphInterKeel.help.HelpSheet
-
Builder
- HeterDisc - Class in keel.Algorithms.Discretizers.HeterDisc
-
This class implements the Heter-Disc discretizer
- HeterDisc() - Constructor for class keel.Algorithms.Discretizers.HeterDisc.HeterDisc
-
Constructor of the class
- HeterDisc.DiscretizationScheme - Class in keel.Algorithms.Discretizers.HeterDisc
-
This class lets to manipulate discretization schemes
- hidden - Variable in class keel.GraphInterKeel.experiments.Parameters
-
- HIDDEN_LAYER - Static variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Defines hidden layer type
- hiddenLayers - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
-
Hidden layer
- hiddenLinksPercentage - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Percentage of links to remove in the mutations
- hideImportButton() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Hides import button
- hideImportButton() - Method in class keel.GraphInterKeel.experiments.SelectData
-
Hide import button
- Hider - Class in keel.Algorithms.Genetic_Rule_Learning.Hider
-
- Hider() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
-
Empty constructor
- Hider(String) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
-
Constructor with configuration file name parameter
- hierarchicalSelectionThreshold - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- hierarchicalSelectionThreshold - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- Higher(double[], double[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- Higher(double[], double[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- Higher(double[], double[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- HIGHEST_FIRST - Static variable in class keel.Algorithms.Discretizers.HellingerBD.Quicksort
-
Configuration tag (Lowest first).
- HIGHEST_FIRST - Static variable in class keel.Algorithms.Discretizers.UCPD.Quicksort
-
Configuration tags.
- HIGHEST_FIRST - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Quicksort
-
HIGHEST_FIRST tag.
- HIGHEST_FIRST - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Quicksort
-
Configuration tag (HIGHEST_FIRST).
- HIGHEST_FIRST - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Quicksort
-
Configuration tag (HIGHEST_FIRST).
- HIGHEST_FIRST - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Quicksort
-
Configuration tag (HIGHEST_FIRST).
- Histogram - Class in keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat
-
Histomgram, Statistics class that extends Sample and computes statistical values as percentiles.
- Histogram(int, double, double) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Histogram
-
Parameter constructor.
- Histogram(int, double) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Histogram
-
Parameter constructor. when base is equal to 0.
- Histograma - Class in keel.Algorithms.Decision_Trees.SLIQ
-
This class implements the histogram associated with the tree nodes.
- HMNEI - Class in keel.Algorithms.Instance_Selection.HMNEI
-
File: HMNEI.java
The HMNEI Instance Selection algorithm.
- HMNEI(String) - Constructor for class keel.Algorithms.Instance_Selection.HMNEI.HMNEI
-
Default constructor.
- HMNEI - Class in keel.Algorithms.Preprocess.Instance_Selection.HMNEI
-
File: HMNEI.java
The HMNEI Instance Selection algorithm.
- HMNEI(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.HMNEI.HMNEI
-
Default constructor.
- Hoch - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Hoch boolean
- Hoch - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Apply Hoch flag.
- hoja - Variable in class keel.Algorithms.Decision_Trees.SLIQ.ListaClases
-
Associated leaf.
- holdOutOptions - Variable in class keel.GraphInterKeel.datacf.partitionData.PartitionPanel
-
An option dialog for obtaining the options of the holdout partition proccess
- HoldOutOptionsJDialog - Class in keel.GraphInterKeel.datacf.partitionData
-
- HoldOutOptionsJDialog(Frame, boolean) - Constructor for class keel.GraphInterKeel.datacf.partitionData.HoldOutOptionsJDialog
-
Constructor that initializes the dialog
- Holland - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Apply Holland flag.
- Holm - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Holm boolean
- Holm - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Apply Holm flag.
- Hommel - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Hommel boolean
- Hommel - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Apply Hommel flag.
- homogeneity() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
- homogeneity() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
- HomogenousPair<T> - Class in keel.Algorithms.Instance_Generation.utilities
-
Implements a homogenous pair.
- HomogenousPair(T, T) - Constructor for class keel.Algorithms.Instance_Generation.utilities.HomogenousPair
-
Contructor.
- HomogenousPair<T> - Class in keel.Algorithms.Semi_Supervised_Learning.utilities
-
Homogenous Pair Class.
- HomogenousPair(T, T) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.utilities.HomogenousPair
-
Constructs a pair with the elements given.
- horner(double[], double[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EM.Interpolation
-
implements Horners-s method to compute the polynomial
a0+(t-x0)(a1+(t-x1)(a2+(t-x2)(a3+(...
- howManyBestActions() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.PredictionArray
-
Returns the number of "best actions" in the prediction
array.
- howManyBestActions() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.PredictionArray
-
Returns the number of "best actions" in the prediction
array.
- htDoubleValue - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.CategoricalAttribute
-
Association between double and real values
- HtmlToKeel - Class in keel.Algorithms.Preprocess.Converter
-
HtmlToKeel
This class extends from the Importer class.
- HtmlToKeel(String) - Constructor for class keel.Algorithms.Preprocess.Converter.HtmlToKeel
-
HtmlToKeel class Constructor.
- htRealValue - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.CategoricalAttribute
-
Association between real and double values
- Hux(Individual) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Individual
-
Crosses the individuals using the HUX operator.
- Hux(Individual) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Individual
-
- HUX(int, int, int) - Method in class keel.Algorithms.Instance_Selection.CoCoIS.Subpopulation
-
Crosses two selectors of the subpopulation and generates two new childs
- HUX(int, int, int) - Method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Subpopulation
-
Crosses two selectors of the subpopulation and generates two new childs
- HYBAlgorithm - Class in keel.Algorithms.Instance_Generation.HYB
-
HYB algorithm calling.
- HYBAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.HYB.HYBAlgorithm
-
- HYBGenerator - Class in keel.Algorithms.Instance_Generation.HYB
-
Hybrid algorithm
- HYBGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.HYB.HYBGenerator
-
Constructor of HYBGenerator algorithm.
- HYBGenerator(PrototypeSet, int, int, double, double, double, double, double, double, double, double, double, String, String[]) - Constructor for class keel.Algorithms.Instance_Generation.HYB.HYBGenerator
-
Construct a HYBGenerator algorithm.
- HYBGenerator(PrototypeSet, int, int, double, double, double, double, double, double, double, double, double, String, String) - Constructor for class keel.Algorithms.Instance_Generation.HYB.HYBGenerator
-
Construct a HYBGenerator algorithm.
- Hyper - Class in keel.Algorithms.Hyperrectangles.EHS_CHC
-
Hyper class.
- Hyper(double[], double[], boolean[][], int) - Constructor for class keel.Algorithms.Hyperrectangles.EHS_CHC.Hyper
-
- HyperbolicSecant - Static variable in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
Type of Positive Definite Functions supported (Hyperbolic secant)
- hyperbolicSecant(double) - Method in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
Computes the result of the Hyperbolic Secant PDRF
- HyperMutation(String[], double, String[], double, int) - Method in class keel.Algorithms.Instance_Generation.PSCSA.PSCSAGenerator
-
PROLIFERATION-I: HyperMutacion of the m match.
- Hyperrectangle - Class in keel.Algorithms.Hyperrectangles.EACH
-
Structure to store a hyperrectangle.
- Hyperrectangle() - Constructor for class keel.Algorithms.Hyperrectangles.EACH.Hyperrectangle
-
Constructor
- Hyperrectangle(int, double[], int, int) - Constructor for class keel.Algorithms.Hyperrectangles.EACH.Hyperrectangle
-
Constructor
- HyperrectanglesAlgorithm - Class in keel.Algorithms.Hyperrectangles.Basic
-
File: HyperrectanglesAlgorithm.java
A general framework for Hyperrectangles Algorithms.
- HyperrectanglesAlgorithm() - Constructor for class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
- HyperrectangleSet - Class in keel.Algorithms.Hyperrectangles.EACH
-
Structure to store a set of hyperrectangle.
- HyperrectangleSet(Hyperrectangle[], int, int, int, double) - Constructor for class keel.Algorithms.Hyperrectangles.EACH.HyperrectangleSet
-
Constructor
- hypot(double, double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Returns sqrt(a^2 + b^2) without under/overflow.
- hypot(double, double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Maths
-
sqrt(a^2 + b^2) without under/overflow.
I
- I(int) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- I(int) - Static method in class keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.MatrixCalcs
-
- i - Variable in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Relation
-
first element
- i - Variable in class keel.GraphInterKeel.statistical.tests.Relation
-
first element
- I0 - Static variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
Configuration flags
- I0a - Static variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
Configuration flags
- I0b - Static variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
Configuration flags
- I1 - Static variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
Configuration flags
- I2 - Static variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
Configuration flags
- I3 - Static variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
Configuration flags
- IALPHA - Static variable in class keel.Algorithms.Instance_Generation.LVQ.LVQ1
-
Index of the alpha parameter.
- IAttribute - Interface in keel.Algorithms.Neural_Networks.NNEP_Common.data
-
Dataset Attributes.
- IB2 - Class in keel.Algorithms.Instance_Selection.IB2
-
File: IB2.java
The IB2 Instance Selection algorithm.
- IB2(String) - Constructor for class keel.Algorithms.Instance_Selection.IB2.IB2
-
Default constructor.
- IB2 - Class in keel.Algorithms.Preprocess.Instance_Selection.IB2
-
File: IB2.java
The IB2 Instance Selection algorithm.
- IB2(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.IB2.IB2
-
Default constructor.
- IB3 - Class in keel.Algorithms.Instance_Selection.IB3
-
File: IB3.java
The IB3 Instance Selection algorithm.
- IB3(String) - Constructor for class keel.Algorithms.Instance_Selection.IB3.IB3
-
Default constructor.
- IB3 - Class in keel.Algorithms.Preprocess.Instance_Selection.IB3
-
File: IB3.java
The IB3 Instance Selection algorithm.
- IB3(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.IB3.IB3
-
Default constructor.
- ICF - Class in keel.Algorithms.Instance_Selection.ICF
-
File: ICF.java
The ICF Instance Selection algorithm.
- ICF(String) - Constructor for class keel.Algorithms.Instance_Selection.ICF.ICF
-
Default constructor.
- ICF - Class in keel.Algorithms.Preprocess.Instance_Selection.ICF
-
File: ICF.java
The ICF Instance Selection algorithm.
- ICF(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.ICF.ICF
-
Default constructor.
- ICFLVQ3 - Class in keel.Algorithms.Instance_Generation.ICFLVQ3
-
- ICFLVQ3(String) - Constructor for class keel.Algorithms.Instance_Generation.ICFLVQ3.ICFLVQ3
-
- ICFPSO - Class in keel.Algorithms.Instance_Generation.ICFPSO
-
Hybridization of ICF with PSO.
- ICFPSO(String) - Constructor for class keel.Algorithms.Instance_Generation.ICFPSO.ICFPSO
-
Builder.
- ICFSFLSDE - Class in keel.Algorithms.Instance_Generation.ICFSFLSDE
-
- ICFSFLSDE(String) - Constructor for class keel.Algorithms.Instance_Generation.ICFSFLSDE.ICFSFLSDE
-
- IClassifier - Interface in keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification
-
Generic classifier.
- iClassIndex - Variable in class keel.Algorithms.Discretizers.Basic.Discretizer
-
Class index in the dataset.
- icpl1_or_3(int) - Method in class keel.Algorithms.Instance_Generation.ICPL.ICPLGenerator
-
ICPL1_Pseudo-code:
ICPL1( T training)
1) C1= abstraccion T
2) C2 = Filtrar T.
3) S = C1
4) Para cada prototipo P en C2
Tmp = S U P.
- icpl2_or_4(int) - Method in class keel.Algorithms.Instance_Generation.ICPL.ICPLGenerator
-
ICPL2 - pseudo-code
ICPL2( T training)
1) C1= abstraccion T
2) C2 = Filtrar T.
3) S = C1
4) Para cada prototipo P en C2
Tmp = S U P.
- ICPLAlgorithm - Class in keel.Algorithms.Instance_Generation.ICPL
-
PSO algorithm calling.
- ICPLAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.ICPL.ICPLAlgorithm
-
- ICPLGenerator - Class in keel.Algorithms.Instance_Generation.ICPL
-
- ICPLGenerator(PrototypeSet, int, String, int, int) - Constructor for class keel.Algorithms.Instance_Generation.ICPL.ICPLGenerator
-
Build a new ICPLGenerator Algorithm
- ICPLGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.ICPL.ICPLGenerator
-
Build a new RSPGenerator Algorithm
- id - Variable in class keel.Algorithms.Instance_Generation.GMCA.Cluster
-
Id of the cluster
- id - Variable in class keel.Algorithms.Instance_Selection.CPruner.Trio
-
Element id.
- id - Variable in class keel.Algorithms.Preprocess.Instance_Selection.CPruner.Trio
-
Element id.
- id - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
-
To check the number of itemsets it covers when is created
- id - Variable in class keel.GraphInterKeel.experiments.Node
-
- ID3 - Class in keel.Algorithms.Decision_Trees.ID3
-
A Java implementation of the ID3 algorithm.
- ID3(String) - Constructor for class keel.Algorithms.Decision_Trees.ID3.ID3
-
Constructor.
- Id3Discretizer - Class in keel.Algorithms.Discretizers.Id3_Discretizer
-
This class implements the Id3Discretizer discretizer.
- Id3Discretizer() - Constructor for class keel.Algorithms.Discretizers.Id3_Discretizer.Id3Discretizer
-
- Id3Discretizer - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Id3_Discretizer
-
- Id3Discretizer() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Id3_Discretizer.Id3Discretizer
-
- IDataset - Interface in keel.Algorithms.Neural_Networks.NNEP_Common.data
-
Dataset Interface
- IDataset.IInstance - Interface in keel.Algorithms.Neural_Networks.NNEP_Common.data
-
Dataset instance
- IDD - Class in keel.Algorithms.Discretizers.IDD
-
This class implements the IDD
- IDD() - Constructor for class keel.Algorithms.Discretizers.IDD.IDD
-
Constructor of the class
- ideal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
-
Computes the number of training samples that match this rule.
- ideal() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Individual
-
It returns the number of examples that the individual matches
- ideal() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
-
Computes the number of training samples that match this rule and are correctly classified.
- iden_node - Variable in class keel.GraphInterKeel.experiments.GraphPanel
-
- IDENT - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- IDENT - Static variable in interface keel.Algorithms.Rule_Learning.Swap1.DataParserConstants
-
Data Parser Indentifier for indentation.
- IDENT - Static variable in interface keel.Dataset.DataParserConstants
-
- identifyBorder(PrototypeSet[]) - Method in class keel.Algorithms.Instance_Generation.ICPL.ICPLGenerator
-
Identify a border by typicaly.
- identity(int, int) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Generate identity matrix
- identList() - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- identList() - Static method in class keel.Dataset.DataParser
-
- identNum() - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- identNum() - Static method in class keel.Dataset.DataParser
-
- IDIBL - Class in keel.Algorithms.Lazy_Learning.IDIBL
-
File: IDIBL.java
The Integrated Decremental Instance Based Learning algorithm.
- IDIBL(String) - Constructor for class keel.Algorithms.Lazy_Learning.IDIBL.IDIBL
-
The main method of the class
- idInputDataOrdering(DataBase) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
Reorders input data according to frequency of single attributes but
excluding classifiers which are left unordered at the end of the attribute
list.
- idInputDataOrdering(DataBase) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Reorders input data according to frequency of
single attributes.
- idInputDataOrdering() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Reorders input data according to frequency of
single attributes.
- idInputDataOrdering() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Reorders input data according to frequency of
single attributes.
- idRbf - Variable in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbf
-
RBF id.
- idRbf - Variable in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbf
-
RBF id.
- IEducationalRunkeelListener<A extends EducationalRunKeelTxt> - Interface in keel.GraphInterKeel.experiments
- IEducationalRunListener<A extends EducationalRun> - Interface in keel.GraphInterKeel.experiments
-
- IErrorFunction<T> - Interface in keel.Algorithms.Neural_Networks.NNEP_Common.problem.errorfunctions
-
Interface of an error function
- IF_KNN - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.IF_KNN
-
File: IF_KNN.java
The IF-KNN algorithm.
- IF_KNN(String) - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.IF_KNN.IF_KNN
-
Main builder.
- IFreeMutation - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This class implements the free mutation.
- IFreeMutation() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.IFreeMutation
-
- IFS_COCO - Class in keel.Algorithms.Coevolution.IFS_COCO
-
File: IFS_COCO.java
The IFS_COCO Algorithm.
- IFS_COCO(String) - Constructor for class keel.Algorithms.Coevolution.IFS_COCO.IFS_COCO
-
The main method of the class
- IFSKNN - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.IFSKNN
-
File: IFSKNN.java
The IFSKNN algorithm.
- IFSKNN(String) - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.IFSKNN.IFSKNN
-
Main builder.
- IFV_NP - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.IFV_NP
-
File: IFV_NP.java
The IFV_NP algorithm.
- IFV_NP(String) - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.IFV_NP.IFV_NP
-
Main builder.
- IGA(SEM, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.Ilga
-
- IGA(SEM) - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.Oiga
-
Applies the Incremental Genetic Algorithm strategy.
- iga(RuleSet) - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.RuleSet
-
Incremental Genetic Algorithm, which increases the size of the actual rule set
appending all the attributes from rs to the rules of the actual rule set.
- IGA - Class in keel.Algorithms.Instance_Selection.IGA
-
File: IGA.java
The IGA Instance Selection algorithm.
- IGA(String) - Constructor for class keel.Algorithms.Instance_Selection.IGA.IGA
-
Default constructor.
- IGA - Class in keel.Algorithms.Preprocess.Instance_Selection.IGA
-
File: IGA.java
The IGA Instance Selection algorithm.
- IGA(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.IGA.IGA
-
Default constructor.
- ignore_missing - Class in keel.Algorithms.Preprocess.Missing_Values.ignore_missing
-
This class delete all instances with at least one missing value from the data set
- ignore_missing(String) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.ignore_missing.ignore_missing
-
Creates a new instance of ignore_missing
- IGUAL - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.Selector
-
Identifier for the equal condition operator.
- IGUAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Condition
-
Tag (EQUAL).
- IImpurityFunction - Interface in keel.Algorithms.Decision_Trees.CART.impurities
-
This interface must be followed by any impurity function
- IInitiator - Interface in keel.Algorithms.Neural_Networks.NNEP_Common.initiators
-
Initiate links of a linked layer
- IKNN - Class in keel.Algorithms.Instance_Selection.IKNN
-
File: IKNN.java
The IKNN Instance Selection algorithm.
- IKNN(String) - Constructor for class keel.Algorithms.Instance_Selection.IKNN.IKNN
-
Default constructor.
- IKNN - Class in keel.Algorithms.Preprocess.Instance_Selection.IKNN
-
File: IKNN.java
The IKNN Instance Selection algorithm.
- IKNN(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.IKNN.IKNN
-
Default constructor.
- ILAS - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- ilas - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PopulationWrapper
-
- ilas - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PopulationWrapper
-
- ILayer<N extends INeuron> - Interface in keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet
-
Represents a layer in the neural net
- Ilga - Class in keel.Algorithms.Genetic_Rule_Learning.ILGA
-
This class contains the main body of the ILGA algorithm, presented by:
Guan, S.
- Ilga() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.ILGA.Ilga
-
Default constructor
- Ilga(String) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.ILGA.Ilga
-
Constructor for the KEEL parameter file
- image - Variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Token
-
The string image of the token.
- image - Variable in class keel.Algorithms.Rule_Learning.Swap1.Token
-
The string image of the token.
- image - Variable in class keel.Dataset.Token
-
The string image of the token.
- image - Variable in class keel.GraphInterKeel.experiments.Node
-
- Iman - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Iman boolean
- Iman - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Apply Iman flag.
- imbalance_mouseEntered(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Enter in imbalanced button
- imbalance_mouseExited(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Exit from imbalanced button
- imbalance_mouseReleased(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Entering in Imbalanced module
- IMBALANCED - Static variable in class keel.GraphInterKeel.experiments.Experiments
-
- Imbalanced_General - Class in keel.Algorithms.Statistical_Tests.Classification.Imbalanced_General
-
This class has only a main method that calls Clasif_General output method for classification problems, defined in StatTest
- Imbalanced_General() - Constructor for class keel.Algorithms.Statistical_Tests.Classification.Imbalanced_General.Imbalanced_General
-
- Imbalanced_Summary - Class in keel.Algorithms.Statistical_Tests.Classification.Imbalanced_Summary
-
This class has only a main method that calls Model_Summary output method for classification problems, defined in StatTest
- Imbalanced_Summary() - Constructor for class keel.Algorithms.Statistical_Tests.Classification.Imbalanced_Summary.Imbalanced_Summary
-
- Imbalanced_Tabular - Class in keel.Algorithms.Statistical_Tests.Classification.Imbalanced_Tabular
-
This class has only a main method that calls Model_Tabular output method for classification problems, defined in StatTest
- Imbalanced_Tabular() - Constructor for class keel.Algorithms.Statistical_Tests.Classification.Imbalanced_Tabular.Imbalanced_Tabular
-
- imbalancedMeasure - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Type of imbalanced measurement used.
- IMetadata - Interface in keel.Algorithms.Neural_Networks.NNEP_Common.data
-
Dataset spectification
- ImplicatorLukasiewicz(double, double) - Static method in class keel.Algorithms.RST_Learning.Operators
-
Lukasiewicz implicator
- import_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Import button
- importanceSampling(myDataset, int, boolean[], double) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Importance undersampling of the dataset given.
- importar_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Import user data sets button control
- Importer - Class in keel.Algorithms.Preprocess.Converter
-
Importer
Abstract class that contains the methods to import different format files
to files with KEEL format.
- Importer() - Constructor for class keel.Algorithms.Preprocess.Converter.Importer
-
- importOptionsDialog - Variable in class keel.GraphInterKeel.datacf.importData.ImportPanel
-
An option dialog for obtaining the options of the import proccess
- ImportPanel - Class in keel.GraphInterKeel.datacf.importData
- ImportPanel() - Constructor for class keel.GraphInterKeel.datacf.importData.ImportPanel
-
Constructor that initializes the panel
- imprime(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Prints on the standard output the rule.
- imprime(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Prints on the standard output the rule.
- imprime() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Prints on the standard output the rule.
- imprime(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Prints on the standard output the rule.
- imprime(Vector, String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
- imprime(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Atributo
-
Prints the information of the attribute.
- imprime() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Condicion
-
Prints in the standard output the condition.
- imprime(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Prints on the standard output the rule.
- imprimeCortes(Vector, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Discretizacion
-
Prints the discretization cuts guven as parameter.
- imprimeFichero(PrintStream, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Prints on the given file (PrintStream) the rule.
- imprimeFichero(PrintStream, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Prints on the given file (PrintStream) the rule.
- imprimeFichero(PrintStream) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Prints on the given file (PrintStream) the rule.
- imprimeFichero(PrintStream, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Prints on the given file (PrintStream) the rule.
- imprimeFichero(int, PrintStream) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Prints on the given file (PrintStream) the rule.
- imprimePosicion(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Prints on the standard output the actual position.
- imprimir(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ConjuntoDatos
-
Prints the dataset on the standard output.
- imprimir() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Muestra
-
Prints on the standard output the example as rule (conditions ---> class).
- imprimir(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ConjuntoDatos
-
Prints the dataset on the standard output.
- imprimir() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Muestra
-
Prints on the standard output the example as rule (conditions ---> class).
- imprimir(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.ConjuntoDatos
-
Prints the dataset on the standard output.
- imprimir() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Muestra
-
Prints on the standard output the example as rule (conditions ---> class).
- imprimir(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ConjuntoDatos
-
Prints the dataset on the standard output.
- imprimir() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Muestra
-
Prints on the standard output the example as rule (conditions ---> class).
- imprimir(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Prints the dataset on the standard output.
- imprimir() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Muestra
-
Prints on the standard output the example as rule (conditions ---> class).
- improve - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Problem coefficients
- improve - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Problem coefficients
- improve - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Problem coefficients
- improve - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Problem coefficients
- impureza(double[][], int[], int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.Individuo
-
Returns the impurity used as fitness of each individual.
- impurities(int[], double) - Method in class keel.Algorithms.Decision_Trees.CART.impurities.Gini
-
It compute the impurity value associated
- impurities(int[], double) - Method in interface keel.Algorithms.Decision_Trees.CART.impurities.IImpurityFunction
-
It compute the impurity value associated
- impurities(int[], double) - Method in class keel.Algorithms.Decision_Trees.CART.impurities.LeastSquaresDeviation
-
It compute the impurity value associated
- Impurity - Class in keel.Algorithms.Decision_Trees.M5
-
Class for handling the impurity values when spliting the instances
- Impurity(int, int, M5Instances, int) - Constructor for class keel.Algorithms.Decision_Trees.M5.Impurity
-
Constructs an Impurity object containing the impurity values of partitioning the instances using an attribute
- Impurity - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Class for handling the impurity values when spliting the instances
- Impurity(int, int, MyDataset, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Impurity
-
Constructs an Impurity object containing the impurity values of partitioning the instances using an attribute
- impurityFunction - Static variable in class keel.Algorithms.Decision_Trees.CART.RunCART
-
Impurity function to use.
- impute_llsq_l2_blind(DenseMatrix, InstanceSet) - Method in class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.LLSImpute
-
Function that applies the Local Least Squares Imputation to a given array
- impute_rowavg(DenseMatrix, int, InstanceSet) - Method in class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.LLSImpute
-
Perform the row-average of given matrix
- in(int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
Down
- in(int, int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
Down
- inBuf - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- inBuf - Static variable in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- inBuf - Static variable in class keel.Dataset.SimpleCharStream
-
- incCount() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.ExampleWeight
-
Increments in 1 the number of times that it has been covered.
- incCount() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.ExampleWeight
-
- incFreq() - Method in class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.ValueFreq
-
Increases this object frequency by one
- incFreq() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.ValueFreq
-
Increases this object frequency by one
- incFreq() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.ValueFreq
-
Increases this object frequency by one
- incFreq() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.ValueFreq
-
Increases this object frequency by one
- incFreq() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.ValuesFreq
-
Increases this object frequency by one
- incFreq() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.ValueFreq
-
Increases this object frequency by one
- incFreq() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.ValueFreq
-
Increases this object frequency by one
- incFreq() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.ValueFreq
-
Increases this object frequency by one
- incFreq() - Method in class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.ValueFreq
-
Increases this object frequency by one
- incFreq() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.ValueFreq
-
Increases this object frequency by one
- incFreq() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.ValueFreq
-
Increases this object frequency by one
- incIteration(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.timersManagement
-
- incluir(Poblacion) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.BaseR
-
- inclusionDegree(Rule, int) - Method in class keel.Algorithms.Hyperrectangles.INNER.Rule
-
Computes the inclussion degree of two rules in a given attribute
- incluyeSelector(Selector) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.Rule
-
Includes a selector given as an argument into the list of antecedents.
- incluyeSelector(Selector) - Method in class keel.Algorithms.Decision_Trees.DT_GA.Regla
-
Adds a Selector (antedent of the rule, attribute-condition).
- incluyeSelector(Selector) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Rule
-
Includes a selector given as an argument into the list of antecedents.
- incompleteBeta(double, double, double) - Static method in class keel.Algorithms.Lazy_Learning.Statistics
-
Returns the Incomplete Beta Function evaluated from zero to xx.
- incompleteBeta(double, double, double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
Returns the Incomplete Beta Function evaluated from zero to xx.
- inconsistencyCheck(Instance[]) - Method in class keel.Algorithms.Discretizers.Chi2_Discretizer.Discretizer
-
Returns the inconsistency percentage of the given instances.
- inconsistencyCheck(Instance[]) - Method in class keel.Algorithms.Discretizers.ExtendedChi2_Discretizer.Discretizer
-
Returns the inconsistency percentage of the given instances.
- inconsistencyCheck(Instance[]) - Method in class keel.Algorithms.Discretizers.ModifiedChi2_Discretizer.Discretizer
-
Returns the inconsistency percentage of the given instances.
- inconsistencyThreshold - Variable in class keel.Algorithms.Discretizers.Chi2_Discretizer.Discretizer
-
Inconsistency Threshold.
- inconsistencyThreshold - Variable in class keel.Algorithms.Discretizers.ExtendedChi2_Discretizer.Discretizer
-
Inconsistency Threshold.
- inconsistencyThreshold - Variable in class keel.Algorithms.Discretizers.ModifiedChi2_Discretizer.Discretizer
-
Inconsistency Threshold.
- inconsistencyThreshold - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- incorrect() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Gets the number of instances incorrectly classified (that is, for
which an incorrect prediction was made).
- incorrectlyClassifiedSamples(Cluster) - Method in class keel.Algorithms.Instance_Generation.VQ.AVQGenerator
-
Performs Q - R for a cluster.
- incrCovered(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
Function to increase in 1 the number of examples whose output class is the given class "clas" and are covered by this rule.
- incrCovered(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
Function to increase in 1 the number of examples whose output class is the given class "clas" and are covered by this rule
- increaseMicroClSum(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Increases the number of micro classifiers in the set.
- increaseMicroClSum(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Increases the number of micro classifiers in the set.
- increaseNumberMatches(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Increases the number of matches
- increaseNumberMatches(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Increases the number of matches
- increaseNumerosity(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Classifier
-
Increases the numerosity of the classifier.
- increaseNumerosity(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
-
Increases the numerosity of the classifier.
- increaseNumerosity(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Increases the numerosity of the classifier.
- increaseNumerosity(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Increases the numerosity of the classifier.
- incremDistribClase(int) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Regla
-
Add one to the n of the rule for the class
- incrementaCubierta() - Method in class keel.Algorithms.Rule_Learning.Prism.Muestra
-
Adds one to the number of times that the example has been matched
- incrementaCubierta() - Method in class keel.Algorithms.Rule_Learning.UnoR.Muestra
-
Adds one to the number of times that the example has been matched
- incrementaCubierta() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Muestra
-
Adds one to the number of times that the example has been matched
- incrementaCubierta() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Muestra
-
Adds one to the number of times that the example has been matched
- incrementaDistrib(int) - Method in class keel.Algorithms.Rule_Learning.Prism.Complejo
-
Adds 1 to the n of the example for the class 'clase' matched for the example
- incrementaDistrib(int) - Method in class keel.Algorithms.Rule_Learning.UnoR.Complejo
-
Add one to the n of the complex for the class
- incrementaDistrib(int) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Complejo
-
Add one to the n of the complex for the class
- incremental(double, int) - Method in class keel.Algorithms.Decision_Trees.M5.Impurity
-
Incrementally computes the impurirty values
- incremental(Measures) - Method in class keel.Algorithms.Decision_Trees.M5.Measures
-
Adds up performance measures for cross-validation
- incremental(double, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Impurity
-
Incrementally computes the impurity values
- incremental(Measures) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Measures
-
Adds up performance measures for cross-validation
- incrementar(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Attribute
-
- incrementCovered() - Method in class keel.Algorithms.Hyperrectangles.EACH.Sample
-
Adds one to the number of times that the example has been matched
- incrementDistrib(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
-
Increments the number of example for the class cover for the complex
- incrementDistrib(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.AssociationRule
-
Increments the number of example for the class cover for the complex
- incrementDistribution(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Increases by 1 the number of covered examples of the given class
- incrementDistribution(int) - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
Add one to the n of the complex for the class
- incrPositive(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.PNArray
-
It increases the positive value P of the PNArray by adding the weight of a training example given by its position in the training dataset
- incrRightN() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
-
It increases the number of right
- incrWrongN() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
-
It increases the number of wrong
- incStep() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ProbabilityManagement
-
- incStep() - Method in class keel.Algorithms.Genetic_Rule_Learning.Globals.ProbabilityManagement
-
- incStep() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.ProbabilityManagement
-
- incStep() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ProbabilityManagement
-
- incSupport() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.Item
-
It increments the support of an item
- ind - Variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.rank
-
- IndCAN - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF
-
Defines an individual composed by a Canonical cromosome.
- IndCAN(Genetic, int, int, int) - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.IndCAN
-
Creates new instance of IndCAN
- IndCAN - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD
-
Defines the individual of the population
- IndCAN() - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.IndCAN
-
Creates new instance of Canonical individual
- IndCAN(int, int, int) - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.IndCAN
-
Creates new instance of Canonical individual
- IndCAN - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA
-
Defines an individual composed by a Canonical cromosome.
- IndCAN(int) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.IndCAN
-
Creates new instance of IndCAN
- IndDNF - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF
-
Defines an individual composed by a DNF cromosome.
- IndDNF(Genetic, int, TableVar, int, int) - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.IndDNF
-
Creates new instance of IndDNF
- IndDNF - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD
-
Defines the DNF individual of the population
- IndDNF(int, int, int, TableVar) - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.IndDNF
-
Creates new instance of Individual
- IndDNF - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA
-
Defines an individual composed by a DNF cromosome.
- IndDNF(int, TableVar) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.IndDNF
-
Creates new instance of IndDNF
- index() - Method in class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Returns the index of this attribute.
- index(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Returns the index of the attribute stored at the given position.
- index(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Returns the index of the attribute stored at the given position.
- index - Variable in class keel.Algorithms.Discretizers.Khiops.DeltaValue
-
index of the first element in the LEFT interval in the global sorted real values
- index - Variable in class keel.Algorithms.Discretizers.MODL.DeltaValue
-
index of the first element in the LEFT interval in the global sorted real values
- index() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns the index of this attribute.
- index(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns the index of the attribute stored at the given position.
- index(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Returns the index of the attribute stored at the given position.
- index() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
-
Returns the index of the attribute.
- index - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_node
-
- index() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns the index of this attribute.
- index(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Returns the index of the attribute stored at the given position.
- index - Variable in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Index of the prototype in the set, used as an identifier.
- index - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputNeuron
-
Index of the neuron
- index - Variable in class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.FreqList
-
Iterator index.
- index - Variable in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.FreqList
-
Iterator index.
- index - Variable in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.FreqList
-
Iterator index.
- index - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqList
-
Iterator index.
- index - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqListPair
-
Iterator index.
- index - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.InstanceP
-
The index of the instance.
- index - Variable in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.FreqList
-
Iterator index.
- index - Variable in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.FreqList
-
Iterator index.
- index - Variable in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.FreqList
-
Iterator index.
- index - Variable in class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.IndexValuePair
-
Index of the value stored.
- index - Variable in class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.FreqList
-
Iterator index.
- index - Variable in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.FreqList
-
Iterator index.
- index - Variable in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.FreqList
-
Iterator index.
- index - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Index of the prototype in the set, used as an identifier.
- index(int) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Returns the index of the attribute stored at the given position.
- index - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Lists
-
Current element of the list.
- index - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Lists
-
Current element of the list.
- index - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Lists
-
Current element of the list.
- index - Variable in class org.libsvm.svm_node
-
- indexExtendedArg - Static variable in class keel.Algorithms.Instance_Generation.utilities.Parameters
-
Extended argument index.
- indexExtendedArg - Static variable in class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
-
Index of the extended argument.
- indexLiterals(boolean[][], int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.pnPair
-
It computes the indexes of the literals that cover the pnPair
- IndexNearestTo(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Return the INDEX off nearest prototype to another in the set.
- IndexNearestTo(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Return the INDEX off nearest prototype to another in the set.
- indexOf(Object) - Method in class keel.Algorithms.Decision_Trees.M5.M5Vector
-
Searches for the first occurence of the given argument,
testing for equality using the equals method.
- indexOf(Object) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.FastVector
-
Searches for the first occurence of the given argument,
testing for equality using the equals method.
- indexOf(Object) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.FastVector
-
Searches for the first occurence of the given argument,
testing for equality using the equals method.
- indexOf(InputNeuron) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputLayer
-
Returns the index of a neuron in the layer
- indexOf(Rule) - Method in class keel.Algorithms.Rule_Learning.Slipper.Ruleset
-
It returns the position of a rule (if it is belongs to the ruleset)
- indexOf(Object) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.FastVector
-
Searches for the first occurence of the given argument,
testing for equality using the equals method.
- indexOf(Object) - Method in class keel.Algorithms.SVM.SMO.core.FastVector
-
Searches for the first occurence of the given argument,
testing for equality using the equals method.
- indexOf(Attribute) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the index of the attribute given.
- indexOfMax(int[]) - Method in class keel.Algorithms.Discretizers.OneR.OneR
-
Looks for the index of the maximum element in the array
- indexOfMax() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns the index of the maximum.
- indexOfMinElement(ArrayList<Double>) - Static method in class keel.Algorithms.Instance_Generation.LVQ.LVQPRU
-
Returns the index of the minimum element of an array.
- indexOfValue(String) - Method in class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Returns the index of a given attribute value.
- indexOfValue(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns the index of a given attribute value.
- indexOfValue(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns the index of a given attribute value.
- indexOfValue(Attribute, String) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the index of the value given of the attribute given.
- IndexSecondNearestTo(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Return the INDEX of the Second closest prototype to another in the set.
- IndexSecondNearestTo(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Return the INDEX of the Second closest prototype to another in the set.
- IndexTest - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
It ignores the repetition of train file
- IndexTest - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
It ignores the repetition of train file
- IndexTestKMeans - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Test file in clustering algorithms
- IndexTestKMeans - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Test file in clustering algorithms
- indexToString(int) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.SingleIndex
-
Creates a string representation of the given index.
- IndexTrain - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
First file in inputData
- IndexTrain - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
First file in inputData (training)
- IndexValuePair - Class in keel.Algorithms.Preprocess.Missing_Values.LLSImpute
-
Index value pair.
- IndexValuePair(double, int) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.IndexValuePair
-
Parameter construnctor.
- indice - Variable in class keel.Algorithms.Decision_Trees.SLIQ.ListaAtributos
-
Index on the classes list
- indice - Variable in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.MultiplePair
-
first element
- indice - Variable in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Pair
-
first element
- indice - Variable in class keel.GraphInterKeel.statistical.tests.MultiplePair
-
first element
- indice - Variable in class keel.GraphInterKeel.statistical.tests.Pair
-
first element
- indicesToRangeList(int[]) - Static method in class keel.Algorithms.Decision_Trees.M5.Interval
-
Creates a string representation of the indices in the supplied array.
- indicesToRangeList(int[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Range
-
Creates a string representation of the indices in the supplied array.
- Individual - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD
-
Title: Individual
Description: This class contains the representation of the individuals of the population (CHC Algorithm)
Copyright: Copyright KEEL (c) 2007
Company: KEEL
- Individual() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Individual
-
Default constructor.
- Individual(RuleBase, DataBase, double) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Individual
-
Builder
- Individual - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA
-
This class contains the representation of the individuals of the population
- Individual() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Individual
-
Default Constructor
- Individual(int[], double, double, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Individual
-
Constructor with parameters
- Individual(double, double, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Individual
-
Constructor with parameters.
- Individual - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99
-
An individual of the population
- Individual(int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.Individual
-
Creates an individual containing with "variables" input variables
- Individual(Individual) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.Individual
-
Creates an individual as a copy of another individual
- Individual(int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- Individual(int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
- Individual(int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- Individual - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen
- Individual(int, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.Individual
-
Creates an individual containing with a legth equal to "longitud" and having "max_n_reglas" rules
- Individual(int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- Individual(int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationinteger
-
- Individual(int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- Individual(int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- Individual(int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationinteger
-
- Individual(int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationreal
-
- Individual - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS
-
Title: Individual
Description: This class contains the representation of the individuals of the population (CHC Algorithm)
Copyright: Copyright KEEL (c) 2007
Company: KEEL
- Individual() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Individual
-
Default constructor.
- Individual(RuleBase, DataBase, double, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Individual
-
Builder
- Individual - Class in keel.Algorithms.Genetic_Rule_Learning.Corcoran
-
Title: Individual
Description: Chromosome Definition
- Individual(int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Individual
-
Builder
- Individual - Class in keel.Algorithms.Genetic_Rule_Learning.LogenPro
- Individual(myDataset, double, double, double) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Individual
-
Constructor
- Individual(Individual) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Individual
-
Constructor (create the individual as a copy of another individual)
- individual(int) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Returns the _num-th individuals
- Individual - Class in keel.Algorithms.Neural_Networks.gann
-
Class which represents an individual
- Individual(int) - Constructor for class keel.Algorithms.Neural_Networks.gann.Individual
-
Constructor that sets individual's size
- Individual(SetupParameters) - Constructor for class keel.Algorithms.Neural_Networks.gann.Individual
-
Constructor that initializes all the attributes of an individual instance,
given the SetupParameters 'global' object.
- Individual - Class in keel.Algorithms.RE_SL_Methods.P_FCS1
- Individual(int, int) - Constructor for class keel.Algorithms.RE_SL_Methods.P_FCS1.Individual
-
Creates an individual containing "num" fuzzy rules, each one then with "tam" gaussian fuzzy sets
- Individual(Individual) - Constructor for class keel.Algorithms.RE_SL_Methods.P_FCS1.Individual
-
Creates an individual as a copy of another individual
- Individual - Class in keel.Algorithms.RE_SL_Methods.SEFC
- Individual(int) - Constructor for class keel.Algorithms.RE_SL_Methods.SEFC.Individual
-
Creates an individual containing "entradas" gaussian membership functions
- Individual(Individual) - Constructor for class keel.Algorithms.RE_SL_Methods.SEFC.Individual
-
Creates an individual as a copy of another individual
- Individual - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate
-
Defines an individual, composed by a cromosome.
- Individual(int, TypeVar[]) - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Individual
-
Creates new instance of Individual
- Individual - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF
-
Individual abstract class for the different types of genetic individuals.
- Individual() - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Individual
-
Default Constructor.
- Individual - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate
-
Defines an individual, composed by a chromosome.
- Individual(int, TypeVar[]) - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Individual
-
Creates new instance of Individual
- Individual - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD
-
- Individual() - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Default Constructor.
- Individual - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate
-
Defines an individual, composed by a cromosome.
- Individual(int, TypeVar[]) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Individual
-
Creates new instance of Individual
- Individual - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA
-
Individual abstract class for the different types of genetic individuals.
- Individual() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Individual
-
Default Constructor.
- individualMutation() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.geneticAlgorithm
-
- individualsComparator - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Comparator of individuals
- Individuo - Class in keel.Algorithms.Decision_Trees.DT_GA
-
Title: Individuo (Individual).
- Individuo() - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.Individuo
-
Default Constructor.
- Individuo(boolean[], String, myDataset, int) - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.Individuo
-
Paramenter constructor.
- Individuo(myDataset, int) - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.Individuo
-
Paramenter constructor.
- Individuo(Individuo, Individuo, int) - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.Individuo
-
Create a new individual by crossing other two at the position given.
- Individuo - Class in keel.Algorithms.Decision_Trees.DT_oblicuo
-
Title: Individuo (Individual).
- Individuo(int) - Constructor for class keel.Algorithms.Decision_Trees.DT_oblicuo.Individuo
-
Constructor of the class
- Individuo(double[], double) - Constructor for class keel.Algorithms.Decision_Trees.DT_oblicuo.Individuo
-
Constructor of the class
- Individuo(Individuo, Individuo, int) - Constructor for class keel.Algorithms.Decision_Trees.DT_oblicuo.Individuo
-
Create a new individual by crossing other two at the position given.
- Individuo(Individuo, Individuo, boolean[]) - Constructor for class keel.Algorithms.Decision_Trees.DT_oblicuo.Individuo
-
Create a new individual by crossing other two using a mask given as an argument.
- Individuo - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec
-
Title:
Description:
Copyright: Copyright (c) 2007
Company:
- Individuo() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Individuo
-
- Individuo(BaseR, double, double, double) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Individuo
-
- Individuo(Individuo, Individuo, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Individuo
-
- Individuo - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF
-
- Individuo() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.Individuo
-
- Individuo(int, int, int, BaseD) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.Individuo
-
- Individuo(int, int, int, double[], double[]) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.Individuo
-
- Individuo(Individuo, Individuo, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.Individuo
-
- Individuo - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift
-
Title:
Description:
Copyright: Copyright (c) 2007
Company:
- Individuo() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.Individuo
-
- Individuo(int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.Individuo
-
- Individuo - Class in keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM
-
- Individuo() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.Individuo
-
- Individuo(MatrizR, double[], double[]) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.Individuo
-
- IndividuoComparator - Class in keel.Algorithms.Genetic_Rule_Learning.Hider
-
- IndividuoComparator(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Hider.IndividuoComparator
-
- IndMichigan - Class in keel.Algorithms.LQD.methods.FGFS_costInstances
-
File: fuzzy.java
Properties and functions of individual of the population
- IndMichigan - Class in keel.Algorithms.LQD.methods.FGFS_Minimum_Risk
-
File: fuzzy.java
Properties and functions of individual of the population
- IndMichigan - Class in keel.Algorithms.LQD.methods.FGFS_Original
-
File: fuzzy.java
Properties and functions of individual of the population
- IndMichigan - Class in keel.Algorithms.LQD.methods.FGFS_Rule_Weight
-
File: fuzzy.java
Properties and functions of individual of the population
- IndMichigan - Class in keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty
-
File: fuzzy.java
Properties and functions of individual of the population
- induce_One_Rule(int, myDataset, int, int, int) - Static method in class keel.Algorithms.Rule_Learning.Rules6.InduceOneRule
-
Returns the best rule posible for an example of the given dataset.
- induce_One_Rule(Instances, int, int, int, int) - Static method in class keel.Algorithms.Rule_Learning.SRI.InduceOneRule
-
Returns the best rule posible for an example of the given dataset.
- InduceOneRule - Class in keel.Algorithms.Rule_Learning.Rules6
-
Title: Induce One Rule
Description: This class finds the best rule posible for an example of the given dataset.
- InduceOneRule() - Constructor for class keel.Algorithms.Rule_Learning.Rules6.InduceOneRule
-
- InduceOneRule - Class in keel.Algorithms.Rule_Learning.SRI
-
Title: Induce One Rule
Description: This class finds the best rule posible for an example of the given dataset.
- InduceOneRule() - Constructor for class keel.Algorithms.Rule_Learning.SRI.InduceOneRule
-
- INeuralNet - Interface in keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet
-
Represents a neural net
- INeuralNetSpecies<I extends NeuralNetIndividual> - Interface in keel.Algorithms.Neural_Networks.NNEP_Common
-
Species for Individuals that contains a NeuralNet as genotype.
- INeuron - Interface in keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet
-
Represents a neuron in the neural net
- INeuronParametricMutator<N extends LinkedNeuron> - Interface in keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric
-
Parametric Mutator of a specific neuron
- INeuronStructuralMutator<N extends LinkedNeuron> - Interface in keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural
-
Structural Mutator of a specific neuron
- Inf_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.domain_t
-
- Inf_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.variable_t
-
- Inf_Range(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- Inf_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.domain_t
-
Returns the lower value for all the labels in the domain.
- Inf_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Returns the lower value of the definition interval of variable's domain.
- Inf_Range(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Returns the lower value of the definition interval of variable in position "var" of the list
- Inf_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.domain_t
-
- Inf_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.variable_t
-
- Inf_Range(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- Inf_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.domain_t
-
- Inf_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.variable_t
-
- Inf_Range(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- InfBound(int[][], int[][]) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ApproximateSets
-
- InferenceC(vectordouble, Double_t, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.ruleset
-
Returns the class of the rule that better adapts to the example "v", the adaptation
degree "grado" and the ordinal of the fired rule "regla_disparada".
- InferenceC(vectordouble, int, double[], double[], double[], double[], int[], int[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.ruleset
-
- InferenceC(vectordouble, Double_t, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.ruleset
-
Returns the class of the rule that better adapts to the example "v", the adaptation
degree "grado" and the ordinal of the fired rule "regla_disparada".
- InferenceC(vectordouble, Double_t, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.ruleset
-
Returns the class of the rule that better adapts to the example "v", the adaptation
degree "grado" and the ordinal of the fired rule "regla_disparada".
- InferenciaBanco(int, double[][][]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.FuzzyClassifier
-
- inferior - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ApproximateSets
-
Aprox Inferior
- INFFC_2STEPS - Class in keel.Algorithms.Preprocess.NoiseFilters.INFFC
-
- INFFC_2STEPS() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.INFFC.INFFC_2STEPS
-
It initializes the partitions from training set
- info(int[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Computes entropy for an array of integers.
- info(int[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Computes entropy for an array of integers.
- info(int[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Computes entropy for an array of integers.
- info(int[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Computes entropy for an array of integers.
- info(int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Computes entropy for an array of integers.
- info(int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Computes entropy for an array of integers.
- info(int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Computes entropy for an array of integers.
- info(int[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Computes entropy for an array of integers.
- info(int[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Computes entropy for an array of integers.
- infoGainCutCrit(Classification, double, double) - Method in class keel.Algorithms.Decision_Trees.C45.Cut
-
Function to compute the information gain.
- infoGainCutCrit(Classification, double, double) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Function to compute the information gain.
- infoGainCutCrit(Classification, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Cut
-
Function to compute the information gain.
- infoGainCutCrit(Classification, double, double) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Cut
-
Function to compute the information gain.
- infoGainCutCrit(Classification, double, double) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Function to compute the information gain.
- infoGainCutCrit(Classification, double, double) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Cut
-
Function to compute the information gain.
- infoGainCutCrit(Classification, double, double) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Cut
-
Function to compute the information gain.
- infoGainCutCrit(Classification, double, double) - Method in class keel.Algorithms.Rule_Learning.PART.Cut
-
Function to compute the information gain.
- infoGainCutCrit(Classification, double, double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Cut
-
Function to compute the information gain.
- InfoNode - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams
-
InfoNode Class.
- InfoNode() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.InfoNode
-
Default Constructor.
- InfoNode(String, String, double, String, String, double, String) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.InfoNode
-
Parameter Constructor.
- Information - Class in keel.Algorithms.Decision_Trees.M5
-
Class to store information about an option.
- Information(String, String, int, String) - Constructor for class keel.Algorithms.Decision_Trees.M5.Information
-
Creates new option with the given parameters.
- information() - Method in class keel.GraphInterKeel.experiments.Joint
-
- InformationAboutClass() - Constructor for class keel.Algorithms.Statistical_Tests.Shared.StatTest.InformationAboutClass
-
Default Constructor
- InformationAboutClass(String) - Constructor for class keel.Algorithms.Statistical_Tests.Shared.StatTest.InformationAboutClass
-
Parameter Constructor.
- InformationHandler - Class in keel.Algorithms.Decision_Trees.M5
-
Class for handing options.
- InformationHandler(M5Instances) - Constructor for class keel.Algorithms.Decision_Trees.M5.InformationHandler
-
Constructor.
- InformationHandler(String[]) - Constructor for class keel.Algorithms.Decision_Trees.M5.InformationHandler
-
Constructs an object to store command line options and other necessary
information
- ini(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.PNArray
-
It initializes a PNArray with a given class
- ini(Rule) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.PNArray
-
It initializes a PNArray from a given rule
- inic_vector(int[]) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
Sets each position of the vector given as parameter with the i-th number.
- inic_vector(int[]) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Initiates the vector given.
- inic_vector_sin(int[], int) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
Sets each position of the vector given as parameter with the i-th, skipping the position given as argument.
- inic_vector_sin(int[], int) - Method in class keel.Algorithms.Instance_Generation.DROP3SFLSDE.DROP3SFLSDE
-
- inic_vector_sin(int[], int) - Method in class keel.Algorithms.Instance_Generation.ICFSFLSDE.ICFSFLSDE
-
- inic_vector_sin(int[], int) - Method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
- inic_vector_sin(int[], int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Initiates the vector given without the index given.
- INichedMutation - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This class applies the niched mutation.
- INichedMutation() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.INichedMutation
-
- inicializa() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.GenotypeBoosting
-
- inicializa() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.GenotypeBoostingMaxMin
-
- inicializa() - Method in class keel.Algorithms.PSO_Learning.CPSO.Crono
-
Initialization.
- inicializa() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.Crono
-
Initialization.
- inicializa() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.Crono
-
Initialization.
- inicializa() - Method in class keel.Algorithms.PSO_Learning.REPSO.Crono
-
Initialization.
- inicializaCortesAtributo(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Discretizacion
-
Initializes the discretization cuts.
- inicializaFeromona(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Initializes the particle pheromone values for the given list of conditions.
- inicializaMejorPosicionContinua(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Initializes the best continuous particle position with the given conditions vector
- inicializaMejorPosicionNominal(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Initializes the best nominal particle position with the given conditions vector
- inicializaPoblacion(int, Vector, Vector) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
- inicializaPosicionActualContinua(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Initializes the actual continuous particle position with the given conditions vector
- inicializaPosicionActualNominal(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Initializes the actual nominal particle position with the given conditions vector
- inicializaSiTieneCondicionVacia() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ACO
-
Initializes a vector that indicates if the corresponding attribute of the rule
can be assigned with a null/empty condition.
- inicializaSiTieneCondicionVacia() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ACO
-
Initializes a vector that indicates if the corresponding attribute of the rule
can be assigned with a null/empty condition.
- inicializaSiTieneCondicionVacia() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ACO
-
Initializes a vector that indicates if the corresponding attribute of the rule
can be assigned with a null/empty condition.
- inicializaVelocidad(int, float) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Initializes the particle velocity with the given value for all the conditions considered.
- inicializaVelocidad(float[][], int, Randomize) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Initializes the particle velocity using the given conditions intervals.
- iniNObjectives() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Initialises the structure for the name of the objectives
- iniPN(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.PRM
-
It initializes positive and negative values for each example for a given class
- init() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.DiscretizationManager
-
- init(boolean) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_DefaultC
-
- init() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.DiscretizationManager
-
- init(boolean) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_DefaultC
-
- init(Population) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RouletteSelection
-
It creates and initializes the roulette with the fitness of all
classifiers in the population.
- init(Population) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Selection
-
Initializes the system for selection.
- init(Population) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TournamentSelection
-
Initializes the tournament selection.
- INIT - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- init(Population) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RouletteSelection
-
It creates and initializes the roulette with the fitness of all
classifiers in the population.
- init(Population) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Selection
-
Initializes the system for selection.
- init(Population) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TournamentSelection
-
Initializes the tournament selection.
- init() - Method in class keel.Algorithms.Neural_Networks.gmdh.PrintfApplet
-
- init() - Method in class keel.Algorithms.Rule_Learning.Swap1.FormatErrorKeeper
-
Initializes the error vector
- Init() - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Gain
-
Computes and stores the info gain values
- Init() - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Gain
-
Computes and stores the info gain values
- Init() - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Gain
-
Computes and stores the info gain values
- init(Instances) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
initializes the algorithm
- init(Instances) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
-
initialize various variables before starting the actual optimizer
- init(Instances) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
initialize various variables before starting the actual optimizer
- init() - Method in class keel.Dataset.FormatErrorKeeper
-
Initializes the error vector
- init() - Static method in class keel.GraphInterKeel.experiments.Layer
-
Initialize the layers
- init_genrand(long) - Method in class keel.Algorithms.Genetic_Rule_Learning.Globals.MTwister
-
- init_genrand(long) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.MTwister
-
- init_genrand(long) - Method in class org.core.MTwister
-
- initCache() - Static method in class keel.Algorithms.SVM.SMO.core.ClassDiscovery
-
initializes the cache for the classnames
- initClusters(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.GMCA.GMCAGenerator
-
Initializes the clusters for the given prototype set.
- initComponents() - Method in class keel.GraphInterKeel.statistical.statTableModel
-
Initializes the table model
- initCounterOf(Prototype) - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQTC
-
- initCrom(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.CromCAN
-
Random initialization of an existing chromosome
- initCrom() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.CromDNF
-
Random initialization of an existing chromosome
- initCromBsd(TableVar, float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.CromCAN
-
Biased Random initialization of an existing chromosome
The random inicializacion is biased by generating
chromosomes with a maximum number or participating variables
and for an indicated % of the population (the rest is random)
- initCromBsd(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.CromDNF
-
Biased Random initialization of an existing chromosome
The random inicializacion is biased by generating
chromosomes with a maximum number or participating variables
and for an indicated % of the population (the rest is random)
- InitCromEmp() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Chromosome
-
Empty initialization of an existing chromosome
We denote that the variable does not take part by setting
the value to n_etiq (valid class are from 0 to n_etiq-1)
- InitCromEmp() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Chromosome
-
Empty initialization of an existing chromosome
We denote that the variable does not take part by setting
the value to n_etiq (valid class are from 0 to n_etiq-1)
- InitCromEmp() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Chromosome
-
Empty initialization of an existing chromosome
We denote that the variable does not take part by setting
the value to n_etiq (valid class are from 0 to n_etiq-1)
- initCromRnd(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.CromCAN
-
Random initialization of an existing chromosome
- initCromRnd() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.CromDNF
-
Random initialization of an existing chromosome
- initDat(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeDat
-
Initialise the structure for the examples
- initDat(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeDat
-
Initialise the structure for the examples
- initDat(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeDat
-
Initialise the structure for the examples
- initDataSet() - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQ1
-
Initialize the output data set
- initDataSet() - Method in class keel.Algorithms.Instance_Generation.MSE.MSEGenerator
-
Initialize the output data set
- initDataSetRandomMode() - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQ1
-
Initialize the output data set ignoring the a priority probabilities
- initGA() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.GA
-
Prepares GA for a new run.
- initGA() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.GA
-
Prepares GA for a new run.
- InitGeneRnd() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Gene
-
Random initialization of an existing gene
- initial - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.FUN
-
A set of initial rules
- initial - Variable in class keel.Algorithms.Instance_Generation.LVQ.LVQGenerator
-
Initial Prototype set.
- initial_dataset(Point, ExternalObjectDescription, Vector, Vector, ExternalObjectDescription, Vector, int) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
Initializes data set
- initialAlphaInput - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
-
Initial alpha coeficient for the input weigthts
- initialAlphaOutput - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
-
Initial alpha coeficient for the output weigthts
- initialFitness - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It is the inital fitness for the new classifiers.
- INITIALFITNESS - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- Initialise() - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Semantics
-
This method generates the semantics of the linguistic variables
using a partition consisting of triangle simetrics fuzzy sets.
- Initialise() - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Semantics
-
This method generates the semantics of the linguistic variables
using a partition consisting of triangle simetrics fuzzy sets.
- Initialise() - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Semantics
-
This method generates the semantics of the linguistic variables
using a partition consisting of triangle simetrics fuzzy sets.
- initialization() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.RuleBase
-
It generates the initial rule set for each partition of the input space (2...L)
- initializationMethod - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- initializationTypeTipText() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- initialize() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.BTS
-
It initilizes the root node of the tree
- initialize(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.InformationHandler
-
Initializes for constucting model trees
- initialize(int, int, int) - Method in class keel.Algorithms.Decision_Trees.M5.SplitInfo
-
Resets the object of split information
- initialize(Instances, int, int[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeLocator
-
initializes the AttributeLocator
- initialize(Instances, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
initializes with the header information of the given dataset and sets
the capacity of the set of instances.
- initialize() - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Cogin
-
- initialize() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Core
-
Initialize all populations (both Michigan and Pitts approaches) randomly
- initialize() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Factory
-
- initialize() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_ADI
-
- initialize() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_GABIL
-
- initialize() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_UBR
-
- initialize(int, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SplitInfo
-
Resets the object of split information
- initialize() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Factory
-
- initialize() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_ADI
-
- initialize() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_GABIL
-
- Initialize(int, double[][], double[], int, double[][], double[], int, int, int, double, double[], long) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
It initialize the population
- Initialize(int, double[][], double[], int, double[][], double[], int, int, int, double, double[], long) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
It initialize the population
- Initialize(int, double[][], double[], int, double[][], double[], int, int, int, double, double[], long) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
It initialize the population
- Initialize(int, double[][], double[], int, double[][], double[], int, int, int, double, double[], long) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
It initialize the population
- Initialize(int, double[][], double[], int, double[][], double[], int, int, int, double, double[], long) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
It initialize the population
- Initialize(int, double[][], double[], int, double[][], double[], int, int, int, double, double[], long) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
It initialize the population
- Initialize(int, double[][], double[], int, double[][], double[], int, int, int, double, double[], long) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
It initialize the population
- Initialize(int, double[][], double[], int, double[][], double[], int, int, int, double, double[], long) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
It initialize the population
- initialize(Instances, int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
initializes with the header information of the given dataset and sets
the capacity of the set of instances.
- initializeChromosome() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_hyperrect_list
-
- initializeChromosome() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_hyperrect_list_real
-
- initializeHelpOptions() - Method in class keel.GraphInterKeel.help.HelpOptions
-
Initialize help options
- InitializeParameters(double, double, double) - Static method in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- InitializeParameters(double, double, double) - Static method in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- InitializeParameters(double, double, double, double) - Static method in class keel.Algorithms.PSO_Learning.PSOLDA.Particle
-
- InitializeParameters(double, double, double, double, double, double, double, double, int) - Static method in class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- initializePopulation() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.geneticAlgorithm
-
- initializeWindowing(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.instanceSet
-
- initialMaxNofneurons - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
-
Initial number of neurons of each LinkedLayer of the neural nets
- initialmaxnofneurons - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Initial maximum number of neurons for the net
- initialNumberOfRules - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- initialNumberOfRules - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- initialPError - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It represents the initial system error for the new classifiers.
- INITIALPERROR - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- InitialPopulation(int[][], int, int[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- InitialPopulation(double[][], int, int, int, int[][], int, int[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
Generates an initial population
- InitialPopulation(int[][], int, int[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- InitialPopulation(double[][], int, int, int, int[][], int, int[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
Generates an initial population
- InitialPopulation(int[][], int, int[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- InitialPopulation_4L(double[][], int, int, int[][], int, int[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
Generates an initial population
- InitialPopulationClassFixed(double[][], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- InitialPopulationValue(char) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- InitialPopulationValue(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- INITIALPREDICITON - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- initialPrediction - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Is the initial prediction for the new classifiers.
- initialReduction() - Method in class keel.Algorithms.Instance_Generation.HYB.HYBGenerator
-
Makes the initial reduction of the prototype set
- initialset - Variable in class keel.Algorithms.Instance_Generation.LVQ.LVQGenerator
-
If the initialset is set.
- initialStepSize - Variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Initial Delta for RpropPlus Algorithm
- initialTheoryLengthRatio - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- initialTheoryLengthRatio - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- initialTheoryLengthRatio - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- initialTime - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Initial time.
- initialTime - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Initial time.
- initialTime - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Initial time.
- initialTime - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Initial time.
- initiate(LinkedLayer, ILayer<? extends INeuron>, int, int) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.initiators.IInitiator
-
Initiation method of a linked layer
- initiate(LinkedLayer, ILayer<? extends INeuron>, int, int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.initiators.PureLayerInitiator
-
Initiation method of a linked layer
- initiateWeights(LinkedLayer) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.initiators.PureLayerInitiator
-
Initiate the weights of all the links of a neural net
- initiateWeights(LinkedLayer) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.initiators.RandomInitiator
-
Initiate the weights of all the links of a neural net
- initiator - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
-
Initiator of each LinkedLayer of the neural nets
- initiatorNeuronTypes - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
-
Initiator of neurons of each HibridLayer of the neural nets
- initiators - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetCreator
-
Initiators of weights
- InitIndBsd(TableVar, float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.IndCAN
-
Creates biased random instance of Canonical individual
- InitIndBsd(TableVar, float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.IndDNF
-
Creates biased random instance of Canonical individual
- InitIndBsd(TableVar, float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Individual
-
Creates biased random instance of individual
- InitIndEmp() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Individual
-
Empty initialization of the individual.
- initIndEmp(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Population
-
Individual of the Population initialisation
- InitIndEmp() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Individual
-
Empty initialization of the individual.
- initIndEmp(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Population
-
Individual of the Population initialisation
- InitIndEmp() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Individual
-
Empty initialization of the individual.
- initIndEmp(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Population
-
Individual of the Population initialisation
- InitIndRnd(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.IndCAN
-
Creates random instance of Canonical individual
- InitIndRnd(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.IndDNF
-
Creates random instance of DNF individual
- InitIndRnd(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Individual
-
Creates random instance of individual
- initInput() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.ExpNeuron
-
Init the input of the neuron (0 or 1 depending on the kind of neuron)
- initInput() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinearNeuron
-
Init the input of the neuron (0 or 1 depending on the kind of neuron)
- initInput() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Init the input of the neuron (0 or 1 depending on the kind of neuron)
- initInput() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.SigmNeuron
-
Init the input of the neuron (0 or 1 depending on the kind of neuron)
- initInstanceLists() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.instanceSet
-
- initInstancesEvaluation() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PopulationWrapper
-
- initInstancesEvaluation() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PopulationWrapper
-
- initIteration() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PopulationWrapper
-
- initIteration() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PopulationWrapper
-
- initLogManager() - Static method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.LogManager
-
- initLogManager() - Static method in class keel.Algorithms.Genetic_Rule_Learning.Globals.LogManager
-
- initLogManager() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.LogManager
-
- initMethod - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- initMethod - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- initMethod - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- initPlantilla(Cromosoma, double) - Method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.Cromosoma
-
this method is used in CHC method.
- initPlantilla(Cromosoma, double) - Method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CromosomaBinario
-
this method is used in CHC method.
- initPlantilla(Cromosoma, double) - Method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CromosomaEntero
-
this method is used in CHC method.
- initPopEmp() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Population
-
Population initialisation (calling individual inicialisation)
- initPopEmp() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Population
-
Population initialisation (calling individual inicialisation)
- initPopEmp() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Population
-
Population initialisation (calling individual inicialisation)
- initRand() - Static method in class keel.Algorithms.Genetic_Rule_Learning.Globals.Rand
-
Generates a new instance of Random
- initRand() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Rand
-
Generates a new instance of Random
- initRand() - Method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.Cromosoma
-
random initialization of a chromosome
- initRand() - Method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CromosomaBinario
-
random initialization of a chromosome (two values: 0 or 1)
- initRand() - Method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CromosomaEntero
-
random initialization of a chromosome.
- initRandomClassifier() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
-
- initRandomClassifier() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierADI
-
- initRandomClassifier() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierGABIL
-
- initRandomClassifier() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierUBR
-
- initRandomClassifier() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
-
- initRandomClassifier() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierADI
-
- initRandomClassifier() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierGABIL
-
- initRead(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Globals.FileManagement
-
Init a file for reading.
- initRead(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.FileManagement
-
Init a file for reading.
- initReductionIteration - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It indicates the iteration where the reduction specified has
to be applied for the first time.
- INITREDUCTIONITERATION - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- InitSemantics(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
-
Defined to manage de semantics of the linguistic variables
Generates the semantics of the linguistic variables using a partition
consisting of triangle simetrics fuzzy sets.
- InitSemantics(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
-
Defined to manage de semantics of the linguistic variables
Generates the semantics of the linguistic variables using a partition
consisting of triangle simetrics fuzzy sets.
- InitSemantics(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
-
Defined to manage de semantics of the linguistic variables
Generates the semantics of the linguistic variables using a partition
consisting of triangle simetrics fuzzy sets.
- initStatistics() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Statistics
-
- initStatistics() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Statistics
-
- initTimeAverages() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TimeControl
-
It initilizes the time averages to zero.
- initTimeAverages() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TimeControl
-
It initilizes the time averages to zero.
- initTokenizer(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
Function to initialize the stream tokenizer.
- initTokenizer(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
Function to initialize the stream tokenizer.
- initTokenizer(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
Function to initialize the stream tokenizer.
- initTokenizer(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Function to initialize the stream tokenizer.
- initTokenizer(StreamTokenizer) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
Function to initialize the stream tokenizer.
- initTokenizer(StreamTokenizer) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
Function to initialize the stream tokenizer.
- initTokenizer(StreamTokenizer) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
Function to initialize the stream tokenizer.
- initTokenizer(StreamTokenizer) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Initializes the StreamTokenizer used for reading the ARFF file.
- initTokenizer(StreamTokenizer) - Method in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
Function to initialize the stream tokenizer.
- initTokenizer(StreamTokenizer) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Algorithm
-
Function to initialize the stream tokenizer.
- initTokenizer(StreamTokenizer) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Algorithm
-
Function to initialize the stream tokenizer.
- initTokenizer(StreamTokenizer) - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
Function to initialize the stream tokenizer.
- initTokenizer(StreamTokenizer) - Method in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
Function to initialize the stream tokenizer.
- initValues(Vector) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeVar
-
Initialize private "valores" with the values of the vector
- initValues(Vector) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeVar
-
Initialize private "valores" with the values of the vector
- initValues(Vector) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeVar
-
Initialize private "valores" with the values of the vector
- initVars(Instances) - Method in class keel.Algorithms.SVM.SMO.supportVector.CachedKernel
-
initializes variables etc.
- initVars(Instances) - Method in class keel.Algorithms.SVM.SMO.supportVector.Kernel
-
initializes variables etc.
- initVars(Instances) - Method in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
initializes variables etc.
- initVars(Instances) - Method in class keel.Algorithms.SVM.SMO.supportVector.Puk
-
initializes variables etc.
- initVars(Instances) - Method in class keel.Algorithms.SVM.SMO.supportVector.RBFKernel
-
initializes variables etc.
- initVars(Instances) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
initializes variables etc.
- initWrite(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Globals.FileManagement
-
Init a file for reading.
- initWrite(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.FileManagement
-
Init a file for reading.
- iniWeight() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
It initializes the weights for each example to 1.
- INNER - Class in keel.Algorithms.Hyperrectangles.INNER
-
File: INNER.java
The INNER Algorithm.
- INNER(String) - Constructor for class keel.Algorithms.Hyperrectangles.INNER.INNER
-
The main method of the class
- innerProduct(DoubleVector) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns the inner product of two DoubleVectors
- input(M5Instance) - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Input an instance for filtering.
- input(M5Instance) - Method in class keel.Algorithms.Decision_Trees.M5.ReplaceMissingValuesFilter
-
Input an instance for filtering.
- INPUT - Static variable in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
Label to identify INPUT attributes
- INPUT - Static variable in class keel.Dataset.Attribute
-
Label to identify INPUT attributes
- input_file_tra - Variable in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Param
-
Training Input mandatory file
- input_file_tra - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Param
-
Training Input mandatory file
- input_file_tra - Variable in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Param
-
Training Input mandatory file
- input_file_tst - Variable in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Param
-
Test Input mandatory file
- input_file_tst - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Param
-
Test Input mandatory file
- input_file_tst - Variable in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Param
-
Test Input mandatory file
- input_stream - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserTokenManager
-
- input_stream - Static variable in class keel.Algorithms.Rule_Learning.Swap1.DataParserTokenManager
-
- input_stream - Static variable in class keel.Dataset.DataParserTokenManager
-
- input_test_name - Variable in class keel.Algorithms.SVM.SMO.SMO
-
Test dataset filename.
- input_train_name - Variable in class keel.Algorithms.SVM.SMO.SMO
-
Training dataset filename.
- input_validation_name - Variable in class keel.Algorithms.SVM.SMO.SMO
-
Validation dataset filename.
- inputAtt - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Number of input attributes
- inputAtt - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Number of input attributes.
- inputAtt - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Number of input attributes
- inputAtt - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Number of input attributes.
- inputAtt - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Number of input attributes
- inputAtt - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Number of input attributes
- inputAtt - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Number of input attributes
- inputAtt - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Number of input attributes
- INPUTDATA - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- inputDataSet(myDataset, DataBase) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Commences process of getting inout data (GUI version also exists).
- inputFiles - Static variable in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
Name of input files.
- inputFiles - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Name of input files.
- inputFilesPath - Static variable in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
Complete path of input files.
- inputFilesPath - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Complete path of input files.
- inputFormat(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
- inputFormatOkFlag - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Input format OK flag( default = true).
- inputFunction(double, double, double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.ExpNeuron
-
Input function of the neuron.
- inputFunction(double, double, double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinearNeuron
-
Input function of the neuron.
- inputFunction(double, double, double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Input function of the neuron.
- inputFunction(double, double, double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.SigmNeuron
-
Input function of the neuron.
- inputInterval - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Normalization input interval
- inputLayer - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
-
Input layer
- InputLayer - Class in keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet
-
Input layer of a neural net
- InputLayer() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputLayer
-
Empty constructor
- InputNeuron - Class in keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet
-
Input Neuron of a neural net
- InputNeuron() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputNeuron
-
Empty Constructor
- inputs - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Inputs attributes
- inputs - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Training size.
- inputs - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Inputs attributes
- inputs - Variable in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Normalized inputs of the prototype (values in [0,1]).
- inputs - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Inputs attributes.
- inputs - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Inputs attributes
- inputs - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Inputs attributes
- inputs - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Inputs attributes
- inputs - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Inputs attributes
- INPUTS - Static variable in interface keel.Algorithms.Rule_Learning.Swap1.DataParserConstants
-
Data Parser Indentifier for inputs line.
- inputs - Variable in class keel.Algorithms.Rule_Learning.Swap1.swap1
-
- inputs - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Normalized inputs of the prototype (values in [0,1]).
- INPUTS - Static variable in interface keel.Dataset.DataParserConstants
-
- inputs - Variable in class keel.GraphInterKeel.experiments.Multiplexor
-
- inputs_list() - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- inputs_list() - Static method in class keel.Dataset.DataParser
-
- InputsInTestNotEquals - Static variable in class keel.Algorithms.Rule_Learning.Swap1.ErrorInfo
-
- InputsInTestNotEquals - Static variable in class keel.Dataset.ErrorInfo
-
- inputsLine - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
- inputsLine - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
- inputStream - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- inputStream - Static variable in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- inputStream - Static variable in class keel.Dataset.SimpleCharStream
-
- InputTestAttributeNotDefined - Static variable in class keel.Algorithms.Rule_Learning.Swap1.ErrorInfo
-
- InputTestAttributeNotDefined - Static variable in class keel.Dataset.ErrorInfo
-
- InputTrainAttributeNotDefined - Static variable in class keel.Algorithms.Rule_Learning.Swap1.ErrorInfo
-
- InputTrainAttributeNotDefined - Static variable in class keel.Dataset.ErrorInfo
-
- Insert(int, genetcode[], double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.ruleset
-
- insert(Neighbour) - Method in class keel.Algorithms.Lazy_Learning.IDIBL.NQueue
-
Insert a new neighbor
- insert(int) - Method in class keel.Algorithms.SVM.SMO.supportVector.SMOset
-
Inserts an element into the set.
- insert(Lists, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Lists
-
Insert an element X into the list at location specified by NODE
- insert(Lists, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Lists
-
Insert an element X into the list at location specified by NODE
- insert(Lists, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Lists
-
Insert an element X into the list at location specified by NODE
- insert(DatasetXML, String) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Insert a new data set in the list, from an External Object Description
- insert(Vector<String>) - Method in class keel.GraphInterKeel.experiments.DinamicParameter
-
- insert(DatasetXML, String) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Insert a new External Object Description (of a data set) in the list
- insertaAtributos(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Adds all the conditions given.
- insertaAtributos(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Adds all the conditions given.
- insertaAtributos(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Adds all the conditions given.
- insertaAtributos(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Adds all the conditions given.
- insertaCondicionesContinuos(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Adds all the continuous conditions given.
- insertaCondicionesNominales(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Adds all the nominal conditions given.
- insertaMuestra(Muestra) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ConjuntoDatos
-
Adds the given example to the dataset.
- insertaMuestra(Muestra) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ConjuntoDatos
-
Adds the given example to the dataset.
- insertaMuestra(Muestra) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.ConjuntoDatos
-
Adds the given example to the dataset.
- insertaMuestra(Muestra) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ConjuntoDatos
-
Adds the given example to the dataset.
- insertaMuestra(Muestra) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Adds the given example to the dataset.
- insertaNumCondicionesReales(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Sets the number of real conditions.
- insertaNumCondicionesReales(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Sets the number of real conditions.
- insertaNumCondicionesReales(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Sets the number of real conditions.
- insertaPosicion(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Muestra
-
Sets tha position of the example in the file (example id).
- insertaPosicion(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Muestra
-
Sets tha position of the example in the file (example id).
- insertaPosicion(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Muestra
-
Sets tha position of the example in the file (example id).
- insertaPosicion(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Muestra
-
Sets tha position of the example in the file (example id).
- insertaPosicion(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Muestra
-
Sets tha position of the example in the file (example id).
- insertarAtributo(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Muestra
-
Adds an attribute with its value to the example.
- insertarAtributo(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Muestra
-
Adds an attribute with its value to the example.
- insertarAtributo(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Muestra
-
Adds an attribute with its value to the example.
- insertarAtributo(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Adds a condition (an attribute with its value and an operator).
- insertarAtributo(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Muestra
-
Adds an attribute with its value to the example.
- insertarAtributo(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Muestra
-
Adds an attribute with its value to the example.
- insertArc(Arc) - Method in class keel.GraphInterKeel.experiments.Graph
-
Inserts a new arc in the graph
- insertArc(Arc, int) - Method in class keel.GraphInterKeel.experiments.Graph
-
Inserts a new arc at the specified position
- insertarClase(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Muestra
-
Adds a class that identifies the example/rule with all its attributes.
- insertarClase(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Adds a class that identifies the rule with all its attributes.
- insertarClase(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Muestra
-
Adds a class that identifies the example/rule with all its attributes.
- insertarClase(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Adds a class that identifies the rule with all its attributes.
- insertarClase(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Muestra
-
Adds a class that identifies the example/rule with all its attributes.
- insertarClase(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Adds a class that identifies the rule with all its attributes.
- insertarClase(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Muestra
-
Adds a class that identifies the example/rule with all its attributes.
- insertarClase(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Adds a class that identifies the rule with all its attributes.
- insertarClase(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Muestra
-
Adds a class that identifies the example/rule with all its attributes.
- insertarClase(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Adds a class that identifies the rule with all its attributes.
- insertarCondicion(Condicion) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Adds a condition (an attribute with its value and an operator).
- insertarCondicion(Condicion) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Adds a condition (an attribute with its value and an operator).
- insertarCondicion(Condicion) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Adds a condition (an attribute with its value and an operator).
- insertarCondicionContinua(Condicion) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Adds a condition (a continuous attribute with its value and an operator).
- insertarCondicionNominal(Condicion) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Adds a condition (a nominal attribute with its value and an operator).
- insertAttributeAt(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Inserts an attribute at the given position (0 to
numAttributes()).
- insertAttributeAt(M5Attribute, int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Inserts an attribute at the given position (0 to
numAttributes()) and sets all values to be missing.
- insertAttributeAt(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Inserts an attribute at the given position (0 to
numAttributes()).
- insertAttributeAt(AttributeWeka, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Inserts an attribute at the given position (0 to
numAttributes()) and sets all values to be missing.
- insertAttributeAt(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Inserts an attribute at the given position (0 to
numAttributes()).
- insertAttributeAt(MyAttribute, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Inserts an attribute at the given position (0 to
numAttributes()) and sets all values to be missing.
- insertAttributeAt(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Inserts an attribute at the given position (0 to
numAttributes()).
- insertAttributeAt(Attribute, int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Inserts an attribute at the given position (0 to numAttributes()) and
sets all values to be missing.
- insertAttributeAt(int) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Inserts an attribute at the given position (0 to
numAttributes()).
- insertAttributeAt(Attribute, int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Inserts an attribute at the given position (0 to
numAttributes()) and sets all values to be missing.
- insertC(DatasetXML, String) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Insert a new C data set in the list, from an External Object Description
- insertC(DatasetXML, String) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Insert a new External Object Description (of a data set) in the list
- insertC_LQD(DatasetXML, String) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Insert a new LQD data set in the list, from an External Object Description
- insertC_LQD(DatasetXML, String) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Insert a new External Object Description (of a data set) in the list
- insertDataflowItem - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- insertDataSelected(String) - Method in class keel.GraphInterKeel.experiments.Joint
-
- insertDirectoryData(URL, String) - Method in class keel.GraphInterKeel.experiments.Experiments
-
Read XML files
- insertElementAt(Object, int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Vector
-
Inserts an element at the given position.
- insertElementAt(Object, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.FastVector
-
Inserts an element at the given position.
- insertElementAt(Object, int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.FastVector
-
Inserts an element at the given position.
- insertElementAt(Object, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.FastVector
-
Inserts an element at the given position.
- insertElementAt(Object, int) - Method in class keel.Algorithms.SVM.SMO.core.FastVector
-
Inserts an element at the given position.
- insertInPopulation(Classifier, Population) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Inserts the classifier in the population.
- insertInPopulation(Classifier, Population) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Inserts the classifier in the population.
- insertInPSubsumingCl(Classifier) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Inserts the classifier into the population.
- insertInPSubsumingCl(Classifier, Population) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Inserts the classifier into the population.
- insertion(Rule) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.ruleSet
-
Insertion operator
- insertLQD_C(DatasetXML, String) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Insert a new LQD data set in the list, from an External Object Description
- insertLQD_C(DatasetXML, String) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Insert a new External Object Description (of a data set) in the list
- insertNode(Node) - Method in class keel.GraphInterKeel.experiments.Graph
-
Insert a new node in the graph
- insertNode(Node, int) - Method in class keel.GraphInterKeel.experiments.Graph
-
Insert a node at the specified position
- insertParameter(DinamicParameter) - Method in class keel.GraphInterKeel.experiments.Joint
-
- insertproblem(String) - Method in class keel.GraphInterKeel.experiments.Joint
-
- insertRbf(Rbf) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Adds a neuron to the net, assigning an automatic name
- insertRbf(Rbf, String) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Adds a neuron to the net with a given name
- insertRbf(Rbf) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbfn
-
Adds a neuron to the net
- insertRbf(Rbf) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
-
Adds a neuron to the net
- insertRbf(Rbf) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
-
Adds a neuron to the net
- insertRbf(Rbf) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
-
Adds a neuron to the net
- insertRbf(Rbf) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
-
Adds a neuron to the net
- insertRbf(Rbf) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
-
Adds a neuron to the net
- insertRinRlistCMARranking(short[], short[], double, double, double, double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
Inserts an (association/classification) rule into the linkedlist of
rules pointed at by startRulelist.
- insertRow(Vector, Attribute) - Method in class keel.GraphInterKeel.datacf.util.AttributeTable
-
Inserts a row in the table
- insertRule(Rule) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.RuleSet
-
- insertRule(Rule, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Ruleset
-
Inserts a new rule in a given position of the ruleset.
- insertRule(int, matchProfileAgent) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ruleOrderAgent
-
- insertRule(Rule, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Ruleset
-
Inserts a new rule in a given position of the ruleset.
- insertRule(Rule, int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Ruleset
-
Inserts a new rule in a given position of the ruleset.
- insertRule(Rule, int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Ruleset
-
Inserts a new rule in a given position of the ruleset.
- insertRule(Rule, int) - Method in class keel.Algorithms.Rule_Learning.PART.Ruleset
-
Inserts a new rule in a given position of the ruleset.
- insertRule(Rule, int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ruleset
-
Inserts a new rule in a given position of the ruleset.
- insertRule(Rule, int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Ruleset
-
Inserts a new rule in a given position of the ruleset.
- insertRuleintoRulelist(short[], short[], double, double, double) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Inserts an (association/classification) rule into the linkedlist of
rules pointed at by startRulelist.
- insertRuleintoRulelist(short[], short[], double, double, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Inserts an (association/classification) rule into the linkedlist of
rules pointed at by startRulelist.
- InsertVector(double[], double, int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Arrays
-
- InsertVector(int[], int, int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Arrays
-
- inside(double[]) - Method in class keel.Algorithms.Hyperrectangles.INNER.Rule
-
Tests if an instance is covered by the rule
- inside(double[]) - Method in class keel.Algorithms.Hyperrectangles.RISE.Rule
-
Tests if an instance is covered by the rule
- insignificant(double, M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.Function
-
Detects the most insignificant variable in the funcion
- insignificant(double, MyDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Function
-
Detects the most insignificant variable in the funcion
- inst - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.InstanceP
-
Proper instance (referenced)
- instance(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Returns the instance at the given position.
- Instance - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
Class for handling an instance.
- Instance(Instance) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Constructor that copies the attribute values and the weight from
the given instance.
- Instance(double, double[]) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Constructor that inititalizes instance variable with given
values.
- Instance(int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Constructor of an instance that sets weight to one, all values to
be missing, and the reference to the dataset to null.
- Instance() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Private constructor for subclasses.
- instance(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Returns the instance at the given position.
- Instance - Class in keel.Algorithms.Genetic_Rule_Learning.Corcoran
-
Title: Instance
Description: Structure for an instance used in the data-set
- Instance(double[], int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Instance
-
Builder
- Instance(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Instance
-
Builder without data
- Instance - Class in keel.Algorithms.Genetic_Rule_Learning.SIA
-
Title: Instance
Description: Structure for an instance used in the data-set
- Instance(double[], int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.SIA.Instance
-
Builder
- Instance(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.SIA.Instance
-
Builder without data
- Instance - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets
-
Class for handling an instance.
- Instance(Instance) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Constructor that copies the attribute values and the weight from
the given instance.
- Instance(double, double[]) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Constructor that inititalizes instance variable with given
values.
- Instance(int) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Constructor of an instance that sets weight to one, all values to
be missing, and the reference to the dataset to null.
- Instance() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Private constructor for subclasses.
- instance(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Returns the instance at the given position.
- Instance() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset.Instance
-
Empty constructor.
- Instance - Class in keel.Algorithms.Rule_Learning.AQ
-
Title: Instance
Description: Structure for an instance used in the data-set
- Instance(double[], int, int) - Constructor for class keel.Algorithms.Rule_Learning.AQ.Instance
-
Builder
- Instance(int) - Constructor for class keel.Algorithms.Rule_Learning.AQ.Instance
-
Builder without data
- Instance - Class in keel.Algorithms.Rule_Learning.CN2
-
Title: Instance
Description: Structure for an instance used in the data-set
- Instance(double[], int, int) - Constructor for class keel.Algorithms.Rule_Learning.CN2.Instance
-
Builder
- Instance(int) - Constructor for class keel.Algorithms.Rule_Learning.CN2.Instance
-
Builder without data
- Instance - Class in keel.Algorithms.Rule_Learning.Swap1
-
Instance
This class keeps all the information of an instance.
- Instance(String, boolean, int) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.Instance
-
It parses a new attribute line.
- Instance(Instance) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.Instance
-
Creates a deep copy of the Instance
- Instance(double[], InstanceAttributes) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.Instance
-
Creates an instance from a set of given values.
- Instance - Class in keel.Algorithms.Subgroup_Discovery.SDAlgorithm
- Instance(double[], int, int) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Instance
-
Builder
- Instance(int) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Instance
-
Builder without data
- Instance - Class in keel.Algorithms.SVM.SMO.core
-
Class for handling an instance.
- Instance(Instance) - Constructor for class keel.Algorithms.SVM.SMO.core.Instance
-
Constructor that copies the attribute values and the weight from
the given instance.
- Instance(double, double[]) - Constructor for class keel.Algorithms.SVM.SMO.core.Instance
-
Constructor that inititalizes instance variable with given
values.
- Instance(int) - Constructor for class keel.Algorithms.SVM.SMO.core.Instance
-
Constructor of an instance that sets weight to one, all values to
be missing, and the reference to the dataset to null.
- Instance() - Constructor for class keel.Algorithms.SVM.SMO.core.Instance
-
Private constructor for subclasses.
- instance(int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the instance at the given position.
- Instance - Class in keel.Dataset
-
Instance
This class keeps all the information of an instance.
- Instance(String, boolean, int) - Constructor for class keel.Dataset.Instance
-
It parses a new attribute line.
- Instance(Instance) - Constructor for class keel.Dataset.Instance
-
Creates a deep copy of the Instance
- Instance(double[], InstanceAttributes) - Constructor for class keel.Dataset.Instance
-
Creates an instance from a set of given values.
- InstanceAttributes - Class in keel.Algorithms.Rule_Learning.Swap1
-
InstanceAttributes
This class contains the information of all the attributes in the dataset.
- InstanceAttributes() - Constructor for class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
-
InstanceAttributes
Class constructor.
- InstanceAttributes(InstanceAttributes) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
-
- InstanceAttributes - Class in keel.Dataset
-
InstanceAttributes
This class contains the information of all the attributes in the dataset.
- InstanceAttributes() - Constructor for class keel.Dataset.InstanceAttributes
-
InstanceAttributes
Class constructor.
- InstanceAttributes(InstanceAttributes) - Constructor for class keel.Dataset.InstanceAttributes
-
- instanceCoveredByRule(Instance) - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Checks if the rule gets the parameter instance
- instanceNum - Variable in class keel.Algorithms.Rule_Learning.Swap1.ErrorInfo
-
It stores the instance number where the error has appeared.
- instanceNum - Variable in class keel.Dataset.ErrorInfo
-
It stores the instance number where the error has appeared.
- InstanceP - Class in keel.Algorithms.Preprocess.Missing_Values.EventCovering
-
This class stores an instance with a P(x) value associated
- InstanceP() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.InstanceP
-
Creates a new instance of InstanceP
- InstanceP(Instance, double, int) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.InstanceP
-
Creates a new InstanceP with the arguments passed
- InstanceParser - Class in keel.Algorithms.Rule_Learning.Swap1
-
InstanceParser
This class is a parser for the instances.
- InstanceParser(String, boolean) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.InstanceParser
-
It does create a new instance of ParserARFF.
- InstanceParser - Class in keel.Dataset
-
InstanceParser
This class is a parser for the instances.
- InstanceParser(String, boolean) - Constructor for class keel.Dataset.InstanceParser
-
It does create a new instance of ParserARFF.
- Instances - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
Class for handling an ordered set of weighted instances.
- Instances(Instances) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Constructor copying all instances and references to
the header information from the given set of instances.
- Instances(Instances, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Constructor creating an empty set of instances.
- Instances(Instances, int, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Creates a new set of instances by copying a
subset of another set.
- Instances(String, FastVector, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Creates an empty set of instances.
- instances - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- Instances - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets
-
Class for handling an ordered set of weighted instances.
- Instances(Reader) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Reads an ARFF file from a reader, and assigns a weight of one to each
instance.
- Instances(Vector<Instance>) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
- Instances(Reader, int) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Reads the header of an ARFF file from a reader and reserves space for the
given number of instances.
- Instances(Instances) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Constructor copying all instances and references to the header
information from the given set of instances.
- Instances(Instances, int) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Constructor creating an empty set of instances.
- Instances(String, FastVector, FastVector, int) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
- Instances(Instances, int, int) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Creates a new set of instances by copying a subset of another set.
- Instances(String, FastVector, int) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Creates an empty set of instances.
- instances - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.ArrayDataset
-
Instances list
- instances - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Parameters
-
Instances.
- Instances - Class in keel.Algorithms.Rule_Learning.SRI
-
Title: Intances class
Description: it stores the dataset in a way that this Rule learning algorithm can understand.
- Instances() - Constructor for class keel.Algorithms.Rule_Learning.SRI.Instances
-
Default constructor.
- Instances(double[][], String[], int, int) - Constructor for class keel.Algorithms.Rule_Learning.SRI.Instances
-
Parameter constructor.
- Instances - Class in keel.Algorithms.SVM.SMO.core
-
Class for handling an ordered set of weighted instances.
- Instances(Instances) - Constructor for class keel.Algorithms.SVM.SMO.core.Instances
-
Constructor copying all instances and references to
the header information from the given set of instances.
- Instances(Instances, int) - Constructor for class keel.Algorithms.SVM.SMO.core.Instances
-
Constructor creating an empty set of instances.
- Instances(Instances, int, int) - Constructor for class keel.Algorithms.SVM.SMO.core.Instances
-
Creates a new set of instances by copying a
subset of another set.
- Instances(String, FastVector, int) - Constructor for class keel.Algorithms.SVM.SMO.core.Instances
-
Creates an empty set of instances.
- instancesAndWeights() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Returns string including all instances, their weights and
their indices in the original dataset.
- instancesAndWeights() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Returns string including all instances, their weights and their indices
in the original dataset.
- instancesAndWeights() - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns string including all instances, their weights and
their indices in the original dataset.
- instancesByClass - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PopulationWrapper
-
- instancesByClass - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PopulationWrapper
-
- instancesByClass - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsCuttoff
-
- instancesByClass - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsOriginal
-
- instanceSet - Class in keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
- instanceSet(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.BioHEL.instanceSet
-
- InstanceSet - Class in keel.Algorithms.Rule_Learning.Swap1
-
InstanceSet
The instance set class mantains a pool of instances read from the keel
formated data file.
- InstanceSet() - Constructor for class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
-
It instances a new instance of InstanceSet
- InstanceSet(boolean) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
-
InstanceSet
This constructor permit define if the attribute's definition need to be
stored as non-static (nonStaticAttributes = true).
- InstanceSet(InstanceSet) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
-
Creates a new InstanceSet with the header and Instances from the passed object
It performs a deep (new allocated) copy.
- InstanceSet - Class in keel.Dataset
-
InstanceSet
The instance set class mantains a pool of instances read from the keel
formated data file.
- InstanceSet() - Constructor for class keel.Dataset.InstanceSet
-
It instances a new instance of InstanceSet
- InstanceSet(boolean) - Constructor for class keel.Dataset.InstanceSet
-
InstanceSet
This constructor permit define if the attribute's definition need to be
stored as non-static (nonStaticAttributes = true).
- InstanceSet(InstanceSet) - Constructor for class keel.Dataset.InstanceSet
-
Creates a new InstanceSet with the header and Instances from the passed object
It performs a deep (new allocated) copy.
- instanceSimilarity(int, int) - Static method in class keel.Algorithms.RST_Learning.RSTData
-
- InstancesKEEL2Weka(InstanceSet, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Creates a new allocated WEKA's set of Instances (i.e.
- InstancesKEEL2Weka(InstanceSet, int, boolean) - Method in class keel.Algorithms.SVM.SMO.SMO
-
Creates a new allocated WEKA's set of Instances (i.e.
- InstancesOfClass - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- Instancetest - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Original test data set to be condensed
- Instancetrain - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Original training data set to be condensed
- InstanceWrapper - Class in keel.Algorithms.Genetic_Rule_Learning.GAssist
-
Wrapper for the global KEEL Instance class tailored to the needs of GAssist
- InstanceWrapper(Instance) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GAssist.InstanceWrapper
-
- InstanceWrapper - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
-
Wrapper for the global KEEL Instance class tailored to the needs of GAssist
- InstanceWrapper(Instance) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.InstanceWrapper
-
- instOfAttAndValue(int, int, int[], int, int[], int, int[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierGABIL
-
- INT_CONST - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- INT_CONST - Static variable in interface keel.Algorithms.Rule_Learning.Swap1.DataParserConstants
-
Data Parser Indentifier for integer constant.
- INT_CONST - Static variable in interface keel.Dataset.DataParserConstants
-
- Int_t - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
-
Integer wrapper.
- Int_t - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
-
Integer wrapper.
- Int_t - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
-
Integer wrapper.
- intCount - Variable in class keel.Algorithms.Decision_Trees.M5.M5AttrStats
-
The number of int-like values
- intCount - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.AttributeStats
-
The number of int-like values
- IntDouble - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Display the consequent and the weight of the rule as a string.
- IntDouble() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.IntDouble
-
- INTEG - Static variable in interface keel.Algorithms.Rule_Learning.Swap1.DataParserConstants
-
Data Parser Indentifier for integer data.
- INTEG - Static variable in interface keel.Dataset.DataParserConstants
-
- INTEGER - Static variable in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Decision_Trees.Target.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- INTEGER - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Integer type of attributes.
- INTEGER - Static variable in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Rule_Learning.SRI.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
Label for INTEGER values.
- INTEGER - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Integer type of attributes.
- INTEGER - Static variable in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Gene
-
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Gene
-
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Gene
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Gene
-
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Gene
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
-
Number to represent type of variable integer.
- INTEGER - Static variable in class keel.Dataset.Attribute
-
Label for INTEGER values.
- integerBoundaries(Attribute) - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- integerBoundaries(Attribute) - Static method in class keel.Dataset.DataParser
-
- IntegerMutation - Interface in keel.Algorithms.Genetic_Rule_Learning.XCS
-
IntegerMutation.
- IntegerNumericalAttribute - Class in keel.Algorithms.Neural_Networks.NNEP_Common.data
-
Integer attributes
- IntegerNumericalAttribute() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.data.IntegerNumericalAttribute
-
Empty constructor
- IntegerRep - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This class represents the integer representation of a gene.
- IntegerRep(double, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
Does create a Integer representation for de environmental value given as a parameter
- IntegerRep(int, int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
It is the default constructor of the class.
- IntegerRep(int, int, int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
It is the constructor of the class.
- IntegerRep(Attribute) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
It is a constructor for the class.
- IntegerSet - Class in keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter
-
This class implements a set of integers and its basic operations
- IntegerSet() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.IntegerSet
-
Constructor without parameters
- IntegerSet(int) - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.IntegerSet
-
Constructor with initial size
- integerValid(String) - Method in class keel.GraphInterKeel.datacf.util.Attribute
-
Return a boolean for a given int value,
true is valid value, false invalid value.
- interchangeValues(Individual, int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Individual
-
It interchanges the values between the position pointCross1 and pointCross2
- internalCacheSizeTipText() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Returns the tip text for this property
- internalClassifier(double[]) - Method in class keel.Algorithms.Statistical_Classifiers.ClassifierKernel.Kernel
-
This methods computes the class with maximum kernel value for the input value
- Interpolation - Class in keel.Algorithms.Preprocess.Missing_Values.EM
-
Title: Polynomial Interpolation
Description: Polynomial interpoaltion using Newton's and Lagrange's methods
Copyright: Copyright Byrge Birkeland(c) 2002
Company: Agder University College
- Interpolation() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EM.Interpolation
-
- intersect(Rule) - Method in class keel.Algorithms.Hyperrectangles.INNER.Rule
-
Test if two rules intersects
- Interval - Class in keel.Algorithms.Decision_Trees.M5
-
Class representing a range of cardinal numbers.
- Interval() - Constructor for class keel.Algorithms.Decision_Trees.M5.Interval
-
Default constructor.
- Interval(String) - Constructor for class keel.Algorithms.Decision_Trees.M5.Interval
-
Constructor to set initial range.
- Interval - Class in keel.Algorithms.Discretizers.Chi2_Discretizer
-
Interval class.
- Interval(int, int[], int, int, int[]) - Constructor for class keel.Algorithms.Discretizers.Chi2_Discretizer.Interval
-
Compute the interval ratios.
- Interval - Class in keel.Algorithms.Discretizers.ExtendedChi2_Discretizer
- Interval(int, int[], int, int, int[]) - Constructor for class keel.Algorithms.Discretizers.ExtendedChi2_Discretizer.Interval
-
Compute the interval ratios.
- Interval - Class in keel.Algorithms.Discretizers.ModifiedChi2_Discretizer
-
Interval class.
- Interval(int, int[], int, int, int[]) - Constructor for class keel.Algorithms.Discretizers.ModifiedChi2_Discretizer.Interval
-
Compute the interval ratios.
- Interval - Class in keel.Algorithms.Discretizers.MVD
-
Simple class to codify an interval for a numerical attribute
- Interval(double, double, int) - Constructor for class keel.Algorithms.Discretizers.MVD.Interval
-
Parametrized constructor
- Interval - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyRegressor
-
the type for fuzzy regressors based on interval sets (interval fuzzy sets).
- Interval - Class in keel.Algorithms.LQD.methods.FGFS_costInstances
-
File: interval.java
Properties and functions of the interval.
- Interval() - Constructor for class keel.Algorithms.LQD.methods.FGFS_costInstances.Interval
-
- Interval(float, float) - Constructor for class keel.Algorithms.LQD.methods.FGFS_costInstances.Interval
-
- Interval(float) - Constructor for class keel.Algorithms.LQD.methods.FGFS_costInstances.Interval
-
- Interval - Class in keel.Algorithms.LQD.methods.FGFS_Minimum_Risk
-
File: interval.java
Properties and functions of the interval.
- Interval() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.Interval
-
- Interval(float, float) - Constructor for class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.Interval
-
- Interval(float) - Constructor for class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.Interval
-
- Interval - Class in keel.Algorithms.LQD.methods.FGFS_Original
-
File: interval.java
Properties and functions of the interval.
- Interval() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Original.Interval
-
- Interval(float, float) - Constructor for class keel.Algorithms.LQD.methods.FGFS_Original.Interval
-
- Interval - Class in keel.Algorithms.LQD.methods.FGFS_Rule_Weight
-
- Interval() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.Interval
-
- Interval(float, float) - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.Interval
-
- Interval - Class in keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty
-
File: interval.java
Properties and functions of the interval.
- Interval() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.Interval
-
- Interval(float, float) - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.Interval
-
- interval - Class in keel.Algorithms.LQD.preprocess.Expert
-
File: interval.java
Properties and functions of the interval.
- interval() - Constructor for class keel.Algorithms.LQD.preprocess.Expert.interval
-
- interval(float, float) - Constructor for class keel.Algorithms.LQD.preprocess.Expert.interval
-
- interval(float) - Constructor for class keel.Algorithms.LQD.preprocess.Expert.interval
-
- interval - Class in keel.Algorithms.LQD.preprocess.Prelabelling
-
File: interval.java
Properties and functions of the interval.
- interval() - Constructor for class keel.Algorithms.LQD.preprocess.Prelabelling.interval
-
- interval(float, float) - Constructor for class keel.Algorithms.LQD.preprocess.Prelabelling.interval
-
- interval(float) - Constructor for class keel.Algorithms.LQD.preprocess.Prelabelling.interval
-
- interval - Class in keel.Algorithms.LQD.preprocess.Prelabelling_Expert
-
File: interval.java
Properties and functions of the interval.
- interval() - Constructor for class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.interval
-
- interval(float, float) - Constructor for class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.interval
-
- interval(float) - Constructor for class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.interval
-
- interval - Class in keel.Algorithms.LQD.tests.IntermediateBoost
-
- interval() - Constructor for class keel.Algorithms.LQD.tests.IntermediateBoost.interval
-
- interval(float, float) - Constructor for class keel.Algorithms.LQD.tests.IntermediateBoost.interval
-
- Interval - Class in keel.Algorithms.Rule_Learning.UnoR
-
- Interval(int, int) - Constructor for class keel.Algorithms.Rule_Learning.UnoR.Interval
-
Constructor
- Interval - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA
- Interval() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Interval
-
Default constructor
- intervalCost(ArrayList<Double>, int, int[], int) - Method in class keel.Algorithms.Discretizers.MODL.MODL
-
Computes the cost of the interval in the current discretization scheme
- intervalEntropy(int, int) - Method in class keel.Algorithms.Discretizers.HellingerBD.HellingerBD
-
It computes the interval entropy
- Intervals - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA
-
Title:
Description:
Copyright: Copyright (c) 2007
Company:
- Intervals() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Intervals
-
- Intervals - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA
-
Title:
Description:
Copyright: Copyright (c) 2007
Company:
- Intervals() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Intervals
-
- intervalValues() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.CategoricalAttribute
-
Return an interval with the allowed values
- intervalValues() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.IntegerNumericalAttribute
-
Return an interval with the allowed values
- intervalValues() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.RealNumericalAttribute
-
Return an interval with the allowed values
- into(int[]) - Method in class keel.Algorithms.Discretizers.UCPD.Itemset
-
It checks if the example given follows the patron of the itemset
- IntVector - Class in keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix
-
A vector specialized on integers.
- IntVector() - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Constructs a null vector.
- IntVector(int) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Constructs an n-vector of zeros.
- IntVector(int, int) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Constructs an n-vector of a constant
- IntVector(int[]) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Constructs a vector given an int array
- inv(double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- inv(DenseMatrix) - Static method in class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.LLSImpute
-
Computes the inverse of a square non-singular Matrix
- inv(double[][]) - Static method in class keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.MatrixCalcs
-
- inv_prot(double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- inv_prot(double[][]) - Static method in class keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.MatrixCalcs
-
- invalidCrossover - Exception in keel.Algorithms.Shared.Exceptions
-
This exception is to report an invalid crossover operator.
- invalidCrossover() - Constructor for exception keel.Algorithms.Shared.Exceptions.invalidCrossover
-
Creates an new invalidCrossover object calling the super() method();
- invalidCrossover(String) - Constructor for exception keel.Algorithms.Shared.Exceptions.invalidCrossover
-
Creates an new invalidCrossover object calling the super(s) method() with the report string s.
- invalidFitness - Exception in keel.Algorithms.Shared.Exceptions
-
This exception is to report an invalid fitness function.
- invalidFitness() - Constructor for exception keel.Algorithms.Shared.Exceptions.invalidFitness
-
Creates an new invalidFitness object calling the super() method();
- invalidFitness(String) - Constructor for exception keel.Algorithms.Shared.Exceptions.invalidFitness
-
Creates an new invalidFitness object calling the super(s) method() with the report string s.
- invalidMutation - Exception in keel.Algorithms.Shared.Exceptions
-
This exception is to report an invalid mutation operator.
- invalidMutation() - Constructor for exception keel.Algorithms.Shared.Exceptions.invalidMutation
-
Creates an new invalidMutation object calling the super() method();
- invalidMutation(String) - Constructor for exception keel.Algorithms.Shared.Exceptions.invalidMutation
-
Creates an new invalidMutation object calling the super(s) method() with the report string s.
- invalidOptim - Exception in keel.Algorithms.Shared.Exceptions
-
This exception is to report an invalid optimization method.
- invalidOptim() - Constructor for exception keel.Algorithms.Shared.Exceptions.invalidOptim
-
Creates an new invalidMutation object calling the super() method();
- invalidOptim(String) - Constructor for exception keel.Algorithms.Shared.Exceptions.invalidOptim
-
Creates an new invalidOptim object calling the super(s) method() with the report string s.
- inverse() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Matrix inverse or pseudoinverse
- inverseNormalDistribution(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.NormalDistribution
-
Returns the value with the probability given as parameter (inverse normal distribution function).
- inverseNormalDistribution(double) - Method in class keel.GraphInterKeel.statistical.tests.NormalDistribution
-
Computes inverse cumulative distribution.
- inverseOfNumberOfIterations - Variable in class keel.Algorithms.Instance_Generation.VQ.VQGenerator
-
Inverse of the number of iterations which performs the algorithm.
- invert() - Method in class keel.Algorithms.Instance_Generation.utilities.Pair
-
Invert the pair.
- invert() - Method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Pair
-
Invert the pair.
- invert(int, double, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
-
It does inversions for each part of a gene which were specifically designed for this algorithm
- invert(int, double, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
-
It does inversions for each part of a gene which were specifically designed for this algorithm
- invert(int, double, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Gene
-
It does inversions for each part of a gene which were specifically designed for this algorithm
- invertedBList - Variable in class keel.Algorithms.Instance_Generation.PNN.MatrixOfDistances
-
For each B-prototype, there is a hashset of all the others prototypes which point to it.
- InvertMatrix(double[][], double[][], int) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Matrix
-
Inversion method
- InvertMatrix(double[][], double[][], int) - Static method in class keel.Algorithms.Neural_Networks.net.Matrix
-
Inversion method
- invertSelection_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Invert button
- invertSelection_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Invert button
- invertSelectionC_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Invert button
- invertSelectionC_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Invert button
- invertSelectionC_LQD_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Invert button
- invertSelectionC_LQD_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Invert button
- invertSelectionLQD_C_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Invert button
- invertSelectionLQD_C_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Invert button
- invertSelectionUser_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Invert button
- invertSelectionUser_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Invert button
- INVESTIGATION - Static variable in class keel.GraphInterKeel.experiments.Experiments
-
- invisible - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- invScale(double[], double[], double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method is for inverse scale of a vector
- invScale(double[][], double[][], double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method is for inverse scale a mtrix
- invScale(double[][][], double[][][], double[][][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method is for inverse scale a cubic mtrix
- invScale(double[], double[], double[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
Returns a inverted scaled copy of vector a.
- invScale(double[][], double[][], double[][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
Returns a inverted scaled copy of matrix a.
- invScale(double[][][], double[][][], double[][][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
Returns a inverted scaled copy of matrix a.
- invScale(double[], double[], double[]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
Returns a inverted scaled copy of vector a.
- invScale(double[][], double[][], double[][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
Returns a inverted scaled copy of matrix a.
- invScale(double[][][], double[][][], double[][][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
Returns a inverted scaled copy of matrix a.
- IOptimizableFunc - Interface in keel.Algorithms.Neural_Networks.IRPropPlus_Clas
- IPLDEAlgorithm - Class in keel.Algorithms.Instance_Generation.IPLDE
-
IPLDE algorithm calling.
- IPLDEAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.IPLDE.IPLDEAlgorithm
-
- IPLDEGenerator - Class in keel.Algorithms.Instance_Generation.IPLDE
-
- IPLDEGenerator(PrototypeSet, int, int, int, int, double, double, int) - Constructor for class keel.Algorithms.Instance_Generation.IPLDE.IPLDEGenerator
-
Build a new IPLDEGenerator Algorithm
- IPLDEGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.IPLDE.IPLDEGenerator
-
Build a new IPLDEGenerator Algorithm
- IProblem - Interface in keel.Algorithms.Neural_Networks.NNEP_Common.problem
-
Represents a problem with training and test data
- ir() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It computes the Imbalance Ratio
- irandom(double, double) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.MLPerceptronBackpropCS
-
Generates a random integer number between min and max
- irandom(double, double) - Static method in class keel.Algorithms.Neural_Networks.ensemble.Genesis
-
Generate random int between min and max using r seed
- irandom(double, double) - Static method in class keel.Algorithms.Neural_Networks.gann.Genesis
-
Generate integer random number between min and max
- irandom(double, double) - Static method in class keel.Algorithms.Neural_Networks.gann.Rand
-
Method that returns a random integer value between min and max values
- irandom(double, double) - Static method in class keel.Algorithms.Neural_Networks.gmdh.Genesis
-
Generate random integer number between min and max
- irandom(double, double) - Static method in class keel.Algorithms.Neural_Networks.net.Genesis
-
Generates a random integer number between min and max
- IRegressor - Interface in keel.Algorithms.Neural_Networks.NNEP_Regr.problem.regression
-
Generic regressor.
- IREPstar(Ruleset, MyDataset, Mask, Mask) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ripper
-
It implements the Ripper2's Build Phase:
Iteratively, it grows and prunes rules until the descrition length (DL) of the ruleset
and examples is 64 bits greater than the smallest DL met so far, or there are
no positive examples, or the error rate >= 50%.
- IRIDGE - Static variable in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
IRIDGE flag.
- iridge(DenseMatrix, DenseMatrix, DenseMatrix, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
MATLAB - Individual ridge regressions with generalized cross-validation.
- IRPropPlus - Class in keel.Algorithms.Neural_Networks.IRPropPlus_Clas
- IRPropPlus() - Constructor for class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Empty constructor.
- IRPropPlusReporterClas - Class in keel.Algorithms.Neural_Networks.IRPropPlus_Clas
-
Reporter for iRProp+ algorithm
- IRPropPlusReporterClas() - Constructor for class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlusReporterClas
-
Empty constructor
- IRPropPlusReporterRegr - Class in keel.Algorithms.Neural_Networks.IRPropPlus_Regr
-
Reporter for iRProp+ algorithm for regression
- IRPropPlusReporterRegr() - Constructor for class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.IRPropPlusReporterRegr
-
Empty constructor
- IRunkeelListener<A extends EducationalRunKeelTxt> - Interface in keel.GraphInterKeel.experiments
-
- IS - Variable in class keel.Algorithms.Decision_Trees.C45.Dataset
-
Keel dataset InstanceSet
- IS - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Dataset
-
Keel dataset InstanceSet
- IS - Variable in class keel.Algorithms.Decision_Trees.ID3.Dataset
-
Keel dataset InstanceSet
- IS - Variable in class keel.Algorithms.Decision_Trees.SLIQ.Dataset
-
Keel dataset InstanceSet
- IS - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.MyDataset
-
Dataset (InstanceSet Object).
- IS - Variable in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.myDataset
-
The whole instance set.
- IS - Variable in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.myDataset
-
The whole instance set.
- IS - Variable in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.myDataset
-
The whole instance set.
- IS - Variable in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.myDataset
-
The whole instance set.
- is - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- is - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PopulationWrapper
-
- IS - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Keel dataset InstanceSet
- is - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PopulationWrapper
-
- IS - Variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Dataset
-
Keel dataset InstanceSet
- IS - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
Keel dataset InstanceSet
- IS - Variable in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.myDataset
-
The whole instance set.
- IS - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Dataset
-
Keel dataset InstanceSet
- IS - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Dataset
-
Keel dataset InstanceSet
- is - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Parameters
-
Instance Set.
- IS - Variable in class keel.Algorithms.RE_SL_Methods.LEL_TSK.MiDataset
-
- IS - Variable in class keel.Algorithms.RE_SL_Methods.MamWM.MiDataset
-
- IS - Variable in class keel.Algorithms.RE_SL_Methods.mogulHC.MiDataset
-
- IS - Variable in class keel.Algorithms.RE_SL_Methods.mogulIRL.MiDataset
-
- IS - Variable in class keel.Algorithms.RE_SL_Methods.mogulSC.MiDataset
-
- IS - Variable in class keel.Algorithms.RE_SL_Methods.TSK_IRL.MiDataset
-
- IS - Variable in class keel.Algorithms.RE_SL_Postprocess.Mam2TSK.MiDataset
-
- IS - Variable in class keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB.MiDataset
-
- IS - Variable in class keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules.MiDataset
-
- IS - Variable in class keel.Algorithms.RE_SL_Postprocess.MamSelect.MiDataset
-
- IS - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWSelect.MiDataset
-
- IS - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWTuning.MiDataset
-
- IS - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules.MiDataset
-
- IS - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKSelect.MiDataset
-
- IS - Variable in class keel.Algorithms.Rule_Learning.ART.Dataset
-
Keel dataset InstanceSet
- IS - Variable in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Keel dataset InstanceSet
- IS - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Keel dataset InstanceSet
- IS - Variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Dataset
-
Keel dataset InstanceSet
- IS - Variable in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
Keel dataset InstanceSet
- IS - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Dataset
-
Keel dataset InstanceSet
- IS3(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.RuleSet
-
Incremental Genetic Algorithm, which increases the size of the actual rule set
appending all the attributes from rs to the rules of the actual rule set.
- IS4(RuleSet) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.RuleSet
-
Incremental Genetic Algorithm, which increases the size of the actual rule set
appending all the attributes from rs to the rules of the actual rule set.
- Is_Covered(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
-
Returns whether the individual "i" is covered or not
- Is_Covered(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Returns if the example in position "i" is covered
- Is_Covered(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.example_set
-
Returns whether the individual "i" is covered or not
- Is_Covered(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.example_set
-
Returns whether the individual "i" is covered or not
- Is_Number(String) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- Is_Number(String) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- Is_Test_Example(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
-
- Is_Test_Example(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Returns if the example in position "ejemplo" belongs to the partition "particion"
- Is_Test_Example(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.example_set
-
- Is_Test_Example(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.example_set
-
- Is_Training_Example(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
-
- Is_Training_Example(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Returns if the example in position "ejemplo" belongs to the partition "particion"
- Is_Training_Example(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.example_set
-
- Is_Training_Example(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.example_set
-
- Is_Valid(String, double[], double, Double_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- Is_Valid(String, double[], double, ArrayList<Double>) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Returns if the set rules encoded in the String "regla" is valid or not.
- Is_Valid(String, Double_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- Is_Valid(String, Double_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- isActive() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.ExampleWeight
-
Checks if the pattern is active.
- isActive() - Method in class keel.Algorithms.Decision_Trees.C45.Attribute
-
Returns true if this attribute used in output or input clause.
- isActive() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Attribute
-
Returns true if this attribute used in output or input clause.
- isActive() - Method in class keel.Algorithms.Decision_Trees.ID3.Attribute
-
Returns true if this attribute used in output or input clause.
- isActive() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Attribute
-
Returns true if this attribute used in output or input clause.
- isActive(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Rule
-
It returns if a given condition is active or not
- IsActive(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- IsActive() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Returns if the variable is considered in the learning process.
- IsActive(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Returns if the variable in position "variable" is considered in the learning process.
- IsActive(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- IsActive(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- isActive() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.ExampleWeight
-
- isActive(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Mask
-
Returns wether a given entry is active or not
- isActive() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
-
Returns true if this attribute used in output or input clause.
- isActive() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA_Attribute
-
Returns true if this attribute used in output or input clause.
- isActive(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Mask
-
Returns wether a given entry is active or not
- isActive() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyAttribute
-
Returns true if this attribute used in output or input clause.
- isActive() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Attribute
-
Returns true if this attribute used in output or input clause.
- isActive() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Attribute
-
Returns true if this attribute used in output or input clause.
- isActive() - Method in class keel.Algorithms.Rule_Learning.ART.Attribute
-
Returns true if this attribute used in output or input clause.
- isActive(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Mask
-
Returns wether a given entry is active or not
- isActive() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyAttribute
-
Returns true if this attribute used in output or input clause.
- isActive(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Mask
-
Returns wether a given entry is active or not
- isActive() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyAttribute
-
Returns true if this attribute used in output or input clause.
- isActive() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Attribute
-
Returns true if this attribute used in output or input clause.
- isActive(int) - Method in class keel.Algorithms.Rule_Learning.PART.Mask
-
Returns wether a given entry is active or not
- isActive() - Method in class keel.Algorithms.Rule_Learning.PART.MyAttribute
-
Returns true if this attribute used in output or input clause.
- isActive(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Mask
-
Returns wether a given entry is active or not
- isActive(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Mask
-
Returns wether a given entry is active or not
- IsAntecedent(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- IsAntecedent() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Retuns if the variable is an antecedent of the rule.
- IsAntecedent(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Retuns if the variable in position "variable" is an antecedent of the rule.
- IsAntecedent(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- IsAntecedent(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- isAny() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.FuzzyAntecedent
-
Checks if the fuzzy antecedent represents an any condition.
- isAny(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Individual
-
It checks is the condition for the variable in position "atributo" is equal to ANY
- isAny() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.FuzzyAntecedent
-
Checks if the fuzzy antecedent represents an any condition.
- isAnySelected() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Checks if any of the data sets are selected in the list
- isAnySelected() - Method in class keel.GraphInterKeel.experiments.SelectData
-
Test if any of the data sets in the list are selected by their
correspondent check button
- isAnySelectedC() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Checks if any of the data sets are selected in the list
- isAnySelectedC() - Method in class keel.GraphInterKeel.experiments.SelectData
-
Test if any of the data sets in the list are selected by their
correspondent check button
- isAnySelectedC_LQD() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Checks if any of the data sets are selected in the list
- isAnySelectedC_LQD() - Method in class keel.GraphInterKeel.experiments.SelectData
-
Test if any of the data sets in the list are selected by their
correspondent check button
- isAnySelectedLQD_C() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Checks if any of the data sets are selected in the list
- isAnySelectedLQD_C() - Method in class keel.GraphInterKeel.experiments.SelectData
-
Test if any of the data sets in the list are selected by their
correspondent check button
- isAttribute(int) - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
- isAttribute(int) - Static method in class keel.Algorithms.RST_Learning.RSTData
-
- isAveragable() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns whether the attribute can be averaged meaningfully.
- isAveragable() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns whether the attribute can be averaged meaningfully.
- isBefore(short[], short[]) - Static method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Checks whether one item set is lexicographically before a second
item set.
- isBergman() - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Tests if Bergman test is used
- isBetter(Particle) - Method in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- isBetter(Particle) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- isBetter(Particle) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.Particle
-
- isBetter(Particle) - Method in class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- isBetter(Chromosome) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- isBetter(Chromosome) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
- isBiased() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Returns true if the layer has a bias neuron
- isBiased() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Returns a boolean indicating if the layer has a bias neuron
- isBonferroni() - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Tests if Bonferroni test is used
- isBroken() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.Link
-
Returns a boolean indicating if the link is or not broken
- isCellEditable(int, int) - Method in class keel.GraphInterKeel.datacf.util.DatasetTable
-
- isCellEditable(EventObject) - Method in class keel.GraphInterKeel.datacf.util.EachRowEditor
-
Is a cell editable?
- isCellEditable(int, int) - Method in class keel.GraphInterKeel.datacf.util.VariableTable
-
Is a cell editable?
- isCellEditable(int, int) - Method in class keel.GraphInterKeel.experiments.ParametersTable
-
Check if the cell is editable
- isCellEditable(int, int) - Method in class keel.GraphInterKeel.statistical.statTableModel
-
Tets if a cell is editable
- isCentroidItsNearestPrototoype(Prototype) - Method in class keel.Algorithms.Instance_Generation.VQ.Cluster
-
Informs if the centroid of the cluster is its nearest prototype.
- isComplete() - Method in class keel.GraphInterKeel.experiments.DataSet
-
Test if the data set node has all the partitions (are available from disk)
- isConsistent(Cluster, PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.GMCA.GMCAGenerator
-
Checks if the given cluster is consistent with the modified prototypeset.
- isConsistent(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.MCA.MCAGenerator
-
Informs if a modified prototype set is consistent (is as well as original or is better).
- isConsistent(Complex, int[], int) - Method in class keel.Algorithms.Rule_Learning.Riona.Riona
-
Inidcates if a rule is consistent with a determined set of examples
- isContinous() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleRule
-
Returns true if the attribute is continous
- isContinous() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.SimpleRule
-
Returns true if the attribute is continous
- isContinous() - Method in class keel.Algorithms.Rule_Learning.C45Rules.SimpleRule
-
Returns true if the attribute is continous
- isContinous() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.SimpleRule
-
Returns true if the attribute is continous
- isContinous() - Method in class keel.Algorithms.Rule_Learning.PART.SimpleRule
-
Returns true if the attribute is continous
- isContinous() - Method in class keel.Algorithms.Rule_Learning.Ripper.SimpleRule
-
Returns true if the attribute is continous
- isContinous() - Method in class keel.Algorithms.Rule_Learning.Slipper.SimpleRule
-
Returns true if the attribute is continous
- isContinuous() - Method in class keel.Algorithms.Decision_Trees.C45.Attribute
-
Returns if the attribute is continuous or not.
- isContinuous() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Attribute
-
Returns if the attribute is continuous or not.
- isContinuous() - Method in class keel.Algorithms.Decision_Trees.ID3.Attribute
-
Returns if the attribute is continuous or not.
- isContinuous() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Attribute
-
Returns if the attribute is continuous or not.
- isContinuous() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
-
Returns if the attribute is continuous or not.
- isContinuous() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA_Attribute
-
Returns if the attribute is continuous or not.
- isContinuous() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyAttribute
-
Returns if the attribute is continuous or not.
- isContinuous() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Attribute
-
Returns if the attribute is continuous or not.
- isContinuous() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Attribute
-
Returns if the attribute is continuous or not.
- isContinuous() - Method in class keel.Algorithms.Rule_Learning.ART.Attribute
-
Returns if the attribute is continuous or not.
- isContinuous() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyAttribute
-
Returns if the attribute is continuous or not.
- isContinuous() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyAttribute
-
Returns if the attribute is continuous or not.
- isContinuous() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Attribute
-
Returns if the attribute is continuous or not.
- isContinuous() - Method in class keel.Algorithms.Rule_Learning.PART.MyAttribute
-
Returns if the attribute is continuous or not.
- isContinuous() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.FPgrowth
-
Checks if the dataset has continuous variables
- isContinuous() - Method in class keel.GraphInterKeel.experiments.UseCase
-
- isCost_instance() - Method in class keel.GraphInterKeel.experiments.Parameters
-
Is cost instance
- isCover(int, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Gene
-
- isCover(int, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
-
- isCover(int, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Gene
-
- isCovered(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Individual
-
It checks is the example in position "idEjemplo" is covered by the individual
- isCovered(Sample) - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Check if the complex gets the given data
- isCovered(boolean[][], int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.pnPair
-
It checks if only the literal lit covers the pnPair and the other do not
- isCovered(int, int, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.DataB
-
- isCovered(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Intervals
-
- isCovered(int, int, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.DataB
-
- isCovered(int, int, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.DiscreteDataset
-
It checks whether a value is covered by an interval for an attribute
- isCovered(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Interval
-
It checks whether a value is covered by an interval
- isCovered(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Intervals
-
- isCovered(double[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
-
- isCovered(double[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
It adds a dataset records to the list of records being covered by a chromosome
- isCovered(double[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
-
- isCovered(double[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
It adds a dataset records to the list of records being covered by a chromosome
- isCovered(double[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
-
- isCovered(double[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
It adds a dataset records to the list of records being covered by a chromosome
- isCoveringExamples(byte[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
- isCrisp() - Method in class keel.GraphInterKeel.experiments.Parameters
-
Is crisp
- isDataNormalized() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.problem.IProblem
-
Returns a boolean value indicating if the DataSets are going to be normalized
- isDataNormalized() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Returns a boolean value indicating if the DataSets are going to be normalized
- isDate() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Tests if the attribute is a date type.
- isDate() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Tests if the attribute is a date type.
- isDiscret() - Method in class keel.Algorithms.Decision_Trees.C45.Attribute
-
Returns if the attribute is discret or not.
- isDiscret() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Attribute
-
Returns if the attribute is discret or not.
- isDiscret() - Method in class keel.Algorithms.Decision_Trees.ID3.Attribute
-
Returns if the attribute is discret or not.
- isDiscret() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Attribute
-
Returns if the attribute is discret or not.
- isDiscret() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
-
Returns if the attribute is discret or not.
- isDiscret() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleRule
-
Returns true if the attribute is discret
- isDiscret() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA_Attribute
-
Returns if the attribute is discret or not.
- isDiscret() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyAttribute
-
Returns if the attribute is discret or not.
- isDiscret() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.SimpleRule
-
Returns true if the attribute is discret
- isDiscret() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Attribute
-
Returns if the attribute is discret or not.
- isDiscret() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Attribute
-
Returns if the attribute is discret or not.
- isDiscret() - Method in class keel.Algorithms.Rule_Learning.ART.Attribute
-
Returns if the attribute is discret or not.
- isDiscret() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyAttribute
-
Returns if the attribute is discret or not.
- isDiscret() - Method in class keel.Algorithms.Rule_Learning.C45Rules.SimpleRule
-
Returns true if the attribute is discret
- isDiscret() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyAttribute
-
Returns if the attribute is discret or not.
- isDiscret() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.SimpleRule
-
Returns true if the attribute is discret
- isDiscret() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Attribute
-
Returns if the attribute is discret or not.
- isDiscret() - Method in class keel.Algorithms.Rule_Learning.PART.MyAttribute
-
Returns if the attribute is discret or not.
- isDiscret() - Method in class keel.Algorithms.Rule_Learning.PART.SimpleRule
-
Returns true if the attribute is discret
- isDiscret() - Method in class keel.Algorithms.Rule_Learning.Ripper.SimpleRule
-
Returns true if the attribute is discret
- isDiscret() - Method in class keel.Algorithms.Rule_Learning.Slipper.SimpleRule
-
Returns true if the attribute is discret
- IsDiscrete() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.domain_t
-
- IsDiscrete() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.fuzzy_t
-
- IsDiscrete() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.variable_t
-
- IsDiscrete(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- IsDiscrete() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.domain_t
-
Returns if the domain_t object is formed by labels with all their domain been crisp.
- IsDiscrete() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.fuzzy_t
-
Returns if the fuzzy label represents a crisp value
- IsDiscrete() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Returns if the domain associated to the variable is only formed by crisp values.
- IsDiscrete(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Returns if the domain associated to the variable in position "var" of the list is only formed by crisp values.
- IsDiscrete() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.domain_t
-
- IsDiscrete() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.fuzzy_t
-
- IsDiscrete() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.variable_t
-
- IsDiscrete(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- IsDiscrete() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.domain_t
-
- IsDiscrete() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.fuzzy_t
-
- IsDiscrete() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.variable_t
-
- IsDiscrete(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- isDiscretized() - Method in class keel.GraphInterKeel.experiments.UseCase
-
- isDontCareSymbol() - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Attribute
-
If it's a ternary representation it returns 1 if is # and 0 otherwise.
- isDontCareSymbol() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
Returns if the real representation is a don't care symbol.
- isDontCareSymbol() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
Returns if the character of the representation
is a don't care symbol
- isDontCareSymbol() - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
-
If it's a ternary representation it returns 1 if is # and 0 otherwise.
- isDontCareSymbol() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
Return if the integer of the representation.
- isDontCareSymbol() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
Returns if the real representation is a don't care symbol.
- isDontCareSymbol() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
Returns if the character of the representation
is a don't care symbol
- isEmpty - Variable in class keel.Algorithms.Decision_Trees.C45.Tree
-
Is this node empty or not.
- isEmpty - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Tree
-
Is this node empty or not.
- isEmpty - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
-
Is this node empty or not.
- isEmpty - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Tree
-
Is this node empty or not.
- isEmpty - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Tree
-
Is this node empty or not.
- isEmpty() - Method in class keel.Algorithms.Lazy_Learning.NSC.Cluster
-
See if the cluster is empty
- isEmpty - Variable in class keel.Algorithms.Rule_Learning.C45Rules.Tree
-
Is this node empty or not.
- isEmpty - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Tree
-
Is this node empty or not.
- isEmpty - Variable in class keel.Algorithms.Rule_Learning.PART.Tree
-
Is this node empty or not.
- isEmpty() - Method in class keel.Algorithms.Rule_Learning.SRI.Instances
-
Checks if the dataset is empty.
- isEmpty - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
-
Is this node empty or not.
- isEmpty() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Checks if it is an empty vector
- isEmpty() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Returns true if the vector is empty
- isEnumerate() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
-
Returns true if this attribute has been synthetizied from an enumerate one.
- isEqual(Item) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Item
-
Function to check if an item is equal to another given.
- isEqual(Itemset) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Itemset
-
Function to check if an itemset is equal to another given.
- isEqual(Rule) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
Function to check if a rule is equal to another given.
- isEqual(Item) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Item
-
Function to check if an item is equal to another given
- isEqual(Itemset) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Itemset
-
Function to check if an itemset is equal to another given
- isEqual(Rule) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
Function to check if a rule is equal to another given
- isEqual(short[], short[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Checks whether two item sets are the same.
- isEqual(Item) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Item
-
Function to check if an item is equal to another given
- isEqual(Itemset) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Itemset
-
Function to check if an itemset is equal to another given
- isEqual(Item) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Item
-
Function to check if an item is equal to another given
- isEqual(Itemset) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Itemset
-
Function to check if an itemset is equal to another given
- isEqual(Item) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Item
-
Function to check if an item is equal to another given
- isEqual(Itemset) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Itemset
-
Function to check if an itemset is equal to another given
- isEqual(Item) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Item
-
- isEqual(Itemset) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Itemset
-
- isEqual(Rule) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Rule
-
Return wether this rule is equal to another given rule
- isEqual(SimpleRule) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleRule
-
Return wether this simple rule is equal to another given simple rule
- isEqual(Rule) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Rule
-
Return wether this rule is equal to another given rule
- isEqual(SimpleRule) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.SimpleRule
-
Return wether this simple rule is equal to another given simple rule
- isEqual(Condition) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Condition
-
It checks if the condition is equal to other
- isEqual(Rule) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Rule
-
It checks if the rule is equal to another
- isEqual(Complex) - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Check is two complex are equals
- isEqual(Cromosoma) - Method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.Cromosoma
-
this boolean method return true if two chromosomes are equal in all of its genes
- isEqual(Rule) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Rule
-
Return wether this rule is equal to another given rule
- isEqual(SimpleRule) - Method in class keel.Algorithms.Rule_Learning.C45Rules.SimpleRule
-
Return wether this simple rule is equal to another given simple rule
- isEqual(Rule) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Rule
-
Return wether this rule is equal to another given rule
- isEqual(SimpleRule) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.SimpleRule
-
Return wether this simple rule is equal to another given simple rule
- isEqual(Rule) - Method in class keel.Algorithms.Rule_Learning.PART.Rule
-
Return wether this rule is equal to another given rule
- isEqual(SimpleRule) - Method in class keel.Algorithms.Rule_Learning.PART.SimpleRule
-
Return wether this simple rule is equal to another given simple rule
- isEqual(Complex) - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
Check if two complex are equals (represent the same)
- isEqual(Rule) - Method in class keel.Algorithms.Rule_Learning.Ripper.Rule
-
Return wether this rule is equal to another given rule
- isEqual(SimpleRule) - Method in class keel.Algorithms.Rule_Learning.Ripper.SimpleRule
-
Return wether this simple rule is equal to another given simple rule
- isEqual(Rule) - Method in class keel.Algorithms.Rule_Learning.Slipper.Rule
-
Return wether this rule is equal to another given rule
- isEqual(SimpleRule) - Method in class keel.Algorithms.Rule_Learning.Slipper.SimpleRule
-
Return wether this simple rule is equal to another given simple rule
- isEqual(Complex) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
-
Check if two complex are equal
- isEqual(Chromosome) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
-
- isEqualAnt(Itemset) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Itemset
-
Function to check if the antecedent of our itemset is equal to another given.
- isEqualAnt(Itemset) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Itemset
-
Function to check if the antecedent of our itemset is equal to another given
- isEqualValue(Gene) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Gene
-
- isEvaluated() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Chromosome
-
Gets the evaluation status
- isEvaluated() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Cochromosome
-
Gets the evaluation condition
- isEvaluated - Variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
-
- isEvaluated() - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.RuleSet
-
Test if the rule set is currently evaluated
- isEvaluated - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
-
- isEvaluated() - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.RuleSet
-
Test if the rule set is currently evaluated
- isEvaluated() - Method in class keel.Algorithms.RST_Learning.EFS_RPS.Chromosome
-
Checks if the chromosome has been evaluated.
- isEvaluated() - Method in class keel.Algorithms.RST_Learning.EIS_RFS.Chromosome
-
Checks if the chromosome has been evaluated.
- isFinished() - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
-
This method return the state of the experiment.
- isFinner() - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Tests if Finner test is used
- isFullRank() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.QRDecomposition
-
Is the matrix full rank?
- IsFuzzy() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.domain_t
-
- IsFuzzy() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.fuzzy_t
-
- IsFuzzy() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.variable_t
-
- IsFuzzy(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- IsFuzzy() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.domain_t
-
Returns if the domain_t object is formed by labels with all their domain been fuzzy.
- IsFuzzy() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.fuzzy_t
-
Returns if the fuzzy label represents a fuzzy set
- IsFuzzy() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Returns if the domain associated to the variable is only formed by fuzzy sets.
- IsFuzzy(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Returns if the domain associated to the variable in position "var" of the list is only formed by fuzzy sets.
- IsFuzzy() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.domain_t
-
- IsFuzzy() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.fuzzy_t
-
- IsFuzzy() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.variable_t
-
- IsFuzzy(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- IsFuzzy() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.domain_t
-
- IsFuzzy() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.fuzzy_t
-
- IsFuzzy() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.variable_t
-
- IsFuzzy(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- isFuzzy() - Method in class keel.GraphInterKeel.experiments.Parameters
-
Is fuzzy
- isHidden(int) - Method in class keel.GraphInterKeel.experiments.Parameters
-
Checks if the parameter at position i is hidden
- isHiddenLayerBiased(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
-
Returns a boolean indicating if a hidden layer is biased
- isHiddenLayerBiased(int) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.INeuralNetSpecies
-
Returns a boolean indicating if a hidden layer is biased
- isHighConfidence(Prototype, int) - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.ADE_CoForestGenerator
-
To judege whether the confidence for a given instance of H* is high enough,
which is affected by the onfidence threshold.
- isHighConfidence(Prototype, int) - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.CLCCGenerator
-
To judege whether the confidence for a given instance of H* is high enough,
which is affected by the onfidence threshold.
- isHighConfidence(Prototype, int) - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.CoForestGenerator
-
To judege whether the confidence for a given instance of H* is high enough,
which is affected by the onfidence threshold.
- isHochberg() - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Tests if Hochberg test is used
- isHolland() - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Tests if Holland test is used
- isHolm() - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Tests if Holm test is used
- isHommel() - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Tests if Hommel test is used
- isIman() - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Tests if Iman-Davenport test is used
- isIn(String, String[]) - Static method in class keel.Algorithms.Instance_Generation.Basic.AccuracyMeter
-
Informs if a string is equal to someone in an array
- isIn(String, String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.AccuracyMeter
-
Informs if a string is equal to someone in an array
- isInBounds(double) - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
It does check if the value passed as an argument is bounded by
the [min, max] interval.
- isInBounds(double) - Method in class keel.Dataset.Attribute
-
It does check if the value passed as an argument is bounded by
the [min, max] interval.
- isInput() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
-
Answer if the attribute is an input attribute or not
- isInput() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
-
Answer if the attribute is an input attribute or not
- isInRange(int) - Method in class keel.Algorithms.Decision_Trees.M5.Interval
-
Gets whether the supplied cardinal number is included in the current
range.
- isInRange(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Determines whether a value lies within the bounds of the attribute.
- isInRange(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Range
-
Gets whether the supplied cardinal number is included in the current
range.
- isInRange(double) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Determines whether a value lies within the bounds of the attribute.
- isInside(Point, Point, Point) - Method in class keel.GraphInterKeel.experiments.Arc
-
Test if the provided point is inside
- isInside(Point) - Method in class keel.GraphInterKeel.experiments.Node
-
Test if the provided point is inside of this node
- isInteger(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
This function checks if the attribute value is integer
- isInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
This function checks if the attribute value is integer
- isInteger(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
This function checks if the attribute value is integer
- isInteger(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
-
Checks if the type of the attribute with the given id is integer.
- isInteger() - Method in class keel.GraphInterKeel.experiments.UseCase
-
- isInterrumpted() - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
-
This methos return if a partition is interrupted
for the extern user
True, interrupted
False, no interrupted
- IsInterval() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.domain_t
-
- IsInterval() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.fuzzy_t
-
- IsInterval() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.variable_t
-
- IsInterval(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- IsInterval() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.domain_t
-
Returns if the domain_t object is formed by labels with all their domain been intervals.
- IsInterval() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.fuzzy_t
-
Returns if the fuzzy label represents an interval
- IsInterval() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Returns if the domain associated to the variable is only formed by intervals.
- IsInterval(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Returns if the domain associated to the variable in position "var" of the list is only formed by intervals.
- IsInterval() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.domain_t
-
- IsInterval() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.fuzzy_t
-
- IsInterval() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.variable_t
-
- IsInterval(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- IsInterval() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.domain_t
-
- IsInterval() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.fuzzy_t
-
- IsInterval() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.variable_t
-
- IsInterval(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- isLeaf - Variable in class keel.Algorithms.Decision_Trees.C45.Tree
-
Is this node leaf or not.
- isLeaf - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Tree
-
Is this node leaf or not.
- isLeaf() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Answers if the node is a leaf node or not
- isLeaf() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
-
Answers if the node is a leaf node or not
- isLeaf() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
- isLeaf - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
-
Is this node leaf or not.
- isLeaf - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Tree
-
Is this node leaf or not.
- isLeaf - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Tree
-
Is this node leaf or not.
- isLeaf - Variable in class keel.Algorithms.Rule_Learning.C45Rules.Tree
-
Is this node leaf or not.
- isLeaf - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Tree
-
Is this node leaf or not.
- isLeaf - Variable in class keel.Algorithms.Rule_Learning.PART.Tree
-
Is this node leaf or not.
- isLeaf - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
-
Is this node leaf or not.
- isLi() - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Tests if Li test is used
- isLogTransformation() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.problem.IProblem
-
Returns a boolean value indicating if the DataSets are going to be log
transformated
- isLogTransformation() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Returns a boolean value indicating if the DataSets are going to be log
transformated
- isMark() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
It returns if the rule is marked.
- isMark() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
It returns if the rule is marked
- isMissing(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
This function checks if the attribute value is missing.
- isMissing(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
This function checks if the attribute value is missing
- isMissing(int) - Method in class keel.Algorithms.Decision_Trees.C45.Itemset
-
Function to check if a value is missing.
- isMissing(int, int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
This function checks if the attribute value is missing
- isMissing(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
-
Function to check if a value is missing.
- isMissing(int, int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
This function checks if the attribute value is missing
- isMissing(int) - Method in class keel.Algorithms.Decision_Trees.ID3.Itemset
-
Function to check if a value is missing.
- isMissing(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Tests if a specific value is "missing".
- isMissing(M5Attribute) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Tests if a specific value is "missing".
- isMissing(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Tests if a specific value is "missing".
- isMissing(int) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Itemset
-
Function to check if a value is missing.
- isMissing(int, int) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
This function checks if the attribute value is missing
- isMissing(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Tests if a specific value is "missing".
- isMissing(AttributeWeka) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Tests if a specific value is "missing".
- isMissing(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Dataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
This function checks if the attribute value is missing
- isMissing(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Function to check if a value is missing.
- isMissing(MyAttribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Tests if a specific value is "missing".
- isMissing(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
It returns wether the value for an attribute in a given exemple is missing
- isMissing(Mask, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
It returns wether the value for an attribute in a given exemple is missing
- isMissing(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
This function checks if the attribute value is missing
- isMissing(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
-
Function to check if a value is missing.
- isMissing(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
-
Function to check if a value is missing.
- isMissing(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
It returns wether the value for an attribute in a given exemple is missing
- isMissing(Mask, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
It returns wether the value for an attribute in a given exemple is missing
- isMissing(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Dataset
-
Comprueba si un atributo está "perdido" o no
- isMissing(int, int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
-
Checks if one attribute is lost or not
- isMissing(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
-
Function to check if a value is missing.
- isMissing(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
-
Function to check if a value is missing.
- isMissing(int, int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
This function checks if the attribute value is missing
- isMissing(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Tests if a specific value is "missing".
- isMissing(Attribute) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Tests if a specific value is "missing".
- isMissing(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Tests if a specific value is "missing".
- isMissing(int, int) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.ProcDataset
-
Returns True if the value of j-th attribute of the i-th instance is missing and false, otherwise.
- isMissing(int, int) - Method in class keel.Algorithms.Neural_Networks.RBFN.ProcDataset
-
Returns True if the value of j-th attribute of the i-th instance is missing and false, otherwise.
- isMissing(int, int) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.ProcDataset
-
Returns True if the value of j-th attribute of the i-th instance is missing and false, otherwise.
- isMissing(int, int) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.ProcDataset
-
Returns True if the value of j-th attribute of the i-th instance is missing and false, otherwise.
- isMissing(int, int) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.ProcDataset
-
Returns True if the value of j-th attribute of the i-th instance is missing and false, otherwise.
- isMissing(int, int) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.ProcDataset
-
Returns True if the value of j-th attribute of the i-th instance is missing and false, otherwise.
- isMissing(int, int) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.ProcDataset
-
Returns True if the value of j-th attribute of the i-th instance is missing and false, otherwise.
- isMissing(int, int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
-
Returns if an example is missing.
- isMissing(int, int) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Rule_Learning.AQ.Dataset
-
Comprueba si un atributo está "perdido" o no
- isMissing(int) - Method in class keel.Algorithms.Rule_Learning.ART.Itemset
-
Function to check if a value is missing.
- isMissing(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Itemset
-
Function to check if a value is missing.
- isMissing(int, int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
It returns wether the value for an attribute in a given exemple is missing
- isMissing(Mask, int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
It returns wether the value for an attribute in a given exemple is missing
- isMissing(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
-
Function to check if a value is missing.
- isMissing(int, int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
It returns wether the value for an attribute in a given exemple is missing
- isMissing(Mask, int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
It returns wether the value for an attribute in a given exemple is missing
- isMissing(int, int) - Method in class keel.Algorithms.Rule_Learning.CN2.Dataset
-
Comprueba si un atributo está "perdido" o no
- isMissing(int) - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
-
Function to check if a value is missing.
- isMissing(int, int) - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
This function checks if the attribute value is missing
- isMissing(int) - Method in class keel.Algorithms.Rule_Learning.PART.Itemset
-
Function to check if a value is missing.
- isMissing(int, int) - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
It returns wether the value for an attribute in a given exemple is missing
- isMissing(Mask, int) - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
It returns wether the value for an attribute in a given exemple is missing
- isMissing(int, int) - Method in class keel.Algorithms.Rule_Learning.Prism.Dataset
-
Checks if one attribute is lost or not
- isMissing(int, int) - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
-
Checks if an attribute is lost or not
- isMissing(int, int) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
This function checks if the attribute value is missing
- isMissing(Mask, int) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
This function checks if the attribute value is missing
- isMissing(Mask, int) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
-
Checks if one attribute is missing or not
- isMissing(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
-
Function to check if a value is missing.
- isMissing(int, int) - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
-
Returns if an example is missing.
- isMissing(int, int) - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Dataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Dataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Dataset
-
Comprueba si un atributo esta "perdido" o no
- isMissing(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
-
This function checks if the attribute value is missing
- isMissing(int) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Tests if a specific value is "missing".
- isMissing(Attribute) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Tests if a specific value is "missing".
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
-
This function checks if the attribute value is missing
- isMissing(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
-
This function checks if the attribute value is missing
- isMissingSparse(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Tests if a specific value is "missing".
- isMissingSparse(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Tests if a specific value is "missing".
- isMissingSparse(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Tests if a specific value is "missing".
- isMissingSparse(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Tests if a specific value is "missing".
- isMissingSparse(int) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Tests if a specific value is "missing".
- isMissingValue(double) - Static method in class keel.Algorithms.Decision_Trees.C45.Itemset
-
Function to check if the value given is the missing value.
- isMissingValue(double) - Static method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
-
Function to check if the value given is the missing value.
- isMissingValue(double) - Static method in class keel.Algorithms.Decision_Trees.ID3.Itemset
-
Function to check if the value given is the missing value.
- isMissingValue(double) - Static method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Tests if the given value codes "missing".
- isMissingValue(double) - Static method in class keel.Algorithms.Decision_Trees.SLIQ.Itemset
-
Function to check if the value given is the missing value.
- isMissingValue(double) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Tests if the given value codes "missing".
- isMissingValue(double) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Function to check if the value given is the missing value.
- isMissingValue(double) - Static method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
-
Function to check if the value given is the missing value.
- isMissingValue(double) - Static method in class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
-
Function to check if the value given is the missing value.
- isMissingValue(double) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
-
Function to check if the value given is the missing value.
- isMissingValue(double) - Static method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
-
Function to check if the value given is the missing value.
- isMissingValue(double) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Tests if the given value codes "missing".
- isMissingValue(double) - Static method in class keel.Algorithms.Rule_Learning.ART.Itemset
-
Function to check if the value given is the missing value.
- isMissingValue(double) - Static method in class keel.Algorithms.Rule_Learning.C45Rules.Itemset
-
Function to check if the value given is the missing value.
- isMissingValue(double) - Static method in class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
-
Function to check if the value given is the missing value.
- isMissingValue(double) - Static method in class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
-
Function to check if the value given is the missing value.
- isMissingValue(double) - Static method in class keel.Algorithms.Rule_Learning.PART.Itemset
-
Function to check if the value given is the missing value.
- isMissingValue(double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Tests if the given value codes "missing".
- isMissingValue(double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
-
Function to check if the value given is the missing value.
- isMissingValue(double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Tests if the given value codes "missing".
- isMissingValue(double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Tests if the given value codes "missing".
- isMissingValue(double) - Static method in class keel.Algorithms.SVM.SMO.core.Instance
-
Tests if the given value codes "missing".
- isModified() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier
-
- isMoreGeneral(Attribute) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Attribute
-
Returns if the current interval is more general than the interval given as a parameter
- isMoreGeneral(Attribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
Returns if the current interval is more general than the interval given as a parameter
- isMoreGeneral(Attribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
Indicates if the classifier is more general than
the classifier passed as a parameter.
- isMoreGeneral(Attribute) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
-
Returns if the current interval is more general than the interval given as a parameter
- isMoreGeneral(Classifier) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Indicates if the classifier is more general than
the classifier passed as a parameter.
- isMoreGeneral(Attribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
Returns if the current interval is more general than the interval given as a parameter
- isMoreGeneral(Attribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
Returns if the current interval is more general than the interval given as a parameter
- isMoreGeneral(Representation) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
Indicate if the current representation is more general than
the representation passed as a parameter.
- isMoreGeneral(Attribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
Indicates if the classifier is more general than
the classifier passed as a parameter.
- isNemenyi() - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Tests if Nemenyi test is used
- isNew() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Individual
-
Function to return if this individual is new in the population
- isNew() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Individual
-
Function to return if this individual is new in the population
- isNew() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Rule
-
It returns if the rule is new or not
- isNew() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Individual
-
- isNew() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- isNew() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- isNew() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
- isNominal(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
This function checks if the attribute value is nominal.
- isNominal(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
This function checks if the attribute value is nominal
- isNominal(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
This function checks if the attribute value is nominal
- isNominal(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
This function checks if the attribute value is nominal
- isNominal(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
This function checks if the attribute value is nominal
- isNominal(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
This function checks if the attribute value is nominal
- isNominal(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
This function checks if the attribute value is nominal
- isNominal() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
-
Answers if the attribute is nominal or not
- isNominal() - Method in class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Test if the attribute is nominal.
- isNominal() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
-
Answers if the attribute is nominal or not
- isNominal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
This function checks if the attribute value is nominal
- isNominal() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Test if the attribute is nominal.
- isNominal() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Test if the attribute is nominal.
- isNominal() - Method in class keel.Algorithms.Rule_Learning.Riona.Selector
-
Returns nominal attribute
- isNominal(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
-
Checks if the attribute with the given id is nominal.
- isNominal(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
This function checks if the attribute value is nominal
- isNominal(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
-
Checks if the given attribute is nominal.
- isNominal(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
-
Checks if the given attribute is nominal.
- isNominal(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
-
Checks if the attribute with the index given is nominal
- isNominal(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
-
This function checks if the attribute value is missing
- isNominal(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
-
This function checks if the attribute is nominal
- isNominal(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
-
Checks if the type of the attribute with the given id is nominal.
- isNominal(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
-
This function checks if the attribute is nominal
- isNominal() - Method in class keel.GraphInterKeel.experiments.UseCase
-
- isNominalValue(String) - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
It returns if the value passed is in the list of nominal values
- isNominalValue(String) - Method in class keel.Dataset.Attribute
-
It returns if the value passed is in the list of nominal values
- isNonsingular() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.LUDecomposition
-
Is the matrix nonsingular?
- isNumeric() - Method in class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Tests if the attribute is numeric.
- isNumeric() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Tests if the attribute is numeric.
- ISoftmaxClassifier - Interface in keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax
-
Generic softmax classifier.
- isOk() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.SD
-
Checks if the algorithm is working fine.
- isOk() - Method in class keel.GraphInterKeel.datacf.util.OptionsDialog
-
Returns if Ok button has been pressed
- isolatedNodes() - Method in class keel.GraphInterKeel.experiments.Experiments
-
checks if are nodes not connected to a dataset
- isolatedNodesLQD() - Method in class keel.GraphInterKeel.experiments.Experiments
-
checks if are nodes LQD not connected to a dataset
- isOrderedFlag - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Flag to indicate whether input data has been sorted or not.
- isOrderedFlag - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Flag to indicate whether input data has been sorted or not.
- isOutputFormatDefined() - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Returns whether the output format is ready to be collected
- isOutputInfered() - Method in class keel.Dataset.InstanceSet
-
Test if the output attribute has been infered.
- isOutputLayerBiased() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
-
Returns a boolean indicating if output layer is biased
- isOutputLayerBiased() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.INeuralNetSpecies
-
Returns a boolean indicating if output layer is biased
- isPartitionable(int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Decides if a node is partitionable or not.
- isPerformed() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.DECEnvironment
-
Returns if the class has been performed.
- isPerformed() - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Environment
-
Returns if the class has been performed.
- isPerformed() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MPEnvironment
-
Returns if the action has been performed.
- isPerformed() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MSEnvironment
-
Returns if the class has been performed.
- isPerformed() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.PAREnvironment
-
Returns if the class has been performed.
- isPerformed() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.POSEnvironment
-
Returns if the class has been performed.
- isPerformed() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.SSFileEnvironment
-
Does return if the class has been executed.
- isPositiveInstance() - Method in class keel.Algorithms.ImbalancedClassification.Auxiliar.AUC.PosProb
-
Checks if a given probability related to an instance is positive or not
- isPrecedence(Rule) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
Function to know whether our rule has more precedence than another given or not.
- isPrecedence(Rule) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
Function to know whether our rule has more precedence than another given or not.
- isProbabilistic() - Method in class keel.GraphInterKeel.experiments.Parameters
-
returns if algorithm use seeds
- isPrototypeConsistent(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.GMCA.GMCAGenerator
-
Hard-checking consistency method.
- isPrunedFlag - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Flag to indicate whether input data has been sorted and pruned or
not.
- isPrunedFlag - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Flag to indicate whether input data has been sorted and pruned or
not.
- isPure() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Node
-
Check is a node is pure or a node isn't pure
- isReal() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Tests if the attribute is numeric.
- isReal(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
-
Checks if the type of the attribute with the given id is real.
- isRegression() - Method in class keel.Algorithms.Decision_Trees.CART.CART
-
Returns if we are dealing with a regression problem
- isRegular() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns whether the attribute values are equally spaced.
- isRegular() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns whether the attribute values are equally spaced.
- isRelated(Genotype) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.Genotype
-
abstract method for determining if the given
Genotype
is similar to current one.
- isRelated(Genotype) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGAP
-
This method determines if the given
Genotype
is of the same
type thant the current object.
- isRelated(Genotype) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGP
-
This method determines if the given
Genotype
is of the same
type thant the current object.
- isRelated(Genotype) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGPRegSym
-
This method determines if the given
Genotype
is of the same
type thant the current object.
- isRelated(Genotype) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypePitts
-
This method determines if the given
Genotype
is of the same
type thant the current object.
- isRelationValued() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Tests if the attribute is relation valued.
- isRelationValued() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Tests if the attribute is relation valued.
- isRom() - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Tests if Rom test is used
- isSeized(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
-
Checks if a determined value of the training set is seized by this rule or not
- isSeized(int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
-
Checks if a determined value of the training set is seized by this rule or not
- isSelective() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
-
Returns a boolean indicating if the mutator is selective
- isSerializable(String) - Static method in class keel.Algorithms.SVM.SMO.core.SerializationHelper
-
checks whether a class is serializable
- isSerializable(Class) - Static method in class keel.Algorithms.SVM.SMO.core.SerializationHelper
-
checks whether a class is serializable
- isShaffer() - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Tests if Shaffer test is used
- isSPD() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.CholeskyDecomposition
-
Is the matrix symmetric and positive definite?
- isSquare() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
returns whether the matrix is a square matrix or not.
- isString() - Method in class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Tests if the attribute is a string.
- isString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Tests if the attribute is a string.
- isString() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Tests if the attribute is a string.
- isSub(Chromosome) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
-
- isSub(Chromosome) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
-
- isSubChromo(Chromosome) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
-
- isSubChromo(Chromosome) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- isSubChromo(Chromosome) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
- isSubclass(String, String) - Static method in class keel.Algorithms.SVM.SMO.core.ClassDiscovery
-
Checks whether the "otherclass" is a subclass of the given "superclass".
- isSubclass(Class, Class) - Static method in class keel.Algorithms.SVM.SMO.core.ClassDiscovery
-
Checks whether the "otherclass" is a subclass of the given "superclass".
- isSubGen(Gene) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
-
- isSubGen(Gene) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
-
- isSubGen(Gene) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Gene
-
- isSubItemset(Itemset) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Itemset
-
Function to check if our itemset is Subitemset (can be contained) of a given itemset.
- isSubItemset(Itemset) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Itemset
-
Function to check if our itemset is Subitemset (can be contained) of a given itemset
- isSubset(Rule) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
Function to check whether our rule is subset of a given rule "a".
- isSubset(Rule) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
Function to check whether our rule is subset of a given rule "a"
- isSubset(short[], short[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Checks whether one item set is subset of a second item set.
- isSubset(Rule) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
-
Function to check if a given rule is a subrule of this rule
- isSubset(Rule) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Rule
-
Function to check if a given rule is a subrule of this rule
- isSubset(Rule) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Rule
-
Function to check if a given rule is a subrule of this rule
- isSubset(Rule) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Rule
-
- isSubValue(Gene) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Gene
-
- isSubValue(Gene) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Gene
-
- isSymmetric() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Returns true if the matrix is symmetric.
- isSymmetric() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Returns true if the matrix is symmetric.
- isTerminal() - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
-
- isTheNearPrototype(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Return all the prototypes in (this) that has "other" as the nearest neighbour
- isTheNearPrototype(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Return all the prototype in (this) that has other like the nearest neighbor
- isTheNearPrototypeWithClass(Prototype, double) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Return all the prototypes in (this) that has "other" as the nearest neighbour with the class given.
- isTheNearPrototypeWithClass(Prototype, double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Return all the prototype in (this) that has other like the nearest neighbor with the class given.
- isThereClassifier(Classifier) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Returns the position of the classifier in the set.
- isThereClassifier(Classifier) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Returns the position of the classifier in the set.
- isUnexplored - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
-
Is this node unexplored or not.
- isUnexplored() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
-
Returns whether the node is unexplore or not.
- isUnexplored - Variable in class keel.Algorithms.Rule_Learning.PART.Tree
-
Is this node unexplored or not.
- isUnexplored() - Method in class keel.Algorithms.Rule_Learning.PART.Tree
-
Returns whether the node is unexplore or not.
- isUsed(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
-
- isUsed(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Gene
-
- isUsed(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
-
- isUsed(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Gene
-
- isUseVariant1() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
Whether variant 1 is used
- isValid() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.FuzzyAntecedent
-
Checks if the fuzzy antecedent is a valid and representative antecedent for a rule
or not.
- isValid() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.FuzzyAntecedent
-
Checks if the fuzzy antecedent is a valid and representative antecedent for a rule
or not.
- isValid(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractAttribute
-
Check if this internal attribute value is valid
- isValid(Object) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractAttribute
-
Check if this external attribute value is valid
- isValid(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.CategoricalAttribute
-
Check if this internal attribute value is valid
- isValid(Object) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.CategoricalAttribute
-
Check if this external attribute value is valid
- isValid(double) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IAttribute
-
Check if this internal attribute value is valid
- isValid(Object) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IAttribute
-
Check if this external attribute value is valid
- isValid(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.IntegerNumericalAttribute
-
Check if this internal attribute value is valid
- isValid(Object) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.IntegerNumericalAttribute
-
Check if this external attribute value is valid
- isValid(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.RealNumericalAttribute
-
Check if this internal attribute value is valid
- isValid(Object) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.RealNumericalAttribute
-
Check if this external attribute value is valid
- isValid(String) - Method in class keel.GraphInterKeel.datacf.util.Attribute
-
Return a boolean for a given nominal values, true is valid value,
false is an invalid value.
- isValidRange(String) - Method in class keel.Algorithms.Decision_Trees.M5.Interval
-
Determines if a string represents a valid index or simple range.
- isValidRange(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Range
-
Determines if a string represents a valid index or simple range.
- ISW - Class in keel.Algorithms.RST_Learning.EFS_RPS
-
File: ISW.java
A implementation of a rough set based Instance Selection Wrapper class for EFS_RPS.
- ISW() - Constructor for class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
- isWhitoutValues() - Method in class keel.GraphInterKeel.experiments.UseCase
-
- isWindowingEnabled() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.instanceSet
-
- isWindowsPlatform() - Static method in class keel.GraphInterKeel.menu.BrowserControl
-
Try to determine whether this application is running under Windows
or some other platform by examing the "os.name" property.
- isWithImprecise() - Method in class keel.GraphInterKeel.experiments.UseCase
-
- isYes(String) - Static method in class keel.Algorithms.Instance_Generation.Basic.AccuracyMeter
-
Informs if a string is yes.
- isYes(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.AccuracyMeter
-
Informs if a string is yes.
- iszero(Vector<Float>) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.AlgGenetic
-
- iszero(Vector<Float>) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.AlgGenetic
-
- IT2FKNN - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.IT2FKNN
-
File: IT2FKNN.java
The IT2FKNN algorithm.
- IT2FKNN(String) - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.IT2FKNN.IT2FKNN
-
Main builder.
- Item - Class in keel.Algorithms.Associative_Classification.ClassifierCBA
-
This class stores an item representation for classification by association algorithms.
- Item() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.Item
-
Default Constructor.
- Item(int, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.Item
-
Parameters Constructor.
- Item - Class in keel.Algorithms.Associative_Classification.ClassifierCBA2
-
This class stores an item representation for classification by association algorithms.
- Item() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.Item
-
Default Constructor
- Item(int, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.Item
-
Parameters Constructor.
- Item - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR
-
This class contains the representation of a item
- Item() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Item
-
Default Constructor
- Item(int, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Item
-
Parameters Constructor
- Item - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD
-
Title: Item
Description: This class contains the representation of a item
Copyright: Copyright KEEL (c) 2007
Company: KEEL
- Item() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Item
-
Default constructor.
- Item(int, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Item
-
Builder
- Item - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA
-
This class contains the representation of a item
- Item() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Item
-
Default Constructor
- Item(int, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Item
-
Parameters Constructor
- Item - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS
-
Title: Item
Description: This class contains the representation of a item
Copyright: Copyright KEEL (c) 2007
Company: KEEL
- Item() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Item
-
Default constructor.
- Item(int, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Item
-
Builder
- Item - Class in keel.Algorithms.Subgroup_Discovery.aprioriSD
-
Title: Item
Implements an item of a dataset, with their values and their attributes/columns references.
- Item() - Constructor for class keel.Algorithms.Subgroup_Discovery.aprioriSD.Item
-
Default constructor.
- Item(int) - Constructor for class keel.Algorithms.Subgroup_Discovery.aprioriSD.Item
-
Creates an item with k values but empty.
- Item(int, int, int) - Constructor for class keel.Algorithms.Subgroup_Discovery.aprioriSD.Item
-
Creates an item with one value.
- Item - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal
-
It represents an item throughout the execution of the algorithm
- Item() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Item
-
Default constructor
- Item(int, int) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Item
-
It creates a new item by setting up its parameters
- Item - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams
- Item() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Item
-
Default constructor
- Item(int, int) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Item
-
It creates a new item by setting up its parameters
- Item - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori
- Item() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.Item
-
Default constructor
- Item(int, int) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.Item
-
It creates a new item by setting up its parameters
- Item - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori
- Item() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Item
-
Default constructor
- Item(int, int) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Item
-
It creates a new item by setting up its parameters
- Item - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC
- Item() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Item
-
Default constructor
- Item(int, int) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Item
-
It creates a new item by setting up its parameters
- Item - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori
-
It represents an item throughout the execution of the algorithm
- Item(int) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.Item
-
It creates a new item by setting up its label
- Item - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat
-
It represents an item throughout the execution of the algorithm
- Item(int) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.Item
-
It creates a new item by setting up its label
- itemName - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.FPtree.FPgrowthHeaderTable
-
The 1-itemset (attribute) identifier.
- itemName - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.FPtree.FPgrowthHeaderTable
-
The 1-itemset (attribute) identifier.
- Itemset - Class in keel.Algorithms.Associative_Classification.ClassifierCBA
-
This class stores an itemset representation for classification by association algorithms.
- Itemset() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.Itemset
-
Default Constructor.
- Itemset(int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.Itemset
-
Parameters Constructor.
- Itemset - Class in keel.Algorithms.Associative_Classification.ClassifierCBA2
-
This class stores an itemset representation for classification by association algorithms.
- Itemset() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.Itemset
-
Default Constructor
- Itemset(int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.Itemset
-
Parameters Constructor
- itemSet - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.PtreeNode
-
Array of short (16 bit) integers describing the row.
- Itemset - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR
-
This class contains the representation of a itemset
- Itemset() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Itemset
-
Default Constructor
- Itemset(int, double) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Itemset
-
Parameters Constructor
- Itemset - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD
-
Title: Itemset
Description: This class contains the representation of a itemset
Copyright: Copyright KEEL (c) 2007
Company: KEEL
- Itemset() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Itemset
-
Default constructor.
- Itemset(int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Itemset
-
Builder
- Itemset - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA
-
This class contains the representation of a itemset
- Itemset() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Itemset
-
Default Constructor
- Itemset(int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Itemset
-
Parameters Constructor
- itemset(int) - Method in class keel.Algorithms.Decision_Trees.C45.Dataset
-
Returns the itemset at the given position.
- Itemset - Class in keel.Algorithms.Decision_Trees.C45
-
Class to manipulate an itemset.
- Itemset(Itemset) - Constructor for class keel.Algorithms.Decision_Trees.C45.Itemset
-
Constructor that copies the values and the weight.
- Itemset(double, double[]) - Constructor for class keel.Algorithms.Decision_Trees.C45.Itemset
-
Constructor that sets the values and the weight.
- itemset(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Dataset
-
Returns the itemset at the given position.
- Itemset - Class in keel.Algorithms.Decision_Trees.DT_GA.C45
-
Class to manipulate an itemset.
- Itemset(Itemset) - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
-
Constructor that copies the values and the weight.
- Itemset(double, double[]) - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
-
Constructor that sets the values and the weight.
- itemset(int) - Method in class keel.Algorithms.Decision_Trees.ID3.Dataset
-
Returns the itemset at the given position.
- Itemset - Class in keel.Algorithms.Decision_Trees.ID3
-
Class to manipulate an itemset.
- Itemset(Itemset) - Constructor for class keel.Algorithms.Decision_Trees.ID3.Itemset
-
Constructor that copies the values and the weight.
- Itemset(double, double[]) - Constructor for class keel.Algorithms.Decision_Trees.ID3.Itemset
-
Constructor that sets the values and the weight.
- itemset(int) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Dataset
-
Returns the itemset at the given position.
- Itemset - Class in keel.Algorithms.Decision_Trees.SLIQ
-
Class to manipulate an itemset.
- Itemset(Itemset) - Constructor for class keel.Algorithms.Decision_Trees.SLIQ.Itemset
-
Constructor that copies the values and the weight.
- Itemset(double, double[]) - Constructor for class keel.Algorithms.Decision_Trees.SLIQ.Itemset
-
Constructor that sets the values and the weight.
- Itemset - Class in keel.Algorithms.Discretizers.UCPD
-
This class lets to manipulate itemsets
- Itemset(int[], int, int) - Constructor for class keel.Algorithms.Discretizers.UCPD.Itemset
-
Constructor for creating a Itemset object
- Itemset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS
-
Title: Itemset
Description: This class contains the representation of a itemset
Copyright: Copyright KEEL (c) 2007
Company: KEEL
- Itemset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Itemset
-
Default constructor.
- Itemset(int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Itemset
-
Builder
- Itemset - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Class to manipulate an itemset.
- Itemset(Itemset) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Constructor that copies the values and the weight.
- Itemset(double, double[]) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Constructor that sets the values and the weight.
- Itemset(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Constructor of an instance that sets weight to one, all values to
be missing, and the reference to the dataset to null.
- Itemset() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Default Constructor.
- itemset(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Returns the itemset at the given position.
- itemset(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Dataset
-
Returns the itemset at the given position.
- Itemset - Class in keel.Algorithms.Genetic_Rule_Learning.olexGA
-
Class to manipulate an itemset.
- Itemset(Itemset) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
-
Constructor that copies the values and the weight.
- Itemset(double, double[]) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
-
Constructor that sets the values and the weight.
- Itemset - Class in keel.Algorithms.Genetic_Rule_Learning.PART
-
Class to manipulate an itemset.
- Itemset(Itemset) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
-
Constructor that copies the values and the weight.
- Itemset(double, double[]) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
-
Constructor that sets the values and the weight.
- itemset(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
Returns the itemset at the given position.
- itemset(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Dataset
-
Returns the itemset at the given position.
- Itemset - Class in keel.Algorithms.ImbalancedClassification.CSMethods.C45CS
-
Class to manipulate an itemset.
- Itemset(Itemset) - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
-
Constructor that copies the values and the weight.
- Itemset(double, double[]) - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
-
Constructor that sets the values and the weight.
- itemset(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Dataset
-
Returns the itemset at the given position.
- Itemset - Class in keel.Algorithms.ImbalancedClassification.Ensembles.C45
-
Class to manipulate an itemset.
- Itemset(Itemset) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
-
Constructor that copies the values and the weight.
- Itemset(double, double[]) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
-
Constructor that sets the values and the weight.
- itemset(int) - Method in class keel.Algorithms.Rule_Learning.ART.Dataset
-
Returns the itemset at the given position.
- Itemset - Class in keel.Algorithms.Rule_Learning.ART
-
Class to manipulate an itemset.
- Itemset(Itemset) - Constructor for class keel.Algorithms.Rule_Learning.ART.Itemset
-
Constructor that copies the values and the weight.
- Itemset(double, double[]) - Constructor for class keel.Algorithms.Rule_Learning.ART.Itemset
-
Constructor that sets the values and the weight.
- Itemset - Class in keel.Algorithms.Rule_Learning.C45Rules
-
Class to manipulate an itemset.
- Itemset(Itemset) - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.Itemset
-
Constructor that copies the values and the weight.
- Itemset(double, double[]) - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.Itemset
-
Constructor that sets the values and the weight.
- itemset(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Returns the itemset at the given position.
- Itemset - Class in keel.Algorithms.Rule_Learning.C45RulesSA
-
Class to manipulate an itemset.
- Itemset(Itemset) - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
-
Constructor that copies the values and the weight.
- Itemset(double, double[]) - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
-
Constructor that sets the values and the weight.
- itemset(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Returns the itemset at the given position.
- itemset(int) - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Dataset
-
Returns the itemset at the given position.
- Itemset - Class in keel.Algorithms.Rule_Learning.DataSqueezer
-
Class to manipulate an itemset.
- Itemset(Itemset) - Constructor for class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
-
Constructor that copies the values and the weight.
- Itemset(double, double[]) - Constructor for class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
-
Constructor that sets the values and the weight.
- Itemset - Class in keel.Algorithms.Rule_Learning.PART
-
Class to manipulate an itemset.
- Itemset(Itemset) - Constructor for class keel.Algorithms.Rule_Learning.PART.Itemset
-
Constructor that copies the values and the weight.
- Itemset(double, double[]) - Constructor for class keel.Algorithms.Rule_Learning.PART.Itemset
-
Constructor that sets the values and the weight.
- itemset(int) - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
Returns the itemset at the given position.
- itemset(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Dataset
-
Returns the itemset at the given position.
- Itemset - Class in keel.Algorithms.Semi_Supervised_Learning.Basic.C45
-
Class to manipulate an itemset.
- Itemset(Itemset) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
-
Constructor that copies the values and the weight.
- Itemset(double, double[]) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
-
Constructor that sets the values and the weight.
- Itemset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal
-
It represents an itemset throughout the execution of the algorithm
- Itemset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Itemset
-
Default constructor
- Itemset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams
-
It represents an itemset throughout the execution of the algorithm
- Itemset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Itemset
-
Default constructor
- Itemset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori
-
It represents an itemset throughout the execution of the algorithm
- Itemset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.Itemset
-
Default constructor
- Itemset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori
-
It represents an itemset throughout the execution of the algorithm
- Itemset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Itemset
-
Default constructor
- Itemset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC
-
It represents an itemset throughout the execution of the algorithm
- Itemset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Itemset
-
Default constructor
- itemsets - Variable in class keel.Algorithms.Decision_Trees.C45.Dataset
-
The itemsets.
- itemsets - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Dataset
-
The itemsets.
- itemsets - Variable in class keel.Algorithms.Decision_Trees.ID3.Dataset
-
The itemsets.
- itemsets - Variable in class keel.Algorithms.Decision_Trees.SLIQ.Dataset
-
The itemsets.
- itemsets - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
The itemsets.
- itemsets - Variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Dataset
-
The itemsets.
- itemsets - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
The itemsets.
- itemsets - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Dataset
-
The itemsets.
- itemsets - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Dataset
-
The itemsets.
- itemsets - Variable in class keel.Algorithms.Rule_Learning.ART.Dataset
-
The itemsets.
- itemsets - Variable in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
The itemsets.
- itemsets - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
The itemsets.
- itemsets - Variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Dataset
-
The itemsets.
- itemsets - Variable in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
The itemsets.
- itemsets - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Dataset
-
The itemsets.
- itemsetsPerLeaf - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Parameters
-
Minimun items per leaf.
- itemsetsPerLeaf - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.Parameters
-
Minimun items per leaf.
- itemsetsPerLeaf - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Parameters
-
Minimun items per leaf.
- itemsetsPerLeaf - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.Parameters
-
Minimun items per leaf.
- itemsetsPerLeaf - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.ParametersC45
-
Minimum number of items per leaf.
- itemsetsPerLeaf - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.ParametersC45
-
Minimum number of items per leaf.
- itemStateChanged(ItemEvent) - Method in class keel.GraphInterKeel.experiments.Experiments
-
Change state
- iter_no_changes - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.Parameters
-
number of iterations.
- iter_no_changes - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.Parameters
-
- iter_no_changes - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.Parameters
-
- itera(FUN, double[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.Ameba
-
It makes the iterations of the algorithm
- ITERACIONES - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.Fitness
-
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.FreqList
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.FreqList
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.valueAssociations
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.FreqList
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.valueAssociations
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqList
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqListPair
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.valueAssociations
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.FreqList
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.valueAssociations
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.FreqList
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.valueAssociations
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.FreqList
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.valueAssociations
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.FreqList
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.FreqList
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.valueAssociations
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.FreqList
-
Iterates to the next element in the list
- iterate() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.valueAssociations
-
Iterates to the next element in the list
- IteratedDiscrimination - Class in keel.Algorithms.MIL.APR.IteratedDiscrimination
-
- IteratedDiscrimination() - Constructor for class keel.Algorithms.MIL.APR.IteratedDiscrimination.IteratedDiscrimination
-
- iterationCompleted(<any>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.listener.NeuralNetReporterClas
-
This event is fired when the algorithm has finished a generation.
- iterationCompleted(<any>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.listener.NeuralNetReporterRegr
-
This event is fired when the algorithm has finished a generation.
- iterationHierarchicalSelection - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- iterationHierarchicalSelection - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- iterationMDL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- iterationMDL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- iterationRuleDeletion - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- iterationRuleDeletion - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- iterations - Variable in class keel.Algorithms.Instance_Generation.HYB.HYBGenerator
-
Iterations of the final optimal LVQ3.
- iterations - Variable in class keel.Algorithms.Instance_Generation.LVQ.LVQGenerator
-
Number of iterations of the algorithm.
- iterationsSinceBest - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.timerEvolutionStats
-
- iterationsSinceBest - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Statistics
-
- iterationsSinceBest - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Statistics
-
- IterativePartitioningFilter - Class in keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter
-
The Ensemble Filter...
- IterativePartitioningFilter() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.IterativePartitioningFilter
-
It initializes the partitions from training set
- Itest - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Test instances set.
- iVectorCombine(int[], int[]) - Static method in class keel.Algorithms.Decision_Trees.M5.Function
-
Combine two vectors in one maintaining an ascending order.
- iVectorCombine(int[], int[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Function
-
- iVectorCopy(int[], int) - Static method in class keel.Algorithms.Decision_Trees.M5.Function
-
Copy the first n elements of the array a.
- iVectorCopy(int[], int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Function
-
- IVTURS - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS
-
Title: IVTURS
Description: It contains the implementation of the Farchd algorithm
Company: KEEL
- IVTURS() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.IVTURS
-
Default constructor
- IVTURS(parseParameters) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.IVTURS
-
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
- iz(int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
Left
- iz(int, int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
Left
J
- j - Variable in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Relation
-
second element
- j - Variable in class keel.GraphInterKeel.statistical.tests.Relation
-
second element
- jacobi(double[][], double[], double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- jacobi(double[][], double[], double[][]) - Static method in class keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.MatrixCalcs
-
- JADEAlgorithm - Class in keel.Algorithms.Instance_Generation.JADE
-
JADE algorithm calling.
- JADEAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.JADE.JADEAlgorithm
-
- JADEGenerator - Class in keel.Algorithms.Instance_Generation.JADE
-
- JADEGenerator(PrototypeSet, int, int, int, int, double, double, int) - Constructor for class keel.Algorithms.Instance_Generation.JADE.JADEGenerator
-
Build a new JADEGenerator Algorithm
- JADEGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.JADE.JADEGenerator
-
Build a new JADEGenerator Algorithm
- jarFile - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- Jclec - Class in keel.GraphInterKeel.experiments
-
- Jclec(ExternalObjectDescription, Point, GraphPanel) - Constructor for class keel.GraphInterKeel.experiments.Jclec
-
Builder
- Jclec(ExternalObjectDescription, Point, GraphPanel, Parameters, int) - Constructor for class keel.GraphInterKeel.experiments.Jclec
-
Builder
- JFKNN - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.JFKNN
-
File: JFKNN.java
The JFKNN algorithm.
- JFKNN(String) - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.JFKNN.JFKNN
-
Main builder.
- jj_nt - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- jj_nt - Static variable in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- jj_nt - Static variable in class keel.Dataset.DataParser
-
- jjFillToken() - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserTokenManager
-
- jjFillToken() - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParserTokenManager
-
- jjFillToken() - Static method in class keel.Dataset.DataParserTokenManager
-
- jjstrLiteralImages - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserTokenManager
-
- jjstrLiteralImages - Static variable in class keel.Algorithms.Rule_Learning.Swap1.DataParserTokenManager
-
- jjstrLiteralImages - Static variable in class keel.Dataset.DataParserTokenManager
-
- join(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Join a prototype to a set
- join(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Join a prototype to a set
- joinOptions(String[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Joins all the options in an option array into a single string,
as might be used on the command line.
- joinOptions(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Joins all the options in an option array into a single string,
as might be used on the command line.
- joinOptions(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Joins all the options in an option array into a single string,
as might be used on the command line.
- joinOptions(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Joins all the options in an option array into a single string,
as might be used on the command line.
- joinOptions(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Joins all the options in an option array into a single string,
as might be used on the command line.
- joinOptions(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Joins all the options in an option array into a single string,
as might be used on the command line.
- joinOptions(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Joins all the options in an option array into a single string,
as might be used on the command line.
- joinOptions(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Joins all the options in an option array into a single string,
as might be used on the command line.
- joinOptions(String[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Joins all the options in an option array into a single string,
as might be used on the command line.
- Joint - Class in keel.GraphInterKeel.experiments
-
- Joint() - Constructor for class keel.GraphInterKeel.experiments.Joint
-
- JoinTemp() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
-
JoinTemp
Joins Elite population with Population into temporal population
Previous contents are lost
- JoinTemp(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Joins two populations
- jRadioButton1_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectExp
-
Classification button
- jRadioButton2_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectExp
-
Regression button
- jRadioButton3_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectExp
-
Unsupervised button
- jRadioButton4_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectExp
-
Select k-folds
- jRadioButton5_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectExp
-
Enable k-fold spinner
- jRadioButton6_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectExp
-
Enable k-fold spinner
K
- k - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.JFKNN.Triplet
-
Number of neightbours.
- k - Variable in class keel.Algorithms.Instance_Generation.BasicMethods.CNN
-
Neighborhood size in KNN
- k - Variable in class keel.Algorithms.Instance_Generation.GENN.GENNGenerator
-
Number of neighbors selected in the underlying KNN.
- k - Variable in class keel.Algorithms.Instance_Generation.LVQ.LVQPRU
-
Size of the neighborhood used in KNN
- K - Static variable in class keel.Algorithms.Instance_Generation.utilities.KNN.KNN
-
Number of neighbor-prototypes to be searched in the KNN.
- k() - Static method in class keel.Algorithms.Instance_Generation.utilities.KNN.KNN
-
Returns the current value of K.
- k - Variable in class keel.Algorithms.Instance_Generation.VQ.VQGenerator
-
Nearest-neighbors selected to assign class to each prototype of the selected data set.
- K - Static variable in class keel.Algorithms.Semi_Supervised_Learning.utilities.KNN.KNN
-
Number of neighbor-prototypes to be searched in the KNN.
- k() - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.KNN.KNN
-
Returns the current value of K.
- k - Variable in class keel.GraphInterKeel.datacf.partitionData.KFoldOptionsJDialog
-
Number of folds (k)
- k_value - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
Number of nearest neighbours considered.
- kappa() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Returns value of kappa statistic if class is nominal.
- KBInformation() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Return the total Kononenko & Bratko Information score in bits
- KBMeanInformation() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Return the Kononenko & Bratko Information score in bits per
instance.
- KBRelativeInformation() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Return the Kononenko & Bratko Relative Information score
- keel.Algorithms.Associative_Classification.ClassifierCBA - package keel.Algorithms.Associative_Classification.ClassifierCBA
-
- keel.Algorithms.Associative_Classification.ClassifierCBA2 - package keel.Algorithms.Associative_Classification.ClassifierCBA2
-
- keel.Algorithms.Associative_Classification.ClassifierCMAR - package keel.Algorithms.Associative_Classification.ClassifierCMAR
-
- keel.Algorithms.Associative_Classification.ClassifierCPAR - package keel.Algorithms.Associative_Classification.ClassifierCPAR
-
- keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR - package keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR
-
- keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD - package keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD
-
- keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA - package keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA
-
- keel.Algorithms.Clustering_Algorithms.ClusterKMeans - package keel.Algorithms.Clustering_Algorithms.ClusterKMeans
-
- keel.Algorithms.Coevolution - package keel.Algorithms.Coevolution
-
- keel.Algorithms.Coevolution.CIW_NN - package keel.Algorithms.Coevolution.CIW_NN
-
- keel.Algorithms.Coevolution.IFS_COCO - package keel.Algorithms.Coevolution.IFS_COCO
-
- keel.Algorithms.Complexity_Metrics - package keel.Algorithms.Complexity_Metrics
-
- keel.Algorithms.Decision_Trees.C45 - package keel.Algorithms.Decision_Trees.C45
-
- keel.Algorithms.Decision_Trees.C45_Binarization - package keel.Algorithms.Decision_Trees.C45_Binarization
-
- keel.Algorithms.Decision_Trees.CART - package keel.Algorithms.Decision_Trees.CART
-
- keel.Algorithms.Decision_Trees.CART.classification - package keel.Algorithms.Decision_Trees.CART.classification
-
- keel.Algorithms.Decision_Trees.CART.dataset - package keel.Algorithms.Decision_Trees.CART.dataset
-
- keel.Algorithms.Decision_Trees.CART.impurities - package keel.Algorithms.Decision_Trees.CART.impurities
-
- keel.Algorithms.Decision_Trees.CART.regression - package keel.Algorithms.Decision_Trees.CART.regression
-
- keel.Algorithms.Decision_Trees.CART.tree - package keel.Algorithms.Decision_Trees.CART.tree
-
- keel.Algorithms.Decision_Trees.DT_GA - package keel.Algorithms.Decision_Trees.DT_GA
-
- keel.Algorithms.Decision_Trees.DT_GA.C45 - package keel.Algorithms.Decision_Trees.DT_GA.C45
-
- keel.Algorithms.Decision_Trees.DT_oblicuo - package keel.Algorithms.Decision_Trees.DT_oblicuo
-
- keel.Algorithms.Decision_Trees.FunctionalTrees - package keel.Algorithms.Decision_Trees.FunctionalTrees
-
- keel.Algorithms.Decision_Trees.ID3 - package keel.Algorithms.Decision_Trees.ID3
-
- keel.Algorithms.Decision_Trees.M5 - package keel.Algorithms.Decision_Trees.M5
-
- keel.Algorithms.Decision_Trees.PUBLIC - package keel.Algorithms.Decision_Trees.PUBLIC
-
- keel.Algorithms.Decision_Trees.SLIQ - package keel.Algorithms.Decision_Trees.SLIQ
-
- keel.Algorithms.Decision_Trees.Target - package keel.Algorithms.Decision_Trees.Target
-
- keel.Algorithms.Discretizers.Ameva_Discretizer - package keel.Algorithms.Discretizers.Ameva_Discretizer
-
- keel.Algorithms.Discretizers.Basic - package keel.Algorithms.Discretizers.Basic
-
- keel.Algorithms.Discretizers.Bayesian_Discretizer - package keel.Algorithms.Discretizers.Bayesian_Discretizer
-
- keel.Algorithms.Discretizers.CACC - package keel.Algorithms.Discretizers.CACC
-
- keel.Algorithms.Discretizers.CADD_Discretizer - package keel.Algorithms.Discretizers.CADD_Discretizer
-
- keel.Algorithms.Discretizers.CAIM_Discretizer - package keel.Algorithms.Discretizers.CAIM_Discretizer
-
- keel.Algorithms.Discretizers.Chi2_Discretizer - package keel.Algorithms.Discretizers.Chi2_Discretizer
-
- keel.Algorithms.Discretizers.ChiMerge_Discretizer - package keel.Algorithms.Discretizers.ChiMerge_Discretizer
-
- keel.Algorithms.Discretizers.Cluster_Analysis - package keel.Algorithms.Discretizers.Cluster_Analysis
-
- keel.Algorithms.Discretizers.DIBD - package keel.Algorithms.Discretizers.DIBD
-
- keel.Algorithms.Discretizers.ExtendedChi2_Discretizer - package keel.Algorithms.Discretizers.ExtendedChi2_Discretizer
-
- keel.Algorithms.Discretizers.Fayyad_Discretizer - package keel.Algorithms.Discretizers.Fayyad_Discretizer
-
- keel.Algorithms.Discretizers.FixedFrequency_Discretizer - package keel.Algorithms.Discretizers.FixedFrequency_Discretizer
-
- keel.Algorithms.Discretizers.FUSINTER - package keel.Algorithms.Discretizers.FUSINTER
-
- keel.Algorithms.Discretizers.HDD - package keel.Algorithms.Discretizers.HDD
-
- keel.Algorithms.Discretizers.HellingerBD - package keel.Algorithms.Discretizers.HellingerBD
-
- keel.Algorithms.Discretizers.HeterDisc - package keel.Algorithms.Discretizers.HeterDisc
-
- keel.Algorithms.Discretizers.Id3_Discretizer - package keel.Algorithms.Discretizers.Id3_Discretizer
-
- keel.Algorithms.Discretizers.IDD - package keel.Algorithms.Discretizers.IDD
-
- keel.Algorithms.Discretizers.Khiops - package keel.Algorithms.Discretizers.Khiops
-
- keel.Algorithms.Discretizers.MantarasDist_Discretizer - package keel.Algorithms.Discretizers.MantarasDist_Discretizer
-
- keel.Algorithms.Discretizers.ModifiedChi2_Discretizer - package keel.Algorithms.Discretizers.ModifiedChi2_Discretizer
-
- keel.Algorithms.Discretizers.MODL - package keel.Algorithms.Discretizers.MODL
-
- keel.Algorithms.Discretizers.MVD - package keel.Algorithms.Discretizers.MVD
-
- keel.Algorithms.Discretizers.OneR - package keel.Algorithms.Discretizers.OneR
-
- keel.Algorithms.Discretizers.Proportional_Discretizer - package keel.Algorithms.Discretizers.Proportional_Discretizer
-
- keel.Algorithms.Discretizers.Random_Discretizer - package keel.Algorithms.Discretizers.Random_Discretizer
-
- keel.Algorithms.Discretizers.UCPD - package keel.Algorithms.Discretizers.UCPD
-
- keel.Algorithms.Discretizers.UniformFrequency_Discretizer - package keel.Algorithms.Discretizers.UniformFrequency_Discretizer
-
- keel.Algorithms.Discretizers.UniformWidth_Discretizer - package keel.Algorithms.Discretizers.UniformWidth_Discretizer
-
- keel.Algorithms.Discretizers.USD_Discretizer - package keel.Algorithms.Discretizers.USD_Discretizer
-
- keel.Algorithms.Discretizers.Zeta_Discretizer - package keel.Algorithms.Discretizers.Zeta_Discretizer
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning - package keel.Algorithms.Fuzzy_Instance_Based_Learning
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.CFKNN - package keel.Algorithms.Fuzzy_Instance_Based_Learning.CFKNN
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.D_SKNN - package keel.Algorithms.Fuzzy_Instance_Based_Learning.D_SKNN
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.FCMKNN - package keel.Algorithms.Fuzzy_Instance_Based_Learning.FCMKNN
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.FENN - package keel.Algorithms.Fuzzy_Instance_Based_Learning.FENN
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.FRKNNA - package keel.Algorithms.Fuzzy_Instance_Based_Learning.FRKNNA
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN - package keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN_FRS - package keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN_FRS
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN_VQRS - package keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN_VQRS
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyKNN - package keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyKNN
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyNPC - package keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyNPC
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.GAFuzzyKNN - package keel.Algorithms.Fuzzy_Instance_Based_Learning.GAFuzzyKNN
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.IF_KNN - package keel.Algorithms.Fuzzy_Instance_Based_Learning.IF_KNN
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.IFSKNN - package keel.Algorithms.Fuzzy_Instance_Based_Learning.IFSKNN
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.IFV_NP - package keel.Algorithms.Fuzzy_Instance_Based_Learning.IFV_NP
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.IT2FKNN - package keel.Algorithms.Fuzzy_Instance_Based_Learning.IT2FKNN
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.JFKNN - package keel.Algorithms.Fuzzy_Instance_Based_Learning.JFKNN
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.PFKNN - package keel.Algorithms.Fuzzy_Instance_Based_Learning.PFKNN
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.PosIBL - package keel.Algorithms.Fuzzy_Instance_Based_Learning.PosIBL
-
- keel.Algorithms.Fuzzy_Instance_Based_Learning.VWFuzzyKNN - package keel.Algorithms.Fuzzy_Instance_Based_Learning.VWFuzzyKNN
-
- keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW - package keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW
-
- keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.ClassifierFuzzyWangMendel - package keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.ClassifierFuzzyWangMendel
-
- keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted - package keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyAdaBoost - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyAdaBoost
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGAP - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGAP
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGP - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGP
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyLogitBoost - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyLogitBoost
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyMaxLogitBoost - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyMaxLogitBoost
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyPittsBurgh - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyPittsBurgh
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySAP - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySAP
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99 - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2 - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0 - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyGAP - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyGAP
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyGP - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyGP
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyPittsBurgh - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyPittsBurgh
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzySAP - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzySAP
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Algorithms - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Algorithms
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Classifier - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Classifier
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal
-
- keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift - package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift
-
- keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA - package keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA
-
- keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core - package keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
- keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS - package keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS
-
- keel.Algorithms.Fuzzy_Rule_Learning.Random_Sets.FSS98 - package keel.Algorithms.Fuzzy_Rule_Learning.Random_Sets.FSS98
-
- keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy - package keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy
-
- keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner - package keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner
-
- keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus - package keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus
-
- keel.Algorithms.Genetic_Rule_Learning.Ant_Miner - package keel.Algorithms.Genetic_Rule_Learning.Ant_Miner
-
- keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus - package keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus
-
- keel.Algorithms.Genetic_Rule_Learning.BioHEL - package keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
- keel.Algorithms.Genetic_Rule_Learning.Bojarczuk_GP - package keel.Algorithms.Genetic_Rule_Learning.Bojarczuk_GP
-
- keel.Algorithms.Genetic_Rule_Learning.COGIN - package keel.Algorithms.Genetic_Rule_Learning.COGIN
-
- keel.Algorithms.Genetic_Rule_Learning.Corcoran - package keel.Algorithms.Genetic_Rule_Learning.Corcoran
-
- keel.Algorithms.Genetic_Rule_Learning.CORE - package keel.Algorithms.Genetic_Rule_Learning.CORE
-
- keel.Algorithms.Genetic_Rule_Learning.DMEL - package keel.Algorithms.Genetic_Rule_Learning.DMEL
-
- keel.Algorithms.Genetic_Rule_Learning.Falco_GP - package keel.Algorithms.Genetic_Rule_Learning.Falco_GP
-
- keel.Algorithms.Genetic_Rule_Learning.GAssist - package keel.Algorithms.Genetic_Rule_Learning.GAssist
-
- keel.Algorithms.Genetic_Rule_Learning.GIL - package keel.Algorithms.Genetic_Rule_Learning.GIL
-
- keel.Algorithms.Genetic_Rule_Learning.Globals - package keel.Algorithms.Genetic_Rule_Learning.Globals
-
- keel.Algorithms.Genetic_Rule_Learning.Hider - package keel.Algorithms.Genetic_Rule_Learning.Hider
-
- keel.Algorithms.Genetic_Rule_Learning.ILGA - package keel.Algorithms.Genetic_Rule_Learning.ILGA
-
- keel.Algorithms.Genetic_Rule_Learning.LogenPro - package keel.Algorithms.Genetic_Rule_Learning.LogenPro
-
- keel.Algorithms.Genetic_Rule_Learning.M5Rules - package keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
- keel.Algorithms.Genetic_Rule_Learning.MPLCS - package keel.Algorithms.Genetic_Rule_Learning.MPLCS
-
- keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Basic - package keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Basic
-
- keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.ChiMerge_Discretizer - package keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.ChiMerge_Discretizer
-
- keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Fayyad_Discretizer - package keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Fayyad_Discretizer
-
- keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Id3_Discretizer - package keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Id3_Discretizer
-
- keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.UniformFrequency_Discretizer - package keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.UniformFrequency_Discretizer
-
- keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.UniformWidth_Discretizer - package keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.UniformWidth_Discretizer
-
- keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.USD_Discretizer - package keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.USD_Discretizer
-
- keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals - package keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals
-
- keel.Algorithms.Genetic_Rule_Learning.OCEC - package keel.Algorithms.Genetic_Rule_Learning.OCEC
-
- keel.Algorithms.Genetic_Rule_Learning.OIGA - package keel.Algorithms.Genetic_Rule_Learning.OIGA
-
- keel.Algorithms.Genetic_Rule_Learning.olexGA - package keel.Algorithms.Genetic_Rule_Learning.olexGA
-
- keel.Algorithms.Genetic_Rule_Learning.PART - package keel.Algorithms.Genetic_Rule_Learning.PART
-
- keel.Algorithms.Genetic_Rule_Learning.PSO_ACO - package keel.Algorithms.Genetic_Rule_Learning.PSO_ACO
-
- keel.Algorithms.Genetic_Rule_Learning.RMini - package keel.Algorithms.Genetic_Rule_Learning.RMini
-
- keel.Algorithms.Genetic_Rule_Learning.SIA - package keel.Algorithms.Genetic_Rule_Learning.SIA
-
- keel.Algorithms.Genetic_Rule_Learning.Tan_GP - package keel.Algorithms.Genetic_Rule_Learning.Tan_GP
-
- keel.Algorithms.Genetic_Rule_Learning.UCS - package keel.Algorithms.Genetic_Rule_Learning.UCS
-
- keel.Algorithms.Genetic_Rule_Learning.XCS - package keel.Algorithms.Genetic_Rule_Learning.XCS
-
- keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser - package keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser
-
- keel.Algorithms.Hyperrectangles.Basic - package keel.Algorithms.Hyperrectangles.Basic
-
- keel.Algorithms.Hyperrectangles.BNGE - package keel.Algorithms.Hyperrectangles.BNGE
-
- keel.Algorithms.Hyperrectangles.EACH - package keel.Algorithms.Hyperrectangles.EACH
-
- keel.Algorithms.Hyperrectangles.EHS_CHC - package keel.Algorithms.Hyperrectangles.EHS_CHC
-
- keel.Algorithms.Hyperrectangles.INNER - package keel.Algorithms.Hyperrectangles.INNER
-
- keel.Algorithms.Hyperrectangles.RISE - package keel.Algorithms.Hyperrectangles.RISE
-
- keel.Algorithms.ImbalancedClassification.Auxiliar.AUC - package keel.Algorithms.ImbalancedClassification.Auxiliar.AUC
-
- keel.Algorithms.ImbalancedClassification.CSMethods.C45CS - package keel.Algorithms.ImbalancedClassification.CSMethods.C45CS
-
- keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost - package keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost
-
- keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS - package keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS
-
- keel.Algorithms.ImbalancedClassification.Ensembles - package keel.Algorithms.ImbalancedClassification.Ensembles
-
- keel.Algorithms.ImbalancedClassification.Ensembles.Basic - package keel.Algorithms.ImbalancedClassification.Ensembles.Basic
-
- keel.Algorithms.ImbalancedClassification.Ensembles.C45 - package keel.Algorithms.ImbalancedClassification.Ensembles.C45
-
- keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic - package keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic
-
- keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Instance_Selection.EUSCHCQstat - package keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Instance_Selection.EUSCHCQstat
-
- keel.Algorithms.ImbalancedClassification.Ensembles.SMOTE - package keel.Algorithms.ImbalancedClassification.Ensembles.SMOTE
-
- keel.Algorithms.ImbalancedClassification.Ensembles.SPIDER - package keel.Algorithms.ImbalancedClassification.Ensembles.SPIDER
-
- keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H - package keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H
-
- keel.Algorithms.ImbalancedClassification.Resampling.ADASYN - package keel.Algorithms.ImbalancedClassification.Resampling.ADASYN
-
- keel.Algorithms.ImbalancedClassification.Resampling.ADOMS - package keel.Algorithms.ImbalancedClassification.Resampling.ADOMS
-
- keel.Algorithms.ImbalancedClassification.Resampling.AHCClustering - package keel.Algorithms.ImbalancedClassification.Resampling.AHCClustering
-
- keel.Algorithms.ImbalancedClassification.Resampling.Borderline_SMOTE - package keel.Algorithms.ImbalancedClassification.Resampling.Borderline_SMOTE
-
- keel.Algorithms.ImbalancedClassification.Resampling.CNN - package keel.Algorithms.ImbalancedClassification.Resampling.CNN
-
- keel.Algorithms.ImbalancedClassification.Resampling.CNN_TomekLinks - package keel.Algorithms.ImbalancedClassification.Resampling.CNN_TomekLinks
-
- keel.Algorithms.ImbalancedClassification.Resampling.CPM - package keel.Algorithms.ImbalancedClassification.Resampling.CPM
-
- keel.Algorithms.ImbalancedClassification.Resampling.NCL - package keel.Algorithms.ImbalancedClassification.Resampling.NCL
-
- keel.Algorithms.ImbalancedClassification.Resampling.OSS - package keel.Algorithms.ImbalancedClassification.Resampling.OSS
-
- keel.Algorithms.ImbalancedClassification.Resampling.RandomOverSampling - package keel.Algorithms.ImbalancedClassification.Resampling.RandomOverSampling
-
- keel.Algorithms.ImbalancedClassification.Resampling.RandomUnderSampling - package keel.Algorithms.ImbalancedClassification.Resampling.RandomUnderSampling
-
- keel.Algorithms.ImbalancedClassification.Resampling.Safe_Level_SMOTE - package keel.Algorithms.ImbalancedClassification.Resampling.Safe_Level_SMOTE
-
- keel.Algorithms.ImbalancedClassification.Resampling.SBC - package keel.Algorithms.ImbalancedClassification.Resampling.SBC
-
- keel.Algorithms.ImbalancedClassification.Resampling.SMOTE - package keel.Algorithms.ImbalancedClassification.Resampling.SMOTE
-
- keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_ENN - package keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_ENN
-
- keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB - package keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB
-
- keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets - package keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets
-
- keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_TomekLinks - package keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_TomekLinks
-
- keel.Algorithms.ImbalancedClassification.Resampling.SPIDER - package keel.Algorithms.ImbalancedClassification.Resampling.SPIDER
-
- keel.Algorithms.ImbalancedClassification.Resampling.SPIDER2 - package keel.Algorithms.ImbalancedClassification.Resampling.SPIDER2
-
- keel.Algorithms.ImbalancedClassification.Resampling.TomekLinks - package keel.Algorithms.ImbalancedClassification.Resampling.TomekLinks
-
- keel.Algorithms.Instance_Generation.AMPSO - package keel.Algorithms.Instance_Generation.AMPSO
-
- keel.Algorithms.Instance_Generation.Basic - package keel.Algorithms.Instance_Generation.Basic
-
- keel.Algorithms.Instance_Generation.BasicMethods - package keel.Algorithms.Instance_Generation.BasicMethods
-
- keel.Algorithms.Instance_Generation.BTS3 - package keel.Algorithms.Instance_Generation.BTS3
-
- keel.Algorithms.Instance_Generation.Chen - package keel.Algorithms.Instance_Generation.Chen
-
- keel.Algorithms.Instance_Generation.DE - package keel.Algorithms.Instance_Generation.DE
-
- keel.Algorithms.Instance_Generation.DEGL - package keel.Algorithms.Instance_Generation.DEGL
-
- keel.Algorithms.Instance_Generation.Depur - package keel.Algorithms.Instance_Generation.Depur
-
- keel.Algorithms.Instance_Generation.DROP3LVQ3 - package keel.Algorithms.Instance_Generation.DROP3LVQ3
-
- keel.Algorithms.Instance_Generation.DROP3PSO - package keel.Algorithms.Instance_Generation.DROP3PSO
-
- keel.Algorithms.Instance_Generation.DROP3SFLSDE - package keel.Algorithms.Instance_Generation.DROP3SFLSDE
-
- keel.Algorithms.Instance_Generation.DSM - package keel.Algorithms.Instance_Generation.DSM
-
- keel.Algorithms.Instance_Generation.ENPC - package keel.Algorithms.Instance_Generation.ENPC
-
- keel.Algorithms.Instance_Generation.GENN - package keel.Algorithms.Instance_Generation.GENN
-
- keel.Algorithms.Instance_Generation.GMCA - package keel.Algorithms.Instance_Generation.GMCA
-
- keel.Algorithms.Instance_Generation.HYB - package keel.Algorithms.Instance_Generation.HYB
-
- keel.Algorithms.Instance_Generation.ICFLVQ3 - package keel.Algorithms.Instance_Generation.ICFLVQ3
-
- keel.Algorithms.Instance_Generation.ICFPSO - package keel.Algorithms.Instance_Generation.ICFPSO
-
- keel.Algorithms.Instance_Generation.ICFSFLSDE - package keel.Algorithms.Instance_Generation.ICFSFLSDE
-
- keel.Algorithms.Instance_Generation.ICPL - package keel.Algorithms.Instance_Generation.ICPL
-
- keel.Algorithms.Instance_Generation.IPLDE - package keel.Algorithms.Instance_Generation.IPLDE
-
- keel.Algorithms.Instance_Generation.JADE - package keel.Algorithms.Instance_Generation.JADE
-
- keel.Algorithms.Instance_Generation.LVQ - package keel.Algorithms.Instance_Generation.LVQ
-
- keel.Algorithms.Instance_Generation.MCA - package keel.Algorithms.Instance_Generation.MCA
-
- keel.Algorithms.Instance_Generation.MixtGauss - package keel.Algorithms.Instance_Generation.MixtGauss
-
- keel.Algorithms.Instance_Generation.MSE - package keel.Algorithms.Instance_Generation.MSE
-
- keel.Algorithms.Instance_Generation.OBDE - package keel.Algorithms.Instance_Generation.OBDE
-
- keel.Algorithms.Instance_Generation.PNN - package keel.Algorithms.Instance_Generation.PNN
-
- keel.Algorithms.Instance_Generation.POC - package keel.Algorithms.Instance_Generation.POC
-
- keel.Algorithms.Instance_Generation.PSCSA - package keel.Algorithms.Instance_Generation.PSCSA
-
- keel.Algorithms.Instance_Generation.PSO - package keel.Algorithms.Instance_Generation.PSO
-
- keel.Algorithms.Instance_Generation.RSP - package keel.Algorithms.Instance_Generation.RSP
-
- keel.Algorithms.Instance_Generation.SADE - package keel.Algorithms.Instance_Generation.SADE
-
- keel.Algorithms.Instance_Generation.SFLSDE - package keel.Algorithms.Instance_Generation.SFLSDE
-
- keel.Algorithms.Instance_Generation.SGP - package keel.Algorithms.Instance_Generation.SGP
-
- keel.Algorithms.Instance_Generation.SSMALVQ3 - package keel.Algorithms.Instance_Generation.SSMALVQ3
-
- keel.Algorithms.Instance_Generation.SSMAPSO - package keel.Algorithms.Instance_Generation.SSMAPSO
-
- keel.Algorithms.Instance_Generation.SSMASFLSDE - package keel.Algorithms.Instance_Generation.SSMASFLSDE
-
- keel.Algorithms.Instance_Generation.Trivial - package keel.Algorithms.Instance_Generation.Trivial
-
- keel.Algorithms.Instance_Generation.utilities - package keel.Algorithms.Instance_Generation.utilities
-
- keel.Algorithms.Instance_Generation.utilities.KNN - package keel.Algorithms.Instance_Generation.utilities.KNN
-
- keel.Algorithms.Instance_Generation.VQ - package keel.Algorithms.Instance_Generation.VQ
-
- keel.Algorithms.Instance_Selection.AllKNN - package keel.Algorithms.Instance_Selection.AllKNN
-
- keel.Algorithms.Instance_Selection.BSE - package keel.Algorithms.Instance_Selection.BSE
-
- keel.Algorithms.Instance_Selection.CCIS - package keel.Algorithms.Instance_Selection.CCIS
-
- keel.Algorithms.Instance_Selection.CHC - package keel.Algorithms.Instance_Selection.CHC
-
- keel.Algorithms.Instance_Selection.CNN - package keel.Algorithms.Instance_Selection.CNN
-
- keel.Algorithms.Instance_Selection.CoCoIS - package keel.Algorithms.Instance_Selection.CoCoIS
-
- keel.Algorithms.Instance_Selection.CPruner - package keel.Algorithms.Instance_Selection.CPruner
-
- keel.Algorithms.Instance_Selection.DROP1 - package keel.Algorithms.Instance_Selection.DROP1
-
- keel.Algorithms.Instance_Selection.DROP2 - package keel.Algorithms.Instance_Selection.DROP2
-
- keel.Algorithms.Instance_Selection.DROP3 - package keel.Algorithms.Instance_Selection.DROP3
-
- keel.Algorithms.Instance_Selection.ENN - package keel.Algorithms.Instance_Selection.ENN
-
- keel.Algorithms.Instance_Selection.ENNRS - package keel.Algorithms.Instance_Selection.ENNRS
-
- keel.Algorithms.Instance_Selection.ENNTh - package keel.Algorithms.Instance_Selection.ENNTh
-
- keel.Algorithms.Instance_Selection.ENRBF - package keel.Algorithms.Instance_Selection.ENRBF
-
- keel.Algorithms.Instance_Selection.Explore - package keel.Algorithms.Instance_Selection.Explore
-
- keel.Algorithms.Instance_Selection.FCNN - package keel.Algorithms.Instance_Selection.FCNN
-
- keel.Algorithms.Instance_Selection.GA_MSE_CC_FSM - package keel.Algorithms.Instance_Selection.GA_MSE_CC_FSM
-
- keel.Algorithms.Instance_Selection.GCNN - package keel.Algorithms.Instance_Selection.GCNN
-
- keel.Algorithms.Instance_Selection.GG - package keel.Algorithms.Instance_Selection.GG
-
- keel.Algorithms.Instance_Selection.GGA - package keel.Algorithms.Instance_Selection.GGA
-
- keel.Algorithms.Instance_Selection.HMNEI - package keel.Algorithms.Instance_Selection.HMNEI
-
- keel.Algorithms.Instance_Selection.IB2 - package keel.Algorithms.Instance_Selection.IB2
-
- keel.Algorithms.Instance_Selection.IB3 - package keel.Algorithms.Instance_Selection.IB3
-
- keel.Algorithms.Instance_Selection.ICF - package keel.Algorithms.Instance_Selection.ICF
-
- keel.Algorithms.Instance_Selection.IGA - package keel.Algorithms.Instance_Selection.IGA
-
- keel.Algorithms.Instance_Selection.IKNN - package keel.Algorithms.Instance_Selection.IKNN
-
- keel.Algorithms.Instance_Selection.MCNN - package keel.Algorithms.Instance_Selection.MCNN
-
- keel.Algorithms.Instance_Selection.MCS - package keel.Algorithms.Instance_Selection.MCS
-
- keel.Algorithms.Instance_Selection.MENN - package keel.Algorithms.Instance_Selection.MENN
-
- keel.Algorithms.Instance_Selection.MNV - package keel.Algorithms.Instance_Selection.MNV
-
- keel.Algorithms.Instance_Selection.ModelCS - package keel.Algorithms.Instance_Selection.ModelCS
-
- keel.Algorithms.Instance_Selection.MSS - package keel.Algorithms.Instance_Selection.MSS
-
- keel.Algorithms.Instance_Selection.Multiedit - package keel.Algorithms.Instance_Selection.Multiedit
-
- keel.Algorithms.Instance_Selection.NCNEdit - package keel.Algorithms.Instance_Selection.NCNEdit
-
- keel.Algorithms.Instance_Selection.NRMCS - package keel.Algorithms.Instance_Selection.NRMCS
-
- keel.Algorithms.Instance_Selection.PBIL - package keel.Algorithms.Instance_Selection.PBIL
-
- keel.Algorithms.Instance_Selection.POP - package keel.Algorithms.Instance_Selection.POP
-
- keel.Algorithms.Instance_Selection.PSC - package keel.Algorithms.Instance_Selection.PSC
-
- keel.Algorithms.Instance_Selection.PSRCG - package keel.Algorithms.Instance_Selection.PSRCG
-
- keel.Algorithms.Instance_Selection.Reconsistent - package keel.Algorithms.Instance_Selection.Reconsistent
-
- keel.Algorithms.Instance_Selection.RENN - package keel.Algorithms.Instance_Selection.RENN
-
- keel.Algorithms.Instance_Selection.RMHC - package keel.Algorithms.Instance_Selection.RMHC
-
- keel.Algorithms.Instance_Selection.RNG - package keel.Algorithms.Instance_Selection.RNG
-
- keel.Algorithms.Instance_Selection.RNN - package keel.Algorithms.Instance_Selection.RNN
-
- keel.Algorithms.Instance_Selection.SGA - package keel.Algorithms.Instance_Selection.SGA
-
- keel.Algorithms.Instance_Selection.Shrink - package keel.Algorithms.Instance_Selection.Shrink
-
- keel.Algorithms.Instance_Selection.SNN - package keel.Algorithms.Instance_Selection.SNN
-
- keel.Algorithms.Instance_Selection.SSMA - package keel.Algorithms.Instance_Selection.SSMA
-
- keel.Algorithms.Instance_Selection.SVBPS - package keel.Algorithms.Instance_Selection.SVBPS
-
- keel.Algorithms.Instance_Selection.TCNN - package keel.Algorithms.Instance_Selection.TCNN
-
- keel.Algorithms.Instance_Selection.TRKNN - package keel.Algorithms.Instance_Selection.TRKNN
-
- keel.Algorithms.Instance_Selection.VSM - package keel.Algorithms.Instance_Selection.VSM
-
- keel.Algorithms.Instance_Selection.ZhangTS - package keel.Algorithms.Instance_Selection.ZhangTS
-
- keel.Algorithms.Lazy_Learning - package keel.Algorithms.Lazy_Learning
-
- keel.Algorithms.Lazy_Learning.CamNN - package keel.Algorithms.Lazy_Learning.CamNN
-
- keel.Algorithms.Lazy_Learning.CenterNN - package keel.Algorithms.Lazy_Learning.CenterNN
-
- keel.Algorithms.Lazy_Learning.CPW - package keel.Algorithms.Lazy_Learning.CPW
-
- keel.Algorithms.Lazy_Learning.CW - package keel.Algorithms.Lazy_Learning.CW
-
- keel.Algorithms.Lazy_Learning.Deeps - package keel.Algorithms.Lazy_Learning.Deeps
-
- keel.Algorithms.Lazy_Learning.DeepsNN - package keel.Algorithms.Lazy_Learning.DeepsNN
-
- keel.Algorithms.Lazy_Learning.IDIBL - package keel.Algorithms.Lazy_Learning.IDIBL
-
- keel.Algorithms.Lazy_Learning.KNN - package keel.Algorithms.Lazy_Learning.KNN
-
- keel.Algorithms.Lazy_Learning.KNNAdaptive - package keel.Algorithms.Lazy_Learning.KNNAdaptive
-
- keel.Algorithms.Lazy_Learning.KSNN - package keel.Algorithms.Lazy_Learning.KSNN
-
- keel.Algorithms.Lazy_Learning.KStar - package keel.Algorithms.Lazy_Learning.KStar
-
- keel.Algorithms.Lazy_Learning.LazyDT - package keel.Algorithms.Lazy_Learning.LazyDT
-
- keel.Algorithms.Lazy_Learning.LBR - package keel.Algorithms.Lazy_Learning.LBR
-
- keel.Algorithms.Lazy_Learning.NM - package keel.Algorithms.Lazy_Learning.NM
-
- keel.Algorithms.Lazy_Learning.NSC - package keel.Algorithms.Lazy_Learning.NSC
-
- keel.Algorithms.Lazy_Learning.PW - package keel.Algorithms.Lazy_Learning.PW
-
- keel.Algorithms.LQD.methods.FGFS_costInstances - package keel.Algorithms.LQD.methods.FGFS_costInstances
-
- keel.Algorithms.LQD.methods.FGFS_Minimum_Risk - package keel.Algorithms.LQD.methods.FGFS_Minimum_Risk
-
- keel.Algorithms.LQD.methods.FGFS_Original - package keel.Algorithms.LQD.methods.FGFS_Original
-
- keel.Algorithms.LQD.methods.FGFS_Rule_Weight - package keel.Algorithms.LQD.methods.FGFS_Rule_Weight
-
- keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty - package keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty
-
- keel.Algorithms.LQD.preprocess.Expert - package keel.Algorithms.LQD.preprocess.Expert
-
- keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE - package keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE
-
- keel.Algorithms.LQD.preprocess.Prelabelling - package keel.Algorithms.LQD.preprocess.Prelabelling
-
- keel.Algorithms.LQD.preprocess.Prelabelling_Expert - package keel.Algorithms.LQD.preprocess.Prelabelling_Expert
-
- keel.Algorithms.LQD.tests.IntermediateBoost - package keel.Algorithms.LQD.tests.IntermediateBoost
-
- keel.Algorithms.LQD.tests.Results - package keel.Algorithms.LQD.tests.Results
-
- keel.Algorithms.MIL - package keel.Algorithms.MIL
-
- keel.Algorithms.MIL.APR - package keel.Algorithms.MIL.APR
-
- keel.Algorithms.MIL.APR.GFS_AllPositive_APR - package keel.Algorithms.MIL.APR.GFS_AllPositive_APR
-
- keel.Algorithms.MIL.APR.GFS_ElimCount_APR - package keel.Algorithms.MIL.APR.GFS_ElimCount_APR
-
- keel.Algorithms.MIL.APR.GFS_Kde_APR - package keel.Algorithms.MIL.APR.GFS_Kde_APR
-
- keel.Algorithms.MIL.APR.IteratedDiscrimination - package keel.Algorithms.MIL.APR.IteratedDiscrimination
-
- keel.Algorithms.MIL.Diverse_Density.DD - package keel.Algorithms.MIL.Diverse_Density.DD
-
- keel.Algorithms.MIL.Diverse_Density.EMDD - package keel.Algorithms.MIL.Diverse_Density.EMDD
-
- keel.Algorithms.MIL.Diverse_Density.Optimization - package keel.Algorithms.MIL.Diverse_Density.Optimization
-
- keel.Algorithms.MIL.G3PMI - package keel.Algorithms.MIL.G3PMI
-
- keel.Algorithms.MIL.Nearest_Neighbour - package keel.Algorithms.MIL.Nearest_Neighbour
-
- keel.Algorithms.MIL.Nearest_Neighbour.CKNN - package keel.Algorithms.MIL.Nearest_Neighbour.CKNN
-
- keel.Algorithms.MIL.Nearest_Neighbour.KNN - package keel.Algorithms.MIL.Nearest_Neighbour.KNN
-
- keel.Algorithms.Neural_Networks.ClassifierMLPerceptron - package keel.Algorithms.Neural_Networks.ClassifierMLPerceptron
-
- keel.Algorithms.Neural_Networks.ensemble - package keel.Algorithms.Neural_Networks.ensemble
-
- keel.Algorithms.Neural_Networks.EvRBF_CL - package keel.Algorithms.Neural_Networks.EvRBF_CL
-
- keel.Algorithms.Neural_Networks.gann - package keel.Algorithms.Neural_Networks.gann
-
- keel.Algorithms.Neural_Networks.gmdh - package keel.Algorithms.Neural_Networks.gmdh
-
- keel.Algorithms.Neural_Networks.IRPropPlus_Clas - package keel.Algorithms.Neural_Networks.IRPropPlus_Clas
-
- keel.Algorithms.Neural_Networks.IRPropPlus_Regr - package keel.Algorithms.Neural_Networks.IRPropPlus_Regr
-
- keel.Algorithms.Neural_Networks.LVQ - package keel.Algorithms.Neural_Networks.LVQ
-
- keel.Algorithms.Neural_Networks.ModelMLPerceptron - package keel.Algorithms.Neural_Networks.ModelMLPerceptron
-
- keel.Algorithms.Neural_Networks.net - package keel.Algorithms.Neural_Networks.net
-
- keel.Algorithms.Neural_Networks.NNEP_Clas - package keel.Algorithms.Neural_Networks.NNEP_Clas
-
- keel.Algorithms.Neural_Networks.NNEP_Clas.algorithm.classification - package keel.Algorithms.Neural_Networks.NNEP_Clas.algorithm.classification
-
- keel.Algorithms.Neural_Networks.NNEP_Clas.listener - package keel.Algorithms.Neural_Networks.NNEP_Clas.listener
-
- keel.Algorithms.Neural_Networks.NNEP_Clas.neuralnet - package keel.Algorithms.Neural_Networks.NNEP_Clas.neuralnet
-
- keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification - package keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification
-
- keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax - package keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax
-
- keel.Algorithms.Neural_Networks.NNEP_Clas.problem.errorfunctions - package keel.Algorithms.Neural_Networks.NNEP_Clas.problem.errorfunctions
-
- keel.Algorithms.Neural_Networks.NNEP_Common - package keel.Algorithms.Neural_Networks.NNEP_Common
-
- keel.Algorithms.Neural_Networks.NNEP_Common.algorithm - package keel.Algorithms.Neural_Networks.NNEP_Common.algorithm
-
- keel.Algorithms.Neural_Networks.NNEP_Common.data - package keel.Algorithms.Neural_Networks.NNEP_Common.data
-
- keel.Algorithms.Neural_Networks.NNEP_Common.initiators - package keel.Algorithms.Neural_Networks.NNEP_Common.initiators
-
- keel.Algorithms.Neural_Networks.NNEP_Common.mutators - package keel.Algorithms.Neural_Networks.NNEP_Common.mutators
-
- keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric - package keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric
-
- keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural - package keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural
-
- keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet - package keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet
-
- keel.Algorithms.Neural_Networks.NNEP_Common.problem - package keel.Algorithms.Neural_Networks.NNEP_Common.problem
-
- keel.Algorithms.Neural_Networks.NNEP_Common.problem.errorfunctions - package keel.Algorithms.Neural_Networks.NNEP_Common.problem.errorfunctions
-
- keel.Algorithms.Neural_Networks.NNEP_Common.util.normalizer - package keel.Algorithms.Neural_Networks.NNEP_Common.util.normalizer
-
- keel.Algorithms.Neural_Networks.NNEP_Common.util.random - package keel.Algorithms.Neural_Networks.NNEP_Common.util.random
-
- keel.Algorithms.Neural_Networks.NNEP_Regr - package keel.Algorithms.Neural_Networks.NNEP_Regr
-
- keel.Algorithms.Neural_Networks.NNEP_Regr.listener - package keel.Algorithms.Neural_Networks.NNEP_Regr.listener
-
- keel.Algorithms.Neural_Networks.NNEP_Regr.neuralnet - package keel.Algorithms.Neural_Networks.NNEP_Regr.neuralnet
-
- keel.Algorithms.Neural_Networks.NNEP_Regr.problem.errorfunctions - package keel.Algorithms.Neural_Networks.NNEP_Regr.problem.errorfunctions
-
- keel.Algorithms.Neural_Networks.NNEP_Regr.problem.regression - package keel.Algorithms.Neural_Networks.NNEP_Regr.problem.regression
-
- keel.Algorithms.Neural_Networks.RBFN - package keel.Algorithms.Neural_Networks.RBFN
-
- keel.Algorithms.Neural_Networks.RBFN_CL - package keel.Algorithms.Neural_Networks.RBFN_CL
-
- keel.Algorithms.Neural_Networks.RBFN_decremental - package keel.Algorithms.Neural_Networks.RBFN_decremental
-
- keel.Algorithms.Neural_Networks.RBFN_decremental_CL - package keel.Algorithms.Neural_Networks.RBFN_decremental_CL
-
- keel.Algorithms.Neural_Networks.RBFN_incremental - package keel.Algorithms.Neural_Networks.RBFN_incremental
-
- keel.Algorithms.Neural_Networks.RBFN_incremental_CL - package keel.Algorithms.Neural_Networks.RBFN_incremental_CL
-
- keel.Algorithms.Preprocess.Basic - package keel.Algorithms.Preprocess.Basic
-
- keel.Algorithms.Preprocess.Converter - package keel.Algorithms.Preprocess.Converter
-
- keel.Algorithms.Preprocess.Feature_Selection - package keel.Algorithms.Preprocess.Feature_Selection
-
- keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms - package keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms
-
- keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CHC.filter - package keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CHC.filter
-
- keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CHC.wrapper - package keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CHC.wrapper
-
- keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_BinCod.filter - package keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_BinCod.filter
-
- keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_BinCod.wrapper - package keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_BinCod.wrapper
-
- keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_IntCod.filter - package keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_IntCod.filter
-
- keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_IntCod.wrapper - package keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_IntCod.wrapper
-
- keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_BinCod.filter - package keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_BinCod.filter
-
- keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_BinCod.wrapper - package keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_BinCod.wrapper
-
- keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_IntCod.filter - package keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_IntCod.filter
-
- keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_IntCod.wrapper - package keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_IntCod.wrapper
-
- keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GGA - package keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GGA
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.ABB_IEP - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.ABB_IEP
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.ABB_LIU - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.ABB_LIU
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.ABB_MI - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.ABB_MI
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.BACKWARD.filter - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.BACKWARD.filter
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.BACKWARD.wrapper - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.BACKWARD.wrapper
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FOCUS - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FOCUS
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FORWARD.filter - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FORWARD.filter
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FORWARD.wrapper - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FORWARD.wrapper
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FULL_IEP - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FULL_IEP
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FULL_LIU - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FULL_LIU
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FULL_MI - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FULL_MI
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.filter.im - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.filter.im
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.filter.inconsistency - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.filter.inconsistency
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.wrapper - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.wrapper
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVF - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVF
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVF_IEP - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVF_IEP
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVW - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVW
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.RELIEF - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.RELIEF
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.RELIEF_F - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.RELIEF_F
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_IEP_FS - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_IEP_FS
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_LIU_FS - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_LIU_FS
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_MI_FS - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_MI_FS
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_IEP_FS - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_IEP_FS
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_LIU_FS - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_LIU_FS
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_MI_FS - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_MI_FS
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_IEP_FS - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_IEP_FS
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_LIU_FS - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_LIU_FS
-
- keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_MI_FS - package keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_MI_FS
-
- keel.Algorithms.Preprocess.Feature_Selection.Shared - package keel.Algorithms.Preprocess.Feature_Selection.Shared
-
- keel.Algorithms.Preprocess.Instance_Selection.AllKNN - package keel.Algorithms.Preprocess.Instance_Selection.AllKNN
-
- keel.Algorithms.Preprocess.Instance_Selection.BSE - package keel.Algorithms.Preprocess.Instance_Selection.BSE
-
- keel.Algorithms.Preprocess.Instance_Selection.CCIS - package keel.Algorithms.Preprocess.Instance_Selection.CCIS
-
- keel.Algorithms.Preprocess.Instance_Selection.CHC - package keel.Algorithms.Preprocess.Instance_Selection.CHC
-
- keel.Algorithms.Preprocess.Instance_Selection.CNN - package keel.Algorithms.Preprocess.Instance_Selection.CNN
-
- keel.Algorithms.Preprocess.Instance_Selection.CoCoIS - package keel.Algorithms.Preprocess.Instance_Selection.CoCoIS
-
- keel.Algorithms.Preprocess.Instance_Selection.CPruner - package keel.Algorithms.Preprocess.Instance_Selection.CPruner
-
- keel.Algorithms.Preprocess.Instance_Selection.DROP1 - package keel.Algorithms.Preprocess.Instance_Selection.DROP1
-
- keel.Algorithms.Preprocess.Instance_Selection.DROP2 - package keel.Algorithms.Preprocess.Instance_Selection.DROP2
-
- keel.Algorithms.Preprocess.Instance_Selection.DROP3 - package keel.Algorithms.Preprocess.Instance_Selection.DROP3
-
- keel.Algorithms.Preprocess.Instance_Selection.ENN - package keel.Algorithms.Preprocess.Instance_Selection.ENN
-
- keel.Algorithms.Preprocess.Instance_Selection.ENNRS - package keel.Algorithms.Preprocess.Instance_Selection.ENNRS
-
- keel.Algorithms.Preprocess.Instance_Selection.ENNTh - package keel.Algorithms.Preprocess.Instance_Selection.ENNTh
-
- keel.Algorithms.Preprocess.Instance_Selection.ENRBF - package keel.Algorithms.Preprocess.Instance_Selection.ENRBF
-
- keel.Algorithms.Preprocess.Instance_Selection.Explore - package keel.Algorithms.Preprocess.Instance_Selection.Explore
-
- keel.Algorithms.Preprocess.Instance_Selection.FCNN - package keel.Algorithms.Preprocess.Instance_Selection.FCNN
-
- keel.Algorithms.Preprocess.Instance_Selection.GA_MSE_CC_FSM - package keel.Algorithms.Preprocess.Instance_Selection.GA_MSE_CC_FSM
-
- keel.Algorithms.Preprocess.Instance_Selection.GCNN - package keel.Algorithms.Preprocess.Instance_Selection.GCNN
-
- keel.Algorithms.Preprocess.Instance_Selection.GG - package keel.Algorithms.Preprocess.Instance_Selection.GG
-
- keel.Algorithms.Preprocess.Instance_Selection.GGA - package keel.Algorithms.Preprocess.Instance_Selection.GGA
-
- keel.Algorithms.Preprocess.Instance_Selection.HMNEI - package keel.Algorithms.Preprocess.Instance_Selection.HMNEI
-
- keel.Algorithms.Preprocess.Instance_Selection.IB2 - package keel.Algorithms.Preprocess.Instance_Selection.IB2
-
- keel.Algorithms.Preprocess.Instance_Selection.IB3 - package keel.Algorithms.Preprocess.Instance_Selection.IB3
-
- keel.Algorithms.Preprocess.Instance_Selection.ICF - package keel.Algorithms.Preprocess.Instance_Selection.ICF
-
- keel.Algorithms.Preprocess.Instance_Selection.IGA - package keel.Algorithms.Preprocess.Instance_Selection.IGA
-
- keel.Algorithms.Preprocess.Instance_Selection.IKNN - package keel.Algorithms.Preprocess.Instance_Selection.IKNN
-
- keel.Algorithms.Preprocess.Instance_Selection.MCNN - package keel.Algorithms.Preprocess.Instance_Selection.MCNN
-
- keel.Algorithms.Preprocess.Instance_Selection.MCS - package keel.Algorithms.Preprocess.Instance_Selection.MCS
-
- keel.Algorithms.Preprocess.Instance_Selection.MENN - package keel.Algorithms.Preprocess.Instance_Selection.MENN
-
- keel.Algorithms.Preprocess.Instance_Selection.MNV - package keel.Algorithms.Preprocess.Instance_Selection.MNV
-
- keel.Algorithms.Preprocess.Instance_Selection.ModelCS - package keel.Algorithms.Preprocess.Instance_Selection.ModelCS
-
- keel.Algorithms.Preprocess.Instance_Selection.MSS - package keel.Algorithms.Preprocess.Instance_Selection.MSS
-
- keel.Algorithms.Preprocess.Instance_Selection.Multiedit - package keel.Algorithms.Preprocess.Instance_Selection.Multiedit
-
- keel.Algorithms.Preprocess.Instance_Selection.NCNEdit - package keel.Algorithms.Preprocess.Instance_Selection.NCNEdit
-
- keel.Algorithms.Preprocess.Instance_Selection.NRMCS - package keel.Algorithms.Preprocess.Instance_Selection.NRMCS
-
- keel.Algorithms.Preprocess.Instance_Selection.PBIL - package keel.Algorithms.Preprocess.Instance_Selection.PBIL
-
- keel.Algorithms.Preprocess.Instance_Selection.POP - package keel.Algorithms.Preprocess.Instance_Selection.POP
-
- keel.Algorithms.Preprocess.Instance_Selection.PSC - package keel.Algorithms.Preprocess.Instance_Selection.PSC
-
- keel.Algorithms.Preprocess.Instance_Selection.PSRCG - package keel.Algorithms.Preprocess.Instance_Selection.PSRCG
-
- keel.Algorithms.Preprocess.Instance_Selection.Reconsistent - package keel.Algorithms.Preprocess.Instance_Selection.Reconsistent
-
- keel.Algorithms.Preprocess.Instance_Selection.RENN - package keel.Algorithms.Preprocess.Instance_Selection.RENN
-
- keel.Algorithms.Preprocess.Instance_Selection.RMHC - package keel.Algorithms.Preprocess.Instance_Selection.RMHC
-
- keel.Algorithms.Preprocess.Instance_Selection.RNG - package keel.Algorithms.Preprocess.Instance_Selection.RNG
-
- keel.Algorithms.Preprocess.Instance_Selection.RNN - package keel.Algorithms.Preprocess.Instance_Selection.RNN
-
- keel.Algorithms.Preprocess.Instance_Selection.SGA - package keel.Algorithms.Preprocess.Instance_Selection.SGA
-
- keel.Algorithms.Preprocess.Instance_Selection.Shrink - package keel.Algorithms.Preprocess.Instance_Selection.Shrink
-
- keel.Algorithms.Preprocess.Instance_Selection.SNN - package keel.Algorithms.Preprocess.Instance_Selection.SNN
-
- keel.Algorithms.Preprocess.Instance_Selection.SSMA - package keel.Algorithms.Preprocess.Instance_Selection.SSMA
-
- keel.Algorithms.Preprocess.Instance_Selection.SVBPS - package keel.Algorithms.Preprocess.Instance_Selection.SVBPS
-
- keel.Algorithms.Preprocess.Instance_Selection.TCNN - package keel.Algorithms.Preprocess.Instance_Selection.TCNN
-
- keel.Algorithms.Preprocess.Instance_Selection.TRKNN - package keel.Algorithms.Preprocess.Instance_Selection.TRKNN
-
- keel.Algorithms.Preprocess.Instance_Selection.VSM - package keel.Algorithms.Preprocess.Instance_Selection.VSM
-
- keel.Algorithms.Preprocess.Instance_Selection.ZhangTS - package keel.Algorithms.Preprocess.Instance_Selection.ZhangTS
-
- keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues - package keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues
-
- keel.Algorithms.Preprocess.Missing_Values.BPCA - package keel.Algorithms.Preprocess.Missing_Values.BPCA
-
- keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues - package keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues
-
- keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue - package keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue
-
- keel.Algorithms.Preprocess.Missing_Values.EM - package keel.Algorithms.Preprocess.Missing_Values.EM
-
- keel.Algorithms.Preprocess.Missing_Values.EM.util - package keel.Algorithms.Preprocess.Missing_Values.EM.util
-
- keel.Algorithms.Preprocess.Missing_Values.EventCovering - package keel.Algorithms.Preprocess.Missing_Values.EventCovering
-
- keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat - package keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat
-
- keel.Algorithms.Preprocess.Missing_Values.fkmeans - package keel.Algorithms.Preprocess.Missing_Values.fkmeans
-
- keel.Algorithms.Preprocess.Missing_Values.ignore_missing - package keel.Algorithms.Preprocess.Missing_Values.ignore_missing
-
- keel.Algorithms.Preprocess.Missing_Values.kmeansImpute - package keel.Algorithms.Preprocess.Missing_Values.kmeansImpute
-
- keel.Algorithms.Preprocess.Missing_Values.knnImpute - package keel.Algorithms.Preprocess.Missing_Values.knnImpute
-
- keel.Algorithms.Preprocess.Missing_Values.LLSImpute - package keel.Algorithms.Preprocess.Missing_Values.LLSImpute
-
- keel.Algorithms.Preprocess.Missing_Values.MostCommonValue - package keel.Algorithms.Preprocess.Missing_Values.MostCommonValue
-
- keel.Algorithms.Preprocess.Missing_Values.SVDimpute - package keel.Algorithms.Preprocess.Missing_Values.SVDimpute
-
- keel.Algorithms.Preprocess.Missing_Values.svmImpute - package keel.Algorithms.Preprocess.Missing_Values.svmImpute
-
- keel.Algorithms.Preprocess.Missing_Values.wknnImpute - package keel.Algorithms.Preprocess.Missing_Values.wknnImpute
-
- keel.Algorithms.Preprocess.NoiseFilters.ANR - package keel.Algorithms.Preprocess.NoiseFilters.ANR
-
- keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter - package keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter
-
- keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter - package keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter
-
- keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter - package keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter
-
- keel.Algorithms.Preprocess.NoiseFilters.INFFC - package keel.Algorithms.Preprocess.NoiseFilters.INFFC
-
- keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter - package keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter
-
- keel.Algorithms.Preprocess.NoiseFilters.PANDA - package keel.Algorithms.Preprocess.NoiseFilters.PANDA
-
- keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter - package keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter
-
- keel.Algorithms.Preprocess.Transformations.CleanAttributes - package keel.Algorithms.Preprocess.Transformations.CleanAttributes
-
- keel.Algorithms.Preprocess.Transformations.decimal_scaling - package keel.Algorithms.Preprocess.Transformations.decimal_scaling
-
- keel.Algorithms.Preprocess.Transformations.min_max - package keel.Algorithms.Preprocess.Transformations.min_max
-
- keel.Algorithms.Preprocess.Transformations.Nominal2Binary - package keel.Algorithms.Preprocess.Transformations.Nominal2Binary
-
- keel.Algorithms.Preprocess.Transformations.z_score - package keel.Algorithms.Preprocess.Transformations.z_score
-
- keel.Algorithms.PSO_Learning.CPSO - package keel.Algorithms.PSO_Learning.CPSO
-
- keel.Algorithms.PSO_Learning.LDWPSO - package keel.Algorithms.PSO_Learning.LDWPSO
-
- keel.Algorithms.PSO_Learning.PSOLDA - package keel.Algorithms.PSO_Learning.PSOLDA
-
- keel.Algorithms.PSO_Learning.REPSO - package keel.Algorithms.PSO_Learning.REPSO
-
- keel.Algorithms.RE_SL_Methods.LEL_TSK - package keel.Algorithms.RE_SL_Methods.LEL_TSK
-
- keel.Algorithms.RE_SL_Methods.MamWM - package keel.Algorithms.RE_SL_Methods.MamWM
-
- keel.Algorithms.RE_SL_Methods.mogulHC - package keel.Algorithms.RE_SL_Methods.mogulHC
-
- keel.Algorithms.RE_SL_Methods.mogulIRL - package keel.Algorithms.RE_SL_Methods.mogulIRL
-
- keel.Algorithms.RE_SL_Methods.mogulSC - package keel.Algorithms.RE_SL_Methods.mogulSC
-
- keel.Algorithms.RE_SL_Methods.P_FCS1 - package keel.Algorithms.RE_SL_Methods.P_FCS1
-
- keel.Algorithms.RE_SL_Methods.SEFC - package keel.Algorithms.RE_SL_Methods.SEFC
-
- keel.Algorithms.RE_SL_Methods.TSK_IRL - package keel.Algorithms.RE_SL_Methods.TSK_IRL
-
- keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM - package keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM
-
- keel.Algorithms.RE_SL_Postprocess.Mam2TSK - package keel.Algorithms.RE_SL_Postprocess.Mam2TSK
-
- keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB - package keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB
-
- keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules - package keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules
-
- keel.Algorithms.RE_SL_Postprocess.MamSelect - package keel.Algorithms.RE_SL_Postprocess.MamSelect
-
- keel.Algorithms.RE_SL_Postprocess.MamWSelect - package keel.Algorithms.RE_SL_Postprocess.MamWSelect
-
- keel.Algorithms.RE_SL_Postprocess.MamWTuning - package keel.Algorithms.RE_SL_Postprocess.MamWTuning
-
- keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs - package keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs
-
- keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs - package keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs
-
- keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs - package keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs
-
- keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs - package keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs
-
- keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs - package keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs
-
- keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs - package keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs
-
- keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs - package keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs
-
- keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs - package keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs
-
- keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules - package keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules
-
- keel.Algorithms.RE_SL_Postprocess.TSKSelect - package keel.Algorithms.RE_SL_Postprocess.TSKSelect
-
- keel.Algorithms.RST_Learning - package keel.Algorithms.RST_Learning
-
- keel.Algorithms.RST_Learning.EFS_RPS - package keel.Algorithms.RST_Learning.EFS_RPS
-
- keel.Algorithms.RST_Learning.EIS_RFS - package keel.Algorithms.RST_Learning.EIS_RFS
-
- keel.Algorithms.Rule_Learning.AQ - package keel.Algorithms.Rule_Learning.AQ
-
- keel.Algorithms.Rule_Learning.ART - package keel.Algorithms.Rule_Learning.ART
-
- keel.Algorithms.Rule_Learning.C45Rules - package keel.Algorithms.Rule_Learning.C45Rules
-
- keel.Algorithms.Rule_Learning.C45RulesSA - package keel.Algorithms.Rule_Learning.C45RulesSA
-
- keel.Algorithms.Rule_Learning.CN2 - package keel.Algorithms.Rule_Learning.CN2
-
- keel.Algorithms.Rule_Learning.DataSqueezer - package keel.Algorithms.Rule_Learning.DataSqueezer
-
- keel.Algorithms.Rule_Learning.LEM1 - package keel.Algorithms.Rule_Learning.LEM1
-
- keel.Algorithms.Rule_Learning.LEM2 - package keel.Algorithms.Rule_Learning.LEM2
-
- keel.Algorithms.Rule_Learning.PART - package keel.Algorithms.Rule_Learning.PART
-
- keel.Algorithms.Rule_Learning.Prism - package keel.Algorithms.Rule_Learning.Prism
-
- keel.Algorithms.Rule_Learning.Riona - package keel.Algorithms.Rule_Learning.Riona
-
- keel.Algorithms.Rule_Learning.Ripper - package keel.Algorithms.Rule_Learning.Ripper
-
- keel.Algorithms.Rule_Learning.Ritio - package keel.Algorithms.Rule_Learning.Ritio
-
- keel.Algorithms.Rule_Learning.Rules6 - package keel.Algorithms.Rule_Learning.Rules6
-
- keel.Algorithms.Rule_Learning.Slipper - package keel.Algorithms.Rule_Learning.Slipper
-
- keel.Algorithms.Rule_Learning.SRI - package keel.Algorithms.Rule_Learning.SRI
-
- keel.Algorithms.Rule_Learning.Swap1 - package keel.Algorithms.Rule_Learning.Swap1
-
- keel.Algorithms.Rule_Learning.UnoR - package keel.Algorithms.Rule_Learning.UnoR
-
- keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest - package keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest
-
- keel.Algorithms.Semi_Supervised_Learning.APSSC - package keel.Algorithms.Semi_Supervised_Learning.APSSC
-
- keel.Algorithms.Semi_Supervised_Learning.Basic - package keel.Algorithms.Semi_Supervised_Learning.Basic
-
- keel.Algorithms.Semi_Supervised_Learning.Basic.C45 - package keel.Algorithms.Semi_Supervised_Learning.Basic.C45
-
- keel.Algorithms.Semi_Supervised_Learning.C45SSL - package keel.Algorithms.Semi_Supervised_Learning.C45SSL
-
- keel.Algorithms.Semi_Supervised_Learning.CLCC - package keel.Algorithms.Semi_Supervised_Learning.CLCC
-
- keel.Algorithms.Semi_Supervised_Learning.CoBC - package keel.Algorithms.Semi_Supervised_Learning.CoBC
-
- keel.Algorithms.Semi_Supervised_Learning.CoForest - package keel.Algorithms.Semi_Supervised_Learning.CoForest
-
- keel.Algorithms.Semi_Supervised_Learning.CoTraining - package keel.Algorithms.Semi_Supervised_Learning.CoTraining
-
- keel.Algorithms.Semi_Supervised_Learning.DE_TriTraining - package keel.Algorithms.Semi_Supervised_Learning.DE_TriTraining
-
- keel.Algorithms.Semi_Supervised_Learning.Democratic - package keel.Algorithms.Semi_Supervised_Learning.Democratic
-
- keel.Algorithms.Semi_Supervised_Learning.NBSSL - package keel.Algorithms.Semi_Supervised_Learning.NBSSL
-
- keel.Algorithms.Semi_Supervised_Learning.NNSSL - package keel.Algorithms.Semi_Supervised_Learning.NNSSL
-
- keel.Algorithms.Semi_Supervised_Learning.RASCO - package keel.Algorithms.Semi_Supervised_Learning.RASCO
-
- keel.Algorithms.Semi_Supervised_Learning.Rel_RASCO - package keel.Algorithms.Semi_Supervised_Learning.Rel_RASCO
-
- keel.Algorithms.Semi_Supervised_Learning.SelfTraining - package keel.Algorithms.Semi_Supervised_Learning.SelfTraining
-
- keel.Algorithms.Semi_Supervised_Learning.SETRED - package keel.Algorithms.Semi_Supervised_Learning.SETRED
-
- keel.Algorithms.Semi_Supervised_Learning.SMOSSL - package keel.Algorithms.Semi_Supervised_Learning.SMOSSL
-
- keel.Algorithms.Semi_Supervised_Learning.SNNRCE - package keel.Algorithms.Semi_Supervised_Learning.SNNRCE
-
- keel.Algorithms.Semi_Supervised_Learning.TriTraining - package keel.Algorithms.Semi_Supervised_Learning.TriTraining
-
- keel.Algorithms.Semi_Supervised_Learning.utilities - package keel.Algorithms.Semi_Supervised_Learning.utilities
-
- keel.Algorithms.Semi_Supervised_Learning.utilities.KNN - package keel.Algorithms.Semi_Supervised_Learning.utilities.KNN
-
- keel.Algorithms.Shared.ClassicalOptim - package keel.Algorithms.Shared.ClassicalOptim
-
- keel.Algorithms.Shared.Exceptions - package keel.Algorithms.Shared.Exceptions
-
- keel.Algorithms.Shared.Parsing - package keel.Algorithms.Shared.Parsing
-
- keel.Algorithms.Statistical_Classifiers.ClassifierADLinear - package keel.Algorithms.Statistical_Classifiers.ClassifierADLinear
-
- keel.Algorithms.Statistical_Classifiers.ClassifierADQuadratic - package keel.Algorithms.Statistical_Classifiers.ClassifierADQuadratic
-
- keel.Algorithms.Statistical_Classifiers.ClassifierKernel - package keel.Algorithms.Statistical_Classifiers.ClassifierKernel
-
- keel.Algorithms.Statistical_Classifiers.ClassifierLinearLMS - package keel.Algorithms.Statistical_Classifiers.ClassifierLinearLMS
-
- keel.Algorithms.Statistical_Classifiers.ClassifierPolQuadraticLMS - package keel.Algorithms.Statistical_Classifiers.ClassifierPolQuadraticLMS
-
- keel.Algorithms.Statistical_Classifiers.Logistic - package keel.Algorithms.Statistical_Classifiers.Logistic
-
- keel.Algorithms.Statistical_Classifiers.Logistic.core - package keel.Algorithms.Statistical_Classifiers.Logistic.core
-
- keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix - package keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix
-
- keel.Algorithms.Statistical_Classifiers.Naive_Bayes - package keel.Algorithms.Statistical_Classifiers.Naive_Bayes
-
- keel.Algorithms.Statistical_Classifiers.Shared.DiscrAnalysis - package keel.Algorithms.Statistical_Classifiers.Shared.DiscrAnalysis
-
- keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs - package keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs
-
- keel.Algorithms.Statistical_Models.ModelLinear - package keel.Algorithms.Statistical_Models.ModelLinear
-
- keel.Algorithms.Statistical_Models.ModelQuad - package keel.Algorithms.Statistical_Models.ModelQuad
-
- keel.Algorithms.Statistical_Tests.Classification.Clasif_General - package keel.Algorithms.Statistical_Tests.Classification.Clasif_General
-
- keel.Algorithms.Statistical_Tests.Classification.Clasif_Summary - package keel.Algorithms.Statistical_Tests.Classification.Clasif_Summary
-
- keel.Algorithms.Statistical_Tests.Classification.Clasif_Tabular - package keel.Algorithms.Statistical_Tests.Classification.Clasif_Tabular
-
- keel.Algorithms.Statistical_Tests.Classification.ClasifTest_5x2cv - package keel.Algorithms.Statistical_Tests.Classification.ClasifTest_5x2cv
-
- keel.Algorithms.Statistical_Tests.Classification.ClasifTest_f - package keel.Algorithms.Statistical_Tests.Classification.ClasifTest_f
-
- keel.Algorithms.Statistical_Tests.Classification.ClasifTest_rs - package keel.Algorithms.Statistical_Tests.Classification.ClasifTest_rs
-
- keel.Algorithms.Statistical_Tests.Classification.ClasifTest_sw - package keel.Algorithms.Statistical_Tests.Classification.ClasifTest_sw
-
- keel.Algorithms.Statistical_Tests.Classification.ClasifTest_t - package keel.Algorithms.Statistical_Tests.Classification.ClasifTest_t
-
- keel.Algorithms.Statistical_Tests.Classification.ClasifTest_u - package keel.Algorithms.Statistical_Tests.Classification.ClasifTest_u
-
- keel.Algorithms.Statistical_Tests.Classification.Contrast - package keel.Algorithms.Statistical_Tests.Classification.Contrast
-
- keel.Algorithms.Statistical_Tests.Classification.Friedman - package keel.Algorithms.Statistical_Tests.Classification.Friedman
-
- keel.Algorithms.Statistical_Tests.Classification.FriedmanAlligned - package keel.Algorithms.Statistical_Tests.Classification.FriedmanAlligned
-
- keel.Algorithms.Statistical_Tests.Classification.Imbalanced_General - package keel.Algorithms.Statistical_Tests.Classification.Imbalanced_General
-
- keel.Algorithms.Statistical_Tests.Classification.Imbalanced_Summary - package keel.Algorithms.Statistical_Tests.Classification.Imbalanced_Summary
-
- keel.Algorithms.Statistical_Tests.Classification.Imbalanced_Tabular - package keel.Algorithms.Statistical_Tests.Classification.Imbalanced_Tabular
-
- keel.Algorithms.Statistical_Tests.Classification.ImbFriedman - package keel.Algorithms.Statistical_Tests.Classification.ImbFriedman
-
- keel.Algorithms.Statistical_Tests.Classification.ImbWilcoxon - package keel.Algorithms.Statistical_Tests.Classification.ImbWilcoxon
-
- keel.Algorithms.Statistical_Tests.Classification.Multiple - package keel.Algorithms.Statistical_Tests.Classification.Multiple
-
- keel.Algorithms.Statistical_Tests.Classification.Quade - package keel.Algorithms.Statistical_Tests.Classification.Quade
-
- keel.Algorithms.Statistical_Tests.Classification.Wilcoxon - package keel.Algorithms.Statistical_Tests.Classification.Wilcoxon
-
- keel.Algorithms.Statistical_Tests.Regression.Contrast - package keel.Algorithms.Statistical_Tests.Regression.Contrast
-
- keel.Algorithms.Statistical_Tests.Regression.Friedman - package keel.Algorithms.Statistical_Tests.Regression.Friedman
-
- keel.Algorithms.Statistical_Tests.Regression.FriedmanAlligned - package keel.Algorithms.Statistical_Tests.Regression.FriedmanAlligned
-
- keel.Algorithms.Statistical_Tests.Regression.Model_General - package keel.Algorithms.Statistical_Tests.Regression.Model_General
-
- keel.Algorithms.Statistical_Tests.Regression.Model_Summary - package keel.Algorithms.Statistical_Tests.Regression.Model_Summary
-
- keel.Algorithms.Statistical_Tests.Regression.Model_Tabular - package keel.Algorithms.Statistical_Tests.Regression.Model_Tabular
-
- keel.Algorithms.Statistical_Tests.Regression.ModelTest_5x2cv - package keel.Algorithms.Statistical_Tests.Regression.ModelTest_5x2cv
-
- keel.Algorithms.Statistical_Tests.Regression.ModelTest_f - package keel.Algorithms.Statistical_Tests.Regression.ModelTest_f
-
- keel.Algorithms.Statistical_Tests.Regression.ModelTest_rs - package keel.Algorithms.Statistical_Tests.Regression.ModelTest_rs
-
- keel.Algorithms.Statistical_Tests.Regression.ModelTest_sw - package keel.Algorithms.Statistical_Tests.Regression.ModelTest_sw
-
- keel.Algorithms.Statistical_Tests.Regression.ModelTest_t - package keel.Algorithms.Statistical_Tests.Regression.ModelTest_t
-
- keel.Algorithms.Statistical_Tests.Regression.ModelTest_u - package keel.Algorithms.Statistical_Tests.Regression.ModelTest_u
-
- keel.Algorithms.Statistical_Tests.Regression.Multiple - package keel.Algorithms.Statistical_Tests.Regression.Multiple
-
- keel.Algorithms.Statistical_Tests.Regression.Quade - package keel.Algorithms.Statistical_Tests.Regression.Quade
-
- keel.Algorithms.Statistical_Tests.Regression.Wilcoxon - package keel.Algorithms.Statistical_Tests.Regression.Wilcoxon
-
- keel.Algorithms.Statistical_Tests.Shared - package keel.Algorithms.Statistical_Tests.Shared
-
- keel.Algorithms.Statistical_Tests.Shared.nonParametric - package keel.Algorithms.Statistical_Tests.Shared.nonParametric
-
- keel.Algorithms.Subgroup_Discovery.aprioriSD - package keel.Algorithms.Subgroup_Discovery.aprioriSD
-
- keel.Algorithms.Subgroup_Discovery.CN2SD - package keel.Algorithms.Subgroup_Discovery.CN2SD
-
- keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate - package keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate
-
- keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF - package keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF
-
- keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate - package keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate
-
- keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD - package keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD
-
- keel.Algorithms.Subgroup_Discovery.SDAlgorithm - package keel.Algorithms.Subgroup_Discovery.SDAlgorithm
-
- keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate - package keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate
-
- keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA - package keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA
-
- keel.Algorithms.Subgroup_Discovery.SDMap.FPTree - package keel.Algorithms.Subgroup_Discovery.SDMap.FPTree
-
- keel.Algorithms.Subgroup_Discovery.SDMap.SDMap - package keel.Algorithms.Subgroup_Discovery.SDMap.SDMap
-
- keel.Algorithms.SVM.C_SVM - package keel.Algorithms.SVM.C_SVM
-
- keel.Algorithms.SVM.EPSILON_SVR - package keel.Algorithms.SVM.EPSILON_SVR
-
- keel.Algorithms.SVM.NU_SVM - package keel.Algorithms.SVM.NU_SVM
-
- keel.Algorithms.SVM.NU_SVR - package keel.Algorithms.SVM.NU_SVR
-
- keel.Algorithms.SVM.SMO - package keel.Algorithms.SVM.SMO
-
- keel.Algorithms.SVM.SMO.core - package keel.Algorithms.SVM.SMO.core
-
- keel.Algorithms.SVM.SMO.supportVector - package keel.Algorithms.SVM.SMO.supportVector
-
- keel.Algorithms.Symbolic_Regression.crispSymRegGAP - package keel.Algorithms.Symbolic_Regression.crispSymRegGAP
-
- keel.Algorithms.Symbolic_Regression.crispSymRegSAP - package keel.Algorithms.Symbolic_Regression.crispSymRegSAP
-
- keel.Algorithms.Symbolic_Regression.fuzzySymRegGAP - package keel.Algorithms.Symbolic_Regression.fuzzySymRegGAP
-
- keel.Algorithms.Symbolic_Regression.fuzzySymRegSAP - package keel.Algorithms.Symbolic_Regression.fuzzySymRegSAP
-
- keel.Algorithms.Symbolic_Regression.Shared - package keel.Algorithms.Symbolic_Regression.Shared
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal - package keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams - package keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori - package keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori - package keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC - package keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal - package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori - package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA - package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA - package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat - package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth - package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD - package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR - package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR - package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR - package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh - package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR - package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR
-
- keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII - package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII
-
- keel.Dataset - package keel.Dataset
-
- keel.GraphInterKeel.datacf - package keel.GraphInterKeel.datacf
-
- keel.GraphInterKeel.datacf.editData - package keel.GraphInterKeel.datacf.editData
-
- keel.GraphInterKeel.datacf.exportData - package keel.GraphInterKeel.datacf.exportData
-
- keel.GraphInterKeel.datacf.help - package keel.GraphInterKeel.datacf.help
-
- keel.GraphInterKeel.datacf.importData - package keel.GraphInterKeel.datacf.importData
-
- keel.GraphInterKeel.datacf.partitionData - package keel.GraphInterKeel.datacf.partitionData
-
- keel.GraphInterKeel.datacf.partitionData.PartitioningSchemes - package keel.GraphInterKeel.datacf.partitionData.PartitioningSchemes
-
- keel.GraphInterKeel.datacf.util - package keel.GraphInterKeel.datacf.util
-
- keel.GraphInterKeel.datacf.visualizeData - package keel.GraphInterKeel.datacf.visualizeData
-
- keel.GraphInterKeel.experiments - package keel.GraphInterKeel.experiments
-
- keel.GraphInterKeel.help - package keel.GraphInterKeel.help
-
- keel.GraphInterKeel.menu - package keel.GraphInterKeel.menu
-
- keel.GraphInterKeel.statistical - package keel.GraphInterKeel.statistical
-
- keel.GraphInterKeel.statistical.help - package keel.GraphInterKeel.statistical.help
-
- keel.GraphInterKeel.statistical.tests - package keel.GraphInterKeel.statistical.tests
-
- keel.GraphInterKeel.util - package keel.GraphInterKeel.util
-
- keel.RunKeelGraph - package keel.RunKeelGraph
-
- keel.RunKeelTxt - package keel.RunKeelTxt
-
- keel.RunKeelTxtDocente - package keel.RunKeelTxtDocente
-
- KeelDataSet - Class in keel.Algorithms.Neural_Networks.NNEP_Common.data
-
KeelDataSet implementation (keel dataset)
- KeelDataSet(String, String...) - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.data.KeelDataSet
-
Constructor with the filename and the specification file
- KeelDataSet() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.data.KeelDataSet
-
Constructor without arguments
- KeelFile - Class in keel.Algorithms.Instance_Generation.utilities
-
Keel File function
- KeelFile() - Constructor for class keel.Algorithms.Instance_Generation.utilities.KeelFile
-
- KeelFile - Class in keel.Algorithms.Semi_Supervised_Learning.utilities
-
Keel File function
- KeelFile() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.utilities.KeelFile
-
- KeelFileFilter - Class in keel.GraphInterKeel.datacf.util
- KeelFileFilter() - Constructor for class keel.GraphInterKeel.datacf.util.KeelFileFilter
-
- KeelFileFilter - Class in keel.GraphInterKeel.experiments
-
- KeelFileFilter() - Constructor for class keel.GraphInterKeel.experiments.KeelFileFilter
-
- KEELIRPropPlusWrapperClas - Class in keel.Algorithms.Neural_Networks.IRPropPlus_Clas
-
Wrapper of iRProp+ algorithm for KEEL
- KEELIRPropPlusWrapperClas() - Constructor for class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.KEELIRPropPlusWrapperClas
-
- KEELIRPropPlusWrapperRegr - Class in keel.Algorithms.Neural_Networks.IRPropPlus_Regr
-
Wrapper of iRProp+ algorithm for KEEL
- KEELIRPropPlusWrapperRegr() - Constructor for class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.KEELIRPropPlusWrapperRegr
-
- KeelToCsv - Class in keel.Algorithms.Preprocess.Converter
-
KeelToCsv
This class extends from the Exporter class.
- KeelToCsv(String, String) - Constructor for class keel.Algorithms.Preprocess.Converter.KeelToCsv
-
KeelToCsv class Constructor.
- KeelToDb - Class in keel.Algorithms.Preprocess.Converter
-
KeelToDb
This class extends from the Exporter class.
- KeelToDb(String, String, String, String, String) - Constructor for class keel.Algorithms.Preprocess.Converter.KeelToDb
-
KeelToDb class Constructor.
- KeelToDif - Class in keel.Algorithms.Preprocess.Converter
-
KeelToDif
This class extends from the Exporter class.
- KeelToDif() - Constructor for class keel.Algorithms.Preprocess.Converter.KeelToDif
-
KeelToDif class Constructor.
- KeelToExcel - Class in keel.Algorithms.Preprocess.Converter
-
KeelToExcel
This class extends from the Exporter class.
- KeelToExcel(String) - Constructor for class keel.Algorithms.Preprocess.Converter.KeelToExcel
-
KeelToExcel class Constructor.
- KeelToHtml - Class in keel.Algorithms.Preprocess.Converter
-
KeelToHtml
This class extends from the Exporter class.
- KeelToHtml() - Constructor for class keel.Algorithms.Preprocess.Converter.KeelToHtml
-
KeelToHtml class Constructor.
- KeelToPrn - Class in keel.Algorithms.Preprocess.Converter
-
KeelToPrn
This class extends from the Exporter class.
- KeelToPrn(String) - Constructor for class keel.Algorithms.Preprocess.Converter.KeelToPrn
-
KeelToPrn class Constructor.
- KeelToPropertyList - Class in keel.Algorithms.Preprocess.Converter
-
KeelToPropertyList
This class extends from the Exporter class.
- KeelToPropertyList() - Constructor for class keel.Algorithms.Preprocess.Converter.KeelToPropertyList
-
KeelToPropertyList class Constructor.
- KeelToTxt - Class in keel.Algorithms.Preprocess.Converter
-
KeelToTxt
This class extends from the Exporter class.
- KeelToTxt(String) - Constructor for class keel.Algorithms.Preprocess.Converter.KeelToTxt
-
KeelToTxt class Constructor.
- KeelToUci - Class in keel.Algorithms.Preprocess.Converter
-
KeelToUci
This class extends from the Exporter class.
- KeelToUci(String, String) - Constructor for class keel.Algorithms.Preprocess.Converter.KeelToUci
-
KeelToUci class Constructor.
- KeelToWeka - Class in keel.Algorithms.Preprocess.Converter
-
KeelToWeka
This class extends from the Exporter class.
- KeelToWeka() - Constructor for class keel.Algorithms.Preprocess.Converter.KeelToWeka
-
KeelToWeka class Constructor.
- KeelToXml - Class in keel.Algorithms.Preprocess.Converter
-
KeelToXml
This class extends from the Exporter class.
- KeelToXml() - Constructor for class keel.Algorithms.Preprocess.Converter.KeelToXml
-
KeelToXml class Constructor.
- KeelTreeCellRenderer - Class in keel.GraphInterKeel.experiments
-
- KeelTreeCellRenderer() - Constructor for class keel.GraphInterKeel.experiments.KeelTreeCellRenderer
-
Default builder
- KEELWrapperClas - Class in keel.Algorithms.Neural_Networks.NNEP_Clas
- KEELWrapperClas() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Clas.KEELWrapperClas
-
- KEELWrapperRegr - Class in keel.Algorithms.Neural_Networks.NNEP_Regr
-
Wrapper of Neural Net Evolutionary Programming for KEEL
- KEELWrapperRegr() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Regr.KEELWrapperRegr
-
- keepRelevantLinks(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
-
Keep relevant links, that is, those links whose weight is higher
than certain number
- keepRelevantLinks(double) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuralNet
-
Keep relevant links, that is, those links whose weight is higher
than certain number
- keepRelevantLinks(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Keep relevant links, that is, those links whose weight is higher
than certain number
- keepRelevantLinks(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Keep relevant links, that is, those links whose weight is higher
than certain number
- Kernel - Class in keel.Algorithms.Statistical_Classifiers.ClassifierKernel
-
In this class, a kernel is defined
- Kernel(double[][], int[], double, int) - Constructor for class keel.Algorithms.Statistical_Classifiers.ClassifierKernel.Kernel
-
This is the constructor of the class
- Kernel - Class in keel.Algorithms.SVM.SMO.supportVector
-
Abstract kernel.
- Kernel() - Constructor for class keel.Algorithms.SVM.SMO.supportVector.Kernel
-
- kernel(int, char[], int, char[], int) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
the kernel function (Kn).
- kernel_type - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- kernel_type - Variable in class org.libsvm.svm_parameter
-
- KernelEvaluation - Class in keel.Algorithms.SVM.SMO.supportVector
-
Class for evaluating Kernels.
- KernelEvaluation() - Constructor for class keel.Algorithms.SVM.SMO.supportVector.KernelEvaluation
-
default constructor
- kernelHelper(int, char[], int, char[], int) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
The kernel helper function, called K' in [1] and [2].
- kernelHelper2(int, char[], int, char[], int) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
helper function for the evaluation of the kernel K'' see section
'Efficient Computation of SSK' in [1]
- kernelHelper2LP(int, char[], int, char[], int, int) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
helper function for the evaluation of the kernel (K''n) using lambda
pruning
- kernelHelperLP(int, char[], int, char[], int, int) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
helper function for the evaluation of the kernel (K'n) using lambda pruning
- kernelLP(int, char[], int, char[], int, int) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
the kernel function K explained in [1] using lambda pruning, explained in
[2].
- kernelTipText() - Method in class keel.Algorithms.SVM.SMO.SMO
-
Returns the tip text for this property
- kernelTipText() - Method in class keel.Algorithms.SVM.SMO.SMOreg
-
Returns the tip text for this property
- kernelTipText() - Method in class keel.Algorithms.SVM.SMO.SVMreg
-
Returns the tip text for this property
- key - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Pair
-
Pair's key.
- key - Variable in class keel.Algorithms.Rule_Learning.PART.Pair
-
key of the pair.
- key - Variable in class keel.Algorithms.Rule_Learning.Ripper.Pair
-
key of the pair.
- key - Variable in class keel.Algorithms.Rule_Learning.Slipper.Pair
-
Pair's key.
- keyPressed(KeyEvent) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
EDUCATIONAL KEEL **********************
- keyPressedAux(KeyEvent) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
EDUCATIONAL KEEL **********************
- keyReleased(KeyEvent) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
- keyTyped(KeyEvent) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
- kfold - Variable in class keel.GraphInterKeel.datacf.importData.ImportPanel
-
This is used for deciding the default option of the type of partition
- kfoldOptions - Variable in class keel.GraphInterKeel.datacf.partitionData.PartitionPanel
-
An option dialog for obtaining the options of the k-fold partition proccess
- KFoldOptionsJDialog - Class in keel.GraphInterKeel.datacf.partitionData
-
- KFoldOptionsJDialog(Frame, boolean) - Constructor for class keel.GraphInterKeel.datacf.partitionData.KFoldOptionsJDialog
-
Constructor that initializes the dialog
- Khiops - Class in keel.Algorithms.Discretizers.Khiops
-
Khiops Discretizer
Implemented by Julian Luengo, March 2010
julianlm@decsai.ugr.es
Based on the work of Marc Boullé
M.
- Khiops() - Constructor for class keel.Algorithms.Discretizers.Khiops.Khiops
-
Default constructor.
- killProcess() - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
-
This method is used for to kill the experiment.
- kind - Variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Token
-
An integer that describes the kind of this token.
- kind - Variable in class keel.Algorithms.Rule_Learning.Swap1.Token
-
An integer that describes the kind of this token.
- kind - Variable in class keel.Dataset.Token
-
An integer that describes the kind of this token.
- KLEENE_DIENES - Static variable in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
- KMeans(int, double[][], int) - Method in class keel.Algorithms.Discretizers.UCPD.UCPD
-
It calculates the cutpoints using the K-Means algorithm
- kMeans(double[][], int) - Method in class keel.Algorithms.Instance_Selection.GA_MSE_CC_FSM.GA_MSE_CC_FSM
-
Execute the kMeans algorithm with the training data given and the number of clusters
- kMeans(double[][], int) - Method in class keel.Algorithms.Preprocess.Instance_Selection.GA_MSE_CC_FSM.GA_MSE_CC_FSM
-
Execute the kMeans algorithm with the training data given and the number of clusters
- kmeansImpute - Class in keel.Algorithms.Preprocess.Missing_Values.kmeansImpute
-
This class imputes the missing values by means of the K-means clustering algorithm.
- kmeansImpute(String) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.kmeansImpute
-
Creates a new instance of kmeansImpute
- KNN - Class in keel.Algorithms.Decision_Trees.C45_Binarization
-
File: KNN.java
An auxiliary implementation of the KNN classifier for using in Instance Selection algorithms
- KNN() - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.KNN
-
- KNN(int, double, double[][], int) - Method in class keel.Algorithms.Discretizers.UCPD.UCPD
-
It computes the cutpoint using KNN algorithm
- KNN - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD
-
The KNN algorithm tries to find the K nearest instances in the
training data, selecting the most present class.
- KNN(InstanceSet, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.KNN
-
Parameter constructor.
- KNN - Class in keel.Algorithms.ImbalancedClassification.Ensembles.Basic
-
- KNN() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.KNN
-
- KNN - Class in keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic
-
File: KNN.java
An auxiliary implementation of the KNN classifier for using in Instance Selection algorithms
- KNN() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.KNN
-
- KNN - Class in keel.Algorithms.Instance_Generation.utilities.KNN
-
Implements the KNN algorithm.
- KNN() - Constructor for class keel.Algorithms.Instance_Generation.utilities.KNN.KNN
-
- knn(Prototype, PrototypeSet, int) - Static method in class keel.Algorithms.Instance_Generation.utilities.KNN.KNN
-
Implements the KNN algorithm
- knn(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.utilities.KNN.KNN
-
Implements the KNN algorithm.
- KNN - Class in keel.Algorithms.Lazy_Learning.KNN
-
File: KNN.java
The KNN algorithm tries to find the K nearest instances in the
training data, selecting the most present class.
- KNN(String) - Constructor for class keel.Algorithms.Lazy_Learning.KNN.KNN
-
The main method of the class
- KNN - Class in keel.Algorithms.MIL.Nearest_Neighbour.KNN
-
- KNN() - Constructor for class keel.Algorithms.MIL.Nearest_Neighbour.KNN.KNN
-
- KNN - Class in keel.Algorithms.Preprocess.Basic
-
File: KNN.java
An auxiliary implementation of the KNN classifier for using in Instance Selection algorithms
- KNN() - Constructor for class keel.Algorithms.Preprocess.Basic.KNN
-
- KNN - Class in keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter
-
The KNN algorithm tries to find the K nearest instances in the
training data, selecting the most present class.
- KNN(Instance[], Instance[]) - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
The main method of the class
- KNN - Class in keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter
-
The KNN algorithm tries to find the K nearest instances in the
training data, selecting the most present class.
- KNN(Instance[], Instance[]) - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
The main method of the class
- KNN - Class in keel.Algorithms.Semi_Supervised_Learning.utilities.KNN
-
Implements the KNN algorithm.
- KNN() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.utilities.KNN.KNN
-
- knn(Prototype, PrototypeSet, int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.KNN.KNN
-
Implements the KNN algorithm
- knn(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.KNN.KNN
-
Implements the KNN algorithm.
- KNNAdaptive - Class in keel.Algorithms.Lazy_Learning.KNNAdaptive
-
File: KNNAdaptive.java
The KNN Adaptive Algorithm.
- KNNAdaptive(String) - Constructor for class keel.Algorithms.Lazy_Learning.KNNAdaptive.KNNAdaptive
-
The main method of the class
- KNNClassifier - Class in keel.Algorithms.RST_Learning
-
File: KNNClassifier.java
A KNN classifier with the capabilities of selecting instances and features.
- KNNClassifier() - Constructor for class keel.Algorithms.RST_Learning.KNNClassifier
-
- knnImpute - Class in keel.Algorithms.Preprocess.Missing_Values.knnImpute
-
This class computes the mean (numerical) or mode (nominal) value of the attributes with missing values for the selected
neighbours for a given instance with missing values
- knnImpute(String) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.knnImpute.knnImpute
-
Creates a new instance of MostCommonValue
- KSNN - Class in keel.Algorithms.Lazy_Learning.KSNN
-
File: KSNN.java
The K Symetrical NN Algorithm.
- KSNN(String) - Constructor for class keel.Algorithms.Lazy_Learning.KSNN.KSNN
-
The main method of the class
- KStar - Class in keel.Algorithms.Lazy_Learning.KStar
-
File: KStar.java
The KStar Algorithm.
- KStar(String) - Constructor for class keel.Algorithms.Lazy_Learning.KStar.KStar
-
The main method of the class
- kthSmallestValue(AttributeWeka, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Returns the kth-smallest attribute value of a numeric attribute.
- kthSmallestValue(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Returns the kth-smallest attribute value of a numeric attribute.
- kthSmallestValue(int[], int) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Returns the kth-smallest value in the array.
- kthSmallestValue(double[], int) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Returns the kth-smallest value in the array
- kthSmallestValue(Attribute, int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Returns the kth-smallest attribute value of a numeric attribute.
- kthSmallestValue(int, int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Returns the kth-smallest attribute value of a numeric attribute.
- kthSmallestValue(int[], int) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Returns the kth-smallest value in the array.
- kthSmallestValue(double[], int) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Returns the kth-smallest value in the array
- kthSmallestValue(int[], int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Returns the kth-smallest value in the array.
- kthSmallestValue(double[], int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Returns the kth-smallest value in the array
- kthSmallestValue(int[], int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Returns the kth-smallest value in the array.
- kthSmallestValue(double[], int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Returns the kth-smallest value in the array
- kthSmallestValue(int[], int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Returns the kth-smallest value in the array.
- kthSmallestValue(double[], int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Returns the kth-smallest value in the array
- kthSmallestValue(int[], int) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Returns the kth-smallest value in the array.
- kthSmallestValue(double[], int) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Returns the kth-smallest value in the array
- kthSmallestValue(Attribute, int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the kth-smallest attribute value of a numeric attribute.
- kthSmallestValue(int, int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the kth-smallest attribute value of a numeric attribute.
- kthSmallestValue(int[], int) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Returns the kth-smallest value in the array.
- kthSmallestValue(double[], int) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Returns the kth-smallest value in the array
- KValueTipText() - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Returns the tip text for this property
- KValueTipText() - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Returns the tip text for this property
- KValueTipText() - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Returns the tip text for this property
L
- l - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_problem
-
- l - Variable in class org.libsvm.svm_problem
-
- l_0 - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Represents the interval of random numbers that will be
generated to be added in the specify operator.
- L_0 - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- label(int, Dataset) - Method in class keel.Algorithms.Decision_Trees.C45.Cut
-
Function to print label for subset index of itemsets.
- label(int, Dataset) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Function to print label for subset index of itemsets.
- label(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.DataBase
-
It translates the antecedent id to a valid fuzzy label
- label(int, MyDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Cut
-
Function to print label for subset index of itemsets.
- label(int, Dataset) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Cut
-
Function to print label for subset index of itemsets.
- label(int, Dataset) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Function to print label for subset index of itemsets.
- label() - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Returns the label of the prototype (aka first output).
- label() - Method in class keel.Algorithms.Instance_Generation.GMCA.Cluster
-
Gets the label of all prototypes of the cluster.
- label - Variable in class keel.Algorithms.Instance_Generation.VQ.Cluster
-
Class of all the prototypes of the Cluster.
- label(int, MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Cut
-
Function to print label for subset index of itemsets.
- label(int, MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Cut
-
Function to print label for subset index of itemsets.
- label(int, MyDataset) - Method in class keel.Algorithms.Rule_Learning.PART.Cut
-
Function to print label for subset index of itemsets.
- label(int, Dataset) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Cut
-
Function to print label for subset index of itemsets.
- label() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Returns the label of the prototype (aka first output).
- label2(int, Dataset) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Function to print label for subset index of itemsets.
- label2(int, Dataset) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Function to print label for subset index of itemsets.
- labelCount - Static variable in class keel.GraphInterKeel.experiments.Credits
-
- labels() - Method in class keel.Algorithms.Instance_Generation.MCA.DistanceMatrixByClass
-
- Lambda - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.Parameters
-
- Lambda - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.Parameters
-
- lambda - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- lambda - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Problem coefficients
- lambda - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Problem coefficients
- lambda - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Problem coefficients
- lambda - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Problem coefficients
- lambdaTipText() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Returns the tip text for this property
- lanzar() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.GA
-
- lanzar() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.SIA
-
We execute here the main SIA algorithm and then we creat the output files
- Lanzar - Class in keel.Algorithms.RE_SL_Methods.LEL_TSK
-
Main function class.
- Lanzar() - Constructor for class keel.Algorithms.RE_SL_Methods.LEL_TSK.Lanzar
-
- Lanzar - Class in keel.Algorithms.RE_SL_Methods.MamWM
-
Main function class.
- Lanzar() - Constructor for class keel.Algorithms.RE_SL_Methods.MamWM.Lanzar
-
- Lanzar - Class in keel.Algorithms.RE_SL_Methods.mogulHC
-
Main function class.
- Lanzar() - Constructor for class keel.Algorithms.RE_SL_Methods.mogulHC.Lanzar
-
- Lanzar - Class in keel.Algorithms.RE_SL_Methods.mogulIRL
-
Main function class.
- Lanzar() - Constructor for class keel.Algorithms.RE_SL_Methods.mogulIRL.Lanzar
-
- Lanzar - Class in keel.Algorithms.RE_SL_Methods.mogulSC
-
Main function class.
- Lanzar() - Constructor for class keel.Algorithms.RE_SL_Methods.mogulSC.Lanzar
-
- Lanzar - Class in keel.Algorithms.RE_SL_Methods.TSK_IRL
-
Main function class.
- Lanzar() - Constructor for class keel.Algorithms.RE_SL_Methods.TSK_IRL.Lanzar
-
- Lanzar - Class in keel.Algorithms.RE_SL_Postprocess.Mam2TSK
-
Main function class.
- Lanzar() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Mam2TSK.Lanzar
-
- Lanzar - Class in keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB
-
Main function class.
- Lanzar() - Constructor for class keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB.Lanzar
-
- Lanzar - Class in keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules
-
Main function class.
- Lanzar() - Constructor for class keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules.Lanzar
-
- Lanzar - Class in keel.Algorithms.RE_SL_Postprocess.MamSelect
-
Main function class.
- Lanzar() - Constructor for class keel.Algorithms.RE_SL_Postprocess.MamSelect.Lanzar
-
- Lanzar - Class in keel.Algorithms.RE_SL_Postprocess.MamWSelect
-
Main function class.
- Lanzar() - Constructor for class keel.Algorithms.RE_SL_Postprocess.MamWSelect.Lanzar
-
- Lanzar - Class in keel.Algorithms.RE_SL_Postprocess.MamWTuning
-
Main function class.
- Lanzar() - Constructor for class keel.Algorithms.RE_SL_Postprocess.MamWTuning.Lanzar
-
- Lanzar - Class in keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules
-
Main function class.
- Lanzar() - Constructor for class keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules.Lanzar
-
- Lanzar - Class in keel.Algorithms.RE_SL_Postprocess.TSKSelect
-
Main function class.
- Lanzar() - Constructor for class keel.Algorithms.RE_SL_Postprocess.TSKSelect.Lanzar
-
- lap() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.StopWatch
-
Saves a lap time if the watch is running.
- lap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.StopWatch
-
Saves a lap time if the watch is running.
- lap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.StopWatch
-
Saves a lap time if the watch is running.
- lap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.StopWatch
-
Saves a lap time if the watch is running.
- lap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.StopWatch
-
Saves a lap time if the watch is running.
- lap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.StopWatch
-
Saves a lap time if the watch is running.
- lap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.StopWatch
-
Saves a lap time if the watch is running.
- lap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.StopWatch
-
Saves a lap time if the watch is running.
- lap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.StopWatch
-
Saves a lap time if the watch is running.
- lap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.StopWatch
-
Saves a lap time if the watch is running.
- lap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.StopWatch
-
Saves a lap time if the watch is running.
- lap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.StopWatch
-
Saves a lap time if the watch is running.
- lap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.StopWatch
-
Saves a lap time if the watch is running.
- lap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.StopWatch
-
Saves a lap time if the watch is running.
- lap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.StopWatch
-
Saves a lap time if the watch is running.
- lap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.StopWatch
-
Saves a lap time if the watch is running.
- Laplace - Static variable in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
Type of Positive Definite Functions supported (Laplace)
- laplace(double) - Method in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
Computes the result of the Laplace PDRF
- largestDiameter() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Size of the greatest diameter in the set.
- largestDiameter() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Size of the greatest diameter in the set.
- last10IterationsAccuracyAverage - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Statistics
-
- last10IterationsAccuracyAverage - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Statistics
-
- lastElement() - Method in class keel.Algorithms.Decision_Trees.M5.M5Vector
-
Returns the last element of the vector.
- lastElement() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.FastVector
-
Returns the last element of the vector.
- lastElement() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.FastVector
-
Returns the last element of the vector.
- lastElement() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.FastVector
-
Returns the last element of the vector.
- lastElement() - Method in class keel.Algorithms.SVM.SMO.core.FastVector
-
Returns the last element of the vector.
- lastError - Variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.MSEOptimizablePUNeuralNetClassifier
-
Wrapped algorithm
- lastError - Variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.MSEOptimizableSigmNeuralNetClassifier
-
Wrapped algorithm
- lastError - Variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.MSEOptimizablePUNeuralNetRegressor
-
Last Error
- lastError - Variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.MSEOptimizableSigmNeuralNetRegressor
-
Wrapped algorithm
- lastEvaluation - Variable in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- lastEvaluation - Variable in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- lastEvaluation - Variable in class keel.Algorithms.PSO_Learning.PSOLDA.Particle
-
- lastEvaluation - Variable in class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- lastInstance() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Returns the last instance in the set.
- lastInstance() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Returns the last instance in the set.
- lastInstance() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Returns the last instance in the set.
- lastInstance() - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the last instance in the set.
- lastItemset() - Method in class keel.Algorithms.Decision_Trees.C45.Dataset
-
Returns the last itemset.
- lastItemset() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Dataset
-
Returns the last itemset.
- lastItemset() - Method in class keel.Algorithms.Decision_Trees.ID3.Dataset
-
Returns the last itemset.
- lastItemset() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Dataset
-
Returns the last itemset.
- lastItemset() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Returns the last itemset.
- lastItemset() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Dataset
-
Returns the last itemset.
- lastItemset() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
Returns the last itemset.
- lastItemset() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Dataset
-
Returns the last itemset.
- lastItemset() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Dataset
-
Returns the last itemset.
- lastItemset() - Method in class keel.Algorithms.Rule_Learning.ART.Dataset
-
Returns the last itemset.
- lastItemset() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Returns the last itemset.
- lastItemset() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Returns the last itemset.
- lastItemset() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Dataset
-
Returns the last itemset.
- lastItemset() - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
Returns the last itemset.
- lastItemset() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Dataset
-
Returns the last itemset.
- lastPath - Static variable in class keel.GraphInterKeel.statistical.StatisticalF
-
- lastSelectedPanel - Variable in class keel.GraphInterKeel.datacf.exportData.ExportPanel
-
String for having an history of the last selected panel
- lastSelectedPanel - Variable in class keel.GraphInterKeel.datacf.importData.ImportPanel
-
String for having an history of the last selected panel
- lastSelectedType - Variable in class keel.GraphInterKeel.datacf.exportData.ExportPanel
-
String for having an history of the last type of conversion
- lastValue - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.CategoricalAttribute
-
The last value assigned
- lateralDisplace(double) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Fuzzy
-
Modifies the current fuzzy value according to a provided lateral displacement
- Layer - Class in keel.GraphInterKeel.experiments
-
- Layer() - Constructor for class keel.GraphInterKeel.experiments.Layer
-
- layerActivo - Static variable in class keel.GraphInterKeel.experiments.Layer
-
- LazyAlgorithm - Class in keel.Algorithms.Lazy_Learning
-
File: LazyAlgorithm.java
A general framework for Lazy Learning Algorithms.
- LazyAlgorithm() - Constructor for class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
- LazyDT - Class in keel.Algorithms.Lazy_Learning.LazyDT
-
File: LazyDT.java
The LazyDT algorithm doesn't build a decision tree model in a training phase and
uses the model when we start classifying.
- LazyDT(String) - Constructor for class keel.Algorithms.Lazy_Learning.LazyDT.LazyDT
-
Creates a LazyDT instance by reading the script file that contains all the information needed
for running the algorithm
- LBR - Class in keel.Algorithms.Lazy_Learning.LBR
-
File: LBR.java
The LBR Algorithm.
- LBR(String) - Constructor for class keel.Algorithms.Lazy_Learning.LBR.LBR
-
The main method of the class
- LDA - Class in keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter
-
Linear Discriminant Analysis class.
- LDA() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.LDA
-
Default constructor.
- lde(int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
Right limit
- LDWPSO - Class in keel.Algorithms.PSO_Learning.LDWPSO
-
Title: Algorithm LDWPSO
Description: It contains the implementation of the algorithm
Company: KEEL
- LDWPSO() - Constructor for class keel.Algorithms.PSO_Learning.LDWPSO.LDWPSO
-
Default constructor
- LDWPSO(parseParameters) - Constructor for class keel.Algorithms.PSO_Learning.LDWPSO.LDWPSO
-
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
- leafNode() - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Sets the node to a leaf
- leafNode() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Sets the node to a leaf
- leafNum(M5Instance) - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Detects which leaf a instance falls into
- leafNum(Itemset) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Detects which leaf a itemset falls into
- leafsSize() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
-
Returns the number of samples covered by each leaves.
- LEARNED_CATEGORY_INDEX - Static variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- learnWeights(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.BaseR
-
This function adjust the certainty degree for the rules
- LeastSquaresDeviation - Class in keel.Algorithms.Decision_Trees.CART.impurities
-
Implementation of Least Square Deviation impurity Function
- LeastSquaresDeviation() - Constructor for class keel.Algorithms.Decision_Trees.CART.impurities.LeastSquaresDeviation
-
- leeConjunto(String, boolean) - Method in class keel.Algorithms.Rule_Learning.Prism.Dataset
-
Reads the file of examples(Train&Test)
- leeConjunto(String, boolean) - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
-
Reads the file of examples(Train&Test)
- leeConjunto(String, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Dataset
-
It reads the examples file (training or test)
- leeConjunto(String, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Dataset
-
It reads the examples file (training or test)
- leeFichero(String) - Static method in class keel.Algorithms.RE_SL_Methods.LEL_TSK.Fichero
-
Function for reading a data file in a String Object
- leeFichero(String) - Static method in class keel.Algorithms.RE_SL_Methods.MamWM.Fichero
-
Function for reading a data file in a String Object
- leeFichero(String) - Static method in class keel.Algorithms.RE_SL_Methods.mogulIRL.Fichero
-
Function for reading a data file in a String Object
- leeFichero(String) - Static method in class keel.Algorithms.RE_SL_Postprocess.Mam2TSK.Fichero
-
Function for reading a data file in a String Object
- leeFichero(String) - Static method in class keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB.Fichero
-
Function for reading a data file in a String Object
- leeFichero(String) - Static method in class keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules.Fichero
-
Function for reading a data file in a String Object
- leeFichero(String) - Static method in class keel.Algorithms.RE_SL_Postprocess.MamSelect.Fichero
-
Function for reading a data file in a String Object
- leeFichero(String) - Static method in class keel.Algorithms.RE_SL_Postprocess.MamWSelect.Fichero
-
Function for reading a data file in a String Object
- leeFichero(String) - Static method in class keel.Algorithms.RE_SL_Postprocess.MamWTuning.Fichero
-
Function for reading a data file in a String Object
- leeFichero(String) - Static method in class keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules.Fichero
-
Function for reading a data file in a String Object
- leeFichero(String) - Static method in class keel.Algorithms.RE_SL_Postprocess.TSKSelect.Fichero
-
Function for reading a data file in a String Object
- leeFichero(String) - Static method in class org.core.Fichero
-
- leeFicheroLinea(String) - Static method in class keel.GraphInterKeel.experiments.Files
-
Read from a file
- leer(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.LeerWm
-
It reads the file
- leer(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.LeerWm
-
It reads the file
- leer(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.LeerWm
-
It reads the file
- leer(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.LeerWm
-
It reads the file
- leer(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.LeerWm
-
It reads the file
- leer(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.LeerWm
-
It reads the file
- leer(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.LeerWm
-
It reads the file
- leer(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.LeerWm
-
It reads the file
- leer_BR(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Sel
-
Reads the previous learned RB from a input file
- leer_BR(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Tun
-
Reads the previous simplified RB from a input file
- leerConfiguracion(String) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.ENN
-
Reads configuration script, and extracts its contents.
- leerConfiguracion(String) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Reads the parameters of the algorithm.
- leerConfiguracion(String) - Method in class keel.Algorithms.Hyperrectangles.EHS_CHC.EHS_CHC
-
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Metodo
-
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.SMOTE.MSMOTE
-
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.SMOTE.SMOTE
-
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.SPIDER.SPIDER
-
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.SMOTE
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.ADASYN.ADASYN
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.ADOMS.ADOMS
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.AHCClustering.AHCClustering
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.Borderline_SMOTE.Borderline_SMOTE
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.CNN.CNN
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.CNN_TomekLinks.CNN_TomekLinks
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.CPM.CPM
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.NCL.NCL
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.OSS.OSS
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.RandomOverSampling.RandomOverSampling
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.RandomUnderSampling.RandomUnderSampling
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.Safe_Level_SMOTE.Safe_Level_SMOTE
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SBC.SBC
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE.SMOTE
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_ENN.SMOTE_ENN
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.SMOTE_RSB
-
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_TomekLinks.SMOTE_TomekLinks
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SPIDER.SPIDER
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SPIDER2.SPIDER2
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.TomekLinks.TomekLinks
-
Obtains the parameters used in the execution of the algorithm and stores
them in the private variables of the class
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Generation.Depur.Depur
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Generation.DROP3LVQ3.DROP3LVQ3
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Generation.DROP3PSO.DROP3PSO
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Generation.DROP3SFLSDE.DROP3SFLSDE
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Generation.ICFLVQ3.ICFLVQ3
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Generation.ICFPSO.ICFPSO
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Generation.ICFSFLSDE.ICFSFLSDE
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Generation.SSMALVQ3.SSMALVQ3
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Generation.SSMAPSO.SSMAPSO
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.AllKNN.AllKNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.BSE.BSE
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.CCIS.CCIS
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.CHC.CHC
-
Reads configuration script, and extracts its contents.
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.CNN.CNN
-
Reads configuration script, and extracts its contents.
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.CoCoIS.CoCoIS
-
Process the configuration file
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.CPruner.CPruner
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.DROP1.DROP1
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.DROP2.DROP2
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.DROP3.DROP3
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.ENN.ENN
-
Reads configuration script, and extracts its contents.
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.ENNRS.ENNRS
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.ENNTh.ENNTh
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.ENRBF.ENRBF
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.Explore.Explore
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.FCNN.FCNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.GA_MSE_CC_FSM.GA_MSE_CC_FSM
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.GCNN.GCNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.GG.GG
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.GGA.GGA
-
Reads configuration script, and extracts its contents.
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.HMNEI.HMNEI
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.IB2.IB2
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.IB3.IB3
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.ICF.ICF
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.IGA.IGA
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.IKNN.IKNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.MCNN.MCNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.MCS.MCS
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.MENN.MENN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.MNV.MNV
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.ModelCS.ModelCS
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.MSS.MSS
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.Multiedit.Multiedit
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.NCNEdit.NCNEdit
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.NRMCS.NRMCS
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.PBIL.PBIL
-
Reads configuration script, and extracts its contents.
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.POP.POP
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.PSC.PSC
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.PSRCG.PSRCG
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.Reconsistent.Reconsistent
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.RENN.RENN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.RMHC.RMHC
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.RNG.RNG
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.RNN.RNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.SGA.SGA
-
Reads configuration script, and extracts its contents.
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.Shrink.Shrink
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.SNN.SNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.SSMA.SSMA
-
Reads configuration script, and extracts its contents.
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.SVBPS.SVBPS
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.TCNN.TCNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.TRKNN.TRKNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.VSM.VSM
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Instance_Selection.ZhangTS.ZhangTS
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Neural_Networks.LVQ.LVQ
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Basic.Metodo
-
Reads the parameters of the algorithm.
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.AllKNN.AllKNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.BSE.BSE
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.CCIS.CCIS
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.CHC.CHC
-
Reads configuration script, and extracts its contents.
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.CNN.CNN
-
Reads configuration script, and extracts its contents.
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.CoCoIS
-
Process the configuration file
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.CPruner.CPruner
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.DROP1.DROP1
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.DROP2.DROP2
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.DROP3.DROP3
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.ENN.ENN
-
Reads configuration script, and extracts its contents.
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.ENNRS.ENNRS
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.ENNTh.ENNTh
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.ENRBF.ENRBF
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.Explore.Explore
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.FCNN.FCNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.GA_MSE_CC_FSM.GA_MSE_CC_FSM
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.GCNN.GCNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.GG.GG
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.GGA.GGA
-
Reads configuration script, and extracts its contents.
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.HMNEI.HMNEI
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.IB2.IB2
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.IB3.IB3
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.ICF.ICF
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.IGA.IGA
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.IKNN.IKNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.MCNN.MCNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.MCS.MCS
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.MENN.MENN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.MNV.MNV
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.ModelCS.ModelCS
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.MSS.MSS
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.Multiedit.Multiedit
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.NCNEdit.NCNEdit
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.NRMCS.NRMCS
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.PBIL.PBIL
-
Reads configuration script, and extracts its contents.
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.POP.POP
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.PSC.PSC
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.PSRCG.PSRCG
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.Reconsistent.Reconsistent
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.RENN.RENN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.RMHC.RMHC
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.RNG.RNG
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.RNN.RNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.SGA.SGA
-
Reads configuration script, and extracts its contents.
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.Shrink.Shrink
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.SNN.SNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.SSMA.SSMA
-
Reads configuration script, and extracts its contents.
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.SVBPS.SVBPS
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.TCNN.TCNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.TRKNN.TRKNN
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.VSM.VSM
-
- leerConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Instance_Selection.ZhangTS.ZhangTS
-
- LeerWm - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs
-
The class that reads the file of the rule base
- LeerWm(String) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.LeerWm
-
It stores the name of the file
- LeerWm - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs
-
The class that reads the file of the rule base
- LeerWm(String) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.LeerWm
-
It stores the name of the file
- LeerWm - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs
-
The class that reads the file of the rule base
- LeerWm(String) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.LeerWm
-
It stores the name of the file
- LeerWm - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs
-
The class that reads the file of the rule base
- LeerWm(String) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.LeerWm
-
It stores the name of the file
- LeerWm - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs
-
The class that reads the file of the rule base
- LeerWm(String) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.LeerWm
-
It stores the name of the file
- LeerWm - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs
-
The class that reads the file of the rule base
- LeerWm(String) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.LeerWm
-
It stores the name of the file
- LeerWm - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs
-
The class that reads the file of the rule base
- LeerWm(String) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.LeerWm
-
It stores the name of the file
- LeerWm - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs
-
The class that reads the file of the rule base
- LeerWm(String) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.LeerWm
-
It stores the name of the file
- leftChi2Row - Variable in class keel.Algorithms.Discretizers.Khiops.DeltaValue
-
the chi2 row of the left interval in our boundary
- leftInterval - Variable in class keel.Algorithms.Discretizers.Khiops.DeltaValue
-
the left interval in our boundary
- leftInterval - Variable in class keel.Algorithms.Discretizers.MODL.DeltaValue
-
the left interval in our boundary
- leftSide(Dataset) - Method in class keel.Algorithms.Decision_Trees.C45.Cut
-
Function to print left side of condition.
- leftSide(Dataset) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Function to print left side of condition.
- leftSide(MyDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Cut
-
Function to print left side of condition.
- leftSide(Dataset) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Cut
-
Function to print left side of condition.
- leftSide(Dataset) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Function to print left side of condition.
- leftSide(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Cut
-
Function to print left side of condition.
- leftSide(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Cut
-
Function to print left side of condition.
- leftSide(MyDataset) - Method in class keel.Algorithms.Rule_Learning.PART.Cut
-
Function to print left side of condition.
- leftSide(Dataset) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Cut
-
Function to print left side of condition.
- leftSide2(Dataset) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Function to print left side of condition.
- leftSide2(Dataset) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Function to print left side of condition.
- leftSideOVO(Dataset) - Method in class keel.Algorithms.Decision_Trees.C45.Cut
-
Function to print left side of condition.
- length() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
-
- length() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
-
- length() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Chromosome
-
- length() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Chromosome
-
- lengthRule() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Rule
-
It returns the length of the rule
- LESS_EQUAL - Static variable in class keel.Algorithms.Decision_Trees.C45_Binarization.Selector
-
Number to represent lesser.
- LESS_EQUAL - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Selector
-
Number to represent lesser.
- LETTER - Static variable in interface keel.Algorithms.Rule_Learning.Swap1.DataParserConstants
-
Data Parser Indentifier for a letter.
- LETTER - Static variable in interface keel.Dataset.DataParserConstants
-
- lexCompositionRank(int[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Combinatoric
-
Rank of composition a[] (d balls in r=a.length boxes) in lex order
is mapped to nondecreasing function r^d.
- LexicalError(boolean, int, int, int, String, char) - Static method in error keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.TokenMgrError
-
Returns a detailed message for the Error when it is thrown by the
token manager to indicate a lexical error.
- LexicalError(boolean, int, int, int, String, char) - Static method in error keel.Algorithms.Rule_Learning.Swap1.TokenMgrError
-
Returns a detailed message for the Error when it is thrown by the
token manager to indicate a lexical error.
- LexicalError(boolean, int, int, int, String, char) - Static method in error keel.Dataset.TokenMgrError
-
Returns a detailed message for the Error when it is thrown by the
token manager to indicate a lexical error.
- lexIncFuncRank(int[], int) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Combinatoric
-
Rank of increasing function a[] (r^d) in lex order.
- lexNondecFuncRank(int[], int) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Combinatoric
-
Rank of nondecreasing function a[] (r^d) in lex order.
- lexStateNames - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserTokenManager
-
- lexStateNames - Static variable in class keel.Algorithms.Rule_Learning.Swap1.DataParserTokenManager
-
- lexStateNames - Static variable in class keel.Dataset.DataParserTokenManager
-
- Li - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Apply Li flag.
- lift - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
-
- lift - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- lift - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
-
- lift - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
-
- LimitRoulette - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh
-
- LimitRoulette() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.LimitRoulette
-
- limpia() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Poblacion
-
- limpiaCNominales() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Removes all nominal conditions from the particle.
- limpiaCNominales() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Removes all nominal conditions.
- limpiaUtiles() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Organizacion
-
- lin(int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
Lower limit
- line - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- line - Static variable in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- line - Static variable in class keel.Dataset.SimpleCharStream
-
- LINEAR - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ProbabilityManagement
-
- LINEAR - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.ProbabilityManagement
-
- LINEAR - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.ProbabilityManagement
-
- LINEAR - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ProbabilityManagement
-
- LINEAR - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- LINEAR - Static variable in class org.libsvm.svm_parameter
-
- linearComb(FuzzyAlphaCut, FuzzyAlphaCut, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyAlphaCut
-
Returns the linear combination of two alpha-cuts a and b with alpha "alphap".
- LinearLayer - Class in keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet
-
Represents a neural net layer with all the nodes of LinearNeuron type
- LinearLayer() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinearLayer
-
Empty constructor
- LinearNeuron - Class in keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet
-
Represents a Linear neuron of a neural net
- LinearNeuron() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinearNeuron
-
Default constructor.
- LinearNeuronParametricMutator - Class in keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric
-
Parametric Mutator of Linear Neurons.
- LinearNeuronParametricMutator() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.LinearNeuronParametricMutator
-
Empty constructor
- LinearNeuronStructuralMutator - Class in keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural
-
Structural Mutator of Linear Neurons.
- LinearNeuronStructuralMutator() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.LinearNeuronStructuralMutator
-
Empty constructor
- LinearRegression - Class in keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat
-
Statistics class used for linear regression stats.
- LinearRegression() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
-
- LinearRegression - Class in keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix
-
Class for performing (ridged) linear regression.
- LinearRegression(Matrix, Matrix, double) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.LinearRegression
-
Performs a (ridged) linear regression.
- LinearRegression(Matrix, Matrix, double[], double) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.LinearRegression
-
Performs a weighted (ridged) linear regression.
- LinearSearchBrent - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting
-
- LinearSearchBrent(Fun, double[], double[]) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.LinearSearchBrent
-
- LinearSearchBrent - Class in keel.Algorithms.Preprocess.NoiseFilters.ANR
-
Brent's method is a complicated but popular root-finding algorithm combining the bisection method,
the secant method and inverse quadratic interpolation.
- LinearSearchBrent(FUN, double[][][], double[][][]) - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.ANR.LinearSearchBrent
-
Constructor for linear search based on Brent's method.
- LinearSearchBrent - Class in keel.Algorithms.Shared.ClassicalOptim
-
Brent's method is a complicated but popular root-finding algorithm combining the bisection method,
the secant method and inverse quadratic interpolation.
- LinearSearchBrent(FUN, double[][][], double[][][]) - Constructor for class keel.Algorithms.Shared.ClassicalOptim.LinearSearchBrent
-
Constructor for linear search based on Brent's method.
- Link - Class in keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet
-
Link of a neuron
- Link() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.Link
-
Empty constructor
- LinkedLayer - Class in keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet
-
Base implementation of a hidden or output layer
- LinkedLayer() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Empty constructor
- LinkedNeuron - Class in keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet
-
Base implementation of a neuron of a hidden or output layer
- LinkedNeuron() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Empty constructor
- links - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Link array
- linksEmpty() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
-
Checks if this neural net is empty of links
- linksEmpty() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuralNet
-
Checks if this neural net is empty of links
- linksEmpty() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Checks if this layer is empty of links
- linksFull() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
-
Checks if this neural net is full of links
- linksFull() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuralNet
-
Checks if this neural net is full of links
- linksFull(ILayer<? extends INeuron>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Checks if this layer is full of links
- list - Variable in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.valueAssociations
-
Frequency list of classes for a given value
- list - Variable in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.valueAssociations
-
Frequency list of classes for a given value
- list - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.valueAssociations
-
Frequency list of classes for a given value
- list - Variable in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.valueAssociations
-
Frequency list of classes for a given value
- list - Variable in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.valueAssociations
-
Frequency list of classes for a given value
- list - Variable in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.valueAssociations
-
Frequency list of classes for a given value
- list - Variable in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.valueAssociations
-
Frequency list of classes for a given value
- list - Variable in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.valueAssociations
-
Frequency list of classes for a given value
- lista_valueChanged(ListSelectionEvent) - Method in class keel.GraphInterKeel.help.HelpOptions
-
Manages changes in list
- ListaAtributos - Class in keel.Algorithms.Decision_Trees.SLIQ
-
This class manages an ordered list of each attribute.
- ListaAtributos(double, int) - Constructor for class keel.Algorithms.Decision_Trees.SLIQ.ListaAtributos
-
Parameter Constructor.
- ListaClases - Class in keel.Algorithms.Decision_Trees.SLIQ
-
This class manages that list of classes of a dataset.
- ListaClases(int, Node) - Constructor for class keel.Algorithms.Decision_Trees.SLIQ.ListaClases
-
Parameter Constructor.
- listaCondiciones() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Returns the list of conditions of the rule.
- listaCondiciones() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Returns the list of conditions of the rule.
- listaCondiciones() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Returns the list of conditions of the rule.
- listaCondiciones() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Returns the list of conditions of the rule.
- listaCondicionesContinuos() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Returns the list of continuous conditions of the rule.
- listaCondicionesNominales() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Returns the list of nominal conditions of the rule.
- listaProbabilidadesAtributoClase(Atributo, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ConjuntoDatos
-
Returns the probabilities vector related to examples with the pair attribute-value and the list of existing classes given.
- listaProbabilidadesAtributoClase(Atributo, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ConjuntoDatos
-
Returns the probabilities vector related to examples with the pair attribute-value and the list of existing classes given.
- listaProbabilidadesAtributoClase(Atributo, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.ConjuntoDatos
-
Returns the probabilities vector related to examples with the pair attribute-value and the list of existing classes given.
- listaProbabilidadesAtributoClase(Atributo, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ConjuntoDatos
-
Returns the probabilities vector related to examples with the pair attribute-value and the list of existing classes given.
- listaProbabilidadesAtributoClase(Atributo, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Returns the probabilities vector related to examples with the pair attribute-value and the list of existing classes given.
- ListChildrenText(Element, int) - Method in class keel.Algorithms.Preprocess.Converter.HtmlToKeel
-
Recursive method that returns the text containing all the descendants of a xml tag.
- ListChildrenText(Element, int) - Method in class keel.Algorithms.Preprocess.Converter.PropertyListToKeel
-
Recursive method that returns the text containing all the descendants of a xml tag.
- ListChildrenText(Element, int) - Method in class keel.Algorithms.Preprocess.Converter.XmlToKeel
-
Recursive method that returns the text containing all the descendants of a xml tag.
- listData - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- listDataC - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- listDataC_LQD - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- listDataLQD_C - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- listDir(String, Vector) - Static method in class keel.GraphInterKeel.experiments.FileUtils
-
Gets a directory listing and stores it
- listener - Variable in class keel.GraphInterKeel.experiments.EducationalPartitionsRun
-
- listener - Variable in class keel.GraphInterKeel.experiments.EducationalRun
-
- listeners - Static variable in class keel.Algorithms.Neural_Networks.NNEP_Clas.KEELWrapperClas
-
Listener list
- listeners - Static variable in class keel.Algorithms.Neural_Networks.NNEP_Regr.KEELWrapperRegr
-
Listener list
- listKO - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.matchProfileAgent
-
- listOK - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.matchProfileAgent
-
- listOptions() - Method in class keel.Algorithms.Decision_Trees.M5.M5
-
- listOptions() - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Returns an enumeration describing the available options
- listOptions() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Classifier
-
Returns an enumeration describing the available options.
- listOptions() - Method in interface keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.OptionHandler
-
Returns an enumeration of all the available options..
- listOptions() - Method in interface keel.Algorithms.Statistical_Classifiers.Logistic.core.OptionHandler
-
Returns an enumeration of all the available options..
- listOptions() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
Returns an enumeration describing the available options
- listOptions() - Method in class keel.Algorithms.SVM.SMO.core.Check
-
Returns an enumeration describing the available options.
- listOptions() - Method in interface keel.Algorithms.SVM.SMO.core.OptionHandler
-
Returns an enumeration of all the available options..
- listOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.CachedKernel
-
Returns an enumeration describing the available options.
- listOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.Kernel
-
Returns an enumeration describing the available options.
- listOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
Returns an enumeration describing the available options.
- listOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.PolyKernel
-
Returns an enumeration describing the available options.
- listOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.Puk
-
Returns an enumeration describing the available options.
- listOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.RBFKernel
-
Returns an enumeration describing the available options.
- listOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
Gets an enumeration describing the available options.
- listOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
-
Returns an enumeration describing the available options
- listOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
Returns an enumeration describing the available options
- listOptions() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Returns an enumeration describing the available options.
- listOptions() - Method in class keel.Algorithms.SVM.SMO.SVMreg
-
Returns an enumeration describing the available options.
- listPathFiles - Variable in class keel.GraphInterKeel.experiments.EducationalReport
-
- listPathFilesExtra - Variable in class keel.GraphInterKeel.experiments.EducationalReport
-
- Lists - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR
-
Title: Class List
Description: In this class implements the structure and methods of a list
Company: KEEL
- Lists() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Lists
-
Default constructor.
- Lists - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh
-
Title: Class List
Description: In this class implements the structure and methods of a list
Company: KEEL
- Lists() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Lists
-
Default constructor.
- Lists - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII
-
Title: Class List
Description: In this class implements the structure and methods of a list
Company: KEEL
- Lists() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Lists
-
Default constructor.
- Literal - Class in keel.Algorithms.Associative_Classification.ClassifierCPAR
-
Class to store a Literal.
- Literal() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCPAR.Literal
-
Default Constructor
- Literal(int, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCPAR.Literal
-
Parameters Constructor
- Literals - Class in keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter
-
This class transforms the data set into a set of literals given the positive class
- Literals(Instance[], int) - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Literals
-
Constructor of the class
- liz(int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
Left limit
- LLETRA - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- LLSImpute - Class in keel.Algorithms.Preprocess.Missing_Values.LLSImpute
-
This class implements the Local Least Squares Imputation
- LLSImpute() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.LLSImpute
-
Default constructor.
- LLSImpute(String) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.LLSImpute
-
Constructor which extract the parameters from a KEEL pattern file and
initializes the InstanceSet structures
- LM - Class in keel.Algorithms.Neural_Networks.gmdh
-
Class representing the Levenberg Marquard method
- LM() - Constructor for class keel.Algorithms.Neural_Networks.gmdh.LM
-
Empty constructor
- LM_convergence - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
- LM_convergence - Variable in class keel.Algorithms.Neural_Networks.gmdh.SetupParameters
-
- LMSTrain(double[][], double[][], int, int, double) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Uses LMS to train the net.
- lnfbeta(double, double) - Static method in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Computes natural logarithm of the beta function.
- lnfgamma(double) - Static method in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Computes natural logarithm of the gamma function.
- lnGamma(double) - Static method in class keel.Algorithms.Lazy_Learning.Statistics
-
Returns natural logarithm of gamma function.
- lnGamma(double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
Returns natural logarithm of gamma function.
- lnsrch(double[], double[], double[], double, boolean[], double[][], Optimization.DynamicIntArray) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
Find a new point x in the direction p from a point xold at which the
value of the function has decreased sufficiently, the positive
definiteness of B matrix (approximation of the inverse of the Hessian)
is preserved and no bound constraints are violated.
- load(InputStream) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.ProtectedProperties
-
Overrides a method to prevent the properties from being modified.
- load(InputStream) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ProtectedProperties
-
Overrides a method to prevent the properties from being modified. inStream returns without throwing an exception.
- Load(InstanceSet, TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableDat
-
Creates and fill TableDat with the examples of the dataset
- Load(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
-
Fill TableVar with the characteristics of the variables and creates
characteristics and intervals for the fuzzy sets
- Load(InstanceSet, TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableDat
-
Creates and fill TableDat with the examples of the dataset
- Load(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
-
Fill TableVar with the characteristics of the variables and creates
characteristics and intervals for the fuzzy sets
- Load(InstanceSet, TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableDat
-
Creates and fill TableDat with the examples of the dataset
- Load(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
-
Fill TableVar with the characteristics of the variables and creates
characteristics and intervals for the fuzzy sets
- load_data(ExternalObjectDescription, Vector, Vector) - Method in class keel.GraphInterKeel.experiments.Experiments
-
Load dat sets
- loadCSVData(String) - Method in class keel.GraphInterKeel.statistical.statTableModel
-
Load the contents of the table in CSV format
- LoadEnsemble(String) - Method in class keel.Algorithms.Neural_Networks.ensemble.Ensemble
-
Load ensemble from file_name
- loadFile(File, boolean) - Method in class keel.GraphInterKeel.datacf.editData.EditPanel
-
Loads a new file in the tab
- loadInfoFromFS() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.FARFingrams
-
- loadInfoFromFS() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Loads all the information needed for the Fingrams object, setting all its variables,
from a .fs file located on fileLocation.
- LoadNetwork(String) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Load network weights from a file
- LoadNetwork(String) - Method in class keel.Algorithms.Neural_Networks.gann.Network
-
Load network weights from a file
- LoadNetwork(String) - Method in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Load network weights from file
- LoadNetwork(String) - Method in class keel.Algorithms.Neural_Networks.net.Network
-
Load network weights from a file
- loadObjValues() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Method to load the values of the objectives from the computed
- LoadParameters(String) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Load parameters from file_name to global
- LoadParameters(String) - Method in class keel.Algorithms.Neural_Networks.ensemble.EnsembleParameters
-
Load parameters from file_name to global
- LoadParameters(String) - Method in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Load parameters from file_name to global
- LoadParameters(String) - Method in class keel.Algorithms.Neural_Networks.gann.SetupParameters
-
Method that takes the global parameters from a file
- LoadParameters(String) - Method in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Load parameters from file_name to global
- LoadParameters(String) - Method in class keel.Algorithms.Neural_Networks.gmdh.SetupParameters
-
Method that takes the global parameters from a file
- LoadParameters(String) - Method in class keel.Algorithms.Neural_Networks.net.Parameters
-
Load parameters from file_name to global
- loadRule(double[], int) - Method in class keel.Algorithms.Hyperrectangles.BNGE.Rule
-
Reinitialices a rule, loading it with the contents of a single instance
- loadRule(double[], int) - Method in class keel.Algorithms.Hyperrectangles.RISE.Rule
-
Reinitialices a rule, loading it with the contents of a single instance
- loadSVDMmatrix(double[][], int[]) - Static method in class keel.Algorithms.Hyperrectangles.RISE.Rule
-
Computes the SVDM distance matrix
- loadTestDataset() - Method in class keel.Algorithms.MIL.AbstractMIAlgorithm
-
- loadTrainDataset() - Method in class keel.Algorithms.MIL.AbstractMIAlgorithm
-
- localClusterCenter(PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.CLCCGenerator
-
Returns the local cluster centers for a given prototype set.
- LocalImprovementCAN(TableVar, TableDat) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Locally improves the rule generated.
- LocalImprovementDNF(TableVar, TableDat) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Locally improves the rule generated.
- localOptimization(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGAP.FuzzyGAPClassifier
-
This method performs the local optimization: as this method does not have any
local optimization defined an exception is thrown.
- localOptimization(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGP.FuzzyGPClassifier
-
This method performs the local optimization: as this method does not have any
local optimization defined an exception is thrown.
- localOptimization(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyPittsBurgh.PittsburghClassifier
-
This method performs the local optimization: as this method does not have any
local optimization defined an exception is thrown.
- localOptimization(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySAP.FuzzySAPClassifier
-
This method performs the local optimization: as this method does not have any
local optimization defined an exception is thrown.
- localOptimization(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividual
-
This abstract method calculate a local optimization
- localOptimization(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyGAPModelIndividual
-
This method calculates a local optimization
- localOptimization(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyGPModelIndividual
-
This method calculate a local optimization
- localOptimization(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.PittsburghModel
-
This method calculate a local optimization
- localOptimization(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.RegSymFuzzyGP
-
This method calculates a local optimization
- localSearch(Classifier[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.GA
-
- locate() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeLocator
-
sets up the structure
- locateIndex(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Locates the greatest index that is not greater than the
given index.
- locateIndex(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Locates the greatest index that is not greater than the
given index.
- log - Static variable in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
The log file.
- log - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
The log file.
- log - Static variable in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
The log file.
- log - Static variable in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Log buffer.
- log() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyAlphaCut
-
Returns the logarithm of the present FuzzyInterval.
- log - Static variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
The log file.
- log - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
The log file.
- log - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
The log file.
- log - Static variable in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
The log file.
- log - Static variable in class keel.Algorithms.Rule_Learning.C45Rules.Algorithm
-
The log file.
- log - Static variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Algorithm
-
The log file.
- log - Static variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
The log file.
- log - Static variable in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
The log file.
- log10(double) - Static method in class keel.Algorithms.Neural_Networks.gmdh.math
-
Calculates base 10 logarithm of argument x
- log2 - Static variable in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
The natural logarithm of 2.
- log2(double) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Returns the logarithm of a for base 2.
- log2(double) - Method in class keel.Algorithms.Discretizers.Cluster_Analysis.Cluster_Analysis
-
Calculate the log base 2 of a number
- log2(double) - Method in class keel.Algorithms.Discretizers.Fayyad_Discretizer.FayyadDiscretizer
-
Calculate the log base 2 of a number
- log2 - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
The natural logarithm of 2.
- log2(double) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Returns the logarithm of a for base 2.
- log2 - Static variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
The natural logarithm of 2.
- log2(double) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Returns the logarithm of a for base 2.
- log2(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Fayyad_Discretizer.FayyadDiscretizer
-
- log2 - Static variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Utilities
-
The log of 2.
- log2 - Static variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
The natural logarithm of 2.
- log2(double) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Returns the logarithm of a for base 2.
- log2(double) - Static method in class keel.Algorithms.Rule_Learning.C45Rules.Utilities
-
Returns the logarithm of a for base 2.
- log2(double) - Static method in class keel.Algorithms.Rule_Learning.C45RulesSA.Utilities
-
Returns the logarithm of a for base 2.
- log2 - Static variable in class keel.Algorithms.Rule_Learning.PART.Utilities
-
The log of 2.
- log2 - Static variable in class keel.Algorithms.Rule_Learning.Ripper.Utilities
-
The natural logarithm of 2.
- log2(double) - Static method in class keel.Algorithms.Rule_Learning.Ripper.Utilities
-
Returns the logarithm of a for base 2.
- log2 - Static variable in class keel.Algorithms.Rule_Learning.Slipper.Utilities
-
The natural logarithm of 2.
- log2(double) - Static method in class keel.Algorithms.Rule_Learning.Slipper.Utilities
-
Returns the logarithm of a for base 2.
- log2 - Static variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
The natural logarithm of 2.
- log2(double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Returns the logarithm of a for base 2.
- log2 - Static variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
The natural logarithm of 2.
- log2(double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Returns the logarithm of a for base 2.
- log2 - Static variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
The natural logarithm of 2.
- log2(double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Returns the logarithm of a for base 2.
- log2 - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
The natural logarithm of 2.
- log2(double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Returns the logarithm of a for base 2.
- log2 - Static variable in class keel.Algorithms.SVM.SMO.core.Utils
-
The natural logarithm of 2.
- log2(double) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Returns the logarithm of a for base 2.
- LOG_OUT - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
Printer.
- logFunc(double) - Method in class keel.Algorithms.Decision_Trees.C45.Cut
-
Returns the log2
- logFunc(double) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Returns the log2
- logFunc(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Cut
-
Returns the log2
- logFunc(double) - Static method in class keel.Algorithms.Genetic_Rule_Learning.PART.Utilities
-
Help method for computing entropy.
- logFunc(double) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Cut
-
Returns the log2
- logFunc(double) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Returns the log2
- logFunc(double) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Cut
-
Returns the log2
- logFunc(double) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Cut
-
Returns the log2
- logFunc(double) - Method in class keel.Algorithms.Rule_Learning.PART.Cut
-
Returns the log2
- logFunc(double) - Static method in class keel.Algorithms.Rule_Learning.PART.Utilities
-
Help method for computing entropy.
- logFunc(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Cut
-
Returns the log2
- Logistic - Class in keel.Algorithms.Statistical_Classifiers.Logistic
-
Class for building and using a multinomial logistic regression model with a ridge estimator.
- Logistic(String) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
Creates a new instance of Logistic with a file parameter of KEEL format
- Logistic() - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
Default constructor
- LogisticErrorFunction - Class in keel.Algorithms.Neural_Networks.NNEP_Clas.problem.errorfunctions
-
Logistic Error Function.
- LogisticErrorFunction() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Clas.problem.errorfunctions.LogisticErrorFunction
-
Empty constructor
- LogManager - Class in keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
- LogManager() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.BioHEL.LogManager
-
- LogManager - Class in keel.Algorithms.Genetic_Rule_Learning.Globals
-
LogManager.java.
- LogManager() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Globals.LogManager
-
- LogManager - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals
-
- LogManager() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.LogManager
-
- logotipo_mouseEntered(MouseEvent) - Method in class keel.GraphInterKeel.experiments.Credits
-
Entering logo
- logotipo_mouseEntered(MouseEvent) - Method in class keel.GraphInterKeel.menu.Frame
-
Entering in KEEL logo
- logotipo_mouseEntered(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Entering in logo
- logotipo_mouseExited(MouseEvent) - Method in class keel.GraphInterKeel.experiments.Credits
-
Exiting logo
- logotipo_mouseExited(MouseEvent) - Method in class keel.GraphInterKeel.menu.Frame
-
Exiting from KEEL logo
- logotipo_mouseExited(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Exiting from logo
- logotipo_mousePressed(MouseEvent) - Method in class keel.GraphInterKeel.experiments.Credits
-
Pressing logo
- logotipo_mousePressed(MouseEvent) - Method in class keel.GraphInterKeel.menu.Frame
-
Clicking in KEEL logo
- logotipo_mousePressed(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Clicking in KEEL logo
- logotipoSoft_mousePressed(MouseEvent) - Method in class keel.GraphInterKeel.menu.Frame
-
Clicking in software logo
- logotipoSoft_mousePressed(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Clicking in software logo
- logOutputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- logOutputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- logOutputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- logOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Parameters
-
Log information output file.
- logOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.Parameters
-
Log information output file.
- logOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Parameters
-
Log information output file.
- logOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
Log information output file.
- logOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.Parameters
-
Log information output file.
- logOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Parameters
-
Log information output file.
- logOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Parameters
-
Log information output file.
- logOutputFile - Static variable in class keel.Algorithms.Rule_Learning.Swap1.Parameters
-
- LOGPI - Static variable in class keel.Algorithms.Lazy_Learning.Statistics
-
Logarithm of PI
- LOGPI - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
- logPSI - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Maths
-
The constant - log( sqrt(2 pi) )
- logs2probs(double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Converts an array containing the natural logarithms of
probabilities stored in a vector back into probabilities.
- logs2probs(double[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Converts an array containing the natural logarithms of
probabilities stored in a vector back into probabilities.
- logs2probs(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Converts an array containing the natural logarithms of
probabilities stored in a vector back into probabilities.
- logs2probs(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Converts an array containing the natural logarithms of
probabilities stored in a vector back into probabilities.
- logs2probs(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Converts an array containing the natural logarithms of
probabilities stored in a vector back into probabilities.
- logs2probs(double[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Converts an array containing the natural logarithms of
probabilities stored in a vector back into probabilities.
- logs2probs(double[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Converts an array containing the natural logarithms of
probabilities stored in a vector back into probabilities.
- logTransformation - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Logarithm transformation
- long_poblacion - Variable in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Param
-
Number of rules
- long_poblacion - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Param
-
Number of rules
- long_poblacion - Variable in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Param
-
Number of rules
- long_tabla - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.MyDataset
-
Total number of variables.
- long_tabla - Variable in class keel.Algorithms.RE_SL_Methods.LEL_TSK.MiDataset
-
- long_tabla - Variable in class keel.Algorithms.RE_SL_Methods.MamWM.MiDataset
-
- long_tabla - Variable in class keel.Algorithms.RE_SL_Methods.mogulHC.MiDataset
-
- long_tabla - Variable in class keel.Algorithms.RE_SL_Methods.mogulIRL.MiDataset
-
- long_tabla - Variable in class keel.Algorithms.RE_SL_Methods.mogulSC.MiDataset
-
- long_tabla - Variable in class keel.Algorithms.RE_SL_Methods.TSK_IRL.MiDataset
-
- long_tabla - Variable in class keel.Algorithms.RE_SL_Postprocess.Mam2TSK.MiDataset
-
- long_tabla - Variable in class keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB.MiDataset
-
- long_tabla - Variable in class keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules.MiDataset
-
- long_tabla - Variable in class keel.Algorithms.RE_SL_Postprocess.MamSelect.MiDataset
-
- long_tabla - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWSelect.MiDataset
-
- long_tabla - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWTuning.MiDataset
-
- long_tabla - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules.MiDataset
-
- long_tabla - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKSelect.MiDataset
-
- LOWER - Static variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Rule
-
number to indentify the operator <=.
- LOWER - Static variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleRule
-
number to indentify the operator <=.
- LOWER - Static variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Rule
-
number to indentify operator <=.
- LOWER - Static variable in class keel.Algorithms.Genetic_Rule_Learning.PART.SimpleRule
-
number to indentify the operator <=.
- LOWER - Static variable in class keel.Algorithms.Rule_Learning.C45Rules.Rule
-
Flag for lower operator
- LOWER - Static variable in class keel.Algorithms.Rule_Learning.C45Rules.SimpleRule
-
Flag for lower operator
- LOWER - Static variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Rule
-
Flag for lower operator
- LOWER - Static variable in class keel.Algorithms.Rule_Learning.C45RulesSA.SimpleRule
-
Flag for lower operator
- LOWER - Static variable in class keel.Algorithms.Rule_Learning.PART.Rule
-
Flag for lower operator
- LOWER - Static variable in class keel.Algorithms.Rule_Learning.PART.SimpleRule
-
Flag for lower operator
- LOWER - Static variable in class keel.Algorithms.Rule_Learning.Ripper.Rule
-
Flag for lower operator
- LOWER - Static variable in class keel.Algorithms.Rule_Learning.Ripper.SimpleRule
-
Flag for lower operator
- LOWER - Static variable in class keel.Algorithms.Rule_Learning.Slipper.Rule
-
Flag for lower operator
- LOWER - Static variable in class keel.Algorithms.Rule_Learning.Slipper.SimpleRule
-
Flag for lower operator
- lower_approximation_set(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsCuttoff
-
- lower_approximation_set(int, int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsCuttoff
-
- lower_aproximation() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsCuttoff
-
Compute the lower aproximations of the dataset
- lower_aproximation - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsOriginal
-
- lower_aproximation() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsOriginal
-
Compute the lower aproximations of the dataset
- lower_aproximation_Set(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsOriginal
-
Compute the lower aproximation of a set
- lowerbound - Variable in class keel.Algorithms.Discretizers.MVD.Interval
-
Interval lower bound.
- lowerNumericBoundIsOpen() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns whether the lower numeric bound of the attribute is open.
- lowerrealBoundIsOpen() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns whether the lower real bound of the attribute is open.
- LOWEST_FIRST - Static variable in class keel.Algorithms.Discretizers.HellingerBD.Quicksort
-
Configuration tag (Lowest first).
- LOWEST_FIRST - Static variable in class keel.Algorithms.Discretizers.UCPD.Quicksort
-
Configuration tags.
- LOWEST_FIRST - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Quicksort
-
LOWEST_FIRST tag.
- LOWEST_FIRST - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Quicksort
-
Configuration tag (LOWEST_FIRST).
- LOWEST_FIRST - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Quicksort
-
Configuration tag (LOWEST_FIRST).
- LOWEST_FIRST - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Quicksort
-
Configuration tag (LOWEST_FIRST).
- LQD - Static variable in class keel.GraphInterKeel.experiments.Experiments
-
- lqd_crisp_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
LQD to Crisp button
- lqd_crisp_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectData
-
LQD to Crisp button
- lqd_mouseEntered(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Enter in LQD button
- lqd_mouseExited(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Exit from lqd button
- lqd_mouseReleased(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Entering in LQD module
- lsff(double, double, PrototypeSet[], int, int) - Method in class keel.Algorithms.Instance_Generation.DROP3SFLSDE.DROP3SFLSDE
-
Local Search Fitness Function
- lsff(double, double, PrototypeSet[], int, int) - Method in class keel.Algorithms.Instance_Generation.ICFSFLSDE.ICFSFLSDE
-
Local Search Fitness Function
- lsff(double, double, PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.IPLDE.IPLDEGenerator
-
Local Search Fitness Function
- lsff(double, double, PrototypeSet[], int, int) - Method in class keel.Algorithms.Instance_Generation.SFLSDE.SFLSDEGenerator
-
Local Search Fitness Function
- lsff(double, double, PrototypeSet[], int, int) - Method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
Local Search Fitness Function
- lsu(int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
Upper limit
- lu() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
LU Decomposition
- lu_decompose(double[][], int, double[], double[][], int[]) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Matrix
-
Lu Descomposition of a matrix
- lu_decompose(double[][], int, double[], double[][], int[]) - Static method in class keel.Algorithms.Neural_Networks.net.Matrix
-
Lu Descomposition of a matrix
- lu_solve(double[], double[], int, double[][], int[]) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Matrix
-
Lu solution of a matrix
- lu_solve(double[], double[], int, double[][], int[]) - Static method in class keel.Algorithms.Neural_Networks.net.Matrix
-
Lu solution of a matrix
- lubksb(int, int[], double[]) - Method in class keel.Algorithms.Decision_Trees.M5.M5Matrix
-
LU backward substitution
- lubksb(double[][], int[], double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- lubksb(int, int[], double[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5Matrix
-
LU backward substitution
- lubksb(double[][], int[], double[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.MatrixCalcs
-
- ludcmp(int, int[]) - Method in class keel.Algorithms.Decision_Trees.M5.M5Matrix
-
LU decomposition
- ludcmp(double[][], int[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- ludcmp(int, int[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5Matrix
-
LU decomposition
- ludcmp(double[][], int[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.MatrixCalcs
-
- LUDecomposition - Class in keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix
-
LU Decomposition.
- LUDecomposition() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Performs a LUDecomposition on the matrix.
- LUDecomposition(Matrix) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.LUDecomposition
-
LU Decomposition
- LUKASIEWICZ - Static variable in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
- LVFIncon - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVF
-
Las Vegas filter for feature selection
This class implements LVF algorithm.
- LVFIncon(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVF.LVFIncon
-
Creates a new instance of LVFIncon
- LVFIncon - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVF_IEP
-
Las Vegas filter for feature selection
This class implements LVF algorithm.
- LVFIncon(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVF_IEP.LVFIncon
-
Creates a new instance of LVFIncon
- LVO(boolean[]) - Method in class keel.Algorithms.Preprocess.Feature_Selection.Datos
-
Calculates the precision (errors/total_instances) in the prediction of the instance class.
- LVOTest(boolean[]) - Method in class keel.Algorithms.Preprocess.Feature_Selection.Datos
-
calculates the precision (errors/total_instances) in the classification of all instances in the TEST DATASET
using the given features and THE SAME TEST DATASET TO PREDICT.
- LVQ - Class in keel.Algorithms.Neural_Networks.LVQ
-
File: LVQ.java
The LVQ Neural Networks algorithm.
- LVQ(String) - Constructor for class keel.Algorithms.Neural_Networks.LVQ.LVQ
-
Constructor.
- LVQ1 - Class in keel.Algorithms.Instance_Generation.LVQ
-
LVQ1
Implements LVQ1 algorithm.
- LVQ1(PrototypeSet, int, int, double) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ1
-
Constructs a new LVQ1 algorithm.
- LVQ1(PrototypeSet, PrototypeSet, int, int, double) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ1
-
WITH INITIAL CODE-BOOKS
Constructs a new LVQ1 algorithm.
- LVQ1(PrototypeSet, int, double, double) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ1
-
Constructs a new LVQ1 algorithm.
- LVQ1(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ1
-
Constructs a new LVQ1 algorithm.
- LVQ1Algorithm - Class in keel.Algorithms.Instance_Generation.LVQ
-
LVQ1 algorithm calling.
- LVQ1Algorithm() - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ1Algorithm
-
- LVQ2 - Class in keel.Algorithms.Instance_Generation.LVQ
-
LVQ2 algorithm
- LVQ2(PrototypeSet, int, int, double, double) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ2
-
Constructs a new LVQ2 algorithm.
- LVQ2(PrototypeSet, PrototypeSet, int, int, double, double) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ2
-
WITH INITIAL CODE-BOOKS
Constructs a new LVQ2 algorithm.
- LVQ2(PrototypeSet, int, double, double, double) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ2
-
Constructs a new LVQ2 algorithm.
- LVQ2(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ2
-
Constructs a new LVQ2 algorithm.
- LVQ2_1 - Class in keel.Algorithms.Instance_Generation.LVQ
-
LVQ2.1 algorithm
- LVQ2_1(PrototypeSet, int, int, double, double) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ2_1
-
Construct an LVQ2.1 algorithm.
- LVQ2_1(PrototypeSet, int, double, double, double) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ2_1
-
Construct an LVQ2.1 algorithm.
- LVQ2_1(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ2_1
-
Construct an LVQ2.1 algorithm.
- LVQ2_1Algorithm - Class in keel.Algorithms.Instance_Generation.LVQ
-
LVQ2.1 algorithm calling.
- LVQ2_1Algorithm() - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ2_1Algorithm
-
- LVQ2Algorithm - Class in keel.Algorithms.Instance_Generation.LVQ
-
LVQ2 algorithm calling.
- LVQ2Algorithm() - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ2Algorithm
-
- LVQ3 - Class in keel.Algorithms.Instance_Generation.LVQ
-
LVQ3 algorithm for reduction prototype sets.
- LVQ3(PrototypeSet, int, int, double, double, double) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ3
-
Construct a new LVQ3 algorithm.
- LVQ3(PrototypeSet, PrototypeSet, int, int, double, double, double) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ3
-
WITH INITIAL CODE-BOOKS
Construct a new LVQ3 algorithm.
- LVQ3(PrototypeSet, int, double, double, double, double) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ3
-
Construct a new LVQ3 algorithm.
- LVQ3(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ3
-
Construct a new LVQ3 algorithm.
- LVQ3Algorithm - Class in keel.Algorithms.Instance_Generation.LVQ
-
LVQ3 algorithm calling.
- LVQ3Algorithm() - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQ3Algorithm
-
- LVQGenerator - Class in keel.Algorithms.Instance_Generation.LVQ
-
LVQGenerator
Abstract class parent of every LVQGenerator-type algorithm.
- LVQGenerator(PrototypeSet, int, int) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQGenerator
-
Constructs a new LVQGenerator algorithm.
- LVQGenerator(PrototypeSet, PrototypeSet, int, int) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQGenerator
-
WITH INITIAL CODE-BOOKS
Constructs a new LVQGenerator algorithm.
- LVQGenerator(PrototypeSet, int, double) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQGenerator
-
Constructs a new LVQGenerator algorithm.
- LVQGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQGenerator
-
Constructs a new LVQGenerator algorithm.
- LVQPRU - Class in keel.Algorithms.Instance_Generation.LVQ
-
Implements LVQPRU algorithm
- LVQPRU(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQPRU
-
Constructs a new LVQPRU algorithm.
- LVQPRU(PrototypeSet, int, double, double, int, double, double, int) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQPRU
-
Builds a LVQPRU algorithm.
- LVQPRUAlgorithm - Class in keel.Algorithms.Instance_Generation.LVQ
-
LVQPRU algorithm calling.
- LVQPRUAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQPRUAlgorithm
-
- LVQTC - Class in keel.Algorithms.Instance_Generation.LVQ
-
Implements LVQTC algorithm
- LVQTC(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQTC
-
Constructor based on the training dataset and the parameters
- LVQTC(PrototypeSet, int, double, double, double, int, int) - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQTC
-
Constructor based on the training dataset and the parameters
- LVQTCAlgorithm - Class in keel.Algorithms.Instance_Generation.LVQ
-
LVQTC algorithm calling.
- LVQTCAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.LVQ.LVQTCAlgorithm
-
- LVWLVO - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVW
-
Las Vegas wrapper for feature selection
This class implements LVW algorithm.
- LVWLVO(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVW.LVWLVO
-
Creates a new instance of LVWLVO
M
- m - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForModels
-
- m - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForSymbRegr
-
- m - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Row and column dimensions.
- M5 - Class in keel.Algorithms.Decision_Trees.M5
-
M5 algorithm main class.
- M5() - Constructor for class keel.Algorithms.Decision_Trees.M5.M5
-
- M5 - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
- M5(parseParameters) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
Constructor by parameters file.
- M5(MyDataset, double, boolean, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
- M5Attribute - Class in keel.Algorithms.Decision_Trees.M5
-
Class for handling an attribute.
- M5Attribute(String) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Constructor for a numeric attribute.
- M5Attribute(String, M5Vector) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Constructor for nominal attributes and string attributes.
- M5AttrStats - Class in keel.Algorithms.Decision_Trees.M5
-
A Utility class that contains summary information on an
the values that appear in a dataset for a particular attribute.
- M5AttrStats() - Constructor for class keel.Algorithms.Decision_Trees.M5.M5AttrStats
-
- M5Instance - Class in keel.Algorithms.Decision_Trees.M5
-
Class for handling an instance.
- M5Instance(M5Instance) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Constructor that copies the attribute values and the weight from
the given instance.
- M5Instance(double, double[]) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Constructor that inititalizes instance variable with given
values.
- M5Instance(int) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Constructor of an instance that sets weight to one, all values to
be missing, and the reference to the dataset to null.
- M5Instance() - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Private constructor for subclasses.
- M5Instances - Class in keel.Algorithms.Decision_Trees.M5
-
Class for handling an ordered set of weighted instances.
- M5Instances(Reader) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Reads an data file from a reader, and assigns a weight of
one to each instance.
- M5Instances(Reader, int) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Reads the header of an file from a reader and
reserves space for the given number of instances.
- M5Instances(M5Instances) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Constructor copying all instances and references to
the header information from the given set of instances.
- M5Instances(M5Instances, int) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Constructor creating an empty set of instances.
- M5Instances(M5Instances, int, int) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Creates a new set of instances by copying a
subset of another set.
- M5Instances(String, M5Vector, int) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Creates an empty set of instances.
- M5Kernel - Class in keel.Algorithms.Decision_Trees.M5
-
Simple kernel density estimator.
- M5Kernel(double) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Kernel
-
Constructor that takes a precision argument.
- M5Matrix - Class in keel.Algorithms.Decision_Trees.M5
-
Class for handling a matrix
- M5Matrix(int, int) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Matrix
-
Constructs a matrix
- M5Matrix - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Class for handling a matrix
- M5Matrix(int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5Matrix
-
Constructs a matrix
- M5SparseInstance - Class in keel.Algorithms.Decision_Trees.M5
-
Class for storing an instance as a sparse vector.
- M5SparseInstance() - Constructor for class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Default Constructor.
- M5SparseInstance(M5Instance) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Constructor that generates a sparse instance from the given
instance.
- M5SparseInstance(M5SparseInstance) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Constructor that copies the info from the given instance.
- M5SparseInstance(double, double[]) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Constructor that generates a sparse instance from the given
parameters.
- M5SparseInstance(double, double[], int[], int) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Constructor that inititalizes instance variable with given
values.
- M5SparseInstance(int) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Constructor of an instance that sets weight to one, all values to
be missing, and the reference to the dataset to null.
- M5StaticUtils - Class in keel.Algorithms.Decision_Trees.M5
-
Class implementing some simple utility methods.
- M5StaticUtils() - Constructor for class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
- M5StaticUtils - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Class implementing some simple utility methods.
- M5StaticUtils() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
- M5TreeNode - Class in keel.Algorithms.Decision_Trees.M5
-
Class for handing a node in the tree or the subtree under this node
- M5TreeNode(M5Instances, M5TreeNode) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Constructs a new node
- M5TreeNode(M5Instances, M5TreeNode, InformationHandler) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Constructs the root of a tree
- M5TreeNode - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Class for handing a node in the tree or the subtree under this node
- M5TreeNode(MyDataset, M5TreeNode) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Constructs a new node
- M5TreeNode(MyDataset, M5TreeNode, int, double, double) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Constructs the root of a tree
- M5Vector - Class in keel.Algorithms.Decision_Trees.M5
-
Implements a fast vector class without synchronized
methods.
- M5Vector() - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Vector
-
Constructs an empty vector with initial
capacity zero.
- M5Vector(int) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Vector
-
Constructs a vector with the given capacity.
- M5Vector(int, int, double) - Constructor for class keel.Algorithms.Decision_Trees.M5.M5Vector
-
Constructs a vector with the given capacity, capacity
increment and capacity mulitplier.
- M5Vector.FastVectorEnumeration - Class in keel.Algorithms.Decision_Trees.M5
-
Class for enumerating the vector's elements.
- m_0 - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
It indicates the range of the uniform distribution to use in the mutation of a real allele.
- m_0 - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It indicates the range of the uniform distribution to use in the mutation of a real allele.
- M_0 - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- m_Additional - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation
-
additional technical informations
- m_Additional - Variable in class keel.Algorithms.SVM.SMO.core.TechnicalInformation
-
additional technical informations
- m_ALF - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
Alpha value.
- m_Alin - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The parameters of the linear transforamtion realized
by the filter on the class attribute
- m_AllowedIndices - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeLocator
-
the attribute indices that may be inspected
- m_AllowUnclassifiedInstances - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Whether unclassified instances are allowed
- m_AllowUnclassifiedInstances - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Whether unclassified instances are allowed
- m_AllowUnclassifiedInstances - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Whether unclassified instances are allowed
- m_alpha - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
The Lagrange multipliers.
- m_alpha - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The Lagrange multipliers
- m_alpha - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
alpha and alpha* arrays containing weights for solving dual problem
- m_alpha1 - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
-
alpha value for first candidate
- m_alpha1Star - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
-
alpha* value for first candidate
- m_alpha2 - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
-
alpha value for second candidate
- m_alpha2Star - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
-
alpha* value for second candidate
- m_alpha_ - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The Lagrange multipliers
- m_alphaStar - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
alpha and alpha* arrays containing weights for solving dual problem
- m_Antds - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RipperRule
-
The vector of antecedents of this rule
- m_Arrays - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ApproximateSets
-
- m_Attribute - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
The attribute to split on.
- m_Attribute - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
The attribute to split on.
- m_Attribute - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
The attribute to split on.
- m_Attributes - Variable in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
The attribute information.
- m_Attributes - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeLocator
-
contains the attribute locations, either true or false Boolean objects
- m_Attributes - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
The attribute information.
- m_Attributes - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
The attribute information.
- m_Attributes - Variable in class keel.Algorithms.SVM.SMO.core.Instances
-
The attribute information.
- m_AttValues - Variable in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
The instance's attribute values.
- m_AttValues - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
The instance's attribute values.
- m_AttValues - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
The instance's attribute values.
- m_AttValues - Variable in class keel.Algorithms.SVM.SMO.core.Instance
-
The instance's attribute values.
- m_b - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.FuzzyRuleSet
-
output values of the rules
- m_b - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
The thresholds.
- m_b - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The thresholds.
- m_b - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
offset
- m_b0 - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.FuzzyRuleSet
-
Default output value of this rule set
- m_bContinuous - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- m_BETA - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
Beta value.
- m_bImprecise - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- m_bInputContinuous - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- m_bInputContinuous - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bInputImprecise - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- m_bInputImprecise - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bInputInteger - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- m_bInputInteger - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bInputMIL - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- m_bInputMIL - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bInputMissing - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- m_bInputMissing - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bInputMultiClass - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- m_bInputMultiClass - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bInputMultiOutput - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- m_bInputMultiOutput - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bInputNominal - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- m_bInputNominal - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bInteger - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- m_Blin - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The parameters of the linear transforamtion realized
by the filter on the class attribute
- m_bLow - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
The thresholds.
- m_bLow - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The thresholds.
- m_bLow - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
b.up and b.low boundaries used to determine stopping criterion
- m_bMIL - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- m_bMissing - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- m_bModelBuilt - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
flag to indicate whether the model is built yet
- m_bMultiClass - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- m_bMultiOutput - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- m_bNominal - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- m_bOutputContinuous - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- m_bOutputContinuous - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bOutputImprecise - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- m_bOutputImprecise - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bOutputInteger - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- m_bOutputInteger - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bOutputMIL - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bOutputMissing - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- m_bOutputMissing - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bOutputMultiClass - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- m_bOutputMultiClass - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bOutputMultiOutput - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- m_bOutputMultiOutput - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bOutputNominal - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- m_bOutputNominal - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_bUp - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
The thresholds.
- m_bUp - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The thresholds.
- m_bUp - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
b.up and b.low boundaries used to determine stopping criterion
- m_C - Variable in class keel.Algorithms.SVM.SMO.SMO
-
The complexity parameter.
- m_C - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The complexity parameter
- m_C - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
capacity parameter, copied from SVMreg
- m_C - Variable in class keel.Algorithms.SVM.SMO.SVMreg
-
capacity parameter
- m_Cache - Static variable in class keel.Algorithms.SVM.SMO.core.ClassDiscovery
-
for caching queries (classname+packagename <-> Vector with classnames)
- m_cacheHits - Variable in class keel.Algorithms.SVM.SMO.supportVector.CachedKernel
-
Counts the number of kernel cache hits.
- m_cacheSize - Variable in class keel.Algorithms.SVM.SMO.supportVector.CachedKernel
-
The size of the cache (a prime number)
- m_cacheSlots - Variable in class keel.Algorithms.SVM.SMO.supportVector.CachedKernel
-
number of cache slots in an entry
- m_checksTurnedOff - Variable in class keel.Algorithms.SVM.SMO.SMO
-
Turn off all checks and conversions?
- m_checksTurnedOff - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
Turn off all checks and conversions?
- m_ChecksTurnedOff - Variable in class keel.Algorithms.SVM.SMO.supportVector.Kernel
-
Turns off all checks
- m_Class - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
The class attribute of the data
- m_class - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
The transformed class values.
- m_classAttribute - Variable in class keel.Algorithms.SVM.SMO.SMO
-
The class attribute
- m_ClassDistribution - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Class probabilities from the training data.
- m_ClassDistribution - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Class probabilities from the training data.
- m_ClassDistribution - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Class probabilities from the training data.
- m_classifiers - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.PDFC
-
The binary classifier(s)
- m_classifiers - Variable in class keel.Algorithms.SVM.SMO.SMO
-
The binary classifier(s)
- m_ClassIndex - Variable in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
The class attribute's index
- m_ClassIndex - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
The class attribute's index
- m_ClassIndex - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
The class attribute's index
- m_ClassIndex - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
The index of the class attribute
- m_ClassIndex - Variable in class keel.Algorithms.SVM.SMO.core.Instances
-
The class attribute's index
- m_classIndex - Variable in class keel.Algorithms.SVM.SMO.SMO
-
The class index from the training data
- m_classIndex - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The class index from the training data
- m_classIndex - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
index of class variable in data set
- m_Coefficients - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.LinearRegression
-
the coefficients
- m_Comment - Variable in enum keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation.Field
-
the comment about this type
- m_Comment - Variable in enum keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation.Type
-
the comment about this type
- m_Comment - Variable in enum keel.Algorithms.SVM.SMO.core.TechnicalInformation.Field
-
the comment about this type
- m_Comment - Variable in enum keel.Algorithms.SVM.SMO.core.TechnicalInformation.Type
-
the comment about this type
- m_confidence - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Antd
-
Confidence / weight of this antecedent.
- m_Consequent - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RipperRule
-
The internal representation of the class label to be predicted
- m_Contents - Variable in class keel.Algorithms.Decision_Trees.M5.Queue.QueueNode
-
The nodes contents
- m_Contents - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Queue.QueueNode
-
The nodes contents
- m_Contents - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue.QueueNode
-
The nodes contents
- m_Contents - Variable in class keel.Algorithms.SVM.SMO.core.Queue.QueueNode
-
The nodes contents
- m_d - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.PDFC
-
The 'd' value for the Positive-Definite Reference Functions
- m_d - Variable in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
The d value for the PDRF kernel.
- m_Data - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeLocator
-
the referenced data
- m_Data - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsOriginal
-
- m_data - Variable in class keel.Algorithms.MIL.ExceptionDatasets
-
- m_Data - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
The data saved as a matrix
- m_data - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
The training data.
- m_data - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The training data.
- m_data - Variable in class keel.Algorithms.SVM.SMO.supportVector.Kernel
-
The dataset
- m_data - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
points to data set
- m_Dataset - Variable in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
The dataset the instance has access to.
- m_Dataset - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
The dataset the instance has access to.
- m_Dataset - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
The dataset the instance has access to.
- m_Dataset - Variable in class keel.Algorithms.SVM.SMO.core.Instance
-
The dataset the instance has access to.
- m_Debug - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Classifier
-
Whether the classifier is run in debug mode.
- m_Debug - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RipperRule
-
Whether in a debug mode
- m_Debug - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Whether in a debug mode
- m_Debug - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Debug flag.
- m_Debug - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Debug flag.
- m_Debug - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Debug flag.
- m_Debug - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
Debug flag.
- m_Debug - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
Debugging output
- m_Debug - Variable in class keel.Algorithms.SVM.SMO.core.Check
-
Debugging mode, gives extra output if true
- m_Debug - Variable in class keel.Algorithms.SVM.SMO.supportVector.Kernel
-
enables debugging output
- m_Del - Static variable in class keel.Algorithms.SVM.SMO.SMO
-
Precision constant for updating sets
- m_Del - Static variable in class keel.Algorithms.SVM.SMO.SMOreg
-
Precision constant for updating sets
- m_Del - Static variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
-
Precision constant for updating sets
- m_Display - Variable in enum keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation.Field
-
the string used in toString()
- m_Display - Variable in enum keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation.Type
-
the string used in toString()
- m_Display - Variable in enum keel.Algorithms.SVM.SMO.core.TechnicalInformation.Field
-
the string used in toString()
- m_Display - Variable in enum keel.Algorithms.SVM.SMO.core.TechnicalInformation.Type
-
the string used in toString()
- m_Distributions - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
The predicted class distribution
- m_eps - Variable in class keel.Algorithms.SVM.SMO.SMO
-
Epsilon for rounding.
- m_eps - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The parameter eps
- m_eps - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
-
tolerance parameter, smaller changes on alpha in inner loop will be ignored
- m_Epsilon - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
Compute machine precision
- m_epsilon - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The parameter epsilon
- m_epsilon - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
epsilon of epsilon-insensitive cost function
- m_errors - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
The current set of errors for all non-bound examples.
- m_Evaluations - Variable in class keel.Algorithms.SVM.SMO.supportVector.KernelEvaluation
-
the kernel evaluation results
- m_exponent - Variable in class keel.Algorithms.SVM.SMO.supportVector.PolyKernel
-
The exponent for the polynomial kernel.
- m_f - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
function value
- m_factor - Variable in class keel.Algorithms.SVM.SMO.supportVector.Puk
-
Cached factor for the Puk kernel.
- m_FailReason - Variable in class keel.Algorithms.MIL.ExceptionDatasets
-
- m_fcache - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The current set of errors for all non-bound examples.
- m_filterType - Variable in class keel.Algorithms.SVM.SMO.SMO
-
Whether to normalize/standardize/neither
- m_filterType - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
Whether to normalize/standardize/neither
- m_filterType - Variable in class keel.Algorithms.SVM.SMO.SVMreg
-
Whether to normalize/standardize/neither
- m_fitLogisticModels - Variable in class keel.Algorithms.SVM.SMO.SMO
-
Whether logistic models are to be fit
- m_gamma - Variable in class keel.Algorithms.SVM.SMO.supportVector.RBFKernel
-
Gamma for the RBF kernel.
- m_Head - Variable in class keel.Algorithms.Decision_Trees.M5.Queue
-
Store a reference to the head of the queue
- m_Head - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Queue
-
Store a reference to the head of the queue
- m_Head - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue
-
Store a reference to the head of the queue
- m_Head - Variable in class keel.Algorithms.SVM.SMO.core.Queue
-
Store a reference to the head of the queue
- m_I0 - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
{i: 0 < m_alpha[i] < C}
- m_I0 - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
{i: 0 < m_alpha[i] < C || 0 < m_alpha_[i] < C}
- m_I0 - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
The different sets used by the algorithm.
- m_I1 - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
{i: m_class[i] = 1, m_alpha[i] = 0}
- m_I1 - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
{i: m_class[i] = 0, m_alpha_[i] = 0}
- m_I2 - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
{i: m_class[i] = -1, m_alpha[i] =C}
- m_I2 - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
{i: m_class[i] = 0, m_alpha_[i] = C}
- m_I3 - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
{i: m_class[i] = 1, m_alpha[i] = C}
- m_I3 - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
{i: m_class[i] = C, m_alpha_[i] = 0}
- m_I4 - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
{i: m_class[i] = -1, m_alpha[i] = 0}
- m_ID - Variable in class keel.Algorithms.Decision_Trees.M5.Association
-
The ID
- m_ID - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation
-
the unique identifier of this information, will be generated
automatically if left empty
- m_ID - Variable in class keel.Algorithms.SVM.SMO.core.Tag
-
The ID
- m_ID - Variable in class keel.Algorithms.SVM.SMO.core.TechnicalInformation
-
the unique identifier of this information, will be generated
automatically if left empty
- m_IDStr - Variable in class keel.Algorithms.SVM.SMO.core.Tag
-
The unique string for this tag, doesn't have to be numeric
- m_iLow - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
The indices for m_bLow and m_bUp
- m_iLow - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The indices for m_bLow and m_bUp
- m_iLow - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
index of the instance that gave us b.up and b.low
- m_IndexString - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.SingleIndex
-
Record the string representation of the number
- m_Indices - Variable in class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
The index of the attribute associated with each stored value.
- m_Indices - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeLocator
-
the indices
- m_Indices - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
The index of the attribute associated with each stored value.
- m_IndicesBuffer - Variable in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Buffer of indices for sparse instance
- m_IndicesBuffer - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Buffer of indices for sparse itemsets
- m_IndicesBuffer - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Buffer of indices for sparse instance
- m_Info - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
The header information.
- m_Info - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
The header information.
- m_Info - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
The header information.
- m_Instances - Variable in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
The instances.
- m_Instances - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
The instances.
- m_Instances - Variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- m_Instances - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
The instances.
- m_Instances - Variable in class keel.Algorithms.SVM.SMO.core.Instances
-
The instances.
- m_iSet - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
Index set {i: 0 < m_alpha[i] < C || 0 < m_alphaStar[i] < C}}
- m_iUp - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
The indices for m_bLow and m_bUp
- m_iUp - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The indices for m_bLow and m_bUp
- m_iUp - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
index of the instance that gave us b.up and b.low
- m_kernel - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.FuzzyRuleSet
-
The Kernel associated to this Rule set
- m_kernel - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
Kernel to use
- m_kernel - Variable in class keel.Algorithms.SVM.SMO.SMO
-
the kernel to use
- m_kernel - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
Kernel to use
- m_kernel - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
the kernel
- m_kernel - Variable in class keel.Algorithms.SVM.SMO.SVMreg
-
the configured kernel
- m_kernelEvals - Variable in class keel.Algorithms.SVM.SMO.supportVector.CachedKernel
-
Counts the number of kernel evaluations.
- m_KernelIsLinear - Variable in class keel.Algorithms.SVM.SMO.SMO
-
whether the kernel is a linear one
- m_KernelIsLinear - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
whether the kernel is a linear one
- m_kernelMatrix - Variable in class keel.Algorithms.SVM.SMO.supportVector.CachedKernel
-
The kernel matrix if full cache is used (i.e. size is set to 0)
- m_kernelPrecalc - Variable in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
The precalculated dotproducts of <inst_i,inst_i>
- m_kernelPrecalc - Variable in class keel.Algorithms.SVM.SMO.supportVector.Puk
-
The precalculated dotproducts of <inst_i,inst_i>
- m_kernelPrecalc - Variable in class keel.Algorithms.SVM.SMO.supportVector.RBFKernel
-
The precalculated dotproducts of <inst_i,inst_i>
- m_keys - Variable in class keel.Algorithms.SVM.SMO.supportVector.CachedKernel
-
Kernel cache (keys)
- m_KValue - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.ADE_CoForestGenerator
-
Final number of features that were considered in last build.
- m_KValue - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
The number of attributes considered for a split.
- m_KValue - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.CLCCGenerator
-
Final number of features that were considered in last build.
- m_KValue - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
The number of attributes considered for a split.
- m_KValue - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.CoForestGenerator
-
Final number of features that were considered in last build.
- m_KValue - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
The number of attributes considered for a split.
- m_lambda - Variable in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
the decay factor that penalizes non-continuous substring matches.
- m_Lines - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
The lines read so far in case of incremental loading.
- m_Lines - Variable in class keel.Algorithms.SVM.SMO.core.Instances
-
The lines read so far in case of incremental loading.
- m_LL - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
Log-likelihood of the searched model
- m_LocatorIndices - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeLocator
-
the indices of locator objects
- m_Locators - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeLocator
-
contains the locator locations, either null or a AttributeLocator reference
- m_logistic - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
Stores logistic regression model for probability estimate
- m_lowerOrder - Variable in class keel.Algorithms.SVM.SMO.supportVector.PolyKernel
-
Use lower-order terms?
- m_Matrix - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
The actual matrix
- m_MaxDepth - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
The maximum depth of the tree (0 = unlimited)
- m_MaxDepth - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
The maximum depth of the tree (0 = unlimited)
- m_MaxDepth - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
The maximum depth of the tree (0 = unlimited)
- m_MAXITS - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
Maximun iterations.
- m_MinNum - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Minimum number of instances for leaf.
- m_MinNum - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Minimum number of instances for leaf.
- m_MinNum - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Minimum number of instances for leaf.
- m_NameClassIndex - Variable in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
name of the class with output
- m_nCacheHits - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
number of kernel cache hits, used for printing statistics only
- m_nEvals - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
number of kernel evaluations, used for printing statistics only
- m_NewBatch - Variable in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Record whether the filter is at the start of a batch
- m_NewBatch - Variable in class keel.Algorithms.Decision_Trees.M5.ReplaceMissingValuesFilter
-
Record whether the filter is at the start of a batch
- m_Next - Variable in class keel.Algorithms.Decision_Trees.M5.Queue.QueueNode
-
The next node in the queue
- m_Next - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Queue.QueueNode
-
The next node in the queue
- m_Next - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue.QueueNode
-
The next node in the queue
- m_Next - Variable in class keel.Algorithms.SVM.SMO.core.Queue.QueueNode
-
The next node in the queue
- m_nInstances - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
number of instances in data set
- m_nominalToBinary - Variable in class keel.Algorithms.SVM.SMO.SMO
-
Whether to convert nominal attributes into binary values
- m_nSeed - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
seed for initializing random number generator
- m_NumAttributes - Variable in class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
The maximum number of values that can be stored.
- m_NumAttributes - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
The maximum number of values that can be stored.
- m_NumCacheHits - Variable in class keel.Algorithms.SVM.SMO.supportVector.KernelEvaluation
-
the number of cache hits
- m_NumClasses - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
The number of the class labels
- m_NumClasses - Variable in class keel.Algorithms.SVM.SMO.SMO
-
The number of the class labels
- m_NumEvals - Variable in class keel.Algorithms.SVM.SMO.supportVector.KernelEvaluation
-
the number of performed evaluations
- m_numFeatures - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.ADE_CoForestGenerator
-
Number of features to consider in random feature selection.
- m_numFeatures - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.CLCCGenerator
-
Number of features to consider in random feature selection.
- m_numFeatures - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.CoForestGenerator
-
Number of features to consider in random feature selection.
- m_NumFolds - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Determines how much data is used for backfitting
- m_NumFolds - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Determines how much data is used for backfitting
- m_NumFolds - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Determines how much data is used for backfitting
- m_numFolds - Variable in class keel.Algorithms.SVM.SMO.SMO
-
The number of folds for the internal cross-validation
- m_numInsts - Variable in class keel.Algorithms.SVM.SMO.supportVector.CachedKernel
-
The number of instance in the dataset
- m_NumPredictors - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
The number of attributes in the model
- m_omega - Variable in class keel.Algorithms.SVM.SMO.supportVector.Puk
-
Omega for the Puk kernel.
- m_onlyNumeric - Variable in class keel.Algorithms.SVM.SMO.SVMreg
-
Only numeric attributes in the dataset?
- m_optimizer - Variable in class keel.Algorithms.SVM.SMO.SVMreg
-
contains the algorithm used for learning
- m_Options - Variable in class keel.Algorithms.SVM.SMO.supportVector.KernelEvaluation
-
user-supplied options
- m_Par - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
The coefficients (optimized parameters) of the model
- m_powersOflambda - Variable in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
the precalculated powers of lambda
- m_Prop - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
The proportions of training instances going down each branch.
- m_Prop - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
The proportions of training instances going down each branch.
- m_Prop - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
The proportions of training instances going down each branch.
- m_PruningMethod - Variable in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
the pruning method
- m_Random - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Random object used in this class
- m_random - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
random number generator
- m_randomSeed - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
The random seed to use.
- m_randomSeed - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
The random seed to use.
- m_randomSeed - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
The random seed to use.
- m_randomSeed - Variable in class keel.Algorithms.SVM.SMO.SMO
-
The random number seed
- m_Readable - Variable in class keel.Algorithms.Decision_Trees.M5.Association
-
The descriptive text
- m_Readable - Variable in class keel.Algorithms.SVM.SMO.core.Tag
-
The descriptive text
- m_RelationName - Variable in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
The dataset's name.
- m_RelationName - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
The dataset's name.
- m_RelationName - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
The dataset's name.
- m_RelationName - Variable in class keel.Algorithms.SVM.SMO.core.Instances
-
The dataset's name.
- m_Result - Variable in class keel.Algorithms.SVM.SMO.supportVector.KernelEvaluation
-
the result string
- m_Ridge - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
The ridge parameter.
- m_rules - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.FuzzyRuleSet
-
The actual number of rules
- m_Ruleset - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
The ruleset
- m_ruleSet - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.PDFC
-
The fuzzy rule sets
- m_RulesetStats - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
The RuleStats for the ruleset of each class value
- m_sDatasetHasContinuous - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_sDatasetHasImprecise - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_sDatasetHasInteger - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_sDatasetHasMIL - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_sDatasetHasMissing - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_sDatasetHasMultiClass - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_sDatasetHasMultiOutput - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_sDatasetHasNominal - Variable in class keel.GraphInterKeel.experiments.Node
-
- m_Seed - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
The seed to perform randomization
- m_seed - Variable in class keel.Algorithms.SVM.SMO.SMO
-
The seed used for of the class labels
- m_Selected - Variable in class keel.Algorithms.Decision_Trees.M5.SelectedAssociation
-
The index of the selected tag
- m_Selected - Variable in class keel.Algorithms.SVM.SMO.core.SelectedTag
-
The index of the selected tag
- m_SelectedIndex - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.SingleIndex
-
The selected index
- m_sig - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsOriginal
-
- m_sigma - Variable in class keel.Algorithms.SVM.SMO.supportVector.Puk
-
Sigma for the Puk kernel.
- m_Silent - Variable in class keel.Algorithms.SVM.SMO.core.Check
-
Silent mode, for no output at all to stdout
- m_Size - Variable in class keel.Algorithms.Decision_Trees.M5.Queue
-
Store the current number of elements in the queue
- m_Size - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Queue
-
Store the c m_Tail.m_Nexturrent number of elements in the queue
- m_Size - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue
-
Store the current number of elements in the queue
- m_Size - Variable in class keel.Algorithms.SVM.SMO.core.Queue
-
Store the c m_Tail.m_Nexturrent number of elements in the queue
- m_sparseIndices - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
Variables to hold indices vector in sparse form.
- m_sparseIndices - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
Variables to hold indices vector in sparse form.
- m_sparseIndices - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
Variables to hold indices vector in sparse form.
- m_sparseWeights - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
Variables to hold weight vector in sparse form.
- m_sparseWeights - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
Variables to hold weight vector in sparse form.
- m_sparseWeights - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
Variables to hold weight vector in sparse form.
- m_SplitPoint - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
The split point.
- m_SplitPoint - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
The split point.
- m_SplitPoint - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
The split point.
- m_storage - Variable in class keel.Algorithms.SVM.SMO.supportVector.CachedKernel
-
Kernel cache
- m_STPMX - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
STPMX value.
- m_Successors - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
The subtrees appended to this tree.
- m_Successors - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
The subtrees appended to this tree.
- m_Successors - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
The subtrees appended to this tree.
- m_sumOfWeights - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
Stores the weight of the training instances
- m_supportVectors - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
The set of support vectors
- m_supportVectors - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
set of support vectors, that is, vectors with alpha(*)!
- m_SVM - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
parent SVMreg class
- m_Tags - Variable in class keel.Algorithms.Decision_Trees.M5.SelectedAssociation
-
The set of tags to choose from
- m_Tags - Variable in class keel.Algorithms.SVM.SMO.core.SelectedTag
-
The set of tags to choose from
- m_Tail - Variable in class keel.Algorithms.Decision_Trees.M5.Queue
-
Store a reference to the tail of the queue
- m_Tail - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Queue
-
Store a reference to the tail of the queue
- m_Tail - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue
-
Store a reference to the tail of the queue
- m_Tail - Variable in class keel.Algorithms.SVM.SMO.core.Queue
-
Store a reference to the tail of the queue
- m_target - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
class values/desired output vector
- m_tol - Variable in class keel.Algorithms.SVM.SMO.SMO
-
Tolerance for accuracy of result.
- m_tol - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The parameter tol
- m_TOLX - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
ToleranceX value.
- m_Total - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
# of all the possible conditions in a rule
- m_Type - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeLocator
-
the type of the attribute
- m_Type - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation
-
the type of this technical information
- m_Type - Variable in class keel.Algorithms.SVM.SMO.core.TechnicalInformation
-
the type of this technical information
- m_type - Variable in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
The type of function used by this kernel
- m_Upper - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.SingleIndex
-
Store the maximum value permitted. -1 indicates that no upper
value has been set
- m_ValueBuffer - Variable in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Buffer of values for sparse instance
- m_ValueBuffer - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Buffer of values for sparse itemsets
- m_ValueBuffer - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Buffer of values for sparse instance
- m_Values - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation
-
stores all the values associated with the fields (FIELD - String)
- m_Values - Variable in class keel.Algorithms.SVM.SMO.core.TechnicalInformation
-
stores all the values associated with the fields (FIELD - String)
- m_Weight - Variable in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
The instance's weight.
- m_Weight - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
The instance's weight.
- m_Weight - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
The instance's weight.
- m_Weight - Variable in class keel.Algorithms.SVM.SMO.core.Instance
-
The instance's weight.
- m_weights - Variable in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
Weight vector for linear machine.
- m_weights - Variable in class keel.Algorithms.SVM.SMO.SMOreg
-
Weight vector for linear machine.
- m_weights - Variable in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
weights for linear kernel
- m_x0 - Variable in class keel.Algorithms.SVM.SMO.SVMreg
-
coefficients used by normalization filter for doing its linear transformation
so that result = svmoutput * m_x1 + m_x0
- m_x1 - Variable in class keel.Algorithms.SVM.SMO.SVMreg
-
coefficients used by normalization filter for doing its linear transformation
so that result = svmoutput * m_x1 + m_x0
- m_z - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.FuzzyRuleSet
-
location parameters of the different membership functions
- m_Zero - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
Compute machine precision
- MACHEP - Static variable in class keel.Algorithms.Lazy_Learning.Statistics
-
MACHEP constant
- MACHEP - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
Some constants
- MachineAccuracy - Class in keel.Algorithms.Preprocess.Missing_Values.BPCA
-
determines machine accuracy
- MachineAccuracy() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.BPCA.MachineAccuracy
-
- MachineAccuracy - Class in keel.Algorithms.Preprocess.Missing_Values.EM.util
-
determines machine accuracy
- MachineAccuracy() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EM.util.MachineAccuracy
-
- Main - Class in keel.Algorithms.Associative_Classification.ClassifierCBA
-
It reads the configuration file (data-set files and parameters) and launch the algorithm.
- Main() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Main
-
Main Program
- Main - Class in keel.Algorithms.Associative_Classification.ClassifierCBA2
-
It reads the configuration file (data-set files and parameters) and launch the algorithm
- Main() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Main
-
Main Program
- Main - Class in keel.Algorithms.Associative_Classification.ClassifierCMAR
-
It reads the configuration file (data-set files and parameters) and launch the algorithm
- Main() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCMAR.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.Main
-
Main Program
- Main - Class in keel.Algorithms.Associative_Classification.ClassifierCPAR
-
It reads the configuration file (data-set files and parameters) and launch the algorithm
- Main() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCPAR.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.Main
-
Main Program
- Main - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR
-
It reads the configuration file (data-set files and parameters) and launch the algorithm
- Main() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Main
-
Main Program
- Main - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Main
-
Main Program
- Main - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA
-
It reads the configuration file (data-set files and parameters) and launch the algorithm
- Main() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Main
-
Main Program
- main(String[]) - Static method in class keel.Algorithms.Clustering_Algorithms.ClusterKMeans.ClusterKMeans
-
This public static method runs the algorithm that this class concerns with.
- Main - Class in keel.Algorithms.Coevolution.CIW_NN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Coevolution.CIW_NN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Coevolution.CIW_NN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Coevolution.IFS_COCO
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Coevolution.IFS_COCO.Main
-
- main(String[]) - Static method in class keel.Algorithms.Coevolution.IFS_COCO.Main
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.Complexity_Metrics.ComplexityMetrics
-
It runs the algorithm
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.C45.C45
-
Main function.
- Main - Class in keel.Algorithms.Decision_Trees.C45_Binarization
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.C45_Binarization.Main
-
Main Program
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.CART.classification.RunClassificationCART
-
It runs the CART method for classification
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.CART.regression.RunRegressionCART
-
It runs the CART method for regression
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.DT_GA.C45.C45
-
Main function.
- Main - Class in keel.Algorithms.Decision_Trees.DT_GA
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.DT_GA.Main
-
Main Program
- Main - Class in keel.Algorithms.Decision_Trees.DT_oblicuo
-
It reads the configuration file (data-set files and parameters) and launch the algorithm
- Main() - Constructor for class keel.Algorithms.Decision_Trees.DT_oblicuo.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.DT_oblicuo.Main
-
Main Program
- Main - Class in keel.Algorithms.Decision_Trees.FunctionalTrees
-
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Decision_Trees.FunctionalTrees.Main
-
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.FunctionalTrees.Main
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.ID3.ID3
-
Main function.
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.M5.Distributions
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
A test method for this class.
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5
-
Main method for M5' algorithm
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Simple main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5Kernel
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.M5.Queue
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.M5.SerializedObject
-
Test routine, reads an data file from stdin and measures memory usage
(the data file should have long string attribute values)
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.M5.SimpleStatistics
-
Tests the paired stats object from the command line.
- Main - Class in keel.Algorithms.Decision_Trees.PUBLIC
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Decision_Trees.PUBLIC.Main
-
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.PUBLIC.Main
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.SLIQ.SLIQ
-
Main function.
- Main - Class in keel.Algorithms.Decision_Trees.Target
-
It reads the configuration file (data-set files and parameters) and launch the algorithm
- Main() - Constructor for class keel.Algorithms.Decision_Trees.Target.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Decision_Trees.Target.Main
-
Main Program
- Main - Class in keel.Algorithms.Discretizers.Ameva_Discretizer
-
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Discretizers.Ameva_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.Ameva_Discretizer.Main
-
It runs the method
- Main - Class in keel.Algorithms.Discretizers.Bayesian_Discretizer
-
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Discretizers.Bayesian_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.Bayesian_Discretizer.Main
-
It runs the algorithm
- Main - Class in keel.Algorithms.Discretizers.CACC
-
Main class of CACC algorithm (discretization algorithm based on Class-Attribute Contingency Coefficient)
- Main() - Constructor for class keel.Algorithms.Discretizers.CACC.Main
-
Creates a new instance of Main.
- main(String[]) - Static method in class keel.Algorithms.Discretizers.CACC.Main
-
Main method
- Main - Class in keel.Algorithms.Discretizers.CADD_Discretizer
-
Main class CADD discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.CADD_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.CADD_Discretizer.Main
-
It runs the algorithm
- Main - Class in keel.Algorithms.Discretizers.CAIM_Discretizer
-
Main class CADD discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.CAIM_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.CAIM_Discretizer.Main
-
It runs the algorithm
- Main - Class in keel.Algorithms.Discretizers.Chi2_Discretizer
-
Main class Chi2 discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.Chi2_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.Chi2_Discretizer.Main
-
- Main - Class in keel.Algorithms.Discretizers.ChiMerge_Discretizer
-
Main class Chi-Merge discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.ChiMerge_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.ChiMerge_Discretizer.Main
-
It runs the algorithm
- Main - Class in keel.Algorithms.Discretizers.Cluster_Analysis
-
Main class Cluster Analysis Discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.Cluster_Analysis.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.Cluster_Analysis.Main
-
It runs the algorithm
- Main - Class in keel.Algorithms.Discretizers.DIBD
-
Main class of DIBD (Distribution-Index-Based Discretizer)
- Main() - Constructor for class keel.Algorithms.Discretizers.DIBD.Main
-
It creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.DIBD.Main
-
Main method
- Main - Class in keel.Algorithms.Discretizers.ExtendedChi2_Discretizer
- Main() - Constructor for class keel.Algorithms.Discretizers.ExtendedChi2_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.ExtendedChi2_Discretizer.Main
-
- Main - Class in keel.Algorithms.Discretizers.Fayyad_Discretizer
-
Main class Fayyad discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.Fayyad_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.Fayyad_Discretizer.Main
-
Main method
- Main - Class in keel.Algorithms.Discretizers.FixedFrequency_Discretizer
-
Main class Uniform Frequency discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.FixedFrequency_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.FixedFrequency_Discretizer.Main
-
Main method
- Main - Class in keel.Algorithms.Discretizers.FUSINTER
-
Main class of the FUSINTER discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.FUSINTER.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.FUSINTER.Main
-
Main method
- Main - Class in keel.Algorithms.Discretizers.HDD
-
Main class HDD discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.HDD.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.HDD.Main
-
Main method
- Main - Class in keel.Algorithms.Discretizers.HellingerBD
-
Main class of HellingerBD (Hellinger-Based Discretizer)
- Main() - Constructor for class keel.Algorithms.Discretizers.HellingerBD.Main
-
- main(String[]) - Static method in class keel.Algorithms.Discretizers.HellingerBD.Main
-
Main method
- Main - Class in keel.Algorithms.Discretizers.HeterDisc
-
Main class of Heter-Disc algorithm (discretization algorithm based on Heterogeneity Criterion)
- Main() - Constructor for class keel.Algorithms.Discretizers.HeterDisc.Main
-
It creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.HeterDisc.Main
-
Main method
- Main - Class in keel.Algorithms.Discretizers.Id3_Discretizer
-
Main class IID3 discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.Id3_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.Id3_Discretizer.Main
-
It runs the algorithm
- Main - Class in keel.Algorithms.Discretizers.IDD
-
Main class of IDD (Interval distance based-Method for Discretization)
- Main() - Constructor for class keel.Algorithms.Discretizers.IDD.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.IDD.Main
-
Main method
- Main - Class in keel.Algorithms.Discretizers.Khiops
-
Main class of Khiops
- Main() - Constructor for class keel.Algorithms.Discretizers.Khiops.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.Khiops.Main
-
It runs the algorithm
- Main - Class in keel.Algorithms.Discretizers.MantarasDist_Discretizer
-
Main class Mantaras Distance-Based Discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.MantarasDist_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.MantarasDist_Discretizer.Main
-
It runs the algorithm
- Main - Class in keel.Algorithms.Discretizers.ModifiedChi2_Discretizer
-
Main class Chi2 discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.ModifiedChi2_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.ModifiedChi2_Discretizer.Main
-
- Main - Class in keel.Algorithms.Discretizers.MODL
-
Main class
- Main() - Constructor for class keel.Algorithms.Discretizers.MODL.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.MODL.Main
-
- Main - Class in keel.Algorithms.Discretizers.MVD
-
Main class of MVD (Multivariate Discretization) algorithm
- Main() - Constructor for class keel.Algorithms.Discretizers.MVD.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.MVD.Main
-
Main method
- Main - Class in keel.Algorithms.Discretizers.OneR
-
Main class
- Main() - Constructor for class keel.Algorithms.Discretizers.OneR.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.OneR.Main
-
It runs the algorithm
- Main - Class in keel.Algorithms.Discretizers.Proportional_Discretizer
-
Main class Proportional discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.Proportional_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.Proportional_Discretizer.Main
-
Main method
- Main - Class in keel.Algorithms.Discretizers.Random_Discretizer
-
Main class of the Random Discretizer
- Main() - Constructor for class keel.Algorithms.Discretizers.Random_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.Random_Discretizer.Main
-
Main method
- Main - Class in keel.Algorithms.Discretizers.UCPD
-
Main class of UCPD (Unsupervised Correlation Preserving Discretization) algorithm
- Main() - Constructor for class keel.Algorithms.Discretizers.UCPD.Main
-
It creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.UCPD.Main
-
Main method
- Main - Class in keel.Algorithms.Discretizers.UniformFrequency_Discretizer
-
Main class Uniform Frequency discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.UniformFrequency_Discretizer.Main
-
It creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.UniformFrequency_Discretizer.Main
-
Main method
- Main - Class in keel.Algorithms.Discretizers.UniformWidth_Discretizer
-
Main class Uniform Width discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.UniformWidth_Discretizer.Main
-
It creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.UniformWidth_Discretizer.Main
-
Main method
- Main - Class in keel.Algorithms.Discretizers.USD_Discretizer
-
Main class USD discretizer.
- Main() - Constructor for class keel.Algorithms.Discretizers.USD_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.USD_Discretizer.Main
-
- Main - Class in keel.Algorithms.Discretizers.Zeta_Discretizer
-
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Discretizers.Zeta_Discretizer.Main
-
It creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Discretizers.Zeta_Discretizer.Main
-
Main method
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.CFKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.CFKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.CFKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.D_SKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.D_SKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.D_SKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.FCMKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.FCMKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FCMKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.FENN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.FENN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FENN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.FRKNNA
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRKNNA.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRKNNA.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN_FRS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN_FRS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN_FRS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN_VQRS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN_VQRS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN_VQRS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyNPC
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyNPC.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyNPC.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.GAFuzzyKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.GAFuzzyKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.GAFuzzyKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.IF_KNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.IF_KNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.IF_KNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.IFSKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.IFSKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.IFSKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.IFV_NP
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.IFV_NP.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.IFV_NP.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.IT2FKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.IT2FKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.IT2FKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.JFKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.JFKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.JFKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.PFKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.PFKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.PFKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.PosIBL
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.PosIBL.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.PosIBL.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.VWFuzzyKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.VWFuzzyKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.VWFuzzyKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW
-
It reads the configuration file (data-set files and parameters) and launch the algorithm
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.Main
-
Main Program
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.ClassifierFuzzyWangMendel.ClassifierFuzzyWangMendel
-
This public static method runs the algorithm that this class concerns with.
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted
-
It reads the configuration file (data-set files and parameters) and launch the algorithm
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Main
-
Main Program
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyAdaBoost.ClassifierFuzzyAdaBoost
-
This public static method runs the algorithm that this class concerns with.
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGAP.ClassifierFuzzyGAP
-
This public static method runs the algorithm that this class concerns with.
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGP.ClassifierFuzzyGP
-
This public static method runs the algorithm that this class concerns with.
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyLogitBoost.ClassifierFuzzyLogitBoost
-
This public static method runs the algorithm that this class concerns with.
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyMaxLogitBoost.ClassifierFuzzyMaxLogitBoost
-
This public static method runs the algorithm that this class concerns with.
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyPittsBurgh.ClassifierFuzzyPittsBurgh
-
This public static method runs the algorithm that this class concerns with.
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySAP.ClassifierFuzzySAP
-
This public static method runs the algorithm that this class concerns with.
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD
-
It reads the configuration file (data-set files and parameters) and launch the algorithm
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Main
-
Main Program
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99
-
Main Class of the Program
It reads the configuration file (data-set files and parameters) and launch the algorithm
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.Main
-
Main Program
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL
-
Main Class of the Program.
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.Main
-
Main Program
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.Main
-
Main Program
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.Main
-
Main Program
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.Main
-
Main Program
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.Main
-
Main Program
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.Main
-
Main Program
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.Main
-
Main Program
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Main
-
Main Program
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.Main
-
Main Program
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the GP-COACH algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Main
-
Main Program
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Main
-
Main Program
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyGAP.ModelFuzzyGAP
-
This public static method runs the algorithm that this class concerns with.
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyGP.ModelFuzzyGP
-
This public static method runs the algorithm that this class concerns with.
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyPittsBurgh.ModelFuzzyPittsBurgh
-
This public static method runs the algorithm that this class concerns with.
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzySAP.ModelFuzzySAP
-
This public static method runs the algorithm that this class concerns with.
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.FB
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.Main
-
Main Program
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.Main
-
Main Program
- Main - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS
-
Main Class
- Main() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.Main
-
It runs the algorirthm
- main(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Random_Sets.FSS98.FSS98
-
This public static method runs the algorithm that this class concerns with.
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Main
-
Default constructor.
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Main
-
Default constructor.
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.Ant_Miner
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Main
-
Default constructor.
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Main
-
Default constructor.
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
Main class of BioHEL algorithm
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Main
-
It creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Main
-
Main method
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.Bojarczuk_GP
-
Bojarczuk classification algorithm
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Bojarczuk_GP.Main
-
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Bojarczuk_GP.Main
-
Main method
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.COGIN
-
Main class
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.COGIN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Main
-
It runs the algorithm
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
Main function of the program
The scheme of the steady-state Pitts-GIRLA method is the following one:
Selection
Crossover
Mutation
Replacement
Evaluation
Until X generations have been carried out
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.CORE
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.CORE.Main
-
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Main
-
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.DMEL
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.DMEL.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.Main
-
Main Program
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.Falco_GP
-
Falco classification algorithm
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Falco_GP.Main
-
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Falco_GP.Main
-
Main method
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Control
-
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.GIL
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GIL.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Main
-
Main Program
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.Hider
-
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Hider.Main
-
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Main
-
Main function for the algorithm Hider.
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.ILGA
-
Main class for algorithm ILGA.
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.ILGA.Main
-
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.Main
-
Main function for algorithm ILGA.
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.LogenPro
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Main
-
Main Program
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleStatistics
-
Tests the paired stats object from the command line.
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.ChiMerge_Discretizer
-
Main class for algorithm MPLCS.
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.ChiMerge_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.ChiMerge_Discretizer.Main
-
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Fayyad_Discretizer
-
Main class for the algorithm MPLCS Fayyad_Dicretizer.
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Fayyad_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Fayyad_Discretizer.Main
-
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Id3_Discretizer
-
Main class for algorithm MPLCS ID3_Discretizer.
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Id3_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Id3_Discretizer.Main
-
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.UniformFrequency_Discretizer
-
Main class for algorithm MPLCS UniformFrequency_Discretizer.
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.UniformFrequency_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.UniformFrequency_Discretizer.Main
-
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.UniformWidth_Discretizer
-
Main class for algorithm MPLCS UniformWidth_Discretizer.
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.UniformWidth_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.UniformWidth_Discretizer.Main
-
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.USD_Discretizer
-
Main class for algorithm MPLCS USD_Discretizer.
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.USD_Discretizer.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.USD_Discretizer.Main
-
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
-
Main class.
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Main
-
Creates a new instance of Control
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Main
-
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.OCEC
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OCEC.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Main
-
Main Program
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.OIGA
-
Main class
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OIGA.Main
-
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.Main
-
It runs the algorithm
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.PSO_ACO
-
File: Main.java
This is the main class of the PSO-ACO algorithm.
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Main
-
Default constructor.
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.RMini
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.RMini.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.RMini.Main
-
Main Program
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.SIA
-
Title: SIA Main Program
Description: This is the main class, which is executed when we launch the program
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.SIA.Main
-
Default builder
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Main
-
Main program
- Main - Class in keel.Algorithms.Genetic_Rule_Learning.Tan_GP
-
Falco classification algorithm
- Main() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Tan_GP.Main
-
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Tan_GP.Main
-
Main method
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.UCS.UCSControl
-
It is the main procedure.
- main(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.XCSControl
-
It is the main procedure.
- Main - Class in keel.Algorithms.Hyperrectangles.BNGE
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Hyperrectangles.BNGE.Main
-
- main(String[]) - Static method in class keel.Algorithms.Hyperrectangles.BNGE.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Hyperrectangles.EACH
-
Main class of the Each algorithm.
- Main() - Constructor for class keel.Algorithms.Hyperrectangles.EACH.Main
-
Default constructor.
- main(String[]) - Static method in class keel.Algorithms.Hyperrectangles.EACH.Main
-
Main program
- Main - Class in keel.Algorithms.Hyperrectangles.EHS_CHC
-
Main class.
- Main() - Constructor for class keel.Algorithms.Hyperrectangles.EHS_CHC.Main
-
- main(String[]) - Static method in class keel.Algorithms.Hyperrectangles.EHS_CHC.Main
-
Main function.
- Main - Class in keel.Algorithms.Hyperrectangles.INNER
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Hyperrectangles.INNER.Main
-
- main(String[]) - Static method in class keel.Algorithms.Hyperrectangles.INNER.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Hyperrectangles.RISE
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Hyperrectangles.RISE.Main
-
- main(String[]) - Static method in class keel.Algorithms.Hyperrectangles.RISE.Main
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.C45CS
-
Main function.
- Main - Class in keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost
-
File: Main.java
A Main class to process the parameters of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.Main
-
Main method
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.MLPerceptronBackpropCS
-
Main function
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.C45
-
Main function.
- Main - Class in keel.Algorithms.ImbalancedClassification.Ensembles
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Ensembles.Main
-
Main Program
- Main - Class in keel.Algorithms.ImbalancedClassification.Ensembles.SMOTE
-
Main.java
Main class for the algorithm SMOTE.
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.SMOTE.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Ensembles.SMOTE.Main
-
Main function.
- Main - Class in keel.Algorithms.ImbalancedClassification.Ensembles.SPIDER
-
Main.java
Main class for the algorithm SPIDER.
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.SPIDER.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Ensembles.SPIDER.Main
-
Main function.
- Main - Class in keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the GP-COACH-H algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Main
-
Main Program
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.ADASYN
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.ADASYN.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.ADASYN.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.ADOMS
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.ADOMS.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.ADOMS.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.AHCClustering
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.AHCClustering.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.AHCClustering.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.Borderline_SMOTE
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.Borderline_SMOTE.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.Borderline_SMOTE.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.CNN
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.CNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.CNN.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.CNN_TomekLinks
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.CNN_TomekLinks.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.CNN_TomekLinks.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.CPM
-
File: Main.java
A Main class to process the parameters of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.CPM.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.CPM.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.NCL
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.NCL.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.NCL.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.OSS
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.OSS.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.OSS.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.RandomOverSampling
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.RandomOverSampling.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.RandomOverSampling.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.RandomUnderSampling
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.RandomUnderSampling.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.RandomUnderSampling.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.Safe_Level_SMOTE
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.Safe_Level_SMOTE.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.Safe_Level_SMOTE.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.SBC
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SBC.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SBC.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE
-
File: Main.java
A Main class to process the parameters of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_ENN
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_ENN.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_ENN.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Main
-
Main method
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Simple main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SInstances
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Stats
-
Tests the paired stats object from the command line.
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Main method for testing this class.
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_TomekLinks
-
Main.java
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_TomekLinks.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_TomekLinks.Main
-
Main function
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.SPIDER
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SPIDER.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SPIDER.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.SPIDER2
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SPIDER2.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SPIDER2.Main
-
Main method
- Main - Class in keel.Algorithms.ImbalancedClassification.Resampling.TomekLinks
-
File: Main.java
A Main class to process the paramethers of the method and launch the algorithm
- Main() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.TomekLinks.Main
-
- main(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.TomekLinks.Main
-
Main method
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.AMPSO.AMPSOAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.AMPSO.AMPSOGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.Basic.AccuracyMeter
-
Main.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
3: k Number of neighbors used in the KNN function
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.BasicMethods.ARS
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.BasicMethods.ARSAlgorithm
-
Main function.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.BasicMethods.AVG
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.BasicMethods.AVGAlgorithm
-
Main function.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.BasicMethods.CNN
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
3: k Number of neighbors used in the KNN function
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.BasicMethods.RandomSelector
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.BasicMethods.SAVG
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.BasicMethods.SAVGAlgorithm
-
Main method
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.BTS3.BTS3Algorithm
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.BTS3.BTS3Generator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
2: Seed of the random generator.
3: Number of prototypes to be generated.
4: Nearest-Neighbors used in the internal KNN use.
5: Random Trials (number of bootstrappings performed).
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.Chen.ChenAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.Chen.ChenGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich contains the test data set.
3: Seed of the random number generator.
4: Number of prototypes to be generated.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.DE.DEAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.DE.DEGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.DEGL.DEGLAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.DEGL.DEGLGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- Main - Class in keel.Algorithms.Instance_Generation.Depur
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Generation.Depur.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.Depur.Main
-
Main Function.
- Main - Class in keel.Algorithms.Instance_Generation.DROP3LVQ3
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Generation.DROP3LVQ3.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.DROP3LVQ3.Main
-
Main Function.
- Main - Class in keel.Algorithms.Instance_Generation.DROP3PSO
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Generation.DROP3PSO.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.DROP3PSO.Main
-
Main Function.
- Main - Class in keel.Algorithms.Instance_Generation.DROP3SFLSDE
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Generation.DROP3SFLSDE.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.DROP3SFLSDE.Main
-
Main Function.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.DSM.DSMAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.DSM.DSMGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich contains the test data set.
3: Number of iterations.
4: Number of prototypes to be generated.
5: Alpha constant parameter.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.ENPC.ENPCAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.ENPC.ENPCGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.GENN.GENNAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.GENN.GENNGenerator
-
General main for GENNGenerator prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich contains the test data set.
2: Seed used in the random generator.
3: k (size of neighborhood in KNN).
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.GMCA.GMCAAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.GMCA.GMCAGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
3: k Number of neighbors used in the KNN function
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.HYB.HYBAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.HYB.HYBGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich contains the test data set.
3: Seed of the random generator.
4: Iterations performed in the search of optimal LVQ3-parameters.
5: Iterations performed in optimal LVQ3 process.
6: % of prototypes generated in optimal LVQ3 process.
7: Alpha0 LVQ3-parameter.
8: Initial value of window width.
9: Final value of window width.
10: Increment in each step of the value of window width.
11: Initial value of epsilon.
12: Final value of epsilon.
13: Increment in each step of the value of epsilon.
14: % de initial partition in the training set.
15: Type of initial reduction performed.
16 and so on: Parameters of the initial reduction process
- Main - Class in keel.Algorithms.Instance_Generation.ICFLVQ3
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Generation.ICFLVQ3.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.ICFLVQ3.Main
-
Main Function.
- Main - Class in keel.Algorithms.Instance_Generation.ICFPSO
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Generation.ICFPSO.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.ICFPSO.Main
-
Main Function.
- Main - Class in keel.Algorithms.Instance_Generation.ICFSFLSDE
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Generation.ICFSFLSDE.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.ICFSFLSDE.Main
-
Main Function.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.ICPL.ICPLAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.ICPL.ICPLGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.IPLDE.IPLDEAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.IPLDE.IPLDEGenerator
-
General main for all the prototoype generators
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.JADE.JADEAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.JADE.JADEGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.LVQ.LVQ1
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
3: k Number of neighbors used in the KNN function
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.LVQ.LVQ1Algorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.LVQ.LVQ2
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
3: k Number of neighbors used in the KNN function
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.LVQ.LVQ2_1
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
3: k Number of neighbors used in the KNN function
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.LVQ.LVQ2_1Algorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.LVQ.LVQ2Algorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.LVQ.LVQ3
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
3: k Number of neighbors used in the KNN function
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.LVQ.LVQ3Algorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.LVQ.LVQPRU
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
3: k Number of neighbors used in the KNN function
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.LVQ.LVQPRUAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.LVQ.LVQTC
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
3: k Number of neighbors used in the KNN function
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.LVQ.LVQTCAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.MCA.MCAAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.MCA.MCAGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
3: k Number of neighbors used in the KNN function
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.MixtGauss.MixtGaussAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.MixtGauss.MixtGaussGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.MSE.MSEAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.MSE.MSEGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.OBDE.OBDEAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.OBDE.OBDEGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.PNN.PNNAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.PNN.PNNGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich contains the test data set.
3: Seed of the Random Number Generator.
4: number of prototypes to be generated (OPTIONAL)
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.POC.POCAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.POC.POCGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.PSCSA.PSCSAAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.PSCSA.PSCSAGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.PSO.PSOAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.PSO.PSOGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.RSP.RSPAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.RSP.RSPGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.SADE.SADEAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.SADE.SADEGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.SFLSDE.SFLSDEAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.SFLSDE.SFLSDEGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.SGP.SGPAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.SGP.SGPGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- Main - Class in keel.Algorithms.Instance_Generation.SSMALVQ3
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Generation.SSMALVQ3.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.SSMALVQ3.Main
-
Main Function.
- Main - Class in keel.Algorithms.Instance_Generation.SSMAPSO
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Generation.SSMAPSO.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.SSMAPSO.Main
-
Main Function.
- Main - Class in keel.Algorithms.Instance_Generation.SSMASFLSDE
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Generation.SSMASFLSDE.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.Main
-
Main Function.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.Trivial.TrivialAlgorithm
-
Main Function.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.VQ.AVQAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.VQ.AVQGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich contains the test data set
2: Seed of the random generator.
3: Number of prototypes to be generated.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.VQ.VQAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Instance_Generation.VQ.VQGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich contains the test data set
2: Number of iterations of the algorithm.
3: Number of prototypes of the generated set.
4: Alpha0 constant of the process.
5: k Number of neighbors used in the KNN function
- Main - Class in keel.Algorithms.Instance_Selection.AllKNN
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Selection.AllKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.AllKNN.Main
-
Main Function.
- Main - Class in keel.Algorithms.Instance_Selection.BSE
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Selection.BSE.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.BSE.Main
-
Main Function.
- Main - Class in keel.Algorithms.Instance_Selection.CCIS
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Selection.CCIS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.CCIS.Main
-
Main Function.
- Main - Class in keel.Algorithms.Instance_Selection.CHC
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.CHC.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.CHC.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.CNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.CNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.CNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.CoCoIS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.CoCoIS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.CoCoIS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.CPruner
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Selection.CPruner.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.CPruner.Main
-
Main Function.
- Main - Class in keel.Algorithms.Instance_Selection.DROP1
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Selection.DROP1.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.DROP1.Main
-
Main Function.
- Main - Class in keel.Algorithms.Instance_Selection.DROP2
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Selection.DROP2.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.DROP2.Main
-
Main Function.
- Main - Class in keel.Algorithms.Instance_Selection.DROP3
-
Main class
- Main() - Constructor for class keel.Algorithms.Instance_Selection.DROP3.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.DROP3.Main
-
Main Function.
- Main - Class in keel.Algorithms.Instance_Selection.ENN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.ENN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.ENN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.ENNRS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.ENNRS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.ENNRS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.ENNTh
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.ENNTh.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.ENNTh.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.ENRBF
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.ENRBF.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.ENRBF.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.Explore
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.Explore.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.Explore.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.FCNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.FCNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.FCNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.GA_MSE_CC_FSM
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.GA_MSE_CC_FSM.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.GA_MSE_CC_FSM.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.GCNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.GCNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.GCNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.GG
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.GG.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.GG.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.GGA
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.GGA.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.GGA.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.HMNEI
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.HMNEI.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.HMNEI.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.IB2
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.IB2.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.IB2.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.IB3
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.IB3.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.IB3.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.ICF
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.ICF.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.ICF.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.IGA
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.IGA.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.IGA.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.IKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.IKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.IKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.MCNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.MCNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.MCNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.MCS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.MCS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.MCS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.MENN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.MENN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.MENN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.MNV
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.MNV.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.MNV.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.ModelCS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.ModelCS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.ModelCS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.MSS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.MSS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.MSS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.Multiedit
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.Multiedit.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.Multiedit.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.NCNEdit
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.NCNEdit.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.NCNEdit.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.NRMCS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.NRMCS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.NRMCS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.PBIL
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.PBIL.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.PBIL.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.POP
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.POP.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.POP.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.PSC
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.PSC.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.PSC.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.PSRCG
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.PSRCG.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.PSRCG.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.Reconsistent
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.Reconsistent.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.Reconsistent.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.RENN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.RENN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.RENN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.RMHC
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.RMHC.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.RMHC.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.RNG
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.RNG.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.RNG.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.RNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.RNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.RNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.SGA
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.SGA.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.SGA.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.Shrink
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.Shrink.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.Shrink.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.SNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.SNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.SNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.SSMA
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.SSMA.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.SSMA.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.SVBPS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.SVBPS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.SVBPS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.TCNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.TCNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.TCNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.TRKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.TRKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.TRKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.VSM
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.VSM.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.VSM.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Instance_Selection.ZhangTS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Instance_Selection.ZhangTS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Instance_Selection.ZhangTS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.CamNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.CamNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.CamNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.CenterNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.CenterNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.CenterNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.CPW
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.CPW.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.CPW.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.CW
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.CW.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.CW.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.Deeps
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.Deeps.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.Deeps.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.DeepsNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.DeepsNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.DeepsNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.IDIBL
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.IDIBL.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.IDIBL.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.KNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.KNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.KNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.KNNAdaptive
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.KNNAdaptive.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.KNNAdaptive.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.KSNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.KSNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.KSNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.KStar
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.KStar.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.KStar.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.LazyDT
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.LazyDT.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.LazyDT.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.LBR
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.LBR.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.LBR.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.NM
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.NM.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.NM.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.NSC
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.NSC.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.NSC.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Lazy_Learning.PW
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Lazy_Learning.PW.Main
-
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.PW.Main
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.Lazy_Learning.Statistics
-
Main method for testing this class.
- Main - Class in keel.Algorithms.LQD.methods.FGFS_costInstances
-
File: Main.java
Read the parameters given by the user.
- Main() - Constructor for class keel.Algorithms.LQD.methods.FGFS_costInstances.Main
-
- main(String[]) - Static method in class keel.Algorithms.LQD.methods.FGFS_costInstances.Main
-
The main method of the class
- Main - Class in keel.Algorithms.LQD.methods.FGFS_Minimum_Risk
-
File: Main.java
Read the parameters given by the user.
- Main() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.Main
-
- main(String[]) - Static method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.Main
-
The main method of the class
- Main - Class in keel.Algorithms.LQD.methods.FGFS_Original
-
File: Main.java
Read the parameters given by the user.
- Main() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Original.Main
-
- main(String[]) - Static method in class keel.Algorithms.LQD.methods.FGFS_Original.Main
-
The main method of the class
- Main - Class in keel.Algorithms.LQD.methods.FGFS_Rule_Weight
-
File: Main.java
Read the parameters given by the user.
- Main() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.Main
-
- main(String[]) - Static method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.Main
-
The main method of the class
- Main - Class in keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty
-
File: Main.java
Read the parameters given by the user.
- Main() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.Main
-
- main(String[]) - Static method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.Main
-
The main method of the class
- Main - Class in keel.Algorithms.LQD.preprocess.Expert
-
File: Main.java
Apply a prelabelling method, to get that the semi-labelled or unlabelled instances
have only one class.
- Main() - Constructor for class keel.Algorithms.LQD.preprocess.Expert.Main
-
- main(String[]) - Static method in class keel.Algorithms.LQD.preprocess.Expert.Main
-
The main method of the class
- Main - Class in keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE
-
File: Main.java
Read the parameters given by the user.
- Main() - Constructor for class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.Main
-
- main(String[]) - Static method in class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.Main
-
The main method of the class
- Main - Class in keel.Algorithms.LQD.preprocess.Prelabelling
-
File: Main.java
Apply a prelabelling method, to get that the semi-labelled or unlabelled instances
have only one class.
- Main() - Constructor for class keel.Algorithms.LQD.preprocess.Prelabelling.Main
-
- main(String[]) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling.Main
-
The main method of the class
- Main - Class in keel.Algorithms.LQD.preprocess.Prelabelling_Expert
-
File: Main.java
Apply a prelabelling method, to get that the semi-labelled or unlabelled instances
have only one class.
- Main() - Constructor for class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.Main
-
- main(String[]) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.Main
-
- Main - Class in keel.Algorithms.LQD.tests.IntermediateBoost
-
File: Main.java
Read the original dataset and obtain 100 bootstrap from this dataset
- Main() - Constructor for class keel.Algorithms.LQD.tests.IntermediateBoost.Main
-
- main(String[]) - Static method in class keel.Algorithms.LQD.tests.IntermediateBoost.Main
-
- Main - Class in keel.Algorithms.LQD.tests.Results
-
File: Main.java
From 100 bootstrap we obtain the minimum
and maximum mean (for both train and test).
- Main() - Constructor for class keel.Algorithms.LQD.tests.Results.Main
-
- main(String[]) - Static method in class keel.Algorithms.LQD.tests.Results.Main
-
- Main - Class in keel.Algorithms.MIL.APR.GFS_AllPositive_APR
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.MIL.APR.GFS_AllPositive_APR.Main
-
- main(String[]) - Static method in class keel.Algorithms.MIL.APR.GFS_AllPositive_APR.Main
-
The main method of the class
- Main - Class in keel.Algorithms.MIL.APR.GFS_ElimCount_APR
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.MIL.APR.GFS_ElimCount_APR.Main
-
- main(String[]) - Static method in class keel.Algorithms.MIL.APR.GFS_ElimCount_APR.Main
-
The main method of the class
- Main - Class in keel.Algorithms.MIL.APR.GFS_Kde_APR
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.MIL.APR.GFS_Kde_APR.Main
-
- main(String[]) - Static method in class keel.Algorithms.MIL.APR.GFS_Kde_APR.Main
-
The main method of the class
- Main - Class in keel.Algorithms.MIL.APR.IteratedDiscrimination
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.MIL.APR.IteratedDiscrimination.Main
-
- main(String[]) - Static method in class keel.Algorithms.MIL.APR.IteratedDiscrimination.Main
-
The main method of the class
- Main - Class in keel.Algorithms.MIL.Diverse_Density.DD
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.MIL.Diverse_Density.DD.Main
-
- main(String[]) - Static method in class keel.Algorithms.MIL.Diverse_Density.DD.Main
-
The main method of the class
- Main - Class in keel.Algorithms.MIL.Diverse_Density.EMDD
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.MIL.Diverse_Density.EMDD.Main
-
- main(String[]) - Static method in class keel.Algorithms.MIL.Diverse_Density.EMDD.Main
-
The main method of the class
- Main - Class in keel.Algorithms.MIL.G3PMI
-
Title: MIDD Main Program.
- Main() - Constructor for class keel.Algorithms.MIL.G3PMI.Main
-
- main(String[]) - Static method in class keel.Algorithms.MIL.G3PMI.Main
-
Main method
- Main - Class in keel.Algorithms.MIL.Nearest_Neighbour.CKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.MIL.Nearest_Neighbour.CKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.MIL.Nearest_Neighbour.CKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.MIL.Nearest_Neighbour.KNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.MIL.Nearest_Neighbour.KNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.MIL.Nearest_Neighbour.KNN.Main
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.ClassifierMLPerceptron.ClassifierMLPerceptron
-
Method that calls the private wrapper method "neuralClassificationLS" that creates and runs a neural network for solving
a classification problem using the Conjugated Gradient algorithm.
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.ensemble.Genesis
-
Main function
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.doEvRBF_Cl
-
Main Function: reads the parameters, creates the population, evolves it, gets the best individual, writes results and finishes.
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.gann.Gann
-
Main method
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.gann.Genesis
-
Main function
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.gmdh.Genesis
-
Main function
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.gmdh.gmdh
-
Main function
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.KEELIRPropPlusWrapperClas
-
Main method
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.KEELIRPropPlusWrapperRegr
-
Main method
- Main - Class in keel.Algorithms.Neural_Networks.LVQ
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Neural_Networks.LVQ.Main
-
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.LVQ.Main
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.ModelMLPerceptron.ModelMLPerceptron
-
Method that calls the private wrapper method "neuralModelling" that creates and runs a neural network for solving
a modelling problem using the Conjugated Gradient algorithm.
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.net.Genesis
-
Main function
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.NNEP_Clas.KEELWrapperClas
-
Main method
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.NNEP_Regr.KEELWrapperRegr
-
Main method
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN.doRbfn
-
Main Function
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.doRbfnCl
-
Main Function
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.doRbfnDec
-
Main Function
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.doRbfnDecCl
-
Main Function
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.doRbfnInc
-
Main Function
- main(String[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.doRbfnIncCl
-
Main Function
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CHC.filter
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CHC.filter.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CHC.filter.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CHC.wrapper
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CHC.wrapper.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CHC.wrapper.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_BinCod.filter
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_BinCod.filter.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_BinCod.filter.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_BinCod.wrapper
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_BinCod.wrapper.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_BinCod.wrapper.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_IntCod.filter
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_IntCod.filter.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_IntCod.filter.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_IntCod.wrapper
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_IntCod.wrapper.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_Gen_IntCod.wrapper.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_BinCod.filter
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_BinCod.filter.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_BinCod.filter.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_BinCod.wrapper
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_BinCod.wrapper.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_BinCod.wrapper.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_IntCod.filter
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_IntCod.filter.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_IntCod.filter.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_IntCod.wrapper
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_IntCod.wrapper.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_IntCod.wrapper.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GGA
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GGA.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GGA.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.ABB_IEP
-
This class calls the main method
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.ABB_IEP.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.ABB_IEP.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.ABB_LIU
-
This class calls the main method
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.ABB_LIU.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.ABB_LIU.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.ABB_MI
-
This class calls the main method
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.ABB_MI.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.ABB_MI.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.BACKWARD.filter
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.BACKWARD.filter.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.BACKWARD.filter.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.BACKWARD.wrapper
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.BACKWARD.wrapper.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.BACKWARD.wrapper.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FOCUS
-
This class realizes the call to the main method
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FOCUS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FOCUS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FORWARD.filter
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FORWARD.filter.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FORWARD.filter.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FORWARD.wrapper
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FORWARD.wrapper.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FORWARD.wrapper.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FULL_IEP
-
This class calls the main method
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FULL_IEP.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FULL_IEP.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FULL_LIU
-
This class calls the main method
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FULL_LIU.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FULL_LIU.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FULL_MI
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FULL_MI.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.FULL_MI.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.filter.im
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.filter.im.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.filter.im.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.filter.inconsistency
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.filter.inconsistency.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.filter.inconsistency.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.wrapper
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.wrapper.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.GRASP.wrapper.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVF
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVF.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVF.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVF_IEP
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVF_IEP.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVF_IEP.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVW
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVW.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.LVW.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.RELIEF
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.RELIEF.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.RELIEF.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.RELIEF_F
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.RELIEF_F.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.RELIEF_F.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_IEP_FS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_IEP_FS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_IEP_FS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_LIU_FS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_LIU_FS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_LIU_FS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_MI_FS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_MI_FS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_MI_FS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_IEP_FS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_IEP_FS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_IEP_FS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_LIU_FS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_LIU_FS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_LIU_FS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_MI_FS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_MI_FS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_MI_FS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_IEP_FS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_IEP_FS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_IEP_FS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_LIU_FS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_LIU_FS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_LIU_FS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_MI_FS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_MI_FS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_MI_FS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.AllKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.AllKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.AllKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.BSE
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.BSE.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.BSE.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.CCIS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.CCIS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.CCIS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.CHC
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.CHC.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.CHC.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.CNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.CNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.CNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.CoCoIS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.CPruner
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.CPruner.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.CPruner.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.DROP1
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.DROP1.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.DROP1.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.DROP2
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.DROP2.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.DROP2.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.DROP3
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.DROP3.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.DROP3.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.ENN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.ENN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.ENN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.ENNRS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.ENNRS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.ENNRS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.ENNTh
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.ENNTh.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.ENNTh.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.ENRBF
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.ENRBF.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.ENRBF.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.Explore
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.Explore.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.Explore.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.FCNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.FCNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.FCNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.GA_MSE_CC_FSM
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.GA_MSE_CC_FSM.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.GA_MSE_CC_FSM.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.GCNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.GCNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.GCNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.GG
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.GG.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.GG.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.GGA
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.GGA.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.GGA.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.HMNEI
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.HMNEI.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.HMNEI.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.IB2
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.IB2.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.IB2.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.IB3
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.IB3.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.IB3.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.ICF
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.ICF.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.ICF.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.IGA
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.IGA.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.IGA.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.IKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.IKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.IKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.MCNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.MCNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.MCNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.MCS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.MCS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.MCS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.MENN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.MENN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.MENN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.MNV
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.MNV.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.MNV.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.ModelCS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.ModelCS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.ModelCS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.MSS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.MSS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.MSS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.Multiedit
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.Multiedit.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.Multiedit.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.NCNEdit
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.NCNEdit.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.NCNEdit.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.NRMCS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.NRMCS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.NRMCS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.PBIL
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.PBIL.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.PBIL.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.POP
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.POP.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.POP.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.PSC
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.PSC.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.PSC.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.PSRCG
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.PSRCG.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.PSRCG.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.Reconsistent
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.Reconsistent.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.Reconsistent.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.RENN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.RENN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.RENN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.RMHC
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.RMHC.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.RMHC.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.RNG
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.RNG.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.RNG.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.RNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.RNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.RNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.SGA
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.SGA.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.SGA.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.Shrink
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.Shrink.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.Shrink.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.SNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.SNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.SNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.SSMA
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.SSMA.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.SSMA.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.SVBPS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.SVBPS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.SVBPS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.TCNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.TCNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.TCNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.TRKNN
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.TRKNN.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.TRKNN.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.VSM
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.VSM.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.VSM.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Instance_Selection.ZhangTS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.ZhangTS.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.ZhangTS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.Main
-
- Main - Class in keel.Algorithms.Preprocess.Missing_Values.BPCA
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.BPCA.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.BPCA.Main
-
- Main - Class in keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.Main
-
- Main - Class in keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.Main
-
- Main - Class in keel.Algorithms.Preprocess.Missing_Values.EM
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EM.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EM.Main
-
- Main - Class in keel.Algorithms.Preprocess.Missing_Values.EventCovering
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.MersenneTwister
-
Tests the code.
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.StatFunc
-
Main function.
- Main - Class in keel.Algorithms.Preprocess.Missing_Values.fkmeans
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.fkmeans.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.Main
-
- Main - Class in keel.Algorithms.Preprocess.Missing_Values.ignore_missing
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.ignore_missing.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.ignore_missing.Main
-
- Main - Class in keel.Algorithms.Preprocess.Missing_Values.kmeansImpute
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.Main
-
- Main - Class in keel.Algorithms.Preprocess.Missing_Values.knnImpute
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.knnImpute.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.Main
-
- Main - Class in keel.Algorithms.Preprocess.Missing_Values.LLSImpute
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.Main
-
- Main - Class in keel.Algorithms.Preprocess.Missing_Values.MostCommonValue
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.Main
-
- Main - Class in keel.Algorithms.Preprocess.Missing_Values.SVDimpute
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.SVDimpute.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.SVDimpute.Main
-
- Main - Class in keel.Algorithms.Preprocess.Missing_Values.svmImpute
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.svmImpute.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.Main
-
- Main - Class in keel.Algorithms.Preprocess.Missing_Values.wknnImpute
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.Main
-
- main(String[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ClassifierMLPerceptron
-
Method that calls the private wrapper method "neuralClassificationLS" that creates and runs a neural network for solving
a classification problem using the Conjugated Gradient algorithm.
- Main - Class in keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter
-
Main class of the algorithm
- Main() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Main
-
It creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Main
-
Main method
- Main - Class in keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter
-
Main class of the algorithm
- Main() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.Main
-
It creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.Main
-
Main method
- Main - Class in keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter
-
Main class of the algorithm
- Main() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Main
-
It creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Main
-
Main method
- Main - Class in keel.Algorithms.Preprocess.NoiseFilters.INFFC
-
Main class of the algorithm
- Main() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Main
-
It creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Main
-
Main method
- Main - Class in keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter
-
Main class of the algorithm
- Main() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.Main
-
It creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.Main
-
Main method
- Main - Class in keel.Algorithms.Preprocess.NoiseFilters.PANDA
-
Main class of the algorithm
- Main() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Main
-
It creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Main
-
Main method
- Main - Class in keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter
-
Main class of the algorithm
- Main() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Main
-
It creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Main
-
Main method
- Main - Class in keel.Algorithms.Preprocess.Transformations.CleanAttributes
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Transformations.CleanAttributes.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Transformations.CleanAttributes.Main
-
- Main - Class in keel.Algorithms.Preprocess.Transformations.decimal_scaling
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Transformations.decimal_scaling.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Transformations.decimal_scaling.Main
-
- Main - Class in keel.Algorithms.Preprocess.Transformations.min_max
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Transformations.min_max.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Transformations.min_max.Main
-
- Main - Class in keel.Algorithms.Preprocess.Transformations.Nominal2Binary
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Transformations.Nominal2Binary.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Transformations.Nominal2Binary.Main
-
- Main - Class in keel.Algorithms.Preprocess.Transformations.z_score
-
- Main() - Constructor for class keel.Algorithms.Preprocess.Transformations.z_score.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.Preprocess.Transformations.z_score.Main
-
- Main - Class in keel.Algorithms.PSO_Learning.CPSO
-
Title: Main Class of the Program CPSO
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.PSO_Learning.CPSO.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.PSO_Learning.CPSO.Main
-
Main Program
- Main - Class in keel.Algorithms.PSO_Learning.LDWPSO
-
Title: Main Class of the Program LDWPSO
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.PSO_Learning.LDWPSO.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.PSO_Learning.LDWPSO.Main
-
Main Program
- Main - Class in keel.Algorithms.PSO_Learning.PSOLDA
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.PSO_Learning.PSOLDA.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.PSO_Learning.PSOLDA.Main
-
Main Program
- Main - Class in keel.Algorithms.PSO_Learning.REPSO
-
Title: Main Class of the Program CPSO
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.PSO_Learning.REPSO.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.PSO_Learning.REPSO.Main
-
Main Program
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Methods.LEL_TSK.Lanzar
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Methods.MamWM.Lanzar
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Methods.mogulHC.Lanzar
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Methods.mogulIRL.Lanzar
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Methods.mogulSC.Lanzar
-
The main method of the class
- Main - Class in keel.Algorithms.RE_SL_Methods.P_FCS1
- Main() - Constructor for class keel.Algorithms.RE_SL_Methods.P_FCS1.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Methods.P_FCS1.Main
-
Main Program
- Main - Class in keel.Algorithms.RE_SL_Methods.SEFC
- Main() - Constructor for class keel.Algorithms.RE_SL_Methods.SEFC.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Methods.SEFC.Main
-
Main Program
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Methods.TSK_IRL.Lanzar
-
The main method of the class
- Main - Class in keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.Main
-
Main Program
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.Mam2TSK.Lanzar
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB.Lanzar
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules.Lanzar
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.MamSelect.Lanzar
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.MamWSelect.Lanzar
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.MamWTuning.Lanzar
-
The main method of the class
- Main - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Main
-
Main Program
- Main - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Main
-
Main Program
- Main - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Main
-
Main Program
- Main - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Main
-
Main Program
- Main - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Main
-
Main Program
- main(int, double[][], double[], int, double[][], double[], int, int, int, double, double[], int, int, long, String) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Chc
-
Function main
- Main - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Main
-
Main Program
- Main - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Main
-
Main Program
- Main - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Main
-
Main Program
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules.Lanzar
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.RE_SL_Postprocess.TSKSelect.Lanzar
-
The main method of the class
- Main - Class in keel.Algorithms.RST_Learning.EFS_RPS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.RST_Learning.EFS_RPS.Main
-
- main(String[]) - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.RST_Learning.EIS_RFS
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.RST_Learning.EIS_RFS.Main
-
- main(String[]) - Static method in class keel.Algorithms.RST_Learning.EIS_RFS.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Rule_Learning.AQ
-
Title: AQ Main Program
Description: This is the main class, which is executed when we launch the program
- Main() - Constructor for class keel.Algorithms.Rule_Learning.AQ.Main
-
Default builder
- main(String[]) - Static method in class keel.Algorithms.Rule_Learning.AQ.Main
-
Main program
- main(String[]) - Static method in class keel.Algorithms.Rule_Learning.ART.ART
-
Main function.
- Main - Class in keel.Algorithms.Rule_Learning.CN2
-
Title: CN2 Main Program
Description: This is the main class, which is executed when we launch the program
- Main() - Constructor for class keel.Algorithms.Rule_Learning.CN2.Main
-
Default builder
- main(String[]) - Static method in class keel.Algorithms.Rule_Learning.CN2.Main
-
Main program
- main(String[]) - Static method in class keel.Algorithms.Rule_Learning.DataSqueezer.DataSqueezer
-
Main function.
- Main - Class in keel.Algorithms.Rule_Learning.LEM1
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Rule_Learning.LEM1.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Rule_Learning.LEM1.Main
-
Main Program
- Main - Class in keel.Algorithms.Rule_Learning.LEM2
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Rule_Learning.LEM2.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Rule_Learning.LEM2.Main
-
Main Program
- Main - Class in keel.Algorithms.Rule_Learning.Prism
-
Reads the parameters y starts the PRISM CD algorithm
- Main() - Constructor for class keel.Algorithms.Rule_Learning.Prism.Main
-
Constructor
- main(String[]) - Static method in class keel.Algorithms.Rule_Learning.Prism.Main
-
Main program
- Main - Class in keel.Algorithms.Rule_Learning.Riona
-
Main class
- Main() - Constructor for class keel.Algorithms.Rule_Learning.Riona.Main
-
Default constructor.
- main(String[]) - Static method in class keel.Algorithms.Rule_Learning.Riona.Main
-
Main program
- Main - Class in keel.Algorithms.Rule_Learning.Ritio
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Rule_Learning.Ritio.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Rule_Learning.Ritio.Main
-
Main Program
- Main - Class in keel.Algorithms.Rule_Learning.Rules6
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Rule_Learning.Rules6.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Rule_Learning.Rules6.Main
-
Main Program
- Main - Class in keel.Algorithms.Rule_Learning.SRI
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Rule_Learning.SRI.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Rule_Learning.SRI.Main
-
Main Program
- Main - Class in keel.Algorithms.Rule_Learning.Swap1
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Rule_Learning.Swap1.Main
-
- main(String[]) - Static method in class keel.Algorithms.Rule_Learning.Swap1.Main
-
Main Program
- Main - Class in keel.Algorithms.Rule_Learning.UnoR
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Rule_Learning.UnoR.Main
-
Default constructor.
- main(String[]) - Static method in class keel.Algorithms.Rule_Learning.UnoR.Main
-
Main Program
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.ADE_CoForestAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.ADE_CoForestGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.ContingencyTables
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Main method for this class.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.APSSC.APSSCAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.APSSC.APSSCGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.AccuracyMeter
-
Main.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename wich will contain the test data set
3: k Number of neighbors used in the KNN function
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.C45SSL.C45SSLAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.C45SSL.C45SSLGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.CLCCAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.CLCCGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.ContingencyTables
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Main method for this class.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoBC.CoBCAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoBC.CoBCGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.CoForestAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.CoForestGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.ContingencyTables
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Main method for this class.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoTraining.CoTrainingAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoTraining.CoTrainingGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.DE_TriTraining.DE_TriTrainingAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.DE_TriTraining.DE_TriTrainingGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Democratic.DemocraticAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Democratic.DemocraticGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.NBSSL.NBSSLAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.NBSSL.NBSSLGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.NNSSL.NNSSLAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.NNSSL.NNSSLGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.RASCO.RASCOAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.RASCO.RASCOGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Rel_RASCO.Rel_RASCOAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Rel_RASCO.Rel_RASCOGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.SelfTraining.SelfTrainingAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.SelfTraining.SelfTrainingGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.SETRED.SETREDAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.SETRED.SETREDGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.SMOSSL.SMOSSLAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.SMOSSL.SMOSSLGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.SNNRCE.SNNRCEAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.SNNRCE.SNNRCEGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.TriTraining.TriTrainingAlgorithm
-
Main method.
- main(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.TriTraining.TriTrainingGenerator
-
General main for all the prototoype generators
Arguments:
0: Filename with the training data set to be condensed.
1: Filename which contains the test data set.
3: Seed of the random number generator.
- main(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.ClassifierADLinear.ClassifierADLinear
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.ClassifierADQuadratic.ClassifierADQuadratic
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.ClassifierKernel.ClassifierKernel
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.ClassifierLinearLMS.ClassifierLinearLMS
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.ClassifierPolQuadraticLMS.ClassifierPolQuadraticLMS
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Main function.
- main(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Tests the IntVector class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation
-
Prints some examples of technical informations if there are no
commandline options given.
- main(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Main method for testing this class.
- Main - Class in keel.Algorithms.Statistical_Classifiers.Logistic
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.Main
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.Main
-
The main method of the class
- Main - Class in keel.Algorithms.Statistical_Classifiers.Naive_Bayes
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.Main
-
Main Program
- main(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.MatrixCalcs
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Models.ModelLinear.ModelLinearLMS
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Models.ModelQuad.ModelPolQuadraticLMS
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.Clasif_General.Clasif_General
-
This method reads a configuration file and calls statisticalTest with appropriate values to run
Clasif_General output module for classification problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.Clasif_Summary.Clasif_Summary
-
This method reads a configuration file and calls statisticalTest with appropriate values to run
Model_Summary output module for classification problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.Clasif_Tabular.Clasif_Tabular
-
This method reads a configuration file and calls statisticalTest with appropriate values to run
Model_Tabular output module for classification problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.ClasifTest_5x2cv.ClasifTest_5x2cv
-
This method reads a configuration file and calls statisticalTest with appropriate values to run
Dietterich 5x2cv test for classification problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.ClasifTest_f.ClasifTest_f
-
This method reads a configuration file and calls statisticalTest with appropriate values to run the
f test for classification problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.ClasifTest_rs.ClasifTest_rs
-
This method reads a configuration file and calls statisticalTest for classification problems, with appropriate values to run the
Wilcoxon signed rank test defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.ClasifTest_sw.ClasifTest_sw
-
This method reads a configuration file and calls statisticalTest with appropriate values to run the
Shapiro Wilk test for classification problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.ClasifTest_t.ClasifTest_t
-
This method reads a configuration file and calls statisticalTest with appropriate values to run the
t test for classification problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.ClasifTest_u.ClasifTest_u
-
This method reads a configuration file and calls statisticalTest with appropriate values to run the
Mann Whitney U test for classification problems, defined in StatTest class
- Main - Class in keel.Algorithms.Statistical_Tests.Classification.Contrast
-
File: Main.java
A Main class to process the paramethers of the method and launch the test
- Main() - Constructor for class keel.Algorithms.Statistical_Tests.Classification.Contrast.Main
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.Contrast.Main
-
Main method
- Main - Class in keel.Algorithms.Statistical_Tests.Classification.Friedman
-
File: Main.java
A Main class to process the paramethers of the method and launch the test
- Main() - Constructor for class keel.Algorithms.Statistical_Tests.Classification.Friedman.Main
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.Friedman.Main
-
Main method
- Main - Class in keel.Algorithms.Statistical_Tests.Classification.FriedmanAlligned
-
File: Main.java
A Main class to process the paramethers of the method and launch the test
- Main() - Constructor for class keel.Algorithms.Statistical_Tests.Classification.FriedmanAlligned.Main
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.FriedmanAlligned.Main
-
Main method
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.Imbalanced_General.Imbalanced_General
-
This method reads a configuration file and calls statisticalTest with appropriate values to run
Clasif_General output module for classification problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.Imbalanced_Summary.Imbalanced_Summary
-
This method reads a configuration file and calls statisticalTest with appropriate values to run
Model_Summary output module for classification problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.Imbalanced_Tabular.Imbalanced_Tabular
-
This method reads a configuration file and calls statisticalTest with appropriate values to run
Model_Tabular output module for classification problems, defined in StatTest class
- Main - Class in keel.Algorithms.Statistical_Tests.Classification.ImbFriedman
-
File: Main.java
A Main class to process the paramethers of the method and launch the test
- Main() - Constructor for class keel.Algorithms.Statistical_Tests.Classification.ImbFriedman.Main
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.ImbFriedman.Main
-
Main method
- Main - Class in keel.Algorithms.Statistical_Tests.Classification.ImbWilcoxon
-
This class has only a main method that calls Wilcoxon test ('global' version) for classification problems, defined in StatTest
- Main() - Constructor for class keel.Algorithms.Statistical_Tests.Classification.ImbWilcoxon.Main
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.ImbWilcoxon.Main
-
This method reads a configuration file and calls statisticalTest with appropriate values to run the
Wilcoxon test ('global' version) for classification problems, defined in StatTest class
- Main - Class in keel.Algorithms.Statistical_Tests.Classification.Multiple
-
File: Main.java
A Main class to process the paramethers of the method and launch the test
- Main() - Constructor for class keel.Algorithms.Statistical_Tests.Classification.Multiple.Main
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.Multiple.Main
-
Main method
- Main - Class in keel.Algorithms.Statistical_Tests.Classification.Quade
-
File: Main.java
A Main class to process the paramethers of the method and launch the test
- Main() - Constructor for class keel.Algorithms.Statistical_Tests.Classification.Quade.Main
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.Quade.Main
-
Main method
- Main - Class in keel.Algorithms.Statistical_Tests.Classification.Wilcoxon
-
This class has only a main method that calls Wilcoxon test ('global' version) for classification problems, defined in StatTest
- Main() - Constructor for class keel.Algorithms.Statistical_Tests.Classification.Wilcoxon.Main
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Classification.Wilcoxon.Main
-
This method reads a configuration file and calls statisticalTest with appropriate values to run the
Wilcoxon test ('global' version) for classification problems, defined in StatTest class
- Main - Class in keel.Algorithms.Statistical_Tests.Regression.Contrast
-
File: Main.java
A Main class to process the paramethers of the method and launch the test
- Main() - Constructor for class keel.Algorithms.Statistical_Tests.Regression.Contrast.Main
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Regression.Contrast.Main
-
Main method
- Main - Class in keel.Algorithms.Statistical_Tests.Regression.Friedman
-
File: Main.java
A Main class to process the paramethers of the method and launch the test
- Main() - Constructor for class keel.Algorithms.Statistical_Tests.Regression.Friedman.Main
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Regression.Friedman.Main
-
Main method
- Main - Class in keel.Algorithms.Statistical_Tests.Regression.FriedmanAlligned
-
File: Main.java
A Main class to process the paramethers of the method and launch the test
- Main() - Constructor for class keel.Algorithms.Statistical_Tests.Regression.FriedmanAlligned.Main
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Regression.FriedmanAlligned.Main
-
Main method
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Regression.Model_General.Model_General
-
This method reads a configuration file and calls statisticalTest with appropriate values to run
Model_general output module for regression problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Regression.Model_Summary.Model_Summary
-
This method reads a configuration file and calls statisticalTest with appropriate values to run
Model_Summary output module for regression problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Regression.Model_Tabular.Model_Tabular
-
This method reads a configuration file and calls statisticalTest with appropriate values to run
Model_Tabular output module for regression problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Regression.ModelTest_5x2cv.ModelTest_5x2cv
-
This method reads a configuration file and calls statisticalTest with appropriate values to run
Dietterich 5x2cv test for regression problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Regression.ModelTest_f.ModelTest_f
-
This method reads a configuration file and calls statisticalTest with appropriate values to run the
f test for regression problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Regression.ModelTest_rs.ModelTest_rs
-
This method reads a configuration file and calls statisticalTest for regression problems, with appropriate values to run the
Wilcoxon signed rank test defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Regression.ModelTest_sw.ModelTest_sw
-
This method reads a configuration file and calls statisticalTest with appropriate values to run the
Shapiro Wilk test for regression problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Regression.ModelTest_t.ModelTest_t
-
This method reads a configuration file and calls statisticalTest with appropriate values to run the
t test for regression problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Regression.ModelTest_u.ModelTest_u
-
This method reads a configuration file and calls statisticalTest with appropriate values to run the
Mann Whitney U test for regression problems, defined in StatTest class
- Main - Class in keel.Algorithms.Statistical_Tests.Regression.Multiple
-
File: Main.java
A Main class to process the paramethers of the method and launch the test
- Main() - Constructor for class keel.Algorithms.Statistical_Tests.Regression.Multiple.Main
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Regression.Multiple.Main
-
Main method
- Main - Class in keel.Algorithms.Statistical_Tests.Regression.Quade
-
File: Main.java
A Main class to process the paramethers of the method and launch the test
- Main() - Constructor for class keel.Algorithms.Statistical_Tests.Regression.Quade.Main
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Regression.Quade.Main
-
Main method
- Main - Class in keel.Algorithms.Statistical_Tests.Regression.Wilcoxon
-
This class has only a main method that calls Wilcoxon test ('global' version) for regression problems, defined in StatTest
- Main() - Constructor for class keel.Algorithms.Statistical_Tests.Regression.Wilcoxon.Main
-
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Regression.Wilcoxon.Main
-
This method reads a configuration file and calls statisticalTest with appropriate values to run the
Wilcoxon test ('global' version) for regression problems, defined in StatTest class
- main(String[]) - Static method in class keel.Algorithms.Statistical_Tests.Shared.genLatex
-
This is the main method of the class, it calls all the other ones.
- Main - Class in keel.Algorithms.Subgroup_Discovery.aprioriSD
-
/**
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
- Main() - Constructor for class keel.Algorithms.Subgroup_Discovery.aprioriSD.Main
-
Default constructor.
- main(String[]) - Static method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Main
-
Main Program
- Main - Class in keel.Algorithms.Subgroup_Discovery.CN2SD
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.Subgroup_Discovery.CN2SD.Main
-
Default constructor.
- main(String[]) - Static method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Main
-
Main Program
- main(String[]) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.MESDIF
-
Main method of the algorithm
- main(String[]) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.NMEEFSD
-
Main method of the algorithm
- Main - Class in keel.Algorithms.Subgroup_Discovery.SDAlgorithm
-
Title: Main class of the SD algorithm
- Main() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Main
-
Constructor
- main(String[]) - Static method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Main
-
Main method
- main(String[]) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.SDIGA
-
Main method of the algorithm
- Main - Class in keel.Algorithms.Subgroup_Discovery.SDMap.SDMap
-
It reads the configuration file (data-set files and parameters) and launch the algorithm
- Main() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.Main
-
Main Program
algorith = <algorithm name>
inputData = "<training file>" "<test file>"
outputData = "<training file>" "<test file>" "<rule file>" "<measure file>"
<MinimumSupport> = <value1>
<MinimumConfidence> = <value2>
<RulesReturn> = <value3>
- Main - Class in keel.Algorithms.SVM.C_SVM
-
- Main() - Constructor for class keel.Algorithms.SVM.C_SVM.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.SVM.C_SVM.Main
-
- Main - Class in keel.Algorithms.SVM.EPSILON_SVR
-
- Main() - Constructor for class keel.Algorithms.SVM.EPSILON_SVR.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.SVM.EPSILON_SVR.Main
-
- Main - Class in keel.Algorithms.SVM.NU_SVM
-
- Main() - Constructor for class keel.Algorithms.SVM.NU_SVM.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.SVM.NU_SVM.Main
-
- Main - Class in keel.Algorithms.SVM.NU_SVR
-
- Main() - Constructor for class keel.Algorithms.SVM.NU_SVR.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Algorithms.SVM.NU_SVR.Main
-
- main(String[]) - Static method in class keel.Algorithms.SVM.SMO.core.ClassDiscovery
-
Possible calls:
weka.core.ClassDiscovery <packages>
Prints all the packages in the current classpath
weka.core.ClassDiscovery <classname> <packagename(s)>
Prints the classes it found.
- main(String[]) - Static method in class keel.Algorithms.SVM.SMO.core.Queue
-
Main method for testing this class.
- main(String[]) - Static method in class keel.Algorithms.SVM.SMO.core.SerializationHelper
-
Outputs information about a class on the commandline, takes class
name as arguments
- main(String[]) - Static method in class keel.Algorithms.SVM.SMO.core.TechnicalInformation
-
Prints some examples of technical informations if there are no
commandline options given.
- main(String[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Main method for testing this class.
- Main - Class in keel.Algorithms.SVM.SMO
-
File: Main.java
This is the main class of the algorithm.
- Main() - Constructor for class keel.Algorithms.SVM.SMO.Main
-
- main(String[]) - Static method in class keel.Algorithms.SVM.SMO.Main
-
The main method of the class
- main(String[]) - Static method in class keel.Algorithms.Symbolic_Regression.crispSymRegGAP.crispSymRegGAP
-
Loads the configuration for SA algorithm (with crisp sets) from file args[0] using class ProcessConfig.
- main(String[]) - Static method in class keel.Algorithms.Symbolic_Regression.crispSymRegSAP.crispSymRegSAP
-
Loads the configuration for SA algorithm (with crisp values) from file args[0] using class ProcessConfig.
- main(String[]) - Static method in class keel.Algorithms.Symbolic_Regression.fuzzySymRegGAP.fuzzySymRegGAP
-
Loads the configuration for GAP algorithm (with fuzzy sets) from file args[0] using class ProcessConfig.
- main(String[]) - Static method in class keel.Algorithms.Symbolic_Regression.fuzzySymRegSAP.fuzzySymRegSAP
-
Loads the configuration for SA algorithm (with fuzzy sets) from file args[0] using class ProcessConfig.
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR
-
Title: Main Class of the Program
Description: It reads the configuration file (data-set files and parameters) and launch the algorithm
Company: KEEL
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR
-
It reads the configuration file (data-set files and parameters) and launch the algorithm
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Main
-
Main Program
- Main - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII
- Main() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Main
-
Default Constructor
- main(String[]) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Main
-
Main Program
- Main - Class in keel.Dataset
-
- Main(String, String) - Constructor for class keel.Dataset.Main
-
Creates a new instance of Main
- main(String[]) - Static method in class keel.Dataset.Main
-
- main(String[]) - Static method in class keel.GraphInterKeel.datacf.DataCFApp
-
Main method launching the application.
- main(String[]) - Static method in class keel.GraphInterKeel.datacf.DataCFFrame
-
Main Program
- main(String[]) - Static method in class keel.GraphInterKeel.datacf.partitionData.HoldOutOptionsJDialog
-
Main method
- main(String[]) - Static method in class keel.GraphInterKeel.datacf.partitionData.KFoldOptionsJDialog
-
Main method
- main(String[]) - Static method in class keel.GraphInterKeel.datacf.Tuneados
-
Main method launching the application.
- main(String[]) - Static method in class keel.GraphInterKeel.datacf.util.OptionsDialog
-
Main method
- main(String[]) - Static method in class keel.GraphInterKeel.experiments.Container
-
- main(String[]) - Static method in class keel.GraphInterKeel.experiments.Container_Selected
-
- main(String[]) - Static method in class keel.GraphInterKeel.experiments.Description_algorithm
-
- main(String[]) - Static method in class keel.GraphInterKeel.experiments.EducationalRun
-
- main(String[]) - Static method in class keel.GraphInterKeel.experiments.Experiments
-
- main(String[]) - Static method in class keel.GraphInterKeel.menu.BrowserControl
-
Simple example.
- main(String[]) - Static method in class keel.GraphInterKeel.menu.GraphInterKeel
-
Main method
- main(String[]) - Static method in class keel.GraphInterKeel.statistical.StatisticalF
-
- main(String[]) - Static method in class keel.RunKeelGraph.Application1
-
Main method
- main(String[]) - Static method in class keel.RunKeelTxt.runkeeltxt
-
Main method.
- main2(String[]) - Static method in class keel.Algorithms.Decision_Trees.M5.SerializedObject
-
Test routine, reads text from stdin and measures memory usage
- main_c - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
-
Main Class of the Program
It reads the configuration file (data-set files and parameters) and launch the algorithm
- main_c() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.main_c
-
Dafault constructor.
- main_c - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
-
Main Class of the Program
It reads the configuration file (data-set files and parameters) and launch the algorithm
- main_c() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.main_c
-
Default constructor.
- main_c - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
-
Main Class of the Program
It reads the configuration file (data-set files and parameters) and launch the algorithm
- main_c() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.main_c
-
Default constructor.
- mainSplitPane1 - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- MAJOR - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- MAJOR - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_DefaultC
-
- MAJOR - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_DefaultC
-
- MAJOR - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Gene
-
- majorityClass - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
- majorityOfSameClass(Prototype, PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.GENN.GENNGenerator
-
Informs if there are a majority of prototypes whose class is the same as other prototype.
- makeAction(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.DECEnvironment
-
This function returns the reward given when applying the action in the
environment.
- makeAction(int) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Environment
-
This function returns the reward given when applying the action in the
environment.
- makeAction(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MPEnvironment
-
This function returns the reward given when applying the action in the
environment.
- makeAction(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MSEnvironment
-
This function returns the reward given when applying the action to the
environment.
- makeAction(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.PAREnvironment
-
This function returns the reward given when applying the action to the
environment.
- makeAction(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.POSEnvironment
-
This function returns the reward given when applying the action to the
environment.
- makeAction(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RMPEnvironment
-
This function returns the reward given when applying the action to the
environment.
- makeAction(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.SSFileEnvironment
-
This function returns the reward given at applying the action in the
environment.
- makeAveragePrototype(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.MCA.MCAGenerator
-
Builds a new averaged prototype.
- makeCopies(Classifier, int) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Classifier
-
Creates a given number of deep copies of the given classifier using serialization.
- makeCopies(Kernel, int) - Static method in class keel.Algorithms.SVM.SMO.supportVector.Kernel
-
Creates a given number of deep copies of the given kernel using
serialization.
- makeCopy(Classifier) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Classifier
-
Creates a deep copy of the given classifier using serialization.
- makeCopy(Kernel) - Static method in class keel.Algorithms.SVM.SMO.supportVector.Kernel
-
Creates a deep copy of the given kernel using serialization.
- makeCover(Instance) - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Chromosome
-
Forces this individual to cover the provided instance
- makeCrossover(Classifier, Classifier, Classifier, Classifier) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Crossover
-
Makes the crossover.
- makeCrossover(Classifier, Classifier, Classifier, Classifier) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TwoPointCrossover
-
Applies crossover.
- makeCrossover(Classifier, Classifier, Classifier, Classifier) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.UniformCrossover
-
Applies crossover according to the uniform crossover operator.
- makeCrossover(Classifier, Classifier, Classifier, Classifier) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Crossover
-
Makes the crossover.
- makeCrossover(Classifier, Classifier, Classifier, Classifier) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TwoPointCrossover
-
Applies crossover.
- makeCrossover(Classifier, Classifier, Classifier, Classifier) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.UniformCrossover
-
Applies crossover according to the uniform crossover operator.
- makeIncStatistics(Population, int, int[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Statistic
-
It makes the incremental statistics.
- makeIncStatistics(Population, Population, int, int[], double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Statistic
-
It makes the incremental statistics.
- makeNull() - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Convert the prototype in the null prototype
- makeNull() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Convert the prototype in the null prototype
- makeOptionString(Kernel) - Static method in class keel.Algorithms.SVM.SMO.supportVector.KernelEvaluation
-
Generates an option string to output on the commandline.
- makePartition(double) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Makes a partition of the set.
- makePartition(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Makes a partition of the set.
- makePartitionPerClass(double) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Makes a partition of the set.
- makePartitionPerClass(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Makes a partition of the set.
- makeReduction(Population, Environment) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.DixonReduction
-
Compacts the ruleSet of the population using the Dixon method
described in the article as the "alternative reduction".
- makeReduction(Population, Environment) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Reduction
-
Makes a reduction of the population applying the chosen method by
the user (with the configuration file).
- makeReduction(Population, Environment) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.WilsonReduction
-
Compacts the ruleSet of the population.
- makeReductionOf(PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.BasicMethods.CNN
-
Make a selection by the CNN method.
- makeReductionOf(PrototypeSet, int) - Static method in class keel.Algorithms.Instance_Generation.BasicMethods.CNN
-
Make a selection by the CNN method.
- makeSelection(Population) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RouletteSelection
-
Performs the roulette wheel selection
- makeSelection(Population) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Selection
-
Does make the random selection of a classifier.
- makeSelection(Population) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TournamentSelection
-
Applies the tournament selection.
- makeSelection(Population) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RouletteSelection
-
Performs the roulette wheel selection
- makeSelection(Population) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Selection
-
Does make the random selection of a classifier.
- makeSelection(Population) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TournamentSelection
-
Applies the tournament selection.
- makeSpecify(double) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Attribute
-
It applies the specify operator.
- makeSpecify(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
If the random number generated is less than the specify probability
(parameter in the Config), the interval is specified with
an uniform distribution [0..l_0]
- makeSpecify(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
Changes the allele if it is a don't care symbol and the random number generated is less than Pspecify.
- makeSpecify(double) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
-
It applies the specify operator.
- makeSpecify(double[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Changes all the don't care symbols by the state in
the environment, with Pspecify probability
- makeSpecify(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
If the random number that is generated is less than the specify probability
(parameter in the Config), the interval is specified with
an uniform distribution [0..l_0]
- makeSpecify(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
If the random number generated is less than the specify probability
(parameter in the Config), the interval is specified with
an uniform distribution [0..l_0]
- makeSpecify(double[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
Changes all the don't care symbols by the state in the environment, with Pspecify probability
- makeSpecify(Population, Population, double[], int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Specify
-
It applies the specify operator to the population.
- makeSpecify(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
Changes the allele if it is a don't care symbol and the random number generated is less than Pspecify.
- makeTestStatistics(Population, int, int[], int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Statistic
-
It makes the test statistics.
- makeTestStatistics(Population, Population, int, int[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Statistic
-
It makes the test statistics.
- makeTimeStatistics(TimeControl) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Statistic
-
It makes the time statistics.
- makeTimeStatistics(TimeControl) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Statistic
-
It makes the time statistics.
- makeTrainOrTestStatistics(PrintWriter, Population, int, int[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Statistic
-
It makes the train statistics.
- makeTrainOrTestStatistics(PrintWriter, Population, Population, int, int[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Statistic
-
It makes the train statistics.
- makeTrainStatistics(Population, int, int[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Statistic
-
It makes the train statistics.
- makeTrainStatistics(Population, Population, int, int[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Statistic
-
It makes the train statistics.
- manhattanDistance(double[], double[]) - Method in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Calculates the Manhattan distance between two instances
- manhattanDistance(double[], double[]) - Method in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Calculates the Manhattan distance between two instances
- manhattanDistance(double[], double[]) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Calculates the Manhattan distance between two instances
- manhattanDistance(double[], double[]) - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Calculates the Manhattan distance between two instances
- MannWhitneyC - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Classification Mann-Whitney Stat-test identifier.
- MannWhitneyR - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Regression Mann-Whitney Stat-test identifier.
- MantarasDistDiscretizer - Class in keel.Algorithms.Discretizers.MantarasDist_Discretizer
-
This is the class with the operations of the Mantaras Distance-Based discretization.
- MantarasDistDiscretizer() - Constructor for class keel.Algorithms.Discretizers.MantarasDist_Discretizer.MantarasDistDiscretizer
-
- map(String, String) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Applies a method to the vector
- mapKO - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.matchProfileAgent
-
- mapOK - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.matchProfileAgent
-
- mapType - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- Mark(int[], int, double[], double[], double[], double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
-
- Mark(int[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Marks the examples in "v" as covered and set their coverage degree to 1
- Mark(int[], int, double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Marks the examples in "v" as covered and set their coverage degree to the one in "grado"
- MarkClase(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.example_set
-
- MarkClase(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.example_set
-
- masComun(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.myDataset
-
Returns the most frequent value of the ith attribute.
- masComun(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.myDataset
-
Returns the most frequent value of the ith attribute.
- masComun(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.myDataset
-
Returns the most frequent value of the ith attribute.
- masComun(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.myDataset
-
Returns the most frequent value of the ith attribute.
- masComun(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Dataset
-
It return the most common value for the i-th atribute
- masComun(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.myDataset
-
Returns the most frequent value of the ith attribute.
- masComun(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Dataset
-
It return the most common value for the i-th atribute
- masComun(int) - Method in class keel.Algorithms.Rule_Learning.AQ.Dataset
-
It return the most common value for the i-th atribute
- masComun(int) - Method in class keel.Algorithms.Rule_Learning.CN2.Dataset
-
It return the most common value for the i-th atribute
- masComun(int) - Method in class keel.Algorithms.Rule_Learning.Prism.Dataset
-
Return the value most common of the attribute 'i'
- masComun(int) - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
-
Return the value most common of the attribute 'i'
- masComun(int) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Dataset
-
It return the most common value for the i-th atribute
- masComun(int) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Dataset
-
It return the most common value for the i-th atribute
- masComun(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Dataset
-
It return the most common value for the i-th atribute
- Mask - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Representation of a mask over a MyDataset.
- Mask() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Mask
-
Constructor (Warning: only for arrays definition)
- Mask(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Mask
-
Constructs a Mask of a given length.
- Mask(int, boolean) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Mask
-
Constructs a Mask of a given length
The cursor is set atBegin (that's a non valid position and it will be necessary a next() to reach the first active position).
- Mask - Class in keel.Algorithms.Genetic_Rule_Learning.PART
-
Representation of a mask over a MyDataset.
- Mask() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.Mask
-
Constructor (Warning: only for arrays definition)
- Mask(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.Mask
-
Constructs a Mask of a given length.
- Mask(int, boolean) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.Mask
-
Constructs a Mask of a given length
The cursor is set atBegin (that's a non valid position and it will be necessary a next() to reach the first active position).
- Mask - Class in keel.Algorithms.Rule_Learning.C45Rules
-
Representation of a mask over a MyDataset.
- Mask() - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.Mask
-
Constructor (Warning: only for arrays definition)
- Mask(int) - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.Mask
-
Constructs a Mask of a given length.
- Mask(int, boolean) - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.Mask
-
Constructs a Mask of a given length
The cursor is set atBegin (that's a non valid position and it will be necessary a next() to reach the first active position).
- Mask - Class in keel.Algorithms.Rule_Learning.C45RulesSA
-
Representation of a mask over a MyDataset.
- Mask() - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.Mask
-
Constructor (Warning: only for arrays definition)
- Mask(int) - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.Mask
-
Constructs a Mask of a given length.
- Mask(int, boolean) - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.Mask
-
Constructs a Mask of a given length
The cursor is set atBegin (that's a non valid position and it will be necessary a next() to reach the first active position).
- Mask - Class in keel.Algorithms.Rule_Learning.PART
-
Representation of a mask over a MyDataset.
- Mask() - Constructor for class keel.Algorithms.Rule_Learning.PART.Mask
-
Constructor (Warning: only for arrays definition)
- Mask(int) - Constructor for class keel.Algorithms.Rule_Learning.PART.Mask
-
Constructs a Mask of a given length.
- Mask(int, boolean) - Constructor for class keel.Algorithms.Rule_Learning.PART.Mask
-
Constructs a Mask of a given length
The cursor is set atBegin (that's a non valid position and it will be necessary a next() to reach the first active position).
- Mask - Class in keel.Algorithms.Rule_Learning.Ripper
-
Representation of a mask over a MyDataset.
- Mask(int) - Constructor for class keel.Algorithms.Rule_Learning.Ripper.Mask
-
Constructs a Mask of a given length.
- Mask(int, boolean) - Constructor for class keel.Algorithms.Rule_Learning.Ripper.Mask
-
Constructs a Mask of a given length
The cursor is set atBegin (that's a non valid position and it will be necessary a next() to reach the first active position).
- Mask - Class in keel.Algorithms.Rule_Learning.Slipper
-
Representation of a mask over a MyDataset.
- Mask(int) - Constructor for class keel.Algorithms.Rule_Learning.Slipper.Mask
-
Constructs a Mask of a given length.
- Mask(int, boolean) - Constructor for class keel.Algorithms.Rule_Learning.Slipper.Mask
-
Constructs a Mask of a given length
The cursor is set atBegin (that's a non valid position and it will be necessary a next() to reach the first active position).
- massCentre() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.Fuzzy
-
Returns the centroid of the present fuzzy number.
- massCentre() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyAlphaCut
-
Returns the centroid of the present alpha-cut.
- massCentre() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyInterval
-
Returns the centroid of the present interval fuzzy set.
- massCentre() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyNumberTRIANG
-
Returns the centroid of the present fuzzy number.
- massCentre() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyNumberTRLEFT
-
Returns the centroid of the present fuzzy number.
- massCentre() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzySingleton
-
Returns the centroid of the present fuzzy number.
- match(boolean[], boolean[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Rule
-
- match(double) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Attribute
-
It checks if the position of the classifier matches with the value in the environment
- match(double[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Classifier
-
Indicates if the classifier matches with the environmental state
- match(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
Returns true if the allele matches with the environment
- match(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
Returns true if the allele matches with the environment.
- match(double) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
-
It checks if the position of the classifier matches with the value in the environment
- match(double[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Indicates if the classifier matches with the environmental state
- match(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
Returns true if the allele matches with the environment
- match(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
Returns true if the allele matches with the environment
- match(double[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
Returns true if the allele matches with the environment
- match(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
Returns true if the allele matches with the environment.
- match(float[], Vector<fuzzyPartition>) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
-
- match(float[], Vector<fuzzyPartition>) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
-
- match(float[], Vector<partition>) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
-
- match(float[], Vector<partition>) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
-
- match_alfa(fuzzy[], Vector<fuzzyPartition>, int) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
-
- match_alfa(fuzzy[], Vector<fuzzyPartition>, int) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
-
- match_alpha(Interval[], Vector<partition>, int) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.rule
-
- match_alpha(fuzzy[], Vector<partition>, int) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
-
- match_alpha(fuzzy[], Vector<partition>, int) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
-
- match_alpha(Vector<fuzzy>, Vector<fuzzypartition>, int) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzyrule
-
- match_alpha(Vector<fuzzy>, Vector<fuzzypartition>, int) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzyrule
-
- match_salida(Vector<Float>, int, int, Vector<Float>, Vector<Vector<fuzzy>>, String) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
-
- match_salida(Vector<Float>, int, int, Vector<Float>, Vector<Vector<fuzzy>>, String) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
-
- match_salida(Vector<Float>, int, int, Vector<Float>, Vector<Vector<Float>>) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.rule
-
- match_salida(Vector<Float>, int, int, Vector<Float>, Vector<Vector<Float>>) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
-
- match_salida(Vector<Float>, int, int, Vector<Float>, Vector<Vector<Float>>) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
-
- matching(int, int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.DataBase
-
It checks if the value of a specific label in a specific attribute matchs with a given value
- matching(int[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
Function to check if a given example matchs with the rule (the rule correctly classifies it).
- matching(int, int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.DataBase
-
It checks if the value of a specific label in a specific attribute matchs with a given value
- matching(int[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
Function to check if a given example matchs with the rule (the rule correctly classifies it)
- matching(int, int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.DataBase
-
It checks if the value of a specific label in a specific attribute matchs with a given value
- matching(int, int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.DataBase
-
It checks if the value of a specific label in a specific attribute matchs with a given value
- matching(int[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.Rule
-
Function to check if a given example matchs with the rule (the rule correctly classifies it)
- matching(int, int, double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.DataBase
-
It checks if the value of a specific label in a specific attribute matchs with a given value
- matching(double[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
-
Function to check if a given example matchs with the rule (the rule correctly classifies it)
- matching(int, int, double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.DataBase
-
Checks if the value of a specific label in a specific attribute matchs with a given value
- matching(double[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Rule
-
Function to check if a given example matchs with the rule (the rule correctly classifies it)
- matching(int, int, double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.DataBase
-
It checks if the value of a specific label in a specific attribute matchs with a given value
- matching(double[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Rule
-
Function to check if a given example matchs with the rule (the rule correctly classifies it)
- matching(int, int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.DataBase
-
- matching(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Rule
-
- matching(double, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Condition
-
Determines if the value is covered by this condition
- matching(double[], boolean[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Individual
-
Determines if an example is covered by the individual
- matching(int, int, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.DataBase
-
Returns the fuzzied value for given variable, label and value.
- matchingDegree(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.FuzzyAntecedent
-
Computes the matching degree of a specified value with a set of fuzzy labels, using
a specified t_conorm as OR operator
- matchingDegree(double, int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.FuzzyAntecedent
-
Computes the matching degree of a specified value with a set of fuzzy labels, using
a specified t_conorm as OR operator
- matchProfileAgent - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
- matchProfileAgent(int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.matchProfileAgent
-
- matchValue(double[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Regla
-
- matdif(double[][], double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- math - Class in keel.Algorithms.Neural_Networks.gmdh
-
Class with mathematical operations
- math() - Constructor for class keel.Algorithms.Neural_Networks.gmdh.math
-
Empty constructor
- Maths - Class in keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix
-
Utility class.
- Maths() - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Maths
-
- matmul(double[][], double) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- matmul(double[][], double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- matmul(double[][], double) - Static method in class keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.MatrixCalcs
-
- matmul(double[][], double[][]) - Static method in class keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.MatrixCalcs
-
- matprn(double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- matprn(double[][]) - Static method in class keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.MatrixCalcs
-
- Matrix - Class in keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS
-
Class with matrix operations
- Matrix() - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Matrix
-
- matrix - Variable in class keel.Algorithms.Instance_Generation.PNN.MatrixOfDistances
-
Warehouse of distance between prototypes in A and prototypes in B
- Matrix - Class in keel.Algorithms.Neural_Networks.net
-
Class with matrix operations
- Matrix() - Constructor for class keel.Algorithms.Neural_Networks.net.Matrix
-
- Matrix - Class in keel.Algorithms.Statistical_Classifiers.Logistic.core
-
- Matrix(int, int) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Constructs a matrix and initializes it with default values.
- Matrix(double[][]) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Constructs a matrix using a given array.
- Matrix(Reader) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Reads a matrix from a reader.
- Matrix - Class in keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix
-
Jama = Java Matrix class.
- Matrix(int, int) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Construct an m-by-n matrix of zeros.
- Matrix(int, int, double) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Construct an m-by-n constant matrix.
- Matrix(double[][]) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Construct a matrix from a 2-D array.
- Matrix(double[][], int, int) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Construct a matrix quickly without checking arguments.
- Matrix(double[], int) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Construct a matrix from a one-dimensional packed array
- Matrix(Reader) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Reads a matrix from a reader.
- MatrixCalcs - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting
-
- MatrixCalcs() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- MatrixCalcs - Class in keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs
-
- MatrixCalcs() - Constructor for class keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.MatrixCalcs
-
- MatrixCalcs.ErrorDimension - Exception in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting
-
- MatrixCalcs.ErrorSingular - Exception in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting
-
- matrixConfussion - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Confussion matrix (YES-NO)
- matrixConfussion - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Confussion matrix flag.
- matrixFiringDegrees - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.FARFingrams
-
Matrix that stores the firingDegrees up to which the examples fire the
rules.
- matrixFiringDegreesRulesXExamples - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Matrix that stores the firing degrees examples by rules.
- MatrixOfDistances - Class in keel.Algorithms.Instance_Generation.PNN
-
Matrix of distances between two sets of prototypes.
- MatrixOfDistances(PrototypeSet, PrototypeSet) - Constructor for class keel.Algorithms.Instance_Generation.PNN.MatrixOfDistances
-
Construct a matrix of the distances between elements of the set A and B.
- matrixRulesXExamples - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Matrix that stores the examples that fire the rules.
- MatrizR - Class in keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM
-
- MatrizR(BaseR) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.MatrizR
-
- MatrizR(int, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.MatrizR
-
- MatrizR(MatrizR, MatrizR, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.MatrizR
-
- matsum(double[][], double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- matsum(double[][], double[][]) - Static method in class keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.MatrixCalcs
-
- max - Variable in class keel.Algorithms.Decision_Trees.M5.SimpleStatistics
-
The maximum value seen, or Double.NaN if no values seen
- max - Variable in class keel.Algorithms.Discretizers.MVD.MVD
-
Maximum value.
- Max() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.vectordouble
-
Returns the maximum value of the vector
- max - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- max - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleStatistics
-
The maximum value seen, or Double.NaN if no values seen
- Max(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Arrays
-
- max - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Stats
-
The maximum value seen, or Double.NaN if no values seen
- max(int, int) - Method in class keel.Algorithms.MIL.APR.AbstractAPR
-
- max(ArrayList<IInstance>, int) - Method in class keel.Algorithms.MIL.APR.IteratedDiscrimination.IteratedDiscrimination
-
- max(DenseVector) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
Finds the maximum element of a vector
- max(double, double, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.Function
-
The maximum of this function over an interval [a,A] evaluated at N+1 evenly
distributed values
- max - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.ConfidenceInterval
-
Maximum value of the interval.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Gen
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.TipoIntervalo
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Gen
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.TipoIntervalo
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Gen
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.TipoIntervalo
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Gen
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.TipoIntervalo
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Gen
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.TipoIntervalo
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Gen
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.TipoIntervalo
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Gen
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.TipoIntervalo
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Gen
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.TipoIntervalo
-
Returns the maximum variable.
- max() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns the maximum value of all elements
- max_generations - Variable in class keel.Algorithms.Neural_Networks.gann.SetupParameters
-
- MAX_LATERAL_TUNING - Static variable in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.CHC_Chromosome
-
Maximum lateral tuning.
- max_nodes - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
- max_nodes - Variable in class keel.Algorithms.Neural_Networks.gmdh.SetupParameters
-
- MAX_NUM_FREQUENT_SETS - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
The maximum number of frequent sets that may be generated.
- MAX_POWER_OF_LAMBDA - Static variable in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
powers of lambda are prepared prior to kernel evaluations.
- max_reglas - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Sel
-
Maximum number of rules.
- max_reglas - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Tun
-
Maximum number of rules.
- MAXALG - Static variable in class keel.GraphInterKeel.statistical.StatisticalF
-
- maxBDAttributeValue - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
- maxBDAttributeValue - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
- maxClass() - Method in class keel.Algorithms.Decision_Trees.C45.Classification
-
Returns class with highest frequency over all values.
- maxClass(int) - Method in class keel.Algorithms.Decision_Trees.C45.Classification
-
Returns class with highest frequency for given value.
- maxClass() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
-
Returns class with highest frequency over all values.
- maxClass(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
-
Returns class with highest frequency for given value.
- maxClass() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
-
Returns class with highest frequency over all values.
- maxClass(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
-
Returns class with highest frequency for given value.
- maxClass() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
-
Returns class with highest frequency over all values.
- maxClass(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
-
Returns class with highest frequency for given value.
- maxClass() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
-
Returns class with highest frequency over all values.
- maxClass(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
-
Returns class with highest frequency for given value.
- maxClass() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
-
Returns class with highest frequency over all values.
- maxClass(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
-
Returns class with highest frequency for given value.
- maxClass() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
-
Returns class with highest frequency over all values.
- maxClass(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
-
Returns class with highest frequency for given value.
- maxClass() - Method in class keel.Algorithms.Rule_Learning.PART.Classification
-
Returns class with highest frequency over all values.
- maxClass(int) - Method in class keel.Algorithms.Rule_Learning.PART.Classification
-
Returns class with highest frequency for given value.
- maxClass() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
-
Returns class with highest frequency over all values.
- maxClass(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
-
Returns class with highest frequency for given value.
- maxD - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_UBR
-
- MAXDATA - Static variable in class keel.GraphInterKeel.statistical.StatisticalF
-
- maxDepthTipText() - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Returns the tip text for this property
- maxDepthTipText() - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Returns the tip text for this property
- maxDepthTipText() - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Returns the tip text for this property
- maxDistance(double[][]) - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
-
Computes the maximun distance between vectors in a double[][]
- maxDistance(double[][]) - Static method in class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
-
Computes the maximun distance between vectors in a double[][]
- maxDistance(double[][]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
-
Computes the maximun distance between vectors in a double[][]
- maxDistance(double[][]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
-
Computes the maximun distance between vectors in a double[][]
- maxDistance(double[][]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
-
Computes the maximun distance between vectors in a double[][]
- maxDistance(double[][]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
-
Computes the maximun distance between vectors in a double[][]
- maxDistance(double[][]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
-
Computes the maximun distance between vectors in a double[][]
- maxDistanceTo(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Returns the greatest distance between center.
- maxDistanceTo(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Returns the greatest distance between center.
- maxFun - Variable in class keel.Algorithms.Preprocess.Missing_Values.EM.util.UnivariateMinimum
-
maximum number of function evaluations
(default 0 indicates no limit on calls)
- MAXGAM - Static variable in class keel.Algorithms.Lazy_Learning.Statistics
-
Maximun gamma value
- MAXGAM - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
- MAXIMIZE - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- MAXIMIZE - Static variable in class keel.GraphInterKeel.statistical.StatisticalF
-
- maximo_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Ttabla
-
cover level
- maximo_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Ttabla
-
cover level
- maximo_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Ttabla
-
cover level
- maximo_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Ttabla
-
cover level
- maximo_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Ttabla
-
cover level
- maximo_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Ttabla
-
cover level
- maximo_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Ttabla
-
cover level
- maximo_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Ttabla
-
cover level
- MAXIMUM - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.GP_COACH
-
Configuration flag (MAXIMUM).
- maximum(double[], double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method implements the maximum operation between two vectors elements
- maximum(double[][], double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method implements the maximum operation between two matrix elements
- maximum(double[][][], double[][][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method implements the maximum operation between two cubic matrix elements
- MAXIMUM - Static variable in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.GP_COACH_H
-
Configuration flag (MAXIMUM)
- maximum(double[], double[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
Returns a vector with the maximum of each component of a and b
- maximum(double[][], double[][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
Returns a matrix with the maximum of each component of a and b
- maximum(double[][][], double[][][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
Returns a matrix with the maximum of each component of a and b
- maximum(double[], double[]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
Returns a vector with the maximum of each component of a and b
- maximum(double[][], double[][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
Returns a matrix with the maximum of each component of a and b
- maximum(double[][][], double[][][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
Returns a matrix with the maximum of each component of a and b
- Maximum(float, float) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Utils
-
Returns the maximum of two float values
- Maximum(float, float) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Utils
-
Returns the maximum of two float values
- Maximum(float, float) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Utils
-
Returns the maximum of two float values
- Maximum(float, float) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Utils
-
Returns the maximum of two float values
- Maximum(float, float) - Static method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Utils
-
Returns the maximum of two float values
- Maximum(float, float) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Utils
-
Returns the maximum of two float values
- Maximum(float, float) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Utils
-
Returns the maximum of two float values
- maximumDelta - Variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Maximum Value for Delta in RpropPlus Algorithm
- maximumDistance - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Maximum distance between data
- maximumReduction() - Method in class keel.Algorithms.Instance_Generation.PNN.PNNGenerator
-
Performs the maximum reduction of the training data set by the PNNGenerator (aka Chang) method.
- maximumSupportDifference(int[][]) - Method in class keel.Algorithms.Discretizers.MVD.MVD
-
Gets the maximum support difference
- maxIndex(double[]) - Static method in class keel.Algorithms.Decision_Trees.C45.C45
-
Returns index of maximum element in a given array of doubles.
- maxIndex(double[]) - Static method in class keel.Algorithms.Decision_Trees.DT_GA.C45.C45
-
Returns index of maximum element in a given array of doubles.
- maxIndex(double[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Returns index of maximum element in a given
array of doubles.
- maxIndex(int[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Returns index of maximum element in a given
array of integers.
- maxIndex(double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Returns index of maximum element in a given
array of doubles.
- maxIndex(int[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Returns index of maximum element in a given
array of integers.
- maxIndex(double[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Returns index of maximum element in a given
array of doubles.
- maxIndex(int[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Returns index of maximum element in a given
array of integers.
- maxIndex(double[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.PART.C45
-
Returns index of maximum element in a given array of doubles.
- maxIndex(double[]) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.C45CS
-
Returns index of maximum element in a given array of doubles.
- maxIndex(double[]) - Static method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.C45
-
Returns index of maximum element in a given array of doubles.
- maxIndex(double[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Returns index of maximum element in a given
array of doubles.
- maxIndex(int[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Returns index of maximum element in a given
array of integers.
- maxIndex(double[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.C45
-
Returns index of maximum element in a given array of doubles.
- maxIndex(double[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.C45
-
Returns index of maximum element in a given array of doubles.
- maxIndex(double[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.C45
-
Returns index of maximum element in a given array of doubles.
- maxIndex(double[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.C45
-
Returns index of maximum element in a given array of doubles.
- maxIndex(double[]) - Static method in class keel.Algorithms.Rule_Learning.C45Rules.C45
-
Returns index of maximum element in a given array of doubles.
- maxIndex(double[]) - Static method in class keel.Algorithms.Rule_Learning.C45RulesSA.C45
-
Returns index of maximum element in a given array of doubles.
- maxIndex(double[]) - Static method in class keel.Algorithms.Rule_Learning.PART.C45
-
Returns index of maximum element in a given array of doubles.
- maxIndex(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Returns index of maximum element in a given
array of doubles.
- maxIndex(int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Returns index of maximum element in a given
array of integers.
- maxIndex(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.C45
-
Returns index of maximum element in a given array of doubles.
- maxIndex(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Returns index of maximum element in a given
array of doubles.
- maxIndex(int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Returns index of maximum element in a given
array of integers.
- maxIndex(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Returns index of maximum element in a given
array of doubles.
- maxIndex(int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Returns index of maximum element in a given
array of integers.
- maxIndex(double[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Returns index of maximum element in a given
array of doubles.
- maxIndex(int[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Returns index of maximum element in a given
array of integers.
- maxIndex(double[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Returns index of maximum element in a given
array of doubles.
- maxIndex(int[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Returns index of maximum element in a given
array of integers.
- maxInfoGain - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Antd
-
The maximum infoGain achieved by this antecedent test
in the growing data
- maxIntervals - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- maxIntervals - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- maxIntervals - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Parameters
-
Maximum number of intervals.
- maxInVector(double[]) - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
-
Returns the index of the higher value
- maxInVector(double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
-
Returns the index of the higher value
- maxInVector(double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
-
Returns the index of the higher value
- maxInVector(double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
-
Returns the index of the higher value
- maxInVector(double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
-
Returns the index of the higher value
- maxInVector(double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
-
Returns the index of the higher value
- maxInVector(double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
-
Returns the index of the higher value
- maxIterations - Variable in class keel.Algorithms.MIL.Diverse_Density.Optimization.Optimization
-
- maxItsTipText() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
Returns the tip text for this property
- maxLinksAdd - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Maximum number of links to add in the mutations
- maxLinksDel - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Maximum number of links to remove in the mutations
- MAXLOG - Static variable in class keel.Algorithms.Lazy_Learning.Statistics
-
Maximum logarithm value
- MAXLOG - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
- maxMin - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.timerEvolutionStats
-
- maxmin(int, int) - Method in class keel.Algorithms.MIL.APR.IteratedDiscrimination.IteratedDiscrimination
-
- maxNeuronsAdd - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Maximum number of neurons to add in the mutations
- maxNeuronsDel - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Maximum number of neurons to remove in the mutations
- maxNextCharInd - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- maxNextCharInd - Static variable in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- maxNextCharInd - Static variable in class keel.Dataset.SimpleCharStream
-
- maxNodos - Static variable in class keel.Algorithms.Decision_Trees.DT_oblicuo.Tree
-
Maximum number of nodes allowed.
- maxNodos - Static variable in class keel.Algorithms.Decision_Trees.Target.Tree
-
Maximum number of nodes.
- maxNofneurons - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
-
Maximum number of neurons of each LinkedLayer of the neural nets
- maxnofneurons - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputLayer
-
Maximum number of neurons
- maxnofneurons - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Maximum number of neurons for the layer
- maxOfGenerations - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Maximum of generations (stop criterium)
- maxPositiveTermsSizeTipText() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- maxRadiusLength() - Method in class keel.Algorithms.Instance_Generation.GMCA.ClusterSet
-
Returns the maximum radius length of set of clusters.
- maxRadiusLengthOfClass(double) - Method in class keel.Algorithms.Instance_Generation.GMCA.ClusterSet
-
Returns the maximum radius length of set of clusters of one class.
- maxSubsequenceLengthTipText() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Returns the tip text for this property
- maxValue() - Method in class keel.Algorithms.Decision_Trees.C45.Classification
-
Returns index of value containing maximum number of itemsets.
- maxValue() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
-
Returns index of value containing maximum number of itemsets.
- maxValue() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
-
Returns index of value containing maximum number of itemsets.
- maxValue() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
-
Returns index of value containing maximum number of itemsets.
- maxValue() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
-
Returns index of value containing maximum number of itemsets.
- maxValue() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
-
Returns index of value containing maximum number of itemsets.
- maxValue() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
-
Returns index of value containing maximum number of itemsets.
- maxValue() - Method in class keel.Algorithms.Rule_Learning.PART.Classification
-
Returns index of value containing maximum number of itemsets.
- maxValue() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
-
Returns index of value containing maximum number of itemsets.
- MAYOR - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.Selector
-
Identifier for the greater condition operator.
- MAYOR - Static variable in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Condition
-
Tag (GREATER).
- mayor_zero() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.Interval
-
- mayor_zero() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.Interval
-
- mayor_zero() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.Interval
-
- mayor_zero() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.Interval
-
- mayor_zero() - Method in class keel.Algorithms.LQD.preprocess.Expert.interval
-
- mayor_zero() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.interval
-
- mayor_zero() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.interval
-
- MAYORIGUAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Condition
-
Tag (GREATER EQUAL).
- MCAAlgorithm - Class in keel.Algorithms.Instance_Generation.MCA
-
MCA algorithm calling.
- MCAAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.MCA.MCAAlgorithm
-
- MCAGenerator - Class in keel.Algorithms.Instance_Generation.MCA
-
Modified Chang Algorithm.
- MCAGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.MCA.MCAGenerator
-
Build a new algorithm MCAGenerator that will reduce a prototype set.
- MCAGenerator(PrototypeSet) - Constructor for class keel.Algorithms.Instance_Generation.MCA.MCAGenerator
-
Build a new algorithm PNNGenerator that will reduce a prototype set.
- MCF - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.Fuzzy_Chi
-
Configuration flags.
- MCF - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Fuzzy_Ish
-
Configuration flags.
- MCF - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.Fuzzy_Ish
-
Configuration flag (MCF).
- MCF - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Fuzzy_Ish
-
- MCNN - Class in keel.Algorithms.Instance_Selection.MCNN
-
File: MCNN.java
The MCNN Instance Selection algorithm.
- MCNN(String) - Constructor for class keel.Algorithms.Instance_Selection.MCNN.MCNN
-
Default constructor.
- MCNN - Class in keel.Algorithms.Preprocess.Instance_Selection.MCNN
-
File: MCNN.java
The MCNN Instance Selection algorithm.
- MCNN(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.MCNN.MCNN
-
Default constructor.
- MCS - Class in keel.Algorithms.Instance_Selection.MCS
-
File: MCS.java
The MCS Instance Selection algorithm.
- MCS(String) - Constructor for class keel.Algorithms.Instance_Selection.MCS.MCS
-
Default constructor.
- MCS - Class in keel.Algorithms.Preprocess.Instance_Selection.MCS
-
File: MCS.java
The MCS Instance Selection algorithm.
- MCS(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.MCS.MCS
-
Default constructor.
- mdlFitness(classifier, agentPerformanceTraining) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.timerMDL
-
- mdlFitness(Classifier) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_MDL
-
- mdlFitness(Classifier) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_MDL
-
- mdlWeightRelaxFactor - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- mean(double[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Computes the mean for an array of doubles.
- mean - Variable in class keel.Algorithms.Decision_Trees.M5.SimpleStatistics
-
The mean of values at the last calculateDerived() call
- mean(double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Computes the mean for an array of doubles.
- mean(double[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Computes the mean for an array of doubles.
- mean - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleStatistics
-
The mean of values at the last calculateDerived() call
- mean - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Stats
-
The mean of values at the last calculateDerived() call
- mean(double[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Computes the mean for an array of doubles.
- mean(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Computes the mean for an array of doubles.
- mean(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Computes the mean for an array of doubles.
- mean(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Computes the mean for an array of doubles.
- mean(double[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Computes the mean for an array of doubles.
- mean(double[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Computes the mean for an array of doubles.
- mean - Variable in class keel.Algorithms.SVM.SMO.SMO
-
Variable with the mean of each attribute.
- meanAbsoluteError() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Returns the mean absolute error.
- MeanFitness() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- MeanFitness() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- MeanFitness() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- MeanFitness_Stationary() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- MeanFitness_Stationary(Double_t, Double_t, Double_t, Double_t, Double_t, Double_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- meanOrMode(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Returns the mean (mode) for a numeric (nominal) attribute as
a floating-point value.
- meanOrMode(M5Attribute) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Returns the mean (mode) for a numeric (nominal) attribute as a
floating-point value.
- meanOrMode(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Returns the mean (mode) for a numeric (nominal) attribute as
a floating-point value.
- meanOrMode(AttributeWeka) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Returns the mean (mode) for a numeric (nominal) attribute as a
floating-point value.
- meanOrMode(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Returns the mean (mode) for a numeric (nominal) attribute as
a floating-point value.
- meanOrMode(MyAttribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Returns the mean (mode) for a numeric (nominal) attribute as a
floating-point value.
- meanOrMode(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Returns the mean (mode) for a numeric (nominal) attribute as a
floating-point value.
- meanOrMode(Attribute) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Returns the mean (mode) for a numeric (nominal) attribute as a
floating-point value.
- meanOrMode(int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the mean (mode) for a numeric (nominal) attribute as
a floating-point value.
- meanOrMode(Attribute) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the mean (mode) for a numeric (nominal) attribute as a
floating-point value.
- meanPriorAbsoluteError() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Returns the mean absolute error of the prior.
- measure_file - Variable in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Param
-
Auxiliary output file for quality measures of the rules
- measure_file - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Param
-
Auxiliary output file for quality measures of the rules
- measure_file - Variable in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Param
-
Auxiliary output file for quality measures of the rules
- measureCacheHits() - Method in class keel.Algorithms.SVM.SMO.SVMreg
-
number of kernel cache hits used during learing
- measureError(PrototypeSet, int) - Method in class keel.Algorithms.Semi_Supervised_Learning.DE_TriTraining.DE_TriTrainingGenerator
-
Measure combined error excluded the classifier 'id' on the given data set
- measureError(PrototypeSet, int) - Method in class keel.Algorithms.Semi_Supervised_Learning.TriTraining.TriTrainingGenerator
-
Measure combined error excluded the classifier 'id' on the given data set
- measureIEP(boolean[]) - Method in class keel.Algorithms.Preprocess.Feature_Selection.Datos
-
Calculates the inconsistent example pairs ratio (IEP)
- measureKernelEvaluations() - Method in class keel.Algorithms.SVM.SMO.SVMreg
-
number of kernel evaluations used in learing
- measureNumLeaves() - Method in class keel.Algorithms.Decision_Trees.M5.M5
-
return the number of leaves in the tree
- measureNumLeaves() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
return the number of leaves in the tree
- measureNumLinearModels() - Method in class keel.Algorithms.Decision_Trees.M5.M5
-
return the number of linear models
- measureNumLinearModels() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
return the number of linear models
- measureNumRules() - Method in class keel.Algorithms.Decision_Trees.M5.M5
-
return the number of rules
- measureNumRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
return the number of rules
- measures(M5Instances, boolean) - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Computes performance measures of a tree
- Measures - Class in keel.Algorithms.Decision_Trees.M5
-
Class for performance measures
- Measures() - Constructor for class keel.Algorithms.Decision_Trees.M5.Measures
-
Constructs a Measures object which could containing the performance measures
- measures(MyDataset, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Computes performance measures of a tree
- Measures - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Class for performance measures
- Measures() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Measures
-
Constructs a Measures object which could containing the performance measures
- measuresToString(Measures[], M5Instances, int, int, String) - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Converts the performance measures into a string
- measuresToString(Measures[], MyDataset, int, int, String) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Converts the performance measures into a string
- media() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzy
-
- media() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.Interval
-
- media() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzy
-
- media() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.Interval
-
- media() - Method in class keel.Algorithms.LQD.methods.FGFS_Original.Interval
-
- media() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.Interval
-
- media() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.Interval
-
- media() - Method in class keel.Algorithms.LQD.preprocess.Expert.fuzzy
-
- media() - Method in class keel.Algorithms.LQD.preprocess.Expert.interval
-
- media() - Method in class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.fuzzy
-
- media() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzy
-
- media() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.interval
-
- media() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzy
-
- media() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.interval
-
- media() - Method in class keel.Algorithms.LQD.tests.IntermediateBoost.fuzzy
-
- media() - Method in class keel.Algorithms.LQD.tests.IntermediateBoost.interval
-
- medidaInconsistencia(boolean[]) - Method in class keel.Algorithms.Preprocess.Feature_Selection.Datos
-
Calculates the inconcistency ratio.
- medidas - Variable in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Individual
-
Measurements of the individual.
- medidas - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Measurements of the individual.
- medidas - Variable in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Individual
-
Measurements of the individual.
- medVect(double[][]) - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
-
Computes the average of the rows of matrix v
- medVect(double[][]) - Static method in class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
-
Computes the average of the rows of matrix v
- medVect(double[][]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
-
Computes the average of the rows of matrix v
- medVect(double[][]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
-
Computes the average of the rows of matrix v
- medVect(double[][]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
-
Computes the average of the rows of matrix v
- medVect(double[][]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
-
Computes the average of the rows of matrix v
- medVect(double[][]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
-
Computes the average of the rows of matrix v
- mejorBR() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Poblacion
-
- mejoresParticulas(PrototypeSet[], double[]) - Method in class keel.Algorithms.Instance_Generation.JADE.JADEGenerator
-
- mejoresParticulas(PrototypeSet[]) - Method in class keel.Algorithms.Instance_Generation.OBDE.OBDEGenerator
-
- mejorSolucion() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.Poblacion
-
Returns the best solution obtained by the GA.
- mejorSolucion() - Method in class keel.Algorithms.Decision_Trees.Target.Poblacion
-
Returns the best solution founded.
- membership(int, int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.BaseD
-
It computes the membership degree for a input value
- membership(int, int, int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.DataBase
-
It computes the membership degree for a input value
- membership(int, int, int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.DataBase
-
It computes the membership degree for a input value
- membership(int, float) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyPartition
-
- membership(int, float) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyPartition
-
- membership(int, float) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.partition
-
- membership(int, float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.partition
-
- membership(int, float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.partition
-
- membership(int, float) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzypartition
-
- membership(int, float) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzypartition
-
- membershipFunction(int, int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.DataBase
-
It computes the membership degree for a input value
- membershipFunction(int, int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.DataBase
-
It computes the membership degree for a input value
- membershipFunction(int, int, double) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.DataBase
-
It computes the membership degree for a input value
- MembershipFunction - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori
- MembershipFunction() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.MembershipFunction
-
Default constructor
- MembershipFunction - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC
- MembershipFunction() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.MembershipFunction
-
Default constructor
- MemFun - Class in keel.Algorithms.RE_SL_Methods.SEFC
- MemFun() - Constructor for class keel.Algorithms.RE_SL_Methods.SEFC.MemFun
-
Default constructor
- MENN - Class in keel.Algorithms.Instance_Selection.MENN
-
File: MENN.java
The MENN Instance Selection algorithm.
- MENN(String) - Constructor for class keel.Algorithms.Instance_Selection.MENN.MENN
-
Default constructor.
- MENN - Class in keel.Algorithms.Preprocess.Instance_Selection.MENN
-
File: MENN.java
The MENN Instance Selection algorithm.
- MENN(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.MENN.MENN
-
Default constructor.
- MENOR - Static variable in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Condition
-
Tag (LESSER).
- MENOR_IGUAL - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.Selector
-
Identifier for the lesser-equal condition operator.
- MENORIGUAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Condition
-
Tag (LESSER EQUAL).
- merge(Rule) - Method in class keel.Algorithms.Hyperrectangles.BNGE.Rule
-
Merge two rules
- merge(Cluster, Cluster) - Method in class keel.Algorithms.Instance_Generation.GMCA.ClusterSet
-
Merge two clusters.
- Merge(PrototypeSet, boolean[], Prototype, PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.ICPL.ICPLGenerator
-
Merge
- mergeCostVariation(ArrayList<Double>, int, double, ArrayList<Double>, int, double, int[]) - Method in class keel.Algorithms.Discretizers.Khiops.Khiops
-
Computes the cost derived form merging two adjacent intervals na and nb
- mergeCostVariation(ArrayList<Double>, int, ArrayList<Double>, int, int, int[]) - Method in class keel.Algorithms.Discretizers.MODL.MODL
-
Computes the cost derived form merging two adjacent intervals na and nb
- mergedRowChi2Value(ArrayList<Double>, int, int[]) - Method in class keel.Algorithms.Discretizers.Khiops.Khiops
-
This method calculates the contribution to the global chi square value
of a new interval (produced by merging two adjacent ones).
- mergedThreshold - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- mergeInstance(M5Instance) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Merges this instance with the given instance and returns
the result.
- mergeInstance(M5Instance) - Method in class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Merges this instance with the given instance and returns
the result.
- mergeInstance(Instance) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Merges this instance with the given instance and returns
the result.
- mergeInstance(Itemset) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Merges this instance with the given instance and returns
the result.
- mergeInstance(Instance) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Merges this instance with the given instance and returns
the result.
- mergeInstance(Instance) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Merges this instance with the given instance and returns
the result.
- mergeInstance(Instance) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Merges this instance with the given instance and returns
the result.
- mergeInstances(M5Instances, M5Instances) - Static method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Merges two sets of M5Instances together.
- mergeInstances(Instances, Instances) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Merges two sets of Instances together.
- mergeInstances(Instances, Instances) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Merges two sets of Instances together.
- mergeInstances(Instances, Instances) - Static method in class keel.Algorithms.SVM.SMO.core.Instances
-
Merges two sets of Instances together.
- mergeIntervals(Interval) - Method in class keel.Algorithms.Discretizers.MVD.Interval
-
Merges the interval with the provided one
- mergeSort(long[], int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.PART.Utilities
-
Mergesort algorithm for an array of long integers.
- mergeSort(Pair[], int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.PART.Utilities
-
Mergesort algorithm for an array of Pairs.
- mergeSort(long[], int) - Static method in class keel.Algorithms.Rule_Learning.C45Rules.Utilities
-
Mergesort algorithm for an array of long integers.
- mergeSort(double[], int) - Static method in class keel.Algorithms.Rule_Learning.C45Rules.Utilities
-
Mergesort algorithm for an array of long integers.
- mergeSort(long[], int) - Static method in class keel.Algorithms.Rule_Learning.C45RulesSA.Utilities
-
Mergesort algorithm for an array of long integers.
- mergeSort(double[], int) - Static method in class keel.Algorithms.Rule_Learning.C45RulesSA.Utilities
-
Mergesort algorithm for an array of long integers.
- mergeSort(long[], int) - Static method in class keel.Algorithms.Rule_Learning.PART.Utilities
-
Mergesort algorithm for an array of long integers.
- mergeSort(Pair[], int) - Static method in class keel.Algorithms.Rule_Learning.PART.Utilities
-
Mergesort algorithm for an array of Pairs.
- mergeSort(long[], int) - Static method in class keel.Algorithms.Rule_Learning.Ripper.Utilities
-
Mergesort algorithm for an array of long integers.
- mergeSort(double[], int) - Static method in class keel.Algorithms.Rule_Learning.Ripper.Utilities
-
Mergesort algorithm for an array of long integers.
- mergeSort(Pair[], int) - Static method in class keel.Algorithms.Rule_Learning.Ripper.Utilities
-
Mergesort algorithm for an array of Pairs.
- mergeSort(Trio[], int) - Static method in class keel.Algorithms.Rule_Learning.Ripper.Utilities
-
Mergesort algorithm for a vector of Trio.
- mergeSort(long[], int) - Static method in class keel.Algorithms.Rule_Learning.Slipper.Utilities
-
Mergesort algorithm for an array of long integers.
- mergeSort(Pair[], int) - Static method in class keel.Algorithms.Rule_Learning.Slipper.Utilities
-
Mergesort algorithm for an array of Pairs.
- mergeSort(Trio[], int) - Static method in class keel.Algorithms.Rule_Learning.Slipper.Utilities
-
Mergesort algorithm for a vector of Trio.
- MERGING - Static variable in class keel.Algorithms.Genetic_Rule_Learning.OCEC.OCEC
-
Number to indentify the different types of scheme (MERGING).
- MersenneTwister - Class in keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat
-
Mersenne Twister and MersenneTwisterFast:
MersenneTwister is a drop-in subclass replacement
for java.util.Random.
- MersenneTwister() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.MersenneTwister
-
Constructor using the default seed.
- MersenneTwister(long) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.MersenneTwister
-
Constructor using a given seed.
- MESDIF - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF
-
MESDIF
Algorithm for the discovery of rules describing subgroups
- MESDIF() - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.MESDIF
-
- metadata - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset
-
Dataset specification
- Metadata - Class in keel.Algorithms.Neural_Networks.NNEP_Common.data
-
Implementation of IMetadata interface.
- Metadata() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.data.Metadata
-
Empty constructor
- method_output - Variable in class keel.Algorithms.SVM.SMO.SMO
-
Model output filename.
- methodsSelectionTree - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- Metodo - Class in keel.Algorithms.Decision_Trees.C45_Binarization
-
File: Metodo.java
An auxiliary class to initialize Instance Selection algorithms
- Metodo() - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Default builder
- Metodo(String) - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Builder.
- Metodo - Class in keel.Algorithms.ImbalancedClassification.Ensembles.Basic
-
- Metodo() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Metodo
-
- Metodo(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Metodo
-
- Metodo - Class in keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic
-
File: Metodo.java
An auxiliary class to initialize Instance Selection algorithms
- Metodo() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
Default builder
- Metodo(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
Builder.
- Metodo - Class in keel.Algorithms.Preprocess.Basic
-
File: Metodo.java
An auxiliary class to initialize Instance Selection algorithms
- Metodo() - Constructor for class keel.Algorithms.Preprocess.Basic.Metodo
-
Default builder
- Metodo(String) - Constructor for class keel.Algorithms.Preprocess.Basic.Metodo
-
Builder.
- Metodo(String, InstanceSet) - Constructor for class keel.Algorithms.Preprocess.Basic.Metodo
-
Parameter constructor.
- mezclar() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Poblacion
-
Combines each organization with another one if the useful attributes of
the organization is contained in the other one to be combined with.
- michigan() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.RuleBase
-
Genetic Cooperative-Competetive procedure
- MiDataset - Class in keel.Algorithms.RE_SL_Methods.LEL_TSK
-
- MiDataset(String, boolean) - Constructor for class keel.Algorithms.RE_SL_Methods.LEL_TSK.MiDataset
-
Stores in memory the contents of the data file "f"
- MiDataset - Class in keel.Algorithms.RE_SL_Methods.MamWM
-
- MiDataset(String, boolean) - Constructor for class keel.Algorithms.RE_SL_Methods.MamWM.MiDataset
-
- MiDataset - Class in keel.Algorithms.RE_SL_Methods.mogulHC
-
- MiDataset(String, boolean) - Constructor for class keel.Algorithms.RE_SL_Methods.mogulHC.MiDataset
-
Stores in memory the contents of the data file "f"
- MiDataset - Class in keel.Algorithms.RE_SL_Methods.mogulIRL
-
- MiDataset(String, boolean) - Constructor for class keel.Algorithms.RE_SL_Methods.mogulIRL.MiDataset
-
Stores in memory the contents of the data file "f"
- MiDataset - Class in keel.Algorithms.RE_SL_Methods.mogulSC
-
- MiDataset(String, boolean) - Constructor for class keel.Algorithms.RE_SL_Methods.mogulSC.MiDataset
-
Stores in memory the contents of the data file "f"
- MiDataset - Class in keel.Algorithms.RE_SL_Methods.TSK_IRL
-
- MiDataset(String, boolean) - Constructor for class keel.Algorithms.RE_SL_Methods.TSK_IRL.MiDataset
-
Stores in memory the contents of the data file "f"
- MiDataset - Class in keel.Algorithms.RE_SL_Postprocess.Mam2TSK
-
- MiDataset(String, boolean) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Mam2TSK.MiDataset
-
Stores in memory the contents of the data file "f"
- MiDataset - Class in keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB
-
- MiDataset(String, boolean) - Constructor for class keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB.MiDataset
-
Stores in memory the contents of the data file "f"
- MiDataset - Class in keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules
-
- MiDataset(String, boolean) - Constructor for class keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules.MiDataset
-
Stores in memory the contents of the data file "f"
- MiDataset - Class in keel.Algorithms.RE_SL_Postprocess.MamSelect
-
- MiDataset(String, boolean) - Constructor for class keel.Algorithms.RE_SL_Postprocess.MamSelect.MiDataset
-
Stores in memory the contents of the data file "f"
- MiDataset - Class in keel.Algorithms.RE_SL_Postprocess.MamWSelect
-
- MiDataset(String, boolean) - Constructor for class keel.Algorithms.RE_SL_Postprocess.MamWSelect.MiDataset
-
Stores in memory the contents of the data file "f"
- MiDataset - Class in keel.Algorithms.RE_SL_Postprocess.MamWTuning
-
- MiDataset(String, boolean) - Constructor for class keel.Algorithms.RE_SL_Postprocess.MamWTuning.MiDataset
-
Stores in memory the contents of the data file "f"
- MiDataset - Class in keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules
-
- MiDataset(String, boolean) - Constructor for class keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules.MiDataset
-
Stores in memory the contents of the data file "f"
- MiDataset - Class in keel.Algorithms.RE_SL_Postprocess.TSKSelect
-
- MiDataset(String, boolean) - Constructor for class keel.Algorithms.RE_SL_Postprocess.TSKSelect.MiDataset
-
Stores in memory the contents of the data file "f"
- MIGRATING - Static variable in class keel.Algorithms.Genetic_Rule_Learning.OCEC.OCEC
-
Number to indentify the different types of scheme (MIGRATING).
- mil_mouseEntered(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Enter in MIL button
- mil_mouseExited(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Exit from MIL button
- mil_mouseReleased(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Entering in MIL module
- min - Variable in class keel.Algorithms.Decision_Trees.M5.SimpleStatistics
-
The minimum value seen, or Double.NaN if no values seen
- min - Variable in class keel.Algorithms.Discretizers.MVD.MVD
-
Minimum value.
- Min(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Sel
-
Minimum T-norm
- Min(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Tun
-
Minimum T-norm
- Min() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.vectordouble
-
Returns the minimum value of the vector
- Min(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.BaseR
-
- min - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- min - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleStatistics
-
The minimum value seen, or Double.NaN if no values seen
- min(double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ruleOrderAgent
-
- Min(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Arrays
-
- min - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Stats
-
The minimum value seen, or Double.NaN if no values seen
- min(int, int) - Method in class keel.Algorithms.MIL.APR.AbstractAPR
-
- min(ArrayList<IInstance>, int) - Method in class keel.Algorithms.MIL.APR.IteratedDiscrimination.IteratedDiscrimination
-
- min(DenseVector) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
Finds the minimum element of the vector
- min(DenseVector, ArrayList<Integer>) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
Finds the minimum element of the vector, and returns it
- min(double, double, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.Function
-
The minimum of this function over an interval [a,A] evaluated at N+1 evenly
distributed values
- min - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.ConfidenceInterval
-
Minimum value of the interval.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Gen
-
Returns the minimum variable.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.TipoIntervalo
-
Returns the minimum variable.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Gen
-
Returns the minimum variable.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.TipoIntervalo
-
Returns the minimum variable.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Gen
-
Returns the minimum variable.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.TipoIntervalo
-
Returns the minimum variable.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Gen
-
Returns the minimum variable.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.TipoIntervalo
-
Returns the minimum variable.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Gen
-
Returns the minimum variable.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.TipoIntervalo
-
Returns the minimum variable.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Gen
-
Returns the minimum variable.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.TipoIntervalo
-
Returns the minimum variable.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Gen
-
Returns the minimum variable.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.TipoIntervalo
-
Returns the minimum variable.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Gen
-
Returns the minimum variable.
- min() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.TipoIntervalo
-
Returns the minimum variable.
- MIN - Static variable in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
- MIN_CONS - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.FuzzyClassifier
-
- MIN_LATERAL_TUNING - Static variable in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.CHC_Chromosome
-
Minimum lateral tuning.
- min_max - Class in keel.Algorithms.Preprocess.Transformations.min_max
-
This class performs the min-max transformation.
- min_max(String) - Constructor for class keel.Algorithms.Preprocess.Transformations.min_max.min_max
-
Creates a new instance of min_max
- MINALG - Static variable in class keel.GraphInterKeel.statistical.StatisticalF
-
- MINALGF - Static variable in class keel.GraphInterKeel.statistical.StatisticalF
-
- minBDAttributeValue - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
The following parameters are to save the BD examples maximum and minimum values.
- minBDAttributeValue - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
The following parameters are to save the BD examples maximum and minimum values.
- minD - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_UBR
-
- MINDATA - Static variable in class keel.GraphInterKeel.statistical.StatisticalF
-
- minDataDLIfDeleted(int, double, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Compute the minimal data description length of the ruleset
if the rule in the given position is deleted.
- minDataDLIfExists(int, double, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Compute the minimal data description length of the ruleset
if the rule in the given position is NOT deleted.
- minDist(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Returns the smallest distance between uno and all prototypes of the particle.
- minDist(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
return the smallest distance between uno and all prototypes of the particle.
- minDistanceTo(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Returns the smallest distance between center and other prototype and that prototype.
- minDistanceTo(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Returns the smallest distance between center and other prototype and that prototype.
- minFunction - Variable in class keel.Algorithms.MIL.Diverse_Density.Optimization.Optimization
-
- miniFont - Variable in class keel.GraphInterKeel.experiments.Credits
-
- minimalCov(int, Vector<pnPair>) - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.SaturationFilter
-
It runs the algorithm
- MINIMIZE - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- MINIMIZE - Static variable in class keel.GraphInterKeel.statistical.StatisticalF
-
- MINIMO - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Fuzzy_Ish
-
- MINIMUM - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.Fuzzy_Chi
-
Configuration flags.
- MINIMUM - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Fuzzy_Ish
-
Configuration flags.
- MINIMUM - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.Fuzzy_Ish
-
Configuration flag (MINIMUM).
- MINIMUM - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.GP_COACH
-
Configuration flag (MINIMUM).
- minimum(double[], double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method implements the minimum operation between two vectors elements
- minimum(double[][], double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method implements the minimum operation between two matrix elements
- minimum(double[][][], double[][][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method implements the minimum operation between two cubic matrix elements
- MINIMUM - Static variable in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.GP_COACH_H
-
Configuration flag (MINIMUM)
- minimum(double[], double[][]) - Method in class keel.Algorithms.MIL.Diverse_Density.Optimization.Optimization
-
- minimum(double[], double[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
Returns a vector with the minimum of each component of a and b
- minimum(double[][], double[][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
Returns a matrix with the minimum of each component of a and b
- minimum(double[][][], double[][][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
Returns a matrix with the minimum of each component of a and b
- minimum(double[], double[]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
Returns a vector with the minimum of each component of a and b
- minimum(double[][], double[][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
Returns a matrix with the minimum of each component of a and b
- minimum(double[][][], double[][][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
Returns a matrix with the minimum of each component of a and b
- Minimum(float, float) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Utils
-
Returns the minimum of two float values
- Minimum(float, float) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Utils
-
Returns the minimum of two float values
- Minimum(float, float) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Utils
-
Returns the minimum of two float values
- Minimum(float, float) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Utils
-
Returns the minimum of two float values
- Minimum(float, float) - Static method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Utils
-
Returns the minimum of two float values
- Minimum(float, float) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Utils
-
Returns the minimum of two float values
- Minimum(float, float) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Utils
-
Returns the minimum of two float values
- MINIMUM_CLASS_SET_SIZE - Static variable in class keel.Algorithms.Instance_Generation.LVQ.LVQPRU
-
Minimum class part set.
- minimumDelta - Variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Minimum Value for Delta in RpropPlus Algorithm
- minimumLengthAndNearestTo(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Return the nearest prototype to another in the set.
- minimumLengthAndNearestTo(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Return the nearest prototype to another in the set.
- minimumLengthAndNearestWithSameClassAs(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Return the nearest prototype to another in the set.
- minimumLengthAndNearestWithSameClassAs(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Return the nearest prototype to another in the set.
- minimumSearch(Randomize) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.LinearSearchBrent
-
- minimumSearch(Randomize) - Method in class keel.Algorithms.Shared.ClassicalOptim.LinearSearchBrent
-
Minimize function g().
- minimumValuesOfSameClassPerInterval - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- minIndex(int[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Returns index of minimum element in a given
array of integers.
- minIndex(double[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Returns index of minimum element in a given
array of doubles.
- minIndex(int[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Returns index of minimum element in a given
array of integers.
- minIndex(double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Returns index of minimum element in a given
array of doubles.
- minIndex(int[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Returns index of minimum element in a given
array of integers.
- minIndex(double[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Returns index of minimum element in a given
array of doubles.
- minIndex(double[]) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.C45CS
-
Returns index of minimum element in a given array of doubles.
- minIndex(int[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Returns index of minimum element in a given
array of integers.
- minIndex(double[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Returns index of minimum element in a given
array of doubles.
- minIndex(int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Returns index of minimum element in a given
array of integers.
- minIndex(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Returns index of minimum element in a given
array of doubles.
- minIndex(int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Returns index of minimum element in a given
array of integers.
- minIndex(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Returns index of minimum element in a given
array of doubles.
- minIndex(int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Returns index of minimum element in a given
array of integers.
- minIndex(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Returns index of minimum element in a given
array of doubles.
- minIndex(int[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Returns index of minimum element in a given
array of integers.
- minIndex(double[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Returns index of minimum element in a given
array of doubles.
- minIndex(int[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Returns index of minimum element in a given
array of integers.
- minIndex(double[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Returns index of minimum element in a given
array of doubles.
- minIntervals - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- minIntervals - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Parameters
-
Minimum number of intervals.
- minLinksAdd - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Minimum number of links to add in the mutations
- minLinksDel - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Minimum number of links to remove in the mutations
- MINLOG - Static variable in class keel.Algorithms.Lazy_Learning.Statistics
-
Minimum logarithm value
- MINLOG - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
- minmax(int, int) - Method in class keel.Algorithms.MIL.APR.IteratedDiscrimination.IteratedDiscrimination
-
- minNeuronsAdd - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Minimum number of neurons to add in the mutations
- minNeuronsDel - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Minimum number of neurons to remove in the mutations
- minNofneurons - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
-
Minimum number of neurons of each LinkedLayer of the neural nets
- minnofneurons - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Minimum number of neurons for the net
- minNoTipText() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Returns the tip text for this property
- minNumTipText() - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Returns the tip text for this property
- minNumTipText() - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Returns the tip text for this property
- minNumTipText() - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Returns the tip text for this property
- MINOR - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- MINOR - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_DefaultC
-
- MINOR - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_DefaultC
-
- MINOR - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Gene
-
- minSupport - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Minimum support value in terms of number of rows.
- minSupport - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- minSupport - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Minimum support value in terms of number of rows.
- minSupport - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Minimum support value in terms of number of rows.
- minus(double[], double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method implements the subtract of vectors
- minus(double[][], double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method implements the subtract of matrix
- minus(double[][][], double[][][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method implements the subtract of cubic matrix
- minus(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Returns a copy of the set without an element.
- minus(PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Returns a copy of the set without an element.
- minus(double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Subtracts a value
- minus(DoubleVector) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Subtracts another DoubleVector element by element
- minus(Matrix) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
C = A - B
- minusEquals(double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Subtracts a value in place
- minusEquals(DoubleVector) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Subtracts another DoubleVector element by element in place
- minusEquals(Matrix) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
A = A - B
- MINVALPRO - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- MINVALPRO - Static variable in class keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.MatrixCalcs
-
- minx - Variable in class keel.Algorithms.Preprocess.Missing_Values.EM.util.UnivariateMinimum
-
last minimum
- missedValue - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.ArffDataSet
-
Symbol which represents missed values
- missedValue - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.KeelDataSet
-
Symbol which represents missed values
- MISSING - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Encodes a set of examples (including information about if the example is covered by a rule, the coverage degree, ...)
- MISSING - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.fuzzy_t
-
Defines a trapezoidal fuzzy set type
- MISSING - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.vectordouble
-
Encodes a vector of double values
- missing - Class in keel.Algorithms.LQD.methods.FGFS_costInstances
-
File: missing.java
Properties and functions when the variables have missing values.
- missing() - Constructor for class keel.Algorithms.LQD.methods.FGFS_costInstances.missing
-
- Missing - Class in keel.Algorithms.LQD.methods.FGFS_Minimum_Risk
-
File: missing.java
Properties and functions when the variables have missing values.
- Missing() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.Missing
-
- missing - Class in keel.Algorithms.LQD.methods.FGFS_Original
-
File: missing.java
Properties and functions when the variables have missing values.
- missing() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Original.missing
-
- missing - Class in keel.Algorithms.LQD.methods.FGFS_Rule_Weight
-
File: missing.java
Properties and functions when the variables have missing values.
- missing() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.missing
-
- missing - Class in keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty
-
File: missing.java
Properties and functions when the variables have missing values.
- missing() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.missing
-
- missing - Class in keel.Algorithms.LQD.preprocess.Expert
-
File: missing.java
Properties and functions when the variables have missing values.
- missing() - Constructor for class keel.Algorithms.LQD.preprocess.Expert.missing
-
- missing - Class in keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE
-
File: missing.java
Properties and functions when the variables have missing values.
- missing() - Constructor for class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.missing
-
- missing - Class in keel.Algorithms.LQD.preprocess.Prelabelling
-
File: missing.java
Properties and functions when the variables have missing values.
- missing() - Constructor for class keel.Algorithms.LQD.preprocess.Prelabelling.missing
-
- missing - Class in keel.Algorithms.LQD.preprocess.Prelabelling_Expert
-
File: missing.java
Properties and functions when the variables have missing values.
- missing() - Constructor for class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.missing
-
- missing - Variable in class keel.GraphInterKeel.experiments.DataSet
-
stores the missing partitions
- missing - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- MISSING_ID - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation
-
will be returned if no ID can be generated
- MISSING_ID - Static variable in class keel.Algorithms.SVM.SMO.core.TechnicalInformation
-
will be returned if no ID can be generated
- MISSING_VALUE - Static variable in class keel.Algorithms.Decision_Trees.C45.Itemset
-
Constant that represents the missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
-
Constant that represents the missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.Decision_Trees.ID3.Itemset
-
Constant that represents the missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Constant representing a missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.Decision_Trees.SLIQ.Itemset
-
Constant that represents the missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Constant representing a missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Constant that represents the missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
-
Constant that represents the missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
-
Constant that represents the missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
-
Constant that represents the missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
-
Constant that represents the missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Constant representing a missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.Rule_Learning.ART.Itemset
-
Constant that represents the missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.Rule_Learning.C45Rules.Itemset
-
Constant that represents the missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
-
Constant that represents the missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
-
Constant that represents the missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.Rule_Learning.PART.Itemset
-
Constant that represents the missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
-
Constant that represents the missing value.
- MISSING_VALUE - Static variable in class keel.Algorithms.SVM.SMO.core.Instance
-
Constant representing a missing value.
- missingCount - Variable in class keel.Algorithms.Decision_Trees.M5.M5AttrStats
-
The number of missing values
- missingCount - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.AttributeStats
-
The number of missing values
- missingValue() - Static method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Returns the double that codes "missing".
- missingValue() - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns the double that codes "missing".
- missingValue() - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns the double that codes "missing".
- missingValue() - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Returns the value used to code a missing value.
- missingValue() - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Returns the value used to code a missing value.
- missingValue() - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Returns the value used to code a missing value.
- missingValue() - Static method in class keel.Algorithms.SVM.SMO.core.Instance
-
Returns the double that codes "missing".
- mix(Cluster) - Method in class keel.Algorithms.Instance_Generation.GMCA.Cluster
-
Merges two cluster but not including the representatives of the cluster arguments.
- Mixed_Crossover(int, int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- Mixed_Crossover(int, int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- mixLabels(FuzzyAntecedent) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.FuzzyAntecedent
-
Mix the labels associated to this FuzzyAntecedent with the labels associated to
another FuzzyAntecedent
- mixLabels(FuzzyAntecedent) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.FuzzyAntecedent
-
Mix the labels associated to this FuzzyAntecedent with the labels associated to
another FuzzyAntecedent
- MixtGaussAlgorithm - Class in keel.Algorithms.Instance_Generation.MixtGauss
-
PSO algorithm calling.
- MixtGaussAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.MixtGauss.MixtGaussAlgorithm
-
- MixtGaussGenerator - Class in keel.Algorithms.Instance_Generation.MixtGauss
-
- MixtGaussGenerator(PrototypeSet, int, String) - Constructor for class keel.Algorithms.Instance_Generation.MixtGauss.MixtGaussGenerator
-
Build a new PSOGenerator Algorithm
- MixtGaussGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.MixtGauss.MixtGaussGenerator
-
Build a new MixtGaussGenerator Algorithm
- mkdir(String) - Static method in class keel.GraphInterKeel.experiments.FileUtils
-
Creates a new directory if needed (no exists previously)
- mkdirs(String) - Static method in class keel.GraphInterKeel.experiments.FileUtils
-
Creates a new directory tree if needed (no exists previously)
- ml() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Difuso
-
- ml() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Difuso
-
- ml() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Difuso
-
- ml() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Difuso
-
- ml() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Difuso
-
- ml() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Difuso
-
- ml() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Difuso
-
- ml() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Difuso
-
- MLPerceptronBackpropCS - Class in keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS
-
Class for generating the individuals
- MLPerceptronBackpropCS() - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.MLPerceptronBackpropCS
-
Empty constructor
- MNV - Class in keel.Algorithms.Instance_Selection.MNV
-
File: MNV.java
The MNV Instance Selection algorithm.
- MNV(String) - Constructor for class keel.Algorithms.Instance_Selection.MNV.MNV
-
Default constructor.
- MNV - Class in keel.Algorithms.Preprocess.Instance_Selection.MNV
-
File: MNV.java
The MNV Instance Selection algorithm.
- MNV(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.MNV.MNV
-
Default constructor.
- model - Variable in class keel.Algorithms.Decision_Trees.C45.Tree
-
The selected model.
- model - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Tree
-
The selected model.
- Model - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model
-
Class for define abstract methods
- Model() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.Model
-
- model - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
-
The selected model.
- model - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Tree
-
The selected model.
- model - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Tree
-
The selected model.
- model - Variable in class keel.Algorithms.Rule_Learning.C45Rules.Tree
-
The selected model.
- model - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Tree
-
The selected model.
- model - Variable in class keel.Algorithms.Rule_Learning.PART.Tree
-
The selected model.
- model - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
-
The selected model.
- Model_General - Class in keel.Algorithms.Statistical_Tests.Regression.Model_General
-
This class has only a main method that calls Model_General output method for regression problems, defined in StatTest
- Model_General() - Constructor for class keel.Algorithms.Statistical_Tests.Regression.Model_General.Model_General
-
- MODEL_LINEAR_REGRESSION - Static variable in class keel.Algorithms.Decision_Trees.M5.M5
-
Number to represent type of model used (Lineal regression).
- MODEL_LINEAR_REGRESSION - Static variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
- MODEL_MODEL_TREE - Static variable in class keel.Algorithms.Decision_Trees.M5.M5
-
Number to represent type of model used (tree model).
- MODEL_MODEL_TREE - Static variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
- model_output - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
File names
- model_output - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
File names
- MODEL_REGRESSION_TREE - Static variable in class keel.Algorithms.Decision_Trees.M5.M5
-
Number to represent type of model used (tree regression).
- MODEL_REGRESSION_TREE - Static variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
- Model_Summary - Class in keel.Algorithms.Statistical_Tests.Regression.Model_Summary
-
This class has only a main method that calls Model_Summary output method for regression problems, defined in StatTest
- Model_Summary() - Constructor for class keel.Algorithms.Statistical_Tests.Regression.Model_Summary.Model_Summary
-
- Model_Tabular - Class in keel.Algorithms.Statistical_Tests.Regression.Model_Tabular
-
This class has only a main method that calls Model_Tabular output method for regression problems, defined in StatTest
- Model_Tabular() - Constructor for class keel.Algorithms.Statistical_Tests.Regression.Model_Tabular.Model_Tabular
-
- modelBuilt() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
flag to indicate whether the model was built yet
- ModelCS - Class in keel.Algorithms.Instance_Selection.ModelCS
-
File: ModelCS.java
The ModelCS Instance Selection algorithm.
- ModelCS(String) - Constructor for class keel.Algorithms.Instance_Selection.ModelCS.ModelCS
-
Default constructor.
- ModelCS - Class in keel.Algorithms.Preprocess.Instance_Selection.ModelCS
-
File: ModelCS.java
The ModelCS Instance Selection algorithm.
- ModelCS(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.ModelCS.ModelCS
-
Default constructor.
- modelDataset - Variable in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
The model dataset.
- modelDataset - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
The model dataset.
- modelDataset - Variable in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
The model dataset.
- modelDataset - Variable in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Model dataset.
- modelDataset - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
The model dataset.
- modelDataset - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
The model dataset.
- modelDataset - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
The model dataset.
- modelDataset - Variable in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
The model dataset.
- modelDataset - Variable in class keel.Algorithms.Rule_Learning.C45Rules.Algorithm
-
The model dataset.
- modelDataset - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Algorithm
-
The model dataset.
- modelDataset - Variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
The model dataset.
- modelDataset - Variable in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
The model dataset.
- modelDataset - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.C45
-
The model dataset.
- modelFileName - Static variable in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
The name of the file that contains the information to build the model.
- modelFileName - Static variable in class keel.Algorithms.Decision_Trees.CART.RunCART
-
The name of the file that contains the information to build the model.
- modelFileName - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
The name of the file that contains the information to build the model.
- modelFileName - Static variable in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
The name of the file that contains the information to build the model.
- modelFileName - Static variable in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
File's name which contains all the information needed to build the model.
- modelFileName - Static variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
The name of the file that contains the information to build the model.
- modelFileName - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
The name of the file that contains the information to build the model.
- modelFileName - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
The name of the file that contains the information to build the model.
- modelFileName - Static variable in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
The name of the file that contains the information to build the model.
- modelFileName - Static variable in class keel.Algorithms.Rule_Learning.C45Rules.Algorithm
-
The name of the file that contains the information to build the model.
- modelFileName - Static variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Algorithm
-
The name of the file that contains the information to build the model.
- modelFileName - Static variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
The name of the file that contains the information to build the model.
- modelFileName - Static variable in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
The name of the file that contains the information to build the model.
- ModelFuzzyGAP - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyGAP
-
ModelFuzzyGAP is intended to generate a Fuzzy Rule Based System
(FRBS) model using an Genetic Algorithm and Programming (GAP).
- ModelFuzzyGAP() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyGAP.ModelFuzzyGAP
-
- ModelFuzzyGP - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyGP
-
ModelFuzzyGP is intended to generate a Fuzzy Rule Based System
(FRBS) model using an Genetic Programming (GP).
- ModelFuzzyGP() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyGP.ModelFuzzyGP
-
- ModelFuzzyPittsBurgh - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyPittsBurgh
-
ModelFuzzyPittsBurgh is intended to generate a Fuzzy Rule Based System
(FRBS) classifier using the Pittsburgh genetic algorihm Approach.
- ModelFuzzyPittsBurgh() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyPittsBurgh.ModelFuzzyPittsBurgh
-
- ModelFuzzySAP - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzySAP
-
ModelFuzzySAP is intended to generate a Fuzzy Rule Based System
(FRBS) model using an Simulate Annealing Algorithm and Programming (SAP).
- ModelFuzzySAP() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzySAP.ModelFuzzySAP
-
- ModelLinearLMS - Class in keel.Algorithms.Statistical_Models.ModelLinear
-
In this class, Least Squares Linear Regression is implemented
- ModelLinearLMS() - Constructor for class keel.Algorithms.Statistical_Models.ModelLinear.ModelLinearLMS
-
- modellingTest(double[][], int, double[]) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Evaluates the net for modeling problem
- ModelMLPerceptron - Class in keel.Algorithms.Neural_Networks.ModelMLPerceptron
-
Regression model by means of a multi-layered perceptron.
- ModelMLPerceptron() - Constructor for class keel.Algorithms.Neural_Networks.ModelMLPerceptron.ModelMLPerceptron
-
- ModelPolQuadraticLMS - Class in keel.Algorithms.Statistical_Models.ModelQuad
-
In this class, Quadratic Least Squares Regression is implemented
- ModelPolQuadraticLMS() - Constructor for class keel.Algorithms.Statistical_Models.ModelQuad.ModelPolQuadraticLMS
-
- ModelTest_5x2cv - Class in keel.Algorithms.Statistical_Tests.Regression.ModelTest_5x2cv
-
This class has only a main method that calls Dietterich 5x2cv test for regression problems, defined in StatTest
- ModelTest_5x2cv() - Constructor for class keel.Algorithms.Statistical_Tests.Regression.ModelTest_5x2cv.ModelTest_5x2cv
-
- ModelTest_f - Class in keel.Algorithms.Statistical_Tests.Regression.ModelTest_f
-
This class has only a main method that calls f test for regression problems, defined in StatTest
- ModelTest_f() - Constructor for class keel.Algorithms.Statistical_Tests.Regression.ModelTest_f.ModelTest_f
-
- ModelTest_rs - Class in keel.Algorithms.Statistical_Tests.Regression.ModelTest_rs
-
This class has only a main method that calls Wilcoxon signed rank test for regression problems, defined in StatTest
- ModelTest_rs() - Constructor for class keel.Algorithms.Statistical_Tests.Regression.ModelTest_rs.ModelTest_rs
-
- ModelTest_sw - Class in keel.Algorithms.Statistical_Tests.Regression.ModelTest_sw
-
This class has only a main method that calls Shapiro Wilk test for regression problems, defined in StatTest
- ModelTest_sw() - Constructor for class keel.Algorithms.Statistical_Tests.Regression.ModelTest_sw.ModelTest_sw
-
- ModelTest_t - Class in keel.Algorithms.Statistical_Tests.Regression.ModelTest_t
-
This class has only a main method that calls t for regression problems, test defined in StatTest
- ModelTest_t() - Constructor for class keel.Algorithms.Statistical_Tests.Regression.ModelTest_t.ModelTest_t
-
- ModelTest_u - Class in keel.Algorithms.Statistical_Tests.Regression.ModelTest_u
-
This class has only a main method that calls Mann Whitney U test for regression problems, defined in StatTest
- ModelTest_u() - Constructor for class keel.Algorithms.Statistical_Tests.Regression.ModelTest_u.ModelTest_u
-
- modelTime - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Generation model time.
- modelTime - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Generation model time.
- modelTime - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Generation model time.
- MODENAR - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR
-
Title: Algorithm
Description: It contains the implementation of the MODENAR algorithm
Company: KEEL
- MODENAR() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENAR
-
Default constructor
- MODENAR(parseParameters) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENAR
-
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
- MODENARProcess - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR
-
It provides the implementation of the MODENAR algorithm to be run in a process
- MODENARProcess() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
-
Default constructor.
- MODENARProcess(myDataset, int, int, double, int, double[], double) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
-
It creates a new process for the algorithm by setting up its parameters
- modifica(double[]) - Method in class keel.Algorithms.Decision_Trees.DT_GA.Selector
-
Modifies slightly the selector to cover the given example.
- modificador - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Sel
-
Modifiers representations.
- modificador - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Tun
-
Modifiers representations.
- Modified(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- Modified(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- Modified(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
- Modified(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- Modified(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- Modified(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- Modified(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationinteger
-
- Modified(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- Modified(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- Modified(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- Modified(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationinteger
-
- Modified(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationreal
-
- modified - Variable in class keel.GraphInterKeel.experiments.DataSet
-
- ModifiedChi2Discretizer - Class in keel.Algorithms.Discretizers.ModifiedChi2_Discretizer
-
This class implements the Chi2 discretizer.
- ModifiedChi2Discretizer() - Constructor for class keel.Algorithms.Discretizers.ModifiedChi2_Discretizer.ModifiedChi2Discretizer
-
Default constructor.
- modifyLocation(Prototype, PrototypeSet, Prototype[], int) - Method in class keel.Algorithms.Instance_Generation.MSE.MSEGenerator
-
Correct the position of the prototype function.
- modifyRbf(Rbf, String) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Changes a neuron in the net
- modifyRbf(Rbf, String) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbfn
-
Changes a neuron in the net
- modifyRbf(Rbf, String) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
-
Changes a neuron in the net
- modifyRbf(Rbf, String) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
-
Changes a neuron in the net
- modifyRbf(Rbf, String) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
-
Changes a neuron in the net
- modifyRbf(Rbf, String) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
-
Changes a neuron in the net
- modifyRbf(Rbf, String) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
-
Changes a neuron in the net
- modifyValue(int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Modifies the instances value for an attribute (floating point
representation).
- MODL - Class in keel.Algorithms.Discretizers.MODL
-
MODL Discretizer, based on the work of Marc Boullé
M.
- MODL(String) - Constructor for class keel.Algorithms.Discretizers.MODL.MODL
-
Parameter constructor.
- modl(Vector, int[]) - Method in class keel.Algorithms.Discretizers.MODL.MODL
-
Computes the MODL value for a current discretization scheme
- modl(ArrayList<ArrayList<Double>>, int[]) - Method in class keel.Algorithms.Discretizers.MODL.MODL
-
Computes the MODL value for a current discretization scheme
- module() - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Computes the module of a Prototype.
- module() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
- modules_mouseEntered(MouseEvent) - Method in class keel.GraphInterKeel.menu.Frame
-
Enter in modules button
- modules_mouseExited(MouseEvent) - Method in class keel.GraphInterKeel.menu.Frame
-
Exit from modules button
- modules_mouseReleased(MouseEvent) - Method in class keel.GraphInterKeel.menu.Frame
-
Entering in additional modules
- MOEA_Ghosh - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh
-
It gathers all the parameters, launches the MOEA algorithm, and prints out the results
- MOEA_Ghosh() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_Ghosh
-
Default constructor
- MOEA_Ghosh(parseParameters) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_Ghosh
-
It reads the data from the input files and parse all the parameters from the parameters array
- MOEA_GhoshProcess - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh
-
It provides the implementation of the MOEA algorithm to be run in a process
- MOEA_GhoshProcess(myDataset, int, int, int, int, double, double, double) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_GhoshProcess
-
It creates a new process for the algorithm by setting up its parameters
- MOEA_Gosh - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh
-
It gathers all the parameters, launches the MOEA algorithm, and prints out the results
- MOEA_Gosh() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_Gosh
-
Default constructor
- MOEA_Gosh(parseParameters) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_Gosh
-
It reads the data from the input files and parse all the parameters from the parameters array
- MOEA_GoshProcess - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh
-
It provides the implementation of the MOEA algorithm to be run in a process
- MOEA_GoshProcess(myDataset, int, int, int, int, double, double, double) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_GoshProcess
-
It creates a new process for the algorithm by setting up its parameters
- mogbest - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Maximum number of generations allowed without improving
the best fitness
- mogmean - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Maximum number of generations allowed without improving
the fitness mean of best individuals
- momentum - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Momentum term
- momentum - Variable in class keel.Algorithms.Neural_Networks.gann.Network
-
Momentum term
- momentum - Variable in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Momentum term
- momentum - Variable in class keel.Algorithms.Neural_Networks.net.Network
-
Momentum term
- MOPNAR - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR
-
- MOPNAR() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.MOPNAR
-
Default constructor
- MOPNAR(parseParameters) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.MOPNAR
-
It reads the data from the input files and parse all the parameters from the parameters array
- MOPNARProcess - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR
-
- MOPNARProcess(myDataset, int, int, int, int, double, int, double, double, double) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.MOPNARProcess
-
It creates a new process for the algorithm by setting up its parameters
- moreFreq(ValueFreq) - Method in class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.ValueFreq
-
Compares the frequencies of two pair, and test if this object's frequency is higher than the provided one
- moreFreq(ValueFreq) - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.ValueFreq
-
Compares the frequencies of two pair, and test if this object's frequency is higher than the provided one
- moreFreq(ValueFreq) - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.ValueFreq
-
Compares the frequencies of two pair, and test if this object's frequency is higher than the provided one
- moreFreq(ValueFreq) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.ValueFreq
-
Compares the frequencies of two pair, and test if this object's frequency is higher than the provided one
- moreFreq(ValuesFreq) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.ValuesFreq
-
Compares the frequencies of two pairs, and test if this object's frequency is higher than the provided one
- moreFreq(ValueFreq) - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.ValueFreq
-
Compares the frequencies of two pair, and test if this object's frequency is higher than the provided one
- moreFreq(ValueFreq) - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.ValueFreq
-
Compares the frequencies of two pair, and test if this object's frequency is higher than the provided one
- moreFreq(ValueFreq) - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.ValueFreq
-
Compares the frequencies of two pair, and test if this object's frequency is higher than the provided one
- moreFreq(ValueFreq) - Method in class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.ValueFreq
-
Compares the frequencies of two pair, and test if this object's frequency is higher than the provided one
- moreFreq(ValueFreq) - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.ValueFreq
-
Compares the frequencies of two pair, and test if this object's frequency is higher than the provided one
- moreFreq(ValueFreq) - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.ValueFreq
-
Compares the frequencies of two pair, and test if this object's frequency is higher than the provided one
- moreInputData(int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- moreOutputData(int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- mostCommon(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
-
Return the value most common of the attribute 'i'
- mostCommon() - Method in class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.FreqList
-
Extract the most commmon element, i.e. the element with highest frequency
- mostCommon() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.FreqList
-
Extract the most commmon element, i.e. the element with highest frequency
- mostCommon() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.FreqList
-
Extracts the most common element, i.e. the element with highest frequency
- mostCommon() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqList
-
Extracts the most common element, i.e. the element with highest frequency
- mostCommon() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqListPair
-
Returns the most frequent pair
- mostCommon() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.FreqList
-
Extracts the most common element, i.e. the element with highest frequency
- mostCommon() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.FreqList
-
Extracts the most common element, i.e. the element with highest frequency
- mostCommon() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.FreqList
-
Extracts the most common element, i.e. the element with highest frequency
- mostCommon() - Method in class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.FreqList
-
Extract the most commmon element, i.e. the element with highest frequency
- mostCommon() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.FreqList
-
Extracts the most common element, i.e. the element with highest frequency
- mostCommon() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.FreqList
-
Extracts the most common element, i.e. the element with highest frequency
- mostCommon(int) - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
-
Returns the value most comon of the 'i' attribute
- MostCommonValue - Class in keel.Algorithms.Preprocess.Missing_Values.MostCommonValue
-
This class computes the mean (numerical) or mode (nominal) value of the attributes with missing values for all classes
- MostCommonValue(String) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.MostCommonValue
-
Creates a new instance of MostCommonValue
- mostFrequentClass() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It returns the most frequent class in the dataset
- mostFrequentClass() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Returns the most frequent class
- mostFrequentClass(long) - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
-
Calculates the class most frecuent in the set of values
- mostFrequentClass() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Returns the most frequent class
- mostrarRegla() - Method in class keel.Algorithms.Rule_Learning.Rules6.Regla
-
Prints on the standard output the rule information.
- mostrarRegla() - Method in class keel.Algorithms.Rule_Learning.SRI.Regla
-
Prints on the standard output the rule information.
- mostrarReglas() - Method in class keel.Algorithms.Rule_Learning.LEM1.BaseReglas
-
- mostrarReglas() - Method in class keel.Algorithms.Rule_Learning.LEM2.BaseReglas
-
- mostrarReglas() - Method in class keel.Algorithms.Rule_Learning.Ritio.BaseReglas
-
- mostrarReglas() - Method in class keel.Algorithms.Rule_Learning.Rules6.BaseReglas
-
Prints on the standard output the stored rules.
- mostrarReglas() - Method in class keel.Algorithms.Rule_Learning.SRI.BaseReglas
-
Prints on the standard output the stored rules.
- mostSpecificGeneralization(double[]) - Method in class keel.Algorithms.Hyperrectangles.RISE.Rule
-
Performs the most specific possible generalization over the rule to cover
a new instance
- mouseClicked(MouseEvent) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
- mouseDragged(MouseEvent) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
Dragging mouse
- mouseEntered(MouseEvent) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
- mouseExited(MouseEvent) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
- mouseMoved(MouseEvent) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
- mousePressed(MouseEvent) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
Management of mouse events
- mouseReleased(MouseEvent) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
Releasing mouse
- move(PrototypeSet, PrototypeSet[][]) - Method in class keel.Algorithms.Instance_Generation.ENPC.ENPCGenerator
-
Moves all to the centroid.
- move(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset
-
Move cursor to index position
- move(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.ArrayDataset
-
Move cursor to index position
- move(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.FileDataset
-
Move cursor to index position
- move(int) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset
-
Move cursor to index position
- moverParticula(int, float[][]) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Moves the particle to the next position, with the actual position and its velocity.
- moveTo(Prototype, Cluster) - Method in class keel.Algorithms.Instance_Generation.GMCA.ClusterSet
-
Move one prototype to a cluster.
- MPEnvironment - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
This is the typical example for a single step problem, the multiplexer.
- MPEnvironment() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.MPEnvironment
-
It is the constructor of the class.
- MPEnvironment - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This is the typical example for a single step problem, the multiplexer.
- MPEnvironment() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.MPEnvironment
-
It is the constructor of the class.
- MRIDGE - Static variable in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
MRIDGE flag.
- mridge(DenseMatrix, DenseMatrix, DenseMatrix, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
MATLAB - Multiple ridge regression with generalized cross-validation.
- mrqmin(double[][], double[], double[], int, double[], int[], int, double[][], double[][], double[], double[], int, double[], double[], double[], double[], double[][], SetupParameters) - Static method in class keel.Algorithms.Neural_Networks.gmdh.LM
-
Levenberg - Marquardt method
- MSE() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForSymbRegr
-
This method calculate the mean square error
- MSEAlgorithm - Class in keel.Algorithms.Instance_Generation.MSE
-
PSO algorithm calling.
- MSEAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.MSE.MSEAlgorithm
-
- MSEErrorFunction - Class in keel.Algorithms.Neural_Networks.NNEP_Regr.problem.errorfunctions
-
MSE Error Function.
- MSEErrorFunction() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Regr.problem.errorfunctions.MSEErrorFunction
-
Empty constructor
- MSEGenerator - Class in keel.Algorithms.Instance_Generation.MSE
-
MSEGenerator
- MSEGenerator(PrototypeSet, int, int, double, double) - Constructor for class keel.Algorithms.Instance_Generation.MSE.MSEGenerator
-
Build a new MSEGenerator Algorithm
- MSEGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.MSE.MSEGenerator
-
Build a new RSPGenerator Algorithm
- MSEnvironment - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
It is the base class for all the multiple step problems.
- MSEnvironment() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.MSEnvironment
-
It is the constructor of the class.
- MSEOptimizablePUNeuralNetClassifier - Class in keel.Algorithms.Neural_Networks.IRPropPlus_Clas
- MSEOptimizablePUNeuralNetClassifier() - Constructor for class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.MSEOptimizablePUNeuralNetClassifier
-
- MSEOptimizablePUNeuralNetRegressor - Class in keel.Algorithms.Neural_Networks.IRPropPlus_Regr
- MSEOptimizablePUNeuralNetRegressor() - Constructor for class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.MSEOptimizablePUNeuralNetRegressor
-
- MSEOptimizableSigmNeuralNetClassifier - Class in keel.Algorithms.Neural_Networks.IRPropPlus_Clas
-
Sigmoid Neural Net with only a hidden layer and multiple outputs (classifier)
Prepared for optimizing MSE.
- MSEOptimizableSigmNeuralNetClassifier() - Constructor for class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.MSEOptimizableSigmNeuralNetClassifier
-
- MSEOptimizableSigmNeuralNetRegressor - Class in keel.Algorithms.Neural_Networks.IRPropPlus_Regr
- MSEOptimizableSigmNeuralNetRegressor() - Constructor for class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.MSEOptimizableSigmNeuralNetRegressor
-
- MSMOTE - Class in keel.Algorithms.ImbalancedClassification.Ensembles.SMOTE
-
- MSMOTE(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.SMOTE.MSMOTE
-
- MSMOTE(InstanceSet, long, int, int, int, boolean, double, String) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.SMOTE.MSMOTE
-
- MSS - Class in keel.Algorithms.Instance_Selection.MSS
-
File: MSS.java
The MSS Instance Selection algorithm.
- MSS(String) - Constructor for class keel.Algorithms.Instance_Selection.MSS.MSS
-
Default constructor.
- MSS - Class in keel.Algorithms.Preprocess.Instance_Selection.MSS
-
File: MSS.java
The MSS Instance Selection algorithm.
- MSS(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.MSS.MSS
-
Default constructor.
- MTwister - Class in keel.Algorithms.Genetic_Rule_Learning.Globals
-
- MTwister() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Globals.MTwister
-
- MTwister(long) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Globals.MTwister
-
- MTwister(long[]) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Globals.MTwister
-
- MTwister - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals
-
- MTwister() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.MTwister
-
- MTwister(long) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.MTwister
-
- MTwister(long[]) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.MTwister
-
- MTwister - Class in org.core
-
- MTwister() - Constructor for class org.core.MTwister
-
- MTwister(long) - Constructor for class org.core.MTwister
-
- MTwister(long[]) - Constructor for class org.core.MTwister
-
- Muestra - Class in keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner
-
Title: Muestra (Sample)
Description: Sample class:
Stores an example of a dataset.
- Muestra() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Muestra
-
Default constructor.
- Muestra(Vector, Atributo, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Muestra
-
Paramater Constructor.
- Muestra - Class in keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus
-
Title: Muestra (Sample)
Description: Sample class:
Stores an example of a dataset.
- Muestra() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Muestra
-
Default constructor.
- Muestra(Vector, Atributo, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Muestra
-
Paramater Constructor.
- Muestra - Class in keel.Algorithms.Genetic_Rule_Learning.Ant_Miner
-
Title: Muestra (Sample)
Description: Sample class:
Stores an example of a dataset.
- Muestra() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Muestra
-
Default constructor.
- Muestra(Vector, Atributo, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Muestra
-
Paramater Constructor.
- Muestra - Class in keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus
-
Title: Muestra (Sample)
Description: Sample class:
Stores an example of a dataset.
- Muestra() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Muestra
-
Default constructor.
- Muestra(Vector, Atributo, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Muestra
-
Paramater Constructor.
- Muestra - Class in keel.Algorithms.Genetic_Rule_Learning.PSO_ACO
-
Title: Muestra (Sample)
Description: Sample class:
Stores an example of a dataset.
- Muestra() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Muestra
-
Default constructor.
- Muestra(Vector, Atributo, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Muestra
-
Paramater Constructor.
- Muestra - Class in keel.Algorithms.Rule_Learning.Prism
-
Stores one data with the form: attribute attribute class
- Muestra(double[], int, int) - Constructor for class keel.Algorithms.Rule_Learning.Prism.Muestra
-
Constructor
- Muestra(int) - Constructor for class keel.Algorithms.Rule_Learning.Prism.Muestra
-
Other constructor, simpler
- Muestra - Class in keel.Algorithms.Rule_Learning.UnoR
-
Title: Muestra (Sample)
Description: Sample class:
Stores an example of a dataset.
- Muestra(double[], int, int) - Constructor for class keel.Algorithms.Rule_Learning.UnoR.Muestra
-
Constructor
- Muestra(int) - Constructor for class keel.Algorithms.Rule_Learning.UnoR.Muestra
-
Other constructor, more simple
- Muestra - Class in keel.Algorithms.Subgroup_Discovery.aprioriSD
-
Stores one data with the form: attribute attribute class (02-08-2004)
- Muestra(double[], int, int) - Constructor for class keel.Algorithms.Subgroup_Discovery.aprioriSD.Muestra
-
Constructor
- Muestra(int) - Constructor for class keel.Algorithms.Subgroup_Discovery.aprioriSD.Muestra
-
Other constructor, simpler
- Muestra - Class in keel.Algorithms.Subgroup_Discovery.CN2SD
-
Stores one data with the form: attribute attribute class
- Muestra(double[], int, int) - Constructor for class keel.Algorithms.Subgroup_Discovery.CN2SD.Muestra
-
Constructor
- Muestra(int) - Constructor for class keel.Algorithms.Subgroup_Discovery.CN2SD.Muestra
-
Other constructor, more easy
- MuestraBase() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.FuzzyClassifier
-
- muestraLista() - Method in class keel.Algorithms.Rule_Learning.LEM2.Atributo_valor
-
- muestraResultados() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ACO
-
Prints on the standard output the algorithm results.
- muestraResultados() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ACO
-
Prints on the standard output the algorithm results.
- muestraResultados() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.ACO
-
Prints on the standard output the algorithm results.
- muestraResultados() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ACO
-
Prints on the standard output the algorithm results.
- muestraURL(URL) - Method in class keel.GraphInterKeel.datacf.help.HelpContent
-
Set the URL to be shown
- muestraURL(URL) - Method in class keel.GraphInterKeel.help.HelpContent
-
Shows a URL
- muestraURL(URL) - Method in class keel.GraphInterKeel.statistical.help.HelpContent
-
Set the URL to be shown
- mul(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Multiply component by component like a scalar product.
- mul(double) - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Performs product operation between one prototype and a double.
- mul(Function, Function) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EM.Function
-
the product of two functions
- mul(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Multiply component by component like a scalar product.
- mul(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Performs product operation between one prototype and a double.
- mulEscalar(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Multiplies component by component like a scalar product and sums the products.
- mulEscalar(double) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Multiply the set by a number given.
- mulEscalar(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Multiply component by component and sum them like a scalar product.
- mulEscalar(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Multiplicar un conjunto por un Escalar.
- MultCuad(double[], double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method genetares a matrix multiplication from two vectors
- multi(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzy
-
- multi(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzy
-
- multi(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Expert.fuzzy
-
- multi(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.fuzzy
-
- multi(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzy
-
- multi(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzy
-
- multi(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.tests.IntermediateBoost.fuzzy
-
- multi_C45 - Class in keel.Algorithms.ImbalancedClassification.Ensembles
-
Title: multi_C45
Description: Main class to compute the algorithm procedure
Company: KEEL
- multi_C45() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.multi_C45
-
Default constructor
- multi_C45(parseParameters) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.multi_C45
-
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
- Multiclassifier - Class in keel.Algorithms.Decision_Trees.C45_Binarization
-
Title: Multiclassifier
Description: This class implements the Main execution class for the Binarization methodology (OVO and OVO )
Company: KEEL
- Multiclassifier() - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.Multiclassifier
-
Default constructor
- Multiclassifier(parseParameters) - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.Multiclassifier
-
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
- Multiclassifier(boolean, Multiclassifier) - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.Multiclassifier
-
It constructs a new set of OVO classifiers for NESTING aggregation
- multiCuad(double[], double[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns square matrix with multiplication of each component of a by b and vice versa.
- multiCuad(double[], double[]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns square matrix with multiplication of each component of a by b and vice versa.
- Multiedit - Class in keel.Algorithms.Instance_Selection.Multiedit
-
File: Multiedit.java
The Multiedit Instance Selection algorithm.
- Multiedit(String) - Constructor for class keel.Algorithms.Instance_Selection.Multiedit.Multiedit
-
Default constructor.
- Multiedit - Class in keel.Algorithms.Preprocess.Instance_Selection.Multiedit
-
File: Multiedit.java
The Multiedit Instance Selection algorithm.
- Multiedit(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.Multiedit.Multiedit
-
Default constructor.
- MULTIINSTANCE - Static variable in class keel.GraphInterKeel.experiments.Experiments
-
- multiInstanceData - Variable in class keel.Algorithms.MIL.Diverse_Density.EMDD.EMDD
-
- multinumber(float, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.fuzzy
-
- multinumero(float, fuzzy) - Static method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzy
-
- multinumero(float, fuzzy) - Static method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzy
-
- multinumero(float, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Expert.fuzzy
-
- multinumero(float, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzy
-
- multinumero(float, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzy
-
- multinumero(float, fuzzy) - Static method in class keel.Algorithms.LQD.tests.IntermediateBoost.fuzzy
-
- Multiple - Class in keel.Algorithms.Statistical_Tests.Shared.nonParametric
-
File: Multiple.java
This class performs several statistical comparisons between NxN methods
- Multiple() - Constructor for class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Multiple
-
Builder
- Multiple - Class in keel.GraphInterKeel.statistical.tests
-
File: Multiple.java
This class performs several statistical comparisons between NxN methods
- Multiple() - Constructor for class keel.GraphInterKeel.statistical.tests.Multiple
-
Builder
- MultipleC - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Classification Multiple Stat-test identifier.
- MultipleClassifierSystem - Class in keel.Algorithms.Preprocess.NoiseFilters.INFFC
-
- MultipleClassifierSystem() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.INFFC.MultipleClassifierSystem
-
- MultiplePair - Class in keel.Algorithms.Statistical_Tests.Shared.nonParametric
-
File: MultiplePair.java
This class defines a comparable pair of two double values.
- MultiplePair() - Constructor for class keel.Algorithms.Statistical_Tests.Shared.nonParametric.MultiplePair
-
Default builder
- MultiplePair(double, double) - Constructor for class keel.Algorithms.Statistical_Tests.Shared.nonParametric.MultiplePair
-
Builder
- MultiplePair - Class in keel.GraphInterKeel.statistical.tests
-
File: MultiplePair.java
This class defines a comparable pair of two double values.
- MultiplePair() - Constructor for class keel.GraphInterKeel.statistical.tests.MultiplePair
-
Default builder
- MultiplePair(double, double) - Constructor for class keel.GraphInterKeel.statistical.tests.MultiplePair
-
Builder
- MultipleR - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Regression Multiple Stat-test identifier.
- multipleSelection - Variable in class keel.GraphInterKeel.experiments.GraphPanel
-
- Multiplexor - Class in keel.GraphInterKeel.experiments
-
- Multiplexor(Point, GraphPanel) - Constructor for class keel.GraphInterKeel.experiments.Multiplexor
-
Builder
- Multiplexor(int, Point, GraphPanel, int) - Constructor for class keel.GraphInterKeel.experiments.Multiplexor
-
Builder
- multiplica(double, double) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Discretizacion
-
Multiplies two number.
- multiplicar(float) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.Interval
-
- multiplicar(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.Interval
-
- multiplicar(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.Interval
-
- multiplicar(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.Interval
-
- multiplicar(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.Interval
-
- multiplicar(float) - Method in class keel.Algorithms.LQD.preprocess.Expert.interval
-
- multiplicar(float) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.interval
-
- multiplicar(float) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.interval
-
- multiplicar(float) - Method in class keel.Algorithms.LQD.tests.IntermediateBoost.interval
-
- multiply(M5Matrix, int, int, int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Matrix
-
Reurns the multiplication of two matrices
- multiply(double, double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method multiplies each element of a vector by a double value
- multiply(double[], double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method multiplies two matrix and add the result of the multiplications
- multiply(double[][], double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method multiply each row of a matrix by a double value
- multiply(double, double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method multiplies
each double element of a matrix by a double value
- multiply(double[][], double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method multiplies two matrix and add the result of the multiplications
- multiply(double, double[][][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method multiplies each double element of a cubic matrix by a double value
- multiply(double[][][], double[][][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method multiplies two cubic matrix and add the result of the multiplications
- multiply(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyAlphaCut
-
Returns the multiplication of the present FuzzyInterval and the parameter x.
- multiply(FuzzyAlphaCut) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyAlphaCut
-
Returns the multiplication of the present FuzzyInterval and the parameter x.
- multiply(M5Matrix, int, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5Matrix
-
Reurns the multiplication of two matrices
- multiply(double, double[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns the multiplication of scalar k by vector a.
- multiply(double[], double[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns the multiplication of vector a and b.
- multiply(double[][], double[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns a vector with multiplication of each row of matrix A by vector x.
- multiply(double, double[][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns the multiplication of scalar k by matrix a.
- multiply(double[][], double[][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns sum of the respective row vectors multiplication.
- multiply(double, double[][][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns the multiplication of scalar k by matrix a.
- multiply(double[][][], double[][][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns the sum of the respective 2-dimensions matrix multiplication (a[i] by b[i]).
- multiply(double, double[]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns the multiplication of scalar k by vector a.
- multiply(double[], double[]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns the multiplication of vector a and b.
- multiply(double[][], double[]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns a vector with multiplication of each row of matrix A by vector x.
- multiply(double, double[][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns the multiplication of scalar k by matrix a.
- multiply(double[][], double[][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns sum of the respective row vectors multiplication.
- multiply(double, double[][][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns the multiplication of scalar k by matrix a.
- multiply(double[][][], double[][][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns the sum of the respective 2-dimensions matrix multiplication (a[i] by b[i]).
- multiply(Matrix) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Returns the multiplication of two matrices
- MultipointCrossover(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
-
Multipoint cross operator for the genetic algorithm
Better chromosomes of Inter are at the first positions
as the cross individual, stored in Des
- MultipointCrossoverCAN(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Cross operator for the genetic algorithm, where
only cross the two better individuals
- MultipointCrossoverDNF(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Cross operator for the genetic algorithm, where
only cross the two better individuals
- multipopulation - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
-
- multiPopulation - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE
-
It creates a multipopulation.
- multipopulation - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
-
- multipopulation - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
-
- MultivariateFunction - Interface in keel.Algorithms.Preprocess.Missing_Values.EM.util
-
interface for a function of several variables
- mutacion() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.GenotypeBoosting
-
- mutacion() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.GenotypeBoostingMaxMin
-
- mutacion(double, double) - Method in class keel.Algorithms.Hyperrectangles.EHS_CHC.Cromosoma
-
Mutation operator
- mutacion(double, double) - Method in class keel.Algorithms.Instance_Selection.CHC.Cromosoma
-
Mutation operator
- mutacion(int, int[], int, int, double[][], double[][], int[][], boolean[][], int[], int, boolean) - Method in class keel.Algorithms.Instance_Selection.GA_MSE_CC_FSM.Cromosoma
-
Function that does the mutation
- mutacion(double, double) - Method in class keel.Algorithms.Instance_Selection.GGA.Cromosoma
-
Mutation operator
- mutacion(double, double) - Method in class keel.Algorithms.Instance_Selection.IGA.Cromosoma
-
Mutation operator
- mutacion(double, double) - Method in class keel.Algorithms.Instance_Selection.PBIL.Cromosoma
-
Mutation operator
- mutacion(double, double) - Method in class keel.Algorithms.Instance_Selection.SGA.Cromosoma
-
Mutation operator
- mutacion(double, double) - Method in class keel.Algorithms.Preprocess.Instance_Selection.CHC.Cromosoma
-
Mutation operator
- mutacion(int, int[], int, int, double[][], double[][], int[][], boolean[][], int[], int, boolean) - Method in class keel.Algorithms.Preprocess.Instance_Selection.GA_MSE_CC_FSM.Cromosoma
-
Function that does the mutation
- mutacion(double, double) - Method in class keel.Algorithms.Preprocess.Instance_Selection.GGA.Cromosoma
-
Mutation operator
- mutacion(double, double) - Method in class keel.Algorithms.Preprocess.Instance_Selection.IGA.Cromosoma
-
Mutation operator
- mutacion(double, double) - Method in class keel.Algorithms.Preprocess.Instance_Selection.PBIL.Cromosoma
-
Mutation operator
- mutacion(double, double) - Method in class keel.Algorithms.Preprocess.Instance_Selection.SGA.Cromosoma
-
Mutation operator
- mutant(PrototypeSet[], int, int) - Method in class keel.Algorithms.Instance_Generation.DE.DEGenerator
-
- mutant(PrototypeSet[], int, int, int) - Method in class keel.Algorithms.Instance_Generation.DEGL.DEGLGenerator
-
Mutation operator.
- mutant(PrototypeSet[], int, int, double) - Method in class keel.Algorithms.Instance_Generation.DROP3SFLSDE.DROP3SFLSDE
-
- mutant(PrototypeSet[], int, int, double) - Method in class keel.Algorithms.Instance_Generation.ICFSFLSDE.ICFSFLSDE
-
- mutant(PrototypeSet, double) - Method in class keel.Algorithms.Instance_Generation.IPLDE.IPLDEGenerator
-
- mutant(PrototypeSet[], double[], int, PrototypeSet[], int) - Method in class keel.Algorithms.Instance_Generation.JADE.JADEGenerator
-
- mutant(PrototypeSet[], int, int) - Method in class keel.Algorithms.Instance_Generation.OBDE.OBDEGenerator
-
- mutant(PrototypeSet[], int, int) - Method in class keel.Algorithms.Instance_Generation.SADE.SADEGenerator
-
I modified the order of the list of strategies, i need it because i want to do the Same POOL like the paper.
- mutant(PrototypeSet[], int, int, double) - Method in class keel.Algorithms.Instance_Generation.SFLSDE.SFLSDEGenerator
-
- mutant(PrototypeSet[], int, int, double) - Method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
- mutar(double) - Method in class keel.Algorithms.Decision_Trees.DT_GA.Individuo
-
Mutates the individual with the given probability.
- mutar() - Method in class keel.Algorithms.Decision_Trees.DT_GA.Selector
-
Mutates the selector by chaging the condition value.
- mutar(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.BaseR
-
- mutar(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Individuo
-
- mutar(myDataset, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Regla
-
- mutar(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.Individuo
-
- mutar() - Method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.Cromosoma
-
mutation operator
- mutar() - Method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CromosomaBinario
-
binary mutation operator in one point
- mutar() - Method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CromosomaEntero
-
integer mutation operator in one point
- mutar(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.Individuo
-
- mutar(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.MatrizR
-
- mutate(myDataset, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.Rule
-
Mutatation Operator.
- mutate() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.RuleBase
-
Mutation operator
- mutate() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Chromosome
-
Applies a mutation on this chromosome, adding a gene (0.5 prob) or deleting
one gene (0.5 prob or if this chromosome has genes for all the attributes)
- mutate() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Core
-
Applies mutation in the new poblation
- mutate() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Gene
-
Mutates this gene.
- mutate(int, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Population
-
Mutates a chromosome in a specified subpopulation
- mutate(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Subpopulation
-
Mutates a specific rule and gene
- mutate() - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.Ilga
-
Applies mutation in the new poblation
- mutate(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.RuleSet
-
Mutate a variable of the rule set (i.e. the activation, limits or class of a rule
from the rule set)
- mutate() - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.SEM
-
Applies mutation in the new poblation
- mutate() - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.Oiga
-
Applies mutation in the new poblation
- mutate(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.RuleSet
-
Mutate a variable of the rule set (i.e. the activation, limits or class of a rule
from the rule set)
- mutate() - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.SEM
-
Applies mutation in the new poblation
- mutate(double) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Attribute
-
The mutation is done from the environmental state.
- mutate(double[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Classifier
-
Mutates the classifier.
- mutate(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
Mutates the 2 reals contained in the representation.
- mutate(char, char) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryMutation
-
Mutates the character.
- mutate(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
Mutates the character.
- mutate(char, char) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TFreeMutation
-
Mutates the character.
- mutate(char, char) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TNichedMutation
-
Mutates the character.
- mutate(double) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
-
The mutation is done from the environmental state.
- mutate(double[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Mutates the classifier.
- mutate(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
Muates the 2 reals contained in the representation.
- mutate(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
Mutates the 2 reals contained in the representation.
- mutate(double[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
Mutates the classifier.
- mutate(char, char) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryMutation
-
Mutates the character.
- mutate(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
Mutates the character.
- mutate(char, char) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TFreeMutation
-
Mutates the character.
- mutate(char, char) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TNichedMutation
-
Mutates the character.
- mutate(String[], String[], double) - Method in class keel.Algorithms.Instance_Generation.PSCSA.PSCSAGenerator
-
Production of mutated clones
- mutate_copopulation() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Core
-
Applies the mutation in the current copopulation.
- mutateAction() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
Mutates the action of the classifier.
- mutateGene(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Chromosome
-
Applies a random mutation of the specified gene
- mutateLower(double, double, double) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.RealMutation
-
Mutates the lower real value.
- mutateLower(double, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RFreeMutation
-
Mutates the lower real value.
- mutateLower(double, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RNichedMutation
-
Mutates the lower real value.
- mutateLower(int, int, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IFreeMutation
-
Mutates the lower real value.
- mutateLower(int, int, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.INichedMutation
-
Mutates the lower real value.
- mutateLower(int, int, int, int) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerMutation
-
Mutates the lower real value of the interval.
- mutateLower(double, double, double) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.RealMutation
-
Mutates the lower real value.
- mutateLower(double, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RFreeMutation
-
Mutates the lower real value.
- mutateLower(double, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RNichedMutation
-
Mutates the lower real value.
- mutateNext() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
-
Mutates the next individual
- mutateNext() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Mutates the next individual
- mutateUpper(double, double, double) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.RealMutation
-
Mutates the upper real value.
- mutateUpper(double, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RFreeMutation
-
Mutates the upper real value.
- mutateUpper(double, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RNichedMutation
-
Mutates the upper real value.
- mutateUpper(int, int, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IFreeMutation
-
Mutates the upper real value.
- mutateUpper(int, int, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.INichedMutation
-
Mutates the upper real value.
- mutateUpper(int, int, int, int) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerMutation
-
Mutates the upper real value.
- mutateUpper(double, double, double) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.RealMutation
-
Mutates the upper real value.
- mutateUpper(double, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RFreeMutation
-
Mutates the upper real value.
- mutateUpper(double, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RNichedMutation
-
Mutates the upper real value.
- mutation(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Individual
-
It applies the mutation operator
- mutation(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGAP.FuzzyGAPClassifier
-
This method performs the mutation genetic operation of the current
FuzzyGAPClassifier.
- mutation(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGP.FuzzyGPClassifier
-
This method performs the mutation genetic operation of the current FuzzyGPClassifier.
- mutation(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyPittsBurgh.PittsburghClassifier
-
This method performs the mutation genetic operation of the current
FuzzyGAPClassifier.
- mutation(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySAP.FuzzySAPClassifier
-
This method performs the mutation genetic operation of the current FuzzySAPClassifier.
- mutation(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.Genotype
-
abstract method for carrying out the mutation genetic operations.
- mutation(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGAP
-
Method for carrying out the mutation genetic operations.
- mutation(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGP
-
Method for carrying out the mutation genetic operations.
- mutation(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGPRegSym
-
Method for carrying out the mutation genetic operations.
- mutation(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypePitts
-
Method for carrying out the mutation genetic operations.
- mutation(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividual
-
This abstract method implement the mutation operation
- mutation(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyGAPModelIndividual
-
This method implement the mutation operation
- mutation(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyGPModelIndividual
-
This method implement the mutation operation
- mutation(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.PittsburghModel
-
This method implement the mutation operation
- mutation(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.RegSymFuzzyGP
-
This method implement the mutation operation
- mutation() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier
-
- mutation() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_hyperrect_list
-
- mutation() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_hyperrect_list_real
-
- mutation() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.geneticAlgorithm
-
- mutation(RuleSet, Vector<Rule>, double, int[][], int[], int[], Vector<Rule>, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.RuleSet
-
- mutation(int[], int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.AdaptiveAttribute
-
- mutation(int[], int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.AdaptiveRule
-
- mutation(int[], int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.AdaptiveAttribute
-
- mutation(int[], int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.AdaptiveRule
-
- mutation(PrototypeSet, PrototypeSet[][]) - Method in class keel.Algorithms.Instance_Generation.ENPC.ENPCGenerator
-
Mutation operator.
- mutation(int, double, double[][], double[][], double[][], int[][], boolean[][], boolean) - Method in class keel.Algorithms.Instance_Generation.SSMALVQ3.Cromosoma
-
Function that does the mutation
- mutation(int, double, double[][], double[][], double[][], int[][], boolean[][], boolean) - Method in class keel.Algorithms.Instance_Generation.SSMAPSO.Cromosoma
-
Function that does the mutation
- mutation(int, double, double[][], double[][], double[][], int[][], boolean[][], boolean) - Method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.Cromosoma
-
Function that does the mutation
- mutation(int, double, double[][], double[][], double[][], int[][], boolean[][], boolean) - Method in class keel.Algorithms.Instance_Selection.SSMA.Cromosoma
-
Mutation operator
- mutation() - Method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.Chromosome
-
Mutation Operator
- mutation(int, double, double[][], double[][], double[][], int[][], boolean[][], boolean) - Method in class keel.Algorithms.Preprocess.Instance_Selection.SSMA.Cromosoma
-
Mutation operator
- mutation() - Method in class keel.Algorithms.RST_Learning.EFS_RPS.Chromosome
-
Mutates the chromosome.
- mutation() - Method in class keel.Algorithms.RST_Learning.EIS_RFS.Chromosome
-
Mutates the chromosome.
- Mutation(TableVar, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Mutates an individual
- mutation_prob - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- MUTATION_RATE - Static variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- MutationCAN(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Applies the mutation operator.
- MutationDNF(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Applies the mutation operator.
- mutationOffset(float, float, float) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_hyperrect_list
-
- mutationOffset(float, float, float) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_hyperrect_list_real
-
- mutationProbability - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- mutationRateTipText() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- MUTATIONTYPE - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- mutator1 - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Individual mutator1
- mutator2 - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Individual mutator2
- MVD - Class in keel.Algorithms.Discretizers.MVD
-
This class implements the UCPD algorithm
- MVD(InstanceSet, int, double) - Constructor for class keel.Algorithms.Discretizers.MVD.MVD
-
Constructor of the class
- myAttribute - Class in keel.Algorithms.Decision_Trees.FunctionalTrees
-
This class contains the most useful information about an attribute, and provides a set of functions to
manage this information easily.
- myAttribute() - Constructor for class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
-
Creates an attribute with empty values that we can identify
- myAttribute(String, int, boolean) - Constructor for class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
-
Creates an attribute with the name of the attribute, the data type of the attribute and whether the
attribute is input or output; the rest of the values are initialized with empty values that we can
identify.
- myAttribute(String, int, double, double, boolean) - Constructor for class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
-
Creates an attribute with the name of the attribute, the data type of the attribute, the minimum value
for the attribute, the maximum value for the attribute, the minimum value for the attribute and whether
the attribute is input or output; the rest of the values arte initialized with empty values that we can
identify.
- myAttribute(myAttribute) - Constructor for class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
-
Creates an attribute from another existing attribute
- myAttribute - Class in keel.Algorithms.Decision_Trees.PUBLIC
-
File: myAttribute.java
This class contains the most useful information about an attribute, and provides a set of functions to
manage this information easily.
- myAttribute() - Constructor for class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
-
Creates an attribute with empty values that we can identify
- myAttribute(String, int, boolean) - Constructor for class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
-
Creates an attribute with the name of the attribute, the data type of the attribute and whether the
attribute is input or output; the rest of the values are initialized with empty values that we can
identify.
- myAttribute(String, int, double, double, boolean) - Constructor for class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
-
Creates an attribute with the name of the attribute, the data type of the attribute, the minimum value
for the attribute, the maximum value for the attribute, the minimum value for the attribute and whether
the attribute is input or output; the rest of the values arte initialized with empty values that we can
identify.
- myAttribute(myAttribute) - Constructor for class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
-
Creates an attribute from another existing attribute
- MyAttribute - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Class to implement an attribute
- MyAttribute(String, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
-
Constructor for continuous attributes.
- MyAttribute(String, Vector, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
-
Constructor for discret attributes.
- MyAttribute(String) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
-
Constructor for continuous attributes.
- MyAttribute(String, Vector) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
-
Constructor for discret attributes.
- MyAttribute - Class in keel.Algorithms.Genetic_Rule_Learning.PART
-
Class to implement an attribute
- MyAttribute(String, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.MyAttribute
-
Constructor for continuous attributes.
- MyAttribute(String, Vector, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.MyAttribute
-
Constructor for discret attributes.
- MyAttribute - Class in keel.Algorithms.Rule_Learning.C45Rules
-
Class to implement an attribute
- MyAttribute(String, int) - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.MyAttribute
-
Constructor for continuous attributes.
- MyAttribute(String, Vector, int) - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.MyAttribute
-
Constructor for discret attributes.
- MyAttribute - Class in keel.Algorithms.Rule_Learning.C45RulesSA
-
Class to implement an attribute
- MyAttribute(String, int) - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.MyAttribute
-
Constructor for continuous attributes.
- MyAttribute(String, Vector, int) - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.MyAttribute
-
Constructor for discret attributes.
- MyAttribute - Class in keel.Algorithms.Rule_Learning.PART
-
Class to implement an attribute
- MyAttribute(String, int) - Constructor for class keel.Algorithms.Rule_Learning.PART.MyAttribute
-
Constructor for continuous attributes.
- MyAttribute(String, Vector, int) - Constructor for class keel.Algorithms.Rule_Learning.PART.MyAttribute
-
Constructor for discret attributes.
- myDataset - Class in keel.Algorithms.Associative_Classification.ClassifierCBA
-
It contains the methods to read a Classification/Regression Dataset.
- myDataset() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
Init a new set of instances.
- myDataset - Class in keel.Algorithms.Associative_Classification.ClassifierCBA2
-
It contains the methods to read a Classification/Regression Dataset
- myDataset() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Associative_Classification.ClassifierCMAR
-
It contains the methods to read a Classification/Regression Dataset
- myDataset() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Associative_Classification.ClassifierCPAR
-
It contains the methods to read a Classification/Regression Dataset
- myDataset() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR
-
It contains the methods to read a Classification/Regression Dataset
- myDataset() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA
-
Description: It contains the methods to read a Classification Dataset
- myDataset() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Decision_Trees.C45_Binarization
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
Init a new set of instances
- myDataset(myDataset, int, int) - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It generates a new binary dataset for the OVO scheme
- myDataset(myDataset, int) - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It generates a new binary dataset for the OVA scheme
- myDataset(myDataset, int, int, int[]) - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It generates a new binary dataset for the OVO scheme (NESTING)
- myDataset - Class in keel.Algorithms.Decision_Trees.DT_GA
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Decision_Trees.DT_oblicuo
-
It contains the methods to read a Classification/Regression Dataset
- myDataset() - Constructor for class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Decision_Trees.FunctionalTrees
-
This class contains the most useful information about a dataset, and provides a set of functions to
manage this information easily.
- myDataset(String, int) - Constructor for class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
-
Creates a dataset by reading the .dat file that contains the information of it,
and gives values to every field of the class
- myDataset(myDataset) - Constructor for class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
-
Creates a dataset from another existing dataset
- myDataset - Class in keel.Algorithms.Decision_Trees.PUBLIC
-
File: myDataset.java
This class contains the most useful information about a dataset, and provides a set of functions to
manage this information easily.
- myDataset(String, int) - Constructor for class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
-
Creates a dataset by reading the .dat file that contains the information of it,
and gives values to every field of the class
- myDataset(myDataset) - Constructor for class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
-
Creates a dataset from another existing dataset
- myDataset - Class in keel.Algorithms.Decision_Trees.Target
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Decision_Trees.Target.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW
-
It contains the methods to read a Classification/Regression Dataset
- myDataset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted
-
It contains the methods to read a Classification/Regression Dataset
- myDataset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD
-
It contains the methods to read a Classification/Regression Dataset
- myDataset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99
-
It contains the methods to read a Classification/Regression Dataset
- myDataset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
-
Init a new set of instances
- MyDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL
-
It contains the methods to read a Dataset
- MyDataset(String, boolean) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.MyDataset
-
Stores in memory the contents of the data file "f"
- myDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
- myDataset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen
-
It contains the methods to read a Classification/Regression Dataset
- myDataset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE
-
It contains the methods to read a Classification/Regression Dataset.
- myDataset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
-
It contains the methods to read a Classification/Regression Dataset
- myDataset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
-
It contains the methods to read a Classification/Regression Dataset
- myDataset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid
-
Title: myDataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH
-
Title: myDataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner
-
Title: myDataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.myDataset
-
Constructor.
- myDataset - Class in keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus
-
Title: myDataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.myDataset
-
Constructor.
- myDataset - Class in keel.Algorithms.Genetic_Rule_Learning.Ant_Miner
-
Title: myDataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.myDataset
-
Constructor.
- myDataset - Class in keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus
-
Title: myDataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.myDataset
-
Constructor.
- myDataset - Class in keel.Algorithms.Genetic_Rule_Learning.Corcoran
-
Title: myDataset
Description: Manage the data-sets
- myDataset() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Corcoran.myDataset
-
Builder.
- myDataset - Class in keel.Algorithms.Genetic_Rule_Learning.DMEL
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Genetic_Rule_Learning.GIL
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Genetic_Rule_Learning.LogenPro
-
It contains the methods to read a Classification/Regression Dataset.
- myDataset() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
Init a new set of instances
- MyDataset - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Class to implement the dataset
- MyDataset(String, boolean) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Function to read the .dat file that contains the information of the dataset.
- MyDataset(String, Vector, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Creates an empty set of itemsets.
- MyDataset(MyDataset) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Constructor that copies another dataset.
- MyDataset(MyDataset, int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Creates a new set of itemsets by copying a
subset of another set.
- MyDataset(MyDataset, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Constructor to copy all the attributes of another dataset but the itemsets.
- myDataset - Class in keel.Algorithms.Genetic_Rule_Learning.OCEC
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
Init a new set of instances
- MyDataset - Class in keel.Algorithms.Genetic_Rule_Learning.PART
-
Class to implement the dataset
- MyDataset(String, boolean) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
Function to read the .dat file that contains the information of the dataset.
- MyDataset(MyDataset) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
Constructor that copies another dataset.
- MyDataset(MyDataset, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
Constructor to copy all the attributes of another dataset but the itemsets.
- myDataset - Class in keel.Algorithms.Genetic_Rule_Learning.PSO_ACO
-
Title: myDataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.myDataset
-
Constructor.
- myDataset - Class in keel.Algorithms.Genetic_Rule_Learning.RMini
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Genetic_Rule_Learning.SIA
-
Title: Data-set
Description: Manage the data-sets
- myDataset() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.SIA.myDataset
-
Builder.
- myDataset - Class in keel.Algorithms.ImbalancedClassification.Ensembles
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Init a new set of instances
- myDataset(myDataset, double[]) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Generates a new binary dataset by copying it from the dataset given.
- myDataset(myDataset) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Generates a new binary dataset by copying it from the dataset given.
- myDataset(myDataset, int, int) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It generates a new binary dataset
- myDataset(myDataset, String) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Generates a new binary dataset by copying it from the dataset given and preprocessing it.
- myDataset(myDataset, int, int, int[]) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It generates a new binary dataset by copying the instances indicated by the value 1 in the array given.
- myDataset(myDataset, int, double[][], int, double[][]) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It generates a new binary dataset
- myDataset - Class in keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H
-
Title: myDataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.PSO_Learning.CPSO
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.PSO_Learning.LDWPSO
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.PSO_Learning.PSOLDA
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.PSO_Learning.REPSO
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.RE_SL_Methods.P_FCS1
-
It contains the methods to read a Classification/Regression Dataset
- myDataset() - Constructor for class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.RE_SL_Methods.SEFC
-
It contains the methods to read a Classification/Regression Dataset
- myDataset() - Constructor for class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Rule_Learning.AQ
-
Title: myDataset
Description: Manage the data-sets
- myDataset() - Constructor for class keel.Algorithms.Rule_Learning.AQ.myDataset
-
Builder.
- MyDataset - Class in keel.Algorithms.Rule_Learning.C45Rules
-
Class to implement the dataset
- MyDataset(String, boolean) - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Function to read the .dat file that contains the information of the dataset.
- MyDataset(MyDataset) - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Constructor that copies another dataset.
- MyDataset(MyDataset, int) - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Constructor to copy all the attributes of another dataset but the itemsets.
- MyDataset - Class in keel.Algorithms.Rule_Learning.C45RulesSA
-
Class to implement the dataset
- MyDataset(String, boolean) - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Function to read the .dat file that contains the information of the dataset.
- MyDataset(MyDataset) - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Constructor that copies another dataset.
- MyDataset(MyDataset, int) - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Constructor to copy all the attributes of another dataset but the itemsets.
- myDataset - Class in keel.Algorithms.Rule_Learning.CN2
-
Title: Data-set
Description: Manage the data-sets
- myDataset() - Constructor for class keel.Algorithms.Rule_Learning.CN2.myDataset
-
Builder.
- myDataset - Class in keel.Algorithms.Rule_Learning.LEM1
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Rule_Learning.LEM2
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
Init a new set of instances
- MyDataset - Class in keel.Algorithms.Rule_Learning.PART
-
Class to implement the dataset
- MyDataset(String, boolean) - Constructor for class keel.Algorithms.Rule_Learning.PART.MyDataset
-
Function to read the .dat file that contains the information of the dataset.
- MyDataset(MyDataset) - Constructor for class keel.Algorithms.Rule_Learning.PART.MyDataset
-
Constructor that copies another dataset.
- MyDataset(MyDataset, int) - Constructor for class keel.Algorithms.Rule_Learning.PART.MyDataset
-
Constructor to copy all the attributes of another dataset but the itemsets.
- MyDataset - Class in keel.Algorithms.Rule_Learning.Ripper
-
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- MyDataset() - Constructor for class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Rule_Learning.Ritio
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Rule_Learning.Rules6
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
Init a new set of instances
- MyDataset - Class in keel.Algorithms.Rule_Learning.Slipper
-
Contains the methods to read a Classification/Regression Dataset
- MyDataset() - Constructor for class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Rule_Learning.SRI
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Rule_Learning.SRI.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Statistical_Classifiers.Naive_Bayes
-
Title: Dataset
Description: It contains the methods to read a Classification/Regression Dataset
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.Subgroup_Discovery.SDMap.SDMap
-
It contains the methods to read a Dataset for the Association Rules Mining problem
- myDataset(int) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
-
Initialize a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal
-
It contains the methods to read a Dataset for the Association Rules Mining problem
- myDataset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
-
Initialize a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams
-
It contains the methods to read a Dataset for the Association Rules Mining problem
- myDataset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
Initialize a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori
-
It contains the methods to read a Dataset for the Association Rules Mining problem
- myDataset(int) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
-
Initialize a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori
-
It contains the methods to read a Dataset for the Association Rules Mining problem
- myDataset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
-
Initialize a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC
-
It contains the methods to read a Dataset for the Association Rules Mining problem
- myDataset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
-
Initialize a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal
-
It contains the methods to read a Dataset for the Association Rules Mining problem
- myDataset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
-
Initialize a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori
-
It contains the methods to read a Dataset for the Association Rules Mining problem
- myDataset(int) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
-
Initialize a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA
-
Title: Dataset
Description: It contains the methods to read a Dataset for creating Association Rules
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA
-
Title: Dataset
Description: It contains the methods to read a Dataset for creating Association Rules
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat
-
It contains the methods to read a Dataset for the Association Rules Mining problem
- myDataset(int) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
-
Initialize a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth
-
It contains the methods to read a Dataset for the Association Rules Mining problem
- myDataset(int) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
-
Initialize a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR
-
Title: Dataset
Description: It contains the methods to read a Dataset for creating Association Rules
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR
-
Title: Dataset
Description: It contains the methods to read a Dataset for creating Association Rules
Company: KEEL
- myDataset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR
-
It contains the methods to read a Classification/Regression Dataset
- myDataset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
-
Init a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh
-
It contains the methods to read a Dataset for the Association Rules Mining problem
- myDataset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
-
Initialize a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR
-
It contains the methods to read a Dataset for the Association Rules Mining problem
- myDataset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
-
Initialize a new set of instances
- myDataset - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII
-
It contains the methods to read a Dataset for the Association Rules Mining problem
- myDataset() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
-
Initialize a new set of instances
- MyFile - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL
-
Functions for dealing with files
- MyFile() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.MyFile
-
- myOutput(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.RuleBase
-
Returns output (Wang-Mendel) for input x.
- mytypeid - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
N
- n - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Row and column dimensions.
- N_Antecedent() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- N_Antecedent() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- N_Antecedent() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- N_Antecedents() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
It returns the number of antecedents in the list of variables
- n_etiq - Variable in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Param
-
Number of labels
- n_etiq - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Param
-
Number of labels
- n_etiq - Variable in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Param
-
Number of labels
- n_etiquetas - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Sel
-
Type of fuzzy rules identifier.
- n_etiquetas - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Tun
-
Type of fuzzy rules identifier.
- n_eval - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Number of evalutations.
- N_Examples() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
-
- N_Examples() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Returns the number of examples in the set
- N_Examples() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.example_set
-
- N_Examples() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.example_set
-
- n_generations - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- n_gens - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- n_indiv - Variable in class keel.Algorithms.Neural_Networks.gann.SetupParameters
-
- N_individuals() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- N_individuals() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- N_individuals() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- n_inputs - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.MyDataset
-
Total number of variables.
- N_labels() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.domain_t
-
- N_labels() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.variable_t
-
- N_labels() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.domain_t
-
Returns the number of labels in the domain
- N_labels() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Returns the number of labels in the variable's domain.
- N_labels() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.domain_t
-
- N_labels() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.variable_t
-
- N_labels() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.domain_t
-
- N_labels() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.variable_t
-
- n_minoritaria() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It returns the number of minority class examples
- N_Partitions() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
-
- N_Partitions() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Returns the number of partitions forming the set of examples
- N_Partitions() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.example_set
-
- N_Partitions() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.example_set
-
- n_reglas - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Sel
-
Number of total rules.
- n_reglas - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Tun
-
Number of total rules.
- n_reglas_distintas - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Tun
-
Maximum number of rules.
- N_rule() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.ruleset
-
Returns the number of rules of the ruleset
- N_rule() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.ruleset
-
Returns the number of rules of the ruleset
- N_rule() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.ruleset
-
Returns the number of rules of the ruleset
- n_test_patterns - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Number of train, validation and test patterns
- n_test_patterns - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Number of train, validation and test patterns
- n_test_patterns - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Number of train, validation and test patterns
- n_test_patterns - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Number of train, validation and test patterns
- n_train_patterns - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Number of train, validation and test patterns
- n_train_patterns - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Number of train, validation and test patterns
- n_train_patterns - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Number of train, validation and test patterns
- n_train_patterns - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Number of train, validation and test patterns
- N_Val() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- N_Val() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- N_Val() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- n_val_patterns - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Number of train, validation and test patterns
- n_val_patterns - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Number of train, validation and test patterns
- n_val_patterns - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Number of train, validation and test patterns
- n_val_patterns - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Number of train, validation and test patterns
- n_var_control - Variable in class keel.Algorithms.RE_SL_Methods.LEL_TSK.MiDataset
-
- n_var_control - Variable in class keel.Algorithms.RE_SL_Methods.MamWM.MiDataset
-
- n_var_control - Variable in class keel.Algorithms.RE_SL_Methods.mogulHC.MiDataset
-
- n_var_control - Variable in class keel.Algorithms.RE_SL_Methods.mogulIRL.MiDataset
-
- n_var_control - Variable in class keel.Algorithms.RE_SL_Methods.mogulSC.MiDataset
-
- n_var_control - Variable in class keel.Algorithms.RE_SL_Methods.TSK_IRL.MiDataset
-
- n_var_control - Variable in class keel.Algorithms.RE_SL_Postprocess.Mam2TSK.MiDataset
-
- n_var_control - Variable in class keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB.MiDataset
-
- n_var_control - Variable in class keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules.MiDataset
-
- n_var_control - Variable in class keel.Algorithms.RE_SL_Postprocess.MamSelect.MiDataset
-
- n_var_control - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWSelect.MiDataset
-
- n_var_control - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWTuning.MiDataset
-
- n_var_control - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules.MiDataset
-
- n_var_control - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKSelect.MiDataset
-
- n_var_estado - Variable in class keel.Algorithms.RE_SL_Methods.LEL_TSK.MiDataset
-
- n_var_estado - Variable in class keel.Algorithms.RE_SL_Methods.MamWM.MiDataset
-
- n_var_estado - Variable in class keel.Algorithms.RE_SL_Methods.mogulHC.MiDataset
-
- n_var_estado - Variable in class keel.Algorithms.RE_SL_Methods.mogulIRL.MiDataset
-
- n_var_estado - Variable in class keel.Algorithms.RE_SL_Methods.mogulSC.MiDataset
-
- n_var_estado - Variable in class keel.Algorithms.RE_SL_Methods.TSK_IRL.MiDataset
-
- n_var_estado - Variable in class keel.Algorithms.RE_SL_Postprocess.Mam2TSK.MiDataset
-
- n_var_estado - Variable in class keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB.MiDataset
-
- n_var_estado - Variable in class keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules.MiDataset
-
- n_var_estado - Variable in class keel.Algorithms.RE_SL_Postprocess.MamSelect.MiDataset
-
- n_var_estado - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWSelect.MiDataset
-
- n_var_estado - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWTuning.MiDataset
-
- n_var_estado - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules.MiDataset
-
- n_var_estado - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKSelect.MiDataset
-
- n_variables - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.MyDataset
-
Total number of variables.
- N_Variables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
-
- N_Variables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Returns the number of variables of the problem
- N_Variables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.example_set
-
- N_Variables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.example_set
-
- n_variables - Variable in class keel.Algorithms.RE_SL_Methods.LEL_TSK.MiDataset
-
- n_variables - Variable in class keel.Algorithms.RE_SL_Methods.MamWM.MiDataset
-
- n_variables - Variable in class keel.Algorithms.RE_SL_Methods.mogulHC.MiDataset
-
- n_variables - Variable in class keel.Algorithms.RE_SL_Methods.mogulIRL.MiDataset
-
- n_variables - Variable in class keel.Algorithms.RE_SL_Methods.mogulSC.MiDataset
-
- n_variables - Variable in class keel.Algorithms.RE_SL_Methods.TSK_IRL.MiDataset
-
- n_variables - Variable in class keel.Algorithms.RE_SL_Postprocess.Mam2TSK.MiDataset
-
- n_variables - Variable in class keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB.MiDataset
-
- n_variables - Variable in class keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules.MiDataset
-
- n_variables - Variable in class keel.Algorithms.RE_SL_Postprocess.MamSelect.MiDataset
-
- n_variables - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWSelect.MiDataset
-
- n_variables - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWTuning.MiDataset
-
- n_variables - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules.MiDataset
-
- n_variables - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKSelect.MiDataset
-
- name - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Naming.
- name() - Method in class keel.Algorithms.Decision_Trees.C45.Attribute
-
Returns the name of the attribute.
- name - Variable in class keel.Algorithms.Decision_Trees.C45.Dataset
-
The name of the dataset.
- name() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Attribute
-
Returns the name of the attribute.
- name - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Dataset
-
The name of the dataset.
- name() - Method in class keel.Algorithms.Decision_Trees.ID3.Attribute
-
Returns the name of the attribute.
- name - Variable in class keel.Algorithms.Decision_Trees.ID3.Dataset
-
The name of the dataset.
- name() - Method in class keel.Algorithms.Decision_Trees.M5.Information
-
Returns the option's name.
- name() - Method in class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Returns the attribute's name.
- name() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Attribute
-
Returns the name of the attribute.
- name - Variable in class keel.Algorithms.Decision_Trees.SLIQ.Dataset
-
The name of the dataset.
- name - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Algorithm name.
- name() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns the attribute's name.
- name() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
-
Returns the name of the attribute.
- name - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
The name of the dataset.
- name - Variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Dataset
-
The name of the dataset.
- name() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA_Attribute
-
Returns the name of the attribute.
- name() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyAttribute
-
Returns the name of the attribute.
- name - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
The name of the dataset.
- name - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Naming.
- name() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Attribute
-
Returns the name of the attribute.
- name - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Dataset
-
The name of the dataset.
- name() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Attribute
-
Returns the name of the attribute.
- name - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Dataset
-
The name of the dataset.
- name() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns the attribute's name.
- name - Static variable in class keel.Algorithms.Instance_Generation.utilities.Parameters
-
Configuration file name.
- name - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Naming.
- name - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractAttribute
-
Attribute name
- name - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset
-
Dataset name
- name - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Naming.
- name - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Naming.
- name() - Method in class keel.Algorithms.Rule_Learning.ART.Attribute
-
Returns the name of the attribute.
- name - Variable in class keel.Algorithms.Rule_Learning.ART.Dataset
-
The name of the dataset.
- name() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyAttribute
-
Returns the name of the attribute.
- name - Variable in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
The name of the dataset.
- name() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyAttribute
-
Returns the name of the attribute.
- name - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
The name of the dataset.
- name() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Attribute
-
Returns the name of the attribute.
- name - Variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Dataset
-
The name of the dataset.
- name() - Method in class keel.Algorithms.Rule_Learning.PART.MyAttribute
-
Returns the name of the attribute.
- name - Variable in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
The name of the dataset.
- name - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Dataset
-
The name of the dataset.
- name - Static variable in class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
-
Contains the name of the parameters file.
- name() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Option
-
Returns the option's name.
- name() - Method in class keel.Algorithms.SVM.SMO.core.Option
-
Returns the option's name.
- name - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- name - Variable in class keel.GraphInterKeel.experiments.ExternalObjectDescription
-
- name - Variable in class keel.GraphInterKeel.help.HelpSheet
-
Name of the sheet.
- nameAbr - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- nameAttribute(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
Returns the name of the given attribute.
- nameAttribute(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
Returns the name of the given attribute.
- NameClasses - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
-
Classes names wrapper.
- NameClasses - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
-
Classes names wrapper.
- NameClasses - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
-
Classes names wrapper.
- NameClassIndex() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Returns the class attribute's name of the @output.
- nameComplete - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- nameFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
file name
- nameFile - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
File name.
- nameJar - Variable in class keel.GraphInterKeel.experiments.ExternalObjectDescription
-
- NameLabelValid(String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToXml
-
Transforms an attribute name given of the KEEL file to a valid xml tag.
- nameNominal(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
Returns the nominal representation of the given value of the given attribute.
- names() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
Returns the names of the different attributes of the data-set.
- names() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
It returns the name of the attributes
- names() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
It returns the name of every input attributes.
- names() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
It returns the name of every input attributes.
- names() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
It returns the name of the attributes
- names() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
It returns the name of the attributes
- names() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
It returns the name of every input attributes.
- names() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It returns the names for all input variables
- names() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
It returns the name of the attributes
- names - Variable in class keel.Algorithms.Instance_Generation.utilities.Parameters
-
Names of the parameteres.
- names - Variable in class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
-
Names of the parameteres.
- names() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
It returns the name of the attributes
- names() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
-
It returns the names of the variables
- names() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
-
It returns the names of the variables
- names() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
-
It returns the names of the variables
- names() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
-
It returns the names of the variables
- names() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
-
It returns the names of the variables
- names() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
-
It returns the names of the variables
- names() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
-
It returns the names of the variables
- names() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
-
It returns the names of the variables
- names() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
-
It returns the names of the variables
- nameVar(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
It returns the name of the atribute in position "pos"
- NAnd - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- NAND_NOR_Stationary(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
Given the individuals "indiv1" and "indiv2", it selects two points
and makes the NAND/NOR operation between their central zones.
- NAND_NOR_Stationary(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
Given the individuals "indiv1" and "indiv2", it selects two points
and makes the NAND/NOR operation between their central zones.
- nAnts - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
-
- nAnts - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
-
- nAnts - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- nAnts - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
-
- nAnts - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- nAnts - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
-
- nAnts - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
- nAttributes - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- NBSSLAlgorithm - Class in keel.Algorithms.Semi_Supervised_Learning.NBSSL
-
NBSSL algorithm calling.
- NBSSLAlgorithm() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.NBSSL.NBSSLAlgorithm
-
- NBSSLGenerator - Class in keel.Algorithms.Semi_Supervised_Learning.NBSSL
-
This class implements the Self-traning wrapper.
- NBSSLGenerator(PrototypeSet, int, int, int, int, double, double, double, double, double) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.NBSSL.NBSSLGenerator
-
Build a new NBSSLGenerator Algorithm
- NBSSLGenerator(PrototypeSet, PrototypeSet, PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.NBSSL.NBSSLGenerator
-
Build a new NBSSLGenerator Algorithm
- nChildren() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
This method return the number of children of the node
- NCL - Class in keel.Algorithms.ImbalancedClassification.Resampling.NCL
-
File: NCL.java
The NCL algorithm is an undersampling method used to deal with the imbalanced
problem.
- NCL(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.NCL.NCL
-
Constructor of the class.
- nClasses - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Number of classes.
- nClasses - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Number of classes.
- nClasses - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.MyDataset
-
Number of classes.
- nClasses - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Number of classes.
- nClasses - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Number of classes.
- nClasses - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Number of classes.
- nClasses - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Number of classes.
- nClasses - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Number of classes.
- nClasses - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Number of classes.
- nClasses - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Number of classes of the problem.
- nClasses - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Number of classes.
- nClasses - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Number of classes.
- nClasses - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- NCNEdit - Class in keel.Algorithms.Instance_Selection.NCNEdit
-
File: NCNEdit.java
The NCNEdit Instance Selection algorithm.
- NCNEdit(String) - Constructor for class keel.Algorithms.Instance_Selection.NCNEdit.NCNEdit
-
Default constructor.
- NCNEdit - Class in keel.Algorithms.Preprocess.Instance_Selection.NCNEdit
-
File: NCNEdit.java
The NCNEdit Instance Selection algorithm.
- NCNEdit(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.NCNEdit.NCNEdit
-
Default constructor.
- nCons - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- NConsequent - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- nearestCenter(Instance) - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.fuzzygCenter
-
Computes the nearest cluster to the given instance
(for nominal values only)
- nearestCenter(Instance) - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.gCenter
-
Computes the nearest cluster to the given instance
- nearestClustersWithSameClass() - Method in class keel.Algorithms.Instance_Generation.GMCA.ClusterSet
-
Returns a list of pairs of clusters in inter-cluster ascending order.
- nearestNeighbors - Variable in class keel.Algorithms.Instance_Generation.BTS3.BTS3Generator
-
Size of the merged data set.
- nearestPair() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Returns the nearest pair of prototypes of the set.
- nearestPair() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Returns the nearest pair of prototypes of the set.
- nearestPrototypesIn(PrototypeSet, PrototypeSet, MatrixOfDistances) - Method in class keel.Algorithms.Instance_Generation.PNN.PNNGenerator
-
Returns the two nearest prototypes in two different sets.
- nearestSample(Complex, int, long, int, int) - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
-
Gets the most near example
- nearestTo(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Return the nearest prototype to another in the set.
- nearestTo(PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Return the nearest prototype to all the prototypes of a set.
- nearestTo(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Return the nearest prototype to another in the set.
- nearestToWithClass(Prototype, double) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Return the nearest prototype to another in the set with a specified class.
- nearestToWithClass(Prototype, double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Return the nearest prototype to another in the set with a specified class.
- nearestToWithDifferentClass(Prototype, double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Return the nearest prototype to another in the set with a specified class.
- nearestValidNeighbor(Instance, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.knnImpute
-
Finds the nearest neighbor with a valid value in the specified attribute
- nearestValidNeighbor(Instance, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.wknnImpute
-
Finds the nearest neighbor with a valid value in the specified attribute
- nearnestPrototypesForEachClass() - Method in class keel.Algorithms.Instance_Generation.MCA.DistanceMatrixByClass
-
Returns the nearest prototype for each class in the set.
- NEARZERO - Static variable in class keel.Algorithms.Neural_Networks.gmdh.node
-
Absolute minimum value
- needExponentialFormat(double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.FlexibleDecimalFormat
-
- needReEval() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowing
-
- needReEval() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowingGWS
-
- needReEval() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowingILAS
-
- needsUID(String) - Static method in class keel.Algorithms.SVM.SMO.core.SerializationHelper
-
checks whether a class needs to declare a serialVersionUID, i.e., it
implements the java.io.Serializable interface but doesn't declare a
serialVersionUID.
- needsUID(Class) - Static method in class keel.Algorithms.SVM.SMO.core.SerializationHelper
-
checks whether a class needs to declare a serialVersionUID, i.e., it
implements the java.io.Serializable interface but doesn't declare a
serialVersionUID.
- neg(fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.fuzzy
-
- negative_cost() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Dataset
-
Computes the cost for a instance from the negative class
- negativeEta - Variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Value of negative Eta
- NEGATIVO - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.Fitness
-
- Neighborhood - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- Neighbour - Class in keel.Algorithms.Discretizers.MODL
-
This class represents an operation of the post-optimization of the MODL discretization algorithm
- Neighbour() - Constructor for class keel.Algorithms.Discretizers.MODL.Neighbour
-
- nejemplos - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.FuzzyClassifier
-
- nelem - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.FuzzyClassifier
-
- Nem - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Nem boolean
- Nem - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Apply Nem flag.
- nEntradas - Variable in class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Number of inputs.
- nentradas - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.FuzzyClassifier
-
- nEntradas - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Metodo
-
- nEntradas - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
- nEntradas - Variable in class keel.Algorithms.Preprocess.Basic.Metodo
-
Number of input attributes
- NEs - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- Net - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.SquaresErrorNN
-
- Net - Variable in class keel.Algorithms.Shared.ClassicalOptim.SquaresErrorNN
-
Neural network container.
- NetClassifyPattern(double[]) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Check if a pattern is correctly classified
- NetClassifyPattern(double[]) - Method in class keel.Algorithms.Neural_Networks.gann.Network
-
Check if a pattern is correctly classified
- NetClassifyPattern(double[]) - Method in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Check if a pattern is correctly classified
- NetClassifyPattern(double[]) - Method in class keel.Algorithms.Neural_Networks.net.Network
-
Check if a pattern is correctly classified
- netConf - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
-
- netConf - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- netConf - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
-
- netConf - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- netConf - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
-
- netConf - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
- NetGetClassOfPattern(double[], int, double, double) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Return the class where a pattern is classified
- NetGetClassOfPattern(double[]) - Method in class keel.Algorithms.Neural_Networks.gann.Network
-
Return the class where a pattern is classified
- NetGetClassOfPattern(double[]) - Method in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Return the class where a pattern is classified
- NetGetClassOfPattern(double[]) - Method in class keel.Algorithms.Neural_Networks.net.Network
-
Return the class where a pattern is classified
- Network - Class in keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS
-
Class representing a neural network
- Network() - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Empty Constructor.
- Network(Parameters) - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Constructor
- Network - Class in keel.Algorithms.Neural_Networks.gann
-
Class representing a neural network
- Network() - Constructor for class keel.Algorithms.Neural_Networks.gann.Network
-
Empty Constructor.
- Network(SetupParameters) - Constructor for class keel.Algorithms.Neural_Networks.gann.Network
-
Constructor
- Network - Class in keel.Algorithms.Neural_Networks.gmdh
-
Class representing a Nural Network
- Network() - Constructor for class keel.Algorithms.Neural_Networks.gmdh.Network
-
Empty Constructor.
- Network(Parameters) - Constructor for class keel.Algorithms.Neural_Networks.gmdh.Network
-
Constructor that receives parameters
- Network - Class in keel.Algorithms.Neural_Networks.net
-
Class representing a neural network
- Network() - Constructor for class keel.Algorithms.Neural_Networks.net.Network
-
Empty Constructor.
- Network(Parameters) - Constructor for class keel.Algorithms.Neural_Networks.net.Network
-
Constructor
- NeuralNetAlgorithm<I extends IIndividual> - Class in keel.Algorithms.Neural_Networks.NNEP_Common.algorithm
-
Base implementation for all neural net algorithms
- NeuralNetAlgorithm() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Empty constructor
- NeuralNetClassifier - Class in keel.Algorithms.Neural_Networks.NNEP_Clas.neuralnet
-
Neural net used as a classifier, with the posibility of estimating probability of each class.
- NeuralNetClassifier() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Clas.neuralnet.NeuralNetClassifier
-
Empty constructor
- NeuralNetCreator<I extends NeuralNetIndividual> - Class in keel.Algorithms.Neural_Networks.NNEP_Common
-
Creation of NeuralNetIndividual (and subclasses).
- NeuralNetCreator() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetCreator
-
Empty constructor
- NeuralNetIndividual - Class in keel.Algorithms.Neural_Networks.NNEP_Common
-
Individuals with a INeuralNet as genotype
- NeuralNetIndividual() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividual
-
Empty contructor
- NeuralNetIndividual(INeuralNet) - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividual
-
Constructor that sets individual genotype
- NeuralNetIndividual(INeuralNet, IFitness) - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividual
-
Constructor that sets individual genotype and fitness
- NeuralNetIndividualSpecies - Class in keel.Algorithms.Neural_Networks.NNEP_Common
-
Individuals that use a INeuralNet as genotype
- NeuralNetIndividualSpecies() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Empty constructor
- NeuralNetMutator<I extends NeuralNetIndividual> - Class in keel.Algorithms.Neural_Networks.NNEP_Common.mutators
-
NeuralNetIndividual mutator.
- NeuralNetMutator() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.NeuralNetMutator
-
Empty constructor
- NeuralNetRegressor - Class in keel.Algorithms.Neural_Networks.NNEP_Regr.neuralnet
-
Neural net used as a regressor
- NeuralNetRegressor() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Regr.neuralnet.NeuralNetRegressor
-
Empty constructor
- NeuralNetReporterClas - Class in keel.Algorithms.Neural_Networks.NNEP_Clas.listener
-
Generation reporter of neural net algorithms
- NeuralNetReporterClas() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Clas.listener.NeuralNetReporterClas
-
Empty constructor
- NeuralNetReporterRegr - Class in keel.Algorithms.Neural_Networks.NNEP_Regr.listener
-
Generation reporter of neural net algorithms
- NeuralNetReporterRegr() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Regr.listener.NeuralNetReporterRegr
-
Empty constructor
- neuralNetType - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
-
Type of neuralnets
- neuronCreation(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQTC
-
Creates new neurons.
- neuronParametricMutators - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
-
Parametric Mutators of a specific neuron
- neuronPruning(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQTC
-
Prunes the neurons which have their counting variables lesser
than the retention threshold.
- neurons - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputLayer
-
Array of neurons of the layer
- neurons - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Array of neurons of the layer
- neuronsEmpty() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
-
Checks if this neural net is empty of neurons
- neuronsEmpty() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuralNet
-
Checks if this neural net is empty of neurons
- neuronsEmpty() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Checks if this layer is empty of neurons
- neuronsFull() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
-
Checks if this neural net is full of neurons
- neuronsFull() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuralNet
-
Checks if this neural net is full of neurons
- neuronsFull() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Checks if this layer is full of neurons
- neuronStructuralMutators - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Structural Mutators of a specific neuron
- neuronTypes - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
-
Types of each neuron for hibrid layers
- New - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- new_dataset(Point, ExternalObjectDescription, int) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
Creation of new data set
- NewBasicNode() - Method in class keel.Algorithms.Neural_Networks.gmdh.sonn
-
Adds a new node
- newClassifier() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Factory
-
- newClassifier() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Factory
-
- newEntropy(Classification) - Method in class keel.Algorithms.Decision_Trees.C45.Cut
-
Function to compute entropy of classification after cutting.
- newEntropy(Classification) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Function to compute entropy of classification after cutting.
- newEntropy(Classification) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Cut
-
Function to compute entropy of classification after cutting.
- newEntropy(Classification) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Cut
-
Function to compute entropy of classification after cutting.
- newEntropy(Classification) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Function to compute entropy of classification after cutting.
- newEntropy(Classification) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Cut
-
Function to compute entropy of classification after cutting.
- newEntropy(Classification) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Cut
-
Function to compute entropy of classification after cutting.
- newEntropy(Classification) - Method in class keel.Algorithms.Rule_Learning.PART.Cut
-
Function to compute entropy of classification after cutting.
- newEntropy(Classification) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Cut
-
Function to compute entropy of classification after cutting.
- newEvent(myDataset, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.RuleSet
-
- newIteration(boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.instanceSet
-
- newIteration(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.timerMDL
-
- newIteration() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowing
-
- newIteration() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowingGWS
-
- newIteration() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowingILAS
-
- newIteration(int, Classifier[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_MDL
-
- newIteration() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Windowing
-
- newIteration(int, Classifier[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_MDL
-
- newIteration() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Windowing
-
- NewRandomNode(SetupParameters, Data) - Method in class keel.Algorithms.Neural_Networks.gmdh.sonn
-
Creates a new random node
- newState() - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Environment
-
Creates or selects a new example of the problem.
- newState() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.MPEnvironment
-
Creates a new example of the problem.
- newState() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.SSFileEnvironment
-
Does create a new state of the problem.
- newState() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.DECEnvironment
-
Creates a new state of the problem.
- newState() - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Environment
-
Creates a new state of the problem.
- newState() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MPEnvironment
-
Creates a new state of the problem.
- newState() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MSEnvironment
-
Create a new state of the problem.
- newState() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.PAREnvironment
-
Creates a new state of the problem.
- newState() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.POSEnvironment
-
Creates a new state of the problem.
- newState() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RMPEnvironment
-
Creates a new state of the problem.
- newState() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.SSFileEnvironment
-
Does create a new state of the problem.
- newTable() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.MyDataset
-
It create a new table with the examples from the Data Set
- newToken(int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Token
-
Returns a new Token object, by default.
- newToken(int) - Static method in class keel.Algorithms.Rule_Learning.Swap1.Token
-
Returns a new Token object, by default.
- newToken(int) - Static method in class keel.Dataset.Token
-
Returns a new Token object, by default.
- newtonInterp(double[], double[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EM.Interpolation
-
Interpolates with Horners-s method, computing the polynomial
a0+(t-x0)(a1+(t-x1)(a2+(t-x2)(a3+(...
- NExp - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- NExprArit - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- NExprHold - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- next(Queue.QueueNode) - Method in class keel.Algorithms.Decision_Trees.M5.Queue.QueueNode
-
Sets the next node in the queue, and returns it.
- next() - Method in class keel.Algorithms.Decision_Trees.M5.Queue.QueueNode
-
Gets the next node in the queue.
- next - Variable in class keel.Algorithms.Discretizers.Khiops.DeltaValue
-
pointer for the next merge of intervals
- next - Variable in class keel.Algorithms.Discretizers.MODL.DeltaValue
-
pointer for the next bound of intervals
- next(Queue.QueueNode) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Queue.QueueNode
-
Sets the next node in the queue, and returns it.
- next() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Queue.QueueNode
-
Gets the next node in the queue.
- next() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Mask
-
Advances the cursor to the next active entry.
- next(Queue.QueueNode) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue.QueueNode
-
Sets the next node in the queue, and returns it.
- next() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue.QueueNode
-
Gets the next node in the queue.
- next() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Mask
-
Advances the cursor to the next active entry.
- next - Variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Token
-
A reference to the next regular (non-special) token from the input
stream.
- next() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset
-
Return the next instance
- next() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.ArffDataSet
-
Return the next instance
- next() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.ArrayDataset
-
Return the next instance
- next() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.FileDataset
-
Return the next instance
- next() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset
-
Return the next instance
- next() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.KeelDataSet
-
Return the next instance
- next(int) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.MersenneTwister
-
- next() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Mask
-
Advances the cursor to the next active entry.
- next() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Mask
-
Advances the cursor to the next active entry.
- next() - Method in class keel.Algorithms.Rule_Learning.PART.Mask
-
Advances the cursor to the next active entry.
- next() - Method in class keel.Algorithms.Rule_Learning.Ripper.Mask
-
Advances the cursor to the next active entry.
- next() - Method in class keel.Algorithms.Rule_Learning.Slipper.Mask
-
Advances the cursor to the next active entry.
- next - Variable in class keel.Algorithms.Rule_Learning.Swap1.Token
-
A reference to the next regular (non-special) token from the input
stream.
- next(Queue.QueueNode) - Method in class keel.Algorithms.SVM.SMO.core.Queue.QueueNode
-
Sets the next node in the queue, and returns it.
- next() - Method in class keel.Algorithms.SVM.SMO.core.Queue.QueueNode
-
Gets the next node in the queue.
- next - Variable in class keel.Dataset.Token
-
A reference to the next regular (non-special) token from the input
stream.
- next_arc(int) - Method in class keel.GraphInterKeel.experiments.Graph
-
Search for the next arc
- nextBoolean() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.MersenneTwister
-
- nextByte() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.MersenneTwister
-
Returns the next pseudo-random Byte.
- nextBytes(byte[]) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.MersenneTwister
-
A bug fix for all versions of the JDK.
- nextChar() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.MersenneTwister
-
Returns the next pseudo-random char.
- nextDouble() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.MersenneTwister
-
- nextElement() - Method in class keel.Algorithms.Decision_Trees.M5.M5Vector.FastVectorEnumeration
-
Returns the next element.
- nextElement() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.FastVector.FastVectorEnumeration
-
Returns the next element.
- nextElement() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.FastVector.FastVectorEnumeration
-
Returns the next element.
- nextElement() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.FastVector.FastVectorEnumeration
-
Returns the next element.
- nextElement() - Method in class keel.Algorithms.SVM.SMO.core.FastVector.FastVectorEnumeration
-
Returns the next element.
- nextFloat() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.MersenneTwister
-
- nextInt(int) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.MersenneTwister
-
- nextIteration() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_ADI
-
- nextIteration() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_ADI
-
- nextLevelExists - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
The next level indicator flag: set to true if new level
generated and by default.
- nextNondecFunc(int[], int) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Combinatoric
-
next nondecreasing function (r^d) in lex order
- nextShort() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.MersenneTwister
-
Returns the next pseudo-random char.
- nf - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.ExponentialFormat
-
Decimal format of this exponential one.
- nf - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.FloatingPointFormat
-
Decimal format.
- Nhidden - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Number of units in each layer
- Nhidden - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Number of units in each layer
- Nhidden - Variable in class keel.Algorithms.Neural_Networks.gann.Network
-
Number of units in each layer
- Nhidden - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Number of units in each layer
- Nhidden - Variable in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Number of units in each layer
- Nhidden - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Number of units in each layer
- Nhidden - Variable in class keel.Algorithms.Neural_Networks.net.Network
-
Number of units in each layer
- Nhidden - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Number of units in each layer
- Nhidden_layers - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
No of hidden layers
- Nhidden_layers - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Number of hidden layers
- Nhidden_layers - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Number of hidden layers
- Nhidden_layers - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
No of hidden layers
- Ninputs - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Number of units in each layer
- Ninputs - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Number of units in each layer
- Ninputs - Variable in class keel.Algorithms.Neural_Networks.gann.Network
-
Number of units in each layer
- Ninputs - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Number of units in each layer
- Ninputs - Variable in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Number of units in each layer
- Ninputs - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Number of units in each layer
- Ninputs - Variable in class keel.Algorithms.Neural_Networks.net.Network
-
Number of units in each layer
- Ninputs - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Number of units in each layer
- nInputs - Variable in class keel.GraphInterKeel.datacf.util.Dataset
-
Input number
- nInstances - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Number of instances of each classes.
- nInstances - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Number of instances of each classes.
- nInstances - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Number of instances of each classes.
- nInstances - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Number of instances of each classes.
- nInstances - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Number of instances of each classes.
- nInstances - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Number of instances of each classes.
- nInstances - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Number of instances of each classes.
- nInstances - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Number of instances of each classes.
- nInstances - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- nivel_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Ttabla
-
cover level
- nivel_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Ttabla
-
cover level
- nivel_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Ttabla
-
cover level
- nivel_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Ttabla
-
cover level
- nivel_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Ttabla
-
cover level
- nivel_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Ttabla
-
cover level
- nivel_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Ttabla
-
cover level
- nivel_cubrimiento - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Ttabla
-
cover level
- nJobFinished() - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
-
Return true if a job "n" has finished
- NLabel - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- nLabels(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.DataBase
-
It returns the number of possible labels for a variable.
- nlabels - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.GenotypeBoosting
-
- Nlayers - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Number of layers
- Nlayers - Variable in class keel.Algorithms.Neural_Networks.gann.Network
-
Number of layers
- Nlayers - Variable in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Number of layers
- Nlayers - Variable in class keel.Algorithms.Neural_Networks.net.Network
-
Number of layers
- NLog - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- NM - Class in keel.Algorithms.Lazy_Learning.NM
-
File: NM.java
The Nearest Mean Algorithm.
- NM(String) - Constructor for class keel.Algorithms.Lazy_Learning.NM.NM
-
The main method of the class
- NMEEFSD - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD
-
NMEEFSD
Non-dominated Multi-objective Evolutionary algorithm for Extracting Fuzzy rules in Subgroup Discovery
Algorithm for the discovery of rules describing subgroups
- NMEEFSD() - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.NMEEFSD
-
- NMinus - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- NN(int, double[][], double[]) - Method in class keel.Algorithms.Neural_Networks.LVQ.LVQ
-
Computes and returns the Nearest Neighbour (NN) of the given example in the given dataset.
- nn(double[], double[][][]) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ConjGradNN
-
Calculates the output of a perceptron with weights W for input x
- nn(double[], double[][][]) - Method in class keel.Algorithms.Shared.ClassicalOptim.ConjGradNN
-
Calculates the output of a perceptron with weights W for input x
- nnoutput(double[]) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.GCNet
-
Calculated the output of present perceptron with input x and returns it in original scale.
- nnoutput(double[]) - Method in class keel.Algorithms.Shared.ClassicalOptim.GCNet
-
Calculated the output of present perceptron with input x and returns it in original scale.
- NNSSLAlgorithm - Class in keel.Algorithms.Semi_Supervised_Learning.NNSSL
-
NNSSL algorithm calling.
- NNSSLAlgorithm() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.NNSSL.NNSSLAlgorithm
-
- NNSSLGenerator - Class in keel.Algorithms.Semi_Supervised_Learning.NNSSL
-
This class implements the Self-traning wrapper.
- NNSSLGenerator(PrototypeSet, int, int, int, int, double, double, double, double, double) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.NNSSL.NNSSLGenerator
-
Build a new NNSSLGenerator Algorithm
- NNSSLGenerator(PrototypeSet, PrototypeSet, PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.NNSSL.NNSSLGenerator
-
Build a new NNSSLGenerator Algorithm
- nntrain(int, int, double[][], double[][], int[], double[], Randomize) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.GCNet
-
trains a perceptron with Conjugated Gradient algorithm and returns
the mean square error of neural network output compared to expected output.
- nntrain(int, int, double[][], double[][], int[], double[], Randomize) - Method in class keel.Algorithms.Shared.ClassicalOptim.GCNet
-
trains a perceptron with Conjugated Gradient algorithm and returns
the mean square error of neural network output compared to expected output.
- nntrainGD(int, int, double[][], double[][], int[], double[], Randomize) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.GCNet
-
trains a perceptron with Conjugated Descendent algorithm and returns
the mean square error of neural network output compared to expected output.
- nntrainGD(int, int, double[][], double[][], int[], double[], Randomize) - Method in class keel.Algorithms.Shared.ClassicalOptim.GCNet
-
trains a perceptron with Conjugated Descendent algorithm and returns
the mean square error of neural network output compared to expected output.
- NO - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Fuzzy_Ish
-
Configuration flags.
- no_cubiertos - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.MyDataset
-
Number of uncovered instaces.
- no_cubiertos - Variable in class keel.Algorithms.RE_SL_Methods.LEL_TSK.MiDataset
-
- no_cubiertos - Variable in class keel.Algorithms.RE_SL_Methods.MamWM.MiDataset
-
- no_cubiertos - Variable in class keel.Algorithms.RE_SL_Methods.mogulHC.MiDataset
-
- no_cubiertos - Variable in class keel.Algorithms.RE_SL_Methods.mogulIRL.MiDataset
-
- no_cubiertos - Variable in class keel.Algorithms.RE_SL_Methods.mogulSC.MiDataset
-
- no_cubiertos - Variable in class keel.Algorithms.RE_SL_Methods.TSK_IRL.MiDataset
-
- no_cubiertos - Variable in class keel.Algorithms.RE_SL_Postprocess.Mam2TSK.MiDataset
-
- no_cubiertos - Variable in class keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB.MiDataset
-
- no_cubiertos - Variable in class keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules.MiDataset
-
- no_cubiertos - Variable in class keel.Algorithms.RE_SL_Postprocess.MamSelect.MiDataset
-
- no_cubiertos - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWSelect.MiDataset
-
- no_cubiertos - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWTuning.MiDataset
-
- no_cubiertos - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules.MiDataset
-
- no_cubiertos - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKSelect.MiDataset
-
- NO_RW - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.Fuzzy_Chi
-
Configuration flags.
- NO_RW - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.GP_COACH
-
Configuration flag (NO_RW).
- NO_RW - Static variable in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.GP_COACH_H
-
Configuration flag (NO_RW)
- noClasificadas() - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
Number of instances not removed.
- noClasificadas() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
Number of instances not removed.
- noClasificadas() - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
Number of instances not removed.
- NOCUBRE - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.Fitness
-
- Node - Class in keel.Algorithms.Decision_Trees.PUBLIC
-
File: Node.java
Data structure that is used in the construction of the decision tree.
- Node() - Constructor for class keel.Algorithms.Decision_Trees.PUBLIC.Node
-
Creates a node with a base constructor that doesn't initialize the node structures
- Node(myDataset, int) - Constructor for class keel.Algorithms.Decision_Trees.PUBLIC.Node
-
Creates a node from a complete dataset and its corresponding id.
- Node(Node) - Constructor for class keel.Algorithms.Decision_Trees.PUBLIC.Node
-
Creates a node from another existing node
- Node - Class in keel.Algorithms.Decision_Trees.SLIQ
-
This class implements the nodes of SLIQ decision tree.
- Node(int) - Constructor for class keel.Algorithms.Decision_Trees.SLIQ.Node
-
Paramenter constructor.
- Node - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
The class defines the characteristics of a node.
- Node(int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
Constructor.
- Node(int, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
Constructor.
- Node(Node) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
Constructor.
- node - Class in keel.Algorithms.Neural_Networks.gmdh
-
Class that represents a node of a Neural Network
- node() - Constructor for class keel.Algorithms.Neural_Networks.gmdh.node
-
Constructor
- Node - Class in keel.GraphInterKeel.experiments
-
- Node() - Constructor for class keel.GraphInterKeel.experiments.Node
-
Builder
- Node(ExternalObjectDescription, Point, int) - Constructor for class keel.GraphInterKeel.experiments.Node
-
Builder
- node_selected - Variable in class keel.GraphInterKeel.experiments.GraphPanel
-
- NodeAdd - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
The class define a node with two children.
- NodeAdd(NodeExprArit, NodeExprArit) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeAdd
-
Constructor.
- NodeAdd(NodeAdd) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeAdd
-
Constructor: Generate a new NodeAdd from a given one (NodeAdd)
- NodeAnd - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for management and nodes.
- NodeAnd(NodeAssert, NodeAssert) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeAnd
-
Constructor.
- NodeAnd(NodeAnd) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeAnd
-
Constructor: Generate a new NodeAnd from a given one (NodeAnd)
- NodeAssert - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for constructor and define abstrac methods.
- NodeAssert(int, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeAssert
-
Constructor.
- NodeConsequent - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for management the consequent of a node.
- NodeConsequent(int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeConsequent
-
Constructor.
- NodeConsequent(NodeConsequent) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeConsequent
-
Constructor.
- NodeExp - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for management of nodes that are evaluated to alfa-cuts family
- NodeExp(NodeExprArit) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeExp
-
Constructor.
- NodeExp(NodeExp) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeExp
-
Constructor.
- NodeExprArit - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for constructor and define abstract methods.
- NodeExprArit(int, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeExprArit
-
Constructor.
- NodeExprHold - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for management of nodes that are evaluated to a vector of fuzzy numbers.
- NodeExprHold(NodeExprArit[]) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeExprHold
-
Constructor.
- NodeExprHold(NodeExprHold) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeExprHold
-
Constructor.
- NodeIs - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for management a node witch is evaluated to a real number.
- NodeIs(NodeVariable, NodeLabel) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeIs
-
Generate a new node witch two children
- NodeIs(NodeIs) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeIs
-
Generate a new node from another one
- NodeLabel - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for management terminal nodes witch are evaluated as linguistic fuzzy labels
- NodeLabel(Fuzzy) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeLabel
-
Constructor.
- NodeLabel(NodeLabel) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeLabel
-
Constructor.
- nodeLink - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.FPtree.FPgrowthHeaderTable
-
The forward link to the next node in the link list of nodes.
- nodeLink - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.FPtree.FPgrowthHeaderTable
-
The forward link to the next node in the link list of nodes.
- NodeLog - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for management log nodes.
- NodeLog(NodeExprArit) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeLog
-
Constructor.
- NodeLog(NodeLog) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeLog
-
Constructor.
- NodeMinus - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for management minus node.
- NodeMinus(NodeExprArit, NodeExprArit) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeMinus
-
Constructor.
- NodeMinus(NodeMinus) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeMinus
-
Constructor.
- nodeModel - Variable in class keel.Algorithms.Decision_Trees.C45.Tree
-
The model of the node.
- nodeModel - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Tree
-
The model of the node.
- nodeModel - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
-
The model of the node.
- nodeModel - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Tree
-
The model of the node.
- nodeModel - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Tree
-
The model of the node.
- nodeModel - Variable in class keel.Algorithms.Rule_Learning.C45Rules.Tree
-
The model of the node.
- nodeModel - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Tree
-
The model of the node.
- nodeModel - Variable in class keel.Algorithms.Rule_Learning.PART.Tree
-
The model of the node.
- nodeModel - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
-
The model of the node.
- NodeOr - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for management of or nodes.
- NodeOr(NodeAssert, NodeAssert) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeOr
-
Constructor.
- NodeOr(NodeOr) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeOr
-
Constructor.
- NodeOutput(double[], node[]) - Method in class keel.Algorithms.Neural_Networks.gmdh.node
-
Obtains the node output
- NodeProduct - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for management of product nodes.
- NodeProduct(NodeExprArit, NodeExprArit) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeProduct
-
Constructor.
- NodeProduct(NodeProduct) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeProduct
-
Constructor.
- NodeRule - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for management a rule node.
- NodeRule(NodeAssert, NodeConsequent, double) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeRule
-
Constructor.
- NodeRule(NodeRule) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeRule
-
Constructor.
- NodeRuleBase - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for management of a node rule base.
- NodeRuleBase(NodeRule[]) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeRuleBase
-
Constructor.
- NodeRuleBase(NodeRuleBase) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeRuleBase
-
Constructor.
- NodeSquareRoot - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for management of square root node.
- NodeSquareRoot(NodeExprArit) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeSquareRoot
-
Constructor.
- NodeSquareRoot(NodeSquareRoot) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeSquareRoot
-
Constructor.
- nodeSwap(int, int, Tree) - Method in class keel.Algorithms.Decision_Trees.Target.Tree
-
Swaps the two nodes given with the given tree.
- NodeValue - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for management nodes with the number of the variable and the value of
the variable as a string.
- NodeValue(int, FuzzyAlphaCut[]) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeValue
-
Constructor.
- NodeValue(NodeValue) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeValue
-
Constructor.
- NodeVariable - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node
-
Class for management nodes with the number of the variable and the value of the variable.
- NodeVariable(int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeVariable
-
Constructor.
- NodeVariable(NodeVariable) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeVariable
-
Constructor.
- Nodo - Class in keel.Algorithms.Decision_Trees.DT_oblicuo
-
Tree node.
- Nodo() - Constructor for class keel.Algorithms.Decision_Trees.DT_oblicuo.Nodo
-
Default constructor.
- Nodo(myDataset, int, int[], int) - Constructor for class keel.Algorithms.Decision_Trees.DT_oblicuo.Nodo
-
Paramenter constructor.
- Nodo - Class in keel.Algorithms.Decision_Trees.Target
-
Tree node.
- Nodo() - Constructor for class keel.Algorithms.Decision_Trees.Target.Nodo
-
Default constructor.
- Nodo(boolean, myDataset, double, double) - Constructor for class keel.Algorithms.Decision_Trees.Target.Nodo
-
Paramenter constructor.
- nodos - Static variable in class keel.Algorithms.Decision_Trees.DT_oblicuo.Tree
-
Number of Leafs in the tree
- nodos - Static variable in class keel.Algorithms.Decision_Trees.Target.Tree
-
Number of Leafs in the tree
- nodosT - Static variable in class keel.Algorithms.Decision_Trees.DT_oblicuo.Tree
-
Number of Leafs in the tree
- nodosT - Static variable in class keel.Algorithms.Decision_Trees.Target.Tree
-
Number of Leafs in the tree
- NOELEGIR - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.Fitness
-
- noEstaCubierta() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Muestra
-
Sets the example as uncovered.
- noEstaCubierta() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Muestra
-
Sets the example as uncovered.
- noEstaCubierta() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Muestra
-
Sets the example as uncovered.
- noEstaCubierta() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Muestra
-
Sets the example as uncovered.
- noEstaCubierta() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Muestra
-
Sets the example as uncovered.
- noEvaluado() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.Individuo
-
- nOfHiddenLayers - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
-
Number of hidden layers of the neural nets
- nOfInputs - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
-
Number of inputs of the neural nets
- nofinputs - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Number of inputs
- nOfLinksRelative - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Has the operator a relative added/removed number of links, depending of the neural net
- nofobservations - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Number of observations (Matrix columns)
- nOfOutputs - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
-
Number of outputs
- nofoutputs - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Number of outputs
- nOfPartitions - Variable in class keel.GraphInterKeel.datacf.partitionData.HoldOutOptionsJDialog
-
Number of partitions
- nofselSecondMutator - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Number of parents mutated with second mutator
- nofvariables - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Number of variables (Matrix rows)
- nogbest - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Number of generations without improving best fitness
- nogmean - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Number of generations without improving mean fitness
- noiseSensitivity - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Parameters
-
Noise Sensitivity.
- noisyInstances - Variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.INFFC_2STEPS
-
- nom - Variable in class keel.Algorithms.Hyperrectangles.EHS_CHC.Hyper
-
- nombreAtributo(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
Returns the name of the attribute with the id given.
- nombreClase(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
Returns the nominal value for a class represented by the integer given.
- nombreClase(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It returns the name of the class of index intValue
- nombreClase(int) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
It returns the name of the class of index intValue
- nombreClase(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
It returns the name of the class of index intValue
- nombreClase(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Returns the nominal value for a class represented by the integer given.
- nombres() - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
It returns the names for all input variables
- nombres() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It returns the name of the attributes
- nombres() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
It returns the name of the attributes
- nombres() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
It returns the name of every input attributes.
- nombres() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
It returns the name of the attributes
- nombres() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
It returns the name of the attributes
- nombres() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It returns the names for all input variables
- nombreVar(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
It returns the attribute name of a given variable
- nombreVar(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
Returns the name of the attribute with the id given.
- nombreVar(int) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
Returns the name of the attribute with the id given.
- nombreVar(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
Returns the name of the attribute with the id given.
- nombreVar(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It returns the attribute name of a given variable
- NOMINAL - Static variable in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Constant set for nominal attributes.
- NOMINAL - Static variable in class keel.Algorithms.Decision_Trees.Target.myDataset
-
Number to represent type of variable nominal.
- nominal - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Identifies the nominal attributes.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Constant set for nominal attributes.
- NOMINAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Constant set for nominal attributes.
- NOMINAL - Static variable in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Nominal type of attributes.
- NOMINAL - Static variable in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
Number to represent type of variable nominal.
- nominal - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
If an attribute is nominal or not.
- NOMINAL - Static variable in class keel.Algorithms.Rule_Learning.AQ.Instance
-
Attribute nominal type flag.
- NOMINAL - Static variable in class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Rule_Learning.SRI.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
Label for NOMINAL values.
- NOMINAL - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Nominal type of attributes.
- NOMINAL - Static variable in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Gene
-
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Gene
-
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Gene
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Gene
-
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Gene
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
-
Number to represent type of variable nominal.
- NOMINAL - Static variable in class keel.Dataset.Attribute
-
Label for NOMINAL values.
- Nominal2Binary - Class in keel.Algorithms.Preprocess.Transformations.Nominal2Binary
-
This class performs the nominal to binary transformation.
- Nominal2Binary(String) - Constructor for class keel.Algorithms.Preprocess.Transformations.Nominal2Binary.Nominal2Binary
-
Creates a new instance of min_max
- NominalAntd - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
The antecedent with nominal attribute
- NominalAntd(AttributeWeka) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.NominalAntd
-
Constructor
- nominalCounts - Variable in class keel.Algorithms.Decision_Trees.M5.M5AttrStats
-
Counts of each nominal value
- nominalCounts - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.AttributeStats
-
Counts of each nominal value
- nominalDistance - Static variable in class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Nominal distance.
- nominalDistance - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Metodo
-
- nominalDistance - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
- nominalDistance - Static variable in class keel.Algorithms.Preprocess.Basic.Metodo
-
Nominal distances.
- nominales - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- nominalList(Attribute) - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- nominalList(Attribute) - Static method in class keel.Dataset.DataParser
-
- nominalTest - Variable in class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Test Nominal values.
- NominalToBinaryFilter - Class in keel.Algorithms.Decision_Trees.M5
-
Converts all nominal attributes into binary numeric
attributes.
- NominalToBinaryFilter() - Constructor for class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
- nominalTrain - Variable in class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Training Nominal values.
- nominalTrain - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Metodo
-
- nominalTrain - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
- nominalTrain - Variable in class keel.Algorithms.Preprocess.Basic.Metodo
-
Training Nominal input data.
- nominalValid(String) - Method in class keel.GraphInterKeel.datacf.util.Attribute
-
Return a boolean for a given nominal value,
true is valid value, false invalid value.
- nominalValue(int, double) - Static method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
Returns a nominal representation of a attribute's real value given as argument.
- non_evaluated() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Individual
-
It returns if the individual has been evaluated o not
- NONE - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Fuzzy_Ish
-
Configuration flags.
- NONE - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- nonParametric_mouseEntered(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Enter in statistical button
- nonParametric_mouseExited(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Exit from statistical button
- nonParametric_mouseReleased(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Entering in Statistical module
- nonVoidClasses() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Return classes with at least one element.
- nonVoidClasses() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Return classes with at least one element.
- noOutputs - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.MyDataset
-
Identifies if there is ouput variables or not.
- noOutputs - Variable in class keel.Algorithms.RE_SL_Methods.LEL_TSK.MiDataset
-
- noOutputs - Variable in class keel.Algorithms.RE_SL_Methods.MamWM.MiDataset
-
- noOutputs - Variable in class keel.Algorithms.RE_SL_Methods.mogulHC.MiDataset
-
- noOutputs - Variable in class keel.Algorithms.RE_SL_Methods.mogulIRL.MiDataset
-
- noOutputs - Variable in class keel.Algorithms.RE_SL_Methods.mogulSC.MiDataset
-
- noOutputs - Variable in class keel.Algorithms.RE_SL_Methods.TSK_IRL.MiDataset
-
- noOutputs - Variable in class keel.Algorithms.RE_SL_Postprocess.Mam2TSK.MiDataset
-
- noOutputs - Variable in class keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB.MiDataset
-
- noOutputs - Variable in class keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules.MiDataset
-
- noOutputs - Variable in class keel.Algorithms.RE_SL_Postprocess.MamSelect.MiDataset
-
- noOutputs - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWSelect.MiDataset
-
- noOutputs - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWTuning.MiDataset
-
- noOutputs - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules.MiDataset
-
- noOutputs - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKSelect.MiDataset
-
- NOr - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- norm1() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns the L1-norm of the vector
- norm1() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
One norm
- norm2() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns the L2-norm of the vector
- norm2() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Two norm
- norm2() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.SingularValueDecomposition
-
Two norm
- NORMAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Organizacion
-
- Normal(double, double) - Static method in class keel.Algorithms.Neural_Networks.gann.Rand
-
Generate a normal distributed value for N(m, s)
- NormalDistribution - Class in keel.Algorithms.Semi_Supervised_Learning.Basic
-
Implements a normal distribution function.
- NormalDistribution() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.NormalDistribution
-
Default constructor.
- normalDistribution - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Maths
-
Distribution type: noraml
- NormalDistribution - Class in keel.GraphInterKeel.statistical.tests
-
File: NormalDistribution.java.
- NormalDistribution() - Constructor for class keel.GraphInterKeel.statistical.tests.NormalDistribution
-
Default builder
- normalInverse(double) - Static method in class keel.Algorithms.Lazy_Learning.Statistics
-
Returns the value, x, for which the area under the
Normal (Gaussian) probability density function (integrated from
minus infinity to x) is equal to the argument y
(assumes mean is zero, variance is one).
- normalInverse(double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
Returns the value, x, for which the area under the
Normal (Gaussian) probability density function (integrated from
minus infinity to x) is equal to the argument y
(assumes mean is zero, variance is one).
- normaliza() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Dataset
-
It converts all values of the data-set to the interval [0,1]
- normaliza() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Dataset
-
It converts all values of the data-set to the interval [0,1]
- normaliza() - Method in class keel.Algorithms.Rule_Learning.AQ.Dataset
-
It converts all values of the data-set to the interval [0,1]
- normaliza() - Method in class keel.Algorithms.Rule_Learning.CN2.Dataset
-
It converts all values of the data-set to the interval [0,1]
- normaliza() - Method in class keel.Algorithms.Rule_Learning.Prism.Dataset
-
Convert all the values of the set of values in the inetrval[0,1]
- normaliza() - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
-
Convert all the values of the set of values in the inetrval[0,1]
- normaliza() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Dataset
-
It converts all values of the data-set to the interval [0,1]
- normaliza() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Dataset
-
It converts all values of the data-set to the interval [0,1]
- normaliza() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Dataset
-
It converts all values of the data-set to the interval [0,1]
- normalizar() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Metodo
-
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.SMOTE
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.ADASYN.ADASYN
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.ADOMS.ADOMS
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.AHCClustering.AHCClustering
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.Borderline_SMOTE.Borderline_SMOTE
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.CNN.CNN
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.CNN_TomekLinks.CNN_TomekLinks
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.CPM.CPM
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.NCL.NCL
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.OSS.OSS
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.RandomOverSampling.RandomOverSampling
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.RandomUnderSampling.RandomUnderSampling
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.Safe_Level_SMOTE.Safe_Level_SMOTE
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SBC.SBC
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE.SMOTE
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_ENN.SMOTE_ENN
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_TomekLinks.SMOTE_TomekLinks
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SPIDER.SPIDER
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.TomekLinks.TomekLinks
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizar() - Method in class keel.Algorithms.Preprocess.Basic.Metodo
-
This function builds the data matrix for reference data and normalizes inputs values
- normalize() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It transforms the input space into the [0,1] range
- normalize(double[]) - Static method in class keel.Algorithms.Decision_Trees.C45_Binarization.OVO
-
Normalizes the doubles in the array by their sum.
- normalize(double[], double) - Static method in class keel.Algorithms.Decision_Trees.C45_Binarization.OVO
-
Normalizes the doubles in the array using the given value.
- normalize() - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It transform the input space into the [0,1] range
- normalize(double[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Normalizes the doubles in the array by their sum.
- normalize(double[], double) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Normalizes the doubles in the array using the given value.
- normalize() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
It transform the input space into the [0,1] range
- normalize(double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Normalizes the doubles in the array by their sum.
- normalize(double[], double) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Normalizes the doubles in the array using the given value.
- normalize() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
It transform the input space into the [0,1] range
- normalize(double[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Normalizes the doubles in the array by their sum.
- normalize(double[], double) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Normalizes the doubles in the array using the given value.
- normalize() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
-
Convert all the values of the set of values in the inetrval[0,1]
- normalize() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
It transform the input space into the [0,1] range
- normalize(double[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Normalizes the doubles in the array by their sum.
- normalize(double[], double) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Normalizes the doubles in the array using the given value.
- normalize(double, double, double) - Static method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Normalizes a given value using the maximum and minimum value given.
- normalize() - Method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
This function builds the data matrix for training data and normalizes inputs values
- normalize() - Method in class keel.Algorithms.Preprocess.Transformations.decimal_scaling.decimal_scaling
-
Process the training and test files provided in the parameters file to the constructor.
- normalize() - Method in class keel.Algorithms.Preprocess.Transformations.min_max.min_max
-
Process the training and test files provided in the parameters file to the constructor.
- normalize() - Method in class keel.Algorithms.Preprocess.Transformations.z_score.z_score
-
Process the training and test files provided in the parameters file to the constructor.
- normalize(double) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
It transform the input space into the [0,t] range
- normalize(double) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
It transform the input space into the [0,t] range
- normalize() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
-
Converts all the values of the set into the [0,1] interval
- normalize() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It transform the input space into the [0,1] range
- normalize() - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
-
It transform the input space into the [0,1] range
- normalize(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Normalizes the doubles in the array by their sum.
- normalize(double[], double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Normalizes the doubles in the array using the given value.
- normalize(double, double, double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Normalizes a value given with its minimum and maximum values of its interval.
- normalize(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Normalizes the doubles in the array by their sum.
- normalize(double[], double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Normalizes the doubles in the array using the given value.
- normalize(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Normalizes the doubles in the array by their sum.
- normalize(double[], double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Normalizes the doubles in the array using the given value.
- normalize(double[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Normalizes the doubles in the array by their sum.
- normalize(double[], double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Normalizes the doubles in the array using the given value.
- normalize() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
-
It transform the input space into the [0,1] range
- normalize(double[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Normalizes the doubles in the array by their sum.
- normalize(double[], double) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Normalizes the doubles in the array using the given value.
- normalize(double, Attribute) - Method in class keel.Algorithms.SVM.SMO.SMO
-
Normalize the input value according to the provided attribute
- normalize_statistics() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It transforms the input space into the [0,1] range, but it is stored in X_normalized.
- Normalize_String(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- Normalize_String(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- normalizeAndCenter() - Method in class keel.Algorithms.Discretizers.UCPD.UCPD
-
It normalizes continuous attributes and center them on their mean
- NORMALIZED_SUM - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.GP_COACH
-
Configuration flag (NORMALIZED_SUM). also known as additive combination
- NORMALIZED_SUM - Static variable in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.GP_COACH_H
-
Configuration flag (NORMALIZED_SUM)
- normalizedKernel(char[], char[]) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
evaluates the normalized kernel between s and t.
- NormalizedPolyKernel - Class in keel.Algorithms.SVM.SMO.supportVector
-
The normalized polynomial kernel.
- NormalizedPolyKernel() - Constructor for class keel.Algorithms.SVM.SMO.supportVector.NormalizedPolyKernel
-
default constructor - does nothing
- NormalizedPolyKernel(Instances, int, double, boolean) - Constructor for class keel.Algorithms.SVM.SMO.supportVector.NormalizedPolyKernel
-
Creates a new NormalizedPolyKernel
instance.
- normalizer - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Normalizer used to normalizer the trainData
- Normalizer - Class in keel.Algorithms.Neural_Networks.NNEP_Common.util.normalizer
-
Represents a data normalizer
- Normalizer() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.util.normalizer.Normalizer
-
Empty constructor
- normalizeReference() - Method in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizeReference() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizeReference() - Method in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizeReference() - Method in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizeReference() - Method in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
This function builds the data matrix for reference data and normalizes inputs values
- normalizeTest() - Method in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
This function builds the data matrix for test data and normalizes inputs values
- normalizeTest() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
This function builds the data matrix for test data and normalizes inputs values
- normalizeTest() - Method in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
This function builds the data matrix for test data and normalizes inputs values
- normalizeTest() - Method in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
This function builds the data matrix for test data and normalizes inputs values
- normalizeTest() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
This function builds the data matrix for test data and normalizes inputs values
- normalizeTest() - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
This function builds the data matrix for test data and normalizes inputs values
- normalizeTest() - Method in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
This function builds the data matrix for test data and normalizes inputs values
- normalizeTrain() - Method in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
This function builds the data matrix for training data and normalizes inputs values
- normalizeTrain() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
This function builds the data matrix for training data and normalizes inputs values
- normalizeTrain() - Method in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
This function builds the data matrix for training data and normalizes inputs values
- normalizeTrain() - Method in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
This function builds the data matrix for training data and normalizes inputs values
- normalizeTrain() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
This function builds the data matrix for training data and normalizes inputs values
- normalizeTrain() - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
This function builds the data matrix for training data and normalizes inputs values
- normalizeTrain() - Method in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
This function builds the data matrix for training data and normalizes inputs values
- normalizeValue(double) - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
It does normalize a value.
- normalizeValue(double) - Method in class keel.Dataset.Attribute
-
It does normalize a value.
- normalProbability(double) - Static method in class keel.Algorithms.Decision_Trees.M5.Distributions
-
Returns probability that the standardized normal variate Z (mean = 0, standard
deviation = 1) is less than z.
- normalProbability(double) - Static method in class keel.Algorithms.Lazy_Learning.Statistics
-
Returns the area under the Normal (Gaussian) probability density
function, integrated from minus infinity to x
(assumes mean is zero, variance is one).
- normalProbability(double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
Returns the area under the Normal (Gaussian) probability density
function, integrated from minus infinity to x
(assumes mean is zero, variance is one).
- normF() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Frobenius norm
- normInf() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Infinity norm
- normp(double) - Static method in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.CDF_Normal
-
This method calculates the normal cumulative distribution function.
- normp(double) - Static method in class keel.GraphInterKeel.statistical.tests.CDF_Normal
-
This method calculates the normal cumulative distribution function.
- Not_Covered_Examples() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
-
It counts the number of not covered examples
- Not_Covered_Examples() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Returns the number of examples not covered
- Not_Covered_Examples() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.example_set
-
It counts the number of not covered examples
- Not_Covered_Examples() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.example_set
-
It counts the number of not covered examples
- Not_Covered_Training_Example(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
-
- Not_Covered_Training_Example(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Returns the number of examples not covered belonging to the partition "particion"
- Not_Covered_Training_Example(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.example_set
-
- Not_Covered_Training_Example(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.example_set
-
- not_eval() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
-
Checks if the current rule has been evaluated or not.
- not_eval() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.CHC_Chromosome
-
Checks if the current chromosome has been evaluated or not.
- not_eval() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
-
Checks if the current rule has been evaluated or not.
- NOT_INVOLVED - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
-
- NOT_INVOLVED - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Gene
-
- NOT_INVOLVED - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Gene
-
It is used for representing and handling a Gene throughout the evolutionary learning
- NOT_INVOLVED - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
-
It is used for representing and handling a Gene throughout the evolutionary learning
- NOT_INVOLVED - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Gene
-
It is used for representing and handling a Gene throughout the evolutionary learning
- NoTakeInitGene() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Gene
-
Initialise the variable which does not take part in the rule
- noTakeInitGene() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Gene
-
Non-intervene Initialization of an existing gene
- NoTakeInitGene() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Gene
-
Initialise the variable which does not take part in the rule
- NoTakeInitGene() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Gene
-
Non-intervene Initialization of an existing gene
- NoTakeInitGene() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Gene
-
Initialise the variable which does not take part in the rule
- notMemberOf(short, short[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Checks whether a particular element/attribute identified by a
column number is not a member of the given item set.
- notMemberOf(short, short[]) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Checks whether a particular element/attribute identified by a
column number is not a member of the given item set.
- notMemberOf(short, short[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Checks whether a particular element/attribute identified by a
column number is not a member of the given item set.
- notSelectedDataset - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- Noutputs - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Number of units in each layer
- Noutputs - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Number of units in each layer
- Noutputs - Variable in class keel.Algorithms.Neural_Networks.gann.Network
-
Number of units in each layer
- Noutputs - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Number of units in each layer
- Noutputs - Variable in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Number of units in each layer
- Noutputs - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Number of units in each layer
- Noutputs - Variable in class keel.Algorithms.Neural_Networks.net.Network
-
Number of units in each layer
- Noutputs - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Number of units in each layer
- nOutputs - Variable in class keel.GraphInterKeel.datacf.util.Dataset
-
Output number
- NProduct - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- NQueue - Class in keel.Algorithms.Lazy_Learning.IDIBL
-
File: NQueue.java
A class modelling a queue of neighbors.It sorts its elements
automatically, satrting from the nearest neighbor.
- NQueue() - Constructor for class keel.Algorithms.Lazy_Learning.IDIBL.NQueue
-
Buider.Builts a empty queue.
- nr_weight - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- nr_weight - Variable in class org.libsvm.svm_parameter
-
- NRMCS - Class in keel.Algorithms.Instance_Selection.NRMCS
-
File: NRMCS.java
The NRMCS Instance Selection algorithm.
- NRMCS(String) - Constructor for class keel.Algorithms.Instance_Selection.NRMCS.NRMCS
-
Default constructor.
- NRMCS - Class in keel.Algorithms.Preprocess.Instance_Selection.NRMCS
-
File: NRMCS.java
The NRMCS Instance Selection algorithm.
- NRMCS(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.NRMCS.NRMCS
-
Default constructor.
- NRule - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- NRuleBase - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- nrules - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- NS(Instance, int, int, double[], FreqListPair[], Vector[], double) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.EventCovering
-
Returns the NS value of a instance given.
- nsalidas - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.FuzzyClassifier
-
- NSC - Class in keel.Algorithms.Lazy_Learning.NSC
-
File: NSC.java
The Nearest subclass algorithm.
- NSC(String) - Constructor for class keel.Algorithms.Lazy_Learning.NSC.NSC
-
The main method of the class
- nscor2(int, int) - Static method in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Quoted from original Fortran documentation:
Calculates approximate expected values of normal order statistics.
- Nspecify - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Is the experience average of classifiers in the action set to
apply the specify operator.
- NSPECIFY - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- NSquareRoot - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- NSum - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- nu - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Exponent in the power function for the fitness evaluation
- nu - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Exponent in the power function for the fitness evaluation
- NU - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- nu - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- nu - Variable in class org.libsvm.svm_parameter
-
- NU_SVC - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- NU_SVC - Static variable in class org.libsvm.svm_parameter
-
- NU_SVR - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- NU_SVR - Static variable in class org.libsvm.svm_parameter
-
- nuevaTabla() - Method in class keel.Algorithms.RE_SL_Methods.mogulIRL.MiDataset
-
- nuevo(double, double) - Method in class keel.Algorithms.Decision_Trees.Target.Nodo
-
Constructs a new node by spitting the set with the probability given.
- NULL - Static variable in interface keel.Algorithms.Rule_Learning.Swap1.DataParserConstants
-
Data Parser Indentifier for null data.
- NULL - Static variable in interface keel.Dataset.DataParserConstants
-
- nulls - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Missing values of a instance
- nulls - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Missing values of a instance.
- nulls - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Missing values of a instance
- nulls - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Missing values of a instance.
- nulls - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Missing values of a instance
- nulls - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Missing values of a instance
- nulls - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Missing values of a instance
- nulls - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Missing values of a instance
- nulosTest - Variable in class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Test Missing values.
- nulosTrain - Variable in class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Training Missing values.
- nulosTrain - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Metodo
-
- nulosTrain - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
- nulosTrain - Variable in class keel.Algorithms.Preprocess.Basic.Metodo
-
Training null data.
- NUM_ALGORITHMS - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
Number of algorithms considered.
- num_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Ecm
-
Returns the number of rules generated.
- num_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Ecm
-
Returns the number of rules generated.
- num_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Ecm
-
Returns the number of rules generated.
- num_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Ecm
-
Returns the number of rules generated.
- num_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Ecm
-
Returns the number of rules generated.
- num_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Ecm
-
Returns the number of rules generated.
- num_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Ecm
-
Returns the number of rules generated.
- num_reglas() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Ecm
-
Returns the number of rules generated.
- num_used - Variable in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Population
-
Number of individuals really used
- num_used - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Population
-
Number or individuals really used
- numAliveRules - Variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
-
- numAliveRules - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
-
- numAllConditions(Instances) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Compute the number of all possible conditions that could
appear in a rule of a given data.
- numAllConditions() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Compute the number of all possible conditions that could
appear in a rule of a given data.
- numAllConditions(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Compute the number of all possible conditions that could
appear in a rule of a given data.
- numAllConditions() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Compute the number of all possible conditions that could
appear in a rule of a given data.
- numAllConditions(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Compute the number of all possible conditions that could
appear in a rule of a given data.
- numAllConditions() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
Compute the number of all possible conditions that could
appear in a rule of a given data.
- numAplicacions - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
This class is a classifier set.
- numArcs() - Method in class keel.GraphInterKeel.experiments.Graph
-
Gets the current number of arcs
- numArguments() - Method in class keel.Algorithms.Decision_Trees.M5.Information
-
Returns the option's number of arguments.
- numArguments() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Option
-
Returns the option's number of arguments.
- numArguments() - Method in class keel.Algorithms.SVM.SMO.core.Option
-
Returns the option's number of arguments.
- numAtt - Variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_hyperrect_list_real
-
- numAttributes() - Method in class keel.Algorithms.Decision_Trees.C45.Dataset
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Dataset
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.Decision_Trees.ID3.Dataset
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Dataset
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Returns the number of attributes.
- NumAttributes - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- numAttributes - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- numAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Returns the number of attributes.
- numAttributes - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- numAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Dataset
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Dataset
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Dataset
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Returns the number of attributes.
- numAttributes - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Parameters
-
Number of attributes.
- numAttributes - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.Parameters
-
Number of attributes.
- numAttributes - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Parameters
-
Number of attributes.
- numAttributes - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
Number of attributes.
- numAttributes - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.Parameters
-
Number of attributes.
- numAttributes - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Parameters
-
Number of attributes.
- numAttributes - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Parameters
-
Number of attributes.
- numAttributes() - Method in class keel.Algorithms.Rule_Learning.ART.Dataset
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Dataset
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Dataset
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Returns the number of attributes.
- numAttributes() - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the number of attributes.
- numBasicIntervals - Variable in class keel.Algorithms.Discretizers.MVD.MVD
-
Number of basic intervals.
- NumberActiveLabels(String, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- NumberActiveLabels(String, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- NumberActiveLabels(String, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- numberAntecedents - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Number of antecedents of the rules.
- numberExamples - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Number of examples managed.
- numberFeatures - Variable in class keel.Algorithms.MIL.AbstractMIAlgorithm
-
- numberInstances(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
Returns the number of instances of the class with index passed as argument ("clas").
- numberInstances(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
It returns the number of instances in the data set for a given class.
- numberInstances(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
It returns the number of instances in the data set for a given class.
- numberInstances(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
It returns the number of instances in the data set for a given class.
- numberInstances(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It returns the number of instances in the data set for a given class.
- numberInstances(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
Returns the number of instances of the class with index passed as argument ("clas").
- numberInstances(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
It returns the number of examples for a given class
- numberInstances(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
It returns the number of instances in the data set for a given class.
- numberInstances(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
It returns the number of instances in the data set for a given class.
- numberInstances(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
-
It computes the number of intances for the class "clas"
- numberInstances(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
-
It computes the number of intances for the class "clas"
- numberInstances(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
-
It computes the number of intances for the class "clas"
- numberInstances(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
-
It computes the number of intances for the class "clas"
- numberInstances(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
-
It computes the number of intances for the class "clas"
- numberInstances(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
-
It computes the number of intances for the class "clas"
- numberInstances(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
It returns the number of instances in the data set for a given class.
- numberInstances(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
It returns the number of instances in the data set for a given class.
- numberInstances(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
It returns the number of instances in the data set for a given class.
- numberInstances(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
It returns the number of instances in the data set for a given class.
- numberInstances(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
It returns the number of instances in the data set for a given class.
- numberInstances(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
It computes the number of intances for the class "clas"
- numberInstances(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It returns the number of instances in the data set for a given class.
- numberInstances(int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
-
It computes the number of intances for the class "clas"
- numberInstances(int) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
-
It computes the number of intances for the class "clas"
- numberInstances(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
-
It returns the number of instances in the dataset of the given class
- numberInstances(int) - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
-
It gets the number of examples of one class
- numberKFoldCross - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- numberLine - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Number of line
- numberLine - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Line number.
- numberLine1 - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Number of line 1
- numberLine1 - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Line number 1.
- numberLine2 - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Number of line 2
- numberLine2 - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Line number 2.
- numberLine3 - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Number of line 3
- numberLine3 - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Line number 3.
- numberOfActions - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Represents the number of actions that a classifier can take.
- numberOfActions - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Represents the number of actions that a classifier can take.
- numberOfAttributes() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IMetadata
-
Returns number of mining attributes in mining data specification
- numberOfAttributes() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.Metadata
-
Returns number of mining attributes in mining data specification
- numberOfbetters - Variable in class keel.Algorithms.Instance_Generation.JADE.JADEGenerator
-
- numberOfCharacters - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Represents the number of different characters that can take a character representation.
- numberOfCharacters - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Represents the number of different characters that can take a character representation.
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.AMPSO.AMPSOGenerator
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.DE.DEGenerator
-
number of classes
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.DEGL.DEGLGenerator
-
Number of classes considered
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.DROP3LVQ3.DROP3LVQ3
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.DROP3PSO.DROP3PSO
-
Class Number.
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.DROP3SFLSDE.DROP3SFLSDE
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.ENPC.ENPCGenerator
-
Class number.
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.ICFLVQ3.ICFLVQ3
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.ICFPSO.ICFPSO
-
Class number.
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.ICFSFLSDE.ICFSFLSDE
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.ICPL.ICPLGenerator
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.IPLDE.IPLDEGenerator
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.JADE.JADEGenerator
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.MixtGauss.MixtGaussGenerator
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.MSE.MSEGenerator
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.POC.POCGenerator
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.PSCSA.PSCSAGenerator
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.PSO.PSOGenerator
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.SADE.SADEGenerator
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.SFLSDE.SFLSDEGenerator
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.SGP.SGPGenerator
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.SSMALVQ3.SSMALVQ3
-
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.SSMAPSO.SSMAPSO
-
Class Number.
- numberOfClass - Variable in class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.ADE_CoForestGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.APSSC.APSSCGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.C45SSL.C45SSLGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.CLCCGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoBC.CoBCGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.CoForestGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoTraining.CoTrainingGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.DE_TriTraining.DE_TriTrainingGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.Democratic.DemocraticGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.NBSSL.NBSSLGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.NNSSL.NNSSLGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.RASCO.RASCOGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.Rel_RASCO.Rel_RASCOGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.SelfTraining.SelfTrainingGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.SETRED.SETREDGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.SMOSSL.SMOSSLGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.SNNRCE.SNNRCEGenerator
-
Number of classes.
- numberOfClass - Variable in class keel.Algorithms.Semi_Supervised_Learning.TriTraining.TriTrainingGenerator
-
Number of classes.
- numberOfClassifiers - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoBC.CoBCGenerator
-
Number of classifiers considered.
- numberOfClassifiers - Variable in class keel.Algorithms.Semi_Supervised_Learning.Democratic.DemocraticGenerator
-
Number of classifiers considered for the ensemble.
- numberOfDontCareSymbols() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Returns the number of don't care symbols in the
classifier.
- numberOfDontCareSymbols() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
Returns the number of don't care symbols in the
classifier.
- numberOfExamples(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It obtains the number of examples for the i-th class
- numberOfExplores - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Represents the number of experiments that have to be made.
- numberOfExplores - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Represents the number of experiments that have to be made.
- NUMBEROFEXPLORES - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- NumberOfId - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
-
Number of Leafs currently created in the tree
- numberOfInputs() - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Returns the number of attributes that has an input.
- numberOfInputs - Static variable in class keel.Algorithms.Instance_Generation.utilities.Distance
-
Number of inputs of the prototypes (used to optimize calculations).
- numberOfInputs() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Returns the number of attributes that has an input.
- numberOfInputs - Static variable in class keel.Algorithms.Semi_Supervised_Learning.utilities.Distance
-
Number of inputs of the prototypes (used to optimize calculations).
- numberOfInstances() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset
-
Get the number of Instances.
- numberOfInstances() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset
-
Get the number of Instances
- numberOfIterations - Variable in class keel.Algorithms.Instance_Generation.LVQ.LVQPRU
-
Number of iterations of the LVQPRU algorithm.
- numberOfIterations - Variable in class keel.Algorithms.Instance_Generation.VQ.AVQGenerator
-
Number of iterations of the AVQGenerator.
- numberOfIterationsLVQ2_1 - Variable in class keel.Algorithms.Instance_Generation.LVQ.LVQPRU
-
Number of iterations of the internal LVQ2.1 mapping.
- NumberOfLeafs - Static variable in class keel.Algorithms.Decision_Trees.C45.Tree
-
Number of Leafs in the tree
- NumberOfLeafs - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Tree
-
Number of Leafs in the tree
- NumberOfLeafs - Static variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
-
Number of Leafs in the tree
- NumberOfLeafs - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Tree
-
Number of Leafs in the tree
- NumberOfLeafs - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Tree
-
Number of Leafs in the tree
- NumberOfLeafs - Static variable in class keel.Algorithms.Rule_Learning.C45Rules.Tree
-
Number of Leafs in the tree
- NumberOfLeafs - Static variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Tree
-
Number of Leafs in the tree
- NumberOfLeafs - Static variable in class keel.Algorithms.Rule_Learning.PART.Tree
-
Number of Leafs in the tree
- NumberOfLeafs - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
-
Number of Leafs in the tree
- numberOfLinearModels() - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Counts the number of linear models in the tree.
- numberOfLinearModels() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Counts the number of linear models in the tree.
- numberOfNodes - Static variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TtreeNode
-
The number of nodes in the T-tree.
- NumberOfNodes - Static variable in class keel.Algorithms.Decision_Trees.C45.Tree
-
Total number of Nodes in the tree
- NumberOfNodes - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Tree
-
Total number of Nodes in the tree
- NumberOfNodes - Static variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
-
Total number of Nodes in the tree
- NumberOfNodes - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Tree
-
Total number of Nodes in the tree
- NumberOfNodes - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Tree
-
Total number of Nodes in the tree
- NumberOfNodes - Static variable in class keel.Algorithms.Rule_Learning.C45Rules.Tree
-
Total number of Nodes in the tree
- NumberOfNodes - Static variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Tree
-
Total number of Nodes in the tree
- NumberOfNodes - Static variable in class keel.Algorithms.Rule_Learning.PART.Tree
-
Total number of Nodes in the tree
- NumberOfNodes - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
-
Total number of Nodes in the tree
- numberOfNodes - Static variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.TtreeNode
-
The number of nodes in the T-tree.
- numberOfNodes - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.TtreeNode
-
The number of nodes in the T-tree.
- numberOfNotUseful() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Returns the number of non useful classifiers in the population.
- numberOfOutputs() - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Returns the number of attributes that has an output.
- numberOfOutputs() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Returns the number of attributes that has an output.
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.AMPSO.AMPSOGenerator
-
Swarmsize is the percentage
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.Chen.ChenGenerator
-
Number of prototypes to be generated.
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.DE.DEGenerator
-
number of Prototypes
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.DEGL.DEGLGenerator
-
Number of prototypes considered
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.DROP3LVQ3.DROP3LVQ3
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.DROP3PSO.DROP3PSO
-
prototypes number.
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.DROP3SFLSDE.DROP3SFLSDE
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.ENPC.ENPCGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.ICFLVQ3.ICFLVQ3
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.ICFPSO.ICFPSO
-
Prototypes number.
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.ICFSFLSDE.ICFSFLSDE
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.ICPL.ICPLGenerator
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.IPLDE.IPLDEGenerator
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.JADE.JADEGenerator
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.LVQ.LVQPRU
-
Number of prototypes that will be generated.
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.MixtGauss.MixtGaussGenerator
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.MSE.MSEGenerator
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.OBDE.OBDEGenerator
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.PNN.PNNGenerator
-
Number of prototypes to be generated.
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.POC.POCGenerator
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.PSCSA.PSCSAGenerator
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.PSO.PSOGenerator
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.RSP.RSPGenerator
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.SADE.SADEGenerator
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.SFLSDE.SFLSDEGenerator
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.SSMALVQ3.SSMALVQ3
-
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.SSMAPSO.SSMAPSO
-
prototypes number.
- numberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.ADE_CoForestGenerator
-
Number of prototypes to generated.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.APSSC.APSSCGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.C45SSL.C45SSLGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.CLCCGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoBC.CoBCGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.CoForestGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.CoTraining.CoTrainingGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.DE_TriTraining.DE_TriTrainingGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.Democratic.DemocraticGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.NBSSL.NBSSLGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.NNSSL.NNSSLGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.RASCO.RASCOGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.Rel_RASCO.Rel_RASCOGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.SelfTraining.SelfTrainingGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.SETRED.SETREDGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.SMOSSL.SMOSSLGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.SNNRCE.SNNRCEGenerator
-
Number of prototypes.
- numberOfPrototypes - Variable in class keel.Algorithms.Semi_Supervised_Learning.TriTraining.TriTrainingGenerator
-
Number of prototypes.
- numberOfPrototypesGenerated - Variable in class keel.Algorithms.Instance_Generation.BTS3.BTS3Generator
-
Size of the generated set.
- numberOfPrototypesGenerated - Variable in class keel.Algorithms.Instance_Generation.LVQ.LVQGenerator
-
Number of prototypes of the resulting set.
- numberOfPrototypesSelected - Variable in class keel.Algorithms.Instance_Generation.BasicMethods.RandomSelector
-
Number of prototypes that will contain the generated data set (prototypes extracted from the training data set).
- numberOfReductExamples - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Is the number of reduct iterations that have to be made in a
reduction.
- numberOfStrategies - Variable in class keel.Algorithms.Instance_Generation.DROP3LVQ3.DROP3LVQ3
-
- numberOfStrategies - Variable in class keel.Algorithms.Instance_Generation.DROP3PSO.DROP3PSO
-
number of strategies in the pool.
- numberOfStrategies - Variable in class keel.Algorithms.Instance_Generation.DROP3SFLSDE.DROP3SFLSDE
-
- numberOfStrategies - Variable in class keel.Algorithms.Instance_Generation.ICFLVQ3.ICFLVQ3
-
- numberOfStrategies - Variable in class keel.Algorithms.Instance_Generation.ICFPSO.ICFPSO
-
Number of strategies in the pool
- numberOfStrategies - Variable in class keel.Algorithms.Instance_Generation.ICFSFLSDE.ICFSFLSDE
-
- numberOfStrategies - Variable in class keel.Algorithms.Instance_Generation.SADE.SADEGenerator
-
- numberOfStrategies - Variable in class keel.Algorithms.Instance_Generation.SSMALVQ3.SSMALVQ3
-
- numberOfStrategies - Variable in class keel.Algorithms.Instance_Generation.SSMAPSO.SSMAPSO
-
number of strategies in the pool.
- numberOfStrategies - Variable in class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
- numberOfTestExamples - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Indicates the number of iterations that has to be made in a
test execution.
- numberOfTestExamples - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Indicates the number of iterations that has to be made in a
test execution.
- NUMBEROFTESTEXAMPLES - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- numberOfViolatedConstraints - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Number of Violated Constraints.
- numberReferences - Variable in class keel.Algorithms.MIL.Nearest_Neighbour.AbstractNearestNeighbour
-
- numberRules - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Number of rules of the system.
- numberUncoveredExamples - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Variables to control the number of uncovered examples.
- numberValues(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
Returns the number of different values of the attribute with index passed as argument.
- numberValues(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
Function to get the number of different feasible values for a given attribute
- numberValues(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
Function to get the number of different feasible values for a given attribute
- numberValues(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
Function to get the number of different feasible values for a given attribute
- numberValues(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
Function to get the number of different feasible values for a given attribute
- numberValues(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
Returns the number of different values of the attribute with index passed as argument.
- numberValues(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
It returns the number of labels for a nominal attribute
- numberValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
Function to get the number of different feasible values for a given attribute
- numberValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
Function to get the number of different feasible values for a given attribute
- numberValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
-
It returns the number of nominal values for the atributte "attribute"
- numberValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
-
It returns the number of nominal values for the atributte "attribute"
- numberValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
-
It returns the number of nominal values for the atributte "attribute"
- numberValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
-
It returns the number of nominal values for the atributte "attribute"
- numberValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
-
It returns the number of nominal values for the atributte "attribute"
- numberValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
-
It returns the number of nominal values for the atributte "attribute"
- numberValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
Function to get the number of different feasible values for a given attribute
- numberValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
Function to get the number of different feasible values for a given attribute
- numberValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
Function to get the number of different feasible values for a given attribute
- numberValues(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
Function to get the number of different feasible values for a given attribute
- numberValues(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
Function to get the number of different feasible values for a given attribute
- numberValues(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
It returns the number of nominal values for the atributte "attribute"
- numberValues(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Function to get the number of different feasible values for a given attribute
- numberValues(int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
-
It returns the number of nominal values for the atributte "attribute"
- numberValues(int) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
-
It returns the number of nominal values for the atributte "attribute"
- numberValues(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
-
It returns the number of different values of an attribute
- numberValues(int) - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
-
It gets the number of different values of an specific attribute
- numberValues(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
-
It returns the number of different values in the case of a nominal variable
- numberValues(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
-
It returns the number of different values in the case of a nominal variable
- numberValues(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
-
It returns the number of different values in the case of a nominal variable
- numberValues(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
-
It returns the number of different values in the case of a nominal variable
- numberValues(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
-
It returns the number of different values in the case of a nominal variable
- numberValues(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
-
It returns the number of different values in the case of a nominal variable
- numberValues(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
-
It returns the number of different values in the case of a nominal variable
- numberValues(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
-
It returns the number of different values in the case of a nominal variable
- numberValues(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
-
It returns the number of different values in the case of a nominal variable
- numCacheHits() - Method in class keel.Algorithms.SVM.SMO.supportVector.CachedKernel
-
Returns the number of cache hits on dot products.
- numCacheHits() - Method in class keel.Algorithms.SVM.SMO.supportVector.Kernel
-
Returns the number of dot product cache hits.
- numCacheHits() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Returns the number of dot product cache hits.
- numCategories - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.CategoricalAttribute
-
Number of Categories
- numChildren() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Node
-
Returns the number of children.
- numClassAttributeValues() - Method in class keel.Algorithms.SVM.SMO.SMO
-
Returns the number of values of the class attribute.
- numClasses() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.DataBase
-
It returns the number of different possible outputs (classes) of the examples
- numClasses() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.DataBase
-
It returns the number of different possible outputs (classes) of the examples
- numClasses - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Number of classes in input data set (input by the user).
- numClasses() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.DataBase
-
It returns the number of different possible outputs (classes) of the examples
- numClasses() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.DataBase
-
It returns the number of different possible outputs (classes) of the examples
- numClasses() - Method in class keel.Algorithms.Decision_Trees.C45.Classification
-
Returns number of classes.
- numClasses() - Method in class keel.Algorithms.Decision_Trees.C45.Dataset
-
Returns the number of possible values of the class attribute.
- numClasses() - Method in class keel.Algorithms.Decision_Trees.C45.Itemset
-
Returns the number of class values.
- numClasses() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
-
Returns number of classes.
- numClasses() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Dataset
-
Returns the number of possible values of the class attribute.
- numClasses() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
-
Returns the number of class values.
- numClasses() - Method in class keel.Algorithms.Decision_Trees.ID3.Dataset
-
Returns the number of possible values of the class attribute.
- numClasses() - Method in class keel.Algorithms.Decision_Trees.ID3.Itemset
-
Returns the number of class values.
- numClasses() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Returns the number of class labels.
- numClasses() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Returns the number of class labels.
- numClasses() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Dataset
-
Returns the number of possible values of the class attribute.
- numClasses() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Itemset
-
Returns the number of class values.
- numClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns the number of class labels.
- numClasses() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Returns the number of class labels.
- numClasses - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- numClasses - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- numClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Returns the number of class values.
- numClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Returns the number of possible values of the class attribute.
- numClasses - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- numClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Dataset
-
Returns the number of possible values of the class attribute.
- numClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
-
Returns the number of class values.
- numClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
-
Returns number of classes.
- numClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
-
Returns the number of class values.
- numClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
Returns the number of possible values of the class attribute.
- numClasses() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
-
Returns number of classes.
- numClasses() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Dataset
-
Returns the number of possible values of the class attribute.
- numClasses() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
-
Returns the number of class values.
- numClasses() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
-
Returns number of classes.
- numClasses() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Dataset
-
Returns the number of possible values of the class attribute.
- numClasses() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
-
Returns the number of class values.
- numClasses() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns the number of class labels.
- numClasses() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Returns the number of class labels.
- numClasses - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Parameters
-
Number of classes.
- numClasses - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.Parameters
-
Number of classes.
- numClasses - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Parameters
-
Number of classes.
- numClasses - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
Number of classes.
- numClasses - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.Parameters
-
Number of classes.
- numClasses - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Parameters
-
Number of classes.
- numClasses - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Parameters
-
Number of classes.
- numClasses() - Method in class keel.Algorithms.Rule_Learning.ART.Dataset
-
Returns the number of possible values of the class attribute.
- numClasses() - Method in class keel.Algorithms.Rule_Learning.ART.Itemset
-
Returns the number of class values.
- numClasses() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
-
Returns number of classes.
- numClasses() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Itemset
-
Returns the number of class values.
- numClasses() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Returns the number of possible values of the class attribute.
- numClasses() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
-
Returns number of classes.
- numClasses() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
-
Returns the number of class values.
- numClasses() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Returns the number of possible values of the class attribute.
- numClasses() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Dataset
-
Returns the number of possible values of the class attribute.
- numClasses() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
-
Returns the number of class values.
- numClasses() - Method in class keel.Algorithms.Rule_Learning.PART.Classification
-
Returns number of classes.
- numClasses() - Method in class keel.Algorithms.Rule_Learning.PART.Itemset
-
Returns the number of class values.
- numClasses() - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
Returns the number of possible values of the class attribute.
- numClasses() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
-
Returns number of classes.
- numClasses() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Dataset
-
Returns the number of possible values of the class attribute.
- numClasses() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
-
Returns the number of class values.
- numClasses - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerCSVM
-
Number of classes.
- numClasses - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerSMO
-
Number of classes.
- numClasses - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.ParametersSMO
-
Number of classes.
- numClasses() - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Returns the number of class labels.
- numClasses() - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the number of class labels.
- NumClassesNotRemoved() - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
Returns the number of classes of the instances not removed.
- NumClassesNotRemoved() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
Returns the number of classes of the instances not removed.
- NumClassesNotRemoved() - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
Returns the number of classes of the instances not removed.
- numCols - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Command line argument for number of columns.
- numCols - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Number of columns.
- numCols - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Number of columns.
- numColumns() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Returns the number of columns in the matrix.
- numConsequents() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.RuleBase
-
Returns the number of consequents in RuleBase.
- numCorrect() - Method in class keel.Algorithms.Decision_Trees.C45.Classification
-
Returns the weight of all itemsets of the class with highest frequency.
- numCorrect(int) - Method in class keel.Algorithms.Decision_Trees.C45.Classification
-
Returns the number of correctly classified itemsets for the given value.
- numCorrect() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
-
Returns the weight of all itemsets of the class with highest frequency.
- numCorrect(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
-
Returns the number of correctly classified itemsets for the given value.
- numCorrect() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
-
Returns the weight of all itemsets of the class with highest frequency.
- numCorrect(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
-
Returns the number of correctly classified itemsets for the given value.
- numCorrect() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
-
Returns the weight of all itemsets of the class with highest frequency.
- numCorrect(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
-
Returns the number of correctly classified itemsets for the given value.
- numCorrect() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
-
Returns the weight of all itemsets of the class with highest frequency.
- numCorrect(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
-
Returns the number of correctly classified itemsets for the given value.
- numCorrect() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
-
Returns the weight of all itemsets of the class with highest frequency.
- numCorrect(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
-
Returns the number of correctly classified itemsets for the given value.
- numCorrect() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
-
Returns the weight of all itemsets of the class with highest frequency.
- numCorrect(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
-
Returns the number of correctly classified itemsets for the given value.
- numCorrect() - Method in class keel.Algorithms.Rule_Learning.PART.Classification
-
Returns the weight of all itemsets of the class with highest frequency.
- numCorrect(int) - Method in class keel.Algorithms.Rule_Learning.PART.Classification
-
Returns the number of correctly classified itemsets for the given value.
- numCorrect() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
-
Returns the weight of all itemsets of the class with highest frequency.
- numCorrect(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
-
Returns the number of correctly classified itemsets for the given value.
- numCuantitativos() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
Returns number of quantitative attributes.
- numDataset - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Number of datasets.
- numDistinctValues(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Returns the number of distinct values of a given attribute.
- numDistinctValues(M5Attribute) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Returns the number of distinct values of a given attribute.
- numDistinctValues(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Returns the number of distinct values of a given attribute.
- numDistinctValues(AttributeWeka) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Returns the number of distinct values of a given attribute.
- numDistinctValues(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Returns the number of distinct values of a given attribute.
- numDistinctValues(Attribute) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Returns the number of distinct values of a given attribute.
- numDistinctValues(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Returns the number of distinct values of a given attribute.
- numDistinctValues(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Returns the number of distinct values of a given attribute.
- numDistinctValues(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
Returns the number of distinct values of a given attribute.
- numDistinctValues(int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the number of distinct values of a given attribute.
- numDistinctValues(Attribute) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the number of distinct values of a given attribute.
- numEjemplos(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
It returns the number of instances in the data set for a given class.
- numEjemplos(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.Poblacion
-
Obtains the number of examples for the i-th class.
- numEjemplos(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It returns the number of instances in the dataset of the given class
- numEjemplos(int) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
It returns the number of instances in the dataset of the given class
- numEjemplos(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It returns the number of instances in the data set for a given class.
- numElements() - Method in class keel.Algorithms.SVM.SMO.supportVector.SMOset
-
Returns the number of elements in the set.
- numElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.FreqList
-
The number of different elements stored
- numElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.FreqList
-
The number of different elements stored
- numElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.FreqList
-
The number of different elements stored
- numElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqList
-
The number of different elements stored
- numElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqListPair
-
Number of different pairs of this list
- numElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.FreqList
-
The number of different elements stored
- numElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.FreqList
-
The number of different elements stored
- numElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.FreqList
-
The number of different elements stored
- numElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.FreqList
-
The number of different elements stored
- numElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.FreqList
-
The number of different elements stored
- numElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.FreqList
-
The number of different elements stored
- NUMERIC - Static variable in class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Constant set for numeric attributes.
- NUMERIC - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Constant set for numeric attributes.
- Numeric - Class in keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat
-
Class to implements some Numeric operation.
- Numeric() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Numeric
-
- NumericalDerivative - Class in keel.Algorithms.Preprocess.Missing_Values.EM.util
-
approximates numerically the first and second derivatives of a
function of a single variable and approximates gradient and
diagonal of Hessian for multivariate functions
Known bugs and limitations:
- the sparse number of function evaluations used can potentially
- NumericalDerivative() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EM.util.NumericalDerivative
-
- NumericalNaiveBayes - Class in keel.Algorithms.Semi_Supervised_Learning.Basic
-
Numerical Naive Bayes algorithm.
- NumericalNaiveBayes(double[][], int[], double[][], int[], int) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.NumericalNaiveBayes
-
Executes the Naive Bayes algorithms with the datasets given.
- NumericalNaiveBayes(String, InstanceSet, InstanceSet, InstanceSet) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.NumericalNaiveBayes
-
Executes the Naive Bayes algorithms with the datasets given.
- NumericalNaiveBayes(String) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.NumericalNaiveBayes
-
The main method of the class
- NumericAntd - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
The antecedent with numeric attribute
- NumericAntd(AttributeWeka) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.NumericAntd
-
Constructor
- numericClass(String) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
Returns a numeric representation of a class nominal value given as argument.
- NumericFunction<IndexType> - Class in keel.Algorithms.Instance_Generation.utilities
-
- NumericFunction<IndexType> - Class in keel.Algorithms.Semi_Supervised_Learning.utilities
-
Numeric function class
- NUMERICO - Static variable in class keel.Algorithms.Rule_Learning.AQ.Instance
-
Attribute numeric type flag.
- numericStats - Variable in class keel.Algorithms.Decision_Trees.M5.M5AttrStats
-
Stats on numeric value distributions
- numeroMuestrasCondiciones(Regla, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ConjuntoDatos
-
Returns the number of examples covered by the conditions stored
in the rule given.
- numeroMuestrasCondiciones(Regla, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ConjuntoDatos
-
Returns the number of examples covered by the conditions stored
in the rule given.
- numeroMuestrasCondiciones(Regla, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ConjuntoDatos
-
Returns the number of examples covered by the conditions stored
in the rule given.
- numeroMuestrasCondiciones(Regla, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Returns the number of examples covered by the conditions stored
in the rule given.
- numeroMuestrasCubiertas(Regla, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ConjuntoDatos
-
Returns the number of examples covered by the whole rule given
(covered by the conditions and with the same class of the rule).
- numeroMuestrasCubiertas(Regla, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ConjuntoDatos
-
Returns the number of examples covered by the whole rule given
(covered by the conditions and with the same class of the rule).
- numeroMuestrasCubiertas(Regla, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ConjuntoDatos
-
Returns the number of examples covered by the whole rule given
(covered by the conditions and with the same class of the rule).
- numeroMuestrasCubiertas(Regla, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Returns the number of examples covered by the whole rule given
(covered by the conditions and with the same class of the rule).
- numeroMuestrasCubiertasSinClase(Regla) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Returns the number of examples covered by the whole rule given
(covered by the conditions and without the same class of the rule).
- numEtiquetas() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.BaseD
-
It returns the number of fuzzy labels
- numEtiquetas() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.BaseR
-
- numEtiquetas() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.BaseR
-
- numEvals() - Method in class keel.Algorithms.SVM.SMO.supportVector.CachedKernel
-
Returns the number of time Eval has been called.
- numEvals() - Method in class keel.Algorithms.SVM.SMO.supportVector.Kernel
-
Returns the number of kernel evaluation performed.
- numEvals() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Returns the number of kernel evaluation performed.
- numExecutions - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Parameters
-
Number of executions.
- numFalseNegatives(int) - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Calculate number of false negatives with respect to a particular class.
- numFalsePositives(int) - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Calculate number of false positives with respect to a particular class.
- numFoldsTipText() - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Returns the tip text for this property
- numFoldsTipText() - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Returns the tip text for this property
- numFoldsTipText() - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Returns the tip text for this property
- numFoldsTipText() - Method in class keel.Algorithms.SVM.SMO.SMO
-
Returns the tip text for this property
- numFrequentsets - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
The number of frequent sets (nodes in t-tree with above minimum
support) generated so far.
- numFun - Variable in class keel.Algorithms.Preprocess.Missing_Values.EM.util.UnivariateMinimum
-
total number of function evaluations neccessary
- numIncorrect() - Method in class keel.Algorithms.Decision_Trees.C45.Classification
-
Returns incorrectly classifed
- numIncorrect(int) - Method in class keel.Algorithms.Decision_Trees.C45.Classification
-
Returns the number of incorrectly classified itemsets for the given value.
- numIncorrect() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
-
Returns number of incorrectly classified examples
- numIncorrect(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
-
Returns the number of incorrectly classified itemsets for the given value.
- numIncorrect() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
-
Returns incorrectly classifed
- numIncorrect(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
-
Returns the number of incorrectly classified itemsets for the given value.
- numIncorrect() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
-
Returns incorrectly classifed items
- numIncorrect(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
-
Returns the number of incorrectly classified itemsets for the given value.
- numIncorrect() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
-
Returns incorrectly classifed
- numIncorrect(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
-
Returns the number of incorrectly classified itemsets for the given value.
- numIncorrect() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
-
Returns incorrectly classifed
- numIncorrect(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
-
Returns the number of incorrectly classified itemsets for the given value.
- numIncorrect() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
-
Returns incorrectly classifed
- numIncorrect(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
-
Returns the number of incorrectly classified itemsets for the given value.
- numIncorrect() - Method in class keel.Algorithms.Rule_Learning.PART.Classification
-
Returns incorrectly classifed
- numIncorrect(int) - Method in class keel.Algorithms.Rule_Learning.PART.Classification
-
Returns the number of incorrectly classified itemsets for the given value.
- numIncorrect() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
-
Returns incorrectly classifed
- numIncorrect(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
-
Returns the number of incorrectly classified itemsets for the given value.
- numInputs() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
To get the number of inputs
- numInstances() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Gets the number of test instances that had a known class value
(actually the sum of the weights of test instances with known
class value).
- numInstances() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Returns the number of instances in the dataset.
- numInstances() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Returns the number of instances in the dataset.
- NumInstances - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- numInstances - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- numInstances - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.matchProfileAgent
-
- numInstances() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Returns the number of instances in the dataset.
- numInstances - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Parameters
-
Number of instances.
- numInstances - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.Parameters
-
Number of instances.
- numInstances - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Parameters
-
Number of instances.
- numInstances - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
Number of instances.
- numInstances - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.Parameters
-
Number of instances.
- numInstances - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Parameters
-
Number of instances.
- numInstances - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Parameters
-
Number of instances.
- numInstances - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerCSVM
-
Number of instances.
- numInstances - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerSMO
-
Number of instances.
- numInstances - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.ParametersSMO
-
Number of instances.
- numInstances() - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the number of instances in the dataset.
- NumInterv(float, int, TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Individual
-
Returns the number of the interval of the indicated variable to which belongs
the value.
- NumInterv(float, int, TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.IndCAN
-
Returns the number of the interval of the indicated variable to which belongs
the value.
- NumInterv(float, int, TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.IndDNF
-
Returns the number of the interval of the indicated variable to which belongs
the value.
- NumInterv(float, int, TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Returns the number of the interval of the indicated variable to which belongs
the value.
- NumInterv(float, int, TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Individual
-
Returns the number of the interval of the indicated variable to which belongs
the value.
- numIntervals - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- numIntervals - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- numIntervals(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.DataB
-
- numIntervals() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Gene
-
- numIntervals(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.DataB
-
- numIntervals(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.DiscreteDataset
-
It returns the number of intervals in which the domain of an attribute has been decomposed
- numIntervals() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Gene
-
- numIntrvls - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- numItemsets() - Method in class keel.Algorithms.Decision_Trees.C45.Dataset
-
Returns the number of itemsets.
- numItemsets() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Dataset
-
Returns the number of itemsets.
- numItemsets() - Method in class keel.Algorithms.Decision_Trees.ID3.Dataset
-
Returns the number of itemsets.
- numItemsets() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Dataset
-
Returns the number of itemsets.
- numItemsets() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Returns the number of itemsets.
- numItemsets() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Dataset
-
Returns the number of itemsets.
- numItemsets() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
Returns the number of itemsets.
- numItemsets() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Dataset
-
Returns the number of itemsets.
- numItemsets() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Dataset
-
Returns the number of itemsets.
- numItemsets() - Method in class keel.Algorithms.Rule_Learning.ART.Dataset
-
Returns the number of itemsets.
- numItemsets() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Returns the number of itemsets.
- numItemsets() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Returns the number of itemsets.
- numItemsets() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Dataset
-
Returns the number of itemsets.
- numItemsets() - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
Returns the number of itemsets.
- numItemsets() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Dataset
-
Returns the number of itemsets.
- numIterations - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- numIterations - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- numIterations - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- numIterationsMDL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- numKO - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.matchProfileAgent
-
- numLabels(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.DataBase
-
It returns the number of different labels that a specific input attribute can hold
- numLabels(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.DataBase
-
It returns the number of different labels that a specific input attribute can hold
- numLabels(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.DataBase
-
It returns the number of different labels that a specific input attribute can hold
- numLabels(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.DataBase
-
It returns the number of different labels that a specific input attribute can hold
- numLabels(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.DataBase
-
It returns the number of different labels that a specific input attribute can hold
- numLabels(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.DataBase
-
It returns the number of different labels that a specific input attribute can hold
- numLabels(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.DataBase
-
It returns the number of different labels that a specific input attribute can hold
- numLabels() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.DataBase
-
It returns the number of fuzzy labels
- numLabels() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.DataBase
-
It returns the number of fuzzy labels
- numLabels() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.DataBase
-
It returns the number of fuzzy labels
- numLabels(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.DataBase
-
- numLabels() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.DataBase
-
It returns the number of fuzzy labels
- numLabels(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.DataBase
-
Returns the number of labels of a given variable.
- numLayers - Static variable in class keel.GraphInterKeel.experiments.Layer
-
- numLeaves(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Sets the leaves' numbers
- numLeaves(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Sets the leaves' numbers
- numliteralCovers(boolean[][], int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.pnPair
-
It computes the number of literals that covers the pnPair
- numMatched - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.matchProfileAgent
-
- numNeighbors - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Parameters
-
Number of nearest neighbours considered.
- numNeighbors - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Parameters
-
Number of nearest neighbours considered.
- numNodes() - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Computes size of the tree.
- numNodes() - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Computes size of the tree.
- numNodes() - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Computes size of the tree.
- numNodes() - Method in class keel.GraphInterKeel.experiments.Graph
-
Gets the number of nodes of this graph
- numObjectives - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- numObjectives - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- numObjectives - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
- numOK - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.matchProfileAgent
-
- numOneItemSets - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
The number of one itemsets (singletons).
- numOneItemSets - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
The number of one itemsets (singletons).
- numOneItemSets - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
The number of one itemsets (singletons).
- numOutputs() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
To get the number of outputs
- numParentsRSWcrossover - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- numPartitions - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Parameters
-
Number of partitions.
- numPartitions - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.Parameters
-
Number of partitions.
- numPartitions - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Parameters
-
Number of partitions.
- numPartitions - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
Number of partitions.
- numPartitions - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.Parameters
-
Number of partitions.
- numPartitions - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerCSVM
-
Number of partitions.
- numPartitions - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerSMO
-
Number of partitions.
- numPartitions - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.ParametersSMO
-
Number of partitions.
- numPendingOutput() - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Returns the number of instances pending output
- numPendingOutput() - Method in class keel.Algorithms.Decision_Trees.M5.ReplaceMissingValuesFilter
-
Returns the number of pending output.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.EscribeBCLing
-
Number of rules.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.LeerWm
-
Number of rules.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.EscribeBCLing
-
Number of rules.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.LeerWm
-
Number of rules.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.EscribeBCLing
-
Number of rules.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.LeerWm
-
Number of rules.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.EscribeBCLing
-
Number of rules.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.LeerWm
-
Number of rules.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.EscribeBCLing
-
Number of rules.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.LeerWm
-
Number of rules.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.EscribeBCLing
-
Number of rules.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.LeerWm
-
Number of rules.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.EscribeBCLing
-
Number of rules.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.LeerWm
-
Number of rules.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.EscribeBCLing
-
Number of rules.
- numReglas - Variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.LeerWm
-
Number of rules.
- numRepetitionsLearning - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- numRows - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Command line argument for number of rows.
- numRows() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Returns the number of rows in the matrix.
- numRows - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Number of rows.
- numRows - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Number of rows.
- numRowsInInputSet - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
Number of rows in input data set, not the same as the number of rows
in the classification training set.
- numRowsInTestSet - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
Number of rows in test set, again not the same as the number of rows
in the classification training set.
- numRowsInTrainingSet - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
Number of rows in training set, also not the same as the number of rows
in the classification training set.
- numRules - Variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
-
- numRules - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
-
- numSamplesLeft() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Sampling
-
- numSamplesLeft() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Sampling
-
- numSpecialStages() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier
-
- numSpecialStages() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_hyperrect_list
-
- numSpecialStages() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_hyperrect_list_real
-
- numSpecialStages() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
-
- numSpecialStages() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierADI
-
- numSpecialStages() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierGABIL
-
- numSpecialStages() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierUBR
-
- numSpecialStages() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
-
- numSpecialStages() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierADI
-
- numSpecialStages() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierGABIL
-
- numStages - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- numStrata - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- numStrata - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- numStrataWindowing - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- numSubsets - Variable in class keel.Algorithms.Decision_Trees.C45.Cut
-
Number of subsets.
- numSubsets() - Method in class keel.Algorithms.Decision_Trees.C45.Cut
-
Returns the number of created subsets for the cut.
- numSubsets - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Number of subsets.
- numSubsets() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Returns the number of created subsets for the cut.
- numSubsets - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Cut
-
Number of subsets.
- numSubsets() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Cut
-
Returns the number of created subsets for the cut.
- numSubsets - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Cut
-
Number of subsets.
- numSubsets() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Cut
-
Returns the number of created subsets for the cut.
- numSubsets - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Number of subsets.
- numSubsets() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Returns the number of created subsets for the cut.
- numSubsets - Variable in class keel.Algorithms.Rule_Learning.C45Rules.Cut
-
Number of subsets.
- numSubsets() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Cut
-
Returns the number of created subsets for the cut.
- numSubsets - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Cut
-
Number of subsets.
- numSubsets() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Cut
-
Returns the number of created subsets for the cut.
- numSubsets - Variable in class keel.Algorithms.Rule_Learning.PART.Cut
-
Number of subsets.
- numSubsets() - Method in class keel.Algorithms.Rule_Learning.PART.Cut
-
Returns the number of created subsets for the cut.
- numSubsets - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Cut
-
Number of subsets.
- numSubsets() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Cut
-
Returns the number of created subsets for the cut.
- numTrueNegatives(int) - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Calculate the number of true negatives with respect to a particular class.
- numTruePositives(int) - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Calculate the number of true positives with respect to a particular class.
- numUpdates - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
The number of updates required to generate the T-tree.
- numUpdates - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.TotalSupportTree
-
The number of updates required to generate the T-tree.
- numUpdates - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.TotalSupportTree
-
The number of updates required to generate the T-tree.
- numValues() - Method in class keel.Algorithms.Decision_Trees.C45.Attribute
-
Function to get the number of values of a discret attribute.
- numValues() - Method in class keel.Algorithms.Decision_Trees.C45.Classification
-
Returns number of values.
- numValues() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Attribute
-
Function to get the number of values of a discret attribute.
- numValues() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
-
Returns number of values.
- numValues() - Method in class keel.Algorithms.Decision_Trees.ID3.Attribute
-
Function to get the number of values of a discret attribute.
- numValues() - Method in class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Returns the number of attribute values.
- numValues() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Returns the number of values present.
- numValues() - Method in class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Returns the number of values in the sparse vector.
- numValues() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Attribute
-
Function to get the number of values of a discret attribute.
- numValues() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns the number of attribute values.
- numValues() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns the number of values present.
- numValues() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Returns the number of values.
- numValues() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
-
Function to get the number of values of a discret attribute.
- numValues() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA_Attribute
-
Function to get the number of values of a discret attribute.
- numValues() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
-
Returns number of values.
- numValues() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyAttribute
-
Function to get the number of values of a discret attribute.
- numValues() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Attribute
-
Function to get the number of values of a discret attribute.
- numValues() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
-
Returns number of values.
- numValues() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Attribute
-
Function to get the number of values of a discret attribute.
- numValues() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
-
Returns number of values.
- numValues() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns the number of attribute values.
- numValues() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns the number of values present.
- numValues() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Returns the number of values in the sparse vector.
- numValues() - Method in class keel.Algorithms.Rule_Learning.ART.Attribute
-
Function to get the number of values of a discret attribute.
- numValues() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
-
Returns number of values.
- numValues() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyAttribute
-
Function to get the number of values of a discret attribute.
- numValues() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
-
Returns number of values.
- numValues() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyAttribute
-
Function to get the number of values of a discret attribute.
- numValues() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Attribute
-
Function to get the number of values of a discret attribute.
- numValues() - Method in class keel.Algorithms.Rule_Learning.PART.Classification
-
Returns number of values.
- numValues() - Method in class keel.Algorithms.Rule_Learning.PART.MyAttribute
-
Function to get the number of values of a discret attribute.
- numValues() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
-
Returns number of values.
- numValues() - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Returns the number of values present.
- numVariables() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.DataBase
-
It returns the number of input attributes in the examples
- numVariables() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.DataBase
-
It returns the number of input attributes in the examples
- numVariables() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.DataBase
-
It returns the number of input attributes in the examples
- numVariables() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.DataBase
-
It returns the number of input attributes in the examples
- numVariables() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.DataBase
-
It returns the number of input attributes in the examples
- numVariables() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.DataBase
-
It returns the number of input attributes in the examples
- numVariables() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.DataBase
-
It returns the number of input attributes in the examples
- numVariables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.DataBase
-
It returns the number of input variables
- numVariables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.BaseD
-
It returns the number of input variables
- numVariables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.DataBase
-
It returns the number of variables of the problem
- numVariables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.DataBase
-
It returns the number of input variables
- numVariables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.BaseD
-
- numVariables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.BaseD
-
- numVariables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.DataBase
-
It returns the number of input variables
- numVariables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.DataBase
-
- numVariables() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.DataBase
-
It returns the number of input variables
- numVariables() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.BaseD
-
- numVariables() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.DataBase
-
Returns the number of variables.
- numVariables() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.DataB
-
- numVariables() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.DataB
-
- numVariablesUsed() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.DataBase
-
It returns the number of input attributes which has been used
- numVariablesUsed() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.DataBase
-
It returns the number of input attributes which has been used
- numVariablesUsed() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.DataBase
-
It returns the number of input attributes which has been used
- numVariablesUsed() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.DataBase
-
It returns the number of input attributes which has been used
- numVersions() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowing
-
- numVersions() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowingGWS
-
- numVersions() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowingILAS
-
- numVersions() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PopulationWrapper
-
- numVersions() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Windowing
-
- numVersions() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PopulationWrapper
-
- numVersions() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Windowing
-
- NValue - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
- nValueNominal(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
-
It returns the number of different values that can take a nominal attribute.
- NVariable - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
The class defines the characteristics of a node
- nVec - Variable in class keel.Algorithms.Instance_Selection.CPruner.Trio
-
Vector number.
- nVec - Variable in class keel.Algorithms.Preprocess.Instance_Selection.CPruner.Trio
-
Vector number.
O
- OBDEAlgorithm - Class in keel.Algorithms.Instance_Generation.OBDE
-
OBDE algorithm calling.
- OBDEAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.OBDE.OBDEAlgorithm
-
- OBDEGenerator - Class in keel.Algorithms.Instance_Generation.OBDE
-
OBDEGenerator.
- OBDEGenerator(PrototypeSet, int, int, int, int, double, double, double, int) - Constructor for class keel.Algorithms.Instance_Generation.OBDE.OBDEGenerator
-
Build a new OBDEGenerator Algorithm
- OBDEGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.OBDE.OBDEGenerator
-
Build a new OBDEGenerator Algorithm
- objective - Variable in class keel.GraphInterKeel.experiments.Graph
-
- objectiveFunction(double[]) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
Subclass should implement this procedure to evaluate objective
function to be minimized
- objectives - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- objectives - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- objectives - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
- objetiveFunction(PrototypeSet[], PrototypeSet, PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.CLCCGenerator
-
Returns the objective function value of the clusters given.
- objFun() - Method in class keel.Algorithms.SVM.SMO.SMOreg
-
Debuggage function.
- objFun(int, int, double, double, double, double) - Method in class keel.Algorithms.SVM.SMO.SMOreg
-
Debuggage function.
- objType - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- obtain_rule(fuzzy[][], Vector<Vector<Float>>, Vector<fuzzyPartition>, int, int, int, Vector<Float>, Vector<Vector<fuzzy>>, int, String, Vector<fuzzy>) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
-
- obtain_rule(fuzzy[][], Vector<Vector<Float>>, Vector<fuzzyPartition>, int, int, int, Vector<Float>, Vector<Vector<fuzzy>>, int, String, Vector<Float>) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
-
- obtain_rule(Interval[][], Vector<Vector<Float>>, Vector<partition>, int, int, int, Vector<Float>, Vector<Vector<Float>>, int) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.rule
-
- obtain_rule(fuzzy[][], Vector<Vector<Float>>, Vector<partition>, int, int, int, Vector<Float>, Vector<Vector<Float>>, int) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
-
- obtain_rule(fuzzy[][], Vector<Vector<Float>>, Vector<partition>, int, int, int, Vector<Float>, Vector<Vector<Float>>, int) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
-
- obtain_rule_random(fuzzy[][], Vector<Vector<Float>>, Vector<fuzzyPartition>, int, int, int, Vector<Float>, Vector<Vector<fuzzy>>, String, Vector<fuzzy>) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
-
- obtain_rule_random(fuzzy[][], Vector<Vector<Float>>, Vector<fuzzyPartition>, int, int, int, Vector<Float>, Vector<Vector<fuzzy>>, String, Vector<Float>) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
-
- obtain_rule_random(Interval[][], Vector<Vector<Float>>, Vector<partition>, int, int, int, Vector<Float>, Vector<Vector<Float>>) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.rule
-
- obtain_rule_random(fuzzy[][], Vector<Vector<Float>>, Vector<partition>, int, int, int, Vector<Float>, Vector<Vector<Float>>) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
-
- obtain_rule_random(fuzzy[][], Vector<Vector<Float>>, Vector<partition>, int, int, int, Vector<Float>, Vector<Vector<Float>>) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
-
- obtain_rule_random_eje(fuzzy[][], Vector<Vector<Float>>, Vector<fuzzyPartition>, int, int, int, Vector<Float>, Vector<Vector<fuzzy>>, String, Vector<fuzzy>, int) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
-
- obtain_rule_random_eje(fuzzy[][], Vector<Vector<Float>>, Vector<fuzzyPartition>, int, int, int, Vector<Float>, Vector<Vector<fuzzy>>, String, Vector<Float>, int) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
-
- obtainBestClassifier(List<I>, IEvaluator) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.algorithm.classification.CCRElitistNeuralNetAlgorithm
-
Returns best individual of a list of individuals using the MSEErrorFunction
- obtainClass(int, int, double[]) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.Multiclassifier
-
It computes the output class according to the learned system
- obtainClass(int, double[]) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.multi_C45
-
It returns the class index of the prediction of an example in the i^{th} classifier
- obtainConfidence(int, int, double[]) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.Multiclassifier
-
Computes and returns the confidence vector for a given example for the classification class x vs class y.
- obtainConfidence(int, double[]) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.multi_C45
-
It obtains the confidence on the prediction of the example in the i^{th} classifier
- obtainConstantsInputs() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Obtain a boolean array with true at these inputs that are constants
- obtainExhaustive(Vector<Integer>) - Static method in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Multiple
-
Obtain all exhaustive comparisons possible from an array of indexes
- obtainExhaustive(Vector<Integer>) - Static method in class keel.GraphInterKeel.statistical.tests.Multiple
-
Obtain all exhaustive comparisons possible from an array of indexes
- obtainIntervals(int, int[], int, int) - Method in class keel.Algorithms.Discretizers.Chi2_Discretizer.Chi2Discretizer
-
- obtainIntervals(int, int[], int, int) - Method in class keel.Algorithms.Discretizers.Chi2_Discretizer.Discretizer
-
Returns the discretized intervals of the given attribute.
- obtainIntervals(int, int[], int, int) - Method in class keel.Algorithms.Discretizers.ExtendedChi2_Discretizer.Discretizer
-
Returns the discretized intervals of the given attribute.
- obtainIntervals(int, int[], int, int) - Method in class keel.Algorithms.Discretizers.ExtendedChi2_Discretizer.ExtendedChi2Discretizer
-
- obtainIntervals(int, int[], int, int) - Method in class keel.Algorithms.Discretizers.ModifiedChi2_Discretizer.Discretizer
-
Returns the discretized intervals of the given attribute.
- obtainIntervals(int, int[], int, int) - Method in class keel.Algorithms.Discretizers.ModifiedChi2_Discretizer.ModifiedChi2Discretizer
-
- obtainLateralTuning() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.CHC
-
Obtains the best lateral tuning from the genetic tuning process
- obtainLateralTuning() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.CHC_Chromosome
-
Obtains the lateral tuning of the data base associated to the current chromosome
- obtainNewNeuron() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.ExpLayer
-
New neuron for the layer
- obtainNewNeuron() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinearLayer
-
New neuron for the layer
- obtainNewNeuron() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
New neuron for the layer
- obtainNewNeuron() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.SigmLayer
-
New neuron for the layer
- obtainNewRuleBase() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.CHC
-
Obtains the best set of rules from the genetic rule selection process
- obtainPathDot() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.AdministrativeStaff
-
- obtainPathPathfinder() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.AdministrativeStaff
-
- obtainPathResultFilesTxt() - Method in class keel.GraphInterKeel.experiments.EducationalDiscretizerReport
-
Return paths of result.txt files
- obtainReportFilePath() - Method in class keel.GraphInterKeel.experiments.EducationalReport
-
This method return path of report file
- obtainReportFilePath() - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
-
Return the Report File Path
- obtainSelectedRules() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.CHC_Chromosome
-
Obtains the selected rules of the rule base associated to the current chromosome
- obtainVotes(Instance) - Method in class keel.Algorithms.SVM.SMO.SMO
-
Returns an array of votes for the given instance.
- obtenerCalidad() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Returns the quality of the rule.
- obtenerCalidad() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Returns the quality of the rule.
- obtenerCalidad() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Returns the quality of the rule.
- obtenerCalidad() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Returns the quality of the rule.
- obtenerCalidad() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Returns the quality of the rule.
- obtenerCalidadMejorPosicion() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Returns the quality of the best position.
- obtenerCalidadPosicionActual() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Returns the quality of the actual position.
- obtenerCercano(int[], int, double[][], int, double[][], double[][], int[][], boolean[][], boolean) - Method in class keel.Algorithms.Instance_Generation.SSMALVQ3.Cromosoma
-
Obtains the nearest neighbour given a mask (chromosome)
- obtenerCercano(int[], int, double[][], int, double[][], double[][], int[][], boolean[][], boolean) - Method in class keel.Algorithms.Instance_Generation.SSMAPSO.Cromosoma
-
Obtains the nearest neighbour given a mask (chromosome)
- obtenerCercano(int[], int, double[][], int, double[][], double[][], int[][], boolean[][], boolean) - Method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.Cromosoma
-
Obtains the nearest neighbour given a mask (chromosome)
- obtenerCercano(int[], int, double[][], int, double[][], double[][], int[][], boolean[][], boolean) - Method in class keel.Algorithms.Instance_Selection.SSMA.Cromosoma
-
Obtain the nearest neighbour given a mask (cromosome)
- obtenerCercano(int[], int, double[][], int, double[][], double[][], int[][], boolean[][], boolean) - Method in class keel.Algorithms.Preprocess.Instance_Selection.SSMA.Cromosoma
-
Obtain the nearest neighbour given a mask (cromosome)
- obtenerComparador() - Static method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Atributo
-
Returns the compare condition to compare two attributes.
- obtenerComparador() - Static method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Returns the rules comparative method.
- obtenerComparador() - Static method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Atributo
-
Returns the compare condition to compare two attributes.
- obtenerComparador() - Static method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Returns the rules comparative method.
- obtenerComparador() - Static method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Atributo
-
Returns the compare condition to compare two attributes.
- obtenerComparador() - Static method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Returns the rules comparative method.
- obtenerComparador() - Static method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Atributo
-
Returns the compare condition to compare two attributes.
- obtenerComparador() - Static method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Returns the rules comparative method.
- obtenerComparador() - Static method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Atributo
-
Returns the compare condition to compare two attributes.
- obtenerComparador() - Static method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Returns the rules comparative method.
- obtenerIMVars() - Method in class keel.Algorithms.Preprocess.Feature_Selection.Datos
-
Computes the mutual information between every two variables.
- obtenerIMVarsClase() - Method in class keel.Algorithms.Preprocess.Feature_Selection.Datos
-
Calculates the mutual information measure between the variables and the class.
- obtenerMayorClase(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ConjuntoDatos
-
Returns the majority class of the dataset (most frequent class).
- obtenerMayorClase(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ConjuntoDatos
-
Returns the majority class of the dataset (most frequent class).
- obtenerMayorClase(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.ConjuntoDatos
-
Returns the majority class of the dataset (most frequent class).
- obtenerMayorClase(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ConjuntoDatos
-
Returns the majority class of the dataset (most frequent class).
- obtenerMayorClase(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Returns the majority class of the dataset (most frequent class).
- obtenerMuestra() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ConjuntoDatos
-
Returns the first example of the dataset.
- obtenerMuestra(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ConjuntoDatos
-
Returns the example in the position given.
- obtenerMuestra() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ConjuntoDatos
-
Returns the first example of the dataset.
- obtenerMuestra(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ConjuntoDatos
-
Returns the example in the position given.
- obtenerMuestra() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.ConjuntoDatos
-
Returns the first example of the dataset.
- obtenerMuestra(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.ConjuntoDatos
-
Returns the example in the position given.
- obtenerMuestra() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ConjuntoDatos
-
Returns the first example of the dataset.
- obtenerMuestra(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ConjuntoDatos
-
Returns the example in the position given.
- obtenerMuestra() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Returns the first example of the dataset.
- obtenerMuestra(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Returns the example in the position given.
- obtenerMuestras() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ConjuntoDatos
-
Returns all the examples in the dataset.
- obtenerMuestras() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ConjuntoDatos
-
Returns all the examples in the dataset.
- obtenerMuestras() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.ConjuntoDatos
-
Returns all the examples in the dataset.
- obtenerMuestras() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ConjuntoDatos
-
Returns all the examples in the dataset.
- obtenerMuestras() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Returns all the examples in the dataset.
- obtenerMuestrasCubiertas() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Returns the number of covered samples.
- obtenerMuestrasCubiertas() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Returns the number of covered samples.
- obtenerMuestrasCubiertas() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Returns the number of covered samples.
- obtenerMuestrasCubiertas() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Returns the number of covered samples.
- obtenerNumCondiciones() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Returns the number of conditions in the rule.
- obtenerNumCondiciones() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Returns the number of conditions in the rule.
- obtenerNumCondiciones() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Returns the number of conditions in the rule.
- obtenerNumCondiciones() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Returns the number of conditions in the rule.
- obtenerNumCondicionesContinuas() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Returns the number of continuous conditions of the rule.
- obtenerNumCondicionesNominales() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Returns the number of nominal conditions of the rule.
- obtenerNumCondicionesReales() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Returns the number of real conditions.
- obtenerNumCondicionesReales() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Returns the number of real conditions.
- obtenerNumCondicionesReales() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Returns the number of real conditions.
- obtenerNumeroMuestrasCubiertas() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Returns the number of examples covered by the rule.
- obtenerReglaPredicha() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Returns the predicted class for the rule.
- obtenerReglaPredicha() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Returns the predicted class for the rule.
- obtenerReglaPredicha() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Returns the predicted class for the rule.
- obtenerReglaPredicha() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Returns the predicted class for the rule.
- obtenerReglaPredicha() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Returns the predicted class for the rule.
- obtenerVecinos(int, int, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Returns a vector with the neighbours of the particle.
- obtieneCabecera(Dataset) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
-
- OCEC - Class in keel.Algorithms.Genetic_Rule_Learning.OCEC
-
Title: Algorithm OCEC
Description: It contains the implementation of the algorithm OCEC
Company: KEEL
- OCEC() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OCEC.OCEC
-
Default constructor
- OCEC(parseParameters) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OCEC.OCEC
-
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
- offMark() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
Function to unmark the rule.
- offMark() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
Function to unmark the rule
- offNew() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Individual
-
Modifies the new flag to false.
- offNew() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Rule
-
Sets this rule as "non-new"
- offNew() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Individual
-
- offset - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_ADI
-
- offset - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_GABIL
-
- offset - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_UBR
-
- offset - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_ADI
-
- offset - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_GABIL
-
- offsetPredicates - Variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_hyperrect_list_real
-
- offspring1 - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- offspring2 - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- offUsed(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
-
- offUsed(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
-
- Oiga - Class in keel.Algorithms.Genetic_Rule_Learning.OIGA
-
This class implements the OIGA algorithm from:
Zhu, F., Guan, S.
- Oiga() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OIGA.Oiga
-
Default constructor
- Oiga(String) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OIGA.Oiga
-
Constructor for the KEEL parameter file
- OK() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ACO
-
All is OK if the data-sets have not got any continuos values
- OK() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ACO
-
All is OK is the data-sets have not got any continuos values
- OK() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.ACO
-
All is OK is the data-sets have not got any continuos values
- OK() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ACO
-
All is OK is the data-sets have not got any continuos values
- ok - Variable in class keel.GraphInterKeel.datacf.util.OptionsDialog
-
OK button
- okClass - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PerformanceAgent
-
- okClass - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PerformanceAgent
-
- oldClassificationProcess(String) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
-
Process a old format dataset file for a modelling problem.
- oldClassificationProcess(String) - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
-
Process a old format dataset file for a modelling problem.
- oldClusteringProcess(String) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
-
Process an old format dataset file for a classification problem.
- oldClusteringProcess(String) - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
-
Process an old format dataset file for a classification problem.
- oldEntropy(Classification) - Method in class keel.Algorithms.Decision_Trees.C45.Cut
-
Function to compute entropy of classification before cutting.
- oldEntropy(Classification) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Function to compute entropy of classification before cutting.
- oldEntropy(Classification) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Cut
-
Function to compute entropy of classification before cutting.
- oldEntropy(Classification) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Cut
-
Function to compute entropy of classification before cutting.
- oldEntropy(Classification) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Function to compute entropy of classification before cutting.
- oldEntropy(Classification) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Cut
-
Function to compute entropy of classification before cutting.
- oldEntropy(Classification) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Cut
-
Function to compute entropy of classification before cutting.
- oldEntropy(Classification) - Method in class keel.Algorithms.Rule_Learning.PART.Cut
-
Function to compute entropy of classification before cutting.
- oldEntropy(Classification) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Cut
-
Function to compute entropy of classification before cutting.
- OlexGA - Class in keel.Algorithms.Genetic_Rule_Learning.olexGA
-
- OlexGA() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- OlexGA(String) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- OlexGA_Attribute - Class in keel.Algorithms.Genetic_Rule_Learning.olexGA
-
Class to implement an attribute
- OlexGA_Attribute(String, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA_Attribute
-
Constructor for continuous attributes.
- OlexGA_Attribute(String, Vector, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA_Attribute
-
Constructor for discret attributes.
- olexGAParams - Variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- OlexResult - Class in keel.Algorithms.Genetic_Rule_Learning.olexGA
-
Class to implement the results given by the algorithm olexGA
- OlexResult(String, String, String) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexResult
-
- omega - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
- omega - Variable in class keel.Algorithms.Neural_Networks.gmdh.SetupParameters
-
- omegaTipText() - Method in class keel.Algorithms.SVM.SMO.supportVector.Puk
-
Returns the tip text for this property
- ONE_CLASS - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- ONE_CLASS - Static variable in class org.libsvm.svm_parameter
-
- onePointCrossover() - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Cogin
-
- onePointCrossover(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.Ilga
-
One-point crossover
- onePointCrossover(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.SEM
-
One-point crossover
- onePointCrossover(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.Oiga
-
One-point crossover
- onePointCrossover(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.SEM
-
One-point crossover
- OneR - Class in keel.Algorithms.Discretizers.OneR
-
This class implements the OneR discretizer
- OneR(int) - Constructor for class keel.Algorithms.Discretizers.OneR.OneR
-
Parameter constructor.
- ones(int, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
Creates a new matrix filled with ones
- OneSideFloatMatrix<IndexType> - Class in keel.Algorithms.Instance_Generation.utilities
-
- OneSideFloatMatrix() - Constructor for class keel.Algorithms.Instance_Generation.utilities.OneSideFloatMatrix
-
- OneSideFloatMatrix(ArrayList<IndexType>, ArrayList<IndexType>) - Constructor for class keel.Algorithms.Instance_Generation.utilities.OneSideFloatMatrix
-
- OneSideFloatMatrix<IndexType> - Class in keel.Algorithms.Semi_Supervised_Learning.utilities
-
Implements a one side float matrix.
- OneSideFloatMatrix() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.utilities.OneSideFloatMatrix
-
Default constructor.
- OneSideFloatMatrix(ArrayList<IndexType>, ArrayList<IndexType>) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.utilities.OneSideFloatMatrix
-
Initializes the HashMap matrix with indeces given.
- onlyOneLiteral(boolean[][], Vector<Integer>, int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.pnPair
-
It checks if only the literal lit covers the pnPair and the other do not
- onMark() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
Function to mark the rule.
- onMark() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
Function to mark the rule
- onNew() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Individual
-
Modifies the new flag to true.
- onNew() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Rule
-
Sets this rule as new
- onNew() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Individual
-
- onUsed(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
-
- onUsed(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
-
- open() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset
-
Open dataset
- open() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.ArffDataSet
-
Open dataset
- open() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.ArrayDataset
-
Open dataset
- open() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.FileDataset
-
Open dataset
- open() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset
-
Open dataset
- open() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.KeelDataSet
-
Open dataset
- OpenDataset - Class in keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS
-
Dataset interface simplification
- OpenDataset() - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.OpenDataset
-
Empty Constructor
- OpenDataset - Class in keel.Algorithms.Neural_Networks.gann
-
Dataset interface simplification
- OpenDataset() - Constructor for class keel.Algorithms.Neural_Networks.gann.OpenDataset
-
Constructor
- OpenDataset - Class in keel.Algorithms.Neural_Networks.gmdh
-
Dataset interface simplification
- OpenDataset() - Constructor for class keel.Algorithms.Neural_Networks.gmdh.OpenDataset
-
Constructor
- OpenDataset - Class in keel.Algorithms.Neural_Networks.net
-
Dataset interface simplification
- OpenDataset() - Constructor for class keel.Algorithms.Neural_Networks.net.OpenDataset
-
Empty Constructor
- Operacion - Class in keel.Algorithms.Genetic_Rule_Learning.Hider
-
Binary operations (2 operands)
- Operacion(String) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
-
- OperacionHandler - Class in keel.Algorithms.Genetic_Rule_Learning.Hider
-
- OperacionHandler(XMLReader, FuncionEvaluacionBeanHandler, Operacion) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Hider.OperacionHandler
-
- OperacionHandler(XMLReader, FuncionEvaluacionBeanHandler, OperacionHandler, Operacion, Operacion, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Hider.OperacionHandler
-
- operate(double[]) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuron
-
Operates this neuron using an array of inputs for the inputs neurons
- operate(double[][]) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuron
-
Operates this neuron using an input matrix for the inputs neurons
- operate(double[]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputNeuron
-
Operates this neuron.
- operate(DoubleTransposedDataSet) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputNeuron
-
Operates this neuron.
- operate(double[][]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputNeuron
-
Operates this neuron.
- operate(double[]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Operates this neuron, using an input array.
- operate(double[][]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Operates this neuron using an input matrix as argument
- operate(double[]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.neuralnet.NeuralNetRegressor
-
Estimates output value of a observation, through
its inputs values
- operate(double[][]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.neuralnet.NeuralNetRegressor
-
Estimates output values of a set of observations, through
their inputs values
- operate(double[]) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Regr.problem.regression.IRegressor
-
Estimates output value of a observation, through
its inputs values
- operate(double[][]) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Regr.problem.regression.IRegressor
-
Estimates output values of a set of observations, through
their inputs values
- operations - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE
- OperatorIdent - Class in keel.Algorithms.Preprocess.NoiseFilters.ANR
-
Class with constant identifiers of operators and methods.
- OperatorIdent() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.ANR.OperatorIdent
-
- OperatorIdent - Class in keel.Algorithms.Shared.Parsing
-
Class with constant identifiers of operators and methods.
- OperatorIdent() - Constructor for class keel.Algorithms.Shared.Parsing.OperatorIdent
-
- Operators - Class in keel.Algorithms.RST_Learning
-
File: Operators.java
Auxiliar class with several fuzzy operators
- Operators() - Constructor for class keel.Algorithms.RST_Learning.Operators
-
- opposite() - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Computes inverse prototype, element by element. (1 - value)
- opposite() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Computes inverse set, element by element. (1 - value)
- opposite() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Opuesto de un prototipo
- opposite() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Calculaa el opuesto de un conjunto .
- Opt - Class in keel.Algorithms.Discretizers.OneR
-
This class represents the optimum class for a given explanatory value
- Opt() - Constructor for class keel.Algorithms.Discretizers.OneR.Opt
-
Dafault constructor.
- Opt(double, int) - Constructor for class keel.Algorithms.Discretizers.OneR.Opt
-
Creates a new object with the given elements
- optimalClass(int, long, boolean) - Method in class keel.Algorithms.Rule_Learning.UnoR.Interval
-
Finds the optimal class for the interval.
- optimalMODL(int, int[], int, int) - Method in class keel.Algorithms.Discretizers.MODL.MODL
-
It seachs for the best possible optimization scheme.
- optimalPopulationFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It's the file name that contains the optimal population.
- OPTIMALPOPULATIONFILE - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- optimalPopulationPercentage(Population) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Looks for the percentage of optimal classifiers present in the
current population.
- optimizacionLocal(int, int, int[], double[][], double, double[][], double[][], int[][], boolean[][], boolean) - Method in class keel.Algorithms.Instance_Generation.SSMALVQ3.Cromosoma
-
Local optimization for the chromosome as Memetic algorithm
- optimizacionLocal(int, int, int[], double[][], double, double[][], double[][], int[][], boolean[][], boolean) - Method in class keel.Algorithms.Instance_Generation.SSMAPSO.Cromosoma
-
Local optimization for the chromosome as Memetic algorithm
- optimizacionLocal(int, int, int[], double[][], double, double[][], double[][], int[][], boolean[][], boolean) - Method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.Cromosoma
-
Local optimization for the chromosome as Memetic algorithm
- optimizacionLocal(int, int, int[], double[][], double, double[][], double[][], int[][], boolean[][], boolean) - Method in class keel.Algorithms.Instance_Selection.SSMA.Cromosoma
-
Performs the local search procedure of SSMA
- optimizacionLocal(int, int, int[], double[][], double, double[][], double[][], int[][], boolean[][], boolean) - Method in class keel.Algorithms.Preprocess.Instance_Selection.SSMA.Cromosoma
-
Performs the local search procedure of SSMA
- optimization - Variable in class keel.Algorithms.MIL.Diverse_Density.DD.DD
-
- optimization - Variable in class keel.Algorithms.MIL.Diverse_Density.EMDD.EMDD
-
- Optimization - Class in keel.Algorithms.MIL.Diverse_Density.Optimization
-
Optimization auxiliary methods
- Optimization() - Constructor for class keel.Algorithms.MIL.Diverse_Density.Optimization.Optimization
-
- Optimization - Class in keel.Algorithms.Statistical_Classifiers.Logistic.core
-
Implementation of Active-sets method with BFGS update to solve optimization
problem with only bounds constraints in multi-dimensions.
- Optimization() - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
- optimizationMethod - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- optimizationsTipText() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Returns the tip text for this property
- optimize(IOptimizableFunc) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
One local iRprop plus search in a IOptimizableFunc.
- optimize(UnivariateFunction, double, double, double) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.util.UnivariateMinimum
-
The actual optimization routine (Brent's golden section method)
- optimize(UnivariateFunction, double) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.util.UnivariateMinimum
-
The actual optimization routine (Brent's golden section method)
- optimize(double, UnivariateFunction, double, double, double) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.util.UnivariateMinimum
-
The actual optimization routine (Brent's golden section method)
- optimize(double, UnivariateFunction, double) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.util.UnivariateMinimum
-
The actual optimization routine (Brent's golden section method)
- optimize(Ruleset, MyDataset, Mask, Mask) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ripper
-
It implements the Ripper2's Optimization Phase:
After generating the initial ruleset {Ri},
generate and prune two variants of each rule Ri from randomized data
using the grow and prune method.
- optimize() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
-
finds alpha and alpha* parameters that optimize the SVM target function
- optimize1() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
use variant 1 of Shevade's et al.s paper
- optimize2() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
use variant 2 of Shevade's et al.s paper
- option - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
Option string.
- Option - Class in keel.Algorithms.Statistical_Classifiers.Logistic.core
-
Class to store information about an option.
- Option(String, String, int, String) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.Option
-
Creates new option with the given parameters.
- Option - Class in keel.Algorithms.SVM.SMO.core
-
Class to store information about an option.
- Option(String, String, int, String) - Constructor for class keel.Algorithms.SVM.SMO.core.Option
-
Creates new option with the given parameters.
- OptionHandler - Interface in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets
-
Interface to something that understands options.
- OptionHandler - Interface in keel.Algorithms.Statistical_Classifiers.Logistic.core
-
Interface to something that understands options.
- OptionHandler - Interface in keel.Algorithms.SVM.SMO.core
-
Interface to something that understands options.
- OptionsDialog - Class in keel.GraphInterKeel.datacf.util
- OptionsDialog(Frame, boolean) - Constructor for class keel.GraphInterKeel.datacf.util.OptionsDialog
-
Constructor that initializes the panel
- optMethod - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- OPV - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal
-
Class for vector, matrix and cubic matrix operations
- OPV() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
- OPV - Class in keel.Algorithms.Preprocess.NoiseFilters.ANR
-
Vector operations class.
- OPV() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
- OPV - Class in keel.Algorithms.Shared.ClassicalOptim
-
Vector operations class.
- OPV() - Constructor for class keel.Algorithms.Shared.ClassicalOptim.OPV
-
- or(Mask) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Mask
-
Returns the mask that it's the outcome of the bolean operation 'or' between this and a given mask.
- or(Mask[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Mask
-
Implements the 'or' whith other Masks
- or(Mask) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Mask
-
Returns the mask that it's the outcome of the bolean operation 'or' between this and a given mask.
- or(Mask[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Mask
-
Implements the 'or' whith other Masks
- or(IncrementalMask) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Mask
-
Returns the mask that it's the outcome of the bolean operation 'or' between this and a given mask.
- or(Mask) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Mask
-
Returns the mask that it's the outcome of the bolean operation 'or' between this and a given mask.
- or(Mask[]) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Mask
-
Implements the 'or' whith other Masks
- or(IncrementalMask) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Mask
-
Returns the mask that it's the outcome of the bolean operation 'or' between this and a given mask.
- or(Mask) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Mask
-
Returns the mask that it's the outcome of the bolean operation 'or' between this and a given mask.
- or(Mask[]) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Mask
-
Implements the 'or' whith other Masks
- or(IncrementalMask) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Mask
-
Returns the mask that it's the outcome of the bolean operation 'or' between this and a given mask.
- or(Mask) - Method in class keel.Algorithms.Rule_Learning.PART.Mask
-
Returns the mask that it's the outcome of the bolean operation 'or' between this and a given mask.
- or(Mask[]) - Method in class keel.Algorithms.Rule_Learning.PART.Mask
-
Implements the 'or' whith other Masks
- or(IncrementalMask) - Method in class keel.Algorithms.Rule_Learning.PART.Mask
-
Returns the mask that it's the outcome of the bolean operation 'or' between this and a given mask.
- or(Mask) - Method in class keel.Algorithms.Rule_Learning.Ripper.Mask
-
Returns the mask that it's the outcome of the bolean operation 'or' between this and a given mask.
- or(Mask) - Method in class keel.Algorithms.Rule_Learning.Slipper.Mask
-
Returns the mask that it's the outcome of the bolean operation 'or' between this and a given mask.
- OR_operator(int, int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
Given the individuals "indiv1" and "indiv2", it selects two points
and makes the OR operation between their central zones.
- OR_operator(int, int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
Given the individuals "indiv1" and "indiv2", it selects two points
and makes the OR operation between their central zones.
- OrCrecIndex(float[], int, int, int[]) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Utils
-
C.A.R, Hoare Quick sort.
- OrCrecIndex(float[], int, int, int[]) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Utils
-
C.A.R, Hoare Quick sort.
- OrCrecIndex(float[], int, int, int[]) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Utils
-
C.A.R, Hoare Quick sort.
- OrCrecIndex(double[], int, int, int[]) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Utils
-
C.A.R, Hoare Quick sort.
- OrCrecIndex(float[], int, int, int[]) - Static method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Utils
-
C.A.R, Hoare Quick sort.
- OrCrecIndex(float[], int, int, int[]) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Utils
-
C.A.R, Hoare Quick sort.
- OrCrecIndex(float[], int, int, int[]) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Utils
-
C.A.R, Hoare Quick sort.
- OrDecIndex(float[], int, int, int[]) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Utils
-
C.A.R, Hoare Quick sort.
- OrDecIndex(float[], int, int, int[]) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Utils
-
C.A.R, Hoare Quick sort.
- OrDecIndex(float[], int, int, int[]) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Utils
-
C.A.R, Hoare Quick sort.
- OrDecIndex(double[], int, int, int[]) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Utils
-
C.A.R, Hoare Quick sort.
- OrDecIndex(float[], int, int, int[]) - Static method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Utils
-
C.A.R, Hoare Quick sort.
- OrDecIndex(float[], int, int, int[]) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Utils
-
C.A.R, Hoare Quick sort.
- OrDecIndex(float[], int, int, int[]) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Utils
-
C.A.R, Hoare Quick sort.
- ordenaAtributos() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Sorts the attributs in increasing order.
- ordenaCondiciones() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Sorts the rules in increasing order.
- ordenaCondiciones() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Sorts the rules in increasing order.
- ordenaCondiciones() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Sorts the rules in increasing order.
- ordenaCondiciones() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Sorts the rules in increasing order.
- ordenar() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.BaseR
-
Sorts the rules following their relative supports.
- ordenar() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.Interval
-
- ordenar() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.Interval
-
- ordenar() - Method in class keel.Algorithms.LQD.methods.FGFS_Original.Interval
-
- ordenar() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.Interval
-
- ordenar() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.Interval
-
- ordenar() - Method in class keel.Algorithms.LQD.preprocess.Expert.interval
-
- ordenar() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.interval
-
- ordenar() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.interval
-
- ordenLexicografico() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Dataset
-
Sorts the datasets following lexical order.
- order(Vector<Float>, Vector<fuzzy>) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling.Main
-
- order(Vector<Float>, Vector<fuzzy>) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.Main
-
- orderByAttb() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
-
- orderDF() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
-
It selects to order by DF
- Ordered(double[], int, int) - Static method in class keel.Algorithms.Neural_Networks.gann.Selector
-
Ordered selection method
- orderFirstNofCountArray(int[][], int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Bubble sorts first N elements in count array produced by
countSingles method so that array is ordered according to
frequency of single items.
- orderFirstNofCountArray(int[][], int) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Bubble sorts first N elements in count array produced by
countSingles method so that array is ordered according to
frequency of single items.
- orderFirstNofCountArray(int[][], int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Bubble sorts first N elements in count array produced by
countSingles method so that array is ordered according to
frequency of single items.
- ordering() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns the ordering of the attribute.
- ordering() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns the ordering of the attribute.
- ORDERING_MODULO - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Constant set for modulo-ordered attributes.
- ORDERING_MODULO - Static variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Constant set for modulo-ordered attributes.
- ORDERING_ORDERED - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Constant set for ordered attributes.
- ORDERING_ORDERED - Static variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Constant set for ordered attributes.
- ORDERING_SYMBOLIC - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Constant set for symbolic attributes.
- ORDERING_SYMBOLIC - Static variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Constant set for symbolic attributes.
- orderPrecede() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
-
It selects to order by precede
- org.core - package org.core
-
- org.libsvm - package org.libsvm
-
- Organizacion - Class in keel.Algorithms.Genetic_Rule_Learning.OCEC
-
- Organizacion() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OCEC.Organizacion
-
- Organizacion(Attribute, myDataset) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OCEC.Organizacion
-
- Organizacion(int, Attribute, myDataset) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OCEC.Organizacion
-
- Organizacion(Organizacion, Organizacion) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OCEC.Organizacion
-
- origin - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.Link
-
Origin neuron
- OrigSeed - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- orphans - Variable in class keel.Algorithms.Instance_Generation.PNN.MatrixOfDistances
-
Prototypes added to the set, to be compared both A and B (it is not so much used)
- OSS - Class in keel.Algorithms.ImbalancedClassification.Resampling.OSS
-
File: OSS.java
The OSS algorithm is an undersampling method used to deal with the imbalanced
problem.
- OSS(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.OSS.OSS
-
Constructor of the class.
- out(EachDataSet, boolean) - Method in class keel.Algorithms.Hyperrectangles.EACH.RuleQualityEvaluation
-
Generates a string with out-put lists
- outAttribute - Variable in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanel
-
Output attribute
- outFile - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Output files names
- outFile - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Output files names.
- outFile - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Output files names
- outFile - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Output files names.
- outFile - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Output files names
- outFile - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Output files names
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.FreqList
-
Test if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.FreqList
-
Test if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.valueAssociations
-
Tests if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.FreqList
-
Test if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.valueAssociations
-
Tests if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqList
-
Test if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqListPair
-
Test if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.valueAssociations
-
Tests if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.FreqList
-
Test if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.valueAssociations
-
Tests if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.FreqList
-
Test if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.valueAssociations
-
Tests if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.FreqList
-
Test if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.valueAssociations
-
Tests if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.FreqList
-
Test if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.FreqList
-
Test if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.valueAssociations
-
Tests if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.FreqList
-
Test if the iterator is out of the bounds of the list
- outOfBounds() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.valueAssociations
-
Tests if the iterator is out of the bounds of the list
- output - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Output attribute
- output() - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Output an instance after filtering and remove from the output queue.
- output() - Method in class keel.Algorithms.Decision_Trees.M5.ReplaceMissingValuesFilter
-
Returns the outputs.
- output - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Output attribute.
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGP.FuzzyGPClassifier
-
This method performs the debug operation, which allow to analyze the behaviour
of the learning process.
- output - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.MyDataset
-
Output files names.
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Classifier.Classifier
-
abstract method to print information useful for debugging purposes
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Classifier.FuzzyClassifier
-
This method prints information about the Rule Base useful for debugging purposes
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Classifier.FuzzyFGPClassifier
-
This method prints information about the Rule Base useful for debugging purposes
- output(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyGPModel
-
This method return the output of the model defuzzified
- output(FuzzyAlphaCut[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyGPRegSymModel
-
This method return the output of the model like fuzzy alpha cuts
- output(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyModel
-
This method defuzzified the output and return a value
- output(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.Model
-
This abstract method return the output of the model defuzzified
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
This abstrac method returns the output of the node.
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeAdd
-
Returns the output of the node.
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeAnd
-
Returns the output of the node.
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeConsequent
-
This method is for debug
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeExp
-
Returns the output of the node.
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeExprHold
-
Returns the output of the node.
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeIs
-
Returns the output of the node.
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeLabel
-
Returns the output of the node.
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeLog
-
Returns the output of the node.
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeMinus
-
Returns the output of the node.
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeOr
-
Returns the output of the node.
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeProduct
-
Returns the output of the node.
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeRule
-
This method is for debug
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeRuleBase
-
This method is for debug
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeSquareRoot
-
Returns the output of the node.
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeValue
-
Returns the output of the node.
- output() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeVariable
-
Returns the output of the node.
- output(FuzzyAlphaCut[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyRegressor
-
Creates and returns a fuzzy alpha-cut with result of the run.
- output(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.RuleBase
-
Returns output (Wang-Mendel) for input x.
- output - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Output attribute
- Output - Class in keel.Algorithms.ImbalancedClassification.Ensembles.Basic
-
- Output() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Output
-
- Output - Class in keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic
-
File: Output.java
An auxiliary class to write result files for Instance Selection algorithms
- Output() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Output
-
- output - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Output attribute.
- Output - Class in keel.Algorithms.Preprocess.Basic
-
File: Output.java
An auxiliary class to write result files for Preprocess algorithms
- Output() - Constructor for class keel.Algorithms.Preprocess.Basic.Output
-
- output - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Output attribute
- output - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Output attribute
- output - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Output attribute
- output - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Output attribute
- OUTPUT - Static variable in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
Label to identify OUTPUT attributes
- output - Variable in class keel.Algorithms.Rule_Learning.Swap1.swap1
-
- OUTPUT - Static variable in class keel.Dataset.Attribute
-
Label to identify OUTPUT attributes
- output_file_tra - Variable in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Param
-
Training output mandatory file
- output_file_tra - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Param
-
Training output mandatory file
- output_file_tra - Variable in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Param
-
Training output mandatory file
- output_file_tst - Variable in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Param
-
Test output mandatory file
- output_file_tst - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Param
-
Test output mandatory file
- output_file_tst - Variable in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Param
-
Test output mandatory file
- OUTPUT_LAYER - Static variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Defines output layer type
- output_test_name - Variable in class keel.Algorithms.SVM.SMO.SMO
-
Test output filename.
- output_train_name - Variable in class keel.Algorithms.SVM.SMO.SMO
-
Training output filename.
- outputAccuracy() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
Outputs classification accuracy.
- outputCMARrules(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
Outputs contents of CMAR rule linked list (if any)
- outputCMARrulesWithReconversion() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
Outputs contents of CMAR rule linked list (if any)
- outputConversionArrays() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Outputs conversion array (used to renumber coulmns for input data
in terms of frequency of single attributes --- reordering will enhance
performance for some ARM algorithms).
- OUTPUTDATA - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- outputData - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
NEW: All the output files are stored in this vector (in the doOutputData method)
- outputData - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
All the output files are stored in this vector (in the doOutputData method)
- outputDataArray() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Outputs stored input data set; initially read from input data file, but
may be reirdered or pruned if desired by a particular application.
- outputDataArray(short[][]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Outputs the given array of array of short integers.
- outputDataArray() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Outputs stored input data set; initially read from input data file, but
may be reordered or pruned if desired by a particular application.
- outputDataArray() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Outputs stored input data set; initially read from input data file, but
may be reordered or pruned if desired by a particular application.
- outputDataArraySize() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Ouputs size (number of records and number of elements) of stored
input data set read from input data file.
- outputDuration(double, double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Outputs difference between two given times.
- outputFile - Class in keel.Algorithms.Statistical_Tests.Shared
-
Appends the results of an experiment to a file
- outputFile() - Constructor for class keel.Algorithms.Statistical_Tests.Shared.outputFile
-
- outputFiles - Static variable in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
Name of output files.
- outputFiles - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Name of output files.
- outputFilesPath - Static variable in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
Complete path of output files.
- outputFilesPath - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Complete path of output files.
- outputFormat() - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
- outputFormatPeek() - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Returns a reference to the current output format without
copying it.
- outputFrequentSets() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
Commences the process of outputting the frequent sets contained in
the T-tree.
- outputFrequentSets(JTextArea) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
Commences the process of outputting the frequent sets contained in
the T-tree to a rext area.
- outputFrequentSets() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.TotalSupportTree
-
Commences the process of outputting the frequent sets contained in
the T-tree.
- outputFrequentSets() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.TotalSupportTree
-
Commences the process of outputting the frequent sets contained in
the T-tree.
- OutputFS - Class in keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic
-
File: OutputIFS.java
General Framework to print results of performing either instance or feature selection
- OutputFS() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.OutputFS
-
- OutputFS - Class in keel.Algorithms.Preprocess.Basic
-
File: OutputFS.java
General Framework to print results of performing either instance or feature selection
- OutputFS() - Constructor for class keel.Algorithms.Preprocess.Basic.OutputFS
-
- outputFunction(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.ExpNeuron
-
Output function of the neuron
- outputFunction(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinearNeuron
-
Output function of the neuron
- outputFunction(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Output function of the neuron
- outputFunction(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.SigmNeuron
-
Output function of the neuron
- outputInterval - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Normalization input interval
- OutputIS - Class in keel.Algorithms.ImbalancedClassification.Ensembles.Basic
-
- OutputIS() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.OutputIS
-
- OutputIS - Class in keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic
-
File: OutputIS.java
An auxiliary class to write result files for Instance Selection algorithms
- OutputIS() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.OutputIS
-
- OutputIS - Class in keel.Algorithms.Preprocess.Basic
-
File: OutputIS.java
An auxiliary class to write result files for Instance Selection algorithms
- OutputIS() - Constructor for class keel.Algorithms.Preprocess.Basic.OutputIS
-
- outputItemSet(short[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Outputs a given item set.
- outputItemSet(short[]) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Outputs a given item set.
- outputItemSet(short[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Outputs a given item set.
- outputItemSetWithReconversion(short[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Outputs a given item set reconverting it to its orginal column number
labels (used where input dataset has been reordered and possible pruned).
- outputLayer - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
-
Ouput layer
- outputLine() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.FingramsProcess
-
Returns a String output line.
- outputLinksPercentage - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Percentage of links to remove in the mutations
- outputMeans - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Array with the mean of each output
- outputMenu() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
Outputs menu for command line arguments.
- outputMenu() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Outputs menu for command line arguments.
- OutputMissingValue - Static variable in class keel.Algorithms.Rule_Learning.Swap1.ErrorInfo
-
- OutputMissingValue - Static variable in class keel.Dataset.ErrorInfo
-
- outputNumClasses() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
Outputs number of classes.
- outputNumCMARrules() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
Outputs number of generated rules (ARs or CARS).
- outputNumFreqSets() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
Commences the process of counting and outputing number of supported
nodes in the T-tree.
- outputNumFreqSetsPerBranch() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
Outputs the number of supported sets per T-tree branch descending from
the top-level of the tree.
- outputNumNodes() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.PartialSupportTree
-
Outputs total number of P-tree nodes (and the number of support
value increments).
- outputNumRules() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
Outputs number of generated rules (ARs or CARS).
- outputNumUpdates() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
Outputs the number of update and number of nodes created during the
generation of the T-tree (the later is not the same as the number of
supported nodes).
- outputPeek() - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Output an instance after filtering but do not remove from the
output queue.
- outputPtree() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.PartialSupportTree
-
Commences process to output P-tree.
- outputPtree1(PtreeNodeTop[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.PartialSupportTree
-
Continues process to output P-tree.
- outputPtreeStats() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.PartialSupportTree
-
Commences the process of outputting P-tree statistics (for diagnostic
purposes): (a) Storage, (b) Number of nodes on P-tree, (c) number of
partial support increments (updates) and (d) generation time.
- outputPtreeStorage() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.PartialSupportTree
-
Outputs P-tree storgae requirements in Bytes.
- outputPtreeTable() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.PartialSupportTree
-
Outputs P-tree table.
- outputPtreeTableStats() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.PartialSupportTree
-
Outputs storage requirements for P-tree table.
- outputRules(RuleList.RuleNodeCMAR) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
Outputs given CMAR rule list.
- outputRules() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Outputs contents of rule linked list (if any) assuming that the list
represents a set of ARs.
- outputRules(AssocRuleMining.RuleNode) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Outputs given rule list.
- outputRules() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Outputs contents of rule linked list (if any) assuming that the list
represents a set of ARs.
- outputRules(AssocRuleMining.RuleNode) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Outputs given rule list.
- outputRulesWithReconversion(RuleList.RuleNodeCMAR) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
Outputs contents of rule linked list (if any) with reconversion.
- outputs - Variable in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Normalized outputs of the prototype (values in [0,1]).
- OUTPUTS - Static variable in interface keel.Algorithms.Rule_Learning.Swap1.DataParserConstants
-
Data Parser Indentifier for output line.
- outputs - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Normalized outputs of the prototype (values in [0,1]).
- OUTPUTS - Static variable in interface keel.Dataset.DataParserConstants
-
- outputs_list() - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- outputs_list() - Static method in class keel.Dataset.DataParser
-
- outputs_tra - Variable in class keel.GraphInterKeel.experiments.Parameters
-
- outputs_tst - Variable in class keel.GraphInterKeel.experiments.Parameters
-
- outputSettings() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
Outputs command line values provided by user.
- outputSettings() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Outputs command line values provided by user.
- outputSettings2() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Outputs instance field values.
- OutputsInTestNotEquals - Static variable in class keel.Algorithms.Rule_Learning.Swap1.ErrorInfo
-
- OutputsInTestNotEquals - Static variable in class keel.Dataset.ErrorInfo
-
- outputsLine - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
- outputsLine - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
- outputStorage() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
Commences the process of determining and outputting the storage
requirements (in bytes) for the T-tree.
- outputSuppAndConf() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Outputs current support and confidence settings.
- OutputTestAttributeNotDefined - Static variable in class keel.Algorithms.Rule_Learning.Swap1.ErrorInfo
-
- OutputTestAttributeNotDefined - Static variable in class keel.Dataset.ErrorInfo
-
- outputTestDataArray() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
Outputs stored input data set read from input data file.
- outputTr - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.multi_C45
-
Training output filename.
- OutputTrainAttributeNotDefined - Static variable in class keel.Algorithms.Rule_Learning.Swap1.ErrorInfo
-
- OutputTrainAttributeNotDefined - Static variable in class keel.Dataset.ErrorInfo
-
- outputTtree() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
Commences process of outputting T-tree structure contents to screen.
- outputTtreeBranch(TtreeNode[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
Commences process of outputting contents of a given T-tree branch to
screen.
- outputTtreeStats() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
Commences the process of outputting T-tree statistics (for diagnostic
purposes): (a) Storage, (b) Number of nodes on P-tree, (c) number of
partial support increments (updates) and (d) generation time.
- outputTtreeStats(JTextArea) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
Commences the process of outputting T-tree statistics:GUI version.
- ova_table(double[]) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.Multiclassifier
-
Computes and returns the one-vs-all vector for a given example.
- over(int, int) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Combinatoric
-
Returns the combinatory number of the two number given.
- overallConstraintViolation - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Overall Constraint Violation percentage.
- overlap(Rule) - Method in class keel.Algorithms.Hyperrectangles.BNGE.Rule
-
Test if two rules are overlapped
- Overlapping() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
This method return the ratio of the average distance between instances blongin to different classes of i
and the average distance between instances that are from the same class i.
- Overlapping() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
This method return the ratio of the average distance between instances blongin to different classes of i
and the average distance between instances that are from the same class i.
- OVO - Class in keel.Algorithms.Decision_Trees.C45_Binarization
-
Title: OVO
Description: This class implements the Binarization methodology (OVO and OVO )
Company: KEEL
- OVO(Multiclassifier, String, boolean) - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.OVO
-
It constructs the new OVO instance depending on the aggregation that is
going to be used
- ovo_table(double[]) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.Multiclassifier
-
Computes and returns the one-vs-one matrix for a given example.
P
- p - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.T_FRM
-
a value.
- p - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- p - Variable in class org.libsvm.svm_parameter
-
- P0 - Static variable in class keel.Algorithms.Lazy_Learning.Statistics
-
approximation for 0 <= |y - 0.5| <= 3/8
- P0 - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
approximation for 0 <= |y - 0.5| <= 3/8
- P1 - Static variable in class keel.Algorithms.Lazy_Learning.Statistics
-
- P1 - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
Approximation for interval z = sqrt(-2 log y ) between 2 and 8
i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
- P2 - Static variable in class keel.Algorithms.Lazy_Learning.Statistics
-
- P2 - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
Approximation for interval z = sqrt(-2 log y ) between 8 and 64
i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
- p_bp - Variable in class keel.Algorithms.Neural_Networks.gann.SetupParameters
-
- p_param - Variable in class keel.Algorithms.Neural_Networks.gann.SetupParameters
-
- P_REDUCT - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- p_struct - Variable in class keel.Algorithms.Neural_Networks.gann.SetupParameters
-
- padLeft(String, int) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Pads a string to a specified length, inserting spaces on the left
as required.
- padLeft(String, int) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Pads a string to a specified length, inserting spaces on the left
as required.
- padLeft(String, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Pads a string to a specified length, inserting spaces on the left
as required.
- padLeft(String, int) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Pads a string to a specified length, inserting spaces on the left
as required.
- padLeft(String, int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Pads a string to a specified length, inserting spaces on the left
as required.
- padLeft(String, int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Pads a string to a specified length, inserting spaces on the left
as required.
- padLeft(String, int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Pads a string to a specified length, inserting spaces on the left
as required.
- padLeft(String, int) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Pads a string to a specified length, inserting spaces on the left
as required.
- padLeft(String, int) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Pads a string to a specified length, inserting spaces on the left
as required.
- padRight(String, int) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Pads a string to a specified length, inserting spaces on the right
as required.
- padRight(String, int) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Pads a string to a specified length, inserting spaces on the right
as required.
- padRight(String, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Pads a string to a specified length, inserting spaces on the right
as required.
- padRight(String, int) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Pads a string to a specified length, inserting spaces on the right
as required.
- padRight(String, int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Pads a string to a specified length, inserting spaces on the right
as required.
- padRight(String, int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Pads a string to a specified length, inserting spaces on the right
as required.
- padRight(String, int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Pads a string to a specified length, inserting spaces on the right
as required.
- padRight(String, int) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Pads a string to a specified length, inserting spaces on the right
as required.
- padRight(String, int) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Pads a string to a specified length, inserting spaces on the right
as required.
- Paint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.domain_t
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.domain_t
-
- Paint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.fuzzy_t
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- Paint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- Paint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.variable_t
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- Paint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- Paint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.domain_t
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.domain_t
-
- Paint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.fuzzy_t
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- Paint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationinteger
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- Paint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.variable_t
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- Paint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- Paint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.domain_t
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.domain_t
-
- Paint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.fuzzy_t
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- Paint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationinteger
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationreal
-
- Paint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.variable_t
-
- Paint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- Paint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- paint() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbf
-
Prints neuron on std out
- paint(String) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbf
-
Prints neuron on a file
- paint() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Prints net on a stdout
- paint(String) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Prints net on a file.
- paint() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Prints the ppulation on a stdout
- paint(String) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Prints the pipulation on a file.
- paint_sort(int) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Shows the _size first individuals (sorted by fitness)
- PaintBin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- PaintBin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- PaintBin(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationreal
-
- PaintBinInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- PaintBinInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- PaintBinInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationreal
-
- paintComponent(Graphics) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
Draw graph
- PaintFitness(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- PaintFitness(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- PaintFitness(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
- PaintFitness(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- PaintFitness(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- PaintFitness(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationinteger
-
- PaintFitness(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- PaintFitness(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- PaintFitness(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationinteger
-
- PaintFitness_Stationary(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- PaintFitness_Stationary(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- PaintFitness_Stationary(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- PaintFitnessInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- PaintFitnessInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- PaintFitnessInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
- PaintFitnessInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- PaintFitnessInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- PaintFitnessInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationinteger
-
- PaintFitnessInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- PaintFitnessInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- PaintFitnessInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationinteger
-
- paintGrid - Variable in class keel.GraphInterKeel.experiments.GraphPanel
-
- PaintIndividual(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- PaintIndividual(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- PaintIndividual(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- PaintInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- PaintInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
- PaintInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- PaintInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- PaintInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationinteger
-
- PaintInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- PaintInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- PaintInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationinteger
-
- PaintInFile(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationreal
-
- Pair - Class in keel.Algorithms.Genetic_Rule_Learning.PART
-
Auxiliary class - Representation of a pair of integers (key/value).
- Pair() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.Pair
-
Default constructor.
- Pair - Class in keel.Algorithms.Hyperrectangles.INNER
-
File: Pair.java
Auxiliary class to repressent pairs of rules and its distance
- Pair(int, int, double) - Constructor for class keel.Algorithms.Hyperrectangles.INNER.Pair
-
Builder.
- Pair<F,S> - Class in keel.Algorithms.Instance_Generation.utilities
-
Implements a simple pair.
- Pair(F, S) - Constructor for class keel.Algorithms.Instance_Generation.utilities.Pair
-
Constructor of the pair
- Pair - Class in keel.Algorithms.Preprocess.Missing_Values.EventCovering
-
This class is a pair of ints
- Pair() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Pair
-
Creates a new instance of Pair
- Pair(int, int) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Pair
-
Creates a pair with the provided integers
- Pair - Class in keel.Algorithms.Rule_Learning.PART
-
Auxiliar class.
- Pair() - Constructor for class keel.Algorithms.Rule_Learning.PART.Pair
-
Default constructor.
- Pair - Class in keel.Algorithms.Rule_Learning.Ripper
-
Auxiliar class.
- Pair() - Constructor for class keel.Algorithms.Rule_Learning.Ripper.Pair
-
Default constructor.
- Pair - Class in keel.Algorithms.Rule_Learning.Slipper
-
Auxiliar class.Representation of a pair of integers (key/value).
- Pair() - Constructor for class keel.Algorithms.Rule_Learning.Slipper.Pair
-
Default constructor.
- Pair<F,S> - Class in keel.Algorithms.Semi_Supervised_Learning.utilities
-
Implements a simple pair.
- Pair(F, S) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.utilities.Pair
-
Constructor of the pair
- Pair - Class in keel.Algorithms.Statistical_Tests.Shared.nonParametric
-
File: Pair.java
This class defines a comparable pair of two double values.
- Pair() - Constructor for class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Pair
-
Default builder
- Pair(double, double) - Constructor for class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Pair
-
Builder
- Pair - Class in keel.GraphInterKeel.statistical.tests
-
File: Pair.java
This class defines a comparable pair of two double values.
- Pair() - Constructor for class keel.GraphInterKeel.statistical.tests.Pair
-
Default builder
- Pair(double, double) - Constructor for class keel.GraphInterKeel.statistical.tests.Pair
-
Builder
- pair_fi - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting
-
- pair_fi() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.pair_fi
-
- pair_fi(double, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.pair_fi
-
- pair_gf - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting
-
- pair_gf(GenotypeBoosting, double) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.pair_gf
-
- pair_gg - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting
-
- pair_gg(GenotypeBoosting, GenotypeBoosting) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.pair_gg
-
- pairwiseCoupling(double[][], double[][]) - Method in class keel.Algorithms.SVM.SMO.SMO
-
Implements pairwise coupling.
- palfa - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.T_FRM
-
a value.
- PANDA - Class in keel.Algorithms.Preprocess.NoiseFilters.PANDA
-
This noise detection algorithm, PANDA, seeks to identify those instances with a large deviation from normal given the
values of a pair of attributes.
- PANDA() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.PANDA.PANDA
-
Constructor of the class
- panelDatasets - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- par - Static variable in class keel.Algorithms.LQD.methods.FGFS_Original.Main
-
Contains all the parameters of this algorithm.
- par - Variable in class keel.GraphInterKeel.experiments.Node
-
- parAlgorithmType - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Algorithm to execute
- parAlgorithmType - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Algorithm to execute identifier.
- Param - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate
-
This class manages the values of the variables defined by the parameters file
- Param(String, String, String, String, String, String, int) - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Param
-
Create an instance Param
- Param - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate
-
This class manages the values of the variables defined by the parameters file
- Param(String, String, String, String, String, String, int) - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Param
-
Create an instance Param
- Param - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate
-
- Param(String, String, String, String, String, String, int) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Param
-
Create an instance Param
- param - Variable in class keel.GraphInterKeel.experiments.Jclec
-
- parameter_data - Variable in class keel.GraphInterKeel.experiments.DinamicParameter
-
- Parameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
-
Parameters.java.
- Parameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.Parameters
-
- Parameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
-
- Parameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.Parameters
-
- Parameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
-
- Parameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.Parameters
-
- Parameters - Class in keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
Main class to parse the parameters of the algorithm
- Parameters() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- Parameters - Class in keel.Algorithms.Genetic_Rule_Learning.Globals
-
Parameters.java
This class contains all the parameters of the system
- Parameters() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- Parameters - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals
-
- Parameters() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- Parameters - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
In this class there are all the classifier parameters of UCS.
- Parameters() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
-
Constructs a Parameters Object.
- Parameters(int, double, double) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
-
It creates an instance of Parameters.
- Parameters(Parameters, Parameters, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
-
It creates a new parameter object making a crossover between the
parents parametres.
- Parameters(Parameters, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
-
It creates a new parameter object copying the parameters from a parent
- PARAMETERS - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- Parameters - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
In this class there are all the classifier parameters of XCS.
- Parameters() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Constructs a Parameters Object.
- Parameters(int, double, double) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
It creates an instance of Parameters.
- Parameters(Parameters, Parameters, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
It creates a new parameter object making a crossover between the
parents parametres.
- Parameters(Parameters, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Copy constructor
Constructs a Parameters Object initializing its attributes from another Parameters object.
- Parameters(StringTokenizer) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Constructs a Parameters Object initializing its attributes
- Parameters - Class in keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS
-
Class representing the parameters of the algorithm
- Parameters() - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Empty constructor
- parameters - Static variable in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
Parameters given by the console.
- Parameters - Class in keel.Algorithms.Instance_Generation.utilities
-
Implements operations of getting and setting the algorithm parameters.
- Parameters(int) - Constructor for class keel.Algorithms.Instance_Generation.utilities.Parameters
-
Constructor.
- Parameters(String[]) - Constructor for class keel.Algorithms.Instance_Generation.utilities.Parameters
-
Constructor.
- Parameters(ArrayList<String>) - Constructor for class keel.Algorithms.Instance_Generation.utilities.Parameters
-
Constructor.
- Parameters(String[], String[]) - Constructor for class keel.Algorithms.Instance_Generation.utilities.Parameters
-
Constructor.
- parameters - Class in keel.Algorithms.LQD.methods.FGFS_costInstances
-
File: parameters.java
Read the parameters given by the usuary
- parameters(String) - Constructor for class keel.Algorithms.LQD.methods.FGFS_costInstances.parameters
-
Constructor.
- parameters - Class in keel.Algorithms.LQD.methods.FGFS_Minimum_Risk
-
File: parameters.java
Read the parameters given by the usuary
- parameters(String) - Constructor for class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.parameters
-
Constructor.
- parameters - Class in keel.Algorithms.LQD.methods.FGFS_Original
-
File: parameters.java
Read the parameters given by the usuary
- parameters(String) - Constructor for class keel.Algorithms.LQD.methods.FGFS_Original.parameters
-
Constructor.
- parameters - Class in keel.Algorithms.LQD.methods.FGFS_Rule_Weight
-
File: parameters.java
Read the parameters given by the usuary
- parameters(String) - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.parameters
-
Constructor.
- parameters - Class in keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty
-
File: parameters.java
Read the parameters given by the usuary
- parameters(String) - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.parameters
-
Constructor.
- parameters - Class in keel.Algorithms.LQD.preprocess.Expert
-
File: parameters.java
Read the parameters given by the usuary
- parameters(String) - Constructor for class keel.Algorithms.LQD.preprocess.Expert.parameters
-
Constructor.
- parameters - Class in keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE
-
File: parameters.java
Read the parameters given by the usuary
- parameters(String) - Constructor for class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.parameters
-
Constructor.
- parameters - Class in keel.Algorithms.LQD.preprocess.Prelabelling
-
File: parameters.java
Read the parameters given by the usuary
- parameters(String) - Constructor for class keel.Algorithms.LQD.preprocess.Prelabelling.parameters
-
Constructor.
- parameters - Class in keel.Algorithms.LQD.preprocess.Prelabelling_Expert
-
File: parameters.java
Read the parameters given by the usuary
- parameters(String) - Constructor for class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.parameters
-
Constructor.
- parameters - Class in keel.Algorithms.LQD.tests.IntermediateBoost
-
File: parameters.java
Read the parameters original dataset
- parameters(String) - Constructor for class keel.Algorithms.LQD.tests.IntermediateBoost.parameters
-
Constructor.
- parameters - Class in keel.Algorithms.LQD.tests.Results
-
File: parameters.java
Read the parameters given by the user.
- parameters(String) - Constructor for class keel.Algorithms.LQD.tests.Results.parameters
-
Constructor.
- parameters(String) - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
-
Reads a text file with parameters of the form name=value and returns a hastable containing them.
- Parameters - Class in keel.Algorithms.Neural_Networks.gann
-
Class Parameters
- Parameters() - Constructor for class keel.Algorithms.Neural_Networks.gann.Parameters
-
Empty constructor
- Parameters - Class in keel.Algorithms.Neural_Networks.gmdh
-
Class Parameters
- Parameters() - Constructor for class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Empty constructor
- Parameters - Class in keel.Algorithms.Neural_Networks.net
-
Class representing the parameters of the algorithm
- Parameters() - Constructor for class keel.Algorithms.Neural_Networks.net.Parameters
-
Empty constructor
- parameters(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
-
Reads a text file with parameters of the form name=value and returns a hastable containing them.
- parameters(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
-
Reads a text file with parameters of the form name=value and returns a hastable containing them.
- parameters(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
-
Reads a text file with parameters of the form name=value and returns a hastable containing them.
- parameters(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
-
Reads a text file with parameters of the form name=value and returns a hastable containing them.
- parameters(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
-
Reads a text file with parameters of the form name=value and returns a hastable containing them.
- parameters(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
-
Reads a text file with parameters of the form name=value and returns a hastable containing them.
- Parameters - Class in keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter
-
Main class to parse the parameters of the algorithm
- Parameters() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Parameters
-
- Parameters - Class in keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter
-
Main class to parse the parameters of the algorithm
- Parameters() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.Parameters
-
- Parameters - Class in keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter
-
Main class to parse the parameters of the algorithm
- Parameters() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Parameters
-
- Parameters - Class in keel.Algorithms.Preprocess.NoiseFilters.INFFC
-
Main class to parse the parameters of the algorithm
- Parameters() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
- Parameters - Class in keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter
-
Main class to parse the parameters of the algorithm
- Parameters() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.Parameters
-
- Parameters - Class in keel.Algorithms.Preprocess.NoiseFilters.PANDA
-
Main class to parse the parameters of the algorithm
- Parameters() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Parameters
-
- Parameters - Class in keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter
-
Main class to parse the parameters of the algorithm
- Parameters() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Parameters
-
- Parameters - Class in keel.Algorithms.Rule_Learning.Swap1
-
Main class to parse the parameters of the algorithm
- Parameters() - Constructor for class keel.Algorithms.Rule_Learning.Swap1.Parameters
-
- parameters - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Parameters given by the console.
- Parameters - Class in keel.Algorithms.Semi_Supervised_Learning.utilities
-
Implements operations of getting and setting the algorithm parameters.
- Parameters(int) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
-
Constructs the Parameters class (the String's array) with the size given.
- Parameters(String[]) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
-
Constructs the Parameters class (the String's array) with the array given.
- Parameters(ArrayList<String>) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
-
Constructs the Parameters class (the String's array) with the array given.
- Parameters(String[], String[]) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
-
Constructs the Parameters class (the String's array) with the parameters array given and their names.
- parameters - Variable in class keel.GraphInterKeel.experiments.Joint
-
- Parameters - Class in keel.GraphInterKeel.experiments
-
- Parameters() - Constructor for class keel.GraphInterKeel.experiments.Parameters
-
Default builder
- Parameters(Parameters) - Constructor for class keel.GraphInterKeel.experiments.Parameters
-
Builder that copies another Parametros object
- Parameters(String, boolean) - Constructor for class keel.GraphInterKeel.experiments.Parameters
-
Read pattern file
- ParametersC45 - Class in keel.Algorithms.Semi_Supervised_Learning.Basic.C45
-
Class to implement Parameters the C4.5 algorithm
- ParametersC45() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.ParametersC45
-
- ParametersC45 - Class in keel.Algorithms.Semi_Supervised_Learning.Basic
-
Class to implement Parameters the C4.5 algorithm.
- ParametersC45() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.ParametersC45
-
- ParametersDialog - Class in keel.GraphInterKeel.experiments
-
- ParametersDialog(Experiments, String, boolean, Vector, ExternalObjectDescription) - Constructor for class keel.GraphInterKeel.experiments.ParametersDialog
-
Builder
- ParametersDialog() - Constructor for class keel.GraphInterKeel.experiments.ParametersDialog
-
Default builder
- ParametersDialog2 - Class in keel.GraphInterKeel.experiments
-
- ParametersDialog2(Frame, String, boolean, UserMethod) - Constructor for class keel.GraphInterKeel.experiments.ParametersDialog2
-
Builder
- ParametersDialog2() - Constructor for class keel.GraphInterKeel.experiments.ParametersDialog2
-
Default builder
- parametersFromGenotype() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGAP.FuzzyGAPClassifier
-
This method sets the current classifier of according to it's genotype.
- parametersFromGenotype() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGP.FuzzyGPClassifier
-
This method sets the current classifier of according to it's genotype.
- parametersFromGenotype() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyPittsBurgh.PittsburghClassifier
-
This method sets the current classifier of according to it's genotype.
- parametersFromGenotype() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySAP.FuzzySAPClassifier
-
This method sets the current classifier of according to it's genotype.
- parametersFromGenotype() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividual
-
This abstract method sets parameters from a genotype
- parametersFromGenotype() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyGAPModelIndividual
-
This method obtain the parameters of a genetic individual from the genotype
- parametersFromGenotype() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyGPModelIndividual
-
This method obtain the parameters of a genetic individual from the genotype
- parametersFromGenotype() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.PittsburghModel
-
This method obtain the parameters of a genetic individual from the genotype
- parametersFromGenotype() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.RegSymFuzzyGP
-
This method obtain the parameters of a genetic individual from the genotype
- parametersName - Static variable in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
Name of the parameters.
- parametersName - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Name of the parameters.
- ParametersParser - Class in keel.Algorithms.Genetic_Rule_Learning.olexGA
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- ParametersParser() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.olexGA.ParametersParser
-
Default constructor
- ParametersSMO - Class in keel.Algorithms.Semi_Supervised_Learning.Basic
-
Class to implement Parameters the SMO algorithm
- ParametersSMO() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.ParametersSMO
-
- ParametersTable - Class in keel.GraphInterKeel.experiments
-
- ParametersTable(Parameters, JDialog) - Constructor for class keel.GraphInterKeel.experiments.ParametersTable
-
EDUCATIONAL KEEL ****************************
- parametersUser - Variable in class keel.GraphInterKeel.experiments.UserMethod
-
- parameterType - Variable in class keel.GraphInterKeel.experiments.Parameters
-
- parametricMutation(ExpNeuron, LinkedLayer, LinkedLayer, int, double, double, double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ExpNeuronParametricMutator
-
Do the parametric mutation over the links of a specific neuron
in a specific layer
- parametricMutation(N, LinkedLayer, LinkedLayer, int, double, double, double) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.INeuronParametricMutator
-
Do the parametric mutation over the links of a specific neuron
in a specific layer
- parametricMutation(LinearNeuron, LinkedLayer, LinkedLayer, int, double, double, double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.LinearNeuronParametricMutator
-
Do the parametric mutation over the links of a specific neuron
in a specific layer
- parametricMutation(SigmNeuron, LinkedLayer, LinkedLayer, int, double, double, double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.SigmNeuronParametricMutator
-
Do the parametric mutation over the links of a specific neuron
in a specific layer
- ParametricMutator<I extends NeuralNetIndividual> - Class in keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric
-
Parametric mutator for neural nets, mutate the weights of the neural nets mutated.
- ParametricMutator() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
-
Empty Constructor
- ParametricSAMutator<I extends NeuralNetIndividual> - Class in keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric
-
Parametric mutator for neural nets, mutate the weights of the neural nets
mutated.
- ParametricSAMutator() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricSAMutator
-
Empty Constructor
- ParametricSRMutator<I extends NeuralNetIndividual> - Class in keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric
-
Parametric mutator for neural nets, mutate the weights of the neural nets
mutated.
- ParametricSRMutator() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricSRMutator
-
Empty Constructor
- ParametrosPreEvaluacion() - Method in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- ParametrosPreEvaluacion() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- ParametrosPreEvaluacion() - Method in class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- pararRun() - Method in class keel.GraphInterKeel.experiments.EducationalPartitionsRun
-
Thread is stop in natural way, but the partitions finish
- parCrGAProb - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
GA Cross probability
- parCrGAProb - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
GA Cross probability.
- parCrossId1 - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Type of cross operator
- parCrossId1 - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Type of cross operator.
- parCrossId2 - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Type of cross operator GAP
- parCrossId2 - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Type of cross operator GAP.
- parCrossId3 - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Type of cross operator GAP
- parCrossId3 - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Type of cross operator GAP.
- parDeltaFit - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Waited fitness increment for a SAP overcrossing
- parDeltaFit - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Waited fitness increment for a SAP overcrossing.
- Pareja - Class in keel.Algorithms.Instance_Selection.CCIS
-
Pair implementation.
- Pareja() - Constructor for class keel.Algorithms.Instance_Selection.CCIS.Pareja
-
Default constructor.
- Pareja(int, double) - Constructor for class keel.Algorithms.Instance_Selection.CCIS.Pareja
-
Parameter constructor.
- Pareja - Class in keel.Algorithms.Preprocess.Instance_Selection.CCIS
-
Pair implementation.
- Pareja() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.CCIS.Pareja
-
Default constructor.
- Pareja(int, double) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.CCIS.Pareja
-
Parameter constructor.
- parent - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Lists
-
Parent list.
- parent - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Lists
-
Parent list.
- parent - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Lists
-
Parent list.
- parent - Variable in class keel.GraphInterKeel.datacf.DataCFFrame
-
Parent frame
- parent - Variable in class keel.GraphInterKeel.datacf.editData.EditPanel
-
- parent - Variable in class keel.GraphInterKeel.datacf.exportData.ExportPanel
-
Parent frame
- parent - Variable in class keel.GraphInterKeel.datacf.importData.ImportPanel
-
Parent frame
- parent - Variable in class keel.GraphInterKeel.datacf.partitionData.PartitionPanel
-
Parent frame
- parent - Variable in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanel
-
Parent Frame
- parent - Variable in class keel.GraphInterKeel.experiments.Credits
-
- parent - Variable in class keel.GraphInterKeel.experiments.GraphPanel
-
- parent - Variable in class keel.GraphInterKeel.menu.FrameModules
-
Parent frame
- parent - Variable in class keel.GraphInterKeel.statistical.StatisticalF
-
- parentRule() - Method in class keel.Algorithms.Rule_Learning.Rules6.Regla
-
Returns the father of this rule, its ancestor.
- parentRule() - Method in class keel.Algorithms.Rule_Learning.SRI.Regla
-
Returns the father of this rule, its ancestor.
- PAREnvironment - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This is the typical example for a single step problem, the parity problem.
- PAREnvironment() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.PAREnvironment
-
It is the constructor of the class.
- parFitnessType - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Type of fitness
- parFitnessType - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Type of fitness.
- parGALen - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Number of parameters for GA string (GAP)
- parGALen - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Number of parameters for GA string (GAP).
- parInputData - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Input Train and Test names
- parInputData - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Train name.
- parIntraNicheProb - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Crossing probability intra-niche
- parIntraNicheProb - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Crossing probability intra-niche.
- parIslandNumber - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Number of populations
- parIslandNumber - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Number of populations
- parIterNumber - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Number of iterations (generations of crosses)
- parIterNumber - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Number of iterations (generations of crosses).
- parKernel - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Kernel parameter
- parKernel - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Kernel parameter.
- parLoId - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Local Optimization Algorithm
- parLoId - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Local Optimization Algorithm identifier.
- parLoIterNumber - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
NUmber of iterations for Local Optimization * used nvar
- parLoIterNumber - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
NUmber of iterations for Local Optimization * used nvar.
- parLoProb - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Local Optimization probability
- parLoProb - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Local Optimization probability.
- parMaxHeigth - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Maximum height for each individual
- parMaxHeigth - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Maximum height for each individual
- parMaxNiche - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Maximum number of individuls by niche
- parMaxNiche - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Maximum number of individuls by niche.
- parMigProb - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Migration probability
- parMigProb - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Migration probability.
- parMuGAProb - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
GA Mutation probability
- parMuGAProb - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
GA Mutation probability.
- parMutaId1 - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Type of mutation operator
- parMutaId1 - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Type of mutation operator.
- parMutaId2 - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Type of mutation operator GAP
- parMutaId2 - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Type of mutation operator GAP.
- parMutaId3 - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Type of mutation operator GAP
- parMutaId3 - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Type of mutation operator GAP.
- parMutAmpl - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Mutation amplitude
- parMutAmpl - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Mutation amplitude.
- parMutProb - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Mutation probability
- parMutProb - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Mutation probability.
- parNClusters - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Number of cluster in clustering problems
- parNClusters - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Number of cluster in clustering problems.
- parNetTopo - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Neural Network topology
- parNetTopo - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Neural Network topology.
- parNewFormat - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Keel format or not
- parNewFormat - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Keel format or not flag.
- parNiche - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Using GA-P niches
- parNiche - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Using GA-P niches flag.
- parNMeans - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Number of means
- parNMeans - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Number of means.
- parNSUB - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Number of iterations for each temperature SAP
- parNSUB - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Number of iterations for each temperature SAP.
- parOutputData - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Output Train and Test names
- parOutputData - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Test name.
- parP0 - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Accepting probability -deltafit on 0 iteration SAP
- parP0 - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Accepting probability -deltafit on 0 iteration SAP.
- parP1 - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Accepting probability -deltafit on iteration SAP
- parP1 - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Accepting probability -deltafit on iteration SAP.
- parPartitionLabelNum - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Partition label
- parPartitionLabelNum - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Partition label number.
- parPopSize - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Population size
- parPopSize - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Population size
- parResultLabel - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Results label
- parResultLabel - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Results label.
- parResultName - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Global results file
- parResultName - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Test results file
- parResultTrainName - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Result file name for Trail file
- parResultTrainName - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Result file name for Trail file
- parRuleNumber - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Number of rules (Boosting and FSS98)
- parRuleNumber - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Number of rules (Boosting and FSS98).
- parse(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractAttribute
-
Parse an external value to obtain the internal value of the
Attribute
- parse(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.CategoricalAttribute
-
Parse an external value to obtain the internal value of the
Attribute
- parse(String) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IAttribute
-
Parse an external value to obtain the internal value of the
Attribute
- parse(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.IntegerNumericalAttribute
-
Parse an external value to obtain the internal value of the
Attribute
- parse(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.RealNumericalAttribute
-
Parse an external value to obtain the internal value of the
Attribute
- parseAttribute(StreamTokenizer) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Parses the attribute declaration.
- parseAttribute(String) - Method in class keel.GraphInterKeel.datacf.importData.ImportPanel
-
Obtains an Attribute object from a text line representing the attribute
in KEEL format
- parseConfigurationFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Decision_Trees.DT_GA.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Decision_Trees.Target.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.parseParameters
-
It obtains all the necessary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.ParametersParser
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.parseParameters
-
It obtains all the necessary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.PSO_Learning.CPSO.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.PSO_Learning.REPSO.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Rule_Learning.C45Rules.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Rule_Learning.LEM1.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Rule_Learning.LEM2.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Rule_Learning.PART.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Rule_Learning.Ripper.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Rule_Learning.Ritio.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Rule_Learning.Rules6.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Rule_Learning.Slipper.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Rule_Learning.SRI.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.SVM.C_SVM.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.SVM.EPSILON_SVR.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.SVM.NU_SVM.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.SVM.NU_SVR.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseConfigurationFile(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.parseParameters
-
It obtains all the necesary information from the configuration file.
- parseDate(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Parses the given String as Date, according to the current format and
returns the corresponding amount of milliseconds.
- parseDate(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Parse a date from a string given.
- parSeed - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Random seed
- parSeed - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Random seed.
- ParseException - Exception in keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser
-
This exception is thrown when parse errors are encountered.
- ParseException(Token, int[][], String[]) - Constructor for exception keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParseException
-
This constructor is used by the method "generateParseException"
in the generated parser.
- ParseException() - Constructor for exception keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParseException
-
The following constructors are for use by you for whatever
purpose you can think of.
- ParseException(String) - Constructor for exception keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParseException
-
Parameters contructor.
- ParseException - Exception in keel.Algorithms.Rule_Learning.Swap1
-
This exception is thrown when parse errors are encountered.
- ParseException(Token, int[][], String[]) - Constructor for exception keel.Algorithms.Rule_Learning.Swap1.ParseException
-
This constructor is used by the method "generateParseException"
in the generated parser.
- ParseException() - Constructor for exception keel.Algorithms.Rule_Learning.Swap1.ParseException
-
The following constructors are for use by you for whatever
purpose you can think of.
- ParseException(String) - Constructor for exception keel.Algorithms.Rule_Learning.Swap1.ParseException
-
- ParseException - Exception in keel.Dataset
-
This exception is thrown when parse errors are encountered.
- ParseException(Token, int[][], String[]) - Constructor for exception keel.Dataset.ParseException
-
This constructor is used by the method "generateParseException"
in the generated parser.
- ParseException() - Constructor for exception keel.Dataset.ParseException
-
The following constructors are for use by you for whatever
purpose you can think of.
- ParseException(String) - Constructor for exception keel.Dataset.ParseException
-
- ParseFileList - Class in keel.Algorithms.Statistical_Tests.Shared
-
Parse a list of files and perform certain the statistical test.
- ParseFileList() - Constructor for class keel.Algorithms.Statistical_Tests.Shared.ParseFileList
-
- ParseFileRegSym - Class in keel.Algorithms.Symbolic_Regression.Shared
-
This class obtains a symbolic model of training input data using algorithms:
-GAP (Genetic Algorithm Programming). method symbolicRegressionFuzzyGAP.
- ParseFileRegSym() - Constructor for class keel.Algorithms.Symbolic_Regression.Shared.ParseFileRegSym
-
- parseHeader(InstanceParser, boolean) - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
-
It reads the information in the header of the file.
- parseHeader(InstanceParser, boolean) - Method in class keel.Dataset.InstanceSet
-
It reads the information in the header of the file.
- parseMatlab(String) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
creates a matrix from the given Matlab string.
- parseMatlab(String) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
creates a matrix from the given Matlab string.
- parseParameters - Class in keel.Algorithms.Associative_Classification.ClassifierCBA
-
It reads the configuration file (data-set files and parameters).
- parseParameters() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Associative_Classification.ClassifierCBA2
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Associative_Classification.ClassifierCMAR
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCMAR.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Associative_Classification.ClassifierCPAR
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCPAR.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Decision_Trees.C45_Binarization
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Decision_Trees.DT_GA
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Decision_Trees.DT_oblicuo
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Decision_Trees.DT_oblicuo.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Decision_Trees.Target
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Decision_Trees.Target.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
-
It reads the configuration file (data-set files and parameters).
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE
-
It reads the configuration file (data-set files and parameters).
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Genetic_Rule_Learning.DMEL
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.DMEL.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Genetic_Rule_Learning.GIL
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GIL.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Genetic_Rule_Learning.LogenPro
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.LogenPro.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Genetic_Rule_Learning.OCEC
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OCEC.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Genetic_Rule_Learning.PART
-
Reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Genetic_Rule_Learning.RMini
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.RMini.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.ImbalancedClassification.Ensembles
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.PSO_Learning.CPSO
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.PSO_Learning.CPSO.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.PSO_Learning.LDWPSO
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.PSO_Learning.LDWPSO.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.PSO_Learning.PSOLDA
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.PSO_Learning.PSOLDA.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.PSO_Learning.REPSO
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.PSO_Learning.REPSO.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.RE_SL_Methods.P_FCS1
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.RE_SL_Methods.P_FCS1.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.RE_SL_Methods.SEFC
- parseParameters() - Constructor for class keel.Algorithms.RE_SL_Methods.SEFC.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Rule_Learning.C45Rules
-
Title: Parse Configuration File
Reads the configuration file (data-set files and parameters).
- parseParameters() - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Rule_Learning.C45RulesSA
- parseParameters() - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Rule_Learning.LEM1
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Rule_Learning.LEM1.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Rule_Learning.LEM2
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Rule_Learning.LEM2.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Rule_Learning.PART
- parseParameters() - Constructor for class keel.Algorithms.Rule_Learning.PART.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Rule_Learning.Ripper
- parseParameters() - Constructor for class keel.Algorithms.Rule_Learning.Ripper.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Rule_Learning.Ritio
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Rule_Learning.Ritio.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Rule_Learning.Rules6
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Rule_Learning.Rules6.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Rule_Learning.Slipper
- parseParameters() - Constructor for class keel.Algorithms.Rule_Learning.Slipper.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Rule_Learning.SRI
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Rule_Learning.SRI.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Statistical_Classifiers.Naive_Bayes
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.Subgroup_Discovery.SDMap.SDMap
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.SVM.C_SVM
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.SVM.C_SVM.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.SVM.EPSILON_SVR
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.SVM.EPSILON_SVR.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.SVM.NU_SVM
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.SVM.NU_SVM.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.SVM.NU_SVR
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.SVM.NU_SVR.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR
-
Title: Parse Configuration File
Description: It reads the configuration file (data-set files and parameters)
Company: KEEL
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.parseParameters
-
Default constructor
- parseParameters - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII
-
It reads the configuration file (data-set files and parameters)
- parseParameters() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.parseParameters
-
Default constructor
- Parser - Class in keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser
-
Parser class of the parameters for the algorithm XCS
- Parser(InputStream) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- Parser(Reader) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- Parser(ParserTokenManager) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- ParserConstants - Interface in keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser
-
ParserConstants.java
- ParserParameters - Class in keel.Algorithms.Discretizers.Basic
-
Parser for the package Discretizers.
- ParserParameters() - Constructor for class keel.Algorithms.Discretizers.Basic.ParserParameters
-
- ParserParameters - Class in keel.Algorithms.Genetic_Rule_Learning.GAssist
-
ParserParameters.java
- ParserParameters() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GAssist.ParserParameters
-
- ParserParameters - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Basic
-
ParserParameters.java
- ParserParameters() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Basic.ParserParameters
-
- ParserParameters - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
-
Reads the configuration file using the KEEL format.
- ParserParameters() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ParserParameters
-
- ParserTokenManager - Class in keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser
-
ParserTokenManager.java
- ParserTokenManager(SimpleCharStream) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserTokenManager
-
- ParserTokenManager(SimpleCharStream, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserTokenManager
-
- parSigma - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Initial Covariance in FSS98
- parSigma - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Initial Covariance in FSS98.
- parSignificanceLevel - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Contrast Significance Level
- parSignificanceLevel - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Contrast Significance Level.
- parSteady - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Steady or not
- parSteady - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Steady or not flag.
- Parte - Class in keel.Algorithms.Genetic_Rule_Learning.RMini
-
- PartialSupportTree - Class in keel.Algorithms.Associative_Classification.ClassifierCMAR
-
Methods to implement the "Apriori-TFP" (Total From Partial) ARM algorithm
using both the T-tree (Total support tree) and P-tree (Partial support tree
data structures.
- PartialSupportTree(double, double, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCMAR.PartialSupportTree
-
Processes command line arguments.
- PartialSupportTree.PtreeRecord - Class in keel.Algorithms.Associative_Classification.ClassifierCMAR
-
Structurte to contain P-tree data in tabular form for improved
computational efficiency when creating T-tree.
- Particle - Class in keel.Algorithms.PSO_Learning.CPSO
-
Title: Particle
Company: KEEL
- Particle(int, int) - Constructor for class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- Particle - Class in keel.Algorithms.PSO_Learning.LDWPSO
-
Title: Particle
Company: KEEL
- Particle(int, int) - Constructor for class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- Particle - Class in keel.Algorithms.PSO_Learning.PSOLDA
-
Title: Particle
Company: KEEL
- Particle(int) - Constructor for class keel.Algorithms.PSO_Learning.PSOLDA.Particle
-
- Particle - Class in keel.Algorithms.PSO_Learning.REPSO
-
Title: Particle
Company: KEEL
- Particle(int) - Constructor for class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- Particula - Class in keel.Algorithms.Genetic_Rule_Learning.PSO_ACO
-
Title: Particula (Particle)
Description: Particle class:
Implements the particles needed on the Particle Swarm Optimization algorithm (PSO).
- Particula() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Default constructor.
- Particula(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Paramater Constructor.
- partIn(int) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Make a partition of a set. numberOfSets sets with the same number of prototypes will be generated.
- partIn(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Make a partition of a set. numberOfSets sets with the same number of prototypes will be generated.
- partIntoSubsetsOverlappingDegree(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Generate two subsets of the set t.
- partIntoSubsetsOverlappingDegree(Pair<Prototype, Prototype>) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Generate two subsets of the set t.
- partIntoSubsetsOverlappingDegree(Prototype, Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Generate two subsets of the set t.
- partIntoSubsetsOverlappingDegree(Pair<Prototype, Prototype>) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Generate two subsets of the set t.
- partIntoSubsetsWhichSeedPointsAre(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Generate two subsets of the set t.
- partIntoSubsetsWhichSeedPointsAre(Pair<Prototype, Prototype>) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Generate two subsets of the set t.
- partIntoSubsetsWhichSeedPointsAre(Prototype, Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Generate two subsets of the set t.
- partIntoSubsetsWhichSeedPointsAre(Pair<Prototype, Prototype>) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Generate two subsets of the set t.
- partition(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.DataBase
-
It translates the antecedent id to a valid partition
- partition(int, int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Partitions the instances around a pivot.
- partition(Instances, int) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Patition the data into 2, first of which has (numFolds-1)/numFolds of
the data and the second has 1/numFolds of the data
- partition(int, int, int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Partitions the instances around a pivot.
- partition - Class in keel.Algorithms.LQD.methods.FGFS_Original
-
File: partitions.java
Properties and functions of the partitions of the fuzzy number
- partition() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Original.partition
-
- partition(float, float, int) - Constructor for class keel.Algorithms.LQD.methods.FGFS_Original.partition
-
- partition - Class in keel.Algorithms.LQD.methods.FGFS_Rule_Weight
-
File: partitions.java
Properties and functions of the partitions of the fuzzy number
- partition() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.partition
-
- partition(float, float, int) - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.partition
-
- partition - Class in keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty
-
File: fuzzy.java
Properties and functions of fuzzy partitions
- partition() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.partition
-
- partition(float, float, int) - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.partition
-
- partition(int, int, int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Partitions the instances around a pivot.
- partition(int, int, int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Partitions the instances around a pivot.
- partition(int, String, String, long, int, int) - Method in class keel.GraphInterKeel.datacf.partitionData.PartitionGenerator
-
Partitions a dataset
- partitionCost(int, int) - Method in class keel.Algorithms.Discretizers.MODL.MODL
-
Computes the cost of the partition
- PartitionCreator - Class in keel.GraphInterKeel.experiments
-
- PartitionGenerator - Class in keel.GraphInterKeel.datacf.partitionData
-
- PartitionGenerator() - Constructor for class keel.GraphInterKeel.datacf.partitionData.PartitionGenerator
-
- partitionOptions(String[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Returns the secondary set of options (if any) contained in
the supplied options array.
- partitionOptions(String[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Returns the secondary set of options (if any) contained in
the supplied options array.
- partitionOptions(String[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Returns the secondary set of options (if any) contained in
the supplied options array.
- partitionOptions(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Returns the secondary set of options (if any) contained in
the supplied options array.
- partitionOptions(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Returns the secondary set of options (if any) contained in
the supplied options array.
- partitionOptions(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Returns the secondary set of options (if any) contained in
the supplied options array.
- partitionOptions(String[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Returns the secondary set of options (if any) contained in
the supplied options array.
- partitionOptions(String[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Returns the secondary set of options (if any) contained in
the supplied options array.
- partitionOptions(String[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Returns the secondary set of options (if any) contained in
the supplied options array.
- PartitionPanel - Class in keel.GraphInterKeel.datacf.partitionData
-
- PartitionPanel() - Constructor for class keel.GraphInterKeel.datacf.partitionData.PartitionPanel
-
Constructor that initializes the panel
- partitionPercentTraining - Variable in class keel.Algorithms.Instance_Generation.HYB.HYBGenerator
-
% of training data set used as training in the search process.
- partitions(Vector<Vector<fuzzy>>, int, int, interval[]) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling.Main
-
- partitions(Vector<Vector<fuzzy>>, int, int, interval[]) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.Main
-
- partitions - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- PartitionScheme - Class in keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter
-
This class implements a stratified scheme (equal number of examples of each class in each partition) to partition a dataset
- PartitionScheme() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.PartitionScheme
-
It reads the training set and creates the partitions
- PartitionScheme - Class in keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter
-
This class implements a stratified scheme (equal number of examples of each class in each partition) to partition a dataset
- PartitionScheme(String, int) - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.PartitionScheme
-
It reads the training set and creates the partitions
- PartitionScheme - Class in keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter
-
This class implements a stratified scheme (equal number of examples of each class in each partition) to partition a dataset
- PartitionScheme() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.PartitionScheme
-
It reads the training set and creates the partitions
- PartitionScheme - Class in keel.Algorithms.Preprocess.NoiseFilters.INFFC
-
This class implements a stratified scheme (equal number of examples of each class in each partition) to partition a dataset
- PartitionScheme(String, int) - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.INFFC.PartitionScheme
-
It reads the training set and creates the partitions
- PartitionScheme - Class in keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter
-
This class implements a stratified scheme (equal number of examples of each class in each partition) to partition a dataset
- PartitionScheme(String, int) - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.PartitionScheme
-
It reads the training set and creates the partitions
- partitionType() - Method in class keel.GraphInterKeel.experiments.Experiments
-
Gets the partition type of the experiment
- partititonWhoseCentersAre(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.VQ.Cluster
-
Use the nearest neighbor condition to make a partition in two cluster which have got this centers.
- parTourSize - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Tournament size
- parTourSize - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Tournament size.
- Pasar(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- Pass(int, populationbinary, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- Pass(int, populationinteger, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
- Pass(int, populationreal, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- Pass(int, populationbinary, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- Pass(int, populationinteger, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationinteger
-
- Pass(int, populationreal, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- Pass(int, populationbinary, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- Pass(int, populationinteger, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationinteger
-
- Pass(int, populationreal, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationreal
-
- path - Variable in class keel.GraphInterKeel.experiments.ExternalObjectDescription
-
- Path - Class in keel.GraphInterKeel.util
-
- Path() - Constructor for class keel.GraphInterKeel.util.Path
-
- path - Static variable in class keel.GraphInterKeel.util.Path
-
File path.
- pathDatasetFiles - Variable in class keel.GraphInterKeel.experiments.EducationalReport
-
- pathfinder(List<List<Double>>, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.AdministrativeStaff
-
- pathOutputFiles - Variable in class keel.GraphInterKeel.experiments.EducationalReport
-
- pathReporFile - Variable in class keel.GraphInterKeel.experiments.EducationalReport
-
- pathResultFilesTxt - Variable in class keel.GraphInterKeel.experiments.EducationalDiscretizerReport
-
Path for result files
- pathResultFilesTxt - Variable in class keel.GraphInterKeel.experiments.EducationalFSReport
-
This class creates a report in the experiment directory.
- pathResultFilesTxt - Variable in class keel.GraphInterKeel.experiments.EducationalISReport
-
This class creates a report in the experiment directory.
- pattern(int, int) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.FloatingPointFormat
-
Generates a pattern with the given width and decimal size parameters.
- patternFile - Variable in class keel.GraphInterKeel.experiments.UserMethod
-
- PBIL - Class in keel.Algorithms.Instance_Selection.PBIL
-
File: PBIL.java
Population Based Incremental Learning for Instance Selection.
- PBIL(String) - Constructor for class keel.Algorithms.Instance_Selection.PBIL.PBIL
-
Default builder.
- PBIL - Class in keel.Algorithms.Preprocess.Instance_Selection.PBIL
-
File: PBIL.java
Population Based Incremental Learning for Instance Selection.
- PBIL(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.PBIL.PBIL
-
Default builder.
- PCA - Class in keel.Algorithms.Discretizers.UCPD
-
This class implements the PCA algorithm
- PCA(double[][]) - Constructor for class keel.Algorithms.Discretizers.UCPD.PCA
-
Constructor of the class
- PCF_II - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.Fuzzy_Chi
-
Configuration flags.
- PCF_II - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Fuzzy_Ish
-
Configuration flags.
- PCF_II - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.Fuzzy_Ish
-
Configuration flag (PCF_II).
- PCF_II - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Fuzzy_Ish
-
- PCF_II - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.GP_COACH
-
Configuration flag (PCF_II).
- PCF_II - Static variable in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.GP_COACH_H
-
Configuration flag (PCF_II)
- PCF_IV - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.Fuzzy_Chi
-
Configuration flags.
- PCF_IV - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Fuzzy_Ish
-
Configuration flags.
- PCF_IV - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.Fuzzy_Ish
-
Configuration flag (PCF_IV).
- PCF_IV - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Fuzzy_Ish
-
- PCF_IV - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.GP_COACH
-
Configuration flag (PCF_IV).
- PCF_IV - Static variable in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.GP_COACH_H
-
Configuration flag (PCF_IV)
- pchisq(double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Maths
-
Returns the cumulative probability of the Chi-squared distribution
- pchisq(double, double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Maths
-
Returns the cumulative probability of the noncentral Chi-squared
distribution.
- pchisq(double, DoubleVector) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Maths
-
Returns the cumulative probability of a set of noncentral Chi-squared
distributions.
- PCOMA - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- pctCorrect() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Gets the percentage of instances correctly classified (that is, for
which a correct prediction was made).
- pctIncorrect() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Gets the percentage of instances incorrectly classified (that is, for
which an incorrect prediction was made).
- pctUnclassified() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Gets the percentage of instances not classified (that is, for
which no prediction was made by the classifier).
- pd - Variable in class keel.GraphInterKeel.experiments.Node
-
- PDFC - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS
-
This class implements the Positive Definite Fuzzy Classifier from Chen and Wang's paper:
Ref: Y.
- PDFC(String) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.PDFC
-
Creates a new instance of PDFC
- PDFC() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.PDFC
-
Default constructor
- pdfNormal(double) - Method in class keel.Algorithms.Instance_Generation.MixtGauss.MixtGaussGenerator
-
Return the value of PDF normal.
- pDontCare - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Is the probability of using # in one attribute when covering.
- pDontCare - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Is the probability of using # in one attribute when covering.
- PDONTCARE - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- PDRFKernel - Class in keel.Algorithms.SVM.SMO.supportVector
-
Positive-Definite Reference Function Kernel
To be used with PDFS algorithm
- PDRFKernel() - Constructor for class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
default constructor - does nothing.
- PDRFKernel(Instances, int, double) - Constructor for class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
Constructor.
- peek() - Method in class keel.Algorithms.Decision_Trees.M5.Queue
-
Gets object from the front of the queue.
- peek() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Queue
-
Gets object from the front of the queue.
- peek() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue
-
Gets object from the front of the queue.
- peek() - Method in class keel.Algorithms.SVM.SMO.core.Queue
-
Gets object from the front of the queue.
- peigs(DenseMatrix, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
Finds positive eigenvalues and corresponding eigenvectors.
- PENAL_CUB - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.FuzzyClassifier
-
- penalize(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.DSM.DSMGenerator
-
Applies a DSMGenerator-reward to prototype m.
- penalize(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQ1
-
Applies a penalization to prototype m
- penalize(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQ3
-
Applies LVQ3-penalization to prototype m
- penalize(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQGenerator
-
Applies a penalization to prototype m
- penalize(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQTC
-
Applies LVQTC penalization to prototype m
- penalty(int, int) - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.CLCCGenerator
-
Returns the penalty for the cluster given.
- PERC_SIZE_TXT - Static variable in class keel.Algorithms.Instance_Generation.utilities.Parameters
-
Text flag (size).
- PERC_SIZE_TXT - Static variable in class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
-
Configuration text (reduction size).
- percentageInitPartition - Variable in class keel.Algorithms.Instance_Generation.VQ.AVQGenerator
-
Percentage of the original set used in the initial partition.
- percentageOfLearning - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- percentageOfLearning - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- percentageOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.LVQ.LVQPRU
-
Percentage of prototypes.
- percentageOfPrototypesPerClass - Variable in class keel.Algorithms.Instance_Generation.LVQ.LVQPRU
-
Percentage of prototypes for each class in initial reduction.
- percentages - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
-
Percentages of each neuron type for hibrid layers
- percentageSecondMutator - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Percentage of parents mutated with second mutator
- perClass(int) - Method in class keel.Algorithms.Decision_Trees.C45.Classification
-
Returns number of itemsets of given class.
- perClass(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
-
Returns number of itemsets of given class.
- perClass(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
-
Returns number of itemsets of given class.
- perClass(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
-
Returns number of itemsets of given class.
- perClass(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
-
Returns number of itemsets of given class.
- perClass(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
-
Returns number of itemsets of given class.
- perClass(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
-
Returns number of itemsets of given class.
- perClass(int) - Method in class keel.Algorithms.Rule_Learning.PART.Classification
-
Returns number of itemsets of given class.
- perClass(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
-
Returns number of itemsets of given class.
- perClassPerValue(int, int) - Method in class keel.Algorithms.Decision_Trees.C45.Classification
-
Returns number of itemsets of given class in given value.
- perClassPerValue(int, int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
-
Returns number of itemsets of given class in given value.
- perClassPerValue(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
-
Returns number of itemsets of given class in given value.
- perClassPerValue(int, int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
-
Returns number of itemsets of given class in given value.
- perClassPerValue(int, int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
-
Returns number of itemsets of given class in given value.
- perClassPerValue(int, int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
-
Returns number of itemsets of given class in given value.
- perClassPerValue(int, int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
-
Returns number of itemsets of given class in given value.
- perClassPerValue(int, int) - Method in class keel.Algorithms.Rule_Learning.PART.Classification
-
Returns number of itemsets of given class in given value.
- perClassPerValue(int, int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
-
Returns number of itemsets of given class in given value.
- Perf - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.Individuo
-
- perf() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Cromosoma
-
Get the performance of a chromosome
- perf() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Cromosoma
-
Get the performance of a chromosome
- perf() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Cromosoma
-
Get the performance of a chromosome
- perf() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Cromosoma
-
Get the performance of a chromosome
- perf() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Cromosoma
-
Get the performance of a chromosome
- perf() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Cromosoma
-
Get the performance of a chromosome
- perf() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Cromosoma
-
Get the performance of a chromosome
- perf() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Cromosoma
-
Get the performance of a chromosome
- perfectRule(Complejo, Dataset) - Method in class keel.Algorithms.Rule_Learning.Prism.Prism
-
Returns True if the rule is perfect for the data set.
- PerformanceAgent - Class in keel.Algorithms.Genetic_Rule_Learning.GAssist
-
This class computes several performance measures taken from a fitness
computation of an individual
- PerformanceAgent() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GAssist.PerformanceAgent
-
- PerformanceAgent - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
-
This class computes several performance measures taken from a fitness
computation of an individual
- PerformanceAgent() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PerformanceAgent
-
- performFeatureSelectionTipText() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- permitWithinCrossover - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It indicates if the within crossover is permitted in case
of using a real representation.
- PERMITWITHINCROSSOVER - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- perOneGenerated - Variable in class keel.Algorithms.Instance_Generation.HYB.HYBGenerator
-
Per one prototypes generated in the LVQ3.
- perrorln(String) - Static method in class keel.Algorithms.Instance_Generation.utilities.Debug
-
Prints a message in the error console.
- perrorln(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Debug
-
Prints a message in the error console.
- pertenece(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Checks the existence of the prototype given as argument in this set.
- pertenece(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Comprueba si existen en el conjunto....
- perteneceSinClass(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
- pertenencia(int, int, int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.BaseD
-
- pertenencia(int, int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.BaseD
-
- pertenencia(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.FuzzyPartition
-
- pertenencia(int, int, double) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.BaseD
-
- pertenenecia_intervalo(int, Interval) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.partition
-
- perValue(int) - Method in class keel.Algorithms.Decision_Trees.C45.Classification
-
Returns number of (possibly fractional) itemsets in given value.
- perValue(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
-
Returns number of (possibly fractional) itemsets in given value.
- perValue(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
-
Returns number of (possibly fractional) itemsets in given value.
- perValue(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
-
Returns number of (possibly fractional) itemsets in given value.
- perValue(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
-
Returns number of (possibly fractional) itemsets in given value.
- perValue(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
-
Returns number of (possibly fractional) itemsets in given value.
- perValue(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
-
Returns number of (possibly fractional) itemsets in given value.
- perValue(int) - Method in class keel.Algorithms.Rule_Learning.PART.Classification
-
Returns number of (possibly fractional) itemsets in given value.
- perValue(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
-
Returns number of (possibly fractional) itemsets in given value.
- pf(double, double, double) - Static method in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Computes cumulative Snedecor F distribution
- PFKNN - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.PFKNN
-
File: PFKNN.java
The PFKNN algorithm.
- PFKNN(String) - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.PFKNN.PFKNN
-
Main builder.
- pinv(DenseMatrix) - Static method in class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.LLSImpute
-
Computes the pseudoinverse of matrix A -> pinv(A) = V * pinv(S) * U'
That is, Moore-Penrose pseudoinverse of a matrix
If A is square and not singular, then pinv(A) is an expensive way to compute inv(A)
- PittsburghClassifier - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyPittsBurgh
-
PittsburghClassifier is designed to allow a Fuzzy Classifier evolve by means of
an Genetic Algorithm.
- PittsburghClassifier() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyPittsBurgh.PittsburghClassifier
-
Default constructor
- PittsburghClassifier(FuzzyClassifier, int, Randomize) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyPittsBurgh.PittsburghClassifier
-
A constructor of the class specifying the Fuzzy classifier o be train, the fitness
type and the Randomize object to use.
- PittsburghClassifier(PittsburghClassifier) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyPittsBurgh.PittsburghClassifier
-
The copy constructor for this class.
- PittsburghModel - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model
-
PittsburghModel
- PittsburghModel() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.PittsburghModel
-
Constructor.
- PittsburghModel(FuzzyModel, int, Randomize) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.PittsburghModel
-
Constructor.
- PittsburghModel(PittsburghModel) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.PittsburghModel
-
Constructor.
- platform() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.AdministrativeStaff
-
- plus(double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Adds a value to all the elements
- plus(DoubleVector) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Adds another vector element by element
- plus(Matrix) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
C = A + B
- plusEquals(double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Adds a value to all the elements in place
- plusEquals(DoubleVector) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Adds another vector in place element by element
- plusEquals(Matrix) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
A = A + B
- pM - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Probability of mutate an allele in the offspring.
- pM - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Probability of mutate an allele in the offspring.
- PM - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- PNArray - Class in keel.Algorithms.Associative_Classification.ClassifierCPAR
-
This class contains the
representation of a structure that stores
some information corresponding to rule r.
- PNArray() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCPAR.PNArray
-
Default Constructor
- PNArray(myDataset, DataBase) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCPAR.PNArray
-
Parameters Constructor
- PNN - Static variable in class keel.Algorithms.Instance_Generation.HYB.HYBGenerator
-
PNNGenerator title text
- PNNAlgorithm - Class in keel.Algorithms.Instance_Generation.PNN
-
PNN algorithm calling.
- PNNAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.PNN.PNNAlgorithm
-
- PNNGenerator - Class in keel.Algorithms.Instance_Generation.PNN
-
Prototypes for Nearest Neighbor Classifiers
- PNNGenerator(PrototypeSet) - Constructor for class keel.Algorithms.Instance_Generation.PNN.PNNGenerator
-
Build a new algorithm PNNGenerator that will reduce a prototype set.
- PNNGenerator(PrototypeSet, int) - Constructor for class keel.Algorithms.Instance_Generation.PNN.PNNGenerator
-
Build a new algorithm PNNGenerator that will reduce a prototype set.
- PNNGenerator(PrototypeSet, double) - Constructor for class keel.Algorithms.Instance_Generation.PNN.PNNGenerator
-
Build a new algorithm PNNGenerator that will reduce a prototype set.
- PNNGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.PNN.PNNGenerator
-
Build a new algorithm PNNGenerator that will reduce a prototype set.
- pnorm(double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Maths
-
Returns the cumulative probability of the standard normal.
- pnorm(double, double, double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Maths
-
Returns the cumulative probability of a normal distribution.
- pnorm(double, DoubleVector, double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Maths
-
Returns the cumulative probability of a set of normal distributions
with different means.
- pnorm(double, boolean) - Static method in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Computes cumulative N(0,1) distribution.
- pnorm(double, boolean, double, double) - Static method in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Computes cumulative N(mu,sigma) distribution.
- pnPair - Class in keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter
-
This class lets to handle pnPair structure
- pnPair(int, int) - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.pnPair
-
Constructor of the class
- Poblacion - Class in keel.Algorithms.Decision_Trees.DT_GA
-
Title: Poblacion (Population).
- Poblacion() - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.Poblacion
-
Default Constructor.
- Poblacion(int, Regla, int, int, double, double, myDataset, String) - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.Poblacion
-
Paramenter constructor.
- Poblacion(boolean[], int, int, double, double, myDataset, double[]) - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.Poblacion
-
Paramenter constructor.
- Poblacion - Class in keel.Algorithms.Decision_Trees.DT_oblicuo
-
Title: Poblacion (Population).
- Poblacion() - Constructor for class keel.Algorithms.Decision_Trees.DT_oblicuo.Poblacion
-
Default Constructor.
- Poblacion(myDataset, int, int[], int, double[], double) - Constructor for class keel.Algorithms.Decision_Trees.DT_oblicuo.Poblacion
-
Paramenter constructor.
- Poblacion - Class in keel.Algorithms.Decision_Trees.Target
-
Title: Poblacion (Population).
- Poblacion() - Constructor for class keel.Algorithms.Decision_Trees.Target.Poblacion
-
Default Constructor.
- Poblacion(myDataset, double, int, int, int, int, int) - Constructor for class keel.Algorithms.Decision_Trees.Target.Poblacion
-
Paramenter constructor.
- Poblacion - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec
-
- Poblacion() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Poblacion
-
- Poblacion(BaseR, double, double, int, double, double) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Poblacion
-
- Poblacion - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF
-
Title: Poblacion (Population).
- Poblacion(int, BaseR, myDataset) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.Poblacion
-
Paramenter constructor.
- Poblacion - Class in keel.Algorithms.Genetic_Rule_Learning.OCEC
-
- Poblacion() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OCEC.Poblacion
-
- Poblacion(int, Attribute, myDataset) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OCEC.Poblacion
-
- Poblacion - Class in keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM
-
Title: Poblacion (Population).
- Poblacion(int, BaseR, myDataset) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.Poblacion
-
Paramenter constructor.
- Poblacion - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs
-
The population class
- Poblacion(int, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
It is the constructor of the class poblacion
- Poblacion - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs
-
The population class
- Poblacion(int, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
It is the constructor of the class poblacion
- Poblacion - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs
-
The population class
- Poblacion(int, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
It is the constructor of the class poblacion
- Poblacion - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs
-
The population class
- Poblacion(int, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
It is the constructor of the class poblacion
- Poblacion - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs
-
The population class
- Poblacion(int, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
It is the constructor of the class poblacion
- Poblacion - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs
-
The population class
- Poblacion(int, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
It is the constructor of the class poblacion
- Poblacion - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs
-
The population class
- Poblacion(int, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
It is the constructor of the class poblacion
- Poblacion - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs
-
The population class
- Poblacion(int, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
It is the constructor of the class poblacion
- POCAlgorithm - Class in keel.Algorithms.Instance_Generation.POC
-
PSO algorithm calling.
- POCAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.POC.POCAlgorithm
-
- POCGenerator - Class in keel.Algorithms.Instance_Generation.POC
-
- POCGenerator(PrototypeSet, double, String) - Constructor for class keel.Algorithms.Instance_Generation.POC.POCGenerator
-
Build a new POCGenerator Algorithm
- POCGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.POC.POCGenerator
-
Build a new RSPGenerator Algorithm
- podaArbol() - Method in class keel.Algorithms.Decision_Trees.SLIQ.SLIQ
-
Prunes the tree.
- podaNodoCompleto(Node) - Method in class keel.Algorithms.Decision_Trees.SLIQ.SLIQ
-
Prunes the node given as parameter, deleting its children.
- podaNodoParcial(Node, int) - Method in class keel.Algorithms.Decision_Trees.SLIQ.SLIQ
-
Prunes the node given as parameter, deleting the given child.
- POLY - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- poly(double[], int, double) - Static method in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Quoted from the original Fortran documentation:
Calculates the algebraic polynomial of order nord-1 with array of
coefficients c.
- POLY - Static variable in class org.libsvm.svm_parameter
-
- PolyKernel - Class in keel.Algorithms.SVM.SMO.supportVector
-
The polynomial kernel : K(x, y) = <x, y>^p or K(x, y) = (<x, y>+1)^p
- PolyKernel() - Constructor for class keel.Algorithms.SVM.SMO.supportVector.PolyKernel
-
default constructor - does nothing.
- PolyKernel(Instances, int, double, boolean) - Constructor for class keel.Algorithms.SVM.SMO.supportVector.PolyKernel
-
Creates a new PolyKernel
instance.
- ponBaseDatosInicial() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.BaseD
-
- ponBaseDatosInicial() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.BaseD
-
- ponValor(int, int, String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
Sets a value to an attribute of a given instance.
- pop() - Method in class keel.Algorithms.Decision_Trees.M5.Queue
-
Pops an object from the front of the queue.
- pop() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Queue
-
Pops an object from the front of the queue.
- pop() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue
-
Pops an object from the front of the queue.
- POP - Class in keel.Algorithms.Instance_Selection.POP
-
File: POP.java
The POP Instance Selection algorithm.
- POP(String) - Constructor for class keel.Algorithms.Instance_Selection.POP.POP
-
Default constructor.
- POP - Class in keel.Algorithms.Preprocess.Instance_Selection.POP
-
File: POP.java
The POP Instance Selection algorithm.
- POP(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.POP.POP
-
Default constructor.
- pop() - Method in class keel.Algorithms.SVM.SMO.core.Queue
-
Pops an object from the front of the queue.
- popSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- popSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- popSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- popSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Represents the maximum number of microclassifiers in the population.
- popSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Represents the maximum number of microclassifiers in the population.
- POPSIZE - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- populateFromResultSet(ResultSet) - Method in class keel.GraphInterKeel.datacf.util.AttributeTable
-
Fills data in the table with a ResultSet
- Population - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD
-
Title: Population
Description: Class for the CHC algorithm
Copyright: KEEL Copyright (c) 2010
Company: KEEL
- Population() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Population
-
Default constructor.
- Population(myDataset, DataBase, RuleBase, int, int, int, double) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Population
-
Builder
- Population - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA
-
This class contains the population for the genetic algorithm
- Population() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Population
-
Default Constructor
- Population(myDataset, DataBase, int, double, double, int, double, double, double, double, int, Apriori) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Population
-
Constructor with parameters
- Population - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD
-
This class contains the population for the genetic algorithm
- Population() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Population
-
Default Constructor
- Population(RuleBase, int, myDataset, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Population
-
Constructor with parameters
- Population - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid
-
Title: Populatoin
Description: This class contains the population for the genetic algorithm
Copyright: KEEL Copyright (c) 2008
Company: KEEL
- Population() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.Population
-
Default Constructor
- Population(myDataset, DataBase, int, int, double, int, int, int, double, double) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.Population
-
Constructor with parameters
- Population - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS
-
Title: Population
Description: Class for the CHC algorithm
Copyright: KEEL Copyright (c) 2010
Company: KEEL
- Population() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Population
-
Default constructor.
- Population(myDataset, DataBase, RuleBase, int, int, int, double, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Population
-
Builder
- Population - Class in keel.Algorithms.Genetic_Rule_Learning.CORE
-
This class represents the population of chromosomes in the CORE algorithm.
- Population() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.CORE.Population
-
Constructor which initializes the memory allocations.
- Population - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
This class contains a rule-set.
- Population(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Population constructor: it creates an empty population.
- Population(Population, double[]) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Math set [M] constructor.
- Population(Population, double[], int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Correct set [C] constructor.
- Population - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This class is a classifier set.
- Population(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
It creates a new empty population (it's used in the beginning of each
experiment to initialize the population).
- Population(double[], Population, int, boolean) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
This constructor creates the match set of the population.
- Population(Population, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
It creates the action set using the match set and the chosen action.
- Population - Class in keel.Algorithms.Neural_Networks.gann
-
Class Population, which represents a population of individuals
- Population(SetupParameters) - Constructor for class keel.Algorithms.Neural_Networks.gann.Population
-
Constructor
- Population - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate
-
Population of candidate rules
- Population(int, int, TypeVar[]) - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Population
-
Creates a new instance of Population
- Population - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF
-
Population of candidate rules
- Population(Genetic, int, int, String, TableVar, int, int) - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Population
-
Creates a population of Individual
- Population - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate
-
Population of candidate rules
- Population(int, int, TypeVar[]) - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Population
-
Creates a new instance of Population
- Population - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD
-
Population of candidate rules
- Population(int, int, int, int, String, TableVar) - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Population
-
Creates a population of Individual
- Population - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate
-
Population of candidate rules
- Population(int, int, TypeVar[]) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Population
-
Creates a new instance of Population
- Population - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA
-
Population of candidate rules
- Population(int, int, String, TableVar) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Population
-
Creates a population of Individual
- population_size - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- POPULATION_SIZE - Static variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- populationbinary - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
-
- populationBinary - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE
- populationbinary - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
-
It contains the methods for handling the binary population of individuals
- populationbinary - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
-
It contains the methods for handling the binary population of individuals
- populationFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
If not null, it represents the name of the file where the
population has been writen
- populationFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
If not null, it represents the name of the file where the
population has been writen
- POPULATIONFILE - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- populationInt - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE
- populationinteger - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
-
- populationinteger - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
-
- populationinteger - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
-
- populationreal - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
-
- populationReal - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE
- populationreal - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
-
- populationreal - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
-
- populationSize - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Population size
- populationSizeTipText() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- populationWrapper - Class in keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
- populationWrapper(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.BioHEL.populationWrapper
-
- PopulationWrapper - Class in keel.Algorithms.Genetic_Rule_Learning.GAssist
-
Contains methods that manipulate the population in various
ways: classifying the training set for the fitness computations, checking
if there are improved solutions in the population and performing the
test stage (generating the output files)
- PopulationWrapper() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GAssist.PopulationWrapper
-
- PopulationWrapper - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
-
Contains methods that manipulate the population in various
ways: classifying the training set for the fitness computations, checking
if there are improved solutions in the population and performing the
test stage (generating the output files)
- PopulationWrapper() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PopulationWrapper
-
- porcentajeMuestrasClase(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ConjuntoDatos
-
Returns the percentage of examples with the given class.
- porcentajeMuestrasClase(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ConjuntoDatos
-
Returns the percentage of examples for each class.
- porcentajeMuestrasClase(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ConjuntoDatos
-
Returns the percentage of examples with the given class.
- porcentajeMuestrasClase(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ConjuntoDatos
-
Returns the percentage of examples for each class.
- porcentajeMuestrasClase(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ConjuntoDatos
-
Returns the percentage of examples with the given class.
- porcentajeMuestrasClase(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ConjuntoDatos
-
Returns the percentage of examples for each class.
- porcentajeMuestrasClase(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Returns the percentage of examples with the given class.
- porcentajeMuestrasClase(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Returns the percentage of examples for each class.
- porcentajeMuestrasCondicion(Condicion, Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ConjuntoDatos
-
Returns the percentage of examples with the given class covered by the given condition.
- porcentajeMuestrasCondicion(Condicion, Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ConjuntoDatos
-
Returns the percentage of examples with the given class covered by the given condition.
- porcentajeMuestrasCondicion(Condicion, Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ConjuntoDatos
-
Returns the percentage of examples with the given class covered by the given condition.
- porcentajeMuestrasCondicion(Condicion, Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Returns the percentage of examples with the given class covered by the given condition.
- porcentajeMuestrasCubiertas(Regla, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ConjuntoDatos
-
Computes the percentage of examples of the dataset covered by the given rule.
- porcentajeMuestrasCubiertas(Regla, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ConjuntoDatos
-
Computes the percentage of examples of the dataset covered by the given rule.
- porcentajeMuestrasCubiertas(Regla) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.ConjuntoDatos
-
Computes the percentage of examples of the dataset covered by the given rule.
- porcentajeMuestrasCubiertas(Regla, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ConjuntoDatos
-
Computes the percentage of examples of the dataset covered by the given rule.
- porcentajeMuestrasCubiertas(Regla, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Computes the percentage of examples of the dataset covered by the given rule.
- porcentajeMuestrasVacias(Atributo, Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ConjuntoDatos
-
Returns the percentage of examples with the given class and the attribute as null.
- porcentajeMuestrasVacias(Atributo, Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ConjuntoDatos
-
Returns the percentage of examples with the given class and the attribute as null.
- porcentajeMuestrasVacias(Atributo, Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ConjuntoDatos
-
Returns the percentage of examples with the given class and the attribute as null.
- porcentajeMuestrasVacias(Atributo, Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Returns the percentage of examples with the given class and the attribute as null.
- pos - Variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.rank
-
- POSEnvironment - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
Single step problem: the position problem.
- POSEnvironment() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.POSEnvironment
-
It is the constructor of the class.
- PosIBL - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.PosIBL
-
File: PosIBL.java
The PosIBL algorithm.
- PosIBL(String) - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.PosIBL.PosIBL
-
Main builder.
- position_name(String) - Method in class keel.GraphInterKeel.experiments.Joint
-
- positionRuleMatch - Variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
-
- positionRuleMatch - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
-
- positive_class() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Dataset
-
Obtains the index of the positive class in the dataset
- positive_cost() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Dataset
-
Computes the cost for a instance from the positive class
- POSITIVE_TERMS_SIZE - Static variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- positiveCovered() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.Rule
-
Returns the instances covered by the rule and are correctly classified.
- positiveCovered() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Rule
-
Returns the instances covered by the rule and are correctly classified.
- positiveEta - Variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Value of positive Eta
- PosMax() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.vectordouble
-
Returns the position in the vector for maximum value of the vector
- PosMin() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.vectordouble
-
Returns the position in the vector for minimum value of the vector
- PosProb - Class in keel.Algorithms.ImbalancedClassification.Auxiliar.AUC
-
Class to compute the positive probabilities
- PosProb(boolean, double) - Constructor for class keel.Algorithms.ImbalancedClassification.Auxiliar.AUC.PosProb
-
Constructor
- possibleLabelConclusions - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Set of label conclusions that can appear.
- possibleValuesOfOutput() - Static method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Return all the existing classes in our universe.
- possibleValuesOfOutput() - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Return all the existing classes in our universe.
- postOptimizationMODL(int, int[], int, int) - Method in class keel.Algorithms.Discretizers.MODL.MODL
-
Implements the post-optimization procedure for MODL, after obtaining the
best initial interval division.
- postprocess() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier
-
- postprocess() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_hyperrect_list
-
- postprocess() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_hyperrect_list_real
-
- postProcess() - Method in class keel.Algorithms.Hyperrectangles.INNER.INNER
-
Performs the postprocessing phase of INNER
- postprocessSelectionTree - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- posValorAtt(String, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
Returns the position of the value given in the attribute given.
- posValue(int, String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.DataBase
-
Returns the position of a given value of a given variable.
- posValueNominal(int, String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
Returns the integer representation (id or position) of the given attribute's value.
- posVariable(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
Returns the id (position) of an attribute with the given name.
- potential(int, double, double[], double[], boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Calculate the potential to decrease DL of the ruleset,
i.e. the possible DL that could be decreased by deleting
the rule whose index and simple statstics are given.
- pow(fuzzy, float) - Static method in class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.fuzzy
-
- ppal() - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- ppal() - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- ppal() - Static method in class keel.Dataset.DataParser
-
- ppnd16(double) - Static method in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Quoted from original Fortran documentation:
Produces the normal deviate Z corresponding to a given lower
tail area of P; Z is accurate to about 1 part in 10**16.
- precalculateParameters() - Method in class keel.Algorithms.Lazy_Learning.CamNN.CamNN
-
Calculates A, B and TAU Values for each training instance.
- precalculateParameters() - Method in class keel.Algorithms.Lazy_Learning.CenterNN.CenterNN
-
Calculates centers of each class, and vectors from each
train instance to its class center
- precision(int) - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Calculate the precision with respect to a particular class.
- precision - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsCuttoff
-
- precision - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsOriginal
-
- PRECISION - Static variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Numeric
-
Precision on the numeric operations.
- precompute() - Method in class keel.Algorithms.Lazy_Learning.LazyDT.LazyDT
-
Does some previous computations to the beginning of the algorithm, this means, getting the number
of different values of the categorical attributes and the denormalization of the dataset
- PRECOMPUTED - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- PRECOMPUTED - Static variable in class org.libsvm.svm_parameter
-
- predicates - Variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_hyperrect_list_real
-
- prediccion(Muestra, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Returns the predicted class of the given sample it they have compatible conditions,
null otherwise.
- prediccion(Muestra, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Returns the predicted class of the given sample it they have compatible conditions,
null otherwise.
- prediccion(Muestra) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Returns the predicted class of the given sample it they have compatible conditions,
null otherwise.
- prediccion(Muestra, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Returns the predicted class of the given sample it they have compatible conditions,
null otherwise.
- prediccion(Muestra) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Returns the predicted class of the given sample it they have compatible conditions,
null otherwise.
- predict(M5Instance) - Method in class keel.Algorithms.Decision_Trees.M5.Function
-
Returns the predicted value of instance i by a function
- predict(M5Instance, boolean) - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Predicts the class value of an instance by the tree
- predict(Itemset) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Function
-
Returns the predicted value of itemset i by a function
- predict(Itemset, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Predicts the class value of an itemset by the tree
- prediction - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
predictions for test
- prediction - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Predited classes of the test instances.
- prediction - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Test predicted classes.
- prediction - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Test predicted classes.
- PredictionArray - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
Prediction array.
- PredictionArray(Population) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.PredictionArray
-
This function builds the prediction arry
- PredictionArray - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This class will construct the prediction array from a given match set.
- PredictionArray(Population) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.PredictionArray
-
Constructs the prediction array.
- predictionErrorReduction - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
The factor by which the prediction error is reduced when a new
classifier is generated in the AG.
- PREDICTIONERRORREDUCTION - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- predictions - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Class predictions for the examples.
- predictionsToString(M5Instances, int, boolean) - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Converts the predictions by the tree under this node to a string
- predictionsToString(MyDataset, int, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Converts the predictions by the tree under this node to a string
- PredPair - Class in keel.Algorithms.ImbalancedClassification.Auxiliar.AUC
-
This class represents pairs holding the class prediction and value of the
voting procedure.
- PredPair(String, double) - Constructor for class keel.Algorithms.ImbalancedClassification.Auxiliar.AUC.PredPair
-
Constructor
- Preduct - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It's the reduction applied to the max reward to decide if a
classifier is accurate enough to participate in the reduction.
- prepare(int, int, double[][], double[][], int[][], boolean[][], int[], int, boolean) - Method in class keel.Algorithms.Instance_Selection.GA_MSE_CC_FSM.Cromosoma
-
Construct a random chromosome of specified size and it is prepared to be evaluated.
- prepare(int, int, double[][], double[][], int[][], boolean[][], int[], int, boolean) - Method in class keel.Algorithms.Preprocess.Instance_Selection.GA_MSE_CC_FSM.Cromosoma
-
Construct a random chromosome of specified size and it is prepared to be evaluated.
- prepareCreation() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetCreator
-
Prepares the creation initiators
- prepareFileDirectories(String, String) - Static method in class keel.GraphInterKeel.experiments.FileUtils
-
Creates the necessary directory to build a KEEL experiment
- prepareInitiation() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.initiators.PureLayerInitiator
-
Prepare initiation process
- prepareInitiation() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.initiators.RandomInitiator
-
Prepare initiation process
- prepareMutation() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.NeuralNetMutator
-
This method prepares the mutation, stablising the species
- prepareMutation() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
-
Prepares the mutation and actualize the alpha value
- preprocessTree - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- presence(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.IntegerSet
-
It returns true if the element e is present in the set
- presentAttsActual() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.Particle
-
- presentAttsBest() - Method in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- presentAttsBest() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- presentAttsBest() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.Particle
-
- presentAttsBest() - Method in class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- prev - Variable in class keel.Algorithms.Discretizers.Khiops.DeltaValue
-
item for the previous merge of intervals
- prev - Variable in class keel.Algorithms.Discretizers.MODL.DeltaValue
-
item for the previous bound of intervals
- prevCharIsCR - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- prevCharIsCR - Static variable in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- prevCharIsCR - Static variable in class keel.Dataset.SimpleCharStream
-
- prevCharIsLF - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- prevCharIsLF - Static variable in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- prevCharIsLF - Static variable in class keel.Dataset.SimpleCharStream
-
- previousBest - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Previous best fitness
- previousMean - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Previous mean fitness
- print(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.DataBase
-
It prints an attribute with its label in a string way
- print(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.DataBase
-
It prints an attribute with its label in a string way
- print(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.DataBase
-
It prints an attribute with its label in a string way
- print(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.DataBase
-
It prints an attribute with its label in a string way
- print(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.DataBase
-
It prints an attribute with its label in a string way
- print(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.DataBase
-
It prints an attribute with its label in a string way
- print(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.DataBase
-
It prints an attribute with its label in a string way
- print(myDataset, String, int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.FunctionalTrees
-
Prints in a file the result of the classification made with the tree generated by the PUBLIC
algorithm.
- print(myDataset, String, int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.PUBLIC
-
Prints in a file the result of the classification made with the tree generated by the PUBLIC
algorithm.
- print() - Method in class keel.Algorithms.Discretizers.UCPD.Itemset
-
It prints the itemset
- print(String) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.Util
-
Prints a text in the standard output
- print(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.BaseD
-
It prints a single label of the Data Base into an string
- print(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.DataBase
-
It prints the name of a fuzzy label
- Print(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.domain_t
-
- Print() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.fuzzy_t
-
- Print(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.domain_t
-
Prints in the standard output the name of the label number i in the domain
- Print() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.fuzzy_t
-
Prints in the standard output the name of the label
- Print(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.domain_t
-
- Print() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.fuzzy_t
-
- Print(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.domain_t
-
- Print() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.fuzzy_t
-
- print(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.DataBase
-
It prints the name of a fuzzy label
- print(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.BaseD
-
- print() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.Individuo
-
- print(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.DataBase
-
- print() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.Individuo
-
- print(String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.LogManager
-
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Instance
-
It shows the content of the example
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.myDataset
-
It prints the examples
- print(String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Globals.LogManager
-
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
Prints the String representation given by printString
.
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Condition
-
Create a string according to the type of the condition
- print(String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.LogManager
-
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Attribute
-
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Poblacion
-
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Instance
-
It shows the content of the example
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.myDataset
-
It prints the examples
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Rule
-
It prints the rule
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.ruleSet
-
It prints all rules by screen
- print() - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Attribute
-
Prints the classifier representation
- print(PrintWriter) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Attribute
-
Prints the classifier representation on the PrintWriter object given.
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Classifier
-
Prints the classifier.
- print(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Classifier
-
Prints the classifier to the specified file.
- print(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
-
Prints the classifier to the specified file.
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
-
Prints the classifier statistics to the standard output.
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Prints on standard output the population representation.
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.PredictionArray
-
Prints the prediction array to the standard output.
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
- print(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
Prints the classifier representation on the PrintWriter object given.
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Roulette
-
Prints the roulette
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
Prints the allele.
- print(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
Prints the allele.
- print(BufferedReader) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.UCS
-
Does print the population and stops the execution.
- print() - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
-
Prints the classifier representation
- print(PrintWriter) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
-
Prints the classifier representation on the PrintWriter object given.
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Prints the classifier.
- print(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Prints the classifier to the specified file.
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
This methods prints the attribute bounds
- print(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
This method prints to the attribute bounds to the specified PrintWriter
- print(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Prints the classifier to the specified file.
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Prints the classifier into standard output.
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Prints on standard output the population representation.
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.PredictionArray
-
Prints the prediction array to the standard output.
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
Prints the classifier representation on standard output.
- print(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
Prints the classifier representation on the PrintWriter object given.
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
Prints on the standard output a String representation of the Representation object.
- print(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
Prints the classifier to the specified file.
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Roulette
-
Prints the roulette
- print() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
Prints the allele.
- print(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
Prints the allele.
- print(BufferedReader) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.XCS
-
Does print the population and stops the execution.
- print(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Prints on the standard output the content of this complex object.
- print() - Method in class keel.Algorithms.Hyperrectangles.EACH.EachDataSet
-
Shows the examples on the screen
- print() - Method in class keel.Algorithms.Hyperrectangles.EACH.Hyperrectangle
-
Prints an instance
- print(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.RuleSet
-
Prints on the screen the set of rules
- print() - Method in class keel.Algorithms.Hyperrectangles.EACH.Sample
-
Prints on the screen the example's content
- print() - Method in class keel.Algorithms.Hyperrectangles.EACH.Selector
-
Shows the content of a selector: attribute-operator-value
- print() - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Print the prototype.
- print() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Prints the prototype in the terminal
- print(String, ArrayList<Double>) - Static method in class keel.Algorithms.Instance_Generation.utilities.Debug
-
Prints a message and a array in the standard console.
- print() - Method in class keel.Algorithms.Instance_Selection.CoCoIS.Subpopulation
-
Prints the population
- print() - Method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.Cromosoma
-
it prints a chromosome, gene by gene.
- print() - Method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CromosomaBinario
-
it prints a chromosome, gene by gene
- print() - Method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.CromosomaEntero
-
it prints a chromosome, gene by gene
- print() - Method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Subpopulation
-
Prints the population
- print() - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.IntegerSet
-
It prints the set
- print() - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.pnPair
-
Prints on the standard output a representation of the pnPair.
- print() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.Individuo
-
- print() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.MatrizR
-
- print(String) - Static method in class keel.Algorithms.RST_Learning.Util
-
Prints a text in the standard output
- print() - Method in class keel.Algorithms.Rule_Learning.AQ.Complex
-
It prints the complex content
- print() - Method in class keel.Algorithms.Rule_Learning.AQ.Instance
-
It shows the content of the example
- print() - Method in class keel.Algorithms.Rule_Learning.AQ.myDataset
-
It prints the examples
- print() - Method in class keel.Algorithms.Rule_Learning.AQ.ruleSet
-
It prints the rule-set
- print() - Method in class keel.Algorithms.Rule_Learning.AQ.Selector
-
It shows the content of the selector
attribute - operator - value.
- print() - Method in class keel.Algorithms.Rule_Learning.CN2.Complex
-
It prints the complex content
- print() - Method in class keel.Algorithms.Rule_Learning.CN2.Instance
-
It shows the content of the example
- print() - Method in class keel.Algorithms.Rule_Learning.CN2.myDataset
-
It prints the examples
- print() - Method in class keel.Algorithms.Rule_Learning.CN2.ruleSet
-
It prints the rule-set
- print() - Method in class keel.Algorithms.Rule_Learning.CN2.Selector
-
It shows the content of the selector
attribute - operator - value.
- print() - Method in class keel.Algorithms.Rule_Learning.Prism.Complejo
-
Prints on the screen the content of the complex(Lista -> Attribute operator value)
- print() - Method in class keel.Algorithms.Rule_Learning.Prism.ConjDatos
-
Prints the examples on the screen
- print() - Method in class keel.Algorithms.Rule_Learning.Prism.ConjReglas
-
Prints on the screen the set of rules
- print() - Method in class keel.Algorithms.Rule_Learning.Prism.Muestra
-
Prints on the screen the example's content
- print() - Method in class keel.Algorithms.Rule_Learning.Prism.Selector
-
Shows the content of a selector: attribute-operator-value
- print() - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
Print the content of the complex (List->Attribute operator value)
- print() - Method in class keel.Algorithms.Rule_Learning.Riona.Selector
-
Shows the content of the selector selector:
Attribute - operator - value
- print() - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
This method prints the attribute information.
- print() - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
-
It does print the attributes information
- print() - Method in class keel.Algorithms.Rule_Learning.Swap1.ErrorInfo
-
It does print an understable message about the error
- print(PrintWriter) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
It prints the instance to the specified PrintWriter.
- print() - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
It does print the instance information
- print(InstanceAttributes, PrintWriter) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
- print(InstanceAttributes) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
It does print the instance information
- print(PrintWriter) - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
-
It prints the dataset to the specified PrintWriter
- print() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
-
- print(int) - Method in class keel.Algorithms.Rule_Learning.UnoR.Complejo
-
Print the content of the complex (List->Attribute operator value)
- print() - Method in class keel.Algorithms.Rule_Learning.UnoR.ConjDatos
-
Prints the examples on the screen
- print(int) - Method in class keel.Algorithms.Rule_Learning.UnoR.ConjReglas
-
Prints on the screen the set of rules
- print() - Method in class keel.Algorithms.Rule_Learning.UnoR.Interval
-
Prints on the standard output the interval.
- print() - Method in class keel.Algorithms.Rule_Learning.UnoR.Muestra
-
Prints on the screen the example's content
- print() - Method in class keel.Algorithms.Rule_Learning.UnoR.Selector
-
Shows the content of a selector: attribute-operator-value
- print() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Print the prototype.
- print() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Prints the prototype in the terminal
- print(String, ArrayList<Double>) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Debug
-
Prints a message and a array of doubles in the standard console.
- print(int, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Print the matrix to stdout.
- print(PrintWriter, int, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Print the matrix to the output stream.
- print(NumberFormat, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Print the matrix to stdout.
- print(PrintWriter, NumberFormat, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Print the matrix to the output stream.
- print() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.ConjDatos
-
Prints the examples on the screen
- print() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.ConjReglas
-
Prints on the screen the set of rules
- print() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Item
-
Prints on the standard output the item information.
- print() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Muestra
-
Prints on the screen the example's content
- print() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Regla
-
Prints the rule information on the standard output.
- print() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Complejo
-
Print the content of the complex (List->Attribute operator value)
- print() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.ConjDatos
-
Prints the examples on the screen
- print() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.ConjReglas
-
Prints on the screen the set of rules
- print() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Muestra
-
Prints on the screen the example's content
- print() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Selector
-
Shows the content of a selector: attribute-operator-value
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Chromosome
-
Prints the chromosome genes
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Gene
-
Prints the gene
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Individual
-
Method to Print the contents of the individual
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Population
-
Prints population individuals
- print(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.CromCAN
-
Prints the chromosome genes
- print(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.CromDNF
-
Prints the chromosome genes
- print() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.CromDNF
-
Gets the chromosome genes
- print(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Gene
-
Prints the gene
- print() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Gene
-
Gets the genes of the variable
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.IndCAN
-
Method to print the contents of the individual
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.IndDNF
-
Method to print the contents of the individual
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Individual
-
Method to print the contents of the individual
- print(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Population
-
Prints population individuals
- print(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Prints the measures
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Chromosome
-
Prints the chromosome genes
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Gene
-
Prints the gene
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Individual
-
Method to Print the contents of the individual
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Population
-
Prints population individuals
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.CromCAN
-
Prints the chromosome genes
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.CromDNF
-
Prints the chromosome genes
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Gene
-
Prints the gene
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.IndCAN
-
Method to Print the contents of the individual
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.IndDNF
-
Method to Print the contents of the individual
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Method to print the contents of the individual
- Print(String, Vector) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Population
-
Prints population individuals
- Print(String, Genetic) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.QualityMeasures
-
Prints the measures
- print() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
-
Print the content of the complex
- print() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Instance
-
It shows the content of the example
- print() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Selector
-
Show the selector
- print() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.SetData
-
Show an instance
- print() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.SetRules
-
Show the set of rules
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Chromosome
-
Prints the chromosome genes
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Gene
-
Prints the gene
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Individual
-
Method to Print the contents of the individual
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Population
-
Prints population individuals
- print(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.CromCAN
-
Prints the chromosome genes
- print(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.CromDNF
-
Prints the chromosome genes
- print() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.CromDNF
-
Gets the chromosome genes
- print(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Gene
-
Prints the gene
- print() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Gene
-
Gets the genes of the variable
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.IndCAN
-
Method to print the contents of the individual
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.IndDNF
-
Method to print the contents of the individual
- Print(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Individual
-
Method to print the contents of the individual
- print(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Population
-
Prints population individuals
- print(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.QualityMeasures
-
Prints the measures
- print() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.StopWatch
-
Prints out the lap times and the total time.
- print(Object) - Method in class keel.Algorithms.SVM.SMO.core.Check
-
prints the given message to stdout, if not silent mode
- print() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.StopWatch
-
Prints out the lap times and the total time.
- print(int, int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.DataBase
-
Returns the name of a given label id of a given variable id.
- print() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.StopWatch
-
Prints out the lap times and the total time.
- print() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.StopWatch
-
Prints out the lap times and the total time.
- print() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.StopWatch
-
Prints out the lap times and the total time.
- print() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.StopWatch
-
Prints out the lap times and the total time.
- print() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.StopWatch
-
Prints out the lap times and the total time.
- print() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.StopWatch
-
Prints out the lap times and the total time.
- print() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.StopWatch
-
Prints out the lap times and the total time.
- print() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.StopWatch
-
Prints out the lap times and the total time.
- print() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.StopWatch
-
Prints out the lap times and the total time.
- print() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.StopWatch
-
Prints out the lap times and the total time.
- print() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.StopWatch
-
Prints out the lap times and the total time.
- print() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.StopWatch
-
Prints out the lap times and the total time.
- print() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.StopWatch
-
Prints out the lap times and the total time.
- print() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.StopWatch
-
Prints out the lap times and the total time.
- print() - Method in class keel.Dataset.Attribute
-
This method prints the attribute information.
- print() - Static method in class keel.Dataset.Attributes
-
It does print the attributes information
- print() - Method in class keel.Dataset.ErrorInfo
-
It does print an understable message about the error
- print(PrintWriter) - Method in class keel.Dataset.Instance
-
It prints the instance to the specified PrintWriter.
- print() - Method in class keel.Dataset.Instance
-
It does print the instance information
- print(InstanceAttributes, PrintWriter) - Method in class keel.Dataset.Instance
-
- print(InstanceAttributes) - Method in class keel.Dataset.Instance
-
It does print the instance information
- print(PrintWriter) - Method in class keel.Dataset.InstanceSet
-
It prints the dataset to the specified PrintWriter
- print() - Method in class keel.Dataset.InstanceSet
-
- Print_Population(Individual) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.Algorithm
-
It prints the current RB encoded in the individual "indiv" as a String
- Print_Population() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.Algorithm
-
It prints the current population as a String
- Print_Population() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.Algorithm
-
It prints the current population as a String
- Print_SteadyState_Fitness(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.multiPopulation
-
It prints the steady state fitness for the individual "i"
- print_triangle(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.DataBase
-
Return a String representation of the Triangular Membership Functions of the variable and its label given as arguments.
- print_triangle(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.DataBase
-
Return a String representation of the Triangular Membership Functions of the variable and its label given as arguments.
- print_triangle(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.DataBase
-
It prints the values of the fuzzy label of the given variable
- print_triangle(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.DataBase
-
It prints the points of a fuzzy label
- print_triangle(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.DataBase
-
It prints the points of a fuzzy label
- print_triangle(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.BaseD
-
- print_triangle(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.DataBase
-
- printAllErrors() - Method in exception keel.Algorithms.Rule_Learning.Swap1.DatasetException
-
It does print all the errors.
- printAllErrors() - Method in exception keel.Dataset.DatasetException
-
It does print all the errors.
- printArray(double[]) - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
-
Prints on console the elements of an array of doubles
- printArray(int[]) - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
-
Prints on console the elements of an array of integers
- printArray(double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
-
Prints on console the elements of a double array.
- printArray(double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
-
Prints on console the elements of a double array.
- printArray(double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
-
Prints on console the elements of a double array.
- printArray(double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
-
Prints on console the elements of a double array.
- printArray(double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
-
Prints on console the elements of a double array.
- printArray(double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
-
Prints on console the elements of a double array.
- printAsOriginal(PrintWriter) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
It prints the instance to the specified PrintWriter.
- printAsOriginal(InstanceAttributes, PrintWriter) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
It prints the instance to the specified PrintWriter.
- printAsOriginal(PrintWriter, int) - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
-
It prints the dataset to the specified PrintWriter.
- printAsOriginal(PrintWriter) - Method in class keel.Dataset.Instance
-
It prints the instance to the specified PrintWriter.
- printAsOriginal(InstanceAttributes, PrintWriter) - Method in class keel.Dataset.Instance
-
It prints the instance to the specified PrintWriter.
- printAsOriginal(PrintWriter, int) - Method in class keel.Dataset.InstanceSet
-
It prints the dataset to the specified PrintWriter.
- printC(int) - Method in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Friedman
-
Prints as many "c" as desired
- printC(int) - Method in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Multiple
-
Prints as many "c" as desired
- printC(int) - Static method in class keel.GraphInterKeel.statistical.tests.Friedman
-
Prints as many "c" as desired
- printC(int) - Static method in class keel.GraphInterKeel.statistical.tests.Multiple
-
Prints as many "c" as desired
- printClassifier() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
-
- printClassifier() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierADI
-
- printClassifier() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierGABIL
-
- printClassifier() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ClassifierUBR
-
- printClassifier() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
-
- printClassifier() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierADI
-
- printClassifier() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierGABIL
-
- printContents() - Static method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
It does print all the parameters value to check their correct initialization
- printContents() - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It does print all the parameters value to check their correct initialization
- printDataSet(boolean) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It prints the dataset into an string
- printDataSet() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Returns a string representation of the dataset.
- PrintDefinition() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.domain_t
-
Prints in the standard output the definition of the domain
- PrintDefinition(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.domain_t
-
Prints in the standard output the label number i in the domain
- PrintDefinition() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.fuzzy_t
-
Prints in the standard output the definition of the label
- PrintDefinition() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Prints in the standard output the definition of the variable
- PrintDefinition() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.vectordouble
-
Prints in the standard output the vector
- PrintDefinition(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Prints in the standard output the definition of the variable in position "variable" in the list
- PrintDefinition() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Prints in the standard output the definition of all the variables in the list
- PrintDefinitionToString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.domain_t
-
Prints in a String the definition of each label in the domain
- PrintDefinitionToString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.fuzzy_t
-
Prints in a String the definition of the label
- PrintDefinitionToString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Prints in a String the definition of the variable
- PrintDefinitionToString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Prints in a String the definition of all the variables in the list
- printDistrib() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
-
Print the distribution
- printDistribucion() - Method in class keel.Algorithms.Rule_Learning.Prism.Complejo
-
Prints on screen the distribution of the classes for the complex
- printDistribucion() - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
Print the classes distribution for the complex
- printDistribucion() - Method in class keel.Algorithms.Rule_Learning.UnoR.Complejo
-
Print the classes distribution for the complex
- printDistribucion() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Regla
-
Print the classes distribution for the rule
- printDistribucion() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Complejo
-
Print the classes distribution for the complex
- printDistribucionString() - Method in class keel.Algorithms.Rule_Learning.Prism.Complejo
-
prints on a string the distribution of the classes for the complex
- printDistribucionString() - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
Print the classes distribution for the complex
- printDistribucionString() - Method in class keel.Algorithms.Rule_Learning.UnoR.Complejo
-
Print the classes distribution for the complex
- printDistribucionString() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Regla
-
Print the classes distribution for the rule
- printDistribucionString() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Complejo
-
Print the classes distribution for the complex
- printDistribucionString() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
-
Print a String with the distribution
- printDistribucionString() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.AssociationRule
-
Print in a string the distribution values of the class
- printDistribution() - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Prints on the screen the class distribution of the complex
- printDistribution() - Method in class keel.Algorithms.Rule_Learning.AQ.Complex
-
It prints the class distribution
- printDistribution() - Method in class keel.Algorithms.Rule_Learning.CN2.Complex
-
It prints the class distribution
- printDistributionString() - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Prints on the screen the class distribution for the complex
- printDistributionString() - Method in class keel.Algorithms.Rule_Learning.AQ.Complex
-
It prints the class distribution on a string
- printDistributionString() - Method in class keel.Algorithms.Rule_Learning.CN2.Complex
-
It prints the class distribution on a string
- PrintDomain(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.variable_t
-
- PrintDomain(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- PrintDomain(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Prints in the standard ouput the name of the label "value" of the variable.
- PrintDomain(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Prints in the standard ouput the name of the label "value" of the variable in position "variable" in the list.
- PrintDomain(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.variable_t
-
- PrintDomain(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- PrintDomain(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.variable_t
-
- PrintDomain(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- printElements() - Method in class keel.Algorithms.SVM.SMO.supportVector.SMOset
-
Prints all the current elements in the set.
- printErr(String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.LogManager
-
- printErr(String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Globals.LogManager
-
- printErr(String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.LogManager
-
- printExitValues() - Method in class keel.Algorithms.Coevolution.CIW_NN.CIW_NN
-
Prints the additional output file
- printExitValues() - Method in class keel.Algorithms.Coevolution.IFS_COCO.IFS_COCO
-
Prints the additional output file
- PrintfApplet - Class in keel.Algorithms.Neural_Networks.gmdh
-
Applet to print the different configurations and results of the NN.
- PrintfApplet() - Constructor for class keel.Algorithms.Neural_Networks.gmdh.PrintfApplet
-
- PrintfFormat - Class in keel.Algorithms.Neural_Networks.gmdh
-
PrintfFormat allows the formatting of an array of
objects embedded within a string.
- PrintfFormat(String) - Constructor for class keel.Algorithms.Neural_Networks.gmdh.PrintfFormat
-
Constructs an array of control specifications
possibly preceded, separated, or followed by
ordinary strings.
- PrintfFormat(Locale, String) - Constructor for class keel.Algorithms.Neural_Networks.gmdh.PrintfFormat
-
Constructs an array of control specifications
possibly preceded, separated, or followed by
ordinary strings.
- printFichero(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.BaseR
-
- printFingramsLegend() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.FARFingrams
-
- printFingramsLegend() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
- printFS() - Static method in class keel.Algorithms.RST_Learning.KNNClassifier
-
Returns a string representation of the features selection vector
- printGeneration(int, <any>, <any>, ParametricMutator<NeuralNetIndividual>, IEvaluator) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.listener.NeuralNetReporterClas
-
Outputs the information of a generation to System.out
- printGeneration(int, <any>, <any>, ParametricMutator<NeuralNetIndividual>, IEvaluator) - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.listener.NeuralNetReporterRegr
-
Outputs the information of a generation to System.out
- printIndividual() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Individual
-
Prints the tree encoded in the individual as a string
- printIndividual(int) - Method in class keel.Algorithms.Instance_Selection.CoCoIS.Subpopulation
-
Prints an individual of the population
- printIndividual(int) - Method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Subpopulation
-
Prints an individual of the population
- printIndividual_bk() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Individual
-
Prints the tree encoded in the individual as a string
- printInstance(int[]) - Static method in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Generates a string with the contents of the instance
- printInstance(double[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.Util
-
Generates a string with the contents of the instance
- printInstance(int[]) - Static method in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Generates a string with the contents of the instance
- printInstance(int[]) - Static method in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Generates a string with the contents of the instance
- printInstance(int[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Generates a string with the contents of the instance
- printInstance(int[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Generates a string with the contents of the instance
- printInstance(int[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Generates a string with the contents of the instance
- printInstance(double[]) - Static method in class keel.Algorithms.RST_Learning.Util
-
Prints on the standard output the contents of the instance
- printLap() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.StopWatch
-
Prints out the lap time of the last recorded lap.
- printLap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.StopWatch
-
Prints out the lap time of the last recorded lap.
- printLap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.StopWatch
-
Prints out the lap time of the last recorded lap.
- printLap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.StopWatch
-
Prints out the lap time of the last recorded lap.
- printLap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.StopWatch
-
Prints out the lap time of the last recorded lap.
- printLap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.StopWatch
-
Prints out the lap time of the last recorded lap.
- printLap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.StopWatch
-
Prints out the lap time of the last recorded lap.
- printLap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.StopWatch
-
Prints out the lap time of the last recorded lap.
- printLap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.StopWatch
-
Prints out the lap time of the last recorded lap.
- printLap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.StopWatch
-
Prints out the lap time of the last recorded lap.
- printLap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.StopWatch
-
Prints out the lap time of the last recorded lap.
- printLap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.StopWatch
-
Prints out the lap time of the last recorded lap.
- printLap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.StopWatch
-
Prints out the lap time of the last recorded lap.
- printLap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.StopWatch
-
Prints out the lap time of the last recorded lap.
- printLap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.StopWatch
-
Prints out the lap time of the last recorded lap.
- printLap() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.StopWatch
-
Prints out the lap time of the last recorded lap.
- printlit() - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Literals
-
It prints the matrix of literals
- println(String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.LogManager
-
- println(String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Globals.LogManager
-
- println(String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.LogManager
-
- println(String) - Static method in class keel.Algorithms.Instance_Generation.utilities.Debug
-
Prints a message in the standard console.
- println(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Debug
-
Prints a message in the standard console.
- println(Object) - Method in class keel.Algorithms.SVM.SMO.core.Check
-
prints the given message (+ LF) to stdout, if not silent mode
- println() - Method in class keel.Algorithms.SVM.SMO.core.Check
-
prints a LF to stdout, if not silent mode
- printlnError(String) - Static method in class keel.Algorithms.Instance_Generation.utilities.Debug
-
Prints a message in the error console.
- printlnError(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Debug
-
Prints a message in the error console.
- printMatrix(double[][]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.Util
-
Generates a string with the contents of a data matrix
- printMatrix(double[][]) - Static method in class keel.Algorithms.RST_Learning.Util
-
Prints on the standard output a string with the contents of a data matrix
- printMeasure(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.EvaluateRules
-
Print the quality measures in the measure file
- printModelFile(Object) - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
-
Print result model tree
- printNet() - Method in class keel.Algorithms.Shared.ClassicalOptim.GCNet
-
Returns the weights as a String for printing or storing purposes
- printNetworkToFile(String, String) - Method in class keel.Algorithms.Neural_Networks.LVQ.LVQ
-
Save network weights to a file
- printNotNorm(PrintWriter, double) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Attribute
-
Prints the classifier representation not normalized on the PrintWriter object given.
- printNotNorm(PrintWriter, double, double) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Attribute
-
Prints the classifier representation not normalized on the PrintWriter object given.
- printNotNorm(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Classifier
-
Prints the desnormalized classifier to the specified file.
- printNotNorm(PrintWriter, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
Prints the classifier representation not normalized on the PrintWriter object given.
- printNotNorm(PrintWriter, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
Prints the classifier representation not normalized on the PrintWriter object given.
- printNotNorm(PrintWriter, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
Prints the classifier representation not normalized on the PrintWriter object given.
- printNotNorm(PrintWriter, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
Prints the classifier representation not normalized on the PrintWriter object given.
- printNotNorm(PrintWriter, Vector) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
-
Prints the classifier representation on the PrintWriter object given.
- printNotNorm(PrintWriter, int) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
-
Prints the classifier representation not normalized on the PrintWriter object given.
- printNotNorm(PrintWriter, double, double) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
-
Prints the classifier representation not normalized on the PrintWriter object given.
- printNotNorm(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Prints the desnormalized classifier to the specified file.
- printNotNorm(PrintWriter, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
Prints the classifier representation on the PrintWriter object given.
- printNotNorm(PrintWriter, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
Prints the classifier representation not normalized on the PrintWriter object given.
- printNotNorm(PrintWriter, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
Prints the classifier representation not normalized on the PrintWriter object given.
- printNotNorm(PrintWriter, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
Prints the classifier representation not normalized on the PrintWriter object given.
- printNotNorm(PrintWriter, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
Prints the classifier representation not normalized on the PrintWriter object given.
- printNotNorm(PrintWriter, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
Prints the classifier representation on the PrintWriter object given.
- printNotNorm(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
Prints the classifier to the specified file.
- printNotNorm(PrintWriter, Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
Prints the classifier representation on the PrintWriter object given.
- printNotNorm(PrintWriter, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
Prints the classifier representation not normalized on the PrintWriter object given.
- printNotNorm(PrintWriter, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
Prints the classifier representation not normalized on the PrintWriter object given.
- printNotNormPopToFile(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Prints the desnormalized population into the specified file.
- PrintOutputFunctions() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.PSOLDA
-
Prints on the ouput fuctions file the fuctions inferenced by the algorithm.
- PrintOutputRules() - Method in class keel.Algorithms.PSO_Learning.CPSO.CPSO
-
Prints on the ouput rules file the rules inferenced by the algorithm.
- PrintOutputRules() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.LDWPSO
-
Prints on the ouput rules file the rules inferenced by the algorithm.
- PrintOutputRules() - Method in class keel.Algorithms.PSO_Learning.REPSO.REPSO
-
Prints on the ouput rules file the rules inferenced by the algorithm.
- printParameters() - Static method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
Print the parameters of the algorithm.
- printParameters() - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Print the parameters of the algorithm.
- printPareto(ArrayList<AssociationRule>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
-
- printPareto() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_GhoshProcess
-
- printPareto() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_GoshProcess
-
- printPareto() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.MOPNARProcess
-
- printPareto() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.QAR_CIP_NSGAIIProcess
-
- printPopulation(Population) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Statistic
-
It writes the population to a file.
- printPopulation(Population) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Statistic
-
It writes the population to a file.
- printPopulationToFile(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Prints the population into the specified file.
- printPopulationToFile(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Prints the population into the file specified.
- printPopulationToFile(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Prints the population into the specified file.
- printPopulationToFile(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Prints the population into the file specified.
- printRbf() - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbf
-
Prints neuron on std out
- printRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbf
-
Prints neuron on a file.
- printRbf() - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbf
-
Prints neuron on std out
- printRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbf
-
Prints neuron on a file.
- printRbf() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbf
-
Prints neuron on std out
- printRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbf
-
Prints neuron on a file.
- printRbf() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbf
-
Prints neuron on std out
- printRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbf
-
Prints neuron on a file.
- printRbf() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbf
-
Prints neuron on std out
- printRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbf
-
Prints neuron on a file.
- printRbf() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbf
-
Prints neuron on std out
- printRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbf
-
Prints neuron on a file.
- printRbfn() - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbfn
-
Prints net on a stdout
- printRbfn(String) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbfn
-
Prints net on a file.
- printRbfn() - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
-
Prints net on a stdout
- printRbfn(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
-
Prints net on a file.
- printRbfn() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
-
Prints net on a stdout
- printRbfn(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
-
Prints net on a file.
- printRbfn() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
-
Prints net on a stdout
- printRbfn(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
-
Prints net on a file.
- printRbfn() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
-
Prints net on a stdout
- printRbfn(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
-
Prints net on a file.
- printRbfn() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
-
Prints net on a stdout
- printRbfn(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
-
Prints net on a file.
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.CFKNN.CFKNN
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.D_SKNN.D_SKNN
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FCMKNN.FCMKNN
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FENN.FENN
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRKNNA.FRKNNA
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN.FRNN
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN_FRS.FRNN_FRS
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN_VQRS.FRNN_VQRS
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyKNN.FuzzyKNN
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyNPC.FuzzyNPC
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.GAFuzzyKNN.GAFuzzyKNN
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.IF_KNN.IF_KNN
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.IFSKNN.IFSKNN
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.IFV_NP.IFV_NP
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.IT2FKNN.IT2FKNN
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.JFKNN.JFKNN
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.PFKNN.PFKNN
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.PosIBL.PosIBL
-
Reports the results obtained
- printReport() - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.ReportTool
-
Prints the output report
- printReport() - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.VWFuzzyKNN.VWFuzzyKNN
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.RST_Learning.EFS_RPS.EFS_RPS
-
Reports the results obtained
- printReport() - Method in class keel.Algorithms.RST_Learning.EIS_RFS.EIS_RFS
-
Reports the results obtained
- printReport() - Static method in class keel.Algorithms.RST_Learning.ReportTool
-
Prints the output report
- printReport(ArrayList<AssociationRule>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.AlcalaetalProcess
-
It prints out on screen relevant information regarding the mined association rules
- printReport(ArrayList<AssociationRule>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.FuzzyAprioriProcess
-
It prints out on screen relevant information regarding the mined association rules
- printReport(ArrayList<AssociationRule>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.GeneticFuzzyAprioriProcess
-
It prints out on screen relevant information regarding the mined association rules
- printReport(ArrayList<AssociationRule>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.GeneticFuzzyAprioriDCProcess
-
It prints out on screen relevant information regarding the mined association rules
- printReport(ArrayList<AssociationRule>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.AlatasetalProcess
-
It prints out on screen relevant information regarding the mined association rules
- printReport(ArrayList<AssociationRule>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AprioriProcess
-
It prints out on screen relevant information regarding the mined association rules
- printReport(double, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.EARMGAProcess
-
- printReport(ArrayList<AssociationRule>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.EclatProcess
-
It prints out on screen relevant information regarding the mined association rules
- printReport(ArrayList<AssociationRule>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.FPgrowthProcess
-
It prints out on screen relevant information regarding the mined association rules
- printReport(double, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.GARProcess
-
It prints out on screen relevant information regarding the mined association rules
which have their confidence and support values higher than the minimum ones given.
- printReport(double, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.GENARProcess
-
It prints out on screen relevant information regarding the mined association rules
which have their confidence and support values higher than the minimum ones given.
- printResult() - Method in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
Evaluates the algorithm and writes the results in the file.
- printResult() - Method in class keel.Algorithms.Decision_Trees.C45.C45
-
Writes the tree and the results of the training and the test in the file.
- printResult() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
Evaluates the algorithm and writes the results in the file.
- printResult() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.C45
-
Writes the tree and the results of the training and the test in the file.
- printResult() - Method in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
Evaluates the algorithm and writes the results in the file.
- printResult() - Method in class keel.Algorithms.Decision_Trees.ID3.ID3
-
Writes the tree and the results of the training and the test in the file.
- printResult() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Evaluates the algorithm and writes the results in the file.
- printResult() - Method in class keel.Algorithms.Decision_Trees.SLIQ.SLIQ
-
Writes the statistical measurements obtained on the output file.
- printResult() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
Evaluates the algorithm and writes the results in the file.
- printResult() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.C45
-
Writes the tree and the results of the training and the test in the file.
- printResult() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
Evaluates the algorithm and writes the results in the file.
- printResult() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.C45CS
-
Writes the tree and the results of the training and the test in the file.
- printResult() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
Evaluates the algorithm and writes the results in the file.
- printResult() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.C45
-
Writes the tree and the results of the training and the test in the file.
- printResult() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.C45
-
Writes the tree and the results of the training and the test in the file.
- printResult() - Method in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.C45
-
Writes the tree and the results of the training and the test in the file.
- printResult() - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.C45
-
Writes the tree and the results of the training and the test in the file.
- printResult() - Method in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.C45
-
Writes the tree and the results of the training and the test in the file.
- printResult() - Method in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
Evaluates the algorithm and writes the results in the file.
- printResult() - Method in class keel.Algorithms.Rule_Learning.ART.ART
-
Writes the tree and the results of the training and the test in the file.
- printResult() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
Evaluates the algorithm and writes the results in the file.
- printResult() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.DataSqueezer
-
Writes the rules and the results of the training and the test in the file.
- printResult() - Method in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
Evaluates the algorithm and writes the results in the file.
- printResult() - Method in class keel.Algorithms.Rule_Learning.PART.C45
-
Writes the tree and the results of the training and the test in the file.
- printResult() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.C45
-
Writes the tree and the results of the training and the test in the file.
- printResults(myDataset, String) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.FunctionalTrees
-
Prints in a file the result of the classification made with the tree generated by the PUBLIC
algorithm, this means, the tree itself and the general information about it
- printResults(myDataset, String) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.PUBLIC
-
Prints in a file the result of the classification made with the tree generated by the PUBLIC
algorithm, this means, the tree itself and the general information about it
- printRule(AssociationRule) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.Apriori
-
Returns a String with relevant information regarding the mined association rule given
- printRule(AssociationRule) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.Eclat
-
Returns a String with relevant information regarding the mined association rule given
- printRuleBase() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.PDFC
-
This method prints the actual Rule Base stored in m_ruleSet to a file
- printRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Cogin
-
- printRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Core
-
Print the final set of rules to disk
- printRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.Ilga
-
Print the rules to the file passed as parameters in the configuration file
- printRules() - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.Oiga
-
Print the current rules to the file specified by KEEL .
- printRules(ArrayList<AssociationRule>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.AlatasetalProcess
-
Returns a String with relevant information regarding the mined association rules
- printRules(ArrayList<AssociationRule>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.ARMMGAProcess
-
Returns a String with relevant information regarding the mined association rules
- printRules(ArrayList<AssociationRule>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.EARMGAProcess
-
- printRules(ArrayList<AssociationRule>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.EclatProcess
-
- printRules(ArrayList<AssociationRule>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.GARProcess
-
Returns a String with relevant information regarding the mined association rules
- printRules(ArrayList<AssociationRule>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.GENARProcess
-
Returns a String with relevant information regarding the mined association rules
- printSet() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Print Prototype Set.
- printSet() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Print Prototype Set.
- printStateAndClass(double[], int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Statistic
-
It prints the environmental state and the correct associated action.
- printStateAndClass(double[], int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Statistic
-
It prints the environmental state and the correct associated action.
- printStateAndClassNoCov(double[], int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Statistic
-
It prints the environmental state and for those examples with no action.
- printStateAndClassNoCov(double[], int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Statistic
-
It prints the environmental state and for those examples with no action.
- printString() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.DataBase
-
It prints the whole database
- printString() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.RuleBase
-
It prints the whole rulebase
- printString() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.DataBase
-
It prints the whole database
- printString() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.RuleBase
-
It prints the whole rulebase
- printString() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.DataBase
-
It prints the whole database
- printString() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.DataBase
-
It prints the whole database
- printString() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.RuleBase
-
It prints the whole rulebase
- printString() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.DataBase
-
It prints the whole database
- printString() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.RuleBase
-
It prints the whole rulebase
- printString() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.DataBase
-
It prints the whole database
- printString() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.RuleBase
-
It prints the whole rulebase
- printString() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.DataBase
-
It prints the whole database
- printString() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.RuleBase
-
It prints the whole rulebase
- printString() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.Rule
-
Returns the rule as a String
- printString() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.RuleBase
-
It prints the whole rulebase
- printString() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.Selector
-
Returns a String representation of the selector.
- printString() - Method in class keel.Algorithms.Decision_Trees.DT_GA.BaseR
-
Returns a String representation of all the rules collected.
- printString() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.C45
-
It prints the information related to the decision tree
- printString() - Method in class keel.Algorithms.Decision_Trees.DT_GA.Individuo
-
Returns a String representation of the Individual.
- printString() - Method in class keel.Algorithms.Decision_Trees.DT_GA.Poblacion
-
Returns a String representation of the population.
- printString() - Method in class keel.Algorithms.Decision_Trees.DT_GA.Regla
-
Returns a String representation of the rule.
- printString() - Method in class keel.Algorithms.Decision_Trees.DT_GA.Selector
-
Returns String representation of the Selector.
- printString() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.Nodo
-
Returns a String representation of the node.
- printString() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.Tree
-
Returns a String representation of the tree.
- printString() - Method in class keel.Algorithms.Decision_Trees.Target.Nodo
-
Returns a String representation of the node.
- printString() - Method in class keel.Algorithms.Decision_Trees.Target.Tree
-
Returns a String representation of the tree.
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.DataBase
-
It prints the Data Base into an string
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.RuleBase
-
It prints the rule base into an string
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.BaseD
-
It prints the Data Base into an string
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.BaseR
-
It prints the rule base into an string
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.DataBase
-
It prints the Data Base into an string
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.RuleBase
-
It prints the rule base into an string
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.DataBase
-
It prints the Data Base into an string
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.RuleBase
-
Prints the Rule Base into a String object
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.BaseD
-
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.BaseR
-
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.BaseD
-
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.BaseR
-
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.Individuo
-
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.DataBase
-
It prints the Data Base into an string
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.FuzzyAntecedent
-
String representation of a Fuzzy Antecedent in the GP-COACH algorithm.
- printString(String[], String[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
-
String representation of a Fuzzy Rule in the GP-COACH algorithm.
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.DataBase
-
- printString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.RuleBase
-
- printString() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
Returns a String representation of the dataset (A list of all the instances).
- printString() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Attribute
-
- printString() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.BaseR
-
- printString() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Organizacion
-
- printString() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Poblacion
-
- printString() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Regla
-
- printString() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.evaluateRuleQuality
-
It returns a string with the accuracy percentage in training and test
- printString() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Rule
-
It prints the rule into a string
- printString() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.ruleSet
-
It prints all rules into a string
- printString(int[]) - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Prints as a String the complex content (List->Attribute)
- printString() - Method in class keel.Algorithms.Hyperrectangles.EACH.RuleQualityEvaluation
-
Prints on a string the statistical results
- printString(int[]) - Method in class keel.Algorithms.Hyperrectangles.EACH.RuleSet
-
Prints on a string the set of rules
- printString() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.C45
-
Returns a String representation of the tree.
- printString() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Rule
-
Returns the rule as a String
- printString() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.RuleBase
-
It prints the whole rulebase
- printString() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Selector
-
Returns a String representation of the selector.
- printString() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.DataBase
-
It prints the Data Base into an string
- printString() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.FuzzyAntecedent
-
String representation of a Fuzzy Antecedent in the GP-COACH algorithm.
- printString(String[], String[]) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
-
String representation of a Fuzzy Rule in the GP-COACH-H algorithm.
- printString() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.BaseD
-
- printString() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.BaseR
-
- printString() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.Individuo
-
- printString() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.MatrizR
-
- printString() - Method in class keel.Algorithms.Rule_Learning.AQ.Complex
-
It prints on a string the content of the complex
- printString() - Method in class keel.Algorithms.Rule_Learning.AQ.evaluateRuleQuality
-
It prints on a string the statistics
- printString() - Method in class keel.Algorithms.Rule_Learning.AQ.ruleSet
-
It prints on a string the rule-set
- printString() - Method in class keel.Algorithms.Rule_Learning.CN2.Complex
-
It prints on a string the content of the complex
- printString() - Method in class keel.Algorithms.Rule_Learning.CN2.evaluateRuleQuality
-
It prints on a string the statistics
- printString() - Method in class keel.Algorithms.Rule_Learning.CN2.ruleSet
-
It prints on a string the rule-set
- printString() - Method in class keel.Algorithms.Rule_Learning.Prism.Complejo
-
Prints on a string the content of the complex(List -> Attribute operator value)
- printString() - Method in class keel.Algorithms.Rule_Learning.Prism.ConjReglas
-
Prints on a string the set of rules
- printString() - Method in class keel.Algorithms.Rule_Learning.Prism.EvaluaCalidadReglas
-
Prints on a string the statistical(for test)
- printString(int[]) - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
Print the complex content using a string (List->Attribute operator value)
- printString(int, double, double, boolean) - Method in class keel.Algorithms.Rule_Learning.UnoR.Complejo
-
Returns a string with the complex contents (List -> Attribute operator value).
- printString(int) - Method in class keel.Algorithms.Rule_Learning.UnoR.ConjReglas
-
Prints on a string the set of rules
- printString() - Method in class keel.Algorithms.Rule_Learning.UnoR.EvaluaCalidadReglas
-
Prints on a string the statistical(for test)
- printString() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.ConjReglas
-
Prints on a string the set of rules
- printString() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.EvaluaCalidadReglas
-
Prints on a string the statistical(for test)
- printString() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Regla
-
Returns a string with the rule information.
- printString() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Complejo
-
Returns a string with the complex contents (List -> Attribute operator value).
- printString() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.ConjReglas
-
Prints on a string the set of rules
- printString() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.EvaluaCalidadReglas
-
Prints on a string the statistical(for test)
- printString() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
-
Print a String the content of the complex
- printString() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.EvaluateRules
-
Print the results in a String
- printString() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.SetRules
-
Print string the set of rules
- printStringF() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.Rule
-
Returns the rule as a String (float representation of covers instances).
- printStringF() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.RuleBase
-
It prints the whole rulebase with float representation.
- printStringF() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Rule
-
Returns the rule as a String (float representation of covers instances).
- printStringF() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.RuleBase
-
It prints the whole rulebase with float representation.
- printStringOVO() - Method in class keel.Algorithms.Decision_Trees.C45.C45
-
Function to print the tree (OVO code).
- printSupport() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Regla
-
Returns the support of the rule as string.
- printSVs() - Method in class keel.Algorithms.SVM.SMO.SMO
-
Prints the Support vectors to file
- printTest() - Method in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Decision_Trees.C45.C45
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.C45
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Decision_Trees.ID3.ID3
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Decision_Trees.SLIQ.SLIQ
-
Evaluates the test dataset and writes the results on the output file.
- printTest() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.C45
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.C45CS
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.C45
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.C45
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.C45
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.C45
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.C45
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Rule_Learning.ART.ART
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.DataSqueezer
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Rule_Learning.PART.C45
-
Evaluates the test dataset and writes the results in the file.
- printTest() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.C45
-
Evaluates the test dataset and writes the results in the file.
- printTimes(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TimeControl
-
It prints the average time wasted in every kind of run
- printTimes() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TimeControl
-
It prints the average time wasted in every kind of run
- printTimes(PrintWriter) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TimeControl
-
It prints the average time wasted in every kind of run
- printTimes() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TimeControl
-
It prints the average time wasted in every kind of run
- printTrain() - Method in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Decision_Trees.C45.C45
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.C45
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Decision_Trees.ID3.ID3
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Decision_Trees.SLIQ.SLIQ
-
Evaluates the training dataset and writes the results on the output file.
- printTrain() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.C45
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.C45CS
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.C45
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.C45
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.C45
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.C45
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.C45
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Rule_Learning.ART.ART
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.DataSqueezer
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Rule_Learning.PART.C45
-
Evaluates the training dataset and writes the results in the file.
- printTrain() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.C45
-
Evaluates the training dataset and writes the results in the file.
- printTree() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Prints the tree in a String with all the information that makes it human readable
- printTree(ArrayList<myAttribute>, myAttribute) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
-
Prints the tree in a String with all the information that makes it human readable
- printValidOptions() - Method in class keel.Algorithms.Decision_Trees.M5.InformationHandler
-
Prints valid command line options and simply explains the output
- PrintVar() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.variable_t
-
- PrintVar(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- PrintVar() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Prints in the standard output the name of the variable
- PrintVar(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Prints in the standard output the name of the variable in position "variable" in the list
- PrintVar() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.variable_t
-
- PrintVar(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- PrintVar() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.variable_t
-
- PrintVar(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- PrintWeights() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Print weights to screen.
- PrintWeights() - Method in class keel.Algorithms.Neural_Networks.gann.Network
-
Print weights to screen.
- PrintWeights() - Method in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Print weights to screen.
- PrintWeights() - Method in class keel.Algorithms.Neural_Networks.net.Network
-
Print weights to screen.
- printWeightsAtributes(String[]) - Method in class keel.Algorithms.Hyperrectangles.EACH.HyperrectangleSet
-
Returns on a string the name and its weight of each attribute
- priorEntropy() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Calculate the entropy of the prior distribution
- priorsProbabilities() - Method in class keel.Algorithms.Decision_Trees.C45.C45
-
Sets the class prior probabilities.
- priorsProbabilities() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.C45
-
Sets the class prior probabilities.
- priorsProbabilities() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.C45
-
Sets the class prior probabilities.
- priorsProbabilities() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.C45CS
-
Sets the class prior probabilities.
- priorsProbabilities() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.C45
-
Sets the class prior probabilities.
- priorsProbabilities() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.C45
-
Sets the class prior probabilities.
- priorsProbabilities() - Method in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.C45
-
Sets the class prior probabilities.
- priorsProbabilities() - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.C45
-
Sets the class prior probabilities.
- priorsProbabilities() - Method in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.C45
-
Sets the class prior probabilities.
- priorsProbabilities() - Method in class keel.Algorithms.Rule_Learning.C45Rules.C45
-
Sets the class prior probabilities.
- priorsProbabilities() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.C45
-
Sets the class prior probabilities.
- priorsProbabilities() - Method in class keel.Algorithms.Rule_Learning.PART.C45
-
Sets the class prior probabilities.
- priorsProbabilities() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.C45
-
Sets the class prior probabilities.
- priorVal(double[][]) - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Computes value of splitting criterion before split.
- priorVal(double[][]) - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Computes value of splitting criterion before split.
- priorVal(double[][]) - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Computes value of splitting criterion before split.
- Prism - Class in keel.Algorithms.Rule_Learning.Prism
-
Contents the principal methods of the Prismsd algorithm
- Prism() - Constructor for class keel.Algorithms.Rule_Learning.Prism.Prism
-
Default constructor.
- Prism(String, String, String, String, String, long) - Constructor for class keel.Algorithms.Rule_Learning.Prism.Prism
-
Constructor with all the attributes to initialize
- PRM - Class in keel.Algorithms.Associative_Classification.ClassifierCPAR
-
This class stores information to manage the PRM procedure.
- PRM() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCPAR.PRM
-
Default Constructor
- PRM(DataBase, myDataset, RuleBase, double, double, double) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCPAR.PRM
-
Parameters Constructor
- PrnToKeel - Class in keel.Algorithms.Preprocess.Converter
-
PrnToKeel
This class extends from the Importer class.
- PrnToKeel(String) - Constructor for class keel.Algorithms.Preprocess.Converter.PrnToKeel
-
PrnToKeel class Constructor.
- Prob(int[][], int[], Condition, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.RuleSet
-
- prob_cross - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.Parameters
-
Cross probability.
- prob_cross_bin - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.Parameters
-
- prob_cross_bin - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.Parameters
-
- prob_cross_real - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.Parameters
-
- prob_mut_bin - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.Parameters
-
Mutation binary probability.
- prob_mut_bin - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.Parameters
-
- prob_mut_bin - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.Parameters
-
- prob_mut_int - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.Parameters
-
Mutation integer probability.
- prob_mut_real - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.Parameters
-
Mutation real probability.
- prob_mut_real - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.Parameters
-
- PROBABILISTIC_SUM - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.GP_COACH
-
Configuration flag (PROBABILISTIC_SUM).
- PROBABILISTIC_SUM - Static variable in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.GP_COACH_H
-
Configuration flag (PROBABILISTIC_SUM)
- probabilities - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Class probabilities for the examples.
- probabilities - Variable in class keel.Algorithms.SVM.C_SVM.svmClassifier
-
SVM probabilities.
- probabilities - Variable in class keel.Algorithms.SVM.SMO.SMO
-
SMO probabilities.
- probabilitiesPerClass - Static variable in class org.libsvm.svm
-
- probability(int) - Method in class keel.Algorithms.Decision_Trees.C45.Classification
-
Returns relative frequency of class over all values.
- probability(int, int) - Method in class keel.Algorithms.Decision_Trees.C45.Classification
-
Returns relative frequency of class for given value.
- probability(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
-
Returns relative frequency of class over all values.
- probability(int, int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
-
Returns relative frequency of class for given value.
- probability(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
-
Returns relative frequency of class over all values.
- probability(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
-
Returns relative frequency of class for given value.
- probability(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
-
Returns relative frequency of class over all values.
- probability(int, int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
-
Returns relative frequency of class for given value.
- probability - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- probability(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
-
Returns relative frequency of class over all values.
- probability(int, int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
-
Returns relative frequency of class for given value.
- probability(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
-
Returns relative frequency of class over all values.
- probability(int, int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
-
Returns relative frequency of class for given value.
- probability(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
-
Returns relative frequency of class over all values.
- probability(int, int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
-
Returns relative frequency of class for given value.
- probability(int) - Method in class keel.Algorithms.Rule_Learning.PART.Classification
-
Returns relative frequency of class over all values.
- probability(int, int) - Method in class keel.Algorithms.Rule_Learning.PART.Classification
-
Returns relative frequency of class for given value.
- probability(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
-
Returns relative frequency of class over all values.
- probability(int, int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
-
Returns relative frequency of class for given value.
- probability(PrototypeSet, int, int, boolean) - Method in class keel.Algorithms.Semi_Supervised_Learning.Rel_RASCO.Rel_RASCOGenerator
-
Computes the reduction probability of a set for a certain value of the given instance and feature.
- probability - Variable in class org.libsvm.svm_parameter
-
- probabilityBelongCluster(Prototype, PrototypeSet, int) - Method in class keel.Algorithms.Instance_Generation.MSE.MSEGenerator
-
Zindex probability, di = x - conjuntoi
- ProbabilityManagement - Class in keel.Algorithms.Genetic_Rule_Learning.GAssist
-
- ProbabilityManagement(double, double, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GAssist.ProbabilityManagement
-
- ProbabilityManagement - Class in keel.Algorithms.Genetic_Rule_Learning.Globals
-
- ProbabilityManagement(double, double, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Globals.ProbabilityManagement
-
- ProbabilityManagement - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals
-
- ProbabilityManagement(double, double, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.ProbabilityManagement
-
- ProbabilityManagement - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
-
- ProbabilityManagement(double, double, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ProbabilityManagement
-
- ProbClass(int[][], int[], Condition, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.RuleSet
-
- ProbCondNegative(int[][], int[], Condition, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.RuleSet
-
- ProbCondPositive(int[][], int[], Condition, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.RuleSet
-
- probCrossover - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- probCrossover - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- PROBLEM - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- problem - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Type of the problem ( CLASSIFICATION | REGRESSION )
- problem - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Type of the problem ( CLASSIFICATION | REGRESSION )
- problem - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Type of the problem ( CLASSIFICATION | REGRESSION )
- problem - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Type of the problem ( CLASSIFICATION | REGRESSION )
- problem - Variable in class keel.GraphInterKeel.experiments.Joint
-
- ProblemEvaluator<I extends IIndividual> - Class in keel.Algorithms.Neural_Networks.NNEP_Common.problem
-
Abstract implementation of an individuals evaluator of a dataset problem
- ProblemEvaluator() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Empty constructor
- PROBLEMTYPE - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- problemType - Variable in class keel.GraphInterKeel.experiments.AlgorithmXML
-
- problemType - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- probLocalSearch - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- probMerge - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- probMerge - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- probMutationInd - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- probMutationInd - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- probOne - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- probOne - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- probOne - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- probReinit - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_ADI
-
- probReinit - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_ADI
-
- probReinitialize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- probReinitialize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- probReinitializeBegin - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- probReinitializeBegin - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- probReinitializeEnd - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- probReinitializeEnd - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- probRound(double, Random) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Rounds a double to the next nearest integer value in a probabilistic
fashion (e.g. 0.8 has a 20% chance of being rounded down to 0 and a
80% chance of being rounded up to 1).
- probRound(double, Random) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Rounds a double to the next nearest integer value in a probabilistic
fashion (e.g. 0.8 has a 20% chance of being rounded down to 0 and a
80% chance of being rounded up to 1).
- probRound(double, Random) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Rounds a double to the next nearest integer value in a probabilistic
fashion (e.g. 0.8 has a 20% chance of being rounded down to 0 and a
80% chance of being rounded up to 1).
- probRound(double, Random) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Rounds a double to the next nearest integer value in a probabilistic
fashion (e.g. 0.8 has a 20% chance of being rounded down to 0 and a
80% chance of being rounded up to 1).
- probRound(double, Random) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Rounds a double to the next nearest integer value in a probabilistic
fashion (e.g. 0.8 has a 20% chance of being rounded down to 0 and a
80% chance of being rounded up to 1).
- probRound(double, Random) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Rounds a double to the next nearest integer value in a probabilistic
fashion (e.g. 0.8 has a 20% chance of being rounded down to 0 and a
80% chance of being rounded up to 1).
- probRound(double, Random) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Rounds a double to the next nearest integer value in a probabilistic
fashion (e.g. 0.8 has a 20% chance of being rounded down to 0 and a
80% chance of being rounded up to 1).
- probRSWcrossover - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- probSplit - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- probSplit - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- probToLogOdds(double) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Returns the log-odds for a given probabilitiy.
- probToLogOdds(double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Returns the log-odds for a given probabilitiy.
- probToLogOdds(double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Returns the log-odds for a given probabilitiy.
- probToLogOdds(double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Returns the log-odds for a given probabilitiy.
- probToLogOdds(double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Returns the log-odds for a given probabilitiy.
- probToLogOdds(double) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Returns the log-odds for a given probabilitiy.
- proc - Variable in class keel.GraphInterKeel.experiments.EducationalPartitionsRun
-
- ProcDataset - Class in keel.Algorithms.Neural_Networks.EvRBF_CL
-
Process the KEEL dataset.
- ProcDataset(String, boolean) - Constructor for class keel.Algorithms.Neural_Networks.EvRBF_CL.ProcDataset
-
Init a new set of instances
- ProcDataset - Class in keel.Algorithms.Neural_Networks.RBFN
-
Process the KEEL dataset.
- ProcDataset(String, boolean) - Constructor for class keel.Algorithms.Neural_Networks.RBFN.ProcDataset
-
Init a new set of instances
- ProcDataset - Class in keel.Algorithms.Neural_Networks.RBFN_CL
-
Process the KEEL dataset.
- ProcDataset(String, boolean) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_CL.ProcDataset
-
Init a new set of instances
- ProcDataset - Class in keel.Algorithms.Neural_Networks.RBFN_decremental
-
Process the KEEL dataset.
- ProcDataset(String, boolean) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental.ProcDataset
-
Init a new set of instances
- ProcDataset - Class in keel.Algorithms.Neural_Networks.RBFN_decremental_CL
-
Process the KEEL dataset
- ProcDataset(String, boolean) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.ProcDataset
-
Init a new set of instances
- ProcDataset - Class in keel.Algorithms.Neural_Networks.RBFN_incremental
-
Process the KEEL dataset
- ProcDataset(String, boolean) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental.ProcDataset
-
Init a new set of instances
- ProcDataset - Class in keel.Algorithms.Neural_Networks.RBFN_incremental_CL
-
Process the KEEL dataset
- ProcDataset(String, boolean) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.ProcDataset
-
Init a new set of instances
- procesa_clustering_old(String) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
-
Process an old format dataset file for a clustering problem.
- procesa_clustering_old(String) - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
-
Process an old format dataset file for a clustering problem.
- procesaBaseDatos(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
-
Process the database file 'filename'
- procesoGenetico(int, double, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.Poblacion
-
Performs the GA to generate the different solutions.
- procesoGenetico(int, double, double) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.Poblacion
-
Performs the GA to generate the different solutions.
- process() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svmClassifierCost
-
Process the training and test files provided in the parameters file to the constructor.
- process() - Method in class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.AllPossibleValues
-
Process the training and test files provided in the parameters file to the constructor.
- process() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.ConceptAllPossibleValues
-
Process the training and test files provided in the parameters file to the constructor.
- process() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.ConceptMostCommonValue
-
Process the training and test files provided in the parameters file to the constructor.
- process() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.EventCovering
-
Process the training and test files provided in the parameters file to the constructor.
- process() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.fkmeans
-
Process the training and test files provided in the parameters file to the constructor.
- process() - Method in class keel.Algorithms.Preprocess.Missing_Values.ignore_missing.ignore_missing
-
Process the training and test files provided in the parameters file to the constructor.
- process() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.kmeansImpute
-
Process the training and test files provided in the parameters file to the constructor.
- process() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.knnImpute
-
Process the training and test files provided in the parameters file to the constructor.
- process() - Method in class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.MostCommonValue
-
Process the training and test files provided in the parameters file to the constructor.
- process() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.svmImpute
-
Process the training and test files provided in the parameters file to the constructor.
- process() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.wknnImpute
-
Process the training and test files provided in the parameters file to the constructor.
- process() - Method in class keel.Algorithms.SVM.C_SVM.svmClassifier
-
Process the training and test files provided in the parameters file to the constructor.
- process(InstanceSet, InstanceSet) - Method in class keel.Algorithms.SVM.C_SVM.svmClassifier
-
Process the training and test files provided in the parameters file to the constructor.
- process() - Method in class keel.Algorithms.SVM.EPSILON_SVR.svmRegression
-
Process the training and test files provided in the parameters file to the constructor.
- process() - Method in class keel.Algorithms.SVM.NU_SVM.svmClassifier
-
Process the training and test files provided in the parameters file to the constructor.
- process() - Method in class keel.Algorithms.SVM.NU_SVR.svmRegression
-
Process the training and test files provided in the parameters file to the constructor.
- process(List<Integer>) - Method in class keel.GraphInterKeel.experiments.PartitionCreator
-
Set process
- processClassifierDataset(String, boolean) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.OpenDataset
-
Load a file and parse it
- processClassifierDataset() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.ProcDataset
-
Process a dataset for classification
- processClassifierDataset(String, boolean) - Method in class keel.Algorithms.Neural_Networks.gann.OpenDataset
-
Load nfejemplos file and parse it
- processClassifierDataset(String, boolean) - Method in class keel.Algorithms.Neural_Networks.gmdh.OpenDataset
-
Load a file and parse it.
- processClassifierDataset(String, boolean) - Method in class keel.Algorithms.Neural_Networks.net.OpenDataset
-
Load a file and parse it
- processClassifierDataset() - Method in class keel.Algorithms.Neural_Networks.RBFN.ProcDataset
-
Process a dataset for classification
- processClassifierDataset() - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.ProcDataset
-
Process a dataset for classification
- processClassifierDataset() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.ProcDataset
-
Process a dataset for classification
- processClassifierDataset() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.ProcDataset
-
Process a dataset for classification
- processClassifierDataset() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.ProcDataset
-
Process a dataset for classification
- processClassifierDataset() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.ProcDataset
-
Process a dataset for classification
- processClassifierDataset(String, boolean) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
-
Process a dataset file for a classification problem.
- processClassifierDataset(String, boolean) - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
-
Process a dataset file for a classification problem.
- ProcessCluster(PrototypeSet[], PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.CLCCGenerator
-
Process the cluster given to obtain the best cluster evaluated with the data given.
- processClusterDataset(String, boolean) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.ProcDataset
-
Process a Dataset for clustering
- processClusterDataset(String, boolean) - Method in class keel.Algorithms.Neural_Networks.RBFN.ProcDataset
-
Process a Dataset for clustering
- processClusterDataset(String, boolean) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.ProcDataset
-
Process a Dataset for clustering
- processClusterDataset(String, boolean) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.ProcDataset
-
Process a Dataset for clustering
- processClusterDataset(String, boolean) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.ProcDataset
-
Process a Dataset for clustering
- processClusterDataset(String, boolean) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.ProcDataset
-
Process a Dataset for clustering
- processClusterDataset(String, boolean) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.ProcDataset
-
Process a Dataset for clustering
- processClusterDataset(String, boolean) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
-
Process a dataset file for a clustering problem.
- processClusterDataset(String, boolean) - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
-
Process a dataset file for a clustering problem.
- ProcessConfig - Class in keel.Algorithms.Preprocess.NoiseFilters.ANR
-
- ProcessConfig() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Constructor that initializes input/output parameters.
- ProcessConfig - Class in keel.Algorithms.Shared.Parsing
-
Class that process the configuration file for KEEL algorithms.
- ProcessConfig() - Constructor for class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Constructor that initializes input/output parameters.
- ProcessDataset - Class in keel.Algorithms.Preprocess.NoiseFilters.ANR
-
Wrapper for KEEL's Dataset class.
- ProcessDataset() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
-
A constructor that inits a new set of instances
- ProcessDataset - Class in keel.Algorithms.Shared.Parsing
-
Wrapper for KEEL's Dataset class.
- ProcessDataset() - Constructor for class keel.Algorithms.Shared.Parsing.ProcessDataset
-
A constructor that inits a new set of instances
- processHeader - Variable in class keel.Algorithms.Preprocess.Converter.Importer
-
Property for considering or not the header with the attributes names
only used for CSV, TXT, Excel, HTML and PRN formats).
- processModelDataset(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.MyDataset
-
Reads the Data Sets
- processModelDataset() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.ProcDataset
-
Process a dataset for modelling
- processModelDataset() - Method in class keel.Algorithms.Neural_Networks.RBFN.ProcDataset
-
Process a dataset for modelling
- processModelDataset() - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.ProcDataset
-
Process a dataset for modelling
- processModelDataset() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.ProcDataset
-
Process a dataset for modelling
- processModelDataset() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.ProcDataset
-
Process a dataset for modelling
- processModelDataset() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.ProcDataset
-
Process a dataset for modelling
- processModelDataset() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.ProcDataset
-
Process a dataset for modelling
- processModelDataset(String, boolean) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
-
Process a dataset file for a modelling problem.
- processModelDataset(String, boolean) - Method in class keel.Algorithms.RE_SL_Methods.LEL_TSK.MiDataset
-
- processModelDataset(String, boolean) - Method in class keel.Algorithms.RE_SL_Methods.MamWM.MiDataset
-
- processModelDataset(String, boolean) - Method in class keel.Algorithms.RE_SL_Methods.mogulHC.MiDataset
-
- processModelDataset(String, boolean) - Method in class keel.Algorithms.RE_SL_Methods.mogulIRL.MiDataset
-
- processModelDataset(String, boolean) - Method in class keel.Algorithms.RE_SL_Methods.mogulSC.MiDataset
-
- processModelDataset(String, boolean) - Method in class keel.Algorithms.RE_SL_Methods.TSK_IRL.MiDataset
-
- processModelDataset(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Mam2TSK.MiDataset
-
- processModelDataset(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB.MiDataset
-
- processModelDataset(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules.MiDataset
-
- processModelDataset(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.MamSelect.MiDataset
-
- processModelDataset(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.MamWSelect.MiDataset
-
- processModelDataset(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.MamWTuning.MiDataset
-
- processModelDataset(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules.MiDataset
-
- processModelDataset(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.TSKSelect.MiDataset
-
- processModelDataset(String, boolean) - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
-
Process a dataset file for a modelling problem.
- processType - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- processWindowEvent(WindowEvent) - Method in class keel.GraphInterKeel.datacf.help.HelpFrame
-
Overriden so we can close the frame
- processWindowEvent(WindowEvent) - Method in class keel.GraphInterKeel.experiments.Experiments
-
Overridden so we can exit when window is closed, or cancel the process
- processWindowEvent(WindowEvent) - Method in class keel.GraphInterKeel.help.HelpFrame
-
- processWindowEvent(WindowEvent) - Method in class keel.GraphInterKeel.menu.Frame
-
- processWindowEvent(WindowEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
- processWindowEvent(WindowEvent) - Method in class keel.RunKeelGraph.Frame1
-
Overridden so we can exit when window is closed
- prod_interval(Interval) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.Interval
-
- prod_interval(Interval) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.Interval
-
- PRODUCT - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.Fuzzy_Chi
-
Configuration flags.
- PRODUCT - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Fuzzy_Ish
-
Configuration flags.
- PRODUCT - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.Fuzzy_Ish
-
Configuration flag (PRODUCT).
- PRODUCT - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.GP_COACH
-
Configuration flag (PRODUCT).
- product - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.RuleBase
-
Product configuration flag.
- PRODUCT - Static variable in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.GP_COACH_H
-
Configuration flag (PRODUCT)
- PRODUCT - Static variable in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
- PRODUCTO - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Fuzzy_Ish
-
- properties(ActionEvent, JComboBox, Joint, String) - Method in class keel.GraphInterKeel.experiments.Container_Selected
-
- properties - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- PropertyListToKeel - Class in keel.Algorithms.Preprocess.Converter
-
PropertyListToKeel
This class extends from the Importer class.
- PropertyListToKeel() - Constructor for class keel.Algorithms.Preprocess.Converter.PropertyListToKeel
-
- PROPORTIONAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Fuzzy_Ish
-
Configuration flags.
- ProportionalDiscretizer - Class in keel.Algorithms.Discretizers.Proportional_Discretizer
-
This class implements the Proportional discretizer.
- ProportionalDiscretizer() - Constructor for class keel.Algorithms.Discretizers.Proportional_Discretizer.ProportionalDiscretizer
-
Constructor of the class, initializes the numInt attribute
- ProtectedProperties - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
Simple class that extends the Properties class so that the properties are
unable to be modified.
- ProtectedProperties(Properties) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.ProtectedProperties
-
Creates a set of protected properties from a set of normal ones.
- ProtectedProperties - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets
-
Simple class that extends the Properties class so that the properties are
unable to be modified.
- ProtectedProperties(Properties) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ProtectedProperties
-
Creates a set of protected properties from a set of normal ones.
- Prototype - Class in keel.Algorithms.Instance_Generation.Basic
-
Representation of a prototype.
- Prototype() - Constructor for class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Constructs a null prototype.
- Prototype(int, int) - Constructor for class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Parameter Constructor.
- Prototype(double[], double[]) - Constructor for class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Constructs a Prototype.
- Prototype(Instance) - Constructor for class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Constructs a Prototype from an instance.
- Prototype(Prototype) - Constructor for class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Constructs a Prototype from another protoype.
- Prototype - Class in keel.Algorithms.Semi_Supervised_Learning.Basic
-
Representation of a prototype.
- Prototype() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Default constructor.
- Prototype(int, int) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Parameter constructor.
- Prototype(double[], double[]) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Constructs a Prototype.
- Prototype(Instance) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Constructs a Prototype from an instance.
- Prototype(Prototype) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Constructs a Prototype from another protoype.
- PrototypeGenerationAlgorithm<T extends PrototypeGenerator> - Class in keel.Algorithms.Instance_Generation.Basic
-
Template used by children classes to executes its algorithms.
- PrototypeGenerationAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
- PrototypeGenerationAlgorithm<T extends PrototypeGenerator> - Class in keel.Algorithms.Semi_Supervised_Learning.Basic
-
Template used by children classes to executes its algorithms.
- PrototypeGenerationAlgorithm() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
- PrototypeGenerator - Class in keel.Algorithms.Instance_Generation.Basic
-
Implements a generic Prototype Generator
- PrototypeGenerator(PrototypeSet) - Constructor for class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
Construct the PrototypeGenerator
- PrototypeGenerator(PrototypeSet, int) - Constructor for class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
Construct the PrototypeGenerator
- PrototypeGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
Construct the PrototypeGenerator
- PrototypeGenerator - Class in keel.Algorithms.Semi_Supervised_Learning.Basic
-
Implements a generic Semi-supervised method
- PrototypeGenerator(PrototypeSet) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Construct the PrototypeGenerator
- PrototypeGenerator(PrototypeSet, int) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Construct the PrototypeGenerator
- PrototypeGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Construct the PrototypeGenerator
- PrototypeGenerator(PrototypeSet, PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Construct the PrototypeGenerator for Supervised Learning (pos-processing)
- PrototypeGenerator(PrototypeSet, PrototypeSet, PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Construct the PrototypeGenerator
- PrototypeSet - Class in keel.Algorithms.Instance_Generation.Basic
-
Represents a prototype set.
- PrototypeSet() - Constructor for class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Empty constructor
- PrototypeSet(int) - Constructor for class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Constructs a void set with a number of elements.
- PrototypeSet(InstanceSet) - Constructor for class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Constructs the set based on a instance set
- PrototypeSet(ArrayList<PrototypeSet>) - Constructor for class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Build a set using a partition of other.
- PrototypeSet(PrototypeSet) - Constructor for class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Copy constructor.
- PrototypeSet - Class in keel.Algorithms.Semi_Supervised_Learning.Basic
-
Represents a prototype set.
- PrototypeSet() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Empty constructor
- PrototypeSet(int) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Constructs a void set with a number of elements.
- PrototypeSet(InstanceSet) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Constructs the set based on a instance set
- PrototypeSet(PrototypeSet, int, int) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Creates a new set of instances by copying a
subset of another set.
- PrototypeSet(ArrayList<PrototypeSet>) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Build a set using a partition of other.
- PrototypeSet(PrototypeSet) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Copy constructor.
- prototypeSetClasses() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
- prototypeSetTodouble() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
PrototypeSet to double.
- prototypeSetTodouble() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
PrototypeSet to double.
- provider - Static variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.KEELIRPropPlusWrapperClas
-
Individuals provider
- provider - Static variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.KEELIRPropPlusWrapperRegr
-
Individuals provider
- provider - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Individuals provider
- pruebaCorte(int, ListaClases[], Attribute) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Node
-
Checks a given cut and computes a possible improvement.
- pruebaCorte(int, ListaClases[], double, double) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Node
-
Checks a given cut and computes a possible improvement.
- prune - Variable in class keel.Algorithms.Decision_Trees.C45.Tree
-
Is pruned the tree or not.
- prune() - Method in class keel.Algorithms.Decision_Trees.C45.Tree
-
Function to prune a tree.
- prune - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Tree
-
Is pruned the tree or not.
- prune() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Tree
-
Function to prune a tree.
- prune(double) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Prunes this leave or its descendants according to the error given, making it a leave with a
classifier on it
- prune() - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Prunes the model tree
- prune(Instances, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RipperRule
-
Prune all the possible final sequences of the rule using the
pruning data.
- prune() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Prunes the model tree
- prune(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Rule
-
Deletes a simple rule from this chain
- prune(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Rule
-
Deletes a simple rule from this chain
- prune - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
-
Is pruned the tree or not.
- prune() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
-
Function to prune a tree.
- prune - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Tree
-
Is pruned the tree or not.
- prune() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Tree
-
Function to prune a tree.
- prune - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Tree
-
Is pruned the tree or not.
- prune() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Tree
-
Function to prune a tree.
- prune - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Parameters
-
Prune flag (True, prune method will be executed).
- prune - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.Parameters
-
Prune flag (True, prune method will be executed).
- prune - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Parameters
-
Prune flag (True, prune method will be executed).
- prune - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.Parameters
-
Prune flag (True, prune method will be executed).
- prune(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Rule
-
Deletes a simple rule from this chain
- prune - Variable in class keel.Algorithms.Rule_Learning.C45Rules.Tree
-
Is pruned the tree or not.
- prune() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Tree
-
Function to prune a tree.
- prune(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Rule
-
Deletes a simple rule from this chain
- prune - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Tree
-
Is pruned the tree or not.
- prune() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Tree
-
Function to prune a tree.
- prune(int) - Method in class keel.Algorithms.Rule_Learning.PART.Rule
-
Deletes a simple rule from this chain
- prune - Variable in class keel.Algorithms.Rule_Learning.PART.Tree
-
Is pruned the tree or not.
- prune() - Method in class keel.Algorithms.Rule_Learning.PART.Tree
-
Function to prune a tree.
- prune(Rule, MyDataset, Mask, Mask, int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ripper
-
It prunes a rule, according with one of two heuristics:
W= (p+1)/(t+2)
A= (p+n')/T
p/t: number of positive/total instances covered by the current rule
n': number of negative instances not covered by the current rule (true negatives)
T: number of total instances
- prune(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Rule
-
Deletes a simple rule from this chain
- prune(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Rule
-
Deletes a simple rule from this chain
- prune(Rule, MyDataset, Mask, Mask, Mask, Mask, double[]) - Static method in class keel.Algorithms.Rule_Learning.Slipper.Slipper
-
It prunes a rule, minimizing with the heuristic:
1 - V+ + V_ + V+·exp(-Cr) + V_·exp(Cr)
V+: sum of the weights of the positive instances of the prune set that are covered by the current rule
V_: sum of the weights of the negative instances of the prune set that are covered by the current rule
Cr: rule confidence (computed in the grow set)
- prune - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.ParametersC45
-
Pruned flag, true if prune is used.
- prune - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
-
Is pruned the tree or not.
- prune() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
-
Function to prune a tree.
- prune - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.ParametersC45
-
Pruned flag, true if prune is used.
- prune_tree() - Method in class keel.Algorithms.Decision_Trees.CART.CART
-
Prune decision tree
- pruneAllLeaves() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Prunes all the leaves in the tree, this means, that all the leaves disappear and the ascendants
of those leaves become the new leaves of the tree with the classifier at leaves
- pruneConditions() - Method in class keel.Algorithms.Hyperrectangles.INNER.Rule
-
Prune redundant conditions of a rule, if it decreases its impurity level
- pruneInstanceSet() - Method in class keel.Algorithms.Lazy_Learning.IDIBL.IDIBL
-
Prune instance set using drop 4 algorithm
- pruneLevelN(TtreeNode[], int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
Prunes the given level in the T-tree.
- pruneTree() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.FunctionalTrees
-
Prunes the tree accordingly to the prune criteria, this means, makes some of the non-leaf nodes
as leaves and deletes its descendants
- pruneUnsupportedAtts() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
Removes single attributes (not classifiers) from input data set which
do not meet the minimum support requirement.
- pruneUsingCover(short[][]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
Prunes the current CMAR list of rules according to the "cover"
principle.
- pruneWithError() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Prunes the leaves in the tree that have greater error than the general error of the tree, making
them leaves with classifiers on them
- pruning(double, int, int[]) - Method in class keel.Algorithms.Decision_Trees.DT_GA.Individuo
-
Prune the individual using the information gain and the examples passed as argument.
- pruning(double[]) - Method in class keel.Algorithms.Decision_Trees.DT_GA.Individuo
-
Prune the individual using accuracy given as parameter.
- PRUNING_LAMBDA - Static variable in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Pruning method: Lambda See [2] for details.
- PRUNING_NONE - Static variable in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Pruning method: No Pruning
- pruningMethodTipText() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Returns the tip text for this property
- PSC - Class in keel.Algorithms.Instance_Selection.PSC
-
File: PSC.java
The PSC Instance Selection algorithm.
- PSC(String) - Constructor for class keel.Algorithms.Instance_Selection.PSC.PSC
-
Default constructor.
- PSC - Class in keel.Algorithms.Preprocess.Instance_Selection.PSC
-
File: PSC.java
The PSC Instance Selection algorithm.
- PSC(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.PSC.PSC
-
Default constructor.
- PSCSAAlgorithm - Class in keel.Algorithms.Instance_Generation.PSCSA
-
PSCSA algorithm calling.
- PSCSAAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.PSCSA.PSCSAAlgorithm
-
- PSCSAGenerator - Class in keel.Algorithms.Instance_Generation.PSCSA
-
- PSCSAGenerator(PrototypeSet, int, int, int, int, double, double, int) - Constructor for class keel.Algorithms.Instance_Generation.PSCSA.PSCSAGenerator
-
Build a new PSCSAGenerator Algorithm
- PSCSAGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.PSCSA.PSCSAGenerator
-
Build a new PSCSAGenerator Algorithm
- pset1 - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Individuals selected as parents for first mutator
- pset2 - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Individuals selected as parents for second mutator
- PSI - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Maths
-
The constant 1 / sqrt(2 pi)
- psings(DenseMatrix, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.SVDimpute.SVDimpute
-
Computes the rmax eigenvalues of a given matrix (with greater absolute value)
- PsoAco - Class in keel.Algorithms.Genetic_Rule_Learning.PSO_ACO
-
Title: PsoAco (Particle Swarm Optimization and Ant Colony Optimization)
Description: Hybridization of the PSO and ACO algorithms
to conform a rules based classification algorithm.
- PsoAco() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.PsoAco
-
Default constructor.
- PsoAco(String, String, String, String, String, String, long, int, int, int, int, int, float, float, float, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.PsoAco
-
Parameter constructor.
- PSOAlgorithm - Class in keel.Algorithms.Instance_Generation.PSO
-
PSO algorithm calling.
- PSOAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.PSO.PSOAlgorithm
-
- PSOGenerator - Class in keel.Algorithms.Instance_Generation.PSO
-
- PSOGenerator(PrototypeSet, int, int, int, int, double, double, double, double, double) - Constructor for class keel.Algorithms.Instance_Generation.PSO.PSOGenerator
-
Build a new PSOGenerator Algorithm
- PSOGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.PSO.PSOGenerator
-
Build a new PSOGenerator Algorithm
- PSOLDA - Class in keel.Algorithms.PSO_Learning.PSOLDA
-
Title: Algorithm PSOLDA
Description: It contains the implementation of the algorithm PSOLDA
Company: KEEL
- PSOLDA() - Constructor for class keel.Algorithms.PSO_Learning.PSOLDA.PSOLDA
-
Default constructor
- PSOLDA(parseParameters) - Constructor for class keel.Algorithms.PSO_Learning.PSOLDA.PSOLDA
-
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
- Pspecify - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Is the probability of don't care allele to be changed for the
environmental value.
- PSPECIFY - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- PSRCG - Class in keel.Algorithms.Instance_Selection.PSRCG
-
File: PSRCG.java
The PSRCG Instance Selection algorithm.
- PSRCG(String) - Constructor for class keel.Algorithms.Instance_Selection.PSRCG.PSRCG
-
Default constructor.
- PSRCG - Class in keel.Algorithms.Preprocess.Instance_Selection.PSRCG
-
File: PSRCG.java
The PSRCG Instance Selection algorithm.
- PSRCG(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.PSRCG.PSRCG
-
Default constructor.
- PtreeNode - Class in keel.Algorithms.Associative_Classification.ClassifierCMAR
-
Class to store the node of a P-tree
- PtreeNode(short[]) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCMAR.PtreeNode
-
Create P-tree node (other than top-level node)
- PtreeNodeTop - Class in keel.Algorithms.Associative_Classification.ClassifierCMAR
-
Class to store the top node of the P-tree
- PtreeNodeTop() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCMAR.PtreeNodeTop
-
- pttls(DenseMatrix, DenseVector, int[], int[], int) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
MATLAB - Truncated TLS regularization with permuted columns.
- PUBLIC - Class in keel.Algorithms.Decision_Trees.PUBLIC
-
File: PUBLIC.java
The PUBLIC algorithm builds a decision tree model integrating the steps of
building and pruning in one phase, and after the model is built, the
classification is done according to that model.
- PUBLIC(String) - Constructor for class keel.Algorithms.Decision_Trees.PUBLIC.PUBLIC
-
Creates a PUBLIC instance by reading the script file that contains all the information needed
for running the algorithm
- Puk - Class in keel.Algorithms.SVM.SMO.supportVector
-
The Pearson VII function-based universal kernel.
- Puk() - Constructor for class keel.Algorithms.SVM.SMO.supportVector.Puk
-
default constructor - does nothing.
- Puk(Instances, int, double, double) - Constructor for class keel.Algorithms.SVM.SMO.supportVector.Puk
-
Constructor.
- pulish(MyDataset, Mask, Mask) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Ruleset
-
Remove the rules that increase the DL value of the set.
- pulish(MyDataset, Mask, Mask) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Ruleset
-
Remove the rules that increase the DL value of the set.
- pulish(MyDataset, Mask, Mask) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ruleset
-
Remove the rules that increase the DL value of the set.
- puntuacion(int, Vector<Float>) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.AlgGenetic
-
- puntuacion(int, Vector<Float>) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.AlgGenetic
-
- puntuation(int, Vector<Float>, int) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.AlgGenetic
-
- puntuation(int, Vector<Float>, int) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.AlgGenetic
-
- puntuation(int, Vector<Float>) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.AlgGenetic
-
- puntuation_ltf(int, Vector<Float>) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.AlgGenetic
-
- puntuation_ltf(int, Vector<Float>) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.AlgGenetic
-
- PureLayerInitiator - Class in keel.Algorithms.Neural_Networks.NNEP_Common.initiators
-
Abstract implementation for IInitiator
- PureLayerInitiator() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.initiators.PureLayerInitiator
-
Empty constructor
- push(M5Instance) - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Adds an output instance to the queue.
- push(Object) - Method in class keel.Algorithms.Decision_Trees.M5.Queue
-
Appends an object to the back of the queue.
- push(M5Instance) - Method in class keel.Algorithms.Decision_Trees.M5.ReplaceMissingValuesFilter
-
Pushes an instance format into the output queue.
- push(Object) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Queue
-
Appends an object to the back of the queue.
- push(Object) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue
-
Appends an object to the back of the queue.
- push(Object) - Method in class keel.Algorithms.SVM.SMO.core.Queue
-
Appends an object to the back of the queue.
- pushMissingIntoTable(int) - Method in class keel.GraphInterKeel.experiments.DataSet
-
Updates table of missing partitions
- Put(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectordouble
-
- Put(double[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectordouble
-
- Put(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.vectordouble
-
Set the value to the vector in position "pos" to the value "x" (overwritting the previous value)
- Put(double[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.vectordouble
-
Set the values of the first "tamano" elements of the vector to the values in vector "x"
- Put(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectordouble
-
- Put(double[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectordouble
-
- Put(double, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectordouble
-
- Put(double[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectordouble
-
- put(Object, Object) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.ProtectedProperties
-
Overrides a method to prevent the properties from being modified.
- put(Object, Object) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ProtectedProperties
-
Overrides a method to prevent the properties from being modified.
- Put_NotModified() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- Put_NotModified() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- Put_NotModified() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- Put_NotModified() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- Put_NotModified() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- putAll(Map) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.ProtectedProperties
-
Overrides a method to prevent the properties from being modified.
- putAll(Map) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ProtectedProperties
-
Overrides a method to prevent the properties from being modified.
- PutBinary(int, int[], char[][]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.genetcode
-
- PutBinary(int, int[], char[][]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.genetcode
-
- PutBinary(int, int[], char[][]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.genetcode
-
- PutCode(int, genetcode) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- PutCode(int, genetcode) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- PutCode(int, genetcode) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- PutInteger(int, int[], int[][]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.genetcode
-
- PutInteger(int, int[], int[][]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.genetcode
-
- PutInteger(int, int[], int[][]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.genetcode
-
- PutModified(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- PutModified(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- PutModified(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- PutReal(int, int[], double[][]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.genetcode
-
- PutReal(int, int[], double[][]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.genetcode
-
- PutReal(int, int[], double[][]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.genetcode
-
- PutValue(int, int, char) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- PutValue(int, int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
- PutValue(int, int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- PutValue(int, int, char) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- PutValue(int, int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationinteger
-
- PutValue(int, int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- PutValue(int, int, char) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- PutValue(int, int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationinteger
-
- PutValue(int, int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationreal
-
- PutValueBinary(int, int, char) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.genetcode
-
- PutValueBinary(int, int, char) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.genetcode
-
- PutValueBinary(int, int, char) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.genetcode
-
- PutValueInteger(int, int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.genetcode
-
- PutValueInteger(int, int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.genetcode
-
- PutValueInteger(int, int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.genetcode
-
- PutValueReal(int, int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.genetcode
-
- PutValueReal(int, int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.genetcode
-
- PutValueReal(int, int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.genetcode
-
- pw - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- PW - Class in keel.Algorithms.Lazy_Learning.PW
-
File: PW.java
Prototipe weigthed learning.
- PW(String) - Constructor for class keel.Algorithms.Lazy_Learning.PW.PW
-
The main method of the class
- pX - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Probability of applying crossover in the GA.
- pX - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Probability of applying crossover in the GA.
- PX - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- Px - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.InstanceP
-
The p value associated.
Q
- Q(PrototypeSet, Prototype) - Method in class keel.Algorithms.Instance_Generation.VQ.AVQGenerator
-
Generate the Q-count: prototypes which its nearest is the center of the cluster, and not any of the other reduced-prototypes.
- Q0 - Static variable in class keel.Algorithms.Lazy_Learning.Statistics
-
- Q0 - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
approximation for 0 <= |y - 0.5| <= 3/8
- Q1 - Static variable in class keel.Algorithms.Lazy_Learning.Statistics
-
- Q1 - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
Approximation for interval z = sqrt(-2 log y ) between 2 and 8
i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
- Q2 - Static variable in class keel.Algorithms.Lazy_Learning.Statistics
-
- Q2 - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
Approximation for interval z = sqrt(-2 log y ) between 8 and 64
i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
- q_sort_dist(ArrayList<Chromosome>, int[], int, int) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Sort
-
Actual implementation of the randomized quick sort used to sort a population based on a crowding distance
- q_sort_front_obj(ArrayList<Chromosome>, int, int[], int, int) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Sort
-
Actual implementation of the randomized quick sort used to sort a population based on a particular objective chosen
- q_sort_front_obj(ArrayList<Chromosome>, int, int[], int, int) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Sort
-
Actual implementation of the randomized quick sort used to sort a population based on a particular objective chosen
- QAR_CIP_NSGAII - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII
-
- QAR_CIP_NSGAII() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.QAR_CIP_NSGAII
-
Default constructor
- QAR_CIP_NSGAII(parseParameters) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.QAR_CIP_NSGAII
-
It reads the data from the input files and parse all the parameters from the parameters array
- QAR_CIP_NSGAIIProcess - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII
-
- QAR_CIP_NSGAIIProcess(myDataset, int, int, int, double, double, double) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.QAR_CIP_NSGAIIProcess
-
It creates a new process for the algorithm by setting up its parameters
- qr() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
QR Decomposition
- QRDecomposition - Class in keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix
-
QR Decomposition.
- QRDecomposition(Matrix) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.QRDecomposition
-
QR Decomposition, computed by Householder reflections.
- QuadeC - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Classification Quade Stat-test identifier.
- QuadeR - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Regression Quade Stat-test identifier.
- quadraticModelOutput(double[], double[][][]) - Method in class keel.Algorithms.Shared.ClassicalOptim.ConjGradQUAD
-
Returns the output of the perceptron with weights W for input example x.
- quadSpline(double[], double[], double[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EM.Interpolation
-
finds the piecewise second degree function that interpolates given nodes (xi,yi)
- quadSplineCoeff(double[], double[], double) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EM.Interpolation
-
gives the derivatives at the nodes of the quadratic spline functions that
interpolates the nodes (ti,xi)
- QualityMeasures - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF
-
Defines the quality measures of the individual
- QualityMeasures(Genetic, int) - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Creates a new instance of QualityMeasures
- QualityMeasures - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD
-
Defines the quality measures of the individual
- QualityMeasures(int) - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.QualityMeasures
-
Creates a new instance of QualityMeasures
- QualityMeasures - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA
-
Defines the quality measurements of the individual
- QualityMeasures() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.QualityMeasures
-
Creates a new instance of QualityMeasures
- QualitySubgroup - Class in keel.Algorithms.Subgroup_Discovery.SDMap.SDMap
-
Class with the quality measures need for obtaining the best subgroups
- QualitySubgroup() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.QualitySubgroup
-
It creates a new object empty
- QualitySubgroup(double, double, double, double, double) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.QualitySubgroup
-
It creates a new object with the values of the quality measures
- QuedanMasInstancias(double) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
Checks if there are more instances to remove, depending on a threshold.
- QuedanMasInstancias(double) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
Checks if there are more instances to remove, depending on a threshold.
- QuedanMasInstancias(double) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
Checks if there are more instances to remove, depending on a threshold.
- question - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- Queue - Class in keel.Algorithms.Decision_Trees.M5
-
Class representing a FIFO queue.
- Queue() - Constructor for class keel.Algorithms.Decision_Trees.M5.Queue
-
- Queue - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
Class representing a FIFO queue.
- Queue() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Queue
-
- Queue - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Class representing a FIFO queue.
- Queue() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue
-
- Queue - Class in keel.Algorithms.SVM.SMO.core
-
Class representing a FIFO queue.
- Queue() - Constructor for class keel.Algorithms.SVM.SMO.core.Queue
-
- Queue.QueueNode - Class in keel.Algorithms.Decision_Trees.M5
-
Represents one node in the queue.
- Queue.QueueNode - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
Represents one node in the queue.
- Queue.QueueNode - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Represents one node in the queue.
- Queue.QueueNode - Class in keel.Algorithms.SVM.SMO.core
-
Represents one node in the queue.
- QueueNode(Object) - Constructor for class keel.Algorithms.Decision_Trees.M5.Queue.QueueNode
-
Creates a queue node with the given contents
- QueueNode(Object) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Queue.QueueNode
-
Creates a queue node with the given contents
- QueueNode(Object) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue.QueueNode
-
Creates a queue node with the given contents
- QueueNode(Object) - Constructor for class keel.Algorithms.SVM.SMO.core.Queue.QueueNode
-
Creates a queue node with the given contents
- Quicksort - Class in keel.Algorithms.Discretizers.HellingerBD
-
This class implements the Quicksort algorithm.
- Quicksort() - Constructor for class keel.Algorithms.Discretizers.HellingerBD.Quicksort
-
- Quicksort - Class in keel.Algorithms.Discretizers.UCPD
-
This class implements the Quicksort algorithm.
- Quicksort() - Constructor for class keel.Algorithms.Discretizers.UCPD.Quicksort
-
- quickSort(int, int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Implements quicksort according to Manber's "Introduction to
Algorithms".
- Quicksort - Class in keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
This class implements the Quicksort algorithm.
- Quicksort() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Quicksort
-
- quickSort(int, int, int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Implements quicksort according to Manber's "Introduction to Algorithms".
- Quicksort - Class in keel.Algorithms.Preprocess.NoiseFilters.INFFC
-
This class implements the Quicksort algorithm.
- Quicksort() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Quicksort
-
- Quicksort - Class in keel.Algorithms.Preprocess.NoiseFilters.PANDA
-
This class implements the Quicksort algorithm.
- Quicksort() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Quicksort
-
- Quicksort - Class in keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter
-
This class implements the Quicksort algorithm.
- Quicksort() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Quicksort
-
- quicksort(ArrayList<Integer>) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Sorted a ArrayList of Integers
- quickSort(int, int, int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Implements quicksort according to Manber's "Introduction to
Algorithms".
- quicksort(double[], int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Utilidades
-
Performs a quicksort over the vectors given.
- quicksort(double[], int[], int, int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Utilidades
-
Performs a quicksort over the vectors given as recursive method.
- quickSort(int, int, int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Implements quicksort according to Manber's "Introduction to
Algorithms".
- quicksort_dist(ArrayList<Chromosome>, int[], int) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Sort
-
Randomized quick sort routine to sort a population based on crowding distance
- quicksort_front_obj(ArrayList<Chromosome>, int, int[], int) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Sort
-
Randomized quick sort routine to sort a population based on a particular objective chosen
- quicksort_front_obj(ArrayList<Chromosome>, int, int[], int) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Sort
-
Randomized quick sort routine to sort a population based on a particular objective chosen
- quote(String) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Quotes a string if it contains special characters.
- quote(String) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Quotes a string if it contains special characters.
- quote(String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Quotes a string if it contains special characters.
- quote(String) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Quotes a string if it contains special characters.
- quote(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Quotes a string if it contains special characters.
- quote(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Quotes a string if it contains special characters.
- quote(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Quotes a string if it contains special characters.
- quote(String) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Quotes a string if it contains special characters.
- quote(String) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Quotes a string if it contains special characters.
R
- r - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.GenotypeBoosting
-
- R(Cluster) - Method in class keel.Algorithms.Instance_Generation.VQ.AVQGenerator
-
Generate the R-count: prototypes which its centroid is its nearest prototypes.
- r_0 - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Represents the interval of random numbers that will be
generated to be added in the real mutation.
- r_0 - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Represents the interval of random numbers that will be
generated to be added in the real mutation.
- R_0 - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- r_random(Rbfn) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Performs the R_RANDOM mutator operator: modifies 50% of the Radius of the net
- radius(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Returns the greatest distance between center and other prototype and that prototype.
- radius(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Returns the greatest distance between center and other prototype and that prototype.
- raiz - Variable in class keel.GraphInterKeel.menu.Frame
-
Root directory.
- raiz - Variable in class keel.GraphInterKeel.menu.FrameModules
-
Root directory.
- RamaLqd - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- RAN(double[][], double[][], int, double, double, double) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Uses RAN algorithm to build a net
- RAN(double[][], double[][], int, double, double, double) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbfn
-
Uses RAN algorithm to build a net
- RAN(double[][], double[][], int, double, double, double) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
-
Uses RAN algorithm to build a net
- RAN(double[][], double[][], int, double, double, double) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
-
Uses RAN algorithm to build a net
- RAN(double[][], double[][], int, double, double, double) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
-
Uses RAN algorithm to build a net
- RAN(double[][], double[][], int, double, double, double) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
-
Uses RAN algorithm to build a net
- RAN(double[][], double[][], int, double, double, double) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
-
Uses RAN algorithm to build a net
- rand - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.Genotype
-
Genotype is the base clase to represent the genotype of any GeneticIndividual.
- Rand - Class in keel.Algorithms.Genetic_Rule_Learning.Globals
-
Rand.java
Created on 29 de marzo de 2004, 23:31
- Rand() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Globals.Rand
-
- Rand - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals
-
- Rand() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Rand
-
- rand() - Static method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Returns a number between [0, 1), so, 0 inclusive and 1 exclusive.
- rand() - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Returns a number between [0, 1), so, 0 inclusive and 1 exclusive.
- Rand - Class in keel.Algorithms.Neural_Networks.gann
-
Class to obtain random values
- Rand() - Constructor for class keel.Algorithms.Neural_Networks.gann.Rand
-
Empty constructor
- Rand() - Static method in class org.core.Randomize
-
Rand computes a psuedo-random float value between 0 and 1, excluding 1
- randAct() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Gene
-
- randAct() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
-
- randAct() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Gene
-
- RandClosed() - Static method in class org.core.Randomize
-
RandClosed computes a psuedo-random float value between 0 and 1 inclusive
- Randdouble(double, double) - Static method in class org.core.Randomize
-
Randdouble gives an double value between low and high, excluding high
- RanddoubleClosed(double, double) - Static method in class org.core.Randomize
-
RanddoubleClosed gives an double value between low and high inclusive
- RanddoubleOpen(double, double) - Static method in class org.core.Randomize
-
RanddoubleOpen gives an double value between low and high, excluding low and high
- RandGaussian() - Static method in class org.core.Randomize
-
RandGaussian generates a standardized gaussian random number
- randGen - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.initiators.PureLayerInitiator
-
Random generator used in creation
- randgen - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ExpNeuronParametricMutator
-
Random generator used in mutation
- randgen - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.LinearNeuronParametricMutator
-
Random generator used in mutation
- randgen - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.SigmNeuronParametricMutator
-
Random generator used in mutation
- randgen - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.ExpNeuronStructuralMutator
-
Random generator used in mutation
- randgen - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.LinearNeuronStructuralMutator
-
Random generator used in mutation
- randgen - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.SigmNeuronStructuralMutator
-
Random generator used in mutation
- randGenFactory - Static variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.KEELIRPropPlusWrapperClas
-
Random generators factory
- randGenFactory - Static variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.KEELIRPropPlusWrapperRegr
-
Random generators factory
- randGenFactory - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Random generators factory
- Randint(int, int) - Static method in class org.core.Randomize
-
Randint gives an integer value between low and high, excluding high
- RandintClosed(int, int) - Static method in class org.core.Randomize
-
RandintClosed gives an integer value between low and high inclusive
- RandintOpen(int, int) - Static method in class org.core.Randomize
-
RandintOpen gives an integer value between low and high, excluding 0 and 1
- Random() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGAP.FuzzyGAPClassifier
-
This method initialize the current object randomly.
- Random() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGP.FuzzyGPClassifier
-
This method initialize the current object randomly.
- Random() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyPittsBurgh.PittsburghClassifier
-
This method initialize the current object randomly.
- Random() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySAP.FuzzySAPClassifier
-
This method initialize the current object randomly.
- Random() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.Genotype
-
abstract method to randomly initialize a Genotype and then the corresponding individual.
- Random() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGAP
-
The method intended to randomly initialize a Genotype and then the corresponding individual.
- Random() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGP
-
The method intended to randomly initialize a Genotype and then the corresponding individual.
- Random() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGPRegSym
-
The method intended to randomly initialize a Genotype and then the corresponding individual.
- Random() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypePitts
-
The method intended to randomly initialize a Genotype and then the corresponding individual.
- Random() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividual
-
This abstract method is for random generation
- Random() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyGAPModelIndividual
-
This method generate a random genotype and obtain the parameters from another one
- Random() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyGPModelIndividual
-
This method generate a random genotype and obtain the parameters from another one
- Random() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.PittsburghModel
-
This method generate a random genotype and obtain the parameters from another one
- Random() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.RegSymFuzzyGP
-
This method generate a random genotype and obtain the parameters from another one
- random - Static variable in class keel.Algorithms.Instance_Generation.utilities.RandomGenerator
-
Object random used int the number generators
- random - Static variable in class keel.Algorithms.Semi_Supervised_Learning.utilities.RandomGenerator
-
Object random used int the number generators
- random(int) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns a random vector of uniform distribution
- random(int, int) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Generate matrix with random elements
- RandomDiscretizer - Class in keel.Algorithms.Discretizers.Random_Discretizer
-
This class implements the Random Discretizer
- RandomDiscretizer() - Constructor for class keel.Algorithms.Discretizers.Random_Discretizer.RandomDiscretizer
-
- RandomGenerator - Class in keel.Algorithms.Instance_Generation.utilities
-
Random Number Generator class to be used in the package Prototype_Generation.
- RandomGenerator() - Constructor for class keel.Algorithms.Instance_Generation.utilities.RandomGenerator
-
- RandomGenerator - Class in keel.Algorithms.Semi_Supervised_Learning.utilities
-
Random Number Generator class to be used in the package Prototype_Generation.
- RandomGenerator() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.utilities.RandomGenerator
-
- randomIndexes - Variable in class keel.Algorithms.Instance_Generation.LVQ.LVQ1
-
Random number list of indexes
- randomInitialization() - Method in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- randomInitialization() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- randomInitialization() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.Particle
-
- randomInitialization() - Method in class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- RandomInitialPopulation() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- RandomInitialPopulation() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
- RandomInitialPopulation(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
- RandomInitialPopulation(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- RandomInitialPopulation(double[][], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- RandomInitialPopulation() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- RandomInitialPopulation(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- RandomInitialPopulation(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationreal
-
- RandomInitiator - Class in keel.Algorithms.Neural_Networks.NNEP_Common.initiators
-
Random initiator both conections and weights
- RandomInitiator() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.initiators.RandomInitiator
-
Empty constructor
- randomize(Random) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Shuffles the instances in the set so that they are ordered
randomly.
- randomize(Randomize) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Shuffles the instances in the set so that they are ordered
randomly.
- randomize(Random) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Shuffles the instances in the set so that they are ordered randomly.
- randomize() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Shuffle the set.
- randomize(long) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Shuffle the set.
- randomize() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Shuffle the set.
- randomize(long) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Shuffle the set.
- randomize(Random) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Shuffles the instances in the set so that they are ordered
randomly.
- randomize() - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Shuffles the instances in the set so that they are ordered
randomly.
- Randomize - Class in org.core
-
- Randomize() - Constructor for class org.core.Randomize
-
- randomizeAttribute(int, Randomize, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Shuffles the values of a given attribute in all instances.
- randomizeRules(InstanceSet) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.RuleSet
-
Initialize the set of rules
- randomizeRules(InstanceSet) - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.RuleSet
-
Initialize the set of rules
- RandomOverSampling - Class in keel.Algorithms.ImbalancedClassification.Resampling.RandomOverSampling
-
File: RandomOverSampling.java
The Random Over Sampling algorithm is an oversampling method used to deal with the
imbalanced problem that generates positive instances randomly.
- RandomOverSampling(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.RandomOverSampling.RandomOverSampling
-
Constructor of the class.
- randomSampling(myDataset, int, int, int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Random undersampling of the dataset given.
- randomSampling(myDataset, int, int, int, int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Random undersampling of the dataset given.
- randomSeedTipText() - Method in class keel.Algorithms.SVM.SMO.SMO
-
Returns the tip text for this property
- randomSelection() - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Cogin
-
- RandomSelector - Class in keel.Algorithms.Instance_Generation.BasicMethods
-
Implements a random selection of the training data to the edited data set.
- RandomSelector(PrototypeSet, int) - Constructor for class keel.Algorithms.Instance_Generation.BasicMethods.RandomSelector
-
Creates a new RandomSelector
- RandomSelector(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.BasicMethods.RandomSelector
-
Creates a new RandomSelector
- randomSelector(T, T) - Static method in class keel.Algorithms.Instance_Generation.utilities.RandomGenerator
-
Select by random method between two objects
- randomSelector(T, T) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.RandomGenerator
-
Select by random method between two objects
- RandomTree - Class in keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest
-
RandomTree
- RandomTree() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
- RandomTree - Class in keel.Algorithms.Semi_Supervised_Learning.CLCC
-
Class for constructing a tree that considers K randomly chosen attributes at each node.
- RandomTree() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
- RandomTree - Class in keel.Algorithms.Semi_Supervised_Learning.CoForest
-
Class for constructing a tree that considers K randomly chosen attributes at each node.
- RandomTree() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
- randomTrials - Variable in class keel.Algorithms.Instance_Generation.BTS3.BTS3Generator
-
Number of bootstrapings of the algorithm.
- randomUnderSampling(myDataset, int, int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Original dataset to take examples from and
the % of majority class in the new data set
- RandomUnderSampling - Class in keel.Algorithms.ImbalancedClassification.Resampling.RandomUnderSampling
-
File: RandomUnderSampling.java
The Random Under Sampling algorithm is an undersampling method used to deal with the
imbalanced problem that deletes negative instances randomly.
- RandomUnderSampling(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.RandomUnderSampling.RandomUnderSampling
-
Constructor of the class.
- randomValues() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Individual
-
Initialization of the individual with random values.
- randomValues() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Individual
-
Initialization of the individual with random values
- randomValues() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Individual
-
- randomWeight(IRandGen, double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Returns a random weight for a link
- randomWeights(double) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ConjGradNN
-
Initializes the matrix of weights with random valued in the range [-x,x].
- randomWeights(double) - Method in class keel.Algorithms.Shared.ClassicalOptim.ConjGradNN
-
Initializes the matrix of weights with random valued in the range [-x,x].
- RandOpen() - Static method in class org.core.Randomize
-
RandOpen computes a psuedo-random float value between 0 and 1, excluding 0 and 1
- randOperatorNominal() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Gene
-
- randOperatorNumeric() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Gene
-
- Range - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
Class representing a range of cardinal numbers.
- Range() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Range
-
Default constructor.
- Range(String) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Range
-
Constructor to set initial range.
- rangeLower(String) - Method in class keel.Algorithms.Decision_Trees.M5.Interval
-
Translates a range into it's lower index.
- rangeLower(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Range
-
Translates a range into it's lower index.
- rangeSingle(String) - Method in class keel.Algorithms.Decision_Trees.M5.Interval
-
Translates a single string selection into it's internal 0-based equivalent
- rangeSingle(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Range
-
Translates a single string selection into it's internal 0-based equivalent
- rangeUpper(String) - Method in class keel.Algorithms.Decision_Trees.M5.Interval
-
Translates a range into it's upper index.
- rangeUpper(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Range
-
Translates a range into it's upper index.
- rank - Class in keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
- rank() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.BioHEL.rank
-
- rank() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Matrix rank
- rank() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.SingularValueDecomposition
-
Effective numerical matrix rank
- rank - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Rank.
- rank - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
-
- rank - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
-
- rank - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
-
- Ranking - Class in keel.Algorithms.LQD.methods.FGFS_costInstances
-
File: ranking.java
Properties and function to ranking the fuzzy number.
- Ranking() - Constructor for class keel.Algorithms.LQD.methods.FGFS_costInstances.Ranking
-
- Ranking - Class in keel.Algorithms.LQD.methods.FGFS_Minimum_Risk
-
File: ranking.java
Properties and function to ranking the fuzzy number.
- Ranking() - Constructor for class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.Ranking
-
- ranking(Vector<fuzzy>, Vector<Float>) - Static method in class keel.Algorithms.LQD.preprocess.Expert.Main
-
- Ranking - Class in keel.Algorithms.LQD.preprocess.Expert
-
File: ranking.java
Properties and function to ranking the fuzzy number.
- Ranking() - Constructor for class keel.Algorithms.LQD.preprocess.Expert.Ranking
-
- Ranking - Class in keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE
-
File: ranking.java
Properties and function to ranking the fuzzy number.
- Ranking() - Constructor for class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.Ranking
-
- ranking(Vector<fuzzy>, Vector<Float>) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling.Main
-
- Ranking - Class in keel.Algorithms.LQD.preprocess.Prelabelling
-
File: ranking.java
Properties and function to ranking the fuzzy number.
- Ranking() - Constructor for class keel.Algorithms.LQD.preprocess.Prelabelling.Ranking
-
- ranking(Vector<fuzzy>, Vector<Float>) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.Main
-
- Ranking - Class in keel.Algorithms.LQD.preprocess.Prelabelling_Expert
-
File: ranking.java
Properties and function to ranking the fuzzy number.
- Ranking() - Constructor for class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.Ranking
-
- Ranking - Class in keel.Algorithms.Neural_Networks.gann
-
Class Ranking.
- Ranking() - Constructor for class keel.Algorithms.Neural_Networks.gann.Ranking
-
Empty constructor
- Ranking - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD
-
Algorithm for the discovery of rules describing subgroups.
- Ranking(Population, TableVar, int, int, String, String) - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Ranking
-
Constructor of the Ranking
- RanNnep - Class in keel.Algorithms.Neural_Networks.NNEP_Common.util.random
-
RandNnep is a random number generator proposed in
"Turbo C.
- RanNnep() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.util.random.RanNnep
-
Empty constructor
- RanNnep(int) - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.util.random.RanNnep
-
Default constructor (used by RandGenFactory)
- RanNnepFactory - Class in keel.Algorithms.Neural_Networks.NNEP_Common.util.random
-
Factory for RanNnep random generators
- RanNnepFactory() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.util.random.RanNnepFactory
-
Empty constructor.
- RASCOAlgorithm - Class in keel.Algorithms.Semi_Supervised_Learning.RASCO
-
RASCO algorithm calling.
- RASCOAlgorithm() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.RASCO.RASCOAlgorithm
-
- RASCOGenerator - Class in keel.Algorithms.Semi_Supervised_Learning.RASCO
-
This class implements the RASCO algorithm.
- RASCOGenerator(PrototypeSet, int, int, int, int, double, double, double, double, double) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.RASCO.RASCOGenerator
-
Build a new RASCOGenerator Algorithm
- RASCOGenerator(PrototypeSet, PrototypeSet, PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.RASCO.RASCOGenerator
-
Build a new RASCOGenerator Algorithm
- raw() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.util.random.RanNnep
-
Return a double value in the range [0,1].
- rawA() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.util.random.RanNnep
-
Returns a random number between 0 and 1 using "a" property
- rawB() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.util.random.RanNnep
-
Returns a random number between 0 and 1 using "b" property
- rawOutputs(double[]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.neuralnet.NeuralNetClassifier
-
Obtain the raw output of the classifier for each class
- rawOutputs(double[][]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.neuralnet.NeuralNetClassifier
-
Obtain the raw outputs of classes of a set of observations,
through their inputs values
- rawOutputs(double[]) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.ISoftmaxClassifier
-
Obtain the raw output of the classifier for each class
- rawOutputs(double[][]) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.ISoftmaxClassifier
-
Obtain the raw outputs of classes of a set of observations,
through their inputs values
- RBF - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- Rbf - Class in keel.Algorithms.Neural_Networks.EvRBF_CL
-
Class representing a Radial Basis Function Neuron.
- Rbf(int, int) - Constructor for class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbf
-
Creates a new instance of neuron/rbf
- Rbf - Class in keel.Algorithms.Neural_Networks.RBFN
-
This class codified a neuron or a RBF
- Rbf(int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN.Rbf
-
Creates a new instance of neuron/rbf
- Rbf(int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN.Rbf
-
Creates a new instance of neuron/rbf
- Rbf - Class in keel.Algorithms.Neural_Networks.RBFN_CL
-
This class codified a neuron or a RBF.
- Rbf(int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_CL.Rbf
-
Creates a new instance of neuron/rbf
- Rbf(int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_CL.Rbf
-
Creates a new instance of neuron/rbf
- Rbf - Class in keel.Algorithms.Neural_Networks.RBFN_decremental
-
This class codified a neuron or a RBF
- Rbf(int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbf
-
Creates a new instance of neuron/rbf
- Rbf(int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbf
-
Creates a new instance of neuron/rbf
- Rbf - Class in keel.Algorithms.Neural_Networks.RBFN_decremental_CL
-
This class codified a neuron or a RBF
- Rbf(int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbf
-
Creates a new instance of neuron/rbf
- Rbf(int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbf
-
Creates a new instance of neuron/rbf
- Rbf - Class in keel.Algorithms.Neural_Networks.RBFN_incremental
-
This class codified a neuron or a RBF
- Rbf(int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbf
-
Creates a new instance of neuron/rbf
- Rbf(int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbf
-
Creates a new instance of neuron/rbf
- Rbf - Class in keel.Algorithms.Neural_Networks.RBFN_incremental_CL
-
This class codified a neuron or a RBF
- Rbf(int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbf
-
Creates a new instance of neuron/rbf
- Rbf(int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbf
-
Creates a new instance of neuron/rbf
- RBF - Static variable in class org.libsvm.svm_parameter
-
- RBFKernel - Class in keel.Algorithms.SVM.SMO.supportVector
-
The RBF kernel.
- RBFKernel() - Constructor for class keel.Algorithms.SVM.SMO.supportVector.RBFKernel
-
default constructor - does nothing.
- RBFKernel(Instances, int, double) - Constructor for class keel.Algorithms.SVM.SMO.supportVector.RBFKernel
-
Constructor.
- Rbfn - Class in keel.Algorithms.Neural_Networks.EvRBF_CL
-
Class representing a Radial Basis Function Neural Network for the EvRBF_CL algorithm
- Rbfn() - Constructor for class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Creates a instance of rbnf of fixed structure just for test.
- Rbfn(int, int) - Constructor for class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Creates a new instance of rbfn
- Rbfn(double[][], int, int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Creates a new instance of rbfn from a matrix of instances.
- Rbfn(int, double[][], int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Creates a new instance of rbfn from a matrix of instances.
- Rbfn - Class in keel.Algorithms.Neural_Networks.RBFN
-
This class codified a Radial Basis Function Network
- Rbfn() - Constructor for class keel.Algorithms.Neural_Networks.RBFN.Rbfn
-
Creates a instance of rbnf of fixed structure just for test.
- Rbfn(int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN.Rbfn
-
Creates a new instance of rbfn
- Rbfn(double[][], int, int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN.Rbfn
-
Creates a new instance of rbfn from a matrix of instances.
- Rbfn(int, double[][], int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN.Rbfn
-
Creates a new instance of rbfn from a matrix of instances.
- Rbfn - Class in keel.Algorithms.Neural_Networks.RBFN_CL
-
This class codified a Radial Basis Function Network
- Rbfn() - Constructor for class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
-
Creates a instance of rbnf of fixed structure just for test.
- Rbfn(int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
-
Creates a new instance of rbfn
- Rbfn(double[][], int, int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
-
Creates a new instance of rbfn from a matrix of instances.
- Rbfn(int, double[][], int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
-
Creates a new instance of rbfn from a matrix of instances.
- Rbfn - Class in keel.Algorithms.Neural_Networks.RBFN_decremental
-
This class codified a Radial Basis Function Network
- Rbfn() - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
-
Creates a instance of rbnf of fixed structure just for test.
- Rbfn(int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
-
Creates a new instance of rbfn
- Rbfn(double[][], int, int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
-
Creates a new instance of rbfn from a matrix of instances.
- Rbfn(int, double[][], int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
-
Creates a new instance of rbfn from a matrix of instances.
- Rbfn - Class in keel.Algorithms.Neural_Networks.RBFN_decremental_CL
-
This class codified a Radial Basis Function Network
- Rbfn() - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
-
Creates a instance of rbnf of fixed structure just for test.
- Rbfn(int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
-
Creates a new instance of rbfn
- Rbfn(double[][], int, int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
-
Creates a new instance of rbfn from a matrix of instances.
- Rbfn(int, double[][], int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
-
Creates a new instance of rbfn from a matrix of instances.
- Rbfn - Class in keel.Algorithms.Neural_Networks.RBFN_incremental
-
This class codified a Radial Basis Function Network
- Rbfn() - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
-
Creates a instance of rbnf of fixed structure just for test.
- Rbfn(int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
-
Creates a new instance of rbfn
- Rbfn(double[][], int, int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
-
Creates a new instance of rbfn from a matrix of instances.
- Rbfn(int, double[][], int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
-
Creates a new instance of rbfn from a matrix of instances.
- Rbfn - Class in keel.Algorithms.Neural_Networks.RBFN_incremental_CL
-
This class codified a Radial Basis Function Network
- Rbfn() - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
-
Creates a instance of rbnf of fixed structure just for test.
- Rbfn(int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
-
Creates a new instance of rbfn
- Rbfn(double[][], int, int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
-
Creates a new instance of rbfn from a matrix of instances.
- Rbfn(int, double[][], int, int, int) - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
-
Creates a new instance of rbfn from a matrix of instances.
- rbfNearest(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbfn
-
Returns the nearest rbf/neuron to a vector v (patron)
- rbfNearest(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
-
Returns the nearest rbf/neuron to a vector v (patron)
- rbfNearest(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
-
Returns the nearest rbf/neuron to a vector v (patron)
- rbfNearest(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
-
Returns the nearest rbf/neuron to a vector v (patron)
- rbfNearest(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
-
Returns the nearest rbf/neuron to a vector v (patron)
- rbfNearest(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
-
Returns the nearest rbf/neuron to a vector v (patron)
- RbfnPopulation - Class in keel.Algorithms.Neural_Networks.EvRBF_CL
-
Implements a population of Radial basis Function Neural Networks to be evolved with EvRBFN_CL.
- RbfnPopulation(int) - Constructor for class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Creates a new instance of RbfnPopulation
- RbfnPopulation(int, double[][], int, int, int, double) - Constructor for class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Creates and initializes a population using a set of data.
- rbfSize() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Returns the number of neurons in the net
- RBFUtils - Class in keel.Algorithms.Neural_Networks.EvRBF_CL
-
A set of useful functions to be used in EvRBF_CL.
- RBFUtils() - Constructor for class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
-
- RBFUtils - Class in keel.Algorithms.Neural_Networks.RBFN
-
Offers several utilities
- RBFUtils() - Constructor for class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
-
- RBFUtils - Class in keel.Algorithms.Neural_Networks.RBFN_CL
-
Offers several utilities
- RBFUtils() - Constructor for class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
-
- RBFUtils - Class in keel.Algorithms.Neural_Networks.RBFN_decremental
-
Offers several utilities
- RBFUtils() - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
-
- RBFUtils - Class in keel.Algorithms.Neural_Networks.RBFN_decremental_CL
-
Offers several utilities
- RBFUtils() - Constructor for class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
-
- RBFUtils - Class in keel.Algorithms.Neural_Networks.RBFN_incremental
-
Offers several utilities
- RBFUtils() - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
-
- RBFUtils - Class in keel.Algorithms.Neural_Networks.RBFN_incremental_CL
-
Offers several utilities
- RBFUtils() - Constructor for class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
-
- rchisq(int, double, Random) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Maths
-
Generates a sample of a Chi-square distribution.
- read(String) - Static method in class keel.Algorithms.Instance_Generation.utilities.KeelFile
-
Read a Keel-style file.
- read(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset
-
Reads instance at specified row number
- read(IDataset.IInstance[]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset
-
Reads some number of instances from the dataset and stores them
into a buffer array.
- read(IDataset.IInstance[], int, int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset
-
Returns cursor instance
- read() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.ArffDataSet
-
Returns cursor instance
- read() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.ArrayDataset
-
Returns cursor instance
- read(byte[], IDataset) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Init the DoubleTransposedDataSet using a normal IDataset
- read() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Init the array stored in the DataSet
- read() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.FileDataset
-
Returns cursor instance
- read() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset
-
Returns cursor instance
- read(int) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset
-
Reads instance at specified row number
- read(IDataset.IInstance[]) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset
-
Reads some number of instances from the dataset and stores them
into a buffer array.
- read(IDataset.IInstance[], int, int) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset
-
Reads up to length
instances from the input stream
into an array of IInstances.
- read() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.KeelDataSet
-
Returns cursor instance
- read(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.KeelFile
-
Read a Keel-style file.
- read(BufferedReader) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Read a matrix from a stream.
- read(String) - Static method in class keel.Algorithms.SVM.SMO.core.SerializationHelper
-
deserializes the given file and returns the object from it
- read(InputStream) - Static method in class keel.Algorithms.SVM.SMO.core.SerializationHelper
-
deserializes from the given stream and returns the object from it
- readAlgorithm() - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- readAllFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.Globals.FileManagement
-
Reads a whole file
- readAllFile() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.FileManagement
-
Reads a whole file
- readAttributes(int) - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- readAttributes(int) - Static method in class keel.Dataset.DataParser
-
- readChar() - Method in class keel.Algorithms.Genetic_Rule_Learning.Globals.FileManagement
-
Reades a char from file.
- readChar() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.FileManagement
-
Reades a char from file.
- readChar() - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- readChar() - Static method in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- readChar() - Static method in class keel.Dataset.SimpleCharStream
-
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readClassificationSet(String, boolean) - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readConfiguracion(String) - Method in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Reads configuration script, and extracts its contents.
- readConfiguracion(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Reads configuration script, and extracts its contents.
- readConfiguracion(String) - Method in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Reads configuration script, and extracts its contents.
- readConfiguracion(String) - Method in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Reads configuration script, and extracts its contents.
- readConfiguracion(String) - Method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Reads configuration script, and extracts its contents.
- readConfiguracion(String) - Method in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Reads configuration script, and extracts its contents.
- readConfiguration(String) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.FunctionalTrees
-
Reads configuration script, and extracts its contents.
- readConfiguration(String) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.PUBLIC
-
Reads the configuration script, and extracts its contents.
- readConfiguration(String) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
Reads the parameters of the algorithm.
- readConfiguration(String) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Instance_Selection.EUSCHCQstat.EUSCHCQstat
-
It reads the configuration file for performing the EUS-CHC method
- readData() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Read and normalize evaluator datasets
- readData(byte[], IDataset, IDataset) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Read and normalize evaluator datasets
- readDataFiles(String) - Method in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Read the configuration and data files, and process it.
- readDataFiles(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Read the configuration and data files, and process it.
- readDataFiles(String) - Method in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Read the configuration and data files, and process it.
- readDataFiles(double[][], int[], double[][], int[], int) - Method in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Set the training and the test dataset with their classes given as argument.
- readDataFiles(String, InstanceSet, InstanceSet, InstanceSet) - Method in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Read the configuration and data files, process it.
- readDataFiles(String) - Method in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Read the configuration and data files, and process it.
- readDataFiles(String) - Method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Read the configuration and data files, and process it.
- readDataFiles(String) - Method in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Read the configuration and data files, and process it.
- readDataSet(String, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readDataSet(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
-
It reads the whole input data-set and it stores each transaction in
local array
- readFile(myDataset, DataBase) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Reads input data from file specified in command line argument (GUI
version also exists).
- readFile(String) - Static method in class keel.GraphInterKeel.experiments.Files
-
Read of a file
- readFile(String) - Static method in class keel.GraphInterKeel.statistical.Files
-
Read a file and returns the content
- readFile(String) - Static method in class org.core.Files
-
Read a file and returns the content
- readFileAsString(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.AdministrativeStaff
-
- readHeader(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Reads and stores header of an file.
- readHeader(StreamTokenizer) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Reads and stores header of an ARFF file.
- readInputData() - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- readInputs() - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- readInputs() - Static method in class keel.Dataset.DataParser
-
- readInstance(Reader) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Reads a single instance from the reader and appends it
to the dataset.
- readInstance(Reader) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Reads a single instance from the reader and appends it to the dataset.
- readInstanceSet(InstanceSet) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readLine() - Method in class keel.Algorithms.Genetic_Rule_Learning.Globals.FileManagement
-
Reads a line from the file.
- readLine() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.FileManagement
-
Reads a line from the file.
- ReadMyFile(String) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.MyFile
-
Function for reading a data file in a String Object
- readOneParameter() - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- readOutputData() - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- readOutputs() - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- readOutputs() - Static method in class keel.Dataset.DataParser
-
- readParameters(String) - Method in class keel.Algorithms.Coevolution.CIW_NN.CIW_NN
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Coevolution.IFS_COCO.IFS_COCO
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.FunctionalTrees
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.PUBLIC
-
Reads the configuration script, to extract the parameter's values
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.CFKNN.CFKNN
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.D_SKNN.D_SKNN
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FCMKNN.FCMKNN
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FENN.FENN
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRKNNA.FRKNNA
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN.FRNN
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN_FRS.FRNN_FRS
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN_VQRS.FRNN_VQRS
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyKNN.FuzzyKNN
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyNPC.FuzzyNPC
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.GAFuzzyKNN.GAFuzzyKNN
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.IF_KNN.IF_KNN
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.IFSKNN.IFSKNN
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.IFV_NP.IFV_NP
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.IT2FKNN.IT2FKNN
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.JFKNN.JFKNN
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.PFKNN.PFKNN
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.PosIBL.PosIBL
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.VWFuzzyKNN.VWFuzzyKNN
-
Reads the parameters of the algorithm.
- readParameters() - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- readParameters(String) - Method in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Hyperrectangles.BNGE.BNGE
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Hyperrectangles.INNER.INNER
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Hyperrectangles.RISE.RISE
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.CamNN.CamNN
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.CenterNN.CenterNN
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.CPW.CPW
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.CW.CW
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.Deeps.Deeps
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.DeepsNN.DeepsNN
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.IDIBL.IDIBL
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.KNN.KNN
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.KNNAdaptive.KNNAdaptive
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.KSNN.KSNN
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.KStar.KStar
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.LazyDT.LazyDT
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.LBR.LBR
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.NM.NM
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.NSC.NSC
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Lazy_Learning.PW.PW
-
Reads configuration script, to extract the parameter's values.
- readParameters(String) - Method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GGA.GGA
-
Read the parameters
- readParameters(String) - Method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.RST_Learning.EFS_RPS.EFS_RPS
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.RST_Learning.EIS_RFS.EIS_RFS
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Reads the parameters of the algorithm.
- readParameters(String) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.NumericalNaiveBayes
-
Reads configuration script, to extract the parameter's values.
- ReadParameters(String) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.MESDIF
-
Auxiliar Gets the name for the input files, eliminating "" and skiping "="
- ReadParameters(String) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.NMEEFSD
-
Reads the parameters from the file specified and stores the values
- ReadParameters(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Main
-
Auxiliar Gets the name for the input files, eliminating "" and skiping "="
- ReadParameters(String) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.SDIGA
-
Auxiliar Gets the name for the input files, eliminating "" and skiping "="
- readParametersFile(String) - Static method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
Read the keel parameters file.
- readParametersFile(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Read the keel parameters file.
- readPopulationFromFile(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Reads the population from a file.
- readProperties(String) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Reads properties that inherit from three locations.
- readProperties(String) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Reads properties that inherit from three locations.
- readProperties(String) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Reads properties that inherit from three locations.
- readProperties(String) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Reads properties that inherit from three locations.
- readProperties(String) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Reads properties that inherit from three locations.
- readPrototypeSet(String) - Static method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
Reads the prototype set from a data file.
- readPrototypeSet(String) - Static method in class keel.Algorithms.Instance_Generation.DROP3LVQ3.DROP3LVQ3
-
Reads the prototype set from a data file.
- readPrototypeSet(String) - Static method in class keel.Algorithms.Instance_Generation.DROP3PSO.DROP3PSO
-
Reads the prototype set from a data file.
- readPrototypeSet(String) - Static method in class keel.Algorithms.Instance_Generation.DROP3SFLSDE.DROP3SFLSDE
-
Reads the prototype set from a data file.
- readPrototypeSet(String) - Static method in class keel.Algorithms.Instance_Generation.ICFLVQ3.ICFLVQ3
-
Reads the prototype set from a data file.
- readPrototypeSet(String) - Static method in class keel.Algorithms.Instance_Generation.ICFPSO.ICFPSO
-
Reads the prototype set from a data file.
- readPrototypeSet(String) - Static method in class keel.Algorithms.Instance_Generation.ICFSFLSDE.ICFSFLSDE
-
Reads the prototype set from a data file.
- readPrototypeSet(String) - Static method in class keel.Algorithms.Instance_Generation.SSMALVQ3.SSMALVQ3
-
Reads the prototype set from a data file.
- readPrototypeSet(String) - Static method in class keel.Algorithms.Instance_Generation.SSMAPSO.SSMAPSO
-
Reads the prototype set from a data file.
- readPrototypeSet(String) - Static method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
Reads the prototype set from a data file.
- readPrototypeSet(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Reads the prototype set from a data file.
- readPrototypeSet(String, String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Reads the prototype set from a given file name.
- readPrototypeSet2(InstanceSet) - Static method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRegressionSet(String, boolean) - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
-
It reads the whole input data-set and it stores each example and its associated output value in
local arrays to ease their use.
- readRelation() - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- readRelation() - Static method in class keel.Dataset.DataParser
-
- readSchema(String) - Static method in class keel.Algorithms.Decision_Trees.CART.dataset.DataSetManager
-
Reads schema from the KEEL file
- readSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Dataset
-
It reads the examples file (training or test)
- readSet(String, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Dataset
-
It reads the examples file (training or test)
- readSet(String, boolean) - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
-
Reads the file of examples(Train&Test)
- readSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.AQ.Dataset
-
It reads the examples file (training or test)
- readSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.CN2.Dataset
-
It reads the examples file (training or test)
- readSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
-
Reads the file of examples (Train&Test)
- readSet(String, boolean) - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
-
This method reads all the information in a DB and load it to memory.
- readSet(String, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Dataset
-
It reads the examples file (training or test)
- readSet(String, boolean) - Method in class keel.Dataset.InstanceSet
-
This method reads all the information in a DB and load it to memory.
- readTillEOL(StreamTokenizer) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Reads and skips all tokens before next end of line token.
- readXMLUseCase(String) - Method in class keel.GraphInterKeel.experiments.Experiments
-
Reads a XML use case
- REAL - Static variable in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Decision_Trees.Target.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
Number to represent type of variable real or double.
- real - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Referencia
-
- REAL - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Number to represent type of variable real or double.
- real - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Referencia
-
Real value.
- REAL - Static variable in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Constant set for numeric attributes.
- real - Variable in class keel.Algorithms.Instance_Selection.CCIS.Pareja
-
Real element of the pair.
- real - Variable in class keel.Algorithms.Instance_Selection.MNV.ReferenciaMNV
-
Real value.
- real - Variable in class keel.Algorithms.Preprocess.Basic.Referencia
-
Reference value (real).
- real - Variable in class keel.Algorithms.Preprocess.Instance_Selection.CCIS.Pareja
-
Real element of the pair.
- real - Variable in class keel.Algorithms.Preprocess.Instance_Selection.MNV.ReferenciaMNV
-
Real value.
- REAL - Static variable in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Rule_Learning.SRI.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
Label for REAL VALUES
- REAL - Static variable in interface keel.Algorithms.Rule_Learning.Swap1.DataParserConstants
-
Data Parser Indentifier for real data.
- REAL - Static variable in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Gene
-
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Gene
-
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Gene
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Gene
-
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Gene
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
-
Number to represent type of variable real or double.
- REAL - Static variable in class keel.Dataset.Attribute
-
Label for REAL VALUES
- REAL - Static variable in interface keel.Dataset.DataParserConstants
-
- REAL_CONST - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- REAL_CONST - Static variable in interface keel.Algorithms.Rule_Learning.Swap1.DataParserConstants
-
Data Parser Indentifier for real constant.
- REAL_CONST - Static variable in interface keel.Dataset.DataParserConstants
-
- realAttributes - Variable in class keel.Algorithms.Discretizers.Basic.Discretizer
-
Boolean array identifying which attribute is continuous.
- realAttributes - Variable in class keel.Algorithms.Discretizers.Chi2_Discretizer.Discretizer
-
Boolean array identifying which attribute is continuous.
- realAttributes - Variable in class keel.Algorithms.Discretizers.ExtendedChi2_Discretizer.Discretizer
-
Boolean array identifying which attribute is continuous.
- realAttributes - Variable in class keel.Algorithms.Discretizers.ModifiedChi2_Discretizer.Discretizer
-
Boolean array identifying which attribute is continuous.
- realAttributes - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Basic.Discretizer
-
- realAttributes - Variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Discretizer
-
- realBoundaries(Attribute) - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- realBoundaries(Attribute) - Static method in class keel.Dataset.DataParser
-
- realClass - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
real classes values for test
- realClass - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Real classes of the test instances.
- realClass - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Real test classes.
- realClass - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Real test classes.
- RealConst() - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- realConst() - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- realConst() - Static method in class keel.Dataset.DataParser
-
- realCount - Variable in class keel.Algorithms.Decision_Trees.M5.M5AttrStats
-
The number of real-like values (i.e. have a fractional part)
- realCount - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.AttributeStats
-
The number of real-like values (i.e. have a fractional part)
- realDrawnPrecision - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It represents the precision wanted by the user to draw an interval.
- REALDRAWNPRECISION - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- Realloc() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectordouble
-
- Realloc() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.vectordouble
-
Increases the memory for the vector to the double
- Realloc() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectordouble
-
- Realloc() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectordouble
-
- realloc1(short[], short) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Resizes given item set so that its length is increased by one
and appends new element (identical to append method)
- realloc1(short[], short) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Resizes given item set so that its length is increased by one
and appends new element (identical to append method)
- realloc1(short[], short) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Resizes given item set so that its length is increased by one
and appends new element (identical to append method)
- realloc2(short[], short) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Resizes given array so that its length is increased by one element
and new element added to front
- realloc2(short[], short) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Resizes given array so that its length is increased by one element
and new element added to front
- realloc2(short[], short) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Resizes given array so that its length is increased by one element
and new element added to front
- realloc2_new(short[], short) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Resizes given array so that its length is increased by one element
and new element added to front
- realloc3(short[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Resizes given array so that its length is decreased by one element
and first element removed
- realloc4(short[], short[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Resize given array so that its length is decreased by size of
second array (which is expected to be a leading subset of the first)
and remove second array.
- reallocInsert(short[], short) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Resizes given item set so that its length is increased by one
and new element inserted.
- reallocInsert(short[], short) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Resizes given item set so that its length is increased by one
and new element inserted.
- reallocInsert(short[], short) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Resizes given item set so that its length is increased by one
and new element inserted.
- RealMutation - Interface in keel.Algorithms.Genetic_Rule_Learning.UCS
-
Real Mutation.
- RealMutation - Interface in keel.Algorithms.Genetic_Rule_Learning.XCS
-
Real Mutation.
- RealNumericalAttribute - Class in keel.Algorithms.Neural_Networks.NNEP_Common.data
-
Real attributes
- RealNumericalAttribute() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.data.RealNumericalAttribute
-
Empty constructor
- RealRep - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
This class implements the Lower-Upper Bound Representation, i.e., an attribute is represented by
[l_i, u_i].
- RealRep() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
Default constructor of the class.
- RealRep(double) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
Does construct a real representation allele from the environmental state
- RealRep(double, double) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
It is the constructor of the class.
- RealRep(Attribute) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
It's a constructor for the class.
- RealRep - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
It's the real lower-upper bound representation.
- RealRep() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
It's the default constructor of the class.
- RealRep(double) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
Does construct a real representation allele from the environmental state
- RealRep(double, double) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
It is the constructor of the class.
- RealRep(Attribute) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
It's a constructor for the class.
- realStats - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.AttributeStats
-
Stats on numeric value distributions
- realTest - Variable in class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Test Real values.
- realTest - Variable in class keel.Algorithms.Preprocess.Basic.Metodo
-
Test input data.
- realTrain - Variable in class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Training Real values.
- realTrain - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Metodo
-
- realTrain - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
- realTrain - Variable in class keel.Algorithms.Preprocess.Basic.Metodo
-
Training input data.
- realValid(String) - Method in class keel.GraphInterKeel.datacf.util.Attribute
-
Return a boolean for a given real value,
true is valid value, false invalid value.
- realValue(int, String) - Static method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
Returns a real representation of a attribute's nominal value given as argument.
- realValues - Variable in class keel.Algorithms.Discretizers.Basic.Discretizer
-
For each attribute, stores its values of every instances.
- realValues - Variable in class keel.Algorithms.Discretizers.Chi2_Discretizer.Discretizer
-
For each attribute, stores its values of every instances.
- realValues - Variable in class keel.Algorithms.Discretizers.ExtendedChi2_Discretizer.Discretizer
-
For each attribute, stores its values of every instances.
- realValues - Variable in class keel.Algorithms.Discretizers.ModifiedChi2_Discretizer.Discretizer
-
For each attribute, stores its values of every instances.
- realValues - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Basic.Discretizer
-
- realValues - Variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Discretizer
-
- reanudeProcess() - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
-
To invoque previously stopProcess.
- rebuild(Genotype) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGAP
-
This method is intended to rebuild the current object if needed.
- rebuild(Genotype) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGP
-
This method is intended to rebuild the current object if needed.
- rebuild(Genotype) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGPRegSym
-
This method is intended to rebuild the current object if needed.
- recalculateCenters(InstanceSet) - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.fuzzygCenter
-
Recalculates all the centroids using a given InstanceSet, to reduce the
sum of the distances for each object from the centroid of the cluster to which the object belongs
- recalculateCenters(InstanceSet) - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.gCenter
-
Recalculates all the centroids using a given InstanceSet, in order to reduce the
total sum of distances for each object to the centroid of the cluster, which the object belongs to
- recall(int) - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Calculate the recall with respect to a particular class.
- recastInputData() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Recasts the contents of the data array so that each record is ordered
according to conversion array.
- recastInputData() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Recasts the contents of the data array so that each record is ordered
according to conversion array.
- recastInputData() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Recasts the contents of the data array so that each record is ordered
according to conversion array.
- recastInputDataAndPruneUnsupportedAtts() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Recasts the contents of the data array so that each record is
ordered according to ColumnCounts array and excludes non-supported
elements.
- recastInputDataAndPruneUnsupportedAtts() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Recasts the contents of the data array so that each record is
ordered according to ColumnCounts array and excludes non-supported
elements.
- recastInputDataAndPruneUnsupportedAtts() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Recasts the contents of the data array so that each record is
ordered according to ColumnCounts array and excludes non-supported
elements.
- reconfigure(String, String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.SMOTE_RSB
-
- Reconsistent - Class in keel.Algorithms.Instance_Selection.Reconsistent
-
File: Reconsistent.java
The Reconsistent Instance Selection algorithm.
- Reconsistent(String) - Constructor for class keel.Algorithms.Instance_Selection.Reconsistent.Reconsistent
-
Default constructor.
- Reconsistent - Class in keel.Algorithms.Preprocess.Instance_Selection.Reconsistent
-
File: Reconsistent.java
The Reconsistent Instance Selection algorithm.
- Reconsistent(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.Reconsistent.Reconsistent
-
Default constructor.
- reconstructInputData() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
Reconstructs the input data set by appending the test set to the
training sets.
- reconversionArray - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
1-D array used to reconvert input data column numbers to their
original numbering where the input data has been ordered to enhance
computational efficienvy.
- reconversionArray - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
1-D array used to reconvert input data column numbers to their
original numbering where the input data has been ordered to enhance
computational efficiency.
- reconversionArray - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
1-D array used to reconvert input data column numbers to their
original numbering where the input data has been ordered to enhance
computational efficiency.
- reconvertItem(short) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Reconvert single item if appropriate.
- reconvertItem(short) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Reconvert single item if appropriate.
- reconvertItemSet(short[]) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Reconverts given item set according to contents of reconversion array.
- reconvertItemSet(short[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Reconverts given item set according to contents of reconversion array.
- rectifyValueInBounds(double) - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
It update an integer or real value read for an attribute in the test
set if it doesn't match with the bounds defined in the train set.
- rectifyValueInBounds(double) - Method in class keel.Dataset.Attribute
-
It update an integer or real value read for an attribute in the test
set if it doesn't match with the bounds defined in the train set.
- RecuperaParametros(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.FuzzyClassifier
-
- RecuperaParametros(double[]) - Method in class keel.Algorithms.Statistical_Classifiers.Shared.DiscrAnalysis.AD
-
Recovers the parameters of the LDA or QDA stored in the array given.
- recursiveDelete(File) - Static method in class keel.GraphInterKeel.datacf.util.FileUtils
-
Utilities for Files.
- redim(int) - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
-
Resize the object to the new capacity indicated
- redimAllNodes(DefaultMutableTreeNode) - Method in class keel.GraphInterKeel.experiments.Experiments
-
Resizes the ExternalObjectDescription of all nodes.
- reduced - Variable in class keel.Algorithms.Instance_Generation.VQ.AVQGenerator
-
Reduced data set.
- reduceDL(double, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Try to reduce the DL of the ruleset by testing removing the rules
one by one in reverse order and update all the stats
- reducedStepSize - Variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Reduced step size array
- reduceHyper(Hyper[], boolean[]) - Method in class keel.Algorithms.Hyperrectangles.EHS_CHC.EHS_CHC
-
- reduceMatrix(double[][]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.ContingencyTables
-
Reduces a matrix by deleting all zero rows and columns.
- reduceMatrix(double[][]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.ContingencyTables
-
Reduces a matrix by deleting all zero rows and columns.
- reduceMatrix(double[][]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.ContingencyTables
-
Reduces a matrix by deleting all zero rows and columns.
- reduceNegative(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.PNArray
-
It reduces the negative value P of the PNArray by extracting the weight of a training example given by its position in the training dataset
- reducePositive(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.PNArray
-
It reduces the positive value P of the PNArray by extracting the weight of a training example given by its position in the training dataset
- reduceRules(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.RuleBase
-
Function to eliminate the rules that are not needed (Redundant, not enough accurate,...) for a given class.
- reduceRules() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.RuleBase
-
Function to eliminate the redundant rules
- reduceRules(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.RuleBase
-
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.AMPSO.AMPSOGenerator
-
Generate a reduced prototype set by the AMPSOGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
Makes the trivial reduction.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.BasicMethods.ARS
-
Extract prototypes from the training data and returns them in a new data set.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.BasicMethods.AVG
-
Reduces the set by adding centroid prototype of each class to reduced set.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.BasicMethods.CNN
-
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.BasicMethods.RandomSelector
-
Extract prototypes from the training data and returns them in a new data set.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.BasicMethods.SAVG
-
Reduce the set.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.BTS3.BTS3Generator
-
Reduce the training data set by the Hamamoto et al.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.Chen.ChenGenerator
-
Generate a reduced prototype set by the ChenGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.DE.DEGenerator
-
Generate a reduced prototype set by the DEGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.DEGL.DEGLGenerator
-
Generate a reduced prototype set by the DEGLGenerator method.
- reduceSet(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.DROP3PSO.DROP3PSO
-
Generate a reduced prototype set by the PSOGenerator method.
- reduceSet(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.DROP3SFLSDE.DROP3SFLSDE
-
Generate a reduced prototype set by the SADEGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.ENPC.ENPCGenerator
-
Generate a reduced prototype set by the ENPCGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.GENN.GENNGenerator
-
Reduce the set by the GENNGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.GMCA.GMCAGenerator
-
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.HYB.HYBGenerator
-
Reduce the set by the Hybrid method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.HYB.SVMSEL
-
Reduction of the original prototype set by the SVM.
- reduceSet(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.ICFPSO.ICFPSO
-
Generate a reduced prototype set by the PSOGenerator method.
- reduceSet(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.ICFSFLSDE.ICFSFLSDE
-
Generate a reduced prototype set by the SADEGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.ICPL.ICPLGenerator
-
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.IPLDE.IPLDEGenerator
-
Generate a reduced prototype set by the IPLDEGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.JADE.JADEGenerator
-
Generate a reduced prototype set by the JADEGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQGenerator
-
Execute the method and returns the condensed prototype set.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQPRU
-
Execute the method LVQPRU and returns the condensed set
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQTC
-
Execute the method and returns the output instance set
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.MCA.MCAGenerator
-
Reduce the set by the MCAGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.MixtGauss.MixtGaussGenerator
-
Generate a reduced prototype set by the MixtGaussGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.MSE.MSEGenerator
-
Generate a reduced prototype set by the RSPGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.OBDE.OBDEGenerator
-
Generate a reduced prototype set by the DEGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.PNN.PNNGenerator
-
Performs a reduction of the training data set by the PNNGenerator (aka Chang) method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.POC.POCGenerator
-
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.PSCSA.PSCSAGenerator
-
Generate a reduced prototype set by the PSCSAGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.PSO.PSOGenerator
-
Generate a reduced prototype set by the PSOGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.RSP.RSPGenerator
-
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.SADE.SADEGenerator
-
Generate a reduced prototype set by the SADEGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.SFLSDE.SFLSDEGenerator
-
Generate a reduced prototype set by the SFLSDEGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.SGP.SGPGenerator
-
- reduceSet(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.SSMAPSO.SSMAPSO
-
Generate a reduced prototype set by the PSOGenerator method.
- reduceSet(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
Generate a reduced prototype set by the SADEGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.VQ.AVQGenerator
-
Reduce the data set by the AVQGenerator method.
- reduceSet() - Method in class keel.Algorithms.Instance_Generation.VQ.VQGenerator
-
Execute the method and returns the output instance set
- reduceWeight(int, double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
It reduces the weight of the given example in a factor alfa
- reduceWeight(myDataset, ArrayList<ExampleWeight>) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Rule
-
Reduces the weight of the examples that match with the rule (the rule correctly classifies them)
- reduceWeight(myDataset, ArrayList<ExampleWeight>) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Rule
-
- reducir(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Attribute
-
- reductedRulesFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It's the name where the reductes rules have to be written.
- REDUCTEDRULESFILE - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- REDUCTION - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- Reduction - Interface in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This is the interface for all the reduction methods classes in the XCS.
- REDUCTIONTYPE - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- reductWindow - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It indicates the interval where the execution window will
be applied.
- REDUCTWINDOW - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- reemplazo(Vector, double, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
Build the next generation
- reference - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Reference dataset
- reference - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Reference dataset.
- reference - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Reference dataset
- reference - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Reference dataset.
- reference - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Reference dataset
- referenceChange() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Condition
-
- referenceData - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Reference input data.
- referenceData - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Reference input data.
- referenceData - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Reference input data.
- referenceData - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Reference input data.
- referenceData - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Reference input data.
- referenceExtension(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Condition
-
- referenceFile - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Reference file name
- referenceFile - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Reference file name.
- referenceFile - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Reference file name
- referenceFile - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Reference file name.
- referenceFile - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Reference file name
- referenceFile - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Reference file name
- referenceOutput - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Reference output data.
- referenceOutput - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Reference output data.
- referenceOutput - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Reference output data.
- referenceOutput - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Reference output data.
- referenceOutput - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Reference output data.
- referenceRestriction(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Condition
-
- references(ArrayList<IInstance>, int) - Method in class keel.Algorithms.MIL.Nearest_Neighbour.AbstractNearestNeighbour
-
- referencia - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.KNN
-
Data structures
- referencia - Variable in class keel.Algorithms.Hyperrectangles.EHS_CHC.EHS_CHC
-
- Referencia - Class in keel.Algorithms.ImbalancedClassification.Ensembles.Basic
-
- Referencia() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Referencia
-
- Referencia(int, double) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Referencia
-
- Referencia - Class in keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic
-
File: Referencia.java
An auxiliary class to manage references between two values
- Referencia() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Referencia
-
Default builder
- Referencia(int, double) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Referencia
-
Builder
- Referencia - Class in keel.Algorithms.Preprocess.Basic
-
File: Referencia.java
An auxiliary class to manage references between two values
- Referencia() - Constructor for class keel.Algorithms.Preprocess.Basic.Referencia
-
Default builder
- Referencia(int, double) - Constructor for class keel.Algorithms.Preprocess.Basic.Referencia
-
Builder
- ReferenciaMNV - Class in keel.Algorithms.Instance_Selection.MNV
-
File: ReferenciaMNV.java
Simple structure used on MNV algorithm.
- ReferenciaMNV() - Constructor for class keel.Algorithms.Instance_Selection.MNV.ReferenciaMNV
-
Default constructor.
- ReferenciaMNV(int, double, double) - Constructor for class keel.Algorithms.Instance_Selection.MNV.ReferenciaMNV
-
Parameters constructor.
- ReferenciaMNV - Class in keel.Algorithms.Preprocess.Instance_Selection.MNV
-
File: ReferenciaMNV.java
Simple structure used on MNV algorithm.
- ReferenciaMNV() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.MNV.ReferenciaMNV
-
Default constructor.
- ReferenciaMNV(int, double, double) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.MNV.ReferenciaMNV
-
Parameters constructor.
- refineClusters(Vector) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.EventCovering
-
This method refines the initial clusters obtained by clusterInitiation()
- refineRuleSet() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ruleOrderAgent
-
- refreshDataPanel(Dataset) - Method in class keel.GraphInterKeel.datacf.editData.EditDataPanel
-
Change in EditVariablePanel
- refreshVariablePanel(Dataset) - Method in class keel.GraphInterKeel.datacf.editData.EditVariablePanel
-
Refreshes the variable panel
- regem(DenseMatrix, InstanceSet) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
Imputation of missing values with regularized EM algorithm
- regenerateDatasetPartitions(DataSet) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
This method checks if any partition of the selected
data sets is missing.
- regeneration() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Core
-
Randomize the rules with fitness below the average, to obtain diversity.
- regions(double, PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.ENPC.ENPCGenerator
-
Function regions, see equation (2).
- Register - Class in keel.Algorithms.Decision_Trees.PUBLIC
-
File: Register.java
Data structure that is used in the construction of the decision tree.
- Register(int, double, int) - Constructor for class keel.Algorithms.Decision_Trees.PUBLIC.Register
-
Creates a register from a id, a value attribute and an output class of the item.
- Register(Register) - Constructor for class keel.Algorithms.Decision_Trees.PUBLIC.Register
-
Creates a register from another existing register
- Regla - Class in keel.Algorithms.Decision_Trees.DT_GA
-
Title: Regla (Rule).
- Regla() - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.Regla
-
Default Constructor.
- Regla(String, myDataset) - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.Regla
-
Paramenter constructor.
- Regla(myDataset, String) - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.Regla
-
Paramenter constructor.
- Regla - Class in keel.Algorithms.Decision_Trees.Target
-
Title: Regla
Description: Rule in the decision tree target
Company: KEEL
- Regla() - Constructor for class keel.Algorithms.Decision_Trees.Target.Regla
-
Default constructor.
- Regla - Class in keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted
-
Title: Regla
Description: Contains the definition of a fuzzy rule
Copyright: Copyright (c) 2009
Company: KEEL
- Regla(Regla) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Regla
-
Copy constructor
- Regla(BaseD, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Regla
-
Constructor with parameters
- Regla - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec
-
- Regla(Regla) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Regla
-
- Regla(BaseD, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Regla
-
- Regla - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF
-
Title:
Description:
Copyright: Copyright (c) 2007
Company:
- Regla(Regla) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.Regla
-
- Regla(BaseD) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.Regla
-
- Regla - Class in keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner
-
Title: Regla (Rule)
Description:Rule class.
- Regla() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Default constructor.
- Regla(Regla) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Copy Constructor.
- Regla(Vector, Atributo) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Parameter Constructor.
- Regla - Class in keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus
-
Title: Regla (Rule)
Description:Rule class.
- Regla() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Default constructor.
- Regla(Regla) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Copy Constructor.
- Regla(Vector, Atributo) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Parameter Constructor.
- Regla - Class in keel.Algorithms.Genetic_Rule_Learning.Ant_Miner
-
Title: Regla (Rule)
Description:Rule class.
- Regla() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Default constructor.
- Regla(Regla) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Copy Constructor.
- Regla(Vector, Atributo) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Parameter Constructor.
- Regla - Class in keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus
-
Title: Regla (Rule)
Description:Rule class.
- Regla() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Default constructor.
- Regla(Regla) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Copy Constructor.
- Regla(Vector, Atributo) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Parameter Constructor.
- Regla - Class in keel.Algorithms.Genetic_Rule_Learning.OCEC
-
Title:
Description:
Copyright: Copyright (c) 2007
Company:
- Regla() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OCEC.Regla
-
- Regla(Organizacion) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OCEC.Regla
-
- Regla - Class in keel.Algorithms.Genetic_Rule_Learning.PSO_ACO
-
Title: Regla (Rule)
Description:Rule class.
- Regla() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Default constructor.
- Regla(Regla) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Copy Constructor.
- Regla(Vector, Vector, Atributo) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Parameter Constructor.
- Regla - Class in keel.Algorithms.Genetic_Rule_Learning.RMini
-
- Regla - Class in keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM
-
Title:
Description:
Copyright: Copyright (c) 2007
Company:
- Regla(Regla) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.Regla
-
- Regla(BaseD) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.Regla
-
- Regla - Class in keel.Algorithms.Rule_Learning.Rules6
-
Title: Regla (Rule).
- Regla(String, int) - Constructor for class keel.Algorithms.Rule_Learning.Rules6.Regla
-
Parameter constructor.
- Regla(Regla) - Constructor for class keel.Algorithms.Rule_Learning.Rules6.Regla
-
Copy Constructor.
- Regla - Class in keel.Algorithms.Rule_Learning.SRI
-
Title: Regla (Rule).
- Regla(String, int) - Constructor for class keel.Algorithms.Rule_Learning.SRI.Regla
-
Parameter constructor.
- Regla(Regla) - Constructor for class keel.Algorithms.Rule_Learning.SRI.Regla
-
Copy Constructor.
- Regla - Class in keel.Algorithms.Subgroup_Discovery.aprioriSD
-
Title: Regla (Rule).
- Regla() - Constructor for class keel.Algorithms.Subgroup_Discovery.aprioriSD.Regla
-
Default constructor.
- Regla(int, int) - Constructor for class keel.Algorithms.Subgroup_Discovery.aprioriSD.Regla
-
Parameter Constructor.
- Regla(Item, int) - Constructor for class keel.Algorithms.Subgroup_Discovery.aprioriSD.Regla
-
Parameter Constructor.
- reglaCubreInstancia(Instance) - Method in class keel.Algorithms.Rule_Learning.Prism.Complejo
-
Checks if the rule gets the parameter instance
- reglaCubreInstancia(Instance) - Method in class keel.Algorithms.Rule_Learning.UnoR.Complejo
-
Checks if the rule covers the given instance.
- RegOptimizer - Class in keel.Algorithms.SVM.SMO.supportVector
-
Base class implementation for learning algorithm of SVMreg
- RegOptimizer() - Constructor for class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
the default constructor
- regOptimizerTipText() - Method in class keel.Algorithms.SVM.SMO.SVMreg
-
Returns the tip text for this property
- regression(M5Matrix, int, int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Matrix
-
Linear regression
- regression(Function) - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Computes the coefficients of a linear model using the instances at this
node
- regression(M5Matrix, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5Matrix
-
Linear regression
- regression(Function) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Computes the coefficients of a linear model using the itemsets at this
node
- regression(Matrix, double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Performs a (ridged) linear regression.
- regression(Matrix, double[], double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Performs a weighted (ridged) linear regression.
- regression(Matrix, double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Performs a (ridged) linear regression.
- regression(Matrix, double[], double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Performs a weighted (ridged) linear regression.
- RegressionFunction - Interface in keel.Algorithms.Preprocess.Missing_Values.SVDimpute
-
Interface for Regression class
Sum of squares function for non-linear regression methods
- RegressionProblemEvaluator - Class in keel.Algorithms.Neural_Networks.NNEP_Regr.problem.regression
-
Regression problem evaluator
- RegressionProblemEvaluator() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Regr.problem.regression.RegressionProblemEvaluator
-
Empty constructor
- RegSMO - Class in keel.Algorithms.SVM.SMO.supportVector
-
Implementation of SMO for support vector regression as described in :
A.J.
- RegSMO() - Constructor for class keel.Algorithms.SVM.SMO.supportVector.RegSMO
-
default constructor
- RegSMOImproved - Class in keel.Algorithms.SVM.SMO.supportVector
-
Learn SVM for regression using SMO with Shevade, Keerthi, et al. adaption of the stopping criterion.
- RegSMOImproved() - Constructor for class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
- RegSymFuzzyGP - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model
-
fuzzy system of symbolic regression
- RegSymFuzzyGP(double, double, int, int, int, int, int, Randomize) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.RegSymFuzzyGP
-
Constructor.
- RegSymFuzzyGP(RegSymFuzzyGP) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.RegSymFuzzyGP
-
Constructor.
- reinit() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.timerMDL
-
- reinit() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.timersManagement
-
- ReInit(InputStream) - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- ReInit(Reader) - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- ReInit(ParserTokenManager) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- ReInit(SimpleCharStream) - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserTokenManager
-
- ReInit(SimpleCharStream, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserTokenManager
-
- ReInit(Reader, int, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- ReInit(Reader, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- ReInit(Reader) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- ReInit(InputStream, int, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- ReInit(InputStream) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- ReInit(InputStream, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- ReInit(InputStream) - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- ReInit(InputStream, String) - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- ReInit(Reader) - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- ReInit(DataParserTokenManager) - Method in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- ReInit(SimpleCharStream) - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParserTokenManager
-
- ReInit(SimpleCharStream, int) - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParserTokenManager
-
- ReInit(Reader, int, int, int) - Method in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- ReInit(Reader, int, int) - Method in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- ReInit(Reader) - Method in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- ReInit(InputStream, String, int, int, int) - Method in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- ReInit(InputStream, int, int, int) - Method in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- ReInit(InputStream, String) - Method in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- ReInit(InputStream) - Method in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- ReInit(InputStream, String, int, int) - Method in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- ReInit(InputStream, int, int) - Method in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- ReInit(InputStream) - Static method in class keel.Dataset.DataParser
-
- ReInit(InputStream, String) - Static method in class keel.Dataset.DataParser
-
- ReInit(Reader) - Static method in class keel.Dataset.DataParser
-
- ReInit(DataParserTokenManager) - Method in class keel.Dataset.DataParser
-
- ReInit(SimpleCharStream) - Static method in class keel.Dataset.DataParserTokenManager
-
- ReInit(SimpleCharStream, int) - Static method in class keel.Dataset.DataParserTokenManager
-
- ReInit(Reader, int, int, int) - Method in class keel.Dataset.SimpleCharStream
-
- ReInit(Reader, int, int) - Method in class keel.Dataset.SimpleCharStream
-
- ReInit(Reader) - Method in class keel.Dataset.SimpleCharStream
-
- ReInit(InputStream, String, int, int, int) - Method in class keel.Dataset.SimpleCharStream
-
- ReInit(InputStream, int, int, int) - Method in class keel.Dataset.SimpleCharStream
-
- ReInit(InputStream, String) - Method in class keel.Dataset.SimpleCharStream
-
- ReInit(InputStream) - Method in class keel.Dataset.SimpleCharStream
-
- ReInit(InputStream, String, int, int) - Method in class keel.Dataset.SimpleCharStream
-
- ReInit(InputStream, int, int) - Method in class keel.Dataset.SimpleCharStream
-
- Rel_RASCOAlgorithm - Class in keel.Algorithms.Semi_Supervised_Learning.Rel_RASCO
-
Rel_RASCO algorithm calling.
- Rel_RASCOAlgorithm() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Rel_RASCO.Rel_RASCOAlgorithm
-
- Rel_RASCOGenerator - Class in keel.Algorithms.Semi_Supervised_Learning.Rel_RASCO
-
This class implements the Rel_RASCO algorithm.
- Rel_RASCOGenerator(PrototypeSet, int, int, int, int, double, double, double, double, double) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Rel_RASCO.Rel_RASCOGenerator
-
Build a new Rel_RASCOGenerator Algorithm
- Rel_RASCOGenerator(PrototypeSet, PrototypeSet, PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Rel_RASCO.Rel_RASCOGenerator
-
Build a new Rel_RASCOGenerator Algorithm
- relation - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Relation string.
- relation - Variable in class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Relation string.
- relation - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Relation string.
- relation() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns the header info for a relation-valued attribute,
null if the attribute is not relation-valued.
- relation(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns a value of a relation-valued attribute.
- relation - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Relation string.
- relation - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Metodo
-
- relation - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
- relation() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns the header info for a relation-valued attribute, null if the
attribute is not relation-valued.
- relation(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns a value of a relation-valued attribute.
- relation - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Relation string.
- relation - Variable in class keel.Algorithms.Preprocess.Basic.Metodo
-
Relation string.
- relation - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Relation string.
- relation - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Relation string.
- relation - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Relation string.
- relation - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Relation string.
- RELATION - Static variable in interface keel.Algorithms.Rule_Learning.Swap1.DataParserConstants
-
Data Parser Indentifier for Ralation string.
- Relation - Class in keel.Algorithms.Statistical_Tests.Shared.nonParametric
-
File: Relation.java
This class defines a relation between two integers.
- Relation() - Constructor for class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Relation
-
Default builder
- Relation(int, int) - Constructor for class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Relation
-
Builder
- relation - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Relation.
- RELATION - Static variable in interface keel.Dataset.DataParserConstants
-
- Relation - Class in keel.GraphInterKeel.statistical.tests
-
File: Relation.java
This class defines a relation between two integers.
- Relation() - Constructor for class keel.GraphInterKeel.statistical.tests.Relation
-
Default builder
- Relation(int, int) - Constructor for class keel.GraphInterKeel.statistical.tests.Relation
-
Builder
- RELATIONAL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Constant set for relation-valued attributes.
- RELATIONAL - Static variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Constant set for relation-valued attributes.
- RelationalLocator - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
This class locates and records the indices of relational attributes,
- RelationalLocator(Instances) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RelationalLocator
-
Initializes the RelationalLocator with the given data.
- RelationalLocator(Instances, int, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RelationalLocator
-
Initializes the RelationalLocator with the given data.
- RelationalLocator(Instances, int[]) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RelationalLocator
-
Initializes the RelationalLocator with the given data.
- relationalValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns the relational value of a relational attribute.
- relationalValue(AttributeWeka) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns the relational value of a relational attribute.
- relationalValue(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns the relational value of a relational attribute.
- relationalValue(Attribute) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns the relational value of a relational attribute.
- relationDirected - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Type of relation.
- relationName() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Returns the relation's name.
- relationName() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Returns the relation's name.
- relationName - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Variables to store extra information about attributes
- relationName - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Variables to store extra information about attributes
- relationName() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Returns the relation's name.
- relationName() - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the relation's name.
- relationsForInstance(double[][]) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.OVO
-
Retrieves the preference, conflict and ignorance matrices for a single instance
- relativeAbsoluteError() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Returns the relative absolute error.
- relativeDL(int, double, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
The description length (DL) of the ruleset relative to if the
rule in the given position is deleted, which is obtained by:
MDL if the rule exists - MDL if the rule does not exist
Note the minimal possible DL of the ruleset is calculated(i.e. some
other rules may also be deleted) instead of the DL of the current
ruleset.
- releasePopulation() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.populationWrapper
-
- relevancia(PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.Rel_RASCO.Rel_RASCOGenerator
-
This methods return the mutual information between features and labels of the dataset.
- ReliefDiff - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.RELIEF
-
Main class of relief method using difference between nearest neighbours as evalution measure.
- ReliefDiff(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.RELIEF.ReliefDiff
-
Creates a new instance of ReliefDiff
- Relieff - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.RELIEF_F
-
Main class of relief-F method using difference between nearest neighbours as evalution measure.
- Relieff(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.RELIEF_F.Relieff
-
Creates a new instance of ReliefDiff
- reload(int) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Reload the data set list, given a type of experiment
- reload(int) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Reload the data set list, given the experiment type
- reload_algorithms() - Method in class keel.GraphInterKeel.experiments.Experiments
-
Reload the algorithms trees (all kinds)
- reload_crisp(int) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Reload LQD data sets
- reload_crisp() - Method in class keel.GraphInterKeel.experiments.SelectData
-
Reload the data set list
- reload_crisp_lqd() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Reload LQD data sets
- reload_crisp_lqd(JPanel) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Reload the data set list, given the experiment type
- reload_lqd_crisp() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Reload LQD data sets
- reload_lqd_crisp(JPanel) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Reload the data set list, given the experiment type
- reloadPreviousActiveDataSets() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Once the Buttons has been loaded again, we must set their state
as it was previously set by the user <- we take the state saved from saveSelected()
- reloadPreviousActiveDataSets() - Method in class keel.GraphInterKeel.experiments.SelectData
-
Once the Buttons has been loaded again, we must set their state
as it was previously set by the user <- we take the state saved from saveSelected()
- RelSimil(double[][], int, double) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ApproximateSets
-
Computes the similarity between this set and the one given.
- remove(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Itemset
-
Function to remove the item located in the given position.
- remove(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.RuleBase
-
It removes the rule stored in the given position
- remove(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Itemset
-
Function to remove the item located in the given position
- remove(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.RuleBase
-
It removes the rule stored in the given position
- remove(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.RuleBase
-
It removes the rule stored in the given position
- remove(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Itemset
-
Function to remove the item located in the given position
- remove(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.RuleBase
-
It removes the rule stored in the given position
- remove(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Itemset
-
Function to remove the item located in the given position
- remove(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.RuleBase
-
It removes the rule stored in the given position
- remove(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Itemset
-
Function to remove the item located in the given position
- remove(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.RuleBase
-
It removes the rule stored in the given position
- remove(int) - Method in class keel.Algorithms.Decision_Trees.M5.Function
-
Removes a term from the function
- remove(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.RuleBase
-
It removes a given rule from the RB
- Remove(int[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
-
- Remove() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.ruleset
-
Removes the last rule of the set of learned rules.
- Remove(int[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Removes the examples in "v" from the set of examples
- Remove(int[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.example_set
-
- Remove() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.ruleset
-
Removes the last rule of the set of learned rules.
- Remove(int[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.example_set
-
- Remove() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.ruleset
-
Removes the last rule of the set of learned rules.
- remove(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Itemset
-
- remove(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.RuleBase
-
- remove(Object) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.ProtectedProperties
-
Overrides a method to prevent the properties from being modified.
- remove(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Function
-
Removes a term from the function
- remove(Object) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ProtectedProperties
-
Overrides a method to prevent the properties from being modified.
- remove(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Removes a prototype given as parameter from the set.
- remove(Prototype) - Method in class keel.Algorithms.Instance_Generation.GMCA.Cluster
-
Removes a prototype of the cluster.
- remove(Cluster) - Method in class keel.Algorithms.Instance_Generation.GMCA.ClusterSet
-
Remove a cluster of the set.
- remove(Prototype, boolean) - Method in class keel.Algorithms.Instance_Generation.MCA.DistanceMatrixByClass
-
- remove(Prototype) - Method in class keel.Algorithms.Instance_Generation.MCA.DistanceMatrixByClass
-
- remove(Prototype) - Method in class keel.Algorithms.Instance_Generation.PNN.MatrixOfDistances
-
Remove a prototype to the matrix of distances.
- remove(int, Vector<pnPair>) - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.SaturationFilter
-
It runs the algorithm
- remove(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Returns a copy of the set without an prototype.
- remove(PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Returns a copy of the set without an prototype.
- remove(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Itemset
-
It allows to remove the item stored at the index "pos" within an itemset
- remove(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Itemset
-
It allows to remove the item stored at the index "pos" within an itemset
- remove(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.Itemset
-
It allows to remove the item stored at the index "pos" within an itemset
- remove(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Itemset
-
It allows to remove the item stored at the index "pos" within an itemset
- remove(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Itemset
-
It allows to remove the item stored at the index "pos" within an itemset
- remove(int) - Method in class keel.GraphInterKeel.experiments.DinamicParameter
-
- remove_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Rmove button
- removeAllData() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Clear the vectors which stores the list of data sets
- removeAllData() - Method in class keel.GraphInterKeel.experiments.SelectData
-
Removes all the data sets from the list
- removeAllElements() - Method in class keel.Algorithms.Decision_Trees.M5.M5Vector
-
Removes all components from this vector and sets its
size to zero.
- removeAllElements() - Method in class keel.Algorithms.Decision_Trees.M5.Queue
-
Removes all objects from the queue.
- removeAllElements() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.FastVector
-
Removes all components from this vector and sets its
size to zero.
- removeAllElements() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Queue
-
Removes all objects from the queue m_Tail.m_Next.
- removeAllElements() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue
-
Removes all objects from the queue.
- removeAllElements() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.FastVector
-
Removes all components from this vector and sets its
size to zero.
- removeAllElements() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.FastVector
-
Removes all components from this vector and sets its
size to zero.
- removeAllElements() - Method in class keel.Algorithms.SVM.SMO.core.FastVector
-
Removes all components from this vector and sets its
size to zero.
- removeAllElements() - Method in class keel.Algorithms.SVM.SMO.core.Queue
-
Removes all objects from the queue m_Tail.m_Next.
- removeAttribute(boolean, int) - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
-
It does remove an attribute.
- removeAttribute(boolean, int) - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
-
It does remove an attribute.
- removeAttribute(InstanceSet, boolean, int) - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
-
It does remove an attribute.
- removeAttribute(boolean, int) - Static method in class keel.Dataset.Attributes
-
It does remove an attribute.
- removeAttribute(boolean, int) - Method in class keel.Dataset.InstanceAttributes
-
It does remove an attribute.
- removeAttribute(InstanceSet, boolean, int) - Method in class keel.Dataset.InstanceSet
-
It does remove an attribute.
- removeAttributes(double[], int) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
For each instance, copies the attribute values whose weight in the vector given is greater than 0.5
- removeCellEditorListener(CellEditorListener) - Method in class keel.GraphInterKeel.datacf.util.EachRowEditor
-
Removes a cell editor listener
- removeChromosome(Chromosome) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Cochromosome
-
Remove the specified chromosome from this object
- removeChromosome(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Cochromosome
-
Removes the chromosome at the specified position
- removeData(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.EachDataSet
-
Borra un dato
- removeDataset(int) - Method in class keel.GraphInterKeel.experiments.Joint
-
- removeDistribution() - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Resets the classes distribution to 0.
- removeDistribution() - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
reset the distribution value for the complex
- removeDuplicated(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.RuleSet
-
Remove repetitive complex(at1 = 0 ^ at2 = 0 -- at2 = 0 ^ at1 = 0)
- removeDuplicates() - Method in class keel.Algorithms.Rule_Learning.Ripper.Ruleset
-
Removes the duplicated rules
- removeElementAt(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Vector
-
Deletes an element from this vector.
- removeElementAt(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.FastVector
-
Deletes an element from this vector.
- removeElementAt(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.FastVector
-
Deletes an element from this vector.
- removeElementAt(int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.FastVector
-
Deletes an element from this vector.
- removeElementAt(int) - Method in class keel.Algorithms.SVM.SMO.core.FastVector
-
Deletes an element from this vector.
- removeElementN(short[], int) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Removes the nth element/attribute from the given item set.
- removeElementN(short[], int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Removes the nth element/attribute from the given item set.
- removeFirstNelements(short[], int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Removes the first n elements/attributes from the given item set.
- removeFromA(Prototype) - Method in class keel.Algorithms.Instance_Generation.PNN.MatrixOfDistances
-
Remove a prototype to the matrix of distances.
- removeFromB(Prototype) - Method in class keel.Algorithms.Instance_Generation.PNN.MatrixOfDistances
-
Remove a prototype to the matrix of distances.
- removeFromCandidates(ArrayList<Pair<Prototype, Prototype>>, Prototype) - Static method in class keel.Algorithms.Instance_Generation.MCA.MCAGenerator
-
Removes a prototype from the list of pairs of the nearest prototypes.
- removeGene(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Chromosome
-
Deletes one gene from the chromosome
- removeGene(Gene) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Chromosome
-
Remove a specific gene from the chromosome, using the Object.equals()
method (must be the SAME object with SAME id)
- removeInput(int, int) - Method in class keel.GraphInterKeel.experiments.Multiplexor
-
Remove input from the multiplexor
- removeInputs(boolean[], int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Remove the inputs desired
- removeInstance(int) - Method in class keel.Algorithms.Rule_Learning.SRI.Instances
-
Removes the example in the given position.
- removeInstance(int) - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
-
It does remove the instance i from the instanceSet.
- removeInstance(int) - Method in class keel.Dataset.InstanceSet
-
It does remove the instance i from the instanceSet.
- removeInstances(double[][], int, int) - Method in class keel.Algorithms.MIL.APR.AbstractAPR
-
- removeInstances(double[][], int, int) - Method in class keel.Algorithms.MIL.APR.IteratedDiscrimination.IteratedDiscrimination
-
- removeInstances(LinkedList<Integer>) - Method in class keel.Algorithms.Rule_Learning.SRI.Instances
-
Removes all the examples whose indeces are given as parameter.
- removeInstancesAndRestart(classifier) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.instanceSet
-
- removeLast() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Remove the last rule in the ruleset as well as it's stats.
- removeLink(ExpNeuron, int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.ExpNeuronStructuralMutator
-
Removes a link of a neuron of an specific layer from
a specific origin neuron
- removeLink(N, int) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.INeuronStructuralMutator
-
Removes a link of a neuron of an specific layer from
a specific origin neuron
- removeLink(LinearNeuron, int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.LinearNeuronStructuralMutator
-
Removes a link of a neuron of an specific layer from
a specific origin neuron
- removeLink(SigmNeuron, int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.SigmNeuronStructuralMutator
-
Removes a link of a neuron of an specific layer from
a specific origin neuron
- removeMatched(int[], int) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.matchProfileAgent
-
- removeMatchesOfRule(int, matchProfileAgent) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ruleOrderAgent
-
- removeNeuron(LinkedLayer, LinkedLayer, int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.ExpNeuronStructuralMutator
-
Removes a neuron of a specific layer
- removeNeuron(LinkedLayer, LinkedLayer, int) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.INeuronStructuralMutator
-
Removes a neuron of a specific layer
- removeNeuron(LinkedLayer, LinkedLayer, int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.LinearNeuronStructuralMutator
-
Removes a neuron of a specific layer
- removeNeuron(LinkedLayer, LinkedLayer, int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.SigmNeuronStructuralMutator
-
Removes a neuron of a specific layer
- removeNeuron(LinkedNeuron) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Removes a neuron of the layer
- removeNeuron(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Removes a neuron of the layer using its index
- removeNominalValues(ArrayList<String>) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Gene
-
removes a set of nominal values from the active list (if active)
- removeNonUsefulClassifiers() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
It removes all classifiers in population that are
not useful (the useful parameter is set to false)
- removeNulls() - Method in class keel.Algorithms.Hyperrectangles.EACH.RuleSet
-
Remove complex with repetitive attributes
- removeOnly(PrototypeSet, PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.ADE_CoForestGenerator
-
Depuration algorithm.
- removeParameters(int) - Method in class keel.GraphInterKeel.experiments.Joint
-
- removeProblem(int) - Method in class keel.GraphInterKeel.experiments.Joint
-
- removeRandom() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Remove a random prototype (and returns it)
- removeRandom() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Remove a random prototype (and returns it)
- removeRbf(String) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Deletes a neuron from the net
- removeRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbfn
-
Deletes a neuron of the net
- removeRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
-
Deletes a neuron of the net
- removeRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
-
Deletes a neuron of the net
- removeRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
-
Deletes a neuron of the net
- removeRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
-
Deletes a neuron of the net
- removeRbf(String) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
-
Deletes a neuron of the net
- removeRedundant(ArrayList<Chromosome>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.AlatasetalProcess
-
Removes the redundant chromosomes of the population given.
- removeRedundant(ArrayList<Chromosome>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.MOPNARProcess
-
- removeRedundant(ArrayList<Chromosome>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.QAR_CIP_NSGAIIProcess
-
- RemoveRepeatedCAN(Population) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Eliminates the repeated individuals for canonical representation
- RemoveRepeatedDNF(Population, TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Eliminates the repeated individuals for DNF representation
- removeRule(int, Chromosome) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Population
-
Removes one rule of the specified subpopulation
- removeRule(Chromosome) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Subpopulation
-
Removes one rule from the subpopulation list
- removeRule(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Ruleset
-
Deletes a given rule of the ruleset.
- removeRule(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ruleOrderAgent
-
- removeRule(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Ruleset
-
Deletes a given rule of the ruleset.
- removeRule(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.RuleSet
-
Removes a rule from the list
- removeRule(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Ruleset
-
Deletes a given rule of the ruleset.
- removeRule(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Ruleset
-
Deletes a given rule of the ruleset.
- removeRule(int) - Method in class keel.Algorithms.Rule_Learning.PART.Ruleset
-
Deletes a given rule of the ruleset.
- removeRule(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ruleset
-
Deletes a given rule of the ruleset.
- removeRule(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Ruleset
-
Deletes a given rule of the ruleset.
- removeRules() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.RuleBase
-
Removes the rules stored.
- removeRules(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.RuleBase
-
It removes a prespecified number of rules from the rule set
- removeSeed(String) - Method in class keel.GraphInterKeel.experiments.Parameters
-
removes seed
- removeSelector(Selector) - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Remove the selector from the list
- removeSelector(Selector) - Method in class keel.Algorithms.Rule_Learning.Prism.Complejo
-
Remove the selector from the list
- removeSelector(Selector) - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
Drop the selector of the list selectors
- removeSelector(Selector) - Method in class keel.Algorithms.Rule_Learning.UnoR.Complejo
-
Drop the selector of the list selectors
- removeSelectorAtributo(int) - Method in class keel.Algorithms.Rule_Learning.Prism.Complejo
-
Remove the selectors from the list of the selectors that have the parameter attribute
o
- removeSelectorAtributo(int) - Method in class keel.Algorithms.Rule_Learning.UnoR.Complejo
-
Removes the selectors that have the attribute given as argument from the proper list
- removeSelectorAttribute(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Remove the selectors from the list of the selectors that have the parameter attribute
o
- removeSelectorAttribute(int) - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
Removes the selectors that have the attribute given as argument from the proper list
- removeSubstring(String, String) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Removes all occurrences of a string from another string.
- removeSubstring(String, String) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Removes all occurrences of a string from another string.
- removeSubstring(String, String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Removes all occurrences of a string from another string.
- removeSubstring(String, String) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Removes all occurrences of a string from another string.
- removeSubstring(String, String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Removes all occurrences of a string from another string.
- removeSubstring(String, String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Removes all occurrences of a string from another string.
- removeSubstring(String, String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Removes all occurrences of a string from another string.
- removeSubstring(String, String) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Removes all occurrences of a string from another string.
- removeSubstring(String, String) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Removes all occurrences of a string from another string.
- removeSubsumed(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.RuleSet
-
Remove rules are the same ina semantic way(At = 1, At <> 0, At = [0,1])
- removeValorInv(Integer, Double) - Method in class keel.Algorithms.Rule_Learning.Rules6.Regla
-
Removes an attribute with its value to the invalid values list.
- removeValorInv(Integer, Double) - Method in class keel.Algorithms.Rule_Learning.SRI.Regla
-
Removes an attribute with its value to the invalid values list.
- removeValue(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.IntegerSet
-
It removes a value of the set if it is present
- removeWithoutClass(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Returns a copy of the set without an prototype without checking the class label
- removeWithoutClass(PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
- renameAttribute(int, String) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Renames an attribute.
- renameAttribute(M5Attribute, String) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Renames an attribute.
- renameAttribute(int, String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Renames an attribute.
- renameAttribute(AttributeWeka, String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Renames an attribute.
- renameAttribute(int, String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Renames an attribute.
- renameAttribute(Attribute, String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Renames an attribute.
- renameAttributeValue(int, int, String) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Renames the value of a nominal (or string) attribute value.
- renameAttributeValue(M5Attribute, String, String) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Renames the value of a nominal (or string) attribute value.
- renameAttributeValue(int, int, String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Renames the value of a nominal (or string) attribute value.
- renameAttributeValue(AttributeWeka, String, String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Renames the value of a nominal (or string) attribute value.
- renameAttributeValue(int, int, String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Renames the value of a nominal (or string) attribute value.
- renameAttributeValue(Attribute, String, String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Renames the value of a nominal (or string) attribute value.
- renderGeneration(int, <any>, <any>, ParametricMutator<NeuralNetIndividual>, IEvaluator) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.listener.NeuralNetReporterClas
-
Renders a generation of the algorithm to a String
- renderGeneration(int, <any>, <any>, ParametricMutator<NeuralNetIndividual>, IEvaluator) - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.listener.NeuralNetReporterRegr
-
Renders a generation of the algorithm to a String
- renderNeuralNetIndividual(<any>, IEvaluator) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlusReporterClas
-
Renders a NeuralNetIndividual to a String
- renderNeuralNetIndividual(<any>, IEvaluator) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.IRPropPlusReporterRegr
-
Renders a NeuralNetIndividual to a String
- renderNeuralNetIndividual(<any>, IEvaluator) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.listener.NeuralNetReporterClas
-
Renders a NeuralNetIndividual to a String
- renderNeuralNetIndividual() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividual
-
Returns a string that represents the individual
This method can be used by class that extends NeuralNetIndividual
- renderNeuralNetIndividual(<any>, IEvaluator) - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.listener.NeuralNetReporterRegr
-
Renders a NeuralNetIndividual to a String
- RENN - Class in keel.Algorithms.Instance_Selection.RENN
-
File: RENN.java
The RENN Instance Selection algorithm.
- RENN(String) - Constructor for class keel.Algorithms.Instance_Selection.RENN.RENN
-
Default constructor.
- RENN - Class in keel.Algorithms.Preprocess.Instance_Selection.RENN
-
File: RENN.java
The RENN Instance Selection algorithm.
- RENN(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.RENN.RENN
-
Default constructor.
- reorderInstances() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowingILAS
-
- rep - Variable in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.Cromosoma
-
this vector represents a chromosome
- repetitionsRuleOrdering - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- Replace - Class in keel.Algorithms.Associative_Classification.ClassifierCBA
-
This class contains the representation of the "Replace" structure .
- Replace() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.Replace
-
Default Constructor.
- Replace(int, int, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.Replace
-
Parameters Constructor.
- Replace - Class in keel.Algorithms.Associative_Classification.ClassifierCBA2
-
This class contains the representation of the "Replace" structure
- Replace() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.Replace
-
Default Constructor
- Replace(int, int, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.Replace
-
Parameters Constructor
- replace(double[], myDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Individual
-
It generates a tree that matches the given example
- replaceIndividuals(int) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Removes worse _numIndividuals nets from Population and includes individuals from subpopulation
- replacementAlgorithm() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.geneticAlgorithm
-
- replacementPolicy(Classifier[], boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.GA
-
- replacementPolicy(Classifier[], boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.GA
-
- replaceMissingValues(double[]) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Replaces all missing values in the instance with the
values contained in the given array.
- replaceMissingValues(double[]) - Method in class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Replaces all missing values in the instance with the
values contained in the given array.
- replaceMissingValues(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Replaces all missing values in the instance with the
values contained in the given array.
- replaceMissingValues(double[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Replaces all missing values in the instance with the
values contained in the given array.
- replaceMissingValues(double[]) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Replaces all missing values in the instance with the
values contained in the given array.
- replaceMissingValues(double[]) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Replaces all missing values in the instance with the
values contained in the given array.
- replaceMissingValues(double[]) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Replaces all missing values in the instance with the
values contained in the given array.
- ReplaceMissingValuesFilter - Class in keel.Algorithms.Decision_Trees.M5
-
Replaces all missing values for nominal and numeric attributes in a
dataset with the modes and means from the training data.
- ReplaceMissingValuesFilter() - Constructor for class keel.Algorithms.Decision_Trees.M5.ReplaceMissingValuesFilter
-
- replaceNode(int, Node) - Method in class keel.GraphInterKeel.experiments.Graph
-
Replace a node
- replaceSubstring(String, String, String) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Replaces with a new string, all occurrences of a string from
another string.
- replaceSubstring(String, String, String) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Replaces with a new string, all occurrences of a string from
another string.
- replaceSubstring(String, String, String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Replaces with a new string, all occurrences of a string from
another string.
- replaceSubstring(String, String, String) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Replaces with a new string, all occurrences of a string from
another string.
- replaceSubstring(String, String, String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Replaces with a new string, all occurrences of a string from
another string.
- replaceSubstring(String, String, String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Replaces with a new string, all occurrences of a string from
another string.
- replaceSubstring(String, String, String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Replaces with a new string, all occurrences of a string from
another string.
- replaceSubstring(String, String, String) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Replaces with a new string, all occurrences of a string from
another string.
- replaceSubstring(String, String, String) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Replaces with a new string, all occurrences of a string from
another string.
- replaceTerminals(FuzzyAlphaCut[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
This method replace the terminal from fuzzy alpha cuts
- replaceTerminals(FuzzyAlphaCut[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeVariable
-
This method replaces the fuzzy alpla cuts in a especified node
- replacing_poc_nn(PrototypeSet, double, double) - Method in class keel.Algorithms.Instance_Generation.POC.POCGenerator
-
- repmat(DenseMatrix, int, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
MATLAB - Replicate and tile an array
- repmat(DenseMatrix, int, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.LLSImpute
-
Replicate and tile an array.
- report(String, IDataset, ArrayList<ArrayList<IInstance>>, double[][], int) - Method in class keel.Algorithms.MIL.APR.AbstractAPR
-
- report(String, IDataset, ArrayList<ArrayList<IInstance>>, double[][], int, ArrayList<Integer>) - Method in class keel.Algorithms.MIL.APR.AbstractAPR
-
- ReportTool - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning
-
File: ReportTool.java
Class to print reports about the results of the classification process
- ReportTool() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.ReportTool
-
- ReportTool - Class in keel.Algorithms.RST_Learning
-
File: ReportTool.java
Class to print reports about the results of the classification process
- ReportTool() - Constructor for class keel.Algorithms.RST_Learning.ReportTool
-
- REPRESENTATION - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- Representation - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
A classifer can contain three types of representations: ternary
representatiton (each alelle can take 3 possible values, 0, 1 or don't
care), real representation, where each alelle can take any real value,
and the mixed one, that can take character or real representation for
each alelle.
- Representation(double[]) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
It creates a new representation with the specified condition and a
random action.
- Representation(double[], int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
It creates a new representation with the specified condition and action.
- Representation(Representation) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
It creates a new representation that is a clone of the representation
passed.
- Representation(StringTokenizer) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
It creates a new representation that is a clone of the representation
passed.
- Reproduccion(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
-
Reproductdion schema
Replaces the worst individuals with the generated by cross and mutation
- reproduction(PrototypeSet, PrototypeSet[][]) - Method in class keel.Algorithms.Instance_Generation.ENPC.ENPCGenerator
-
Reproduction operator.
- REPSO - Class in keel.Algorithms.PSO_Learning.REPSO
-
Title: Algorithm REPSO
Description: It contains the implementation of the algorithm
Company: KEEL
- REPSO() - Constructor for class keel.Algorithms.PSO_Learning.REPSO.REPSO
-
Default constructor
- REPSO(parseParameters) - Constructor for class keel.Algorithms.PSO_Learning.REPSO.REPSO
-
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
- RequestReevaluation(int, int) - Static method in class keel.Algorithms.Instance_Selection.CoCoIS.CoCoIS
-
Deletes the fitness value of every member which contains the
given selector in the subpopulation selected
- RequestReevaluation(int, int) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.CoCoIS
-
Deletes the fitness value of every member which contains the
given selector in the subpopulation selected
- resample(Random) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Creates a new dataset of the same size using random sampling
with replacement.
- resample(Randomize) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Creates a new dataset of the same size using random sampling
with replacement.
- resample(Random) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Creates a new dataset of the same size using random sampling with
replacement.
- resample() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Return a prototype set by Bootstrapping the current PrototypeSet
Creates a new dataset of the same size using random sampling
with replacement according to the given weight vector.
- resample(Random) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Creates a new dataset of the same size using random sampling
with replacement.
- resampleWithWeights(Random) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Creates a new dataset of the same size using random sampling
with replacement according to the current instance weights.
- resampleWithWeights(Random, double[]) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Creates a new dataset of the same size using random sampling
with replacement according to the given weight vector.
- resampleWithWeights(Randomize) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Creates a new dataset of the same size using random sampling
with replacement according to the current instance weights.
- resampleWithWeights(Randomize, double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Creates a new dataset of the same size using random sampling
with replacement according to the given weight vector.
- resampleWithWeights(Random) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Creates a new dataset of the same size using random sampling with
replacement according to the current instance weights.
- resampleWithWeights(Random, double[]) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Creates a new dataset of the same size using random sampling with
replacement according to the given weight vector.
- resampleWithWeights(PrototypeSet, int, boolean[]) - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.ADE_CoForestGenerator
-
Resample instances w.r.t the weight
- resampleWithWeights(PrototypeSet, int, boolean[]) - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.CLCCGenerator
-
Resample instances w.r.t the weight
- resampleWithWeights(PrototypeSet, int, boolean[]) - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.CoForestGenerator
-
Resample instances w.r.t the weight
- resampleWithWeights(Random) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Creates a new dataset of the same size using random sampling
with replacement according to the current instance weights.
- resampleWithWeights(Random, double[]) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Creates a new dataset of the same size using random sampling
with replacement according to the given weight vector.
- resbundle - Variable in class keel.GraphInterKeel.experiments.Credits
-
- reservaVelocidad(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Particula
-
Reserves memory enough to manage the particle velocity.
- reset() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Individual
-
Resets the gene with the same value.
- reset() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Individual
-
- reset() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Mask
-
Deactivates the entry pointed by the cursor
- reset(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Mask
-
Deactivates the value of a given position.
- reset() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Mask
-
Deactivates the entry pointed by the cursor
- reset(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Mask
-
Deactivates the value of a given position.
- reset() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Roulette
-
Resets the roulette (puts all the probabilities to 0).
- reset() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Roulette
-
Resets the roulette (puts all the probabilities to 0).
- reset() - Static method in class keel.Algorithms.Instance_Generation.utilities.Debug
-
Reset both debug modes (set them to false).
- reset() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset
-
Reset dataset
- reset() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.ArffDataSet
-
Reset dataset
- reset() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.ArrayDataset
-
Reset dataset
- reset() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.FileDataset
-
Reset dataset
- reset() - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IDataset
-
Reset dataset
- reset() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.KeelDataSet
-
Reset dataset
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.FreqList
-
Reset the iterator to the beginning of the list.
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.FreqList
-
Reset the iterator to the beginning of the list.
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.valueAssociations
-
Resets the iterator of the list to the beginning
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.FreqList
-
Reset the iterator to the beginning of the list.
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.valueAssociations
-
Resets the iterator of the list to the beginning
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqList
-
Reset the iterator to the beginning of the list.
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqListPair
-
Reset the iterator to the beginning of the list.
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Histogram
-
Resets the statisticals variables.
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.LinearRegression
-
Resets the statisticals variables.
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
-
Resets the statisticals variables.
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.valueAssociations
-
Resets the iterator of the list to the beginning
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.FreqList
-
Reset the iterator to the beginning of the list.
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.valueAssociations
-
Resets the iterator of the list to the beginning
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.FreqList
-
Reset the iterator to the beginning of the list.
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.valueAssociations
-
Resets the iterator of the list to the beginning
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.FreqList
-
Reset the iterator to the beginning of the list.
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.valueAssociations
-
Resets the iterator of the list to the beginning
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.FreqList
-
Reset the iterator to the beginning of the list.
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.FreqList
-
Reset the iterator to the beginning of the list.
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.valueAssociations
-
Resets the iterator of the list to the beginning
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.FreqList
-
Reset the iterator to the beginning of the list.
- reset() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.valueAssociations
-
Resets the iterator of the list to the beginning
- reset() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Mask
-
Deactivates the entry pointed by the cursor
- reset(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Mask
-
Deactivates the value of a given position.
- reset() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Mask
-
Deactivates the entry pointed by the cursor
- reset(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Mask
-
Deactivates the value of a given position.
- reset() - Method in class keel.Algorithms.Rule_Learning.PART.Mask
-
Deactivates the entry pointed by the cursor
- reset(int) - Method in class keel.Algorithms.Rule_Learning.PART.Mask
-
Deactivates the value of a given position.
- reset() - Method in class keel.Algorithms.Rule_Learning.Ripper.Mask
-
Deactivates the entry pointed by the cursor
- reset(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Mask
-
Deactivates the value of a given position.
- reset() - Method in class keel.Algorithms.Rule_Learning.Slipper.Mask
-
Deactivates the entry pointed by the cursor
- reset(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Mask
-
Deactivates the value of a given position.
- reset() - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Debug
-
Reset both debug modes (set them to false).
- resetAmp(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Individual
-
- resetBest() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.geneticAlgorithm
-
- resetBestStats() - Static method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.timerEvolutionStats
-
- resetBestStats() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Statistics
-
- resetBestStats() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Statistics
-
- resetClassification(Dataset) - Method in class keel.Algorithms.Decision_Trees.C45.Cut
-
Function to reset the classification of the model.
- resetClassification(Dataset) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Function to reset the classification of the model.
- resetClassification(MyDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Cut
-
Function to reset the classification of the model.
- resetClassification(Dataset) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Cut
-
Function to reset the classification of the model.
- resetClassification(Dataset) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Function to reset the classification of the model.
- resetClassification(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Cut
-
Function to reset the classification of the model.
- resetClassification(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Cut
-
Function to reset the classification of the model.
- resetClassification(MyDataset) - Method in class keel.Algorithms.Rule_Learning.PART.Cut
-
Function to reset the classification of the model.
- resetClassification(Dataset) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Cut
-
Function to reset the classification of the model.
- resetData() - Method in class keel.GraphInterKeel.statistical.statTableModel
-
Resets data of the table to defaukt values
- resetIndex() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Mask
-
Sets the cursor at atBegin
(that's a non valid position and it will be necessary a next() to reach the first active position).
- resetIndex() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Mask
-
Sets the cursor at atBegin
(that's a non valid position and it will be necessary a next() to reach the first active position).
- resetIndex() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Mask
-
Sets the cursor at atBegin
(that's a non valid position and it will be necessary a next() to reach the first active position).
- resetIndex() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Mask
-
Sets the cursor at atBegin
(that's a non valid position and it will be necessary a next() to reach the first active position).
- resetIndex() - Method in class keel.Algorithms.Rule_Learning.PART.Mask
-
Sets the cursor at atBegin
(that's a non valid position and it will be necessary a next() to reach the first active position).
- resetIndex() - Method in class keel.Algorithms.Rule_Learning.Ripper.Mask
-
Sets the cursor at atBegin
(that's a non valid position and it will be necessary a next() to reach the first active position).
- resetIndex() - Method in class keel.Algorithms.Rule_Learning.Slipper.Mask
-
Sets the cursor at atBegin
(that's a non valid position and it will be necessary a next() to reach the first active position).
- resetPerformance() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
-
- resetPerformance(int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PerformanceAgent
-
- resetPerformance() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
-
- resetPerformance(int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PerformanceAgent
-
- resetPerformanceTest(int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PerformanceAgent
-
The test stage computes more statistics.
- resetPerformanceTest(int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PerformanceAgent
-
The test stage computes more statistics.
- resetQueue() - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Clears the output queue.
- resetQueue() - Method in class keel.Algorithms.Decision_Trees.M5.ReplaceMissingValuesFilter
-
Resets the output queue.
- resetTime() - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.Timer
-
Resets the time counter
- resetTime() - Static method in class keel.Algorithms.RST_Learning.Timer
-
Resets the time counter
- resetTokens() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Chromosome
-
Reset the count of captured tokens for this rule in the tokens
competition
- resizeInputData(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Recasts the input data sets so that only N percent is used.
- resizeTable(int, int) - Method in class keel.GraphInterKeel.statistical.statTableModel
-
Resizes a table
- ResourceAllocation(String[][], double[], String[], double) - Method in class keel.Algorithms.Instance_Generation.PSCSA.PSCSAGenerator
-
To minimize the computaional cost in generation clones
- resta(double, double) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Discretizacion
-
Substracts b to a.
- resta(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzy
-
- resta(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzy
-
- resta(Interval) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.Interval
-
- resta(Interval) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.Interval
-
- resta(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Expert.fuzzy
-
- resta(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.fuzzy
-
- resta(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzy
-
- resta(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzy
-
- resta(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.tests.IntermediateBoost.fuzzy
-
- restar(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Subtracts two prototype sets, element by element.
- restar(PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Restar dos conjuntos de prototipos , uno a uno.
- restart() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.instanceSet
-
- ReStart() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
Function which restart the population
- ReStart() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
Function which restart the population
- ReStart() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
Function which restart the population
- ReStart() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
Function which restart the population
- ReStart() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
Function which restart the population
- ReStart() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
Function which restart the population
- ReStart() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
Function which restart the population
- ReStart() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
Function which restart the population
- restoreDataSet() - Method in class keel.GraphInterKeel.experiments.Graph
-
Restore the data set node from a previous backup
- Result - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate
-
Used to store the quality measures for the generated rule
- Result() - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Result
-
Creates a new instance of Result
- Result - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate
-
Used to store the quality measures for the generated rule
- Result() - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Result
-
Creates a new instance of Result
- Result - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate
-
Used to store the quality measures for the generated rule
- Result() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Result
-
Creates a new instance of Result
- result_class - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- Resultado - Class in keel.Algorithms.Genetic_Rule_Learning.Hider
-
- Resultado(int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Hider.Resultado
-
- resultFileName - Static variable in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
The name of the result file.
- resultFileName - Static variable in class keel.Algorithms.Decision_Trees.CART.RunCART
-
The name of the result file.
- resultFileName - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
The name of the result file.
- resultFileName - Static variable in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
The name of the result file.
- resultFileName - Static variable in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Results file's name.
- resultFileName - Static variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
The name of the result file.
- resultFileName - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
The name of the result file.
- resultFileName - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
The name of the result file.
- resultFileName - Static variable in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
The name of the result file.
- resultFileName - Static variable in class keel.Algorithms.Rule_Learning.C45Rules.Algorithm
-
The name of the result file.
- resultFileName - Static variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Algorithm
-
The name of the result file.
- resultFileName - Static variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
The name of the result file.
- resultFileName - Static variable in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
The name of the result file.
- ResultPrinter - Class in keel.Algorithms.Decision_Trees.CART
-
Class to print the results of the CART algorithm
- ResultPrinter() - Constructor for class keel.Algorithms.Decision_Trees.CART.ResultPrinter
-
- Results - Class in keel.Algorithms.Decision_Trees.M5
-
Class for containing the evaluation results of a model
- Results(int, int) - Constructor for class keel.Algorithms.Decision_Trees.M5.Results
-
Constructs an object which could contain the evaluation results of a model
- Results - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Class for containing the evaluation results of a model
- Results(int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Results
-
Constructs an object which could contain the evaluation results of a model
- results(double[], double[]) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Writes the result file with expected and obtained data for modelling problems.
- results(int[], int[]) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Writes the result file with expected and obtained data for classification problems.
- results(double[][], int[]) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Writes the result file with pattern and obtained data for clustering problems.
- results(double[], double[]) - Method in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Writes the result file with expected and obtained data for modelling problems.
- results(int[], int[]) - Method in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Writes the result file with expected and obtained data for classification problems.
- results(double[][], int[]) - Method in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Writes the result file with pattern and obtained data for clustering problems.
- reTuneParameters(int) - Method in class keel.Algorithms.Lazy_Learning.IDIBL.IDIBL
-
Finds best parameters for classification
- returnNumberInstances() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
Returns an Array with the number of instances that belong to each class.
- returnNumberInstances() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
It returns the number of instances
- returnNumberInstances() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
It returns the number of instances in the dataset for each class.
- returnNumberInstances() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
It returns the number of instances in the dataset for each class.
- returnNumFeatures() - Method in class keel.Algorithms.Preprocess.Feature_Selection.Datos
-
Returns the number of features of the datasets
- returnNumInstances() - Method in class keel.Algorithms.Preprocess.Feature_Selection.Datos
-
Returns the number of instances of the datasets
- returnRanks() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
Returns the minimum and maximum values of every attributes as a matrix.
- returnRanks() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
Returns the minimum and maximum values of every attributes as a matrix.
- returnRanks() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
It returns the ranks of the input and output variables
- returnRanks() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
Returns the minimum and maximum values of every attributes as a matrix.
- returnRanks() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
Returns the minimum and maximum values of every attributes as a matrix.
- returnRanks() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
Returns the minimum and maximum values of every attributes as a matrix.
- returnRanks() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
Returns the minimum and maximum values of every attributes as a matrix.
- rev() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns the reverse vector
- revertNewLines(String) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Reverts \r and \n in a string into carriage returns and new lines.
- revertNewLines(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Reverts \r and \n in a string into carriage returns and new lines.
- revertNewLines(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Reverts \r and \n in a string into carriage returns and new lines.
- revertNewLines(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Reverts \r and \n in a string into carriage returns and new lines.
- revertNewLines(String) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Reverts \r and \n in a string into carriage returns and new lines.
- revertNewLines(String) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Reverts \r and \n in a string into carriage returns and new lines.
- reward(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.DSM.DSMGenerator
-
Applies a DSMGenerator-reward to prototype m.
- reward(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQ1
-
Applies a reward to prototype m
- reward(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQ3
-
Applies LVQ3-reward to prototype m
- reward(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQGenerator
-
Applies a reward to prototype m
- reward(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQTC
-
Applies the LVQTC reward to prototype m
- reward2(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.LVQ.LVQ3
-
USING EPSILON parameter.
- RFreeMutation - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
This class implements the free mutation.
- RFreeMutation() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.RFreeMutation
-
- RFreeMutation - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This class implements the free mutation.
- RFreeMutation() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.RFreeMutation
-
- ridgeTipText() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
Returns the tip text for this property
- rightChi2Row - Variable in class keel.Algorithms.Discretizers.Khiops.DeltaValue
-
the chi2 row of the right interval in our boundary
- rightInterval - Variable in class keel.Algorithms.Discretizers.Khiops.DeltaValue
-
the right interval in our boundary
- rightInterval - Variable in class keel.Algorithms.Discretizers.MODL.DeltaValue
-
the right interval in our boundary
- rightSide(int, Dataset) - Method in class keel.Algorithms.Decision_Trees.C45.Cut
-
Function to print the condition satisfied by itemsets in a subset.
- rightSide(int, Dataset) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Function to print the condition satisfied by itemsets in a subset.
- rightSide(int, MyDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Cut
-
Function to print the condition satisfied by itemsets in a subset.
- rightSide(int, Dataset) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Cut
-
Function to print the condition satisfied by itemsets in a subset.
- rightSide(int, Dataset) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Function to print the condition satisfied by itemsets in a subset.
- rightSide(int, MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Cut
-
Function to print the condition satisfied by itemsets in a subset.
- rightSide(int, MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Cut
-
Function to print the condition satisfied by itemsets in a subset.
- rightSide(int, MyDataset) - Method in class keel.Algorithms.Rule_Learning.PART.Cut
-
Function to print the condition satisfied by itemsets in a subset.
- rightSide(int, Dataset) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Cut
-
Function to print the condition satisfied by itemsets in a subset.
- rightSide2(int, Dataset) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Function to print the condition satisfied by itemsets in a subset.
- rightSide2(int, Dataset) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Function to print the condition satisfied by itemsets in a subset.
- Riona - Class in keel.Algorithms.Rule_Learning.Riona
-
Main procedures of Rionasd algorithm
- Riona() - Constructor for class keel.Algorithms.Rule_Learning.Riona.Riona
-
Riona default constructor
- Riona(String, String, String, String, String, long) - Constructor for class keel.Algorithms.Rule_Learning.Riona.Riona
-
Riona constructor
- Ripper - Class in keel.Algorithms.Rule_Learning.Ripper
-
Implementation of the classification algorithm Ripper, according to the paper [Cohen95]
and the Weka's implementation.
- Ripper(parseParameters) - Constructor for class keel.Algorithms.Rule_Learning.Ripper.Ripper
-
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
- ripperK(MyDataset, Mask, Mask) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ripper
-
It implements the algorithm Ripper2:
1.
- ripperMulticlass(MyDataset) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ripper
-
It implements the algorithm Ripperk itself:
1.
- RipperRule - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
This class implements a single rule that predicts specified class.
- RipperRule() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RipperRule
-
Constructor
- RipperRule(double[]) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RipperRule
-
Constructor
- RISE - Class in keel.Algorithms.Hyperrectangles.RISE
-
File: RISE.java
The RISE Algorithm.
- RISE(String) - Constructor for class keel.Algorithms.Hyperrectangles.RISE.RISE
-
The main method of the class
- rmCoveredBySuccessives(Instances, FastVector, int) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Static utility function to count the data covered by the
rules after the given index in the given rules, and then
remove them.
- rmdir(String) - Static method in class keel.GraphInterKeel.experiments.FileUtils
-
Remove all the files in a directory, and then deletes the latter
- RMHC - Class in keel.Algorithms.Instance_Selection.RMHC
-
File: RMHC.java
The RMHC Instance Selection algorithm.
- RMHC(String) - Constructor for class keel.Algorithms.Instance_Selection.RMHC.RMHC
-
Default constructor.
- RMHC - Class in keel.Algorithms.Preprocess.Instance_Selection.RMHC
-
File: RMHC.java
The RMHC Instance Selection algorithm.
- RMHC(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.RMHC.RMHC
-
Default constructor.
- Rmin - Variable in class keel.Algorithms.Instance_Generation.SGP.SGPGenerator
-
- RMini - Class in keel.Algorithms.Genetic_Rule_Learning.RMini
-
- RMini() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.RMini.RMini
-
Default constructor
- RMini(parseParameters) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.RMini.RMini
-
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
- Rmis - Variable in class keel.Algorithms.Instance_Generation.SGP.SGPGenerator
-
- RMPEnvironment - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
RMPEnvironment.
- RMPEnvironment() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.RMPEnvironment
-
It's the constructor of the class.
- RMSDistance(double[], int, double[][], int) - Static method in class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
-
Computes the RMSdistance between the given center and the n nearest vectors in a double[][]
- RMSDistance(double[], int, double[][], int) - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
-
Computes the RMSdistance between the given center and the n nearest vectors in a double[][]
- RMSDistance(double[], int, double[][], int) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
-
Computes the RMSdistance between the given center and the n nearest vectors in a double[][]
- RMSDistance(double[], int, double[][], int) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
-
Computes the RMSdistance between the given center and the n nearest vectors in a double[][]
- RMSDistance(double[], int, double[][], int) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
-
Computes the RMSdistance between the given center and the n nearest vectors in a double[][]
- RMSDistance(double[], int, double[][], int) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
-
Computes the RMSdistance between the given center and the n nearest vectors in a double[][]
- RndInitCrom(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.CromCAN
-
Random initialization of an existing chromosome
- RndInitCrom() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.CromDNF
-
Random initialization of an existing chromosome
- RndInitGene() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Gene
-
Random initialization of an existing gene
- RndInitGene() - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Gene
-
Random initialization of an existing gene
- RndInitInd(TableVar, int, String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.IndCAN
-
Creates random instance of Canonical individual
- RndInitInd(TableVar, int, String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.IndDNF
-
Creates rangom instance of DNF individual
- RndInitInd(TableVar, int, String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Creates random instance of individual
- RndInitInd(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.IndCAN
-
Creates random instance of Canonical individual
- RndInitInd(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.IndDNF
-
Creates random instance of DNF individual
- RndInitInd(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Individual
-
Creates rangom instance of DNF individual
- RndInitPop(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Population
-
Random population initialization
- RndInitPop(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Population
-
Biased random population initialization
- RNG - Class in keel.Algorithms.Instance_Selection.RNG
-
File: RNG.java
The RNG Instance Selection algorithm.
- RNG(String) - Constructor for class keel.Algorithms.Instance_Selection.RNG.RNG
-
Default constructor.
- RNG - Class in keel.Algorithms.Preprocess.Instance_Selection.RNG
-
File: RNG.java
The RNG Instance Selection algorithm.
- RNG(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.RNG.RNG
-
Default constructor.
- RNichedMutation - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
This class performs the niched mutation.
- RNichedMutation() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.RNichedMutation
-
- RNichedMutation - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This class performs the niched mutation.
- RNichedMutation() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.RNichedMutation
-
- RNN - Class in keel.Algorithms.Instance_Selection.RNN
-
File: RNN.java
The RNN Instance Selection algorithm.
- RNN(String) - Constructor for class keel.Algorithms.Instance_Selection.RNN.RNN
-
Default constructor.
- RNN - Class in keel.Algorithms.Preprocess.Instance_Selection.RNN
-
File: RNN.java
The RNN Instance Selection algorithm.
- RNN(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.RNN.RNN
-
Default constructor.
- rnorm(int, double, double, Random) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Maths
-
Generates a sample of a normal distribution.
- Rom - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Apply Rom flag.
- root - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- rootMeanPriorSquaredError() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Returns the root mean prior squared error.
- rootMeanSquaredError() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Returns the root mean squared error.
- rootNode - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.FPtree
-
Start reference for FP-tree.
- rootNode - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.FPtree
-
Start reference for FP-tree.
- rootRelativeSquaredError() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Returns the root relative squared error if the class is numeric.
- Rotation(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
Given the individual "i", a rotation operation is made.
- Rotation(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- Rotation(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
Given the individual "i", a rotation operation is made.
- Rotation(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
Given the individual "i", a rotation operation is made.
- RoughSetsCuttoff - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets
-
- RoughSetsCuttoff(Instances, int, double) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsCuttoff
-
- RoughSetsCuttoff(Instances, int, int, double) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsCuttoff
-
- RoughSetsOriginal - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets
-
- RoughSetsOriginal(Instances, int, double) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsOriginal
-
- Roulette - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
This class implements a generic roulette.
- Roulette(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.Roulette
-
Constructs a roulette.
- Roulette - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This class implements a generic roulette.
- Roulette(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.Roulette
-
Constructs a roulette.
- Roulette(double[], int, SetupParameters) - Static method in class keel.Algorithms.Neural_Networks.gann.Selector
-
Roulette selection method
- RouletteSelection - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
This class implements Roulette Selection.
- RouletteSelection() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.RouletteSelection
-
Creates a RouletteSelection object.
- RouletteSelection - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This class implements Selection roulette.
- RouletteSelection() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.RouletteSelection
-
Creates a RouletteSelection object.
- rouletteSelection() - Method in class keel.Algorithms.Instance_Selection.CoCoIS.Subpopulation
-
Performs a roulette selection process
- rouletteSelection() - Method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Subpopulation
-
Performs a roulette selection process
- round(double) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Rounds a double to the next nearest integer value.
- round(double) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Rounds a double to the next nearest integer value.
- round(double) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Rounds a double to the next nearest integer value.
- round(double) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Rounds a double to the next nearest integer value.
- round(double) - Static method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Rounds a number given.
- round(double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Rounds a double to the next nearest integer value.
- round(double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Rounds a value given.
- round(double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Rounds a double to the next nearest integer value.
- round(double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Rounds a double to the next nearest integer value.
- round(double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Rounds a double to the next nearest integer value.
- Round(float, float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
-
Rounds the generated value for the semantics when necesary
- Round(float, float) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
-
Rounds the generated value for the semantics when necesary
- Round(float, float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
-
Rounds the generated value for the semantics when necesary
- round(double) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Rounds a double to the next nearest integer value.
- round(double, int) - Static method in class keel.GraphInterKeel.experiments.CreateInform
-
Round a double whith a decimal precision
- round(double, int) - Static method in class keel.GraphInterKeel.experiments.EducationalReport
-
Round a double whith a decimal precision
- round(double, int) - Static method in class keel.GraphInterKeel.experiments.EducationalRun
-
Round a double with a decimal precision determined
- roundDouble(double) - Static method in class keel.Algorithms.Decision_Trees.M5.M5
-
Rounds a double
- roundDouble(double, int) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Rounds a double to the given number of decimal places.
- roundDouble(double, int) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Rounds a double to the given number of decimal places.
- roundDouble(double) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
Rounds a double
- roundDouble(double, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Rounds a double to the given number of decimal places.
- roundDouble(double, int) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Rounds a double to the given number of decimal places.
- roundDouble(double, int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Rounds a double to the given number of decimal places.
- roundDouble(double, int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Rounds a double to the given number of decimal places.
- roundDouble(double, int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Rounds a double to the given number of decimal places.
- roundDouble(double, int) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Rounds a double to the given number of decimal places.
- roundDouble(double, int) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Rounds a double to the given number of decimal places.
- roundDouble(double, int) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.AlatasetalProcess
-
Rounds the number applying the BigDecimal
rounding mode given.
- roundDouble(double, int) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AprioriProcess
-
Rounds the number applying the BigDecimal
rounding mode given.
- roundDouble(double, int) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.EARMGAProcess
-
Rounds the number applying the BigDecimal
rounding mode given.
- roundDouble(double, int) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.EclatProcess
-
Rounds the number applying the BigDecimal
rounding mode given.
- roundDouble(double, int) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.GARProcess
-
Rounds the number applying the BigDecimal
rounding mode given.
- roundDouble(double, int) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.GENARProcess
-
Rounds the number applying the BigDecimal
rounding mode given.
- roundDouble(double, int) - Static method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
-
- roundNum(double) - Static method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
To round to 4 decimal in a double.
- rows - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- rows_tst - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- rset - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Individuals to replace
- RSFSS - Class in keel.Algorithms.Fuzzy_Rule_Learning.Random_Sets.FSS98
-
RSFSS is the model to be obtained as the regression model using the
fuzzy random sets regression algorithm.
- RSFSS(double[][], double[]) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Random_Sets.FSS98.RSFSS
-
Class constructor.
- RSFSSX2(int, Randomize, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Random_Sets.FSS98.RSFSS
-
This methods carries out the modelling algorithm based on Random Sets FSS 2000 using
lables for the clusters.
- RSFSSX3(int, Randomize, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Random_Sets.FSS98.RSFSS
-
This methods carries out the modelling algorithm based on Random Sets FSS 2000 without using
lables for the clusters.
- RSPAlgorithm - Class in keel.Algorithms.Instance_Generation.RSP
-
PSO algorithm calling.
- RSPAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.RSP.RSPAlgorithm
-
- RSPGenerator - Class in keel.Algorithms.Instance_Generation.RSP
-
- RSPGenerator(PrototypeSet, int, String) - Constructor for class keel.Algorithms.Instance_Generation.RSP.RSPGenerator
-
Build a new PSOGenerator Algorithm
- RSPGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.RSP.RSPGenerator
-
Build a new RSPGenerator Algorithm
- RSTAlgorithm - Class in keel.Algorithms.RST_Learning
-
File: RSTAlgorithm.java
Main class for RST methods.
- RSTAlgorithm() - Constructor for class keel.Algorithms.RST_Learning.RSTAlgorithm
-
- RSTData - Class in keel.Algorithms.RST_Learning
-
File: RSTData.java
RSTData utility class
- RSTData() - Constructor for class keel.Algorithms.RST_Learning.RSTData
-
- RSW(Classifier[], int[], int) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.GA
-
- rt - Variable in class keel.GraphInterKeel.experiments.EducationalPartitionsRun
-
This class uses a Runkeetxt object with a thread.
- RT2(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.ICPL.ICPLGenerator
-
Retaining Border instances
- rul_file - Variable in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Param
-
Auxiliary input file with rules
- rul_file - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Param
-
Auxiliary input file with rules
- rul_file - Variable in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Param
-
Auxiliary input file with rules
- Rule - Class in keel.Algorithms.Associative_Classification.ClassifierCBA
-
Class to store a non-fuzzy rule, together with some necessary information to manage the CBA algorithm.
- Rule(Rule) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
Copy Constructor.
- Rule(DataBase) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
Parameters Constructor.
- Rule - Class in keel.Algorithms.Associative_Classification.ClassifierCBA2
-
Class to store a non-fuzzy rule, together with some necessary information to manage the CBA algorithm
- Rule(Rule) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
Copy Constructor
- Rule(DataBase) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
Parameters Constructor
- Rule - Class in keel.Algorithms.Associative_Classification.ClassifierCPAR
-
Class to store a non-fuzzy rule, together with some necessary information to manage the CBA algorithm
- Rule() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCPAR.Rule
-
Copy Constructor
- Rule(DataBase) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCPAR.Rule
-
Parameters Constructor
- Rule(myDataset, DataBase, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCPAR.Rule
-
Parameters Constructor
- Rule - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR
-
Codifies a Fuzzy Rule
- Rule(Rule) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
-
Copy Constructor
- Rule(DataBase) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
-
Parameters Constructor
- Rule - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD
-
Title: Rule
Description: This class codes a Fuzzy Rule
Copyright: KEEL Copyright (c) 2008
Company: KEEL
- Rule(Rule) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Rule
-
Create a rule with another one
- Rule(DataBase) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Rule
-
Create a new rule
- Rule - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA
-
Codifies a Fuzzy Rule
- Rule(Rule) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Rule
-
Copy Constructor
- Rule(DataBase) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Rule
-
Parameters Constructor
- Rule - Class in keel.Algorithms.Decision_Trees.C45_Binarization
-
Title: Rule
Description: Rule representation
Company: KEEL
- Rule() - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.Rule
-
Default constructor
- Rule(String, myDataset) - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.Rule
-
Constructor with parameters.
- Rule(myDataset, String) - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.Rule
-
Constructor with parameters.
- Rule - Class in keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW
-
This class contains the structure of a Fuzzy Rule
- Rule() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.Rule
-
Default constructor
- Rule(int, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.Rule
-
Constructor with parameters
- Rule - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD
-
Codifies a Fuzzy Rule
- Rule(Rule) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Rule
-
Copy Constructor
- Rule(DataBase, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Rule
-
Constructor with parameters
- Rule - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid
-
Title: Rule
Description: Codifies a Fuzzy Rule
Copyright: KEEL Copyright (c) 2008
Company: KEEL
- Rule(Rule) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.Rule
-
Copy Constructor
- Rule(DataBase, int, boolean[]) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.Rule
-
Constructor with parameters
- Rule - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH
-
Title: Rule
Description: Fuzzy Rule in the GP-COACH algorithm
Company: KEEL
- Rule() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
-
Default constructor
- Rule(DataBase, int, int, int, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
-
Constructor with parameters.
- Rule(DataBase, int, int, int, int, double[], int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
-
Constructor with parameters.
- Rule(Rule) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
-
Copy constructor for a Fuzzy rule from another Fuzzy Rule
- Rule - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS
-
Title: Rule
Description: This class codes a Fuzzy Rule
Copyright: KEEL Copyright (c) 2008
Company: KEEL
- Rule(Rule) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Rule
-
Create a rule with another one
- Rule(DataBase) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Rule
-
Create a new rule
- Rule - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
Abstract class of generic rule
- Rule() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Rule
-
- Rule - Class in keel.Algorithms.Genetic_Rule_Learning.DMEL
-
- Rule() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.DMEL.Rule
-
- Rule(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.DMEL.Rule
-
Creates an empty rule
- Rule(Condition[]) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.DMEL.Rule
-
Creates a rule that includes a set of conditions
- Rule(Rule) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.DMEL.Rule
-
Creates a copy of a rule
- Rule - Class in keel.Algorithms.Genetic_Rule_Learning.GIL
-
- Rule() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GIL.Rule
-
- Rule(myDataset) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GIL.Rule
-
Creates a random rule
- Rule(myDataset, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GIL.Rule
-
Creates a rule that matches with a certain example
- Rule(Rule) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GIL.Rule
-
Creates a copy of a rule
- Rule - Class in keel.Algorithms.Genetic_Rule_Learning.ILGA
-
Represents one rule as specified by the OIGA Algorithm
- Rule() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.ILGA.Rule
-
Default constructor.
- Rule(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.ILGA.Rule
-
Constructor with the number of attributes specified
- Rule(Rule) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.ILGA.Rule
-
Deep-copy constructor
- Rule - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Representation of a string of simple rules chained by 'and's: exemple[a1][=|>|<=]v1 && exemple[a2][=|>=|<=]v2
- Rule() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Rule
-
Constructs an empty rule.
- Rule - Class in keel.Algorithms.Genetic_Rule_Learning.OIGA
-
Represents one rule as specified by the OIGA Algorithm
- Rule() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OIGA.Rule
-
Default constructor.
- Rule(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OIGA.Rule
-
Constructor with the number of attributes specified
- Rule(Rule) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OIGA.Rule
-
Deep-copy constructor
- Rule - Class in keel.Algorithms.Genetic_Rule_Learning.PART
-
Representation of a string of simple rules chained by 'and's: exemple[a1][=|>|<=]v1 && exemple[a2][=|>=|<=]v2
- Rule() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.Rule
-
Constructs an empty rule.
- Rule - Class in keel.Algorithms.Genetic_Rule_Learning.SIA
-
Title: Regla
Description: It defines a Rule for the SIA algorithm
Company: KEEL
- Rule(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.SIA.Rule
-
Default builder
- Rule(int, int, double) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.SIA.Rule
-
Rule Builder
- Rule - Class in keel.Algorithms.Hyperrectangles.BNGE
-
File: Rule.java
Auxiliary class to repressent rules for the BNGE algorithm
- Rule() - Constructor for class keel.Algorithms.Hyperrectangles.BNGE.Rule
-
Default builder.
- Rule(double[], int) - Constructor for class keel.Algorithms.Hyperrectangles.BNGE.Rule
-
Builder.
- Rule - Class in keel.Algorithms.Hyperrectangles.INNER
-
File: Rule.java
Auxiliary class to repressent rules for the INNER algorithm
- Rule() - Constructor for class keel.Algorithms.Hyperrectangles.INNER.Rule
-
Default builder.
- Rule(double[], int) - Constructor for class keel.Algorithms.Hyperrectangles.INNER.Rule
-
Builder.
- Rule - Class in keel.Algorithms.Hyperrectangles.RISE
-
File: Rule.java
Auxiliary class to repressent rules for the RISE algorithm
- Rule() - Constructor for class keel.Algorithms.Hyperrectangles.RISE.Rule
-
Default builder.
- Rule(double[], int) - Constructor for class keel.Algorithms.Hyperrectangles.RISE.Rule
-
Builder.
- Rule - Class in keel.Algorithms.ImbalancedClassification.Ensembles
-
Title: Rule
Description: Rule representation
Company: KEEL
- Rule() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Rule
-
Default constructor
- Rule(String, myDataset) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Rule
-
Constructor with parameters.
- Rule(myDataset, String) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Rule
-
Constructor with parameters.
- Rule - Class in keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H
-
Title: Rule
Description: Fuzzy Rule in the GP-COACH algorithm
Company: KEEL
- Rule() - Constructor for class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
-
Default constructor
- Rule(DataBase, int, int, int, int) - Constructor for class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
-
Constructor with parameters.
- Rule(DataBase, int, int, int, int, double[], int) - Constructor for class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
-
Constructor with parameters.
- Rule(Rule) - Constructor for class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
-
Copy constructor for a Fuzzy rule from another Fuzzy Rule
- rule - Class in keel.Algorithms.LQD.methods.FGFS_Original
-
File: rule.java
Properties and functions of the fuzzy rule as obtain the antecedent and
the consequent of the rule from the confidence the this rule with
the instances
- rule(Vector<partition>, int) - Constructor for class keel.Algorithms.LQD.methods.FGFS_Original.rule
-
- rule - Class in keel.Algorithms.LQD.methods.FGFS_Rule_Weight
-
File: rule.java
Properties and functions of the fuzzy rule as obtain the antecedent and
the consequent of the rule from the confidence the this rule with
the instances
- rule(Vector<partition>, int, int) - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
-
- rule - Class in keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty
-
File: fuzzyRule.java
Properties and functions of the fuzzy rule as obtain the antecedent and
the consequent of the rule from the confidence the this rule with
the instances
- rule(Vector<partition>, int, int) - Constructor for class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
-
- Rule - Class in keel.Algorithms.RE_SL_Methods.P_FCS1
- Rule(int) - Constructor for class keel.Algorithms.RE_SL_Methods.P_FCS1.Rule
-
Creates a rule containing "tam" gaussian fuzzy sets
- Rule(Rule) - Constructor for class keel.Algorithms.RE_SL_Methods.P_FCS1.Rule
-
Creates a fuzzy rule as a copy of another fuzzy rule
- Rule - Class in keel.Algorithms.Rule_Learning.ART
-
Class to store a rule
- Rule(Vector<Integer>, Vector<Integer>, int, double) - Constructor for class keel.Algorithms.Rule_Learning.ART.Rule
-
- Rule(Vector<Integer>, Vector<Integer>) - Constructor for class keel.Algorithms.Rule_Learning.ART.Rule
-
- Rule - Class in keel.Algorithms.Rule_Learning.C45Rules
-
Representation of a string of simple rules chained by 'and's: exemple[a1][=|>|<=]v1 && exemple[a2][=|>=|<=]v2
- Rule() - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.Rule
-
Constructs an empty rule.
- Rule - Class in keel.Algorithms.Rule_Learning.C45RulesSA
-
Representation of a string of simple rules chained by 'and's: exemple[a1][=|>|<=]v1 && exemple[a2][=|>=|<=]v2
- Rule() - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.Rule
-
Constructs an empty rule.
- Rule - Class in keel.Algorithms.Rule_Learning.PART
-
Representation of a string of simple rules chained by 'and's: exemple[a1][=|>|<=]v1 && exemple[a2][=|>=|<=]v2
- Rule() - Constructor for class keel.Algorithms.Rule_Learning.PART.Rule
-
Constructs an empty rule.
- Rule - Class in keel.Algorithms.Rule_Learning.Ripper
-
Representation of a string of simple rules chained by 'and's: exemple[a1][=|>|<=]v1 && exemple[a2][=|>=|<=]v2
- Rule() - Constructor for class keel.Algorithms.Rule_Learning.Ripper.Rule
-
Constructs an empty rule.
- Rule - Class in keel.Algorithms.Rule_Learning.Slipper
-
Representation of a string of simple rules chained by 'and's: exemple[a1][=|>|<=]v1 && exemple[a2][=|>=|<=]v2
The rule has also a positive value (confidence) associated.
- Rule() - Constructor for class keel.Algorithms.Rule_Learning.Slipper.Rule
-
Constructs an empty rule.
- RuleBase - Class in keel.Algorithms.Associative_Classification.ClassifierCBA
-
This class contains the representation of a Rule Set.
- RuleBase() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.RuleBase
-
Default Constructor
- RuleBase(DataBase, myDataset) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.RuleBase
-
Parameters Constructor
- RuleBase - Class in keel.Algorithms.Associative_Classification.ClassifierCBA2
-
This class contains the representation of a Rule Set
- RuleBase() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.RuleBase
-
Default Constructor
- RuleBase(DataBase, myDataset) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.RuleBase
-
Parameters Constructor
- RuleBase - Class in keel.Algorithms.Associative_Classification.ClassifierCPAR
-
This class contains the representation of a Rule Set
- RuleBase() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCPAR.RuleBase
-
Default Constructor
- RuleBase(DataBase, myDataset, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCPAR.RuleBase
-
Parameters Constructor
- RuleBase - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR
-
This class contains the representation of a Rule Set
- RuleBase() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.RuleBase
-
Default Constructor
- RuleBase(DataBase, myDataset) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.RuleBase
-
Parameters Constructor
- RuleBase - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD
-
Title: RuleBase
Description: This class contains the representation of a Rule Set
Copyright: Copyright KEEL (c) 2007
Company: KEEL
- RuleBase() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.RuleBase
-
Default Constructor.
- RuleBase(DataBase, myDataset, int, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.RuleBase
-
Builder
- RuleBase - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA
-
This class contains the representation of a Rule Set
- RuleBase() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.RuleBase
-
Default Constructor
- RuleBase(DataBase, myDataset) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.RuleBase
-
Parameters Constructor
- RuleBase - Class in keel.Algorithms.Decision_Trees.C45_Binarization
-
Title: RuleBase
Description: A full rule set description
Company: KEEL
- RuleBase() - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.RuleBase
-
Default constructor.
- RuleBase(myDataset, String) - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.RuleBase
-
To obtain the rule Base from the rule file (extracted from the C4.5 decision tree)
- RuleBase - Class in keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW
-
This class contains the representation of a Rule Set
- RuleBase(DataBase, int, int, int, String[], String[]) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.RuleBase
-
Rule Base Constructor
- RuleBase - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD
-
This class contains the representation of a Rule Set
- RuleBase() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.RuleBase
-
Default constructor
- RuleBase(DataBase, myDataset, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.RuleBase
-
Builds an object for the Rule Base
- RuleBase - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid
-
Title: RuleBase
Description: Fuzzy Rule Base
Copyright: KEEL Copyright (c) 2008
Company: KEEL
- RuleBase() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.RuleBase
-
Default builder
- RuleBase(DataBase, myDataset, int, int, int, double, double) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.RuleBase
-
Builds an object for the Rule Base
- RuleBase(int[], int, DataBase, myDataset, int, int, int, double, double) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.RuleBase
-
Builds an object for the Rule Base with an heuristic
- RuleBase - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS
-
Title: RuleBase
Description: This class contains the representation of a Rule Set
Copyright: Copyright KEEL (c) 2007
Company: KEEL
- RuleBase() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.RuleBase
-
- RuleBase(DataBase, myDataset, myDataset, int, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.RuleBase
-
Builder
- RuleBase - Class in keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy
-
Represents a FRBS (Fuzzy Rule Base System).
- RuleBase(FuzzyPartition[], FuzzyPartition, int, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.RuleBase
-
A constructor for a RuleBase.
- RuleBase(RuleBase) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.RuleBase
-
A copy constructor for a RuleBase, given other RuleBase.
- RuleBase - Class in keel.Algorithms.ImbalancedClassification.Ensembles
-
Title: RuleBase
Description: A full rule set description
Company: KEEL
- RuleBase() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.RuleBase
-
Default constructor.
- RuleBase(myDataset, String) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.RuleBase
-
To obtain the rule Base from the rule file (extracted from the C4.5 decision tree)
- RuleBase_Sel - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL
-
It encodes a Rule Base for the simplification process
- RuleBase_Sel(String, MyDataset, int, int, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Sel
-
Constructor
- RuleBase_Sel(int, MyDataset, int, int, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Sel
-
Constructor
- RuleBase_Tun - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL
-
It encodes a Rule Base for the tunning process
- RuleBase_Tun(String, MyDataset, int, int, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Tun
-
Constructor
- ruleClass - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.matchProfileAgent
-
- ruleCleaning(int[], int[], int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierGABIL
-
- ruleCorrelation(Rule) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Computes the third heuristic exposed in [Holmes99]
- ruleCoversInstance(double[]) - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
Check if the rule match with the parameter instance
- ruleDeletionMinRules - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- ruleDeletionMinRules - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- ruleDeviation(Rule) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Computes the deviation of a rule from the predicted class values.
- ruleDirectedSplit(myDataset, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Rule
-
- ruleDistance(Rule) - Method in class keel.Algorithms.Hyperrectangles.INNER.Rule
-
Computes the distance between two rules
- ruleExtraction(int) - Method in class keel.Algorithms.Rule_Learning.ART.TBAR
-
- RuleList - Class in keel.Algorithms.Associative_Classification.ClassifierCMAR
-
Set of utilities to support various Association Rule Mining (ARM)
algorithms included in the LUCS-KDD suite of ARM programs.
- RuleList(int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
Default constructor to create an instance of the class RuleList
- RuleList.RuleNode - Class in keel.Algorithms.Associative_Classification.ClassifierCMAR
-
Rule node in linked list of rules (either ARs or CRs).
- RuleList.RuleNodeCMAR - Class in keel.Algorithms.Associative_Classification.ClassifierCMAR
-
Rule node in linked list of rules (either ARs or CRs) for CMAR
algorithm.
- ruleMatches(int[], InstanceWrapper) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierGABIL
-
- ruleMeanAbsoluteError(Rule) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Computes the mean absolute error of a rule for the predicted class values.
- ruleNeedsInstances(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ruleOrderAgent
-
- RuleNode(short[], short[], double, double, double) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining.RuleNode
-
Three argument constructor
- RuleNode(short[], short[], double, double, double) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining.RuleNode
-
Three argument constructor
- ruleOrderAgent - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
-
- ruleOrderAgent(int, int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ruleOrderAgent
-
- RuleQualityEvaluation - Class in keel.Algorithms.Hyperrectangles.EACH
-
To evaluate the rules
- RuleQualityEvaluation(RuleSet, EachDataSet, EachDataSet, int[], int[], String[], String[]) - Constructor for class keel.Algorithms.Hyperrectangles.EACH.RuleQualityEvaluation
-
Calculates the final statistical for a set of rules and a set of data
- rules - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- rulesCopy(RuleSet) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.RuleSet
-
- ruleset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
-
- ruleset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE
- ruleset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
-
It contains the methods for handling the set of learned rules
- ruleset - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
-
It contains the methods for handling the set of learned rules
- ruleSet - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- RuleSet - Class in keel.Algorithms.Genetic_Rule_Learning.DMEL
-
- RuleSet() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.DMEL.RuleSet
-
- RuleSet(Vector<Rule>) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.DMEL.RuleSet
-
It initializates a new rule set or chromosome (using rules from a previous level)
- RuleSet(RuleSet) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.DMEL.RuleSet
-
It creates a copy of the r Rule Set
- RuleSet - Class in keel.Algorithms.Genetic_Rule_Learning.GIL
-
- RuleSet() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GIL.RuleSet
-
- RuleSet(myDataset, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GIL.RuleSet
-
It initializates a new rule set or chromosome (randomly and using positive examples)
- RuleSet(RuleSet) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GIL.RuleSet
-
It creates a copy of the r Rule Set
- RuleSet - Class in keel.Algorithms.Genetic_Rule_Learning.ILGA
-
This class represents a set of rules in the OIGA algorithm
- RuleSet() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.ILGA.RuleSet
-
Default constructor.
- RuleSet(int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.ILGA.RuleSet
-
Constructor for a fixed number of rules and attributes
- RuleSet(RuleSet) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.ILGA.RuleSet
-
Deep-copy constructor
- Ruleset - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Representation of a disjuction of rules with a common consecuent.
- Ruleset() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Ruleset
-
Constructs an empty ruleset.
- RuleSet - Class in keel.Algorithms.Genetic_Rule_Learning.OIGA
-
This class represents a set of rules in the OIGA algorithm
- RuleSet() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OIGA.RuleSet
-
Default constructor.
- RuleSet(int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OIGA.RuleSet
-
Constructor for a fixed number of rules and attributes
- RuleSet(RuleSet) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OIGA.RuleSet
-
Deep-copy constructor
- Ruleset - Class in keel.Algorithms.Genetic_Rule_Learning.PART
-
Representation of a disjuction of rules with a common consecuent.
- Ruleset() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.Ruleset
-
Constructs an empty ruleset.
- ruleSet - Class in keel.Algorithms.Genetic_Rule_Learning.SIA
-
Title: Reglas
Description: It defines a Rule-set
Company: KEEL
- ruleSet() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.SIA.ruleSet
-
Default Builder
- RuleSet - Class in keel.Algorithms.Hyperrectangles.EACH
-
Set of rules.
- RuleSet() - Constructor for class keel.Algorithms.Hyperrectangles.EACH.RuleSet
-
Constructor
- ruleSet - Class in keel.Algorithms.Rule_Learning.AQ
-
Title: Rule Set
Description: Structure to store a complete rule set
- ruleSet() - Constructor for class keel.Algorithms.Rule_Learning.AQ.ruleSet
-
Builder
- Ruleset - Class in keel.Algorithms.Rule_Learning.C45Rules
-
Representation of a disjuction of rules with a common consecuent.
- Ruleset() - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.Ruleset
-
Constructs an empty ruleset.
- Ruleset - Class in keel.Algorithms.Rule_Learning.C45RulesSA
-
Representation of a disjuction of rules with a common consecuent.
- Ruleset() - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.Ruleset
-
Constructs an empty ruleset.
- ruleSet - Class in keel.Algorithms.Rule_Learning.CN2
-
Title: Rule Set
Description: Structure to store a complete rule set
- ruleSet() - Constructor for class keel.Algorithms.Rule_Learning.CN2.ruleSet
-
Builder
- Ruleset - Class in keel.Algorithms.Rule_Learning.PART
-
Representation of a disjuction of rules with a common consecuent.
- Ruleset() - Constructor for class keel.Algorithms.Rule_Learning.PART.Ruleset
-
Constructs an empty ruleset.
- Ruleset - Class in keel.Algorithms.Rule_Learning.Ripper
-
Representation of a disjuction of rules with a common consecuent.
- Ruleset() - Constructor for class keel.Algorithms.Rule_Learning.Ripper.Ruleset
-
Constructs an empty ruleset.
- Ruleset - Class in keel.Algorithms.Rule_Learning.Slipper
-
Representation of a disjuction of rules with a common consecuent.
- Ruleset() - Constructor for class keel.Algorithms.Rule_Learning.Slipper.Ruleset
-
Constructs an empty ruleset.
- rulesetForOneClass(double, Instances, double, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Build a ruleset for the given class according to the given data
- ruleSetText - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Rules set text
- rulesExchange(RuleSet, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.RuleSet
-
- rulesGeneralization(myDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.RuleSet
-
- rulesIdentifiers - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Rule identifier.
- ruleSize - Variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_hyperrect_list_real
-
- ruleSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_ADI
-
- ruleSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_GABIL
-
Computes and maintains global information for the GABIL KR
- ruleSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_UBR
-
- ruleSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_ADI
-
- ruleSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_GABIL
-
- ruleSplit(double, double, myDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Rule
-
- ruleSplitting(int[], int[], int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierGABIL
-
- RuleStats - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
This class implements the statistics functions used in the
propositional rule learner, from the simpler ones like count of
true/false positive/negatives, filter data based on the ruleset, etc.
- RuleStats() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Default constructor
- RuleStats(Instances, FastVector) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Constructor that provides ruleset and data
- ruleUncoveredExamples - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Variables to control the uncovered examples.
- run(double[][], int[], int, int) - Method in class keel.Algorithms.Complexity_Metrics.Statistics
-
It computes the statistics for the given parameters
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ACO
-
Executes the algorithm.
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ACO
-
Executes the algorithm.
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.ACO
-
Executes the algorithm.
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ACO
-
Executes the algorithm.
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.BioHEL
-
Execute the alforithm BioHEL.
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Cogin
-
Process the training and test files provided in the parameters file to the constructor.
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Core
-
Process the training and test files provided in the parameters file to the constructor.
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.GA
-
Executes a number of iterations of GA.
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.Ilga
-
Runs the ILGA algorithm, with first creates and evolve a single SEM for
each attribute.
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.SEM
-
It runs the Single-attribute Evolution Module (SEM) algorithm to obtain a rule set of ONE attribute
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.GA
-
Executes a number of iterations of GA.
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.Oiga
-
Runs the OIGA algorithm, with first creates and evolve a single SEM for
each attribute.
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.SEM
-
It runs the Single-attribute Evolution Module (SEM) algorithm to obtain a rule set of ONE attribute
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.PsoAco
-
Executes the algorithm.
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.UCS
-
It runs the system.
- run() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.XCS
-
Execute the algorithm XCS
- run() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
- run() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.SMOTE
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.ADASYN.ADASYN
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.ADOMS.ADOMS
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.AHCClustering.AHCClustering
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.Borderline_SMOTE.Borderline_SMOTE
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.CNN.CNN
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.CNN_TomekLinks.CNN_TomekLinks
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.CPM.CPM
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.NCL.NCL
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.OSS.OSS
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.RandomOverSampling.RandomOverSampling
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.RandomUnderSampling.RandomUnderSampling
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.Safe_Level_SMOTE.Safe_Level_SMOTE
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SBC.SBC
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE.SMOTE
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_ENN.SMOTE_ENN
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_TomekLinks.SMOTE_TomekLinks
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SPIDER.SPIDER
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SPIDER2.SPIDER2
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.TomekLinks.TomekLinks
-
The main method of the class that includes the operations of the algorithm.
- run() - Method in class keel.Algorithms.Preprocess.Missing_Values.BPCA.BPCA
-
Runs the BPCA algorithm.
- run() - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
Runs the EM imputation, once the parameters have been set
- run() - Method in class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.LLSImpute
-
Function that runs the LLSImpute over the data sets given in the pattern file in
KEEL format
- run() - Method in class keel.Algorithms.Preprocess.Missing_Values.SVDimpute.SVDimpute
-
It runs the SVDI algorithm once the configuration has been readed
- run() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.ClassificationFilter
-
It initializes the partitions from training set
- run() - Method in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.CVCommitteesFilter
-
It initializes the partitions from training set
- run() - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.EnsembleFilter
-
It initializes the partitions from training set
- run() - Method in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.INFFC_2STEPS
-
It initializes the partitions from training set
- run() - Method in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.IterativePartitioningFilter
-
It initializes the partitions from training set
- run() - Method in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.PANDA
-
Executes the algorithm.
- run() - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.SaturationFilter
-
It runs the noise elimination algorithm for multiclass problems
- run() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.FPgrowthProcess
-
It runs the algorithm for mining association rules
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.AlcalaetalProcess
-
It runs the algorithm for mining association rules
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.ThreadedStreamHandler
-
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.FuzzyAprioriProcess
-
It runs the algorithm for mining association rules
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.GeneticFuzzyAprioriProcess
-
It runs the algorithm for mining association rules
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.GeneticFuzzyAprioriDCProcess
-
It runs the algorithm for mining association rules
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.AlatasetalProcess
-
It runs the evolutionary learning for mining association rules
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AprioriProcess
-
It runs the algorithm for mining association rules
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.ARMMGAProcess
-
It runs the algorithm for mining association rules.
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.EARMGAProcess
-
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.EclatProcess
-
It runs the algorithm for mining association rules
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.FPgrowthProcess
-
It runs the algorithm for mining association rules
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.GARProcess
-
It runs the algorithm for mining association rules.
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.GENARProcess
-
It runs the algorithm for mining association rules.
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
-
It runs the algorithm for mining association rules.
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_GhoshProcess
-
It runs the evolutionary learning for mining association rules
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_GoshProcess
-
It runs the evolutionary learning for mining association rules
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.MOPNARProcess
-
It runs the evolutionary learning for mining association rules
- run() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.QAR_CIP_NSGAIIProcess
-
It runs the evolutionary learning for mining association rules
- run() - Method in class keel.Dataset.Main
-
Run: Testing the Dataset API
- run() - Method in class keel.GraphInterKeel.experiments.EducationalPartitionsRun
-
- run2() - Method in class keel.Dataset.Main
-
Second prove.
- runAlgorithm() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
- runAlgorithm() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Instance_Selection.EUSCHCQstat.EUSCHCQstat
-
It runs the Qstatistic
- runButton - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- RunCART - Class in keel.Algorithms.Decision_Trees.CART
-
Main class for CART algorithm.
- RunCART(String, boolean) - Constructor for class keel.Algorithms.Decision_Trees.CART.RunCART
-
Default constructor
- runCHC() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.CHC
-
Run the CHC algorithm for the data in this population
- runCheck(Check, String[]) - Static method in class keel.Algorithms.SVM.SMO.core.Check
-
runs the CheckScheme with the given options
- RunClassificationCART - Class in keel.Algorithms.Decision_Trees.CART.classification
-
Class to run the CART algorithm
- RunClassificationCART(String) - Constructor for class keel.Algorithms.Decision_Trees.CART.classification.RunClassificationCART
-
Default constructor
- runCrossValidation(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.XCSControl
-
Creates the configuration file for all cross-validation runs
- runExpItem - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- runGA() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.BioHEL
-
Execute the Genetic Algorithm, returning the classifier that has been optimized
- runGA(Population, double[], int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.GA
-
It makes an iteration of the genetic algorithm.
- runGA(int, double[], int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Runs the GA if the time since the last application of the GA is greater than
the threshold.
- runGA(double[], Population, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.GA
-
It makes an iteration of the genetic algorithm.
- runGA(int, double[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Runs the GA if the time since the last application of the GA is greater than
the threshold.
- runkeel - Variable in class keel.GraphInterKeel.experiments.EducationalRunkeelEvent
-
- runkeel - Variable in class keel.GraphInterKeel.experiments.RunkeelEvent
-
- RunkeelEvent<A extends EducationalRunKeelTxt> - Class in keel.GraphInterKeel.experiments
-
- RunkeelEvent(A) - Constructor for class keel.GraphInterKeel.experiments.RunkeelEvent
-
- RunkeelEvent(A, Exception) - Constructor for class keel.GraphInterKeel.experiments.RunkeelEvent
-
- runKeelFinished(EducationalRunkeelEvent<EducationalRunKeelTxt>) - Method in class keel.GraphInterKeel.experiments.EducationalRun
-
This method is invoqued when the partitions
have finished in natural way or not
- runKeelFinished(EducationalRunkeelEvent<A>) - Method in interface keel.GraphInterKeel.experiments.IEducationalRunkeelListener
-
Is invoqued when all partitions have finished
- runKeelFinished(RunkeelEvent<A>) - Method in interface keel.GraphInterKeel.experiments.IRunkeelListener
-
- runKeelIterationCompleted(EducationalRunkeelEvent<EducationalRunKeelTxt>) - Method in class keel.GraphInterKeel.experiments.EducationalRun
-
This method is invoqued when a partition is finished.
- runKeelIterationCompleted(EducationalRunkeelEvent<A>) - Method in interface keel.GraphInterKeel.experiments.IEducationalRunkeelListener
-
Is invoqued when a partition has finished
- runKeelIterationCompleted(RunkeelEvent<A>) - Method in interface keel.GraphInterKeel.experiments.IRunkeelListener
-
- runkeeltxt - Class in keel.RunKeelTxt
-
File: runkeeltxt.java
Class to process the execution of a experiment.
- runkeeltxt() - Constructor for class keel.RunKeelTxt.runkeeltxt
-
- runMethod(String, String, Instance[], Instance[]) - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.LDA
-
In this method, a classifier is estimated using Linear Discriminant Analysis
- runModel() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.PDFC
-
Run the model once the parameters have been set by the
method config_read()
- runModel() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
Main method for running this class.
- runModel() - Method in class keel.Algorithms.SVM.SMO.SMO
-
Run the model once the parameters have been set by the
method config_read()
- runModel(InstanceSet, InstanceSet) - Method in class keel.Algorithms.SVM.SMO.SMO
-
Run the model once the parameters have been set by the
method config_read()
- running() - Method in class keel.GraphInterKeel.experiments.EducationalDiscretizerReport
-
This method has to invoque for to create the report.
- running() - Method in class keel.GraphInterKeel.experiments.EducationalFSReport
-
This method has to invoque for to create the report.
- running() - Method in class keel.GraphInterKeel.experiments.EducationalISReport
-
This method has to invoque for to create the report.
- running() - Method in class keel.GraphInterKeel.experiments.EducationalMethodReport
-
This method has to invoque for to create the report.
- running() - Method in class keel.GraphInterKeel.experiments.EducationalReport
-
This method has to invoque for to create the report.
- runOutputTimers(int, Classifier[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Timers
-
- runOutputTimers(int, Classifier[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Timers
-
- runPostHoc(double, int[], String[], String, int) - Method in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Friedman
-
In this method, all possible post hoc statistical test between more than three algorithms results
are executed, according to the configuration file
- runPostHoc(double, int[], String[], String) - Method in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Multiple
-
In this method, all possible post hoc statistical test between more than three algorithms results
are executed, according to the configuration file
- runProcess(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.AdministrativeStaff
-
- runReduction(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Runs the compactation algorithm if the time since the last application of
the algorithm is greater than the threshold.
- RunRegressionCART - Class in keel.Algorithms.Decision_Trees.CART.regression
-
Class to run the CART algorithm for regression problems
- RunRegressionCART(String) - Constructor for class keel.Algorithms.Decision_Trees.CART.regression.RunRegressionCART
-
Default constructor
- runTimers(int, Classifier[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Timers
-
Manages timers: flags and parameters that are triggered at
certain iterations
- runTimers(int, Classifier[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Timers
-
- RunType() - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- RUNTYPE - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
S
- SA - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_IEP_FS
-
Simulated Annealing Algorithm
- SA(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_IEP_FS.SA
-
Creates a new instance of SA
- SA - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_LIU_FS
-
Simulated Annealing Algorithm
- SA(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_LIU_FS.SA
-
Creates a new instance of SA
- SA - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_MI_FS
-
Simulated Annealing Algorithm
- SA(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SA_MI_FS.SA
-
Creates a new instance of SA
- sacaResultadosAFicheros() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ACO
-
Prints all the results on the output results files.
- sacaResultadosAFicheros() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ACO
-
Prints all the results on the output results files.
- sacaResultadosAFicheros() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.ACO
-
Prints all the results on the output results files.
- sacaResultadosAFicheros() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ACO
-
Prints all the results on the output results files.
- sacaResultadosAFicheros(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.PsoAco
-
Prints all the results on the output results files.
- SADEAlgorithm - Class in keel.Algorithms.Instance_Generation.SADE
-
SADE algorithm calling.
- SADEAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.SADE.SADEAlgorithm
-
- SADEGenerator - Class in keel.Algorithms.Instance_Generation.SADE
-
- SADEGenerator(PrototypeSet, int, int, int, int) - Constructor for class keel.Algorithms.Instance_Generation.SADE.SADEGenerator
-
Build a new SADEGenerator Algorithm
- SADEGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.SADE.SADEGenerator
-
Build a new SADEGenerator Algorithm
- Safe_Level_SMOTE - Class in keel.Algorithms.ImbalancedClassification.Resampling.Safe_Level_SMOTE
-
File: Safe_Level_SMOTE.java
The Safe Level SMOTE algorithm is an oversampling method used to deal with
the imbalanced problem.
- Safe_Level_SMOTE(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.Safe_Level_SMOTE.Safe_Level_SMOTE
-
Constructor of the class.
- salida - Variable in class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Output attribute.
- salida(myDataset, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.evaluateRuleQuality
-
It generates a string with the ouput list, <expected output> <method output>
- salida - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Metodo
-
- salida - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
- salida - Variable in class keel.Algorithms.Preprocess.Basic.Metodo
-
Output attribute
- salida(myDataset) - Method in class keel.Algorithms.Rule_Learning.AQ.evaluateRuleQuality
-
It generates a string with the output list, that is, <expected output> <output of the method>
- salida(myDataset) - Method in class keel.Algorithms.Rule_Learning.CN2.evaluateRuleQuality
-
It generates a string with the output list, that is, <expected output> <output of the method>
- salida(ConjDatos) - Method in class keel.Algorithms.Rule_Learning.Prism.EvaluaCalidadReglas
-
Generates a string with the out-put lists
- salida(ConjDatos, boolean) - Method in class keel.Algorithms.Rule_Learning.UnoR.EvaluaCalidadReglas
-
Generates a string with the out-put lists
- salida(ConjDatos, int) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.EvaluaCalidadReglas
-
Generates a string with the out-put lists
- salida(ConjDatos) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.EvaluaCalidadReglas
-
Generates a string with the out-put lists
- salida_r(int) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.AlgGenetic
-
- salida_r(int) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.AlgGenetic
-
- salir - Variable in class keel.Algorithms.RE_SL_Methods.LEL_TSK.MiDataset
-
- salir - Variable in class keel.Algorithms.RE_SL_Methods.MamWM.MiDataset
-
- salir - Variable in class keel.Algorithms.RE_SL_Methods.mogulHC.MiDataset
-
- salir - Variable in class keel.Algorithms.RE_SL_Methods.mogulIRL.MiDataset
-
- salir - Variable in class keel.Algorithms.RE_SL_Methods.mogulSC.MiDataset
-
- salir - Variable in class keel.Algorithms.RE_SL_Methods.TSK_IRL.MiDataset
-
- salir - Variable in class keel.Algorithms.RE_SL_Postprocess.Mam2TSK.MiDataset
-
- salir - Variable in class keel.Algorithms.RE_SL_Postprocess.MamGlobalTunDB.MiDataset
-
- salir - Variable in class keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules.MiDataset
-
- salir - Variable in class keel.Algorithms.RE_SL_Postprocess.MamSelect.MiDataset
-
- salir - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWSelect.MiDataset
-
- salir - Variable in class keel.Algorithms.RE_SL_Postprocess.MamWTuning.MiDataset
-
- salir - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules.MiDataset
-
- salir - Variable in class keel.Algorithms.RE_SL_Postprocess.TSKSelect.MiDataset
-
- same(double[], double[]) - Method in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Checks if two instances are the same
- same(double[], double[]) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.Util
-
Checks if two instances are the same
- same(Chromosome) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Chromosome
-
Test if two chromosomes are equals by comparing their values
- same(Gene) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Gene
-
Test if two genes are the same, comparing all their values.
- same(double[], double[]) - Method in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Checks if two instances are the same
- same(double[], double[]) - Method in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Checks if two instances are the same
- same(double[], double[]) - Method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Checks if two instances are the same
- same(double, double) - Static method in class keel.Algorithms.Preprocess.Missing_Values.BPCA.MachineAccuracy
-
Checks if the two numbers given are the same within a certain threshold.
- same(double, double) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EM.util.MachineAccuracy
-
Checks if the two numbers given are the same within a certain threshold.
- same(double[], double[]) - Static method in class keel.Algorithms.RST_Learning.Util
-
Checks if two instances are the same
- same(Complex) - Method in class keel.Algorithms.Rule_Learning.AQ.Complex
-
It checks if a complex is equal to another.
- same(Complex) - Method in class keel.Algorithms.Rule_Learning.CN2.Complex
-
It checks if a complex is equal to another.
- sameDistribution(Complex) - Method in class keel.Algorithms.Rule_Learning.AQ.Complex
-
It checks if two complexes have the same class distribution
- sameDistribution(Complex) - Method in class keel.Algorithms.Rule_Learning.CN2.Complex
-
It checks if two complexes have the same class distribution
- sameMissingInputAttributes(Instance, Instance) - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.knnImpute
-
Checks if two instances present MVs for the same attributes
- sameMissingInputAttributes(Instance, Instance) - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.wknnImpute
-
Checks if two instances present MVs for the same attributes
- sample - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- Sample - Class in keel.Algorithms.Hyperrectangles.EACH
-
Stores one data with the form: attribute attribute class
- Sample(double[], int, int) - Constructor for class keel.Algorithms.Hyperrectangles.EACH.Sample
-
Constructor
- Sample(int) - Constructor for class keel.Algorithms.Hyperrectangles.EACH.Sample
-
Other constructor, more easy
- sample - Variable in class keel.Algorithms.Neural_Networks.ensemble.EnsembleNetwork
-
Training data sample
- Sample - Class in keel.Algorithms.Neural_Networks.ensemble
-
Class that represents a sample of data
- Sample(int) - Constructor for class keel.Algorithms.Neural_Networks.ensemble.Sample
-
Constructor
- Sample - Class in keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat
-
Statistics class that works as a Sample and computes statistical values as mean, variace, squares sum,...
- Sample() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Sample
-
- sample(double[][][]) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ConjGradNN
-
Prints to standard output N-tier Neural Network x
- sample(double[][][]) - Method in class keel.Algorithms.Shared.ClassicalOptim.ConjGradNN
-
Prints to standard output N-tier Neural Network x
- samplesOfClasses - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PopulationWrapper
-
- samplesOfClasses - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PopulationWrapper
-
- Sampling - Class in keel.Algorithms.Discretizers.UCPD
-
This class helps managing a sampling without replacement process
- Sampling(int) - Constructor for class keel.Algorithms.Discretizers.UCPD.Sampling
-
Class constructor
- Sampling - Class in keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
- Sampling - Class in keel.Algorithms.Genetic_Rule_Learning.GAssist
-
Helps managing a sampling without replacement process
- Sampling(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GAssist.Sampling
-
- Sampling - Class in keel.Algorithms.Genetic_Rule_Learning.Globals
-
This class helps managing a sampling without replacement process
- Sampling(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Globals.Sampling
-
- Sampling - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals
-
Sampling.java
This class helps managing a sampling without replacement process
- Sampling(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Sampling
-
Parameter Constructor.
- Sampling - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
-
Helps managing a sampling without replacement process
- Sampling(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Sampling
-
- SaturationFilter - Class in keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter
-
This class implements the Gamberger's algorithm to remove class noise
- SaturationFilter() - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.SaturationFilter
-
Constructor of the class
- saturationFilter(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.SaturationFilter
-
Constructor of the class
- save - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Save at the end of the output
- save(String) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Save the data in a file (Keel style)
- save - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Save at the end of the output
- save - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Save at the end of the output
- save - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Save at the end of the output
- Save(String) - Method in class keel.Algorithms.Preprocess.Converter.Importer
-
Method that creates the output file with KEEL format given as parameter
using all the structures built by the start method of not abstract classes.
- Save(String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToCsv
-
Method that creates the output file with CSV format given as parameter
using all the structures built by the start method of the Exporter class.
- Save() - Method in class keel.Algorithms.Preprocess.Converter.KeelToDb
-
Method that creates the new SQL database table
using all the structures built by the start method of the Exporter class.
- Save(String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToDif
-
Method that creates the output file with DIF format given as parameter
using all the structures built by the start method of the Exporter class.
- Save(String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToExcel
-
Method that creates the output file with Excel format given as parameter
using all the structures built by the start method of the Exporter class.
- Save(String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToHtml
-
Method that creates the output file with HTLM format given as parameter
using all the structures built by the start method of the Exporter class.
- Save(String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToPrn
-
Method that creates the output file with PRN format given as parameter
using all the structures built by the start method of the Exporter class.
- Save(String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToPropertyList
-
Method that creates the output file with PropertyList format given as parameter
using all the structures built by the start method of the Exporter class.
- Save(String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToTxt
-
Method that creates the output file with TXT format given as parameter
using all the structures built by the start method of the Exporter class.
- Save(String, String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToUci
-
Method that creates the output files with UCI format given as parameter
using all the structures built by the start method of the Exporter class.
- Save(String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToWeka
-
Method that creates the output file with Weka format given as parameter
using all the structures built by the start method of the Exporter class.
- Save(String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToXml
-
Method that creates the output file with XML format given as parameter
using all the structures built by the start method of the Exporter class.
- Save(String) - Method in class keel.Algorithms.Preprocess.Converter.UciToKeel
-
Method that creates the output file with KEEL format given as parameter
using all the structures built by the start method.
- save(String) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Save the data in a file (Keel style)
- saveAsExpItem - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- saveButton - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- SaveEnsemble(String, String) - Method in class keel.Algorithms.Neural_Networks.ensemble.Ensemble
-
Save ensemble at file_name
- saveExperiment(int) - Method in class keel.GraphInterKeel.experiments.Experiments
-
Stores the experiment to disk
- saveExpItem - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- saveFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.DataBase
-
It stores the data base in a given file
- saveFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.RuleBase
-
It stores the rule base in a given file
- saveFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.DataBase
-
It stores the data base in a given file
- saveFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.RuleBase
-
It stores the rule base in a given file
- saveFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.DataBase
-
It stores the data base in a given file
- saveFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.DataBase
-
It stores the data base in a given file
- saveFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.RuleBase
-
It stores the rule base in a given file
- saveFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.DataBase
-
It stores the data base in a given file
- saveFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.RuleBase
-
It stores the rule base in a given file
- saveFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.DataBase
-
It stores the data base in a given file
- saveFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.RuleBase
-
It stores the rule base in a given file
- saveFile(String) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.DataBase
-
It stores the data base in a given file
- saveFile(String, double, double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.RuleBase
-
It stores the rule base in a given file
- saveFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.DataBase
-
It writes the Data Base into an output file
- saveFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.RuleBase
-
It writes the rule set into a file
- saveFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.DataBase
-
- saveFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.RuleBase
-
- SaveNetwork(String, boolean) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Save network weights to a file
- SaveNetwork(String, boolean) - Method in class keel.Algorithms.Neural_Networks.gann.Network
-
Save network weights to a file
- SaveNetwork(String, boolean) - Method in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Save network weights
- SaveNetwork(String, long, boolean) - Method in class keel.Algorithms.Neural_Networks.gmdh.sonn
-
Saves the network to a file, including the seed
- SaveNetwork(String, String, boolean) - Method in class keel.Algorithms.Neural_Networks.net.Network
-
Save network weights to a file
- SaveOutputFile(String, double[][], int, String, int, double, double) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Save output data to file
- SaveOutputFile(String, double[][], int, String, double[], double[]) - Method in class keel.Algorithms.Neural_Networks.ensemble.Ensemble
-
Save data in output file
- SaveOutputFile(String, double[][], int, String) - Method in class keel.Algorithms.Neural_Networks.gann.Network
-
Save output data to a file
- SaveOutputFile(String, double[][], int, String) - Method in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Save output data to file
- SaveOutputFile(String, double[][], int, SetupParameters) - Method in class keel.Algorithms.Neural_Networks.gmdh.sonn
-
Saves the output to a file
- SaveOutputFile(String, double[][], int, String, double[], double[]) - Method in class keel.Algorithms.Neural_Networks.net.Network
-
Save output data to file
- saveReport(ArrayList<AssociationRule>, PrintWriter) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.AlatasetalProcess
-
It prints out on the given PrintWriter
object. relevant information regarding the mined association rules
- saveReport(ArrayList<AssociationRule>, PrintWriter) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AprioriProcess
-
It prints out on the given PrintWriter
object. relevant information regarding the mined association rules
- saveReport(ArrayList<AssociationRule>, PrintWriter) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.ARMMGAProcess
-
It prints out on the given PrintWriter
object relevant information regarding the mined association rules
- saveReport(double, PrintWriter) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.EARMGAProcess
-
- saveReport(ArrayList<AssociationRule>, PrintWriter) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.EclatProcess
-
- saveReport(double, double, PrintWriter) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.GARProcess
-
It prints out on the given PrintWriter
object relevant information regarding the mined association rules.
- saveReport(double, PrintWriter) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.GENARProcess
-
It prints out on the given PrintWriter
object relevant information regarding the mined association rules.
- saveReport(ArrayList<AssociationRule>, PrintWriter) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
-
- saveReport(ArrayList<AssociationRule>, PrintWriter) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_GhoshProcess
-
It prints out on the given PrintWriter
object relevant information regarding the mined association rules
- saveReport(ArrayList<AssociationRule>, PrintWriter) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_GoshProcess
-
It prints out on the given PrintWriter
object relevant information regarding the mined association rules
- saveReport(ArrayList<AssociationRule>, PrintWriter) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.MOPNARProcess
-
- saveReport(ArrayList<AssociationRule>, PrintWriter) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.QAR_CIP_NSGAIIProcess
-
- saveResultsOfAccuracyIn(String, int, PrototypeSet, String) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
Internal function that shows in the screen the parameters of accuracy of the condensation
- saveResultsOfAccuracyIn(String, String, PrototypeSet, PrototypeSet, String, boolean) - Static method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
Internal function that saves the parameters of accuracy of the condensation.
- saveResultsOfAccuracyIn(String, String, PrototypeSet, PrototypeSet, String, boolean) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Internal function that saves the parameters of accuracy of the condensation.
- SaveRuleInterpreted(char[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.ruleset
-
- SaveRuleInterpreted_append(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.ruleset
-
Writes each rule of the rule base in file "fich".
- SaveRuleInterpreted_append(OutputStream) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.ruleset
-
Writes each rule of the rule base in file "fich".
- SaveRuleInterpreted_append(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.ruleset
-
Writes each rule of the rule base in file "fich".
- SaveRuleInterpreted_append(OutputStream) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.ruleset
-
Writes each rule of the rule base in file "fich".
- SaveRuleInterpreted_append(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.ruleset
-
Writes each rule of the rule base in file "fich".
- saveSelected() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Method for saving the selected data sets so we can restore them later
- saveSelected() - Method in class keel.GraphInterKeel.experiments.SelectData
-
Method for saving the selected data sets so we can restore them later
- SAVG - Class in keel.Algorithms.Instance_Generation.BasicMethods
-
- SAVG(PrototypeSet, double) - Constructor for class keel.Algorithms.Instance_Generation.BasicMethods.SAVG
-
Creates a new SAVG object.
- SAVG(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.BasicMethods.SAVG
-
Creates a new SAVG object.
- SAVGAlgorithm - Class in keel.Algorithms.Instance_Generation.BasicMethods
-
Main class.
- SAVGAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.BasicMethods.SAVGAlgorithm
-
- SBC - Class in keel.Algorithms.ImbalancedClassification.Resampling.SBC
-
File: SBC.java
The SBC algorithm is an undersampling method used to deal with the imbalanced
problem.
- SBC(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SBC.SBC
-
Constructor of the class.
- SBS - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_IEP_FS
-
SBS Algorithm
- SBS(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_IEP_FS.SBS
-
Creates a new instance of SA
- SBS - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_LIU_FS
-
SBS Algorithm
- SBS(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_LIU_FS.SBS
-
Creates a new instance of SA
- SBS - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_MI_FS
-
SBS algorithm
- SBS(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SBS_MI_FS.SBS
-
Creates a new instance of SA
- scale(double[], double[], double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method scale a vector
- scale(double[][], double[][], double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method scales a matrix
- scale(double[][][], double[][][], double[][][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method scales a cubic matrix
- scale(double[], double, double, double, double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.util.normalizer.Normalizer
-
Scale an array of values from a specific domain [unscaledMin, unscaledMax]
to other domain [scaledMin, scaledMax]
- scale(double, double, double, double, double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.util.normalizer.Normalizer
-
Scale a value from a specific domain [unscaledMin, unscaledMax] to
other domain [scaledMin, scaledMax]
- scale() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ConjGradNN
-
Scales the input examples values and expected output valued
- scale(double[], double[], double[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
Returns a scaled copy of vector a.
- scale(double[][], double[][], double[][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
Returns a scaled copy of matrix a.
- scale(double[][][], double[][][], double[][][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
Returns a scaled copy of matrix a.
- scale() - Method in class keel.Algorithms.Shared.ClassicalOptim.ConjGradNN
-
Scales the input examples values and expected output valued
- scale() - Method in class keel.Algorithms.Shared.ClassicalOptim.GCQuad
-
Scales the input examples values and expected output valued
- scale(double[], double[], double[]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
Returns a scaled copy of vector a.
- scale(double[][], double[][], double[][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
Returns a scaled copy of matrix a.
- scale(double[][][], double[][][], double[][][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
Returns a scaled copy of matrix a.
- scaleDS(DoubleTransposedDataSet, double[], double[], double[], double[]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.util.normalizer.Normalizer
-
Scales a IDataSet using the the maximum and minimum scaled
and unscaled values specified
- scaledSocialNetwork - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Matrix that stores the scaled social network
- scaledTestData - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Scaled test DataSet with data to evaluate the individuals
- scaledTrainData - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Scaled train DataSet with data to evaluate the individuals
- ScaleOutputData(Parameters, double, double) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Data
-
Tipify all data outputs
- ScaleOutputData(Parameters, double, double) - Method in class keel.Algorithms.Neural_Networks.gann.Data
-
Scale output data
- ScaleOutputData(Parameters, double, double) - Method in class keel.Algorithms.Neural_Networks.gmdh.Data
-
Scale output
- ScaleOutputData(Parameters, double, double) - Method in class keel.Algorithms.Neural_Networks.net.Data
-
Tipify all data outputs
- scalingFactor - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- Scha - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Apply Scha flag.
- SCOLON - Static variable in interface keel.Algorithms.Rule_Learning.Swap1.DataParserConstants
-
Data Parser Indentifier for semicolon character.
- SCOLON - Static variable in interface keel.Dataset.DataParserConstants
-
- score(double[], double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.RuleBase
-
- Score - Class in keel.Algorithms.Rule_Learning.Ripper
-
Representation of a Trio's vector.
- Score() - Constructor for class keel.Algorithms.Rule_Learning.Ripper.Score
-
Default constructor.
- score(myDataset) - Method in class keel.Algorithms.Rule_Learning.Rules6.Regla
-
Computes the quality of the rule with the m-probability-estimation.
- Score - Class in keel.Algorithms.Rule_Learning.Slipper
-
Representation of a Trio's vector.
- Score() - Constructor for class keel.Algorithms.Rule_Learning.Slipper.Score
-
Default constructor.
- SCORING_FUNCTION - Static variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- scoringFunctionTipText() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- Script - Variable in class keel.Algorithms.Instance_Generation.DROP3LVQ3.DROP3LVQ3
-
- Script - Variable in class keel.Algorithms.Instance_Generation.DROP3PSO.DROP3PSO
-
- Script - Variable in class keel.Algorithms.Instance_Generation.DROP3SFLSDE.DROP3SFLSDE
-
- Script - Variable in class keel.Algorithms.Instance_Generation.ICFLVQ3.ICFLVQ3
-
- Script - Variable in class keel.Algorithms.Instance_Generation.ICFPSO.ICFPSO
-
Configuration file name.
- Script - Variable in class keel.Algorithms.Instance_Generation.ICFSFLSDE.ICFSFLSDE
-
- Script - Variable in class keel.Algorithms.Instance_Generation.SSMALVQ3.SSMALVQ3
-
- Script - Variable in class keel.Algorithms.Instance_Generation.SSMAPSO.SSMAPSO
-
- Script - Variable in class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
- sd() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Performs standard desviation operation of the prototype set.
- sd() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Performs standard desviation operation of the prototype set.
- SD - Class in keel.Algorithms.Subgroup_Discovery.SDAlgorithm
-
It is the main class of the SD algorithm
- SD(String, String, String, String, String, String, String, String, int, int, float, int) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.SD
-
Constructs the object of SD_algorithm
- SDIGA - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA
-
SDIGA
Algorithm for the discovery of rules describing subgroups
- SDIGA() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.SDIGA
-
- searchingIterations - Variable in class keel.Algorithms.Instance_Generation.HYB.HYBGenerator
-
Iterations of each LVQ3-search for optimal epsilon and window width.
- searchPath(String) - Static method in class keel.RunKeelGraph.TestsResults
-
Search the path of a experiment
- secant(DoubleFunc, double, double, double) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Numeric
-
Computes the secant between the function and the numbers given.
- second - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.pair_fi
-
- second - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.pair_gf
-
- second - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.pair_gg
-
- second - Variable in class keel.Algorithms.Instance_Generation.utilities.Pair
-
Second element of the pair.
- second() - Method in class keel.Algorithms.Instance_Generation.utilities.Pair
-
Get second element of the pair.
- second - Variable in class keel.Algorithms.Semi_Supervised_Learning.utilities.Pair
-
Second element of the pair.
- second() - Method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Pair
-
Get second element of the pair.
- secondChoiceHeuristic(int) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
-
applies heuristic for finding candidate that is expected to lead to
good gain when applying takeStep together with second candidate.
- secondDerivative(UnivariateFunction, double) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EM.util.NumericalDerivative
-
determine second derivative
- seed - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Random seed.
- seed - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Random seed.
- seed - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- seed - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- Seed - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- seed - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- seed - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- seed - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
It's the seed of the run
- seed - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It's the seed of the run
- SEED - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- seed - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Random seed.
- seed - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Random seed
- SEED - Static variable in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
Default seed value to the Random Number Generator
- seed - Static variable in class keel.Algorithms.Instance_Generation.utilities.RandomGenerator
-
Seed value.
- seed - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Random seed.
- seed - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Random seed
- seed - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Random seed
- seed - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Random seed
- seed - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Random seed.
- seed - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Random seed.
- seed - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Parameters
-
Seed for random purposes.
- seed - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.Parameters
-
Seed for random purposes.
- seed - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Random seed.
- seed - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Parameters
-
Seed for random purposes.
- seed - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
Seed for random purposes.
- seed - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.Parameters
-
Seed for random purposes.
- seed - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Parameters
-
Seed for random purposes.
- seed - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Parameters
-
Seed for random purposes.
- seed - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Random seed.
- seed - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerCSVM
-
Seed for random purposes.
- seed - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerSMO
-
Seed for random purposes.
- seed - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.ParametersSMO
-
Seed for random purpose.
- SEED - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Default seed value to the Random Number Generator
- seed - Static variable in class keel.Algorithms.Semi_Supervised_Learning.utilities.RandomGenerator
-
Seed value.
- SEED_TXT - Static variable in class keel.Algorithms.Instance_Generation.utilities.Parameters
-
Text flag (Seed).
- SEED_TXT - Static variable in class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
-
Configuration text (seed).
- seedDefaultValueList - Variable in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
Default seed list to the Random Number Generator
- seedDefaultValueList - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Default seed list to the Random Number Generator
- seedTipText() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Returns the tip text for this property
- seedTipText() - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Returns the tip text for this property
- seedTipText() - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Returns the tip text for this property
- seedTipText() - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Returns the tip text for this property
- seedTipText() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
Returns the tip text for this property
- selecDatasets - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- selecRandomSet(int, boolean) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
Extract a random prototype set of the original traning data set.
- selecRandomSet(PrototypeSet, int, boolean) - Static method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Returns a random subset of the given one as parameter with the size given.
- selecRandomSet(int, boolean) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Extract a random prototype set of the original traning data set.
- select(int, int, int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Implements computation of the kth-smallest element according
to Manber's "Introduction to Algorithms".
- select(int, int, int, int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Implements computation of the kth-smallest element according to Manber's
"Introduction to Algorithms".
- Select() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
Function which selects the elements of the population
- Select() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
Function which selects the elements of the population
- Select() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
Function which selects the elements of the population
- Select() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
Function which selects the elements of the population
- Select() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
Function which selects the elements of the population
- Select() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
Function which selects the elements of the population
- Select() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
Function which selects the elements of the population
- Select() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
Function which selects the elements of the population
- Select() - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Applies the selection schema of the genetic algorithm.
- select(int, int, int, int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Implements computation of the kth-smallest element according
to Manber's "Introduction to Algorithms".
- selectAlg - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- selectAll_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Select all button
- selectAll_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Select all button
- selectAllC_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Select all button
- selectAllC_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Select all button
- selectAllC_LQD_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Select all button
- selectAllC_LQD_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Select all button
- selectAllLQD_C_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Select all button
- selectAllLQD_C_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Select all button
- selectAllUser_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Select all button
- selectAllUser_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.experiments.SelectData
-
Select all button
- SelectCAN(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Applies the selection schema of the genetic algorithm
- SelectCut - Class in keel.Algorithms.Decision_Trees.C45
-
Class to select a cut point in a dataset.
- SelectCut(int, Dataset) - Constructor for class keel.Algorithms.Decision_Trees.C45.SelectCut
-
Creates a new cut model.
- SelectCut - Class in keel.Algorithms.Decision_Trees.DT_GA.C45
-
Class to select a cut point in a dataset.
- SelectCut(int, Dataset) - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.C45.SelectCut
-
Creates a new cut model.
- SelectCut - Class in keel.Algorithms.Genetic_Rule_Learning.PART
-
Class to select a cut point in a dataset.
- SelectCut(int, MyDataset) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.SelectCut
-
Creates a new cut model.
- SelectCut - Class in keel.Algorithms.ImbalancedClassification.CSMethods.C45CS
-
Class to select a cut point in a dataset.
- SelectCut(int, Dataset) - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.SelectCut
-
Creates a new cut model.
- SelectCut - Class in keel.Algorithms.ImbalancedClassification.Ensembles.C45
-
Class to select a cut point in a dataset.
- SelectCut(int, Dataset) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.C45.SelectCut
-
Creates a new cut model.
- SelectCut - Class in keel.Algorithms.Rule_Learning.C45Rules
-
Class to select a cut point in a dataset.
- SelectCut(int, MyDataset) - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.SelectCut
-
Creates a new cut model.
- SelectCut - Class in keel.Algorithms.Rule_Learning.C45RulesSA
-
Class to select a cut point in a dataset.
- SelectCut(int, MyDataset) - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.SelectCut
-
Creates a new cut model.
- SelectCut - Class in keel.Algorithms.Rule_Learning.PART
-
Class to select a cut point in a dataset.
- SelectCut(int, MyDataset) - Constructor for class keel.Algorithms.Rule_Learning.PART.SelectCut
-
Creates a new cut model.
- SelectCut - Class in keel.Algorithms.Semi_Supervised_Learning.Basic.C45
-
Class to select a cut point in a dataset.
- SelectCut(int, Dataset) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.SelectCut
-
Creates a new cut model.
- SelectData - Class in keel.GraphInterKeel.experiments
-
- SelectData() - Constructor for class keel.GraphInterKeel.experiments.SelectData
-
Builder
- SelectData(Experiments) - Constructor for class keel.GraphInterKeel.experiments.SelectData
-
Builder
- SelectDNF(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Applies the selection schema of the genetic algorithm
- Selected - Class in keel.Algorithms.Associative_Classification.ClassifierCBA
-
This class contains the representation of the "Selected" structure .
- Selected() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.Selected
-
Default Constructor.
- Selected(Rule, int, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.Selected
-
Parameters Constructor
- Selected - Class in keel.Algorithms.Associative_Classification.ClassifierCBA2
-
This class contains the representation of the "Selected" structure
- Selected() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.Selected
-
Default Constructor
- Selected(Rule, int, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.Selected
-
Parameters Constructor
- Selected - Class in keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA
-
This class contains the representation to select rules
- Selected(double, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Selected
-
Parameters Constructor
- SelectedAssociation - Class in keel.Algorithms.Decision_Trees.M5
-
Represents a selected value from a finite set of values, where each
value is a Tag (i.e. has some string associated with it).
- SelectedAssociation(int, Association[]) - Constructor for class keel.Algorithms.Decision_Trees.M5.SelectedAssociation
-
Creates a new SelectedAssociation
instance.
- selectEditor(MouseEvent) - Method in class keel.GraphInterKeel.datacf.util.EachRowEditor
-
Establishes select editor
- selectedN - Variable in class keel.GraphInterKeel.experiments.GraphPanel
-
- SelectedTag - Class in keel.Algorithms.SVM.SMO.core
-
Represents a selected value from a finite set of values, where each
value is a Tag (i.e. has some string associated with it).
- SelectedTag(int, Tag[]) - Constructor for class keel.Algorithms.SVM.SMO.core.SelectedTag
-
Creates a new SelectedTag
instance.
- SelectedTag(String, Tag[]) - Constructor for class keel.Algorithms.SVM.SMO.core.SelectedTag
-
Creates a new SelectedTag
instance.
- selectedTrainingInstances() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.C45
-
Returns a vector including information about which training instances have been selected.
- SelectExp - Class in keel.GraphInterKeel.experiments
-
- SelectExp(Experiments) - Constructor for class keel.GraphInterKeel.experiments.SelectExp
-
Builder
- selectIndividuals(int, int) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Creates a subPopulation of individuals using the tournament method.
- selecting_poc_nn(PrototypeSet, double, double) - Method in class keel.Algorithms.Instance_Generation.POC.POCGenerator
-
Prototype Selection by Poc-NN algorithm for TWO class classification problem.
- selection() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.RuleBase
-
Function to eliminate the redundant rules
- selection(RuleBase, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.RuleBase
-
It adds the best rules to a new rule base
- Selection() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
Selection operator
- Selection() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
Selection operator
- selection() - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.Ilga
-
Applies a roulette wheel selection
- selection() - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.SEM
-
Applies a roulette wheel selection
- selection() - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.Oiga
-
Applies a roulette wheel selection
- selection() - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.SEM
-
Applies a roulette wheel selection
- Selection - Interface in keel.Algorithms.Genetic_Rule_Learning.UCS
-
It is the interface for Selection method.
- Selection - Interface in keel.Algorithms.Genetic_Rule_Learning.XCS
-
It is the interface for Selection method.
- SELECTION_ALGO - Static variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- selectionAlg - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- selectionAlgorithm() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.geneticAlgorithm
-
- selectionAlgorithmTipText() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- selectionPanel1 - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- SELECTIONTYPE - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- selective - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
-
Selective mutator
- selectMethods - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- selectModel(Dataset) - Method in class keel.Algorithms.Decision_Trees.C45.SelectCut
-
Function to select the cut point.
- selectModel(Dataset) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.SelectCut
-
Function to select the cut point.
- selectModel(MyDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.SelectCut
-
Function to select the cut point.
- selectModel(Dataset) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.SelectCut
-
Function to select the cut point.
- selectModel(Dataset) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.SelectCut
-
Function to select the cut point.
- selectModel(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45Rules.SelectCut
-
Function to select the cut point.
- selectModel(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.SelectCut
-
Function to select the cut point.
- selectModel(MyDataset) - Method in class keel.Algorithms.Rule_Learning.PART.SelectCut
-
Function to select the cut point.
- selectModel(Dataset) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.SelectCut
-
Function to select the cut point.
- Selector - Class in keel.Algorithms.Decision_Trees.C45_Binarization
-
Title: Selector
Description: This class implements an attribute condition of a rule
Company: KEEL
- Selector() - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.Selector
-
Defalt constructor
- Selector(String, String, String) - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.Selector
-
Parameter constructor
- Selector(int, myDataset) - Constructor for class keel.Algorithms.Decision_Trees.C45_Binarization.Selector
-
Parameter constructor
- Selector - Class in keel.Algorithms.Decision_Trees.DT_GA
-
Title: Selector (Selector).
- Selector() - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.Selector
-
Default Constructor.
- Selector(String, String, String) - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.Selector
-
Paramenter constructor.
- Selector(int, myDataset) - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.Selector
-
Paramenter constructor.
- Selector - Class in keel.Algorithms.Hyperrectangles.EACH
-
Class to stores selectors with the form (attribute operator values)
- Selector(int, int, String[], double[], int) - Constructor for class keel.Algorithms.Hyperrectangles.EACH.Selector
-
Class to stores selectors with the form (attribute operator values
- Selector(int, int, double[], int) - Constructor for class keel.Algorithms.Hyperrectangles.EACH.Selector
-
Class to stores selectors with the form (attribute operator values
- Selector - Class in keel.Algorithms.ImbalancedClassification.Ensembles
-
Title: Selector
Description: This class implements an attribute condition of a rule
Company: KEEL
- Selector() - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Selector
-
Defalt constructor
- Selector(String, String, String) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Selector
-
Parameter constructor
- Selector(int, myDataset) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.Selector
-
Parameter constructor
- Selector - Class in keel.Algorithms.Neural_Networks.gann
-
Class Selector.
- Selector() - Constructor for class keel.Algorithms.Neural_Networks.gann.Selector
-
Empty constructor
- Selector - Class in keel.Algorithms.Rule_Learning.AQ
-
Title: Selector
Description: This class represents a selector, that is, a structure "attribute op value"
- Selector(int, int, double) - Constructor for class keel.Algorithms.Rule_Learning.AQ.Selector
-
Class employed to store selectors in the form
(attribute operator values)
- Selector(int, int, double[]) - Constructor for class keel.Algorithms.Rule_Learning.AQ.Selector
-
Class employed to store selectors in the form
(attribute operator values)
- Selector - Class in keel.Algorithms.Rule_Learning.CN2
-
Title: Selector
Description: This class represents a selector, that is, a structure "attribute op value"
- Selector(int, int, double) - Constructor for class keel.Algorithms.Rule_Learning.CN2.Selector
-
Class employed to store selectors in the form
(attribute operator values)
- Selector(int, int, double[]) - Constructor for class keel.Algorithms.Rule_Learning.CN2.Selector
-
Class employed to store selectors in the form
(attribute operator values)
- Selector - Class in keel.Algorithms.Rule_Learning.Prism
-
Class to stores selectors with the form (attribute operator values)
- Selector(int, int, double) - Constructor for class keel.Algorithms.Rule_Learning.Prism.Selector
-
Class to stores selectors with the form (attribute operator values)
- Selector(int, int, String, boolean) - Constructor for class keel.Algorithms.Rule_Learning.Prism.Selector
-
Class to stores selectors with the form (attribute operator values), where values are nominal
- Selector(int, int, double[]) - Constructor for class keel.Algorithms.Rule_Learning.Prism.Selector
-
Class to stores selectors with the form (attribute operator values
- Selector - Class in keel.Algorithms.Rule_Learning.Riona
-
Structure for storing one condition of the antecedent of a rule
- Selector(int, int, String[], double[], int, int) - Constructor for class keel.Algorithms.Rule_Learning.Riona.Selector
-
Class that stores selectors with the form: (attribute operator values) where values are nominal
- Selector(int, int, double[], int, int) - Constructor for class keel.Algorithms.Rule_Learning.Riona.Selector
-
Class that stores datasets with the form: (attribute operator values)
- Selector - Class in keel.Algorithms.Rule_Learning.UnoR
-
Class to stores selectors with the form (attribute operator values)
- Selector(int, int, double) - Constructor for class keel.Algorithms.Rule_Learning.UnoR.Selector
-
Class to stores selectors with the form (attribute operator values)
- Selector(int, int, String, double, boolean) - Constructor for class keel.Algorithms.Rule_Learning.UnoR.Selector
-
Class to stores selectors with the form (attribute operator values), where values are nominal
- Selector(int, int, double[], int) - Constructor for class keel.Algorithms.Rule_Learning.UnoR.Selector
-
Class to stores selectors with the form (attribute operator values
- Selector - Class in keel.Algorithms.Subgroup_Discovery.CN2SD
-
Class to stores selectors with the form (attribute operator values)
- Selector(int, int, double) - Constructor for class keel.Algorithms.Subgroup_Discovery.CN2SD.Selector
-
Class to stores selectors with the form (attribute operator values)
- Selector(int, int, double[]) - Constructor for class keel.Algorithms.Subgroup_Discovery.CN2SD.Selector
-
Class to stores selectors with the form (attribute operator values), where values are nominal
- Selector - Class in keel.Algorithms.Subgroup_Discovery.SDAlgorithm
-
Structure with the set of complex for the rules
- Selector(int, int, double) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Selector
-
Constructor
- Selector(int, int, double[]) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Selector
-
Constructor for several values
- Selectos - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec
-
Title:
Description:
Copyright: Copyright (c) 2007
Company:
- Selectos(double, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Selectos
-
Parameters constructor.
- selectPostprocessMethods - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- selectPreprocessMethods - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- selectRoulette() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Roulette
-
Select on position of the roulette and returns it.
- selectRoulette() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Roulette
-
Select on position of the roulette and returns it.
- selectStrategy(double[]) - Method in class keel.Algorithms.Instance_Generation.SADE.SADEGenerator
-
I use this function to calculate what strategy we must use with the probability strategy we have.
- selectTestMethods - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- selectVisualizeMethods - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- SelfTrainingAlgorithm - Class in keel.Algorithms.Semi_Supervised_Learning.SelfTraining
-
SelfTraining algorithm calling.
- SelfTrainingAlgorithm() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.SelfTraining.SelfTrainingAlgorithm
-
- SelfTrainingGenerator - Class in keel.Algorithms.Semi_Supervised_Learning.SelfTraining
-
This class implements the Self-traning wrapper.
- SelfTrainingGenerator(PrototypeSet, int, int, int, int, double, double, double, double, double) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.SelfTraining.SelfTrainingGenerator
-
Build a new SelfTrainingGenerator Algorithm
- SelfTrainingGenerator(PrototypeSet, PrototypeSet, PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.SelfTraining.SelfTrainingGenerator
-
Build a new SelfTrainingGenerator Algorithm
- SEM - Class in keel.Algorithms.Genetic_Rule_Learning.ILGA
-
This class implements the SEM algorithm of the OIGA method, which evolves
mono-attribute rules.
- SEM() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.ILGA.SEM
-
Default constructor.
- SEM(int, int, int, InstanceSet) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.ILGA.SEM
-
Parametrized constructor
- SEM - Class in keel.Algorithms.Genetic_Rule_Learning.OIGA
-
This class implements the SEM algorithm of the OIGA method, which evolves
mono-attribute rules.
- SEM() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OIGA.SEM
-
Default constructor.
- SEM(int, int, int, InstanceSet) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.OIGA.SEM
-
Parametrized constructor
- Semantics - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate
-
This class is defined to manage de semantics of the linguistic variables
- Semantics() - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Semantics
-
- Semantics - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate
-
This class is defined to manage de semantics of the linguistic variables
- Semantics() - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Semantics
-
- Semantics - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate
-
This class is defined to manage de semantics of the linguistic variables
- Semantics() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Semantics
-
- sentences - Variable in class keel.GraphInterKeel.experiments.EducationalReport
-
- separationValue - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.ArffDataSet
-
Symbol which represents the separation between values
- separationValue - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.KeelDataSet
-
Symbol which represents the separation between values
- separatorToString() - Static method in class keel.Algorithms.Decision_Trees.M5.M5
-
Prints sepearating line
- SEPErrorFunction - Class in keel.Algorithms.Neural_Networks.NNEP_Regr.problem.errorfunctions
-
SEP Error Function.
- SEPErrorFunction() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Regr.problem.errorfunctions.SEPErrorFunction
-
Empty constructor
- seq(int, int) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Generates an IntVector that stores all integers inclusively between
two integers.
- SequenceActiveLabels(String, int, Int_t, Int_t, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- SequenceActiveLabels(String, int, Int_t, Int_t, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- SequenceActiveLabels(String, int, Int_t, Int_t, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- sequentialTest - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
This parameter indicates if the test execution must be a
sequential execution (if the enviornment is a file environment),
or it mustn't.
- sequentialTest - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
This parameter indicates if the test execution must be a
sequential execution (if the enviornment is a file environment),
or it mustn't.
- SEQUENTIALTEST - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- SERIAL_VERSION_UID - Static variable in class keel.Algorithms.SVM.SMO.core.SerializationHelper
-
the field name of serialVersionUID
- SerializationHelper - Class in keel.Algorithms.SVM.SMO.core
-
A helper class for determining serialVersionUIDs and checking whether
classes contain one and/or need one.
- SerializationHelper() - Constructor for class keel.Algorithms.SVM.SMO.core.SerializationHelper
-
- SERIALIZED_OBJ_FILE_EXTENSION - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
The filename extension that should be used for bin. serialized instances files
- SERIALIZED_OBJ_FILE_EXTENSION - Static variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
The filename extension that should be used for bin. serialized instances
files
- SERIALIZED_OBJ_FILE_EXTENSION - Static variable in class keel.Algorithms.SVM.SMO.core.Instances
-
The filename extension that should be used for bin. serialized instances files
- SerializedObject - Class in keel.Algorithms.Decision_Trees.M5
-
This class stores an object serialized in memory.
- SerializedObject(Object) - Constructor for class keel.Algorithms.Decision_Trees.M5.SerializedObject
-
Serializes the supplied object into a byte array without compression.
- SerializedObject(Object, boolean) - Constructor for class keel.Algorithms.Decision_Trees.M5.SerializedObject
-
Serializes the supplied object into a byte array.
- SerializedObject - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
Class for storing an object in serialized form in memory.
- SerializedObject(Object) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.SerializedObject
-
Creates a new serialized object (without compression).
- SerializedObject(Object, boolean) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.SerializedObject
-
Creates a new serialized object.
- SerializedObject - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets
-
Class for storing an object in serialized form in memory.
- SerializedObject(Object) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SerializedObject
-
Creates a new serialized object (without compression).
- SerializedObject(Object, boolean) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SerializedObject
-
Creates a new serialized object.
- SerializedObject - Class in keel.Algorithms.SVM.SMO.core
-
Class for storing an object in serialized form in memory.
- SerializedObject(Object) - Constructor for class keel.Algorithms.SVM.SMO.core.SerializedObject
-
Creates a new serialized object (without compression).
- SerializedObject(Object, boolean) - Constructor for class keel.Algorithms.SVM.SMO.core.SerializedObject
-
Creates a new serialized object.
- set(FuzzyGAPClassifier) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGAP.FuzzyGAPClassifier
-
This method copies the given FuzzyGAPClassifier in the current object.
- set(FuzzyGPClassifier) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyGP.FuzzyGPClassifier
-
This method copies the given FuzzyGPClassifier in the current object.
- set(PittsburghClassifier) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyPittsBurgh.PittsburghClassifier
-
- set(FuzzySAPClassifier) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySAP.FuzzySAPClassifier
-
This method copies the given FuzzySAPClassifier in the current object.
- Set(int, double, double, boolean, boolean, String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.variable_t
-
- Set(String, int, String[], double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.variable_t
-
- Set(int, double, double, boolean, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.domain_t
-
Creates an uniform domain with n labels from inf to sup, cutting in 0.5
- Set(int, double, double, double[], double[], double[], double[], String[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.domain_t
-
Creates a domain with n labels in [inf,sup].
- Set(double, double, double, double, String, boolean, boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.fuzzy_t
-
Assigns a label
[a,b,c,d] represents a trapezoidal label and "name" is the name of the label.
- Set(double, double, double, double, String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.fuzzy_t
-
Assigns a label
[a,b,c,d] represents a trapezoidal label and "name" is the name of the label.
- Set(int, double, double, boolean, boolean, String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Defines a variable in an automatic way.
- Set(String, int, String[], double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Defines a variable in an automatic way.
- Set(int, String, int, double, double, double[], double[], double[], double[], String[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Defines a variable based in a domain given as an ordered secuence of labels
( [a[i],b[i],c[i],d[i]] expresses the definition of the label i)
"inf" and "sup" are the lower and upper limits, respectively.
- Set(int, variable_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Copies the variable "x" in the position "pos" of the list
- set(FuzzyClassifier) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Classifier.FuzzyClassifier
-
This method copies the given FuzzyClassifier in the current object.
- set(FuzzyFGPClassifier) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Classifier.FuzzyFGPClassifier
-
This method copies the given FuzzyFGPClassifier in the current object.
- set(GenotypeFuzzyGAP) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGAP
-
This method copies the given parameter into the current object.
- set(GenotypePitts) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypePitts
-
This method copies the given parameter into the current object.
- set(FuzzyGAPModelIndividual) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyGAPModelIndividual
-
This method assing the properties of a fuzzy individual for GAP model to another one
- set(FuzzyGPModel) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyGPModel
-
This method assign a fuzzy model for GP to anothe one
- set(FuzzyGPModelIndividual) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyGPModelIndividual
-
This method assing the properties of a fuzzy individual for GP model to another one
- set(FuzzyGPRegSymModel) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyGPRegSymModel
-
This method assing the properties of a fuzzy system of symbolic regression for
GP model to another one
- set(FuzzyModel) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.FuzzyModel
-
This method asign a fuzzy mothed to another one
- set(PittsburghModel) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.PittsburghModel
-
This method sets the properties of a Pittsburgh model to another one
- set(RegSymFuzzyGP) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.RegSymFuzzyGP
-
This method assing the properties of a fuzzy system of symbolic regession to another one
- set(Node) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
This method asign a node the porperties from another
- set(NodeAdd) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeAdd
-
This method sets to a NodeAdd the properties from another
- set(NodeAnd) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeAnd
-
This method asign to to a NodeAnd the properties of another
- set(NodeConsequent) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeConsequent
-
This method asign to a NodeConsequente the properties of another
- set(NodeExp) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeExp
-
This method asign to a NodeExp the properties from another
- set(NodeExprHold) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeExprHold
-
This method sets the node properties to another one
- set(NodeIs) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeIs
-
This method sets to a NodeIs the properties from another
- set(NodeLabel) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeLabel
-
This method asing to a NodeLabel the properties from another
- set(NodeLog) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeLog
-
This method assign a log node to another one
- set(NodeMinus) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeMinus
-
This method sets a minus node to another one
- set(NodeOr) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeOr
-
This method assign an or node to another one
- set(NodeProduct) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeProduct
-
This method sets a product node to another one
- set(NodeRule) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeRule
-
This method sets a rule node from another one
- set(NodeRuleBase) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeRuleBase
-
This method sets a node rule base to another one
- set(NodeSquareRoot) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeSquareRoot
-
This method sets a square root node to another one
- set(NodeValue) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeValue
-
This method sets a node to another
- set(NodeVariable) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeVariable
-
This method sets a variable node to another one
- set(FuzzyAlphaCut) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyAlphaCut
-
Copies the FuzzyAlphaCut parameter over the present instance.
- set(FuzzyPartition) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyPartition
-
Copies the Fuzzy partition parameter over the present instance.
- set(FuzzyRule) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyRule
-
Copies the FuzzyRule parameter over the present instance.
- set(FuzzySingleton) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzySingleton
-
Copies the FuzzySingleton parameter over the present instance.
- set(RuleBase) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.RuleBase
-
Copies the RuleBase parameter over the present instance.
- set(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
-
- set(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Mask
-
Activates the value of a given position.
- set(int, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Mask
-
Sets the states (activated or deactivated) of a given position.
- set(int, double, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleRule
-
Sets the attribute's id and the attribute's value
- set(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Mask
-
Activates the value of a given position.
- set(int, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Mask
-
Sets the states (activated or deactivated) of a given position.
- set(int, double, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.SimpleRule
-
Sets the attribute's id and the attribute's value
- set(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Copy the values of a Prototype from another protoype.
- set(boolean) - Static method in class keel.Algorithms.Instance_Generation.utilities.Debug
-
Set both debug modes to a desired state.
- set() - Static method in class keel.Algorithms.Instance_Generation.utilities.Debug
-
Set both debug modes (set them to true).
- set(F, S) - Method in class keel.Algorithms.Instance_Generation.utilities.Pair
-
Set elements of the pair.
- set - Variable in class keel.Algorithms.Instance_Generation.VQ.Cluster
-
Set of prototypes (minus the center) that forms the cluster.
- set(int, int) - Method in class keel.Algorithms.Lazy_Learning.NSC.Cluster
-
Set an element into the cluster
- set(int, int) - Method in class keel.Algorithms.RST_Learning.EFS_RPS.Chromosome
-
Sets the value in the chromosome of the given position with the value given.
- set(int, int) - Method in class keel.Algorithms.RST_Learning.EIS_RFS.Chromosome
-
Sets the value in the chromosome of the given position with the value given.
- set(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Mask
-
Activates the value of a given position.
- set(int, boolean) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Mask
-
Sets the states (activated or deactivated) of a given position.
- set(int, double, int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.SimpleRule
-
Sets the attribute's id and the attribute's value
- set(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Mask
-
Activates the value of a given position.
- set(int, boolean) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Mask
-
Sets the states (activated or deactivated) of a given position.
- set(int, double, int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.SimpleRule
-
Sets the attribute's id and the attribute's value
- set(int) - Method in class keel.Algorithms.Rule_Learning.PART.Mask
-
Activates the value of a given position.
- set(int, boolean) - Method in class keel.Algorithms.Rule_Learning.PART.Mask
-
Sets the states (activated or deactivated) of a given position.
- set(int, double, int) - Method in class keel.Algorithms.Rule_Learning.PART.SimpleRule
-
Sets the attribute's id and the attribute's value
- set(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Mask
-
Activates the value of a given position.
- set(int, boolean) - Method in class keel.Algorithms.Rule_Learning.Ripper.Mask
-
Sets the states (activated or deactivated) of a given position.
- set(int, double, int) - Method in class keel.Algorithms.Rule_Learning.Ripper.SimpleRule
-
Sets the attribute's id and the attribute's value
- set(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Mask
-
Activates the value of a given position.
- set(int, boolean) - Method in class keel.Algorithms.Rule_Learning.Slipper.Mask
-
Sets the states (activated or deactivated) of a given position.
- set(int, double, int) - Method in class keel.Algorithms.Rule_Learning.Slipper.SimpleRule
-
Sets the attribute's id and the attribute's value
- set(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Copy the values of a Prototype from another protoype.
- set(boolean) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Debug
-
Set both debug modes to a desired state.
- set() - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Debug
-
Set both debug modes (set them to true).
- set(F, S) - Method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Pair
-
Set elements of the pair.
- set(int, double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Set a single element.
- set(double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Set all elements to a value
- set(int, int, double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Set some elements to a value
- set(int, int, double[], int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Set some elements using a 2-D array
- set(DoubleVector) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Set the elements using a DoubleVector
- set(int, int, DoubleVector, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Set some elements using a DoubleVector.
- set(int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Sets the value of an element.
- set(int, int, int[], int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Sets the values of elements from an int array.
- set(int, int, IntVector, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Sets the values of elements from another IntVector.
- set(IntVector) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Sets the values of elements from another IntVector.
- set(int, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Sets a single element.
- set(int, int, double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Set a single element.
- set(int, Vector<String>) - Method in class keel.GraphInterKeel.experiments.DinamicParameter
-
- set_difuso(Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Difuso
-
- set_difuso(Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Difuso
-
- set_difuso(Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Difuso
-
- set_difuso(Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Difuso
-
- set_difuso(Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Difuso
-
- set_difuso(Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Difuso
-
- set_difuso(Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Difuso
-
- set_difuso(Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Difuso
-
- set_entrado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Cromosoma
-
Sets the flag value that carry the information about if this chromosome has been selected to be crossed or not.
- set_entrado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Cromosoma
-
Sets the flag value that carry the information about if this chromosome has been selected to be crossed or not.
- set_entrado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Cromosoma
-
Sets the flag value that carry the information about if this chromosome has been selected to be crossed or not.
- set_entrado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Cromosoma
-
Sets the flag value that carry the information about if this chromosome has been selected to be crossed or not.
- set_entrado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Cromosoma
-
Sets the flag value that carry the information about if this chromosome has been selected to be crossed or not.
- set_entrado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Cromosoma
-
Sets the flag value that carry the information about if this chromosome has been selected to be crossed or not.
- set_entrado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Cromosoma
-
Sets the flag value that carry the information about if this chromosome has been selected to be crossed or not.
- set_entrado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Cromosoma
-
Sets the flag value that carry the information about if this chromosome has been selected to be crossed or not.
- set_fp(double) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.QualitySubgroup
-
Sets the value for the fp quality measure
- set_FPm(double) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.QualitySubgroup
-
Sets the value for the FP missing quality measure
- set_gene(int, double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Cromosoma
-
Set the value given to a given gene (normal double representation)
- set_gene(int, double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Cromosoma
-
Set the value given to a given gene
- set_gene(int, double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Cromosoma
-
Set the value given to a given gene (normal double representation)
- set_gene(int, double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Cromosoma
-
Set the value given to a given gene (normal double representation)
- set_gene(int, double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Cromosoma
-
Set the value given to a given gene (normal double representation)
- set_gene(int, double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Cromosoma
-
Set the value given to a given gene
- set_gene(int, double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Cromosoma
-
Set the value given to a given gene (normal double representation)
- set_gene(int, double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Cromosoma
-
Set the value given to a given gene (normal double representation)
- set_geneA(int, double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Cromosoma
-
Set the value given to a given gene ("A" double representation)
- set_geneA(int, double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Cromosoma
-
Set the value given to a given gene ("A" double representation)
- set_geneA(int, double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Cromosoma
-
Set the value given to a given gene ("A" double representation)
- set_geneA(int, double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Cromosoma
-
Set the value given to a given gene ("A" double representation)
- set_geneR(int, char) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Cromosoma
-
Set the value given to a given gene ("R" char representation)
- set_geneR(int, char) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Cromosoma
-
Set the value given to a given gene ("R" char representation)
- set_geneR(int, char) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Cromosoma
-
Set the value given to a given gene ("R" char representation)
- set_geneR(int, char) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Cromosoma
-
Set the value given to a given gene ("R" char representation)
- set_geneR(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Cromosoma
-
Set the value given to a given gene ("R" int representation)
- set_geneR(int, char) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Cromosoma
-
Set the value given to a given gene ("R" char representation)
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Gen
-
Sets the maximum variable with the value given.
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.TipoIntervalo
-
Sets the maximum variable with the value given.
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Gen
-
Sets the maximum variable with the value given.
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.TipoIntervalo
-
Sets the maximum variable with the value given.
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Gen
-
Sets the maximum variable with the value given.
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.TipoIntervalo
-
Sets the maximum variable with the value given.
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Gen
-
Sets the maximum variable with the value given.
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.TipoIntervalo
-
Sets the maximum variable with the value given.
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Gen
-
Sets the maximum variable with the value given.
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.TipoIntervalo
-
Sets the maximum variable with the value given.
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Gen
-
Sets the maximum variable with the value given.
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.TipoIntervalo
-
Sets the maximum variable with the value given.
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Gen
-
Sets the maximum variable with the value given.
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.TipoIntervalo
-
Sets the maximum variable with the value given.
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Gen
-
Sets the maximum variable with the value given.
- set_max(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.TipoIntervalo
-
Sets the maximum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Gen
-
Sets the minimum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.TipoIntervalo
-
Sets the minimum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Gen
-
Sets the minimum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.TipoIntervalo
-
Sets the minimum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Gen
-
Sets the minimum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.TipoIntervalo
-
Sets the minimum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Gen
-
Sets the minimum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.TipoIntervalo
-
Sets the minimum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Gen
-
Sets the minimum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.TipoIntervalo
-
Sets the minimum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Gen
-
Sets the minimum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.TipoIntervalo
-
Sets the minimum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Gen
-
Sets the minimum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.TipoIntervalo
-
Sets the minimum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Gen
-
Sets the minimum variable with the value given.
- set_min(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.TipoIntervalo
-
Sets the minimum variable with the value given.
- set_min_max_values(double[][], int, int) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Setting the mix and max values for data (needed for operators)
- set_perf(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Cromosoma
-
Set the performance of a chromosome
- set_perf(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Cromosoma
-
Set the performance of a chromosome
- set_perf(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Cromosoma
-
Set the performance of a chromosome
- set_perf(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Cromosoma
-
Set the performance of a chromosome
- set_perf(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Cromosoma
-
Set the performance of a chromosome
- set_perf(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Cromosoma
-
Set the performance of a chromosome
- set_perf(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Cromosoma
-
Set the performance of a chromosome
- set_perf(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Cromosoma
-
Set the performance of a chromosome
- set_q(double) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.QualitySubgroup
-
Sets the value for the q quality measure
- set_tipoBC(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Ecm
-
Sets the BC type with the value given
- set_tp(double) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.QualitySubgroup
-
Sets the value for the tp quality measure
- set_TPm(double) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.QualitySubgroup
-
Sets the value for the TP missing quality measure
- setA(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
-
- setAccu(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Sets the value of ACCU
- setAccuracy(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier
-
- setAccuracy(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_aggregated
-
- setAccuracy(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
-
- setAccuracy(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
-
- setAccuracy2(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier
-
- setActAs(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
-
It sets whether a gene is involved in the chromosome being considered.
- setActAs(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Gene
-
It sets whether a gene is involved in the chromosome being considered.
- setActAs(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
-
It sets whether a gene is involved in the chromosome being considered.
- setActAs(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Gene
-
It sets whether a gene is involved in the chromosome being considered.
- setAction(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Sets the action passed to the classifier
- setAction(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
Sets the action passed as a parameter.
- setActivation(int, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.Rule
-
Sets the activation of the attribute
- setActivation(int, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.Rule
-
Sets the activation of the attribute
- setAlgorithmType(String) - Method in class keel.GraphInterKeel.experiments.Parameters
-
Sets the algorithm type
- setAll(int[]) - Method in class keel.Algorithms.Lazy_Learning.NSC.Cluster
-
Set all elements into the cluster
- setAll_support(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
-
- setAll_support(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
-
- setAll_support(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
-
- setAll_support(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
-
- setAll_support(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
-
- setAllAttributes() - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
- setAllele(double, double) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Attribute
-
In case of being a character attribute, the char value is set as a double in the lowerValue parameter)
- setAllele(Attribute) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Attribute
-
Sets an Allele (attribute) with the attribute given as parameter.
- setAllele(int, Classifier) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Classifier
-
sets the allele value
- setAllele(double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
Sets the lower and upper values.
- setAllele(Attribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
Sets the lower and upper values.
- setAllele(double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
Sets the value of the allele.
- setAllele(Attribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
Sets the value of the allele.
- setAllele(double, double) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
-
In case of being a character attribute, the char value is set as a double in the lowerValue parameter)
- setAllele(Attribute) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
-
Sets an Allele (attribute) with the attribute given as parameter.
- setAllele(int, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Sets the allele value
- setAllele(int, Classifier) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
sets the allele value
- setAllele(double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
Sets the lower and upper values.
- setAllele(Attribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
Sets the lower and upper values.
- setAllele(double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
Sets the lower and upper values.
- setAllele(Attribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
Sets the lower and upper values.
- setAllele(int, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
Sets the allele value
- setAllele(int, Representation) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
Sets the allele value
- setAllele(int, char) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
Sets the allele value
- setAllele(double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
Sets the value of the allele.
- setAllele(Attribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
Sets the value of the allele.
- setAllFeatures() - Static method in class keel.Algorithms.RST_Learning.KNNClassifier
-
On the features selector vector, sets the all the features to 1 (selected)
- setAllInstances() - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
- setAllInstances() - Static method in class keel.Algorithms.RST_Learning.KNNClassifier
-
On the instance selector vector, sets the all the instances to 1 (selected)
- setAllInstances() - Static method in class keel.Algorithms.RST_Learning.RSTData
-
- setAllowUnclassifiedInstances(boolean) - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Set the value of AllowUnclassifiedInstances.
- setAllowUnclassifiedInstances(boolean) - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Set the value of AllowUnclassifiedInstances.
- setAllowUnclassifiedInstances(boolean) - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Set the value of AllowUnclassifiedInstances.
- setAlpha(double) - Method in class keel.Algorithms.MIL.APR.GFS_Kde_APR.GFS_Kde_APR
-
- setAlpha(double) - Method in class keel.Algorithms.MIL.APR.IteratedDiscrimination.IteratedDiscrimination
-
- setAlpha(double) - Static method in class keel.Algorithms.RST_Learning.EIS_RFS.Chromosome
-
Sets the alpha parameter with the value given.
- setAlpha(double) - Static method in class keel.Algorithms.RST_Learning.RSTData
-
- setAmplitude(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ExpNeuronParametricMutator
-
Sets the amplitude coefficient for allowed weights
- setAmplitude(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.LinearNeuronParametricMutator
-
Sets the amplitude coefficient for allowed weights
- setAmplitude(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
-
Sets the amplitude coefficient for the weights in mutations
- setAmplitude(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.SigmNeuronParametricMutator
-
Sets the amplitude coefficient for allowed weights
- setAmplitudeInterv(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
-
- setantecedent(Integer[]) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
-
- setantecedent(Integer[]) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
-
- setantecedent(Integer[]) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.rule
-
- setantecedent(Integer[]) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
-
- setAntecedente(Integer[]) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
-
- setAntecedente(Integer[]) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzyrule
-
- setAntecedente(Integer[]) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzyrule
-
- setAntecedentSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
-
- setAntecedentSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AssociationRule
-
It sets the antecedent support of an association rule
- setAntecedentSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.AssociationRule
-
It sets the antecedent support of an association rule
- setAnteriores(boolean[][]) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Instance_Selection.EUSCHCQstat.EUSCHCQstat
-
- setAny(int, String) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Individual
-
It sets the condition for the variable in position "atributo" to ANY
- setArcs(Vector) - Method in class keel.GraphInterKeel.experiments.Graph
-
Puts a new set of arcs
- setArg(Vector<Joint>) - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
-
Set args
- setArray(int[]) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Sets the internal one-dimensional array.
- setAsClassifierLeaf() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Sets this node as a classifier leaf node.
- setAsDefaultRule() - Method in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- setAsDefaultRule() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- setAsDefaultRule() - Method in class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- setASize(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Sets the classifier action set size estimate
- setAsLeaf() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Sets this node as a leaf node.
- setAtribute(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Selector
-
Assign the attribute
- setAtributo(int, double) - Method in class keel.Algorithms.Rule_Learning.Prism.Muestra
-
Gives value to an atribute
- setAtributo(int) - Method in class keel.Algorithms.Rule_Learning.Prism.Selector
-
Assign the attribute
- setAtributo(int, double) - Method in class keel.Algorithms.Rule_Learning.UnoR.Muestra
-
Gives value to an atribute
- setAtributo(int) - Method in class keel.Algorithms.Rule_Learning.UnoR.Selector
-
Assign the attribute
- setAtributo(int, double) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Muestra
-
Gives value to an atribute
- setAtributo(int, double) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Muestra
-
Gives value to an atribute
- setAtributo(int) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Selector
-
Assign the attribute
- setAtributo(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Selector
-
Sets the attribute
- setAttHeader(String) - Method in class keel.Dataset.InstanceSet
-
- setAttr(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
-
- setAttr(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Gene
-
- setAttr(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Gene
-
- setAttr(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Gene
-
- setAttr(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Gene
-
- setAttr(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Gene
-
- setAttr(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Gene
-
- setAttr(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
-
- setAttr(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Gene
-
- setAttribute(int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.Split
-
Replaces the position of the attribute for the split with another new position
- setAttribute(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Split
-
Replaces the position of the attribute for the split with another new position
- setAttribute(int, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Instance
-
It sets a value for an attribute
- setAttribute(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleRule
-
Sets the attribute's id and the attribute's value
- setAttribute(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.SimpleRule
-
Sets the attribute's id and the attribute's value
- setAttribute(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Condition
-
It adds the attribute id
- setAttribute(int, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Instance
-
It sets a value for an attribute
- setAttribute(int) - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
- setAttribute(int) - Static method in class keel.Algorithms.RST_Learning.RSTData
-
- setAttribute(int, double) - Method in class keel.Algorithms.Rule_Learning.AQ.Instance
-
It sets a value for an attribute
- setAttribute(int) - Method in class keel.Algorithms.Rule_Learning.AQ.Selector
-
It assigns the attribute
- setAttribute(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.SimpleRule
-
Sets the attribute's id and the attribute's value
- setAttribute(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.SimpleRule
-
Sets the attribute's id and the attribute's value
- setAttribute(int, double) - Method in class keel.Algorithms.Rule_Learning.CN2.Instance
-
It sets a value for an attribute
- setAttribute(int) - Method in class keel.Algorithms.Rule_Learning.CN2.Selector
-
It assigns the attribute
- setAttribute(int) - Method in class keel.Algorithms.Rule_Learning.PART.SimpleRule
-
Sets the attribute's id and the attribute's value
- setAttribute(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.SimpleRule
-
Sets the attribute's id and the attribute's value
- setAttribute(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.SimpleRule
-
Sets the attribute's id and the attribute's value
- setAttribute(int, double) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Instance
-
It sets a value for an attribute
- setAttributeI(int, myAttribute) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
-
Replaces the information about the ith attribute that the dataset uses with new information about that attribute
- setAttributeI(int, myAttribute) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
-
Replaces the information about the ith attribute that the dataset uses with new information about that attribute
- SetAttributePresence(int, Boolean) - Method in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- SetAttributePresence(int, Boolean) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- setAttributes(ArrayList<myAttribute>) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
-
Replaces all the information about the attributes that the dataset uses with new information about the attributes
- setAttributes(ArrayList<myAttribute>) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
-
Replaces all the information about the attributes that the dataset uses with new information about the attributes
- setAttributes(Attribute[]) - Static method in class keel.Algorithms.Hyperrectangles.BNGE.Rule
-
Test which attributes are nominal
- setAttributes(Attribute[]) - Static method in class keel.Algorithms.Hyperrectangles.INNER.Rule
-
Test which attributes are nominal
- setAttributes(Attribute[]) - Static method in class keel.Algorithms.Hyperrectangles.RISE.Rule
-
Test which attributes are nominal
- setAttributes(int[]) - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
- setAttributes(int[]) - Static method in class keel.Algorithms.RST_Learning.RSTData
-
- setAttributes(Vector<Integer>) - Method in class keel.Algorithms.Rule_Learning.ART.Rule
-
- setAttributesArray(IAttribute[]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.Metadata
-
Sets array of all attributes of this specification
- setAttributesAsNonStatic() - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceSet
-
setAttributesAsNonStatic
It stores the static-defined attributes in the class Attributes as
non static in the object attributes.
- setAttributesAsNonStatic() - Method in class keel.Dataset.InstanceSet
-
setAttributesAsNonStatic
It stores the static-defined attributes in the class Attributes as
non static in the object attributes.
- setAttributesTypes(InstanceAttributes) - Static method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Update the type of each attribute of the set.
- setAttributesTypes(InstanceAttributes) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Update the type of each attribute of the set.
- setAttributesTypes() - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Sets the attributes types.
- setAttributeType(int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
-
Replaces the data type of the data of the attribute with a new data type
- setAttributeType(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
-
Replaces the data type of the data of the attribute with a new data type
- setAttributeValue(double) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Register
-
Replaces the value of the corresponding attribute with another new value
- setAttributeValue(int) - Method in class keel.Algorithms.Rule_Learning.Riona.Selector
-
Assigns the attribute
- setB(double[], double) - Method in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- setB(double[], double) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- setB(double[], double, int) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.Particle
-
- setB(double[], double) - Method in class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- setB(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setB(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setB(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setB(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setB(int, int, Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setB(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setB(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setB(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setB(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setBase(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
-
Sets a database with the data in a vector given as argument.
- setBaseCodificada(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Codificacion
-
- setBc(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
- setBd(BaseDatos) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Discretizacion
-
Sets the database with the one given.
- setBDatos(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setBDatos(int, int, Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setBDatos(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setBDatos(int, int, Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setBDatos(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setBDatos(int, int, Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setBDatos(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setBDatos(int, int, Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setBDatos(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setBDatos(int, int, Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setBDatos(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setBDatos(int, int, Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setBDatos(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setBDatos(int, int, Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setBDatos(Difuso[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setBDatos(int, int, Difuso) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setBergman(boolean) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the use of Bergman test
- setBest(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
- setBest(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
- setBest(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setBest(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
- setBest(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
- setBest(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
- setBest(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setBest(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
- setBEST_CROM(Cromosoma) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
- setBEST_CROM(Cromosoma) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
- setBEST_CROM(Cromosoma) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setBEST_CROM(Cromosoma) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
- setBEST_CROM(Cromosoma) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
- setBEST_CROM(Cromosoma) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setBestModelResultFile(String) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlusReporterClas
-
Sets file name where the best model obtained will be written
- setBestModelResultFile(String) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.IRPropPlusReporterRegr
-
Sets file name where the best model obtained will be written
- setBestModelResultFile(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.listener.NeuralNetReporterClas
-
Sets file name where the best model obtained will be written
- setBestModelResultFile(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.listener.NeuralNetReporterRegr
-
Sets file name where the best model obtained will be written
- setBestrules(ArrayList<Chromosome>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
-
Sets the best rules mined with the array given.
- setBeta(double) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.Chromosome
-
Sets beta value
- setBeta(double) - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.Chromosome
-
Sets the beta parameter with the value given.
- setBiased(boolean) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Sets a boolean indicating if the layer has a bias neuron
- setBiased(boolean) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Sets a boolean indicating if the layer has a bias neuron
- setBinaryAttributesNominal(boolean) - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Sets if binary attributes are to be treates as nominal ones.
- setBit(int, char) - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Gene
-
Sets the bits status indicated by index and value
- setBITS_GEN(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
- setBITS_GEN(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
- setBITS_GEN(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setBITS_GEN(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
- setBITS_GEN(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
- setBITS_GEN(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
- setBITS_GEN(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setBITS_GEN(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
- setBondad(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Corte
-
- setBondad(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Union
-
- setBonferroni(boolean) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the use of Bonferroni-Dunn test
- setBounds(double, double) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.Gcvfctn
-
Sets the new bounds
- setBounds(double, double) - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
It sets the bound of the integer or real attribute.
- setBounds(double, double) - Method in class keel.Dataset.Attribute
-
It sets the bound of the integer or real attribute.
- setBregla(int[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setBregla(int, int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setBregla(int[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setBregla(int, int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setBregla(int[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setBregla(int, int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setBregla(int[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setBregla(int, int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setBregla(int[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setBregla(int, int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setBregla(int[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setBregla(int, int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setBregla(int[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setBregla(int, int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setBregla(int[][]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setBregla(int, int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setBroken(boolean) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.Link
-
Sets a boolean indicating if the link is or not broken
- setBuildLogisticModels(boolean) - Method in class keel.Algorithms.SVM.SMO.SMO
-
Set the value of buildLogisticModels.
- setC(double) - Method in class keel.Algorithms.SVM.SMO.SMO
-
Set the value of C.
- setC(double) - Method in class keel.Algorithms.SVM.SMO.SMOreg
-
Set the value of C.
- setC(double) - Method in class keel.Algorithms.SVM.SMO.SVMreg
-
Set the value of C.
- setC(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.MembershipFunction
-
It sets the center of an isosceles-triangle
- setC(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.MembershipFunction
-
It sets the center of an isosceles-triangle
- setCa(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Gene
-
- setCabecera(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
-
- setCacheSize(int) - Method in class keel.Algorithms.SVM.SMO.supportVector.CachedKernel
-
Sets the size of the cache to use (a prime number)
- setCacheSize(int) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Sets the size of the cache to use (a prime number)
- setCapacity(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Vector
-
Sets the vector's capacity to the given value.
- setCapacity(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.FastVector
-
Sets the vector's capacity to the given value.
- setCapacity(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.FastVector
-
Sets the vector's capacity to the given value.
- setCapacity(int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.FastVector
-
Sets the vector's capacity to the given value.
- setCapacity(int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Sets the capacity of the vector
- setCapacity(int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Sets the capacity of the vector
- setCapacity(int) - Method in class keel.Algorithms.SVM.SMO.core.FastVector
-
Sets the vector's capacity to the given value.
- setCaret(int) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelDataset
-
Sets care postion for dataset area
- setCategories(Vector<Category>) - Static method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.WrapperManager
-
- setCCnf(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Sets the value of CCNF
- setcent(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.fuzzy
-
- setcent(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.fuzzy
-
- setcentd(float) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzy
-
- setcentd(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzy
-
- setcentd(float) - Method in class keel.Algorithms.LQD.preprocess.Expert.fuzzy
-
- setcentd(float) - Method in class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.fuzzy
-
- setcentd(float) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzy
-
- setcentd(float) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzy
-
- setcentd(float) - Method in class keel.Algorithms.LQD.tests.IntermediateBoost.fuzzy
-
- setCenter(double[]) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbf
-
Sets the vector of centres of a neuron
- setcenti(float) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzy
-
- setcenti(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzy
-
- setcenti(float) - Method in class keel.Algorithms.LQD.preprocess.Expert.fuzzy
-
- setcenti(float) - Method in class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.fuzzy
-
- setcenti(float) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzy
-
- setcenti(float) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzy
-
- setcenti(float) - Method in class keel.Algorithms.LQD.tests.IntermediateBoost.fuzzy
-
- setCentre(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbf
-
Sets the vector of centres of a neuron
- setCentre(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbf
-
Sets the vector of centres of a neuron
- setCentre(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbf
-
Sets the vector of centres of a neuron
- setCentre(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbf
-
Sets the vector of centres of a neuron
- setCentre(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbf
-
Sets the vector of centres of a neuron
- setCentre(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbf
-
Sets the vector of centres of a neuron
- setCentroid(Prototype) - Method in class keel.Algorithms.Instance_Generation.VQ.Cluster
-
Asssigns the center of the cluster.
- setCentroid(double[]) - Method in class keel.Algorithms.Lazy_Learning.NSC.Cluster
-
Set the centroid of the cluster
- setCep(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
- setCF(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AssociationRule
-
It sets the CF of an association rule
- setCF(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
-
- setCF(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
-
- setCF(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.AssociationRule
-
It sets the CF of an association rule
- setCF(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
-
It sets the CF of an association rule
- setCF(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
-
- setCF(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
-
- setCF(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
-
- setCF(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- setCF(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
-
- setCF(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- setCF(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
-
- setCF(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
- setChain(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGPRegSym
-
This method sets the fsChain with the given array value
- setChart(JFreeChart) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelAttribute
-
Set a chart for paint attributes values
- setChart(JFreeChart) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelCharts2D
-
Sets a JFreeChart chart
- setCheckErrorRate(boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Sets whether to check for error rate is in stopping criterion
- setChecksTurnedOff(boolean) - Method in class keel.Algorithms.SVM.SMO.SMO
-
Disables or enables the checks (which could be time-consuming).
- setChecksTurnedOff(boolean) - Method in class keel.Algorithms.SVM.SMO.SMOreg
-
Disables or enables the checks (which could be time-consuming).
- setChecksTurnedOff(boolean) - Method in class keel.Algorithms.SVM.SMO.supportVector.Kernel
-
Disables or enables the checks (which could be time-consuming).
- setChildren(Node[]) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Node
-
Sets the children of the node.
- setChromosome(Chromosome) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.LimitRoulette
-
- setClas(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Itemset
-
Function which sets the itemset's output class.
- setClas(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Itemset
-
Function which sets the itemset's output class
- setClas(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Itemset
-
Set the class with the value given as argument.
- setClas(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Itemset
-
Function which sets the itemset's output class
- setclas(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Regla
-
It assigns the class of the rule
- setClas(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Itemset
-
- setClas(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Rule
-
It assigns a new class for the rule
- setClas(int) - Method in class keel.Algorithms.Rule_Learning.ART.Rule
-
- setClas(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeDat
-
Sets the value of a class
- setClas(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeDat
-
Sets the value of a class
- setClas(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
-
Asigne the class to the complex
- setClas(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeDat
-
Sets the value of a class
- setClase(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Regla
-
- setClase(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
-
Sets the class index with the one given.
- setClase(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Corte
-
- setClase(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Union
-
- setClase(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Sample
-
Assigns the class
- setClase(int) - Method in class keel.Algorithms.Rule_Learning.Prism.Complejo
-
Gives the value of the class to the complex
- setClase(int) - Method in class keel.Algorithms.Rule_Learning.Prism.Muestra
-
Assigns the class
- setClase(int) - Method in class keel.Algorithms.Rule_Learning.UnoR.Complejo
-
Gives the value of the class to the complex
- setClase(int) - Method in class keel.Algorithms.Rule_Learning.UnoR.Muestra
-
Assigns the class
- setClase(int) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Muestra
-
Assigns the class
- setClase(int) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Regla
-
Sets the rule class with the value given.
- setClase(int) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Complejo
-
Sets the given value as class.
- setClase(int) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Muestra
-
Assigns the class
- setClaseEjemplo(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Resultado
-
- setClaseRegla(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Resultado
-
- setClass(M5Attribute) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Sets the class attribute.
- setClass(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.Rule
-
It assigns the class of the rule
- setClass(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Rule
-
Sets the class for the rule
- setClass(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.Rule
-
Sets the class for the rule
- setClass(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
-
Changes the class of the rule to a new specified class.
- setClass(AttributeWeka) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Sets the class attribute.
- setClass(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Chromosome
-
Set the class of this chromosome
- setClass(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Instance
-
It assigns the class
- setClass(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Chromosome
-
Sets the class of this chromosome
- setClass(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.Rule
-
Sets the consequent of the rule
- setClass(MyAttribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Sets the class attribute.
- setClass(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.Rule
-
Sets the consequent of the rule
- setClass(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Instance
-
It assigns the class
- setClass(int, int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
-
Changes the class of the rule to a new specified class.
- setClass(Attribute) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Sets the class attribute.
- setClass(double) - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Assigns a new class (aka new first output) to the prototype.
- setClass(int) - Method in class keel.Algorithms.Rule_Learning.AQ.Complex
-
It assigns a class to the complex
- setClass(int) - Method in class keel.Algorithms.Rule_Learning.AQ.Instance
-
It assigns the class
- setClass(int) - Method in class keel.Algorithms.Rule_Learning.CN2.Complex
-
It assigns a class to the complex
- setClass(int) - Method in class keel.Algorithms.Rule_Learning.CN2.Instance
-
It assigns the class
- setClass(int, int) - Method in class keel.Algorithms.Rule_Learning.UnoR.Interval
-
Sets a class that belong to the interval.
- setClass(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Assigns a new class (aka new first output) to the prototype.
- setClass(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableDat
-
Sets the class of the example in position pos
- setClass(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableDat
-
Sets the class of the example in position pos
- setClass(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Instance
-
It assigns the class
- setClass(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableDat
-
Sets the class of the example in position pos
- setClass(Attribute) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Sets the class attribute.
- setClassAttribute(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Returns the class that defines the comples
- setClassAttribute(int) - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
Gives the value of the class to the complex
- setClasses(int) - Static method in class keel.Algorithms.RST_Learning.KNNClassifier
-
Sets the number of classes in the data
- setClasses(int) - Static method in class keel.Algorithms.RST_Learning.RSTData
-
- setClassIndex(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Sets the class index of the set.
- setClassIndex(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Sets the class index of the set.
- setClassIndex(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Sets the class index of the set.
- setClassIndex(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Sets the class index of the set.
- setClassIndex(int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Sets the class index of the set.
- setClassLearned(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexResult
-
- setClassMissing() - Method in class keel.Algorithms.Decision_Trees.C45.Itemset
-
Function to set as missing the class value.
- setClassMissing() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
-
Function to set as missing the class value.
- setClassMissing() - Method in class keel.Algorithms.Decision_Trees.ID3.Itemset
-
Function to set as missing the class value.
- setClassMissing() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Sets the class value of an instance to be "missing".
- setClassMissing() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Itemset
-
Function to set as missing the class value.
- setClassMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Sets the class value of an instance to be "missing".
- setClassMissing() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Function to set as missing the class value.
- setClassMissing() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
-
Function to set as missing the class value.
- setClassMissing() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
-
Function to set as missing the class value.
- setClassMissing() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
-
Function to set as missing the class value.
- setClassMissing() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
-
Function to set as missing the class value.
- setClassMissing() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Sets the class value of an instance to be "missing".
- setClassMissing() - Method in class keel.Algorithms.Rule_Learning.ART.Itemset
-
Function to set as missing the class value.
- setClassMissing() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Itemset
-
Function to set as missing the class value.
- setClassMissing() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
-
Function to set as missing the class value.
- setClassMissing() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
-
Function to set as missing the class value.
- setClassMissing() - Method in class keel.Algorithms.Rule_Learning.PART.Itemset
-
Function to set as missing the class value.
- setClassMissing() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
-
Function to set as missing the class value.
- setClassMissing() - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Sets the class value of an instance to be "missing".
- setClassValue(double) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Sets the class value of an instance to the given value (internal
floating-point format).
- setClassValue(String) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Sets the class value of an instance to the given value.
- setClassValue(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Sets the class value of an instance to the given value (internal
floating-point format).
- setClassValue(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Sets the class value of an instance to the given value.
- setClassValue(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Function to set a value.
- setClassValue(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Function to set a value.
- setClassValue(double) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Sets the class value of an instance to the given value (internal
floating-point format).
- setClassValue(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Sets the class value of an instance to the given value.
- setClassValue(double) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Sets the class value of an instance to the given value (internal
floating-point format).
- setClassValue(String) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Sets the class value of an instance to the given value.
- setClickToExpand(String) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelAttribute
-
Cotrol for Expand chart
- setClusterOf(Instance, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.gCenter
-
Updates the cluster membership of the instance to the nearest cluster
- setCnf(double) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.QualityMeasures
-
Sets the value of the confidence
- setCnf(float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.QualityMeasures
-
Method to set the value of the confidence
- setCnfValue(double) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Sets the value of confidence of the individual
- setCob(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
-
- setCoefficients(double[]) - Method in interface keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IOptimizableFunc
-
Establish the final value of a[], that is, the coefficients of
model
- setCoefficients(double[]) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.MSEOptimizablePUNeuralNetClassifier
-
Establish the final value of a[], that is, the coefficients of
model
B01 B02 ...
- setCoefficients(double[]) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.MSEOptimizableSigmNeuralNetClassifier
-
Establish the final value of a[], that is, the coefficients of
model
B01 B02 ...
- setCoefficients(double[]) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.MSEOptimizablePUNeuralNetRegressor
-
Establish the final value of a[], that is, the coefficients of
model
B01 B02 ...
- setCoefficients(double[]) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.MSEOptimizableSigmNeuralNetRegressor
-
Establish the final value of a[], that is, the coefficients of
model
B01 B02 ...
- setColumn(int, double[]) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Sets a column of the matrix to the given column.
- setColumnNames(String[]) - Method in class keel.GraphInterKeel.datacf.util.DatasetTable
-
Set Column Names
- setComp(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Sets the value of COMP
- setComponent(int, FuzzyRule) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Classifier.FuzzyClassifier
-
- setComponent(int, Fuzzy) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyPartition
-
Rewrites the fuzzy set n of current partition.
- setComponent(int, FuzzyRule) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.RuleBase
-
Copies a new rule in the RuleBase.
- setComprehensibility(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
-
- setCompTime(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Sets the compactation time stamp for this classifier.
- setCompTime(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Sets the time stamp for this classifier.
- setCondicionContinua(int, Condicion) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Sets the given continuous condition into the position given.
- setCondicionNominal(int, Condicion) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Regla
-
Sets the given nominal condition into the position given.
- setCondition(Split) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Replaces the relationship between this node and its descendants, this means, changing the condition how
the two descendants are created.
- setCondition(Split) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
-
Replaces the relationship between this node and its descendants, this means, changing the condition how
the two descendants are created.
- setCondition(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.Condition
-
- setCondition(int, Condition) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Individual
-
It sets to "c" the condition for the variable in position "atributo"
- setCondition(Condition) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Rule
-
It adds a new condition to the rule
- setConfidence(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
It sets the rule's confidence.
- setConfidence(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
It sets the rule's confidence
- setConfidence(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
-
It sets the confidence of the rule
- setConfidence(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Rule
-
It sets the confidence of the rule
- setConfidence(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Rule
-
It sets the confidence of the rule
- setConfidence(Itemset) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Rule
-
- setConfidence(double) - Method in class keel.Algorithms.Rule_Learning.ART.Rule
-
- setConfidence(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AssociationRule
-
It sets the confidence of an association rule
- setConfidence(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
-
Sets the confidence of an association rule with the value given.
- setConfidence(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
-
- setConfidence(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.AssociationRule
-
It sets the confidence of an association rule
- setConfidence(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
-
- setConfidence(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
-
- setConfidence(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
-
- setConfidence(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
It sets the confidence of the association rule represented by a chromosome
- setConfidence(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
It sets the confidence of the association rule represented by a chromosome
- setConfidence(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
It sets the confidence of the association rule represented by a chromosome
- setConfig - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- setConsecuente(Float[]) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
-
- setConsecuente(int, float) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
-
- setConsecuentes(Difuso[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setConsecuentes(Difuso[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setConsecuentes(Difuso[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setConsecuentes(Difuso[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setConsecuentes(Difuso[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setConsecuentes(Difuso[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setConsecuentes(Difuso[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setConsecuentes(Difuso[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setConsequent(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
It returns the rule's consequent.
- setConsequent(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
It returns the rule's consequent
- setConsequent(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
-
It sets the consequent of the rule
- setConsequent(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Rule
-
It sets the consequent of the rule
- setConsequent(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Rule
-
It sets the consequent of the rule
- setConsequent(myDataset) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Rule
-
It sets the class for this rule
- setConsequent(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Rule
-
- setConsequent(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RipperRule
-
Sets the internal representation of the class label to be predicted
- setconsequent(Float[]) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
-
- setconsequent(int, float) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
-
- setconsequent(Integer[]) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.rule
-
- setconsequent(int, Integer) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.rule
-
- setconsequent(Float[]) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
-
- setconsequent(int, float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
-
- setconsequent(Float[]) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
-
- setconsequent(int, float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
-
- setConsequent(ArrayList<Gene>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
-
- setConsequentSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
-
- setConsequentSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AssociationRule
-
Sets the consequent support of an association rule with the given value
- setConsequentSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.AssociationRule
-
It sets the consequent support of an association rule
- setConsSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- setConsts(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.RegSymFuzzyGP
-
This method modifies constant part for this individual with parameter passed
- setContinuous(boolean) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeVar
-
Sets the type of the variable
- setContinuous(boolean) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeVar
-
Sets the type of the variable
- setContinuous(boolean) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeVar
-
Sets the type of the variable
- setContinuous(boolean) - Method in class keel.GraphInterKeel.experiments.UseCase
-
Sets if the method's variables are continuous
- setConv(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AssociationRule
-
It sets the conviction of an association rule
- setConv(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
-
- setConv(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
-
- setConv(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.AssociationRule
-
It sets the conviction of an association rule
- setConv(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
-
It sets the conviction of an association rule
- setConv(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
-
- setConv(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
-
- setConv(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
-
- setConv(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- setConv(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
-
- setConv(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- setConv(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
-
- setConv(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
- setCorrectClassifications(int) - Method in class keel.Algorithms.Statistical_Tests.Shared.StatTest.InformationAboutClass
-
Sets the number of correct classifications done with the one given.
- setCorte(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Corte
-
- setCorte(Corte) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Union
-
- setCortes(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Discretizacion
-
Sets the cuts with the ones given.
- setCortesCod(Vector) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Codificacion
-
- setcost_instance(boolean) - Method in class keel.GraphInterKeel.experiments.Parameters
-
Set cost instance
- setCoste(int) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Node
-
Sets the node cost with the value given.
- setCounter(int) - Method in class keel.GraphInterKeel.datacf.editData.EditVariablePanel
-
Sets the counter value
- setCove(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Sets the value of COVE
- setCoverage(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier
-
- setCovered(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Instance
-
It gives a "covered" value
- setCovered(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Instance
-
It gives a "covered" value
- setCovered(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Sample
-
Assign a new value for the 'n' times that the example has benn matched
- setCovered(int) - Method in class keel.Algorithms.Rule_Learning.AQ.Instance
-
It gives a "covered" value
- setCovered(int) - Method in class keel.Algorithms.Rule_Learning.CN2.Instance
-
It gives a "covered" value
- setCovered(int, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableDat
-
Sets to covered or not the the example in position pos
- setCovered(boolean) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeDat
-
Sets the state of the example
- setCovered(int, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableDat
-
Sets to covered or not the the example in position pos
- setCovered(boolean) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeDat
-
Sets the state of the example
- setCovered(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Instance
-
It gives a "covered" value
- setCovered(int, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableDat
-
Sets to covered or not the the example in position pos
- setCovered(boolean) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeDat
-
Sets the state of the example
- setCoveredInstances(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Chromosome
-
Set the number of covered instances
- setCr(MyDataset, Mask, Mask, double[]) - Method in class keel.Algorithms.Rule_Learning.Slipper.Rule
-
Computes the confidence of this rule, according to the equation 4
of [AAAI99]:
Cr=1/2ln((W+ + 1/(2n))/(W_ + 1/(2n)))
W+: sum of the weights of the positive instances that are covered by the current rule
W_: sum of the weights of the negative instances that are covered by the current rule
n: |p|+|n|
- setCr(double) - Method in class keel.Algorithms.Rule_Learning.Slipper.Rule
-
Sets the new confidence of the rule.
- setCR(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
-
- setCratio(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Sets creation ratio of the algorithm
- setcrisp(int) - Method in class keel.GraphInterKeel.experiments.Parameters
-
Set crisp
- setCromElem(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Chromosome
-
Sets the value of the indicated position of the gene of the chromosome
- setCromElem(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Individual
-
Sets the value of the indicated value of the gene of the Chromosome
- setCromElem(int, int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Population
-
Sets the value of the indicated gene of the Chromosome
- setCromElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.CromCAN
-
Sets the value of the indicated gene of the chromosome
- setCromElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.IndCAN
-
Sets the value of the indicated gene of the Chromosome
- setCromElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.IndDNF
-
Sets the value of the indicated gene of the Chromosome
- setCromElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Individual
-
Sets a value in a given position in the chromosome.
- setCromElem(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Population
-
Sets the value of the indicated gene of the CromCAN
- setCromElem(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Chromosome
-
Sets the value of the indicated position of the gene of the chromosome
- setCromElem(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Individual
-
Sets the value of the indicated value of the gene of the Chromosome
- setCromElem(int, int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Population
-
Sets the value of the indicated gene of the Chromosome
- setCromElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.CromCAN
-
Sets the value of the indicated gene of the chromosome
- setCromElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.IndCAN
-
Sets the value of the indicated gene of the Chromosome
- setCromElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.IndDNF
-
Sets the value of the indicated gene of the Chromosome
- setCromElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Sets a value in a given position in the chromosome.
- setCromElem(int, int, int, int, String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Population
-
Sets the value of the indicated gene of the Chromosome
- setCromElem(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Chromosome
-
Sets the value of the indicated position of the gene of the chromosome
- setCromElem(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Individual
-
Sets the value of the indicated value of the gene of the Chromosome
- setCromElem(int, int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Population
-
Sets the value of the indicated gene of the Chromosome
- setCromElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.CromCAN
-
Sets the value of the indicated gene of the chromosome
- setCromElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.IndCAN
-
Sets the value of the indicated gene of the Chromosome
- setCromElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.IndDNF
-
Sets the value of the indicated gene of the Chromosome
- setCromElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Individual
-
Sets the value of the indicated gene of the Chromosome
- setCromElem(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Population
-
Sets the value of the indicated gene of the CromCAN
- setCromElemGene(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.CromDNF
-
Sets the value of the indicated gene of the chromosome
- setCromElemGene(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.IndCAN
-
Sets the value of the indicated gene of the Chromosome
- setCromElemGene(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.IndDNF
-
Sets the value of the indicated gene of the Chromosome
- setCromElemGene(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Individual
-
Sets the value of the indicated gene of the Chromosome
- setCromElemGene(int, int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Population
-
Sets the value of the indicated gene of the CromCAN
- setCromElemGene(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.CromDNF
-
Sets the value of the indicated gene of the chromosome
- setCromElemGene(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.IndCAN
-
Sets the value of the indicated gene of the Chromosome
- setCromElemGene(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.IndDNF
-
Sets the value of the indicated gene of the Chromosome
- setCromElemGene(int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Individual
-
Sets the value of the indicated gene of the Chromosome
- setCromElemGene(int, int, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Population
-
Sets the value of the indicated gene of the CromCAN
- setCromGeneElem(int, int, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.CromDNF
-
Sets the value of the indicated gene of the Chromosome
- setCromGeneElem(int, int, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.IndCAN
-
Sets the value of the indicated gene of the Chromosome
- setCromGeneElem(int, int, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.IndDNF
-
Sets the value of the indicated gene of the Chromosome
- setCromGeneElem(int, int, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Sets the value of the indicated gene of the Chromosome
- setCrossPercent(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
-
- setCrowdingDistance(double) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Sets the crowdingDistance of the individual
- setcRule(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Replace
-
It sets the position of the best rule that correctly classifies the example stored in the structure.
- setcRule(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Structure
-
It sets the position of the best rule that correctly classifies the example stored in the structure
- setcRule(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Replace
-
It sets the position of the best rule that correctly classifies the example stored in the structure
- setcRule(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Structure
-
It sets the position of the best rule that correctly classifies the example stored in the structure
- setCSup(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Sets the value of CSUP
- setCubierta(int) - Method in class keel.Algorithms.Rule_Learning.Prism.Muestra
-
Assign a new value for the 'n' times that the example has benn matched
- setCubierta(int) - Method in class keel.Algorithms.Rule_Learning.UnoR.Muestra
-
Assign a new value for the 'n' times that the example has benn matched
- setCubierta(int) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Muestra
-
Assign a new value for the 'n' times that the example has benn matched
- setCubierta(int) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Muestra
-
Assign a new value for the 'n' times that the example has benn matched
- setCutPoint(Dataset) - Method in class keel.Algorithms.Decision_Trees.C45.Cut
-
Function to set the cut point.
- setCutPoint(Dataset) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Function to set the cut point.
- setCutPoint(MyDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Cut
-
Function to set the cut point.
- setCutPoint(Dataset) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Cut
-
Function to set the cut point.
- setCutPoint(Dataset) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Function to set the cut point.
- setCutPoint(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Cut
-
Function to set the cut point.
- setCutPoint(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Cut
-
Function to set the cut point.
- setCutPoint(MyDataset) - Method in class keel.Algorithms.Rule_Learning.PART.Cut
-
Function to set the cut point.
- setCutPoint(Dataset) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Cut
-
Function to set the cut point.
- setD(double) - Method in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
Sets the gamma value.
- setDat(int, float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeDat
-
Initialise a variable of an example
- setDat(int, float) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeDat
-
Initialise a variable of an example
- setDat(int, float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeDat
-
Initialise a variable of an example
- setData(Vector<ListaAtributos>[]) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Node
-
Sets the dataset that satisfies the node's condition.
- setData(Instances) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Set the data of the stats, overwriting the old one if any
- setData(int, Instance) - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.myDataset
-
It assigns a data.
- setData(int, Instance) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.myDataset
-
It assigns a data.
- setData(int, Sample) - Method in class keel.Algorithms.Hyperrectangles.EACH.EachDataSet
-
Assign a data item.
- setData(double[][], int[]) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.Chromosome
-
Stores the training data
- setData(double[][], boolean[]) - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
Loads the training data into the classifier
- setData(double[][]) - Static method in class keel.Algorithms.RST_Learning.KNNClassifier
-
Loads the training data into the classifier
- setData(double[][]) - Static method in class keel.Algorithms.RST_Learning.RSTData
-
Loads the training data into the classifier
- setData(int, Instance) - Method in class keel.Algorithms.Rule_Learning.AQ.myDataset
-
It assigns a data.
- setData(Vector) - Method in class keel.Algorithms.Rule_Learning.ART.TBAR
-
- setData(int, Instance) - Method in class keel.Algorithms.Rule_Learning.CN2.myDataset
-
It assigns a data.
- SetData - Class in keel.Algorithms.Subgroup_Discovery.SDAlgorithm
-
Data structure for the examples
- SetData() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.SetData
-
Constructor
- setData(Dataset) - Method in class keel.GraphInterKeel.datacf.editData.EditDataPanel
-
Set a Dataset
- setData(Object[][]) - Method in class keel.GraphInterKeel.datacf.util.DatasetTable
-
Sets Data
- setData(Object[][]) - Method in class keel.GraphInterKeel.datacf.util.VariableTable
-
Sets the data array
- setData(Dataset) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanel
-
Sets a Dataset
- setDataCFView(DataCFFrame) - Method in class keel.GraphInterKeel.datacf.editData.EditPanel
-
Sets a view for a dataset
- setDataCFView(DataCFFrame) - Method in class keel.GraphInterKeel.datacf.importData.ImportPanel
-
Sets a view for a dataset
- setDataI(int, int, double) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
-
Replaces the value of the ith instance at the jth attribute in this dataset with the specified value
- setDataI(int, int, double) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
-
Replaces the value of the ith instance at the jth attribute in this dataset with the specified value
- setDataNormalized(boolean) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Sets a boolean value indicating if the DataSets are going to be normalized
- setDataset(Dataset) - Method in class keel.Algorithms.Decision_Trees.C45.Itemset
-
Function to set the dataset.
- setDataset(DoubleTransposedDataSet) - Method in class keel.Algorithms.Decision_Trees.CART.impurities.Gini
-
It sets the datasets of patters
- setDataset(DoubleTransposedDataSet) - Method in interface keel.Algorithms.Decision_Trees.CART.impurities.IImpurityFunction
-
It sets the datasets of patters
- setDataset(DoubleTransposedDataSet) - Method in class keel.Algorithms.Decision_Trees.CART.impurities.LeastSquaresDeviation
-
It sets the datasets of patters
- setDataset(Dataset) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
-
Function to set the dataset.
- setDataset(Dataset) - Method in class keel.Algorithms.Decision_Trees.ID3.Itemset
-
Function to set the dataset.
- setDataset(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Sets the reference to the dataset.
- setDataset(Dataset) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Itemset
-
Function to set the dataset.
- setDataset(Instances) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Sets the reference to the dataset.
- setDataset(MyDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Function to set the dataset.
- setDataset(Dataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
-
Function to set the dataset.
- setDataset(MyDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
-
Function to set the dataset.
- setDataset(Dataset) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
-
Function to set the dataset.
- setDataset(Dataset) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
-
Function to set the dataset.
- setDataset(Instances) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Sets the reference to the dataset.
- setDataset(org.ayrna.jclec.util.dataset.KeelMultiInstanceDataSet) - Method in class keel.Algorithms.MIL.ExceptionDatasets
-
- setDataset(Dataset) - Method in class keel.Algorithms.Rule_Learning.ART.Itemset
-
Function to set the dataset.
- setDataset(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Itemset
-
Function to set the dataset.
- setDataset(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
-
Function to set the dataset.
- setDataset(Dataset) - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
-
Function to set the dataset.
- setDataset(MyDataset) - Method in class keel.Algorithms.Rule_Learning.PART.Itemset
-
Function to set the dataset.
- setDataset(Dataset) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
-
Function to set the dataset.
- setDataset(Instances) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Sets the reference to the dataset.
- setDataSet(String) - Method in class keel.GraphInterKeel.datacf.editData.EditDataPanel
-
Set the dataset by using its name
- setDatasetSettings(String, String) - Method in class keel.Algorithms.MIL.AbstractMIAlgorithm
-
- setDato(int, Muestra) - Method in class keel.Algorithms.Rule_Learning.Prism.ConjDatos
-
Assign a data item
- setDato(int, Muestra) - Method in class keel.Algorithms.Rule_Learning.UnoR.ConjDatos
-
Assign a data item
- setDato(int, Muestra) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.ConjDatos
-
Assign a data item
- setDato(int, Muestra) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.ConjDatos
-
Assign a data item
- setDato(int, Instance) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.SetData
-
Sets an instance
- setDatos(Dataset) - Method in class keel.GraphInterKeel.datacf.util.DatasetTable
-
Set datos
- setDebug(boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Classifier
-
Set debugging mode.
- setDebug(boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Sets whether debug information is output to the console
- setDebug(boolean) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
Set whether in debug mode
- setDebug(boolean) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
Sets whether debugging output will be printed.
- setDebug(boolean) - Method in class keel.Algorithms.SVM.SMO.core.Check
-
Set debugging mode
- setDebug(boolean) - Method in class keel.Algorithms.SVM.SMO.supportVector.Kernel
-
Enables or disables the output of debug information (if the derived
kernel supports that)
- setDebugStream(PrintStream) - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserTokenManager
-
- setDebugStream(PrintStream) - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParserTokenManager
-
- setDebugStream(PrintStream) - Static method in class keel.Dataset.DataParserTokenManager
-
- setDefaultClass(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.RuleBase
-
It sets the default class for the rule base
- setDefaultClass(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Selected
-
It sets the default class into the "selected" structure.
- setDefaultClass(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.RuleBase
-
It sets the default class for the rule base
- setDefaultClass(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Selected
-
It sets the default class into the "selected" structure
- setDefaultRule() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.RuleBase
-
Sets the default rule.
- setDefaultRule() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.RuleBase
-
- setDefaultRule(instanceSet) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_aggregated
-
- setdere(float) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzy
-
- setdere(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzy
-
- setdere(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.fuzzy
-
- setdere(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.fuzzy
-
- setdere(float) - Method in class keel.Algorithms.LQD.preprocess.Expert.fuzzy
-
- setdere(float) - Method in class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.fuzzy
-
- setdere(float) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzy
-
- setdere(float) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzy
-
- setdere(float) - Method in class keel.Algorithms.LQD.tests.IntermediateBoost.fuzzy
-
- setDescriptions() - Method in class keel.GraphInterKeel.experiments.Parameters
-
return parameter names
- setDestination(int) - Method in class keel.GraphInterKeel.experiments.Arc
-
Sets the destination node
- setDestination2(int) - Method in class keel.GraphInterKeel.experiments.Arc
-
Sets the destination node
- setdID(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Replace
-
It sets in the structure the position in the training dataset of the wanted example.
- setdID(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Structure
-
It sets in the structure the position in the training dataset of the wanted example
- setdID(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Replace
-
It sets in the structure the position in the training dataset of the wanted example
- setdID(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Structure
-
It sets in the structure the position in the training dataset of the wanted example
- setDimensions(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Sets the number of dimensions with the value given.
- setDimensions(int) - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
- setDirectionAttribute(int) - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
It sets if the attribute is an input or an output attribute
- setDirectionAttribute(int) - Method in class keel.Dataset.Attribute
-
It sets if the attribute is an input or an output attribute
- setDiscretized(boolean) - Method in class keel.GraphInterKeel.experiments.UseCase
-
Sets if the method's variables are discretized
- setDistrib(int[]) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Regla
-
Sets the given distribution.
- setDistribution(int[]) - Method in class keel.Algorithms.Rule_Learning.AQ.Complex
-
It assigns a class distribution
- setDistribution(int[]) - Method in class keel.Algorithms.Rule_Learning.CN2.Complex
-
It assigns a class distribution
- setDiversity(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Sets the type of diversity of the algorithm
- setDs(myDataset) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
-
- setE(Ecm) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
- setE(Ecm) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
- setE(Ecm) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setE(Ecm) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
- setE(Ecm) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
- setE(Ecm) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
- setE(Ecm) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setE(Ecm) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
- setEC(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
-
- setEc_tra(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Chc
-
- setEc_tra(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Chc
-
- setEc_tra(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Chc
-
- setEc_tra(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Chc
-
- setEc_tra(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Chc
-
- setEc_tra(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Chc
-
- setEc_tra(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Chc
-
- setEc_tra(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Chc
-
- setEc_tst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Chc
-
- setEc_tst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Chc
-
- setEc_tst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Chc
-
- setEc_tst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Chc
-
- setEc_tst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Chc
-
- setEc_tst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Chc
-
- setEc_tst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Chc
-
- setEc_tst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Chc
-
- setEditDataPanel(EditDataPanel) - Method in class keel.GraphInterKeel.datacf.editData.EditVariablePanel
-
Set Edit Data Panel
- setEditorAt(int, TableCellEditor) - Method in class keel.GraphInterKeel.datacf.util.EachRowEditor
-
Set the editor in a row
- setEditVariablePanel(EditVariablePanel) - Method in class keel.GraphInterKeel.datacf.editData.EditDataPanel
-
Set the EditVariablePanel
- setElement(int, int, double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Sets an element of the matrix to the given value.
- setElementAt(Object, int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Vector
-
Sets the element at the given index.
- setElementAt(Object, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.FastVector
-
Sets the element at the given index.
- setElementAt(Object, int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.FastVector
-
Sets the element at the given index.
- setElementAt(Object, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.FastVector
-
Sets the element at the given index.
- setElementAt(Object, int) - Method in class keel.Algorithms.SVM.SMO.core.FastVector
-
Sets the element at the given index.
- setElitism(double) - Static method in class keel.Algorithms.Instance_Selection.CoCoIS.Subpopulation
-
Sets the Elitism percentage
- setElitism(double) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Subpopulation
-
Sets the Elitism percentage
- setElitismRate(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- setEps(double) - Method in class keel.Algorithms.SVM.SMO.SMOreg
-
Set the value of eps.
- setEpsilon(double) - Method in class keel.Algorithms.MIL.APR.IteratedDiscrimination.IteratedDiscrimination
-
- setEpsilon(double) - Method in class keel.Algorithms.SVM.SMO.SMO
-
Set the value of epsilon.
- setEpsilon(double) - Method in class keel.Algorithms.SVM.SMO.SMOreg
-
Set the value of epsilon.
- setEpsilon(double) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
-
Set the value of epsilon.
- setEpsilonParameter(double) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
Set the value of epsilon parameter of the epsilon insensitive loss function.
- setError(ErrorInfo) - Method in class keel.Algorithms.Rule_Learning.Swap1.FormatErrorKeeper
-
Adds one error
- setError(ErrorInfo) - Method in class keel.Dataset.FormatErrorKeeper
-
Adds one error
- setErrorDebugMode(boolean) - Static method in class keel.Algorithms.Instance_Generation.utilities.Debug
-
Set error debug mode to a desired state.
- setErrorDebugMode(boolean) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Debug
-
Set error debug mode to a desired state.
- setErroresClase(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
- setErrorFunction(IErrorFunction<double[][]>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.SoftmaxClassificationProblemEvaluator
-
Sets error function
- setErrorFunction(IErrorFunction<double[]>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.problem.regression.RegressionProblemEvaluator
-
Sets error function
- setEvaluated(boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Chromosome
-
Set this chromosome as evaluated (fitness computed for the current set of genes) or not
- setEvaluated(boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Cochromosome
-
Sets the evaluation condition
- setEvaluated(int, int, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Population
-
Sets the evaluation status of one rule in a specific subpopulation
- setEvaluated(boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.RuleSet
-
Returns the evaluation state
- setEvaluated(boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.RuleSet
-
Returns the evaluation state
- setEvaluator(<any>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Sets the system evaluator
- setExample(String) - Method in class keel.GraphInterKeel.experiments.UseCase
-
Sets the method's example
- setExamples(double[][], int[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForClassification
-
This method initialize the examples and create a new classifier
- setExamples(double[][], double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForModels
-
This method inicialize the examples
- setExamplesClassObj(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableDat
-
Stores and gets in "ej_clase_obj" the number of examples of the target class
- setExamplesClassObj(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableDat
-
Stores and gets in "ej_clase_obj" the number of examples of the target class
- setExamplesClassObj(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableDat
-
Stores and gets in "ej_clase_obj" the number of examples of the target class
- setExamplesCovered(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableDat
-
Sets the number of examples covered by the rules generated
- setExamplesCovered(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableDat
-
Sets the number of examples covered by the rules generated
- setExceptionsLength(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier
-
- setExceptionsLength(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
-
- setExceptionsLength(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
-
- setExe(int) - Method in class keel.GraphInterKeel.experiments.Parameters
-
modify number of executions
- setExitos(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Individual
-
Sets the number of correctly classified instances for a rule of the chromosome
- setExpected(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexResult
-
- setExperience(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
-
Sets the experience of the classifier.
- setExperience(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Sets the experience of the classifier.
- setExperimenttype(int) - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
-
This method set type problem, classification or regression
- setExponent(double) - Method in class keel.Algorithms.SVM.SMO.supportVector.NormalizedPolyKernel
-
Sets the exponent value (must be different from 1.0).
- setExponent(double) - Method in class keel.Algorithms.SVM.SMO.supportVector.PolyKernel
-
Sets the exponent value.
- setExtensionAndDescription() - Method in class keel.GraphInterKeel.datacf.importData.ImportPanel
-
Sets extensions and description of the different import formats
- setF(Funciones) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
- setF(Funciones) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
- setF(Funciones) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setF(Funciones) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
- setF(Funciones) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
- setF(Funciones) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
- setF(Funciones) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setF(Funciones) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
- setFCnf(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Sets the value of FCNF
- setFeatures(int[]) - Static method in class keel.Algorithms.RST_Learning.KNNClassifier
-
Sets the vector of features selected
- setFichEnt(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
-
- setFicheroTest(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.SMOTE_RSB
-
- setFicheroTraining(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.SMOTE_RSB
-
- setFichSalRul(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
-
- setFichSalTra(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
-
- setFichSalTst(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
-
- setFileBrowserPanel(FileBrowserPanel) - Method in class keel.GraphInterKeel.datacf.partitionData.PartitionPanel
-
Sets the filebrowser of this partition panel
- setFileName(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Sets the filename used to read the observations and parameters
- setFileName(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.FileDataset
-
Sets the file name
- setFilePath(File) - Static method in class keel.GraphInterKeel.util.Path
-
Sets the path from a given file
- setFilterName(String) - Method in class keel.GraphInterKeel.datacf.util.KeelFileFilter
-
Sets Name of the Filer
- setFilterName(String) - Method in class keel.GraphInterKeel.experiments.KeelFileFilter
-
Set the filter name
- setFilterName(String) - Method in class keel.GraphInterKeel.statistical.CSVFileFilter
-
Set the filter name
- setFilterType(SelectedTag) - Method in class keel.Algorithms.SVM.SMO.SMO
-
Sets how the training data will be transformed.
- setFilterType(SelectedTag) - Method in class keel.Algorithms.SVM.SMO.SMOreg
-
Sets how the training data will be transformed.
- setFilterType(SelectedTag) - Method in class keel.Algorithms.SVM.SMO.SVMreg
-
Sets how the training data will be transformed.
- setFinales(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
-
- setFinner(boolean) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the use of Finner test
- setFirstOutput(double) - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Assigns a new value to the first output of the prototype.
- setFirstOutput(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Assigns a new value to the first output of the prototype.
- setFit(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
-
- setFit(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
-
- setFit(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Chromosome
-
- setFit(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Chromosome
-
- setFitDif(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Sets significative fitness difference
- setFitDif(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
-
Sets the difference between two fitnesses that we consider
enough to say that the fitness has improved
- setFitness(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.Individuo
-
- setFitness(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier
-
- setFitness(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Chromosome
-
Set the fitness of this individual
- setFitness(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Chromosome
-
Sets the fitness for this rule
- setFitness(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
-
- setFitness(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Individual
-
It sets the fitness of the individual to "fitness"
- setFitness(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
-
- setFitness(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Sets the fitness of the classifier at the value specified
- setFitness(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Sets the fitness of the classifier.
- setFitness(double) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Sets the fitness of a RBF.
- setFitness(double) - Method in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.Cromosoma
-
set the fitness for the chromosome
- setFitness(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.Individuo
-
- setFitness(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.MatrizR
-
- setFitness(double) - Method in class keel.Algorithms.RST_Learning.EFS_RPS.Chromosome
-
Sets the fitness of this chromosome with the value given.
- setFitness(double) - Method in class keel.Algorithms.RST_Learning.EIS_RFS.Chromosome
-
Sets the fitness of this chromosome with the value given.
- setFitness(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Sets the value of fitness
- setFitness(float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.QualityMeasures
-
Sets the value of fitness
- setFitness(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Chromosome
-
It sets the fitness for a chromosome
- setFitness(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Chromosome
-
It sets the fitness for a chromosome
- setFitness(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Chromosome
-
It sets the fitness for a chromosome
- setFitness(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
-
It sets the fitness for a chromosome
- setFitness(double[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Chromosome
-
- setFitness_Cl(double[][], double[][], int, int) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbfn
-
Sets the fitness of a RBFN for classification problems
- setFitness_Cl(double[][], double[][], int, int) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Sets the fitness of a Population of RBFNs for classification problems
- setFitness_Cl_subPop(double[][], double[][], int, int) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Sets the fitness of a Sub-Population of RBFNs for classification problems
- setFitness_rank(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- setFixedBounds(boolean) - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
It sets the fixedBounds value
- setFixedBounds(boolean) - Method in class keel.Dataset.Attribute
-
It sets the fixedBounds value
- setFlags() - Method in class keel.Algorithms.Decision_Trees.M5.Interval
-
Sets the flags array.
- setFlags() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Range
-
Sets the flags array.
- setFolds(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Sets the number of folds to use
- setFp(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
-
- setFP(double) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
-
Set the value of FP
- setFracasos(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Individual
-
Sets the number of correctly misclassified instances for a rule of the chromosome
- setFSup(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Sets the value of FSUP
- setFuncionEvaluacionXmlFileName(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
- setFunction(Function) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Rule
-
It sets the right side of the rule.
- setfuzzy(boolean) - Method in class keel.GraphInterKeel.experiments.Parameters
-
Set fuzzy status
- setGain(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.Literal
-
It sets the gain for a literal
- setGamma(double) - Method in class keel.Algorithms.SVM.SMO.supportVector.RBFKernel
-
Sets the gamma value.
- setGAparams(double, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.SEM
-
Set the parameters for this SEM
- setGAparams(double, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.SEM
-
Set the parameters for this SEM
- setGen(int, boolean) - Method in class keel.Algorithms.Hyperrectangles.EHS_CHC.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Instance_Selection.EUSCHCQstat.Chromosome
-
It sets a value for a given chrom.
- setGen(int, boolean) - Method in class keel.Algorithms.Instance_Generation.SSMALVQ3.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Instance_Generation.SSMAPSO.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Instance_Selection.CHC.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Instance_Selection.GA_MSE_CC_FSM.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Instance_Selection.GGA.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Instance_Selection.IGA.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Instance_Selection.PBIL.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Instance_Selection.SGA.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Instance_Selection.SSMA.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Preprocess.Instance_Selection.CHC.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Preprocess.Instance_Selection.GA_MSE_CC_FSM.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Preprocess.Instance_Selection.GGA.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Preprocess.Instance_Selection.IGA.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Preprocess.Instance_Selection.PBIL.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Preprocess.Instance_Selection.SGA.Cromosoma
-
Set the value of a gene
- setGen(int, boolean) - Method in class keel.Algorithms.Preprocess.Instance_Selection.SSMA.Cromosoma
-
Set the value of a gene
- setGen(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Sets the value of a gene
- setGene(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.Individuo
-
- setGene(int, Gene) - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Chromosome
-
Set the value of the specified gene
- setGene(int, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Individual
-
Sets a value for a specific gene
- setGene(Gen[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
- setGene(Gen[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
- setGene(Gen[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setGene(Gen[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
- setGene(Gen[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
- setGene(Gen[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
- setGene(Gen[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setGene(Gen[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
- setGeneElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Gene
-
Sets the value of the indicated gene of the chromosome
- setGeneElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Gene
-
Sets the value of the indicated gene of the chromosome
- setGeneElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Gene
-
Sets the value of the indicated gene of the chromosome
- setGeneElem(int, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Gene
-
Sets the value of the indicated gene of the chromosome
- setGeneElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Gene
-
Sets the value of the indicated gene of the chromosome
- setGeneElem(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Gene
-
Sets the value of the indicated gene of the chromosome
- setGenerality(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
-
Sets the generality of the classifier.
- setGenerality(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Sets the generality of the classifier.
- setGeneration(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Sets the current generation
- setGenerationLimit(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.SEM
-
Set the generations limit
- setGenerationLimit(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.SEM
-
Set the generations limit
- setGenes(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
- setGenes(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
- setGenes(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setGenes(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
- setGenes(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
- setGenes(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
- setGenes(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setGenes(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
- setGenes(ArrayList<Gene>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Chromosome
-
- setGenes(Gene[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
It returns the genes of a chromosome
- setGradoEmp(double[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setGradoEmp(double[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setGradoEmp(double[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setGradoEmp(double[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setGradoEmp(double[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setGradoEmp(double[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setGradoEmp(double[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setGradoEmp(double[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setHausdorffMaxDistance(boolean) - Method in class keel.Algorithms.MIL.Nearest_Neighbour.AbstractNearestNeighbour
-
- setHeader(String) - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
-
It sets the header
- setHeader(String) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlusReporterClas
-
Sets KEEL file header
- setHeader(String) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.IRPropPlusReporterRegr
-
Sets KEEL file header
- setHeader(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.listener.NeuralNetReporterClas
-
Sets KEEL file header
- setHeader(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.listener.NeuralNetReporterRegr
-
Sets KEEL file header
- setHeader(String) - Method in class keel.Dataset.InstanceSet
-
- setHeuristic(double) - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Assign a heuristic value(Wracc) to the complex
- setHeuristic(double) - Method in class keel.Algorithms.Rule_Learning.CN2.Complex
-
Sets the heuristic value (Wracc) of this Complex object.
- setheuristic(double) - Method in class keel.Algorithms.Rule_Learning.CN2.Complex
-
It assigns the heuristic of the complex computed as:
Covered positives - covered negatives / number of selectors
- setHeuristic(double) - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
Assign a heuristic value (Wracc) to the complex
- setHeuristica(double) - Method in class keel.Algorithms.Rule_Learning.Prism.Complejo
-
Assign a heuristic value(Wracc) to the complex
- setHeuristica(double) - Method in class keel.Algorithms.Rule_Learning.UnoR.Complejo
-
Assign a heuristic value (Wracc) to the complex
- setHeuristica(double) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Complejo
-
Assign a heuristic value (Wracc) to the complex
- setHeuristicaWRAcc(double) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Regla
-
Assign a heuristic value (Wracc) to the rule
- setHiddenLayerBiased(int, boolean) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets a boolean indicating if a hidden layer is biased
- setHiddenLayerInitialNofneurons(int, int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets initial maximum number of neurons of a hidden layer
- setHiddenLayerInitiator(int, String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets initiator of neurons of a hidden layer
- setHiddenLayerMaxNofneurons(int, int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets maximum number of neurons of a hidden layer
- setHiddenLayerMinNofneurons(int, int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets minimum number of neurons of a hidden layer
- setHiddenLayerType(int, String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets type of neurons of a hidden layer
- setHiddenLayerWeightRange(int, int, Interval) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets weight range of a hidden layer
- setHochberg(boolean) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the use of Hochberg test
- setHoja(boolean) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Node
-
Sets the leaf contition.
- setHolland(boolean) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the use of Holland test
- setHolm(boolean) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the use of Holm test
- setHommel(boolean) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the use of Hommel test
- setHowWork(String) - Method in class keel.GraphInterKeel.experiments.UseCase
-
Sets how the method works
- setiCondition(int, Condition) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.Rule
-
- setiCondition(int, Condition) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Rule
-
- setId(int) - Method in class keel.GraphInterKeel.experiments.Graph
-
Sets a new id for this graph
- setId(int) - Method in class keel.GraphInterKeel.experiments.Node
-
Sets the new id of the node
- setIDAttribute(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Item
-
Set the ID of the attribute involved in the item
- setIdentifier(int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Replaces the identifier of the node with another new node
- setIdentifier(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Node
-
Replaces the identifier of the node with another new node
- setIdentifier(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Register
-
Replaces the value of the identifier of the register with another new identifier
- setIdentifier(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
-
Replaces the identifier of the node with another new node
- setIfSeed(boolean) - Method in class keel.GraphInterKeel.experiments.Parameters
-
Sets the need for seed of the algorithm
- setImage(BufferedImage) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelAttribute
-
Sets image of attributes
- setImage(BufferedImage) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelCharts2D
-
Sets the image for attributes
- setIman(boolean) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the use of Iman-Davenport test
- setImplicator(int) - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
- setImpurities(double) - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
-
- setImpurityFunction(IImpurityFunction) - Method in class keel.Algorithms.Decision_Trees.CART.CART
-
It sets the impurity function
- setIndex(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
-
Sets the index of this attribute.
- setIndex(int) - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Assigns a new index to the prototype.
- setIndex(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputNeuron
-
Sets the index associated to this neuron
- setIndex(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setIndex(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setIndex(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setIndex(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setIndex(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setIndex(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setIndex(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setIndex(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setIndex(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setIndex(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setIndex(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setIndex(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setIndex(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setIndex(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setIndex(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setIndex(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setIndex(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Assigns a new index to the prototype.
- setIndivDensity(int, float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Population
-
Sets the individual density
- setIndivDom(boolean) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Individual
-
Sets the value for the domination value
- setIndivDom(int, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Population
-
Sets the individual to dominated or not dominated
- setIndivEvaluated(boolean) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Individual
-
Sets state of the individual
- setIndivEvaluated(int, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Population
-
Sets the value for de evaluated attribute of the individual
- setIndivEvaluated(boolean) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Individual
-
Sets that the individual has been evaluated
- setIndivEvaluated(int, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Population
-
Sets the state evaluated of the individual of the population
- setIndivEvaluated(boolean) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Individual
-
Sets state of the individual
- setIndivEvaluated(int, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Population
-
Sets the value for de evaluated attribute of the individual
- setIndivEvaluated(boolean) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Sets that the individual has been evaluated
- setIndivEvaluated(int, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Population
-
Sets the value for de evaluated attribute of the individual
- setIndivEvaluated(boolean) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Individual
-
Sets state of the individual
- setIndivEvaluated(int, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Population
-
Sets the value for de evaluated attribute of the individual
- setIndivEvaluated(boolean) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Individual
-
Sets that the individual has been evaluated
- setIndivEvaluated(int, boolean) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Population
-
Sets the state evaluated of the individual of the population
- setIndivFitness(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Individual
-
Sets the Fitness of the individual
- setIndivFitness(int, float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Population
-
Sets the value of fitnes for the the indicated individual
- setIndivFitness(float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Individual
-
Sets the Fitness of the individual
- setIndivFitness(int, float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Population
-
Sets the value of fitnes for the the indicated individual
- setIndivNameClass(int, String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Population
-
Sets the class name of the class of the individual
- setIndivNameClass(int, String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Population
-
Sets the class name of the class of the individual
- setIndivNameClass(int, String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Population
-
Sets the class name of the class of the individual
- setIndivNumClass(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Population
-
Sets the value for the number of the class of the individual
- setIndivNumClass(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Population
-
Sets the value for the number of the class of the individual
- setIndivNumClass(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Population
-
Sets the value for the number of the class of the individual
- setIndivNvar(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Population
-
Sets the number of variables of the indicated individual
- setIndivNvar(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Population
-
Sets the number of variables of the indicated individual
- setIndivNvar(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Population
-
Sets the number of variables of the indicated individual
- setIndivOSup(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Individual
-
Sets the original support of the individual
- setIndivPerf(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Individual
-
Sets the fitness of the individual
- setIndivPerf(int, float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Population
-
Sets the value of fitnes for the the indicated individual
- setIndivPerf(float) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Individual
-
Sets the fitness of the individual
- setIndivPerf(int, float) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Population
-
Sets the value of fitnes for the the indicated individual
- setIndivPerf(float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Individual
-
Sets the fitness of the individual
- setIndivPerf(int, float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Population
-
Sets the value of fitnes for the the indicated individual
- setIndivRawFit(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Population
-
Sets the individual raw fitness
- setIndivStrength(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Population
-
Sets the individual strength
- setIndivTotalClass(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Population
-
Sets the number of examples of the DB belonging to the class of the individual
- setIndivTotalClass(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Population
-
Sets the number of examples of the DB belonging to the class of the individual
- setIndivTotalClass(int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Population
-
Sets the number of examples of the DB belonging to the class of the individual
- setInf(int[][]) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ApproximateSets
-
- setInhabitants(List<I>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Sets the population inhabitants
- setIni() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
-
It sets to 0 the number of right and wrong of the rule
- setInicial(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
-
- setIniOp(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
-
- setInitialAlphaInput(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
-
Sets the initial alpha coeficient for the input weigths
- setInitialAlphaOutput(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
-
Sets the initial alpha coeficient for the output weigths
- setInitialmaxnofneurons(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Sets the initial maximum number of neurons of this layer (without BIAS)
- setInitialTime() - Method in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Sets the time counter
- setInitialTime() - Method in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Sets the time counter
- setInitialTime() - Method in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Sets the time counter
- setInitialTime() - Method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Sets the time counter
- setInitiatorNeuronTypes(int, String[]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets an array of initiators of neurons of hibrid layers
- setInitProb(double) - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.Chromosome
-
Sets the initial probability to build the chromosome.
- setInitProb(double) - Static method in class keel.Algorithms.RST_Learning.EIS_RFS.Chromosome
-
Sets the initial probability to build the chromosome.
- setInnerBorder(int[]) - Method in class keel.Algorithms.Lazy_Learning.NSC.Cluster
-
Set the inner border of the cluster
- setInput(boolean) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
-
Changes the logical attribute stating if an attribute is input or not
- setInput(boolean) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
-
Changes the logical attribute stating if an attribute is input or not
- setInput(int, double) - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Set a input for an attribute
- setInput(int, double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Set a input for an attribute
- setInputFormat(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Sets the format of the input instances.
- setInputFormat(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.ReplaceMissingValuesFilter
-
Sets the format of the input instances.
- setInputInterval(Interval) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Sets the input interval of normalized data
- setInputLayer(InputLayer) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
-
Sets the input layer of this neural net
- setInputLayer(InputLayer) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuralNet
-
Sets the input layer of this neural net
- setInputNominalValue(int, String) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
It set the nominal attribute value to the one passed.
- setInputNominalValue(InstanceAttributes, int, String) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
Set a new value of a given input attribute in this instance (nominal)
- setInputNominalValue(int, String) - Method in class keel.Dataset.Instance
-
It set the nominal attribute value to the one passed.
- setInputNominalValue(InstanceAttributes, int, String) - Method in class keel.Dataset.Instance
-
Set a new value of a given input attribute in this instance (nominal)
- setInputNumericValue(int, double) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
It changes the attribute value.
- setInputNumericValue(InstanceAttributes, int, double) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
Set a new value of a given input attribute in this instance (integer or real)
- setInputNumericValue(int, double) - Method in class keel.Dataset.Instance
-
It changes the attribute value.
- setInputNumericValue(InstanceAttributes, int, double) - Method in class keel.Dataset.Instance
-
Set a new value of a given input attribute in this instance (integer or real)
- setInstances(Instance[], int) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowing
-
- setInstances(Instance[], int) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowingGWS
-
- setInstances(Instance[], int) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowingILAS
-
- setInstances(Instances) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ApproximateSets
-
Sets the instances comprising the current neighbourhood.
- setInstances(Instances) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Arrays
-
Sets the instances comprising the current neighbourhood.
- setInstances(int[]) - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
- setInstances(int[]) - Static method in class keel.Algorithms.RST_Learning.KNNClassifier
-
Sets the vector of instances selected
- setInstances(int[]) - Static method in class keel.Algorithms.RST_Learning.RSTData
-
- setInstanceTest(InstanceSet) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Sets the test instances set given.
- setInstanceTrain(InstanceSet) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Sets the training instances set given.
- setInteger(boolean) - Method in class keel.GraphInterKeel.experiments.UseCase
-
Sets if the method's variables are integer
- setInternalCacheSize(int) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
sets the size of the internal cache for intermediate results.
- setInvert(boolean) - Method in class keel.Algorithms.Decision_Trees.M5.Interval
-
Sets whether the range sense is inverted, i.e. all except
the values included by the range string are selected.
- setInvert(boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Range
-
Sets whether the range sense is inverted, i.e. all except
the values included by the range string are selected.
- setInvolvedRule(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypePitts
-
This method updates the rule base.
- setiRule(int, Rule) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.RuleSet
-
- setiRule(int, Rule) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.RuleSet
-
- setIS(InstanceSet) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.SEM
-
Sets the reference data set for this SEM
- setIS(InstanceSet) - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.SEM
-
Sets the reference data set for this SEM
- setIsEvaluated(boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
-
- setIsEvaluated(boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
-
- setIsPositiveInterval(boolean) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
-
It sets if a gene treats positive or negative interval
- setIsPositiveInterval(boolean) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
-
It sets if a gene treats positive or negative interval
- setIsPositiveInterval(boolean) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Gene
-
It sets if a gene treats positive or negative interval
- setizd(float) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzy
-
- setizd(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzy
-
- setizd(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.fuzzy
-
- setizd(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.fuzzy
-
- setizd(float) - Method in class keel.Algorithms.LQD.preprocess.Expert.fuzzy
-
- setizd(float) - Method in class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.fuzzy
-
- setizd(float) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzy
-
- setizd(float) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzy
-
- setizd(float) - Method in class keel.Algorithms.LQD.tests.IntermediateBoost.fuzzy
-
- setJTable(JTable) - Method in class keel.GraphInterKeel.datacf.editData.EditVariablePanel
-
Sets a new JTable
- setJTable(JTable) - Method in class keel.GraphInterKeel.statistical.ExcelAdapter
-
Public Accessor methods for the Table on which this adapter acts.
- setJTable1(JTable) - Method in class keel.GraphInterKeel.datacf.editData.EditDataPanel
-
Set JTable of Data
- setK(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.ENN
-
Sets the number of NN used.
- setK(int) - Static method in class keel.Algorithms.Instance_Generation.utilities.KNN.KNN
-
Sets the number of prototypes to be used in the knn algorithm.
- setK(int) - Static method in class keel.Algorithms.Instance_Selection.CoCoIS.Subpopulation
-
Sets the K parameter
- setK(int) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.Chromosome
-
Sets K value
- setK(int) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Subpopulation
-
Sets the K parameter
- setK(int) - Static method in class keel.Algorithms.RST_Learning.KNNClassifier
-
Sets the K value
- setK(int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.KNN.KNN
-
Sets the number of prototypes to be used in the knn algorithm.
- setKernel(Kernel) - Method in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
sets the kernel to use
- setKernel(Kernel) - Method in class keel.Algorithms.SVM.SMO.SMO
-
sets the kernel to use
- setKernel(Kernel) - Method in class keel.Algorithms.SVM.SMO.SMOreg
-
Sets the kernel to use.
- setKernel(Kernel) - Method in class keel.Algorithms.SVM.SMO.SVMreg
-
sets the kernel to use
- setKey(double) - Method in class keel.Algorithms.Rule_Learning.Ripper.Trio
-
Sets the attribute'value to a new value.
- setKey(double) - Method in class keel.Algorithms.Rule_Learning.Slipper.Trio
-
Sets the attribute'value to a new value.
- setKfold(boolean) - Method in class keel.GraphInterKeel.datacf.importData.ImportPanel
-
Sets a boolean indicating if "kfold" is going to be the default option
for the type of partition in the import proccess
- setKind(int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
-
Changes the kind of dataset to a new kind
- setKind(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
-
Changes the kind of dataset to a new kind
- setKValue(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Set the value of K.
- setKValue(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Set the value of K.
- setKValue(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Set the value of K.
- setL(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Gene
-
- setL(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Gene
-
- setL(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Gene
-
- setLabel(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
It sets the label for a given position in the antecedent (for a given attribute).
- setLabel(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
It sets the label for a given position in the antecedent (for a given attribute)
- setLabel(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.Rule
-
It sets the label for a given position in the antecedent (for a given attribute)
- setLabel(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
-
It sets the label for a given position in the antecedent (for a given attribute)
- setLabel(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Rule
-
It sets the label for a given position in the antecedent (for a given attribute)
- setLabel(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Rule
-
It sets the label for a given position in the antecedent (for a given attribute)
- setLabel(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Rule
-
It sets a new label for the rule
- setLabel(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Rule
-
- setLabel(double) - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Assigns a new label (aka first output, class) to the prototype.
- setLabel(double) - Method in class keel.Algorithms.Instance_Generation.VQ.Cluster
-
Asssigns the class of the cluster.
- setLabel(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Assigns a new label (aka first output, class) to the prototype.
- setLabel(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.FuzzyRegion
-
It sets the label associated with a fuzzy region
- setLabel(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.FuzzyRegion
-
It sets the label associated with a fuzzy region
- setLabel(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.FuzzyRegion
-
It sets the label associated with a fuzzy region
- setLabel(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.FuzzyRegion
-
It sets the label associated with a fuzzy region
- setLabel(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.Item
-
It sets the label associated with an item
- setLabel(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.Item
-
It sets the label associated with an item
- setLambda(double) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Sets the lambda constant used in the string kernel
- setLaplaceAcc(double) - Method in class keel.Algorithms.Hyperrectangles.RISE.Rule
-
Sets the Laplace accuracy of the rule
- setLeaf(boolean) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Changes the logical attribute stating if a node is leaf or not
- setLeaf(boolean) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
-
Changes the logical attribute stating if a node is leaf or not
- setLeft(TreeNode) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Replaces the left descendant of the node with another new left descendant
- setLeft(TreeNode) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
-
Replaces the left descendant of the node with another new left descendant
- setLeft(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Intervals
-
- setLeft(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Interval
-
It sets the left bound of an interval
- setLeft(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Intervals
-
- setLeftSon(TreeNode) - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
-
- setLeftValueRank(String) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelAttribute
-
Sets left value Rank
- setLenghtElite(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
-
Methods to set the lenght of the elite population
- setLenghtPop(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
-
Methods to set the lenght of the population
- setLenghtPop(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Methods to set the lenght of the population
- setLength(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.Rule
-
Allocates new memory for the number of attributes specified (delete
previous memory).
- setLength(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.Rule
-
Allocates new memory for the number of attributes specified (delete
previous memory).
- setLengthAnt(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
-
- setLengthAnt(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
-
- setLengthPopulation(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Sets the lenght of the population
- setLi(boolean) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the use of Li test
- setLift(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AssociationRule
-
It sets the lift of an association rule
- setLift(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
-
- setLift(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
-
- setLift(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.AssociationRule
-
It sets the lift of an association rule
- setLift(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
-
It sets the lift of an association rule
- setLift(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
-
- setLift(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
-
- setLift(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- setLimitHigh(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.LimitRoulette
-
- setLimitLow(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.LimitRoulette
-
- setLimits(int, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.Rule
-
Sets the new limits of the attribute in the rule
- setLimits(int, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.Rule
-
Sets the new limits of the attribute in the rule
- setLink(int, Link) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Sets the link with the neuron specified (0 is bias neuron)
- setLinks(Link[]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Sets the links of the neuron
- setLocalHierarchicalMeasure(double) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
-
Sets the local hierarchical measure field to a specified given value, corresponding to this rule local hierarchical
measure according to the data set and the other rules considered
- setLogger(Vector) - Method in exception keel.Algorithms.Rule_Learning.Swap1.DatasetException
-
Sets the vector with the errors.
- setLogger(Vector) - Method in exception keel.Dataset.DatasetException
-
Sets the vector with the errors.
- setLogTransformation(boolean) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Sets a boolean value indicating if the DataSets are going to be log
transformated
- setLost(int, int) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Calculate
-
Sets the value of the gen of an example as an lost value
lost = max value of the variable + 1
- setLost(TableVar, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableDat
-
Sets the value of the gen of an example as an lost value
lost = max value of the variable + 1
- setLost(int, int) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Calculate
-
Sets the value of the gen of an example as an lost value
lost = max value of the variable + 1
- setLost(TableVar, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableDat
-
Sets the value of the gen of an example as an lost value
lost = max value of the variable + 1
- setLost(int, int) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Calculate
-
Sets the value of the gen of an example as an lost value
lost = max value of the variable + 1
- setLost(TableVar, int, int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableDat
-
Sets the value of the gen of an example as an lost value
lost = max value of the variable + 1
- setLowerBound(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Condition
-
Sets the lower bound
- setLowerBound(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
-
It sets the lower bound of the interval stored in a gene
- setLowerBound(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
-
It sets the lower bound of the interval stored in a gene
- setLowerBound(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Gene
-
It sets the lower bound of the interval stored in a gene
- setLSearch(boolean) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Methods to set if local search must be performed
- setLSup(float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.QualityMeasures
-
Method to set the value of the local support
- setMacroClSum(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Sets the number of macro classifiers in the set.
- setMacroClSum(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Sets the number of macro classifiers in the set.
- setMark(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
It sets the rule's mark.
- setMark(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
It sets the rule's mark
- setMatrix(int, int, int, int, Matrix) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Set a submatrix.
- setMatrix(int[], int[], Matrix) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Set a submatrix.
- setMatrix(int[], int, int, Matrix) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Set a submatrix.
- setMatrix(int, int, int[], Matrix) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Set a submatrix.
- setMax(double) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
-
Replaces the maximum value for the attribute with a new maximum value
- setMax(double) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
-
Replaces the maximum value for the attribute with a new maximum value
- setMax(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeVar
-
Sets the maximum value for the variable
- setMax(float) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeVar
-
Sets the maximum value for the variable
- setMax(float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeVar
-
Sets the maximum value for the variable
- setMax_attr(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
-
- setMax_attr(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
-
- setMAX_SIZE(int) - Static method in class keel.Algorithms.Lazy_Learning.IDIBL.NQueue
-
Sets maximun size of the queue
- setMaxDepth(int) - Method in class keel.Algorithms.Decision_Trees.CART.CART
-
It sets the maximal depth
- setMaxDepth(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Set the maximum depth of the tree, 0 for unlimited.
- setMaxDepth(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Set the maximum depth of the tree, 0 for unlimited.
- setMaxDepth(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Set the maximum depth of the tree, 0 for unlimited.
- setMaximumDelta(double) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Sets the maximum delta value, that is, the maximum increment or
step size of the corresponding coefficients
- setMaximumDistance(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Sets the maximum distance between train data
- setMaxIteration(int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
Set the maximal number of iterations in searching (Default 200)
- setMaxIterations(int) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
Set the maximum nomber of iterations
- setMaxIts(int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
Set the value of MaxIts.
- setMaxLinksAdd(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Sets the maximum number of links to add in mutations
- setMaxLinksDel(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Sets the maximum number of links to remove in mutations
- setMaxNeuronsAdd(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Sets the maximum number of neurons to add in mutations
- setMaxNeuronsDel(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Sets the maximum number of neurons to remove in mutations
- setMaxnofneurons(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputLayer
-
Sets the maximum number of neurons of this layer
- setMaxnofneurons(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Sets the maximum number of neurons of this layer
- setMaxOfGenerations(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Set the maximum number of iterations for this algorithm
- setMaxSize(int) - Method in class keel.Algorithms.Rule_Learning.ART.TBAR
-
- setMaxSubsequenceLength(int) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Sets the maximum length of the subsequence.
- setMaxUnitIncrement(int) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
- setMaxUnitIncrement(int) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
- setMaxUnitIncrement(int) - Method in class keel.GraphInterKeel.experiments.SelectData
-
- setMDLTheoryWeight(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Set the weight of theory in MDL calcualtion
- setMean(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.NormalDistribution
-
Sets the mean of the distribution.
- setMean(double) - Method in class keel.GraphInterKeel.statistical.tests.NormalDistribution
-
Set the mean of the distribution
- setMeasureValue(int, double) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Sets the value of the quality measure in the position pos
- setMembershipOf(Instance, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.fuzzygCenter
-
Computes the memebership degree of a given instance to all the clusters
- setMicroClSum(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Sets the number of micro classifiers in the set.
- setMicroClSum(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Sets the number of micro classifiers in the set.
- setMin(double) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
-
Replaces the minimum value for the attribute with a new minimum value
- setMin(double) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
-
Replaces the minimum value for the attribute with a new minimum value
- setMin(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeVar
-
Sets the minimum value for the variable
- setMin(float) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeVar
-
Sets the minimum value for the variable
- setMin(float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeVar
-
Sets the minimum value for the variable
- setMin_attr(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
-
- setMin_attr(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
-
- setMinCnf(float) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Sets the minimum confidence
- setMinConf(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
-
Methods to set the value for the minimum confidence of the rules to be generated
- setMinConf(float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Methods to set the value for the minimum confidence of the rules to be generated
- setMinimumDelta(double) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Sets the minimum delta value, that is, the minimum increment or
step size of the corresponding coefficients
- setMinLinksAdd(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Sets the minimum number of links to add in mutations
- setMinLinksDel(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Sets the minimum number of links to remove in mutations
- setMinNeuronsAdd(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Sets the minimum number of neurons to add in mutations
- setMinNeuronsDel(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Sets the minimum number of neurons to remove in mutations
- setMinNo(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Sets the minimum total weight of the instances in a rule
- setMinnofneurons(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Sets the minimum number of neurons of this layer
- setMinNum(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Set the value of MinNum.
- setMinNum(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Set the value of MinNum.
- setMinNum(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Set the value of MinNum.
- setMinSupp(double) - Method in class keel.Algorithms.Rule_Learning.ART.TBAR
-
- setMinValues(double[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Rule
-
It stores the minimum values for each attribute
- setMissing(int) - Method in class keel.Algorithms.Decision_Trees.C45.Itemset
-
Function to set a value as missing.
- setMissing(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
-
Function to set a value as missing.
- setMissing(int) - Method in class keel.Algorithms.Decision_Trees.ID3.Itemset
-
Function to set a value as missing.
- setMissing(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Sets a specific value to be "missing".
- setMissing(M5Attribute) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Sets a specific value to be "missing".
- setMissing(int) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Itemset
-
Function to set a value as missing.
- setMissing(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Sets a specific value to be "missing".
- setMissing(AttributeWeka) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Sets a specific value to be "missing".
- setMissing(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Function to set a value as missing.
- setMissing(MyAttribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Sets a specific value to be "missing".
- setMissing(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
-
Function to set a value as missing.
- setMissing(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
-
Function to set a value as missing.
- setMissing(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
-
Function to set a value as missing.
- setMissing(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
-
Function to set a value as missing.
- setMissing(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Sets a specific value to be "missing".
- setMissing(Attribute) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Sets a specific value to be "missing".
- setMissing(int) - Method in class keel.Algorithms.Rule_Learning.ART.Itemset
-
Function to set a value as missing.
- setMissing(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Itemset
-
Function to set a value as missing.
- setMissing(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
-
Function to set a value as missing.
- setMissing(int) - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
-
Function to set a value as missing.
- setMissing(int) - Method in class keel.Algorithms.Rule_Learning.PART.Itemset
-
Function to set a value as missing.
- setMissing(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
-
Function to set a value as missing.
- setMissing(int) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Sets a specific value to be "missing".
- setMissing(Attribute) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Sets a specific value to be "missing".
- setMistakeClass(String) - Method in class keel.Algorithms.Statistical_Tests.Shared.StatTest.InformationAboutClass
-
Adds the mistaken class given as arguments.
- setMistakeClassifications(int) - Method in class keel.Algorithms.Statistical_Tests.Shared.StatTest.InformationAboutClass
-
Sets the number of incorrect classifications done with the one given.
- setml(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Difuso
-
- setml(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Difuso
-
- setml(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Difuso
-
- setml(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Difuso
-
- setml(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Difuso
-
- setml(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Difuso
-
- setml(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Difuso
-
- setml(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Difuso
-
- setModelResultFile(String) - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
-
It sets the model result file
- setModelTime() - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.Timer
-
Set model time
- setModelTime() - Static method in class keel.Algorithms.RST_Learning.Timer
-
Set model time
- setModelType(SelectedAssociation) - Method in class keel.Algorithms.Decision_Trees.M5.M5
-
Set the value of Model.
- setModified(Classifier[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PopulationWrapper
-
- setModified(Classifier[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PopulationWrapper
-
- setModified(boolean) - Method in class keel.GraphInterKeel.experiments.Graph
-
Sets the modified status of this graph
- setMogbest(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Sets maximum number of generations allowed without
improving best fitness
- setMogmean(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Sets maximum number of generations allowed without
improving mean fitness
- setMS(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Itemset
-
It sets the cut threshold
- setMu(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Cochromosome
-
Sets a new mu value
- setMu(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Population
-
Sets the new mu value for one subpopulation
- setMuest(double[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Instance
-
It assigns the values for the instance
- setMuest(double[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Instance
-
It assigns the values for the instance
- setMuest(double[]) - Method in class keel.Algorithms.Rule_Learning.AQ.Instance
-
It assigns the values for the instance
- setMuest(double[]) - Method in class keel.Algorithms.Rule_Learning.CN2.Instance
-
It assigns the values for the instance
- setMuest(double[]) - Method in class keel.Algorithms.Rule_Learning.Prism.Muestra
-
Assigns the in-puts of the data
- setMuest(double[]) - Method in class keel.Algorithms.Rule_Learning.UnoR.Muestra
-
Assigns the in-puts of the data
- setMuest(double[]) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Muestra
-
Assigns the in-puts of the data
- setMuest(double[]) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Muestra
-
Assigns the in-puts of the data
- setMuest(double[]) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Instance
-
It assigns the values for the instance
- setMuNext(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
-
Sets the value for indicating the position of the next mutation
- setMuNext(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Sets the value for indicating the position of the next mutation
- setMutationProb(double) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.Chromosome
-
Sets mutation value
- setMutationProbability(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
-
- setMutationProbability(double) - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.Chromosome
-
Sets the mutation probability with the value given.
- setMutationProbability(double) - Static method in class keel.Algorithms.RST_Learning.EIS_RFS.Chromosome
-
Sets the mutation probability with the value given.
- setMutationRate(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- setMutator1(<any>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Sets first individual mutator
- setMutator2(<any>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Sets second individual mutator
- setN(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
-
- setN_e(boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Individual
-
Sets the chromosome as non-evaluated
- setN_etiquetas(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setN_etiquetas(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setN_etiquetas(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setN_etiquetas(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setN_etiquetas(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setN_etiquetas(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setN_etiquetas(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setN_etiquetas(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setN_etiquetas(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setN_etiquetas(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setN_etiquetas(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setN_etiquetas(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setN_etiquetas(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setN_etiquetas(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setN_etiquetas(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setN_etiquetas(int, int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setN_reglas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setN_reglas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setN_reglas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setN_reglas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setN_reglas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setN_reglas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setN_reglas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setN_reglas(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setN_var_estado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setN_var_estado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setN_var_estado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setN_var_estado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setN_var_estado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setN_var_estado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setN_var_estado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setN_var_estado(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setN_variables(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setN_variables(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setN_variables(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setN_variables(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setN_variables(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setN_variables(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setN_variables(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setN_variables(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setNAlgorithms(int) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the number of algorithms of the test
- setName(String) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
-
Replaces the name of the attribute with another new name
- setName(String) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
-
Replaces the name of the dataset with another new name
- setName(String) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
-
Replaces the name of the attribute with another new name
- setName(String) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
-
Replaces the name of the dataset with another new name
- setName(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Returns the name of the dataset.
- setName(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractAttribute
-
Set attribute name
- setName(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset
-
Sets the name of this dataset
- setName(String) - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
It sets the attribute name
- setName(String) - Method in class keel.Algorithms.Statistical_Tests.Shared.StatTest.InformationAboutClass
-
Sets the algorithm's name with the one given.
- setName(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeVar
-
Sets the name of the variable
- setName(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeVar
-
Sets the name of the variable
- setName(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeVar
-
Sets the name of the variable
- setName(String) - Method in class keel.Dataset.Attribute
-
It sets the attribute name
- setName(String) - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
-
Sets the name of the current active layer
- setName(String, int) - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
-
Sets the name of the indicated layer
- setName(String) - Method in class keel.GraphInterKeel.experiments.Graph
-
Sets the name of this graph
- setName(String) - Method in class keel.GraphInterKeel.experiments.UseCase
-
Set the method's name
- setNameClass(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Individual
-
Sets the value of the name of the class of the individual
- setNameClass(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Individual
-
Sets the value of the name of the class of the individual
- setNameClass(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Individual
-
Sets the value of the name of the class of the individual
- setNameClassObj(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
-
Sets the name of the class of the target variable
- setNameClassObj(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
-
Sets the name of the class of the target variable
- setNameClassObj(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
-
Sets the name of the class of the target variable
- setNameObj(int, String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Method to set the name of the objective indicated
- setnAnts(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
-
- setnAnts(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- setnAnts(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- setnAnts(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
- setNClass(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
-
Sets the number of classes of the target variable
- setNClass(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
-
Sets the number of classes of the target variable
- setNClass(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
-
Sets the number of classes of the target variable
- setNClasses(int) - Static method in class keel.Algorithms.Hyperrectangles.INNER.Rule
-
Sets the number of classes of the problem
- setNClasses(int) - Static method in class keel.Algorithms.Hyperrectangles.RISE.Rule
-
Sets the number of classes
- setNClasses(int) - Static method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.Chromosome
-
Sets the number of classes
- setNDatasets(int) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the number of data sets of the test
- setNegation(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Gene
-
Sets the negation bit of this gene
- setNegativeEta(double) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Sets the negative eta value, that is, the increment
of the step size at each epoch
- setNegEx(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.pnPair
-
It sets the negEx value
- setNemenyi(boolean) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the use of Nemenyi test
- setNentradas(int) - Method in class keel.GraphInterKeel.datacf.util.Dataset
-
Set input variable number
- setNetConf(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AssociationRule
-
It sets the netconf of an association rule
- setNetConf(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
-
- setNetConf(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
-
- setNetConf(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.AssociationRule
-
It sets the netconf of an association rule
- setNetConf(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
-
It sets the netconf of an association rule
- setNetConf(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
-
- setNetConf(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
-
- setNetConf(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
-
- setNetConf(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- setNetConf(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
-
- setNetConf(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- setNetConf(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
-
- setNetConf(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
- setNeuronTypes(int, String[]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets an array of neuron types of a concrete layer
(this is an hibrid layer)
- setNEval(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
-
Methods to set the number of evaluation to perform in an iteration of the GA
- setNEval(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Sets the number of evaluations of the algorithm
- setNEval(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Sets the number of evaluation when the individual was created
- setNEval(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Methods to set the number of evaluation to perform in an iteration of the GA
- setNew(boolean) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- setNew(boolean) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- setNew(boolean) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
- setNewInstancesIndex(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsCuttoff
-
- setNGenerations(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
-
- setNInstances(int[]) - Static method in class keel.Algorithms.Hyperrectangles.INNER.Rule
-
Sets the array of instances of each class
- setNInstancesI(int, int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
-
Replaces the number of instances of a class that there are in the dataset with a another number of instances for that class
- setNInstancesI(int, int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
-
Replaces the number of instances of a class that there are in the dataset with a another number of instances for that class
- setNLabel(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
-
Sets the number of labels for all the continuous variables
- setNLabel(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
-
Sets the number of labels for all the continuous variables
- setNLabel(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
-
Sets the number of labels for all the continuous variables
- setNLabels(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeVar
-
Sets the number of labels used by the continuous variable
- setNLabels(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeVar
-
Sets the number of labels used by the continuous variable
- setNLabels(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeVar
-
Sets the number of labels used by the continuous variable
- setNObjectives(int, String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Sets the name of an objective
- setNode(Node) - Method in class keel.GraphInterKeel.experiments.Joint
-
- setNodes(Vector) - Method in class keel.GraphInterKeel.experiments.Graph
-
Sets a new set of nodes
- setNoEvaluado() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.Individuo
-
- setNOfHiddenLayers(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets number of hidden layers of the neural nets
- setNofinputs(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Sets the number of inputs of the observations stored in the data set
- setNOfInputs(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets number of inputs of the neural nets
- setNofobservations(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Sets the number of observations stored in the data set
- setNofoutputs(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Sets the number of outputs of the observations stored in the data set
- setNOfOutputs(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets number of outputs of the neural nets
- setNofvariables(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Sets the number of variables stored in the data set
- setNombres(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
-
Sets the names of the attributes
- setNominal(boolean[]) - Static method in class keel.Algorithms.RST_Learning.RSTData
-
- setNominal(boolean) - Method in class keel.GraphInterKeel.experiments.UseCase
-
Sets if the method's variables are nominal
- setNominalValue(int, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Gene
-
sets the activation for a nominal value, represented by its index in the
nominal values list of the attribute
- setNominalValues(String) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelAttribute
-
Sets nominal values
- setNormalization(double) - Static method in class keel.Algorithms.RST_Learning.RSTData
-
- setNormalizer(Normalizer) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Sets the normalizer associated to the trainData DataSet
- setNOutputs(int) - Method in class keel.GraphInterKeel.datacf.util.Dataset
-
Set output variable number
- setNumAliveRules(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
-
- setNumAliveRules(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
-
- setNumAllConds(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Set the number of all conditions that could appear
in a rule in this RuleStats object, if the number set
is smaller than 0 (typically -1), then it calcualtes
based on the data store
- setNumAtr(int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
-
Replaces the number of attributes in this dataset with a new number of attributes
- setNumAtr(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
-
Replaces the number of attributes in this dataset with a new number of attributes
- setNumAtributos(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
-
- setNumber(int) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Cluster
-
Set the number of this cluster
- setNumberCategories(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.CategoricalAttribute
-
Set Number of categories
- setNumberCiters(int) - Method in class keel.Algorithms.MIL.Nearest_Neighbour.CKNN.CKNN
-
- setNumberMatches(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Sets the number of matches
- setNumberMatches(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Sets the number of matches
- setNumberOfInputs(int) - Static method in class keel.Algorithms.Instance_Generation.utilities.Distance
-
Assigns the number of inputs of the prototypes.
- setNumberOfInputs(int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Distance
-
Assigns the number of inputs of the prototypes.
- setNumberReferences(int) - Method in class keel.Algorithms.MIL.Nearest_Neighbour.AbstractNearestNeighbour
-
- setNumberViolatedConstraints(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Sets the numberOfViolatedConstraints of the individual
- setNumClass(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Individual
-
Sets the number of the class of the individual
- setNumClass(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Individual
-
Sets the number of the class of the individual
- setNumClass(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Individual
-
Sets the number of the class of the individual
- setNumClasses(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
Sets number of classes field.
- setNumClasses(int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
-
Replaces the number of classes in this dataset with a new number of classes
- setNumClasses(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
-
Replaces the number of classes in this dataset with a new number of classes
- setNumClassObj(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
-
Sets the number of the class of the target variable
- setNumClassObj(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
-
Sets the number of the class of the target variable
- setNumClassObj(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
-
Sets the number of the class of the target variable
- setNumDatasets(String[]) - Method in class keel.GraphInterKeel.experiments.Experiments
-
Sets the size of the extenal description objects, and the
number of data sets
- setNumEjemplos(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
-
- setNumericRange(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Sets the numeric range based on a string.
- setNumerosity(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Classifier
-
Sets the numerosity of the classifier.
- setNumerosity(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
-
Sets the numerosity of the classifier
- setNumerosity(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Sets the numerosity of the classifier.
- setNumerosity(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Sets the numerosity of the classifier
- setNumFolds(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Set the value of NumFolds.
- setNumFolds(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Set the value of NumFolds.
- setNumFolds(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Set the value of NumFolds.
- setNumFolds(int) - Method in class keel.Algorithms.SVM.SMO.SMO
-
Set the value of numFolds.
- setNumInputs(int) - Method in class keel.GraphInterKeel.experiments.Parameters
-
sets the number of inputs connections
- setNumIns(int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
-
Replaces the number of instances in this dataset with a new number of instances
- setNumIns(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
-
Replaces the number of instances in this dataset with a new number of instances
- setNumLow(int) - Method in class keel.Algorithms.Rule_Learning.Riona.Selector
-
Set the low number
- setNumObjectives(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Sets the number of objectives
- setNumObjectives(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.QualityMeasures
-
Sets the num_objetivos of the individual
- setNumOfFeatures(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- setNumOfGenerations(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- setNumOfRuns(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- setNumOneFrequentItemsets(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Chromosome
-
It sets the number of 1-Frequent Itemsets for a chromosome
- setNumOneFrequentItemsets(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Chromosome
-
It sets the number of 1-Frequent Itemsets for a chromosome
- setNumOneFrequentItemsets(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Chromosome
-
It sets the number of 1-Frequent Itemsets for a chromosome
- setNumOneItemSets(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
Sets number of one item sets field.
- setNumOneItemSets() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
Sets the number of one item sets field (numOneItemSets to
the number of supported one item sets.
- setNumOneItemSets() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.TotalSupportTree
-
Sets the number of one item sets field (numOneItemSets to
the number of supported one item sets.
- setNumOneItemSets() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.TotalSupportTree
-
Sets the number of one item sets field (numOneItemSets to
the number of supported one item sets.
- setNumOutputs(int) - Method in class keel.GraphInterKeel.experiments.Parameters
-
Sets the number of extra outputs
- setNumParameters(int) - Method in class keel.GraphInterKeel.experiments.Parameters
-
Sets the number of paramters
- setNumRows(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
Sets number of rows field.
- setNumRowsInInputSet() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
Assigns value to the numRowsInInputSet field.
- setNumRowsInTrainingSet() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
Assigns a value equavalent to the number of rows to the number of
rows in training set field.
- setNumUp(int) - Method in class keel.Algorithms.Rule_Learning.Riona.Selector
-
Set the high number
- setNumValue(int, int) - Static method in class keel.Algorithms.Hyperrectangles.BNGE.Rule
-
Sets the number of different values for an attribute
- setNumValue(int, int) - Static method in class keel.Algorithms.Hyperrectangles.INNER.Rule
-
Sets the number of different values for an attribute
- setNumValue(int, int) - Static method in class keel.Algorithms.Hyperrectangles.RISE.Rule
-
Sets the number of different values for an attribute
- setNumValue(int, int) - Static method in class keel.Algorithms.RST_Learning.RSTData
-
- setNumValues() - Static method in class keel.Algorithms.RST_Learning.RSTData
-
- setNumValues() - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
-
Returns for each attribute the number of attributes for each set of values
- setNumVar(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Individual
-
Sets the number of variables of the rule (including the consequent)
- setNumVar(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Individual
-
Sets the number of variables of the rule (including the consequent)
- setNumVar(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Individual
-
Sets the number of variables of the rule (including the consequent)
- setNVariables(int) - Method in class keel.GraphInterKeel.datacf.util.Dataset
-
Sets input variable number
- setObj(int, String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
-
Method to set the name of the quality measure in position pos
- setObj1(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Methods to set the value for the quality measures as objective 1
- setObj2(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Methods to set the value for the quality measures as objective 2
- setObj3(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Methods to set the value for the quality measures as objective 3
- setObjective(String) - Method in class keel.GraphInterKeel.experiments.UseCase
-
Sets the method's objective
- setObjective(int) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the objective of the test (maximization or minimization)
- setObjectiveValue(int, double) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.QualityMeasures
-
Sets the value of the objective pos
- setObjetives(double[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
It sets the objectives for a chromosome
- setObjetives(double[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
It sets the objectives for a chromosome
- setObjetives(double[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
It sets the objectives for a chromosome
- setObservation(int, double[]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Sets an specified observation
- setObservationsOf(int, double[]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Sets all the values of a variable in the data set
- setOmega(double) - Method in class keel.Algorithms.SVM.SMO.supportVector.Puk
-
Sets the omega value.
- setOperacion(Operacion) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.FuncionEvaluacionBean
-
- setOperacion(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
-
- setOperador(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Condicion
-
Sets the operator with the value given.
- setOperador(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Condicion
-
Sets the operator with the value given.
- setOperador(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Condicion
-
Sets the operator with the value given.
- setOperador(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Condicion
-
Sets the operator with the value given.
- setOperador(int) - Method in class keel.Algorithms.Rule_Learning.Prism.Selector
-
Assign the operator
- setOperador(int) - Method in class keel.Algorithms.Rule_Learning.UnoR.Selector
-
Assign the operator
- setOperador(int) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Selector
-
Assign the operator
- setOperador(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Selector
-
Sets the operator
- setOperator(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleRule
-
Sets the rule operator
- setOperator(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.SimpleRule
-
Sets the rule operator
- setOperator(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Selector
-
Assign the operator
- setoperator(int) - Method in class keel.Algorithms.Rule_Learning.AQ.Selector
-
It assigns operator
- setOperator(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.SimpleRule
-
Sets the rule operator
- setOperator(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.SimpleRule
-
Sets the rule operator
- setoperator(int) - Method in class keel.Algorithms.Rule_Learning.CN2.Selector
-
It assigns operator
- setOperator(int) - Method in class keel.Algorithms.Rule_Learning.PART.SimpleRule
-
Sets the rule operator
- setOperator(int) - Method in class keel.Algorithms.Rule_Learning.Riona.Selector
-
Assigns the operator
- setOperator(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.SimpleRule
-
Sets the rule operator
- setOperator(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.SimpleRule
-
Sets the rule operator
- setOperator(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Gene
-
It sets the type of operator used in a gene
- setOptimizations(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Sets the number of optimization runs
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.C45.C45
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.CART.RunCART
-
Function to read the options from the execution file and assign
the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.C45
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.ID3.ID3
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Static method in class keel.Algorithms.Decision_Trees.M5.M5
-
Name: setOptions
Sets the option of the execution of the algorithm, reading them from an input file.
- setOptions(String[]) - Method in class keel.Algorithms.Decision_Trees.M5.M5
-
Parses a given list of options.
- setOptions(String[]) - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Parses the options for this object.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Decision_Trees.SLIQ.SLIQ
-
Reads the parameters used by the algorith.
- setOptions(String[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Classifier
-
Parses a given list of options.
- setOptions(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.C45
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.C45CS
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.C45
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(String[]) - Method in interface keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.OptionHandler
-
Sets the OptionHandler's options using the given list.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.C45
-
- setOptions(String, String) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.C45
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.C45
-
- setOptions(String, String) - Method in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.C45
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.C45
-
- setOptions(String, String) - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.C45
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.C45
-
- setOptions(String, String) - Method in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.C45
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Rule_Learning.ART.ART
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.DataSqueezer
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Rule_Learning.PART.C45
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(StreamTokenizer) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.C45
-
- setOptions(String, String) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.C45
-
Function to read the options from the execution file and assign the values to the parameters.
- setOptions(String[]) - Method in interface keel.Algorithms.Statistical_Classifiers.Logistic.core.OptionHandler
-
Sets the OptionHandler's options using the given list.
- setOptions(String[]) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
Parses a given list of options.
- setOptions(String[]) - Method in class keel.Algorithms.SVM.SMO.core.Check
-
Parses a given list of options.
- setOptions(String[]) - Method in interface keel.Algorithms.SVM.SMO.core.OptionHandler
-
Sets the OptionHandler's options using the given list.
- setOptions(String[]) - Method in class keel.Algorithms.SVM.SMO.supportVector.CachedKernel
-
Parses a given list of options.
- setOptions(String[]) - Method in class keel.Algorithms.SVM.SMO.supportVector.Kernel
-
Parses a given list of options.
- setOptions(String[]) - Method in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
Parses a given list of options.
- setOptions(String[]) - Method in class keel.Algorithms.SVM.SMO.supportVector.PolyKernel
-
Parses a given list of options.
- setOptions(String[]) - Method in class keel.Algorithms.SVM.SMO.supportVector.Puk
-
Parses a given list of options.
- setOptions(String[]) - Method in class keel.Algorithms.SVM.SMO.supportVector.RBFKernel
-
Parses a given list of options.
- setOptions(String[]) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
Parses a given list of options.
- setOptions(String[]) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
-
Parses a given list of options.
- setOptions(String[]) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
Parses a given list of options.
- setOptions(String[]) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Parses a given list of options.
- setOptions(String[]) - Method in class keel.Algorithms.SVM.SMO.SVMreg
-
Parses a given list of options.
- setOrigin(INeuron) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.Link
-
Sets the origin neuron of the link
- setOSup(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Sets the value of original support measure
- setOutAttribute(int) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanel
-
Sets output attribute
- setOuterBorder(int[]) - Method in class keel.Algorithms.Lazy_Learning.NSC.Cluster
-
Set the outer border of the cluster
- setOutput(int, double[]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Sets all the values of an output in the data set
- setOutput(int[]) - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
Loads the training output into the classifier
- setOutput(int[]) - Static method in class keel.Algorithms.RST_Learning.KNNClassifier
-
Loads the training output into the classifier
- setOutput(int[]) - Static method in class keel.Algorithms.RST_Learning.RSTData
-
Loads the training output into the classifier
- setOutputAttribute(IAttribute) - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
-
It sets the output attribute
- setOutputAttribute(myAttribute) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
-
Replaces the information about the output attribute with new information about that attribute
- setOutputAttribute(myAttribute) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
-
Replaces the information about the output attribute with new information about that attribute
- setOutputAttribute(IAttribute) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlusReporterClas
-
Sets output attribute metadata
- setOutputAttribute(IAttribute) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.IRPropPlusReporterRegr
-
Sets output attribute metadata
- setOutputAttribute(IAttribute) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.listener.NeuralNetReporterClas
-
Sets output attribute metadata
- setOutputAttribute(IAttribute) - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.listener.NeuralNetReporterRegr
-
Sets output attribute metadata
- setOutputClass(int) - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
-
- setOutputClass(int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Replaces the output class of the node with another new output class
- setOutputClass(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Register
-
Replaces the class associated with the register with another class
- setOutputClass(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
-
Replaces the output class of the node with another new output class
- setOutputFile(String) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.ReportTool
-
Sets the name of the output file to print the report
- setOutputFile(String) - Static method in class keel.Algorithms.RST_Learning.ReportTool
-
Sets the name of the output file to print the report
- setOutputFormat(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Sets the format of output instances.
- setOutputFormat(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.ReplaceMissingValuesFilter
-
Sets the format of the output instances.
- setOutputI(int, int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
-
Replaces the output attribute value at the specified instance in this dataset with the specified value
- setOutputI(int, int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
-
Replaces the output attribute value at the specified instance in this dataset with the specified value
- setOutputInterval(Interval) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Sets the output range of normalized data
- setOutputLayer(LinkedLayer) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
-
Sets the output layer of this neural net
- setOutputLayer(LinkedLayer) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuralNet
-
Sets the output layer of this neural net
- setOutputLayerBiased(boolean) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets a boolean indicating if the output layer is biased
- setOutputLayerInitiator(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets initiator of neurons of the output layer
- setOutputLayerType(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets type of neurons of the output layer
- setOutputLayerWeightRange(int, Interval) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets weight range of the output layer
- setOutputNominalValue(int, String) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
It set the nominal attribute value to the one passed.
- setOutputNominalValue(InstanceAttributes, int, String) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
Set a new value of a given output attribute in this instance (nominal)
- setOutputNominalValue(int, String) - Method in class keel.Dataset.Instance
-
It set the nominal attribute value to the one passed.
- setOutputNominalValue(InstanceAttributes, int, String) - Method in class keel.Dataset.Instance
-
Set a new value of a given output attribute in this instance (nominal)
- setOutputNumericValue(int, double) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
It changes the attribute value.
- setOutputNumericValue(InstanceAttributes, int, double) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
Set a new value of a given output attribute in this instance (integer or real)
- setOutputNumericValue(int, double) - Method in class keel.Dataset.Instance
-
It changes the attribute value.
- setOutputNumericValue(InstanceAttributes, int, double) - Method in class keel.Dataset.Instance
-
Set a new value of a given output attribute in this instance (integer or real)
- setOutputValue(double) - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
-
- setOverallConstraintViolation(double) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Sets the overallConstraintViolation of the individual
- setP(Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Chc
-
- setP(Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Chc
-
- setP(Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Chc
-
- setP(Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Chc
-
- setP(Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Chc
-
- setP(Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Chc
-
- setP(Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Chc
-
- setP(Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Chc
-
- setParam(double[], double, double[]) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbf
-
Sets the main parameters of a neuron
- setParam(double[], double, double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbf
-
Sets the main parameters of a neuron
- setParam(double[], double, double[], int) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbf
-
Sets the main parameters of a neuron
- setParam(double[], double, double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbf
-
Sets the main parameters of a neuron
- setParam(double[], double, double[], int) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbf
-
Sets the main parameters of a neuron
- setParam(double[], double, double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbf
-
Sets the main parameters of a neuron
- setParam(double[], double, double[], int) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbf
-
Sets the main parameters of a neuron
- setParam(double[], double, double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbf
-
Sets the main parameters of a neuron
- setParam(double[], double, double[], int) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbf
-
Sets the main parameters of a neuron
- setParam(double[], double, double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbf
-
Sets the main parameters of a neuron
- setParam(double[], double, double[], int) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbf
-
Sets the main parameters of a neuron
- setParam(double[], double, double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbf
-
Sets the main parameters of a neuron
- setParam(double[], double, double[], int) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbf
-
Sets the main parameters of a neuron
- setParent(TreeNode) - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
-
It sets the parent of the current node
- setParent(Node) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Node
-
Sets the father of the node with the given node.
- setParent(JFrame) - Method in class keel.GraphInterKeel.datacf.DataCFFrame
-
Sets parent
- setParent(JFrame) - Method in class keel.GraphInterKeel.datacf.editData.EditPanel
-
Set the JFrame Parent
- setParent(JFrame) - Method in class keel.GraphInterKeel.datacf.exportData.ExportPanel
-
Sets the JFrame parent
- setParent(JFrame) - Method in class keel.GraphInterKeel.datacf.importData.ImportPanel
-
Sets JFrame parent
- setParent(JFrame) - Method in class keel.GraphInterKeel.datacf.partitionData.PartitionPanel
-
Sets the JFrame parent
- setParent(JFrame) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanel
-
Sets the parent JFrame
- setParent(Frame) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Sets parent
- setParent(JFrame) - Method in class keel.GraphInterKeel.statistical.StatisticalF
-
Sets parent
- setpartitionType(int) - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
-
This methos set type partitions, k-fold or 5x2
PK = 0 P5X2 = 1;
- setPath(String, int) - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
-
Sets the path of the indicated layer
- setPath(String) - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
-
Sets the path of the active layer
- setPath(String) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the path of the file to store the results of the test
- setPath(String) - Static method in class keel.GraphInterKeel.util.Path
-
Set the path
- setPatterns(int[]) - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
-
- setPBit(double) - Static method in class keel.Algorithms.Instance_Selection.CoCoIS.Subpopulation
-
Sets the bit flip probability
- setPBit(double) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Subpopulation
-
Sets the bit flip probability
- setPDRFType(int) - Method in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
Sets the Type of Positive Definite Functions used.
- setPenalizedFitness(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.Rule
-
Sets the penalized fitness field to a specified given value, corresponding to this rule penalized
fitness according to the data set and the other rules considered
- setPenalizedFitness(double) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
-
Sets the penalized fitness field to a specified given value, corresponding to this rule penalized
fitness according to the data set and the other rules considered
- setPenaltyFactor(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
-
- setPercentages(int, double[]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies
-
Sets an array of percentages of a concrete layer
(this is an hibrid layer)
- setPercentageSecondMutator(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Sets percentage of census selected to be mutated
with second mutator
- setPerf(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Individual
-
Sets the performance for the chromosome
- setpeso(float) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
-
- setpeso(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
-
- setpeso(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
-
- setpeso(float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
-
- setPlus(int, double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Adds a value to an element
- setPoblacion(Cromosoma[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
- setPoblacion(Cromosoma[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
- setPoblacion(Cromosoma[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setPoblacion(Cromosoma[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
- setPoblacion(Cromosoma[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
- setPoblacion(Cromosoma[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
- setPoblacion(Cromosoma[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setPoblacion(Cromosoma[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
- setPopBestGuy(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Population
-
Sets the position of the best individual of the population
- setPopBestGuy(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Population
-
Sets the position of the best individual of the population
- setPopBestGuy(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Population
-
Sets the position of the best individual of the population
- setPopsize(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
- setPOPSIZE(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
- setPopsize(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
- setPOPSIZE(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
- setPopsize(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setPOPSIZE(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setPopsize(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
- setPOPSIZE(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
- setPopsize(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
- setPOPSIZE(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
- setPopsize(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
- setPOPSIZE(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
- setPopsize(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setPOPSIZE(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setPopsize(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
- setPOPSIZE(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
- setPopSize(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
-
- setPopulationSize(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
-
- setPopulationSize(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- setPopulationSize(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Sets population size of the algorithm
- setPorcCob(float) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Sets the percentage of biased initialisation in the re-initialisation based on coverage
- setPosEx(int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.pnPair
-
It sets the posEx value
- setPosFile(long) - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Instance
-
It assigns the position of the example in the input data file
- setPosFile(long) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Instance
-
It assigns the position of the example in the input data file
- setPosFile(long) - Method in class keel.Algorithms.Hyperrectangles.EACH.Sample
-
Assigns the position of the example in the in-put file of data
- setPosFile(long) - Method in class keel.Algorithms.Rule_Learning.AQ.Instance
-
It assigns the position of the example in the input data file
- setPosFile(long) - Method in class keel.Algorithms.Rule_Learning.CN2.Instance
-
It assigns the position of the example in the input data file
- setPosFile(long) - Method in class keel.Algorithms.Rule_Learning.Prism.Muestra
-
Assigns the position of the example in the in-put file of data
- setPosFile(long) - Method in class keel.Algorithms.Rule_Learning.UnoR.Muestra
-
Assigns the position of the example in the in-put file of data
- setPosFile(long) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Muestra
-
Assigns the position of the example in the in-put file of data
- setPosFile(long) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Muestra
-
Assigns the position of the example in the in-put file of data
- setPosFile(long) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Instance
-
It assigns the position of the example in the input data file
- setPosicion(Point) - Method in class keel.GraphInterKeel.experiments.Node
-
Sets the position of the node in the panel
- setPosition(Point) - Method in class keel.GraphInterKeel.experiments.Node
-
Sets the position of the node in the panel
- setPositionRuleMatch(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
-
- setPositionRuleMatch(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
-
- setPositiveEta(double) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Sets the positive eta value, that is, the increment
of the step size at each epoch
- setPRandom(double) - Static method in class keel.Algorithms.Instance_Selection.CoCoIS.Subpopulation
-
Sets the random mutation probability
- setPRandom(double) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Subpopulation
-
Sets the random mutation probability
- setPredError(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Sets the prediction error
- setPredError(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Sets the prediction error
- setPredicted(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexResult
-
- setPrediction(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Sets the prediction value.
- setPrediction(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Sets the prediction value.
- setPrior(int[]) - Method in class keel.Algorithms.Discretizers.OneR.Opt
-
Sets the priority of the classes associated to this explanatory value (the less, the more priority)
- setPriors(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Sets the class prior probabilities
- setPRnn(double) - Static method in class keel.Algorithms.Instance_Selection.CoCoIS.Subpopulation
-
Sets the RNN mutation probability
- setPRnn(double) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Subpopulation
-
Sets the RNN mutation probability
- setProbCross(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
-
Methods to set the value for the crossover probability
- setProbCross(float) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Sets the cross probability in the algorithm
- setProbCross(float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Methods to set the value for the crossover probability
- setProbMut(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
-
Methods to set the value for the mutation probability
- setProbMut(float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Methods to set the value for the mutation probability
- setProbMutacion(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
- setProbMutation(float) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Sets the mutation probability
- setProbMutExtremo(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
- setProcessHeader(boolean) - Method in class keel.Algorithms.Preprocess.Converter.Importer
-
Method for setting a boolean indicating if the header must be processed
- setProperties() - Method in class keel.Algorithms.Lazy_Learning.NSC.Cluster
-
Validate the values calculated for the cluster
- setProperty(String, String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.ProtectedProperties
-
Overrides a method to prevent the properties from being modified.
- setProperty(String, String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ProtectedProperties
-
Overrides a method to prevent the properties from being modified.
- setPrototypeToCompare(Prototype) - Method in class keel.Algorithms.Instance_Generation.utilities.Distance
-
Assigns base prototype.
- setPrototypeToCompare(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Distance
-
Assigns base prototype.
- setProvider(<any>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Sets the individuals provider used in the init task
- setPruneExamplesFactor(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
-
- setPruningFactor(double) - Method in class keel.Algorithms.Decision_Trees.M5.M5
-
Set the value of PruningFactor.
- setPruningFactor(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
Set the value of PruningFactor.
- setPruningMethod(SelectedTag) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Sets the method used to for pruning.
- setPW(populationWrapper) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.timersManagement
-
- setQ(int) - Static method in class keel.Algorithms.Hyperrectangles.RISE.Rule
-
Sets the Q parameter
- setQg(double) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
-
Set the value of Qg
- setRadius(double) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbf
-
Sets the radius of a neuron
- setRadius(double) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbf
-
Sets the radius of a neuron
- setRadius(double) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbf
-
Sets the radius of a neuron
- setRadius(double) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbf
-
Sets the radius of a neuron
- setRadius(double) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbf
-
Sets the radius of a neuron
- setRadius(double) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbf
-
Sets the radius of a neuron
- setRadius(double) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbf
-
Sets the radius of a neuron
- setRandGen(IRandGen) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.initiators.PureLayerInitiator
-
Sets the random generator of the initiator
- setRandgen(IRandGen) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ExpNeuronParametricMutator
-
Sets the random generator used in mutation
- setRandgen(IRandGen) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.LinearNeuronParametricMutator
-
Sets the random generator used in mutation
- setRandgen(IRandGen) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.SigmNeuronParametricMutator
-
Sets the random generator used in mutation
- setRandgen(IRandGen) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.ExpNeuronStructuralMutator
-
Sets the random generator used in mutation
- setRandgen(IRandGen) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.LinearNeuronStructuralMutator
-
Sets the random generator used in mutation
- setRandgen(IRandGen) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.SigmNeuronStructuralMutator
-
Sets the random generator used in mutation
- setRandGenFactory(IRandGenFactory) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Sets the randgen factory
- setRandomSeed(int) - Method in class keel.Algorithms.SVM.SMO.SMO
-
Set the value of randomSeed.
- setRange(float, float) - Method in class keel.Algorithms.Decision_Trees.C45.Attribute
-
Sets the range of a continuous attribute.
- setRanges(String) - Method in class keel.Algorithms.Decision_Trees.M5.Interval
-
Sets the ranges from a string representation.
- setRanges(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Range
-
Sets the ranges from a string representation.
- setRangos(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
-
- setRangos(TipoIntervalo[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setRangos(TipoIntervalo[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setRangos(TipoIntervalo[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setRangos(TipoIntervalo[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setRangos(TipoIntervalo[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setRangos(TipoIntervalo[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setRangos(TipoIntervalo[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setRangos(TipoIntervalo[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setRank(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Sets the rank of the individual
- setRank(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Chromosome
-
- setRanking(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.Individuo
-
- setRealmaxBound(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Gene
-
Sets the maximum bound of this gene for the real values (for interval-based relations)
- setRealminBound(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Gene
-
Sets the minimum bound of this gene for the real values (for interval-based relations)
- setRealValue(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Gene
-
Sets the real value of this gene (for one value relations, i.e.
- setReconversionArrayRefs(int[][], short[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
Sets the reconversion array reference values.
- SETREDAlgorithm - Class in keel.Algorithms.Semi_Supervised_Learning.SETRED
-
SETRED algorithm calling.
- SETREDAlgorithm() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.SETRED.SETREDAlgorithm
-
- SETREDGenerator - Class in keel.Algorithms.Semi_Supervised_Learning.SETRED
-
This class implements the Self-traning wrapper.
- SETREDGenerator(PrototypeSet, int, int, int, int, double, double, double, double, double) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.SETRED.SETREDGenerator
-
Build a new SETREDGenerator Algorithm
- SETREDGenerator(PrototypeSet, PrototypeSet, PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.SETRED.SETREDGenerator
-
Build a new SETREDGenerator Algorithm
- setReduccionIni(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
- setReduccionIni(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setReduccionIni(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
- setReduccionIni(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setReduccionR(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setReduccionR(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setReducedStepSize(boolean[]) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Sets an array of booleans, indicating which coefficients
have to be treated as more sensible, using reduced step size
for these coefficients
- setRegOptimizer(RegOptimizer) - Method in class keel.Algorithms.SVM.SMO.SVMreg
-
sets the learning algorithm
- setRegression(boolean) - Method in class keel.Algorithms.Decision_Trees.CART.CART
-
It sets if we are dealing with a regression problem
- setReInitCob(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Sets the value of re-initialisation based on coverage
- setRelationName(String) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Sets the relation's name.
- setRelationName(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Sets the relation's name.
- setRelationName(String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Sets the relation's name.
- setRelationName(String) - Static method in class keel.Algorithms.Rule_Learning.Swap1.Attributes
-
It sets the relation name.
- setRelationName(String) - Method in class keel.Algorithms.Rule_Learning.Swap1.InstanceAttributes
-
It sets the relation name.
- setRelationName(String) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Sets the relation's name.
- setRelationName(String) - Static method in class keel.Dataset.Attributes
-
It sets the relation name.
- setRelationName(String) - Method in class keel.Dataset.InstanceAttributes
-
It sets the relation name.
- setRemoved(int, boolean) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
Sets the flag that indicate if an instance has been removed or not.
- setRemoved(int, boolean) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
Sets the flag that indicate if an instance has been removed or not.
- setRemoved(int, boolean) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
Sets the flag that indicate if an instance has been removed or not.
- setResults(int[], int[], int[], int[], int) - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.ReportTool
-
Provide information about the classification process to the report tool
- setResults(int[], int[], int[], int[], int) - Static method in class keel.Algorithms.RST_Learning.ReportTool
-
Provide information about the classification process to the report tool
- setRidge(double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
Sets the ridge in the log-likelihood.
- setRight(TreeNode) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Replaces the right descendant of the node with another new right descendant
- setRight(TreeNode) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
-
Replaces the right descendant of the node with another new right descendant
- setRight(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Intervals
-
- setRight(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Interval
-
It sets the right bound of an interval
- setRight(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Intervals
-
- setRightSon(TreeNode) - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
-
- setRightValueRank(String) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelAttribute
-
Sets right value Rank
- setRom(boolean) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the use of Rom test
- setRoot(TreeNode) - Method in class keel.Algorithms.Decision_Trees.CART.tree.DecisionTree
-
It set the root of the tree
- setRoot(Node) - Method in class keel.Algorithms.Rule_Learning.ART.TBAR
-
- setRow(int, double[]) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Sets a row of the matrix to the given row.
- setRule(Rule) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Selected
-
It sets the rule into the "selected" structure.
- setRule(Rule) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Selected
-
It sets the rule into the "selected" structure
- setRuleCF(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
-
- setRuleConfidence(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
-
It sets the confidence of the association rule represented by a chromosome
- setRuleConfidence(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Chromosome
-
- setRuleConv(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
-
- setRuleLift(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
-
- setRuleNetconf(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
-
- setRules(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
-
- SetRules - Class in keel.Algorithms.Subgroup_Discovery.SDAlgorithm
-
Defines a set of rules or complex
- SetRules() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.SetRules
-
Constructor
- setRuleset(FastVector) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Set the ruleset of the stats, overwriting the old one if any
- setRulesRep(String) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
-
Sets the representation of the rules
- setRulesRep(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Sets the rules representation of the algorithm
- setRulesRep(String) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Sets the representation of the rules
- setRuleSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
-
It sets the support of the association rule represented by a chromosome
- setRuleSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AssociationRule
-
It sets the support of an association rule
- setRuleSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.AssociationRule
-
It sets the support of an association rule
- setRuleSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Chromosome
-
- setRuleWeight(int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypePitts
-
This method updates the weight of a rule.
- setRuleYulesQ(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
-
- setS(int) - Static method in class keel.Algorithms.Hyperrectangles.RISE.Rule
-
Sets the S parameter
- setSalidaPDEF(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Base
-
- setSalidaPDEF(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Base
-
- setSalidaPDEF(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Base
-
- setSalidaPDEF(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Base
-
- setSalidaPDEF(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Base
-
- setSalidaPDEF(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Base
-
- setSalidaPDEF(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Base
-
- setSalidaPDEF(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Base
-
- setSalidasAnteriores(boolean[][]) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Instance_Selection.EUSCHCQstat.EUSCHCQstat
-
- setSample(double[]) - Method in class keel.Algorithms.Hyperrectangles.EACH.Sample
-
Assigns the in-puts of the data
- setSample(int, double) - Method in class keel.Algorithms.Hyperrectangles.EACH.Sample
-
Gives value to an atribute
- setSample(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
- setSample(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
- setSample(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setSample(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
- setSample(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
- setSample(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
- setSample(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setSample(int[]) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
- setScaledFitness(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier
-
- setScoringFunction(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- setScrollPane(JScrollPane) - Method in class keel.GraphInterKeel.datacf.editData.EditDataPanel
-
Set the JScrollPane
- setSeed(long) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Sets the seed value to use in randomizing the data
- setSeed(long) - Static method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
- setSeed(long) - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
- setSeed(long) - Static method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
Set the seed of the random generator.
- setSeed(long) - Static method in class keel.Algorithms.Instance_Generation.utilities.RandomGenerator
-
Set the seed of the random method.
- setSeed(long) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.MersenneTwister
-
Initalize the pseudo random number generator.
- setSeed(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Set the seed for random number generation.
- setSeed(long) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Set the seed of the random generator.
- setSeed(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Set the seed for random number generation.
- setSeed(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Set the seed for random number generation.
- setSeed(long) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.RandomGenerator
-
Set the seed of the random method.
- setSeed(int) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
Sets the seed value for the random number generator
- setSeed(long) - Method in class keel.GraphInterKeel.experiments.Graph
-
Sets the seed of the graph (i.e. the seed of the experiment)
- setSeed(long) - Static method in class org.core.Randomize
-
- setSeeds(Vector) - Method in class keel.GraphInterKeel.experiments.Parameters
-
Sets the new seeds
- setSelectionAlgorithm(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- setSelective(boolean) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
-
Sets a boolean indicating if the mutator is selective
- setSet(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.VQ.Cluster
-
Asssigns the set of prototypes of the cluster.
- setShaffer(boolean) - Static method in class keel.GraphInterKeel.statistical.Configuration
-
Sets the use of Shaffer test
- setShowInsertKeel(boolean) - Method in class keel.GraphInterKeel.datacf.importData.ImportPanel
-
Sets a boolean indicating the insert to keel option has to be shown
- setSigma(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.NormalDistribution
-
Sets the sigma of the distribution.
- setSigma(double) - Method in class keel.Algorithms.SVM.SMO.supportVector.Puk
-
Sets the sigma value.
- setSigma(double) - Method in class keel.GraphInterKeel.statistical.tests.NormalDistribution
-
Set the sigma value of the distribution
- setSign(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Sets the value of SIGN
- setSignificativeWeight(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.initiators.RandomInitiator
-
Sets the significative weight value
- setSignificativeWeigth(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.ExpNeuronStructuralMutator
-
Sets the minimum value of new weigths
- setSignificativeWeigth(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.LinearNeuronStructuralMutator
-
Sets the minimum value of new weigths
- setSignificativeWeigth(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.SigmNeuronStructuralMutator
-
Sets the minimum value of new weigths
- setSignificativeWeigth(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Sets the significative weigth for new links
- setSilent(boolean) - Method in class keel.Algorithms.SVM.SMO.core.Check
-
Set slient mode, i.e., no output at all to stdout
- setSingleIndex(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.SingleIndex
-
Sets the index from a string representation.
- setSize(int) - Static method in class keel.Algorithms.Hyperrectangles.BNGE.Rule
-
Sets the size of the rule
- setSize(int) - Static method in class keel.Algorithms.Hyperrectangles.INNER.Rule
-
Sets the size of the problem
- setSize(int) - Static method in class keel.Algorithms.Hyperrectangles.RISE.Rule
-
Sets the size of the rule
- setSize(int) - Static method in class keel.Algorithms.Instance_Selection.CoCoIS.Subpopulation
-
Sets the size of the population
- setSize(int) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Subpopulation
-
Sets the size of the population
- setSize(int) - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.Chromosome
-
Sets the size of the chromosome with the value given as parameter.
- setSize(int) - Static method in class keel.Algorithms.RST_Learning.EIS_RFS.Chromosome
-
Sets the size of the chromosome with the value given as parameter.
- setSize(int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Sets the size of the vector
- setSize(int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Sets the size of the vector.
- setSource(int) - Method in class keel.GraphInterKeel.experiments.Arc
-
Sets the node source
- setSource2(int) - Method in class keel.GraphInterKeel.experiments.Arc
-
Sets the node source
- setSpecies(<any>) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Sets the system species
- setStagtol(double) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
Sets a new limit to the stagnation tolerance
- setStartCMARrulelistToNull() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
Sets START CMAR RULE LIST to null.
- setState(long[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.Globals.MTwister
-
- setState(long[]) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.MTwister
-
- setState(long[]) - Method in class org.core.MTwister
-
- setStateAddButton(boolean) - Method in class keel.GraphInterKeel.datacf.editData.EditDataPanel
-
Enables or disables Add Button
- setStateAddButton(boolean) - Method in class keel.GraphInterKeel.datacf.editData.EditVariablePanel
-
Set if addButton is enabled or disabled
- setStateDeleteButton(boolean) - Method in class keel.GraphInterKeel.datacf.editData.EditDataPanel
-
Enables or disables Delete Button
- setStateDeleteButton(boolean) - Method in class keel.GraphInterKeel.datacf.editData.EditVariablePanel
-
Enables or Disables Delete Button
- setStdDebugMode(boolean) - Static method in class keel.Algorithms.Instance_Generation.utilities.Debug
-
Set standard debug mode to a desired state.
- setStdDebugMode(boolean) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Debug
-
Set standard debug mode to a desired state.
- setStrength(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Rule
-
It assigns a new strength to the rule
- setStrictDominance(String) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Sets if the algorithm considers strict dominance
- setString(FuzzyAlphaCut[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.NodeValue
-
This method replace replace the fuzzy alpha cuts
- setSubsequenceLength(int) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Sets the length of the subsequence.
- setSubtype(int) - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
-
Sets the subtype of this object
- setSubtypelqd(int) - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
-
Sets the subtype of this object
- setSuitability(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Chromosome
-
It sets the suitability for a chromosome
- setSuitability(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Chromosome
-
It sets the suitability for a chromosome
- setSuitability(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Chromosome
-
It sets the suitability for a chromosome
- setSumFuzzySupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Chromosome
-
It sets the sum of fuzzy supports of the 1-Frequent Itemsets covered by a chromosome
- setSup(int[][]) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ApproximateSets
-
- setSup(double) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
-
Set the value of Sup
- setSup(float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.QualityMeasures
-
Method to set the value of the support
- setSupport(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
It sets the rule's support.
- setSupport(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
It sets the rule's support
- setSupport(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
-
It sets the support of the rule
- setSupport(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Rule
-
It sets the support of the rule
- setSupport(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Rule
-
It sets the support of the rule
- setSupport(double) - Method in class keel.Algorithms.Discretizers.UCPD.Itemset
-
It sets the support of this itemset
- setSupport(Itemset) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Rule
-
- setSupport(int) - Method in class keel.Algorithms.Rule_Learning.ART.Rule
-
- setSupport(int) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Item
-
Sets the support value for the item with the one given.
- setSupport(int) - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Regla
-
Sets the support value of the rule.
- setSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
-
Sets the support of an association rule with the given value.
- setSupport(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.Item
-
It sets the support of an item
- setSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Chromosome
-
- setSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
-
- setSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
-
- setSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
It sets the support of the association rule represented by a chromosome
- setSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
It sets the support of the association rule represented by a chromosome
- setSupport(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
It sets the support of the association rule represented by a chromosome
- setSupport_Ant(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
-
- setSupport_Ant(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
-
- setSupport_cons(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
-
- setSupport_cons(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
-
It sets the consequent support of an association rule
- setSupport_cons(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
-
- setSupport_consq(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
-
- setSupport_consq(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
-
- setSupportAll(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
-
- setSupportAll(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
-
- setSupportAndConfidence(double, double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
Sets new values for the support and confidence fields.
- setSupportAnt(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
-
- setSupportAnt(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
-
- setSupportCon(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
-
- setSupportCon(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
-
- setSupportConfidence(double, double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Apriori
-
Sets the minimum confidence and support thresholds
- setSupportConfidence(double, double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Apriori
-
Sets the minimum confidence and support thresholds
- setSupportConfidence(double, double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Apriori
-
Sets the minimum confidence and support thresholds
- setSVMReg(SVMreg) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
sets the parent SVM
- setT(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- setTablaDataset(DatasetTable) - Method in class keel.GraphInterKeel.datacf.editData.EditDataPanel
-
Set DatasetTable
- setTabSize(int) - Static method in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- setTabSize(int) - Static method in class keel.Dataset.SimpleCharStream
-
- setTarget(INeuron) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.Link
-
Sets the target neuron of the link
- setTau(double) - Method in class keel.Algorithms.MIL.APR.IteratedDiscrimination.IteratedDiscrimination
-
- setTCompOfClassifiers(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Initializes the classifiers' reduction time stamp to the tStamp value
- setTemperExponent(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
-
Sets the temperature exponent to be used in the mutations
- setTemperExponent(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Sets the temperature exponent to be used in the mutations
- setTestData(DoubleTransposedDataSet) - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
-
It sets the test data
- setTestReportFileName(String) - Method in class keel.Algorithms.MIL.AbstractMIAlgorithm
-
- setTestResultFile(String) - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
-
It sets the test result file
- setTestResultFile(String) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlusReporterClas
-
Sets file name where the testing results of best model
obtained will be written
- setTestResultFile(String) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.IRPropPlusReporterRegr
-
Sets file name where the testing results of best model
obtained will be written
- setTestResultFile(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.listener.NeuralNetReporterClas
-
Sets file name where the testing results of best model
obtained will be written
- setTestResultFile(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.listener.NeuralNetReporterRegr
-
Sets file name where the testing results of best model
obtained will be written
- setTestTime() - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.Timer
-
Sets training time
- setTestTime() - Static method in class keel.Algorithms.RST_Learning.Timer
-
Sets training time
- setTextData(String) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelDataset
-
Sets text for dataset area
- setTHRESHOLD(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
- setTHRESHOLD(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
- setTHRESHOLD(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setTHRESHOLD(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
- setTHRESHOLD(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
- setTHRESHOLD(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
- setTHRESHOLD(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setTHRESHOLD(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
- setThreshold(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
-
- setTHRESHOLDR(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setTHRESHOLDR(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setTime(long) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Rule
-
It sets the time the rule was added to the rule set.
- setTime(long) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Rule
-
It sets the time the rule was added to the rule set
- setTime(long) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Rule
-
It sets the time of the rule
- setTime(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Classifier
-
Sets the time stamp for this classifier.
- setTime(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
-
Sets the time stamp for this classifier.
- setTime(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Sets the time stamp for this classifier.
- setTime(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Sets the time stamp for this classifier.
- setTimeOfClassifiers(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Initializes the classifiers' time stamp to the tStamp value
- setTimeOfClassifiers(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Initializes the classifiers' time stamp to the tStamp value
- setTimes(int, double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Multiplies a value to an element
- setTipo(boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Atributo
-
Sets the attribute type with the one given: numeric (0) or nominal (1).
- setTipo(boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Atributo
-
Sets the attribute type with the one given: numeric (0) or nominal (1).
- setTipo(boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Atributo
-
Sets the attribute type with the one given: numeric (0) or nominal (1).
- setTipo(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Atributo
-
Sets the attribute type with the one given: numeric (0) or nominal (1).
- setTipos(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
-
- setTMtablaAtributos(AttributeTable) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelAttribute
-
Set the Atributtes Table
- setTNorm(int) - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
- setTolerance(double) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
sets the tolerance
- setToleranceParameter(double) - Method in class keel.Algorithms.SVM.SMO.SMO
-
Set the value of tolerance parameter.
- setToleranceParameter(double) - Method in class keel.Algorithms.SVM.SMO.SMOreg
-
Set the value of tolerance parameter.
- setTotalClass(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Individual
-
Sets the number of the class of the individual
- setTotalClass(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Individual
-
Sets the number of the class of the individual
- setTotalClass(int) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Individual
-
Sets the number of the class of the individual
- setTotalErrors(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Selected
-
It sets the total of errors made by the rule into the "selected" structure.
- setTotalErrors(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Selected
-
It sets the total of errors made by the rule into the "selected" structure
- setTotalexperiments(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Chc
-
- setTotalexperiments(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Chc
-
- setTotalexperiments(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Chc
-
- setTotalexperiments(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Chc
-
- setTotalexperiments(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Chc
-
- setTotalexperiments(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Chc
-
- setTotalexperiments(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Chc
-
- setTotalexperiments(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Chc
-
- setTotalNumberClass(int) - Method in class keel.Algorithms.Statistical_Tests.Shared.StatTest.InformationAboutClass
-
Sets the total number of classes of the problem with the one given.
- setTotaltrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Chc
-
- setTotaltrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Chc
-
- setTotaltrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Chc
-
- setTotaltrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Chc
-
- setTotaltrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Chc
-
- setTotaltrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Chc
-
- setTotaltrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Chc
-
- setTotaltrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Chc
-
- setTP(double) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
-
Set the value of TP
- setTrainData(DoubleTransposedDataSet) - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
-
It sets the training data
- setTrainingData(DoubleTransposedDataSet) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Sets training data
- setTrainingSetDocumentsID(List<Integer>) - Static method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.WrapperManager
-
- setTrainingTime() - Static method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.Timer
-
Set training time
- setTrainingTime() - Static method in class keel.Algorithms.RST_Learning.Timer
-
Set training time
- setTrainReportFileName(String) - Method in class keel.Algorithms.MIL.AbstractMIAlgorithm
-
- setTrainResultFile(String) - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
-
It sets the training results file
- setTrainResultFile(String) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlusReporterClas
-
Sets file name where the testing results of best model
obtained will be written
- setTrainResultFile(String) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.IRPropPlusReporterRegr
-
Sets file name where the testing results of best model
obtained will be written
- setTrainResultFile(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.listener.NeuralNetReporterClas
-
Sets file name where the testing results of best model
obtained will be written
- setTrainResultFile(String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Regr.listener.NeuralNetReporterRegr
-
Sets file name where the testing results of best model
obtained will be written
- setTree(GenotypeFuzzyGP) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGP
-
This method copies the given parameter into the current object.
- setTree(GenotypeFuzzyGPRegSym) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypeFuzzyGPRegSym
-
This method copies the given parameter into the current object.
- setTrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
- setTrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
- setTrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setTrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
- setTrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
- setTrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
- setTrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setTrials(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
- setTrials(int) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Genetic
-
Sets the number of trials in the algorithm
- setType(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Ruleset
-
Sets the common output (consecuent) of the rules in the ruleset.
- setType(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Rule
-
It sets the right side of the rule.
- setType(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Ruleset
-
Sets the common output (consecuent) of the rules in the ruleset.
- setType(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Condition
-
It sets the type
- setType(int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Sets the type of this layer
- setType(int) - Method in class keel.Algorithms.Rule_Learning.AQ.Instance
-
It sets the type of the instance
- setType(String) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Rule
-
It sets the right side of the rule.
- setType(String) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Ruleset
-
Sets the common output (consecuent) of the rules in the ruleset.
- setType(String) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Rule
-
It sets the right side of the rule.
- setType(String) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Ruleset
-
Sets the common output (consecuent) of the rules in the ruleset.
- setType(String) - Method in class keel.Algorithms.Rule_Learning.PART.Rule
-
It sets the right side of the rule.
- setType(String) - Method in class keel.Algorithms.Rule_Learning.PART.Ruleset
-
Sets the common output (consecuent) of the rules in the ruleset.
- setType(String) - Method in class keel.Algorithms.Rule_Learning.Ripper.Rule
-
It sets the right side of the rule.
- setType(String) - Method in class keel.Algorithms.Rule_Learning.Ripper.Ruleset
-
Sets the common output (consecuent) of the rules in the ruleset.
- setType(String) - Method in class keel.Algorithms.Rule_Learning.Slipper.Rule
-
It sets the right side of the rule.
- setType(String) - Method in class keel.Algorithms.Rule_Learning.Slipper.Ruleset
-
Sets the common output (consecuent) of the rules in the ruleset.
- setType(int) - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
It sets the attribute type.
- setType(char) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeVar
-
Sets the char with the type used in the variable
- setType(char) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeVar
-
Sets the char with the type used in the variable
- setType(char) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeVar
-
Sets the char with the type used in the variable
- setType(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
-
- setType(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Gene
-
- setType(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Gene
-
- setType(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Gene
-
- setType(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Gene
-
- setType(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Gene
-
- setType(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
-
- setType(int) - Method in class keel.Dataset.Attribute
-
It sets the attribute type.
- setType(int) - Method in class keel.GraphInterKeel.experiments.Graph
-
Sets the type of the graph (experiment type)
- setType(int) - Method in class keel.GraphInterKeel.experiments.Node
-
Sets the type of the node
- setType(String) - Method in class keel.GraphInterKeel.experiments.UseCase
-
Sets the method's type
- setTypelqd(int) - Method in class keel.GraphInterKeel.experiments.Node
-
Sets the type of the node
- setU(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Gene
-
- setU(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Gene
-
- setU(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Gene
-
- setUnscaledTestData(DoubleTransposedDataSet) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Sets the DataSet associated to the evaluator as unscaled test data
- setUnscaledTrainData(DoubleTransposedDataSet) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Sets the DataSet associated to the evaluator as unscaled train data
- setUnus(float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Sets the value of UNUS
- SetupParameters - Class in keel.Algorithms.Neural_Networks.gann
-
Class for capturing the global parameters and data
- SetupParameters() - Constructor for class keel.Algorithms.Neural_Networks.gann.SetupParameters
-
Empty constructor
- SetupParameters - Class in keel.Algorithms.Neural_Networks.gmdh
-
Class for capturing the global parameters and data
- SetupParameters() - Constructor for class keel.Algorithms.Neural_Networks.gmdh.SetupParameters
-
Empty constructor
- setUpper(int) - Method in class keel.Algorithms.Decision_Trees.M5.Interval
-
Sets the value of "last".
- setUpper(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Range
-
Sets the value of "last".
- setUpper(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.SingleIndex
-
Sets the value of "last".
- setUpperBound(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Condition
-
Sets the upper bound
- setUpperBound(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
-
It sets the upper bound of the interval stored in a gene
- setUpperBound(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
-
It sets the upper bound of the interval stored in a gene
- setUpperBound(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Gene
-
It sets the upper bound of the interval stored in a gene
- setUse(String, String) - Static method in class keel.Algorithms.Instance_Generation.utilities.Parameters
-
Sets the use of the algorithm
- setUse(String, String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
-
Sets the use of the algorithm
- setUseful(boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Sets the useful parameter
- setUseful(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Sets the usefulTimes parameter
- setUseful(boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Sets the useful parameter
- setUseful(boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
It initialitzes all the useful params of the population.
- setUsefulTimes(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Sets the usefulTimes parameter
- setUseLowerOrder(boolean) - Method in class keel.Algorithms.SVM.SMO.supportVector.PolyKernel
-
Sets whether to use lower-order terms.
- setUseNormalization(boolean) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Sets whether to use normalization.
- setUserOptions(String[]) - Method in class keel.Algorithms.SVM.SMO.supportVector.KernelEvaluation
-
sets the option the user supplied for the kernel
- setUseRuleStretching(boolean) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Sets whether pruning is performed
- setUseUnsmoothed(boolean) - Method in class keel.Algorithms.Decision_Trees.M5.M5
-
Set the value of UseUnsmoothed.
- setUseUnsmoothed(boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
Set the value of UseUnsmoothed.
- setUseVariant1(boolean) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
Sets whether to use variant 1
- setVal(float, float, float, float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Fuzzy
-
Method to set the values of x0, x1 y x3
- setVal(float, float, float, float) - Method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Fuzzy
-
Method to set the values of x0, x1 y x3
- setVal(float, float, float, float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Fuzzy
-
Method to set the values of x0, x1 y x3
- setVal3(float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.QualityMeasures
-
Method to set the value of the objective 3
- setValEnum(Vector) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
-
- setValor(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Condicion
-
Sets the value for the attribute given.
- setValor(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Condicion
-
Sets the value for the attribute given.
- setValor(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Condicion
-
Sets the value for the attribute given.
- setValor(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Entero
-
- setValor(float) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Atributo
-
Sets the attribute's value with the one given.
- setValor(Atributo) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Condicion
-
Sets the value for the attribute given.
- setValor(float) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Condicion
-
Sets the value for the value given.
- setValor(double) - Method in class keel.Algorithms.Rule_Learning.Prism.Selector
-
Assign the value
- setValor(double) - Method in class keel.Algorithms.Rule_Learning.UnoR.Selector
-
Assign the value
- setValor(double) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Selector
-
Assign the value
- setValor(double) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Selector
-
Sets the value for the selector
- setValorConstante(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
-
- setValores(double[]) - Method in class keel.Algorithms.Rule_Learning.Prism.Selector
-
Assign the values
- setValores(double[]) - Method in class keel.Algorithms.Rule_Learning.UnoR.Selector
-
Assign the values
- setValores(double[]) - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Selector
-
Assign the values
- setValores(double[]) - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Selector
-
Sets a set of value for the selector
- setValorOperacion1(Operacion) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
-
- setValorOperacion2(Operacion) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Operacion
-
- setValue(int, double) - Method in class keel.Algorithms.Decision_Trees.C45.Itemset
-
Function to set a value.
- setValue(double) - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
-
- setValue(int, double) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
-
Function to set a value.
- setValue(String, int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
-
Replaces the value in a position of a nominal attribute with a new value
- setValue(double) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.Split
-
Replaces the value of the attribute for the split with another new value
- setValue(int, double) - Method in class keel.Algorithms.Decision_Trees.ID3.Itemset
-
Function to set a value.
- setValue(int, double) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValue(int, String) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Sets a value of a nominal or string attribute to the given
value.
- setValue(M5Attribute, double) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValue(M5Attribute, String) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Sets a value of an nominal or string attribute to the given
value.
- setValue(int, double) - Method in class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValue(String, int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
-
Replaces the value in a position of a nominal attribute with a new value
- setValue(double) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Split
-
Replaces the value of the attribute for the split with another new value
- setValue(int, double) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Itemset
-
Function to set a value.
- setValue(int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValue(int, String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Sets a value of a nominal or string attribute to the given
value.
- setValue(AttributeWeka, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValue(AttributeWeka, String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Sets a value of an nominal or string attribute to the given
value.
- setValue() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.SingleIndex
-
Translates a single string selection into it's internal 0-based equivalent
- setValue(int, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Function to set a value.
- setValue(int, String) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Sets a value of a nominal or string attribute to the given
value.
- setValue(MyAttribute, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValue(MyAttribute, String) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Sets a value of an nominal or string attribute to the given
value.
- setValue(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleRule
-
Sets the attribute's value
- setValue(int, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
-
Function to set a value.
- setValue(int, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
-
Function to set a value.
- setValue(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.SimpleRule
-
Sets the attribute's value
- setValue(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Condition
-
It add the value (or a nan if *)
- setValue(int, double) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
-
Function to set a value.
- setValue(int, double) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
-
Function to set a value.
- setValue(int, double) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValue(int, String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Sets a value of a nominal or string attribute to the given
value.
- setValue(Attribute, double) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValue(Attribute, String) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Sets a value of an nominal or string attribute to the given
value.
- setValue(int, double) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValue(int, double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset.Instance
-
Sets a double value in the specified attribute index
- setValue(int, String) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset.Instance
-
Sets a string value in the specified attribute index
- setvalue(double) - Method in class keel.Algorithms.Rule_Learning.AQ.Selector
-
It assigns the value
- setValue(int, double) - Method in class keel.Algorithms.Rule_Learning.ART.Itemset
-
Function to set a value.
- setValue(int, double) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Itemset
-
Function to set a value.
- setValue(double) - Method in class keel.Algorithms.Rule_Learning.C45Rules.SimpleRule
-
Sets the attribute's value
- setValue(int, double) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
-
Function to set a value.
- setValue(double) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.SimpleRule
-
Sets the attribute's value
- setvalue(double) - Method in class keel.Algorithms.Rule_Learning.CN2.Selector
-
It assigns the value
- setValue(int, double) - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
-
Function to set a value.
- setValue(int, double) - Method in class keel.Algorithms.Rule_Learning.PART.Itemset
-
Function to set a value.
- setValue(double) - Method in class keel.Algorithms.Rule_Learning.PART.SimpleRule
-
Sets the attribute's value
- setValue(double) - Method in class keel.Algorithms.Rule_Learning.Riona.Selector
-
Assigns the value
- setValue(double) - Method in class keel.Algorithms.Rule_Learning.Ripper.SimpleRule
-
Sets the attribute's value
- setValue(double) - Method in class keel.Algorithms.Rule_Learning.Slipper.SimpleRule
-
Sets the attribute's value
- setValue(int, double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
-
Function to set a value.
- setValue(TechnicalInformation.Field, String) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation
-
sets the value for the given field, overwrites any previously existing one.
- setValue(int, double) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValue(int, String) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Sets a value of a nominal or string attribute to the given
value.
- setValue(Attribute, double) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValue(Attribute, String) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Sets a value of an nominal or string attribute to the given
value.
- setValue(TechnicalInformation.Field, String) - Method in class keel.Algorithms.SVM.SMO.core.TechnicalInformation
-
sets the value for the given field, overwrites any previously existing one.
- setValue(ArrayList<Integer>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Gene
-
- setValue(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Gene
-
- setValue(ArrayList<Integer>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Gene
-
- setValue(int) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Gene
-
- setValue(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Gene
-
It sets the value stored in a gene
- setValue(int, String) - Method in class keel.GraphInterKeel.experiments.Parameters
-
updates actual value for parameter at index position
- setValueAt(Object, int, int) - Method in class keel.GraphInterKeel.datacf.util.AttributeTable
-
Sets the value of an element of the table
- setValueAt(Object, int, int) - Method in class keel.GraphInterKeel.datacf.util.DatasetTable
-
- setValueAt(Object, int, int) - Method in class keel.GraphInterKeel.datacf.util.VariableTable
-
Sets the value of a cell
- setValueAt(Object, int, int) - Method in class keel.GraphInterKeel.experiments.ParametersTable
-
Sets the value of the cell
- setValueAt(Object, int, int) - Method in class keel.GraphInterKeel.statistical.statTableModel
-
Sets the value of a cell
- setValueAverage(String) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelAttribute
-
Sets value average
- setvaluees(double[]) - Method in class keel.Algorithms.Rule_Learning.AQ.Selector
-
It assigns the set of values
- setvaluees(double[]) - Method in class keel.Algorithms.Rule_Learning.CN2.Selector
-
It assigns the set of values
- setValueObj(int, float) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.QualityMeasures
-
Method to set the value of the objective indicated
- setValues(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Item
-
It sets the pair of values to the item.
- setValues(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Item
-
It sets the pair of values to the item.
- setValues(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.Literal
-
It sets the values for a literal
- setValues(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Item
-
It sets the pair of values to the item
- setValues(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Item
-
It sets the pair of values to the item
- setValues(int, int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Item
-
It sets the pair of values to the item
- setValues(ArrayList<String>) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
-
Replaces the array of possible values for the attribute data type with a new array of values
- setValues(ArrayList<String>) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
-
Replaces the array of possible values for the attribute data type with a new array of values
- setValues(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Item
-
- setValues(double[]) - Method in class keel.Algorithms.Hyperrectangles.EACH.Selector
-
Assign the values
- setValues(Vector<Integer>) - Method in class keel.Algorithms.Rule_Learning.ART.Rule
-
- setValues(double[]) - Method in class keel.Algorithms.Rule_Learning.Riona.Selector
-
Assigns the values
- setValues(Vector) - Method in class keel.GraphInterKeel.experiments.Parameters
-
updates value vector
- setValueSparse(int, double) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValueSparse(int, double) - Method in class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValueSparse(int, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValueSparse(int, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValueSparse(int, double) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValueSparse(int, double) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValueSparse(int, double) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Sets a specific value in the instance to the given value
(internal floating-point format).
- setValueVariance(String) - Method in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelAttribute
-
Sets value variance
- setVariable(int) - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
-
- setVariableTable(VariableTable) - Method in class keel.GraphInterKeel.datacf.editData.EditVariablePanel
-
Sets the table including the variables
- setVariance(double) - Method in class keel.Algorithms.Lazy_Learning.NSC.Cluster
-
Get variance and stdDev of the cluster
- setVectorsNeighbors(int[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- setVerbosity(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5
-
Set the value of Verbosity.
- setVerbosity(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
Set the value of Verbosity.
- setVerbosity(Hashtable) - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
-
Sets verbosity value from hashtable containing parameters
- setVerbosity(boolean) - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
-
Sets verbosity value from a given value
- setVerbosity(Hashtable) - Static method in class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
-
Sets verbosity value from hashtable containing parameters
- setVerbosity(boolean) - Static method in class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
-
Sets verbosity value from a given value
- setVerbosity(Hashtable) - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
-
Sets verbosity value from hashtable containing parameters
- setVerbosity(boolean) - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
-
Sets verbosity value from a given value
- setVerbosity(Hashtable) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
-
Sets verbosity value from hashtable containing parameters
- setVerbosity(boolean) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
-
Sets verbosity value from a given value
- setVerbosity(Hashtable) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
-
Sets verbosity value from hashtable containing parameters
- setVerbosity(boolean) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
-
Sets verbosity value from a given value
- setVerbosity(Hashtable) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
-
Sets verbosity value from hashtable containing parameters
- setVerbosity(boolean) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
-
Sets verbosity value from a given value
- setVerbosity(Hashtable) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
-
Sets verbosity value from hashtable containing parameters
- setVerbosity(boolean) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
-
Sets verbosity value from a given value
- setVolume(double) - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Sets the volume with the value given.
- setVolume(double) - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
- setW(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.MembershipFunction
-
It sets the spread of an isosceles-triangle
- setW(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.MembershipFunction
-
It sets the spread of an isosceles-triangle
- setw1(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Individual
-
Sets the value of w1 with the given argument.
- setw1(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Individual
-
- setW1(float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Methods to set the value for the weight of the objective 1
- setW2(float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Methods to set the value for the weight of the objective 2
- setW3(float) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Methods to set the value for the weight of the objective 3
- setWDifference(double) - Static method in class keel.Algorithms.Instance_Selection.CoCoIS.Subpopulation
-
Sets the WDifference parameter
- setWDifference(double) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Subpopulation
-
Sets the WDifference parameter
- setWeight(double) - Method in class keel.Algorithms.Decision_Trees.C45.Itemset
-
Function to set the weight.
- setWeight(double) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
-
Function to set the weight.
- setWeight(double) - Method in class keel.Algorithms.Decision_Trees.ID3.Itemset
-
Function to set the weight.
- setWeight(double) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Sets the weight of an instance.
- setWeight(double) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Itemset
-
Function to set the weight.
- setWeight(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Sets the new attribute's weight
- setWeight(double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Sets the weight of an instance.
- setWeight(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Function to set the weight.
- setWeight(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
-
Function to set the weight.
- setWeight(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
-
Function to set the weight.
- setWeight(double) - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Sets the weight with the value given.
- setWeight(double) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
-
Function to set the weight.
- setWeight(double) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
-
Function to set the weight.
- setWeight(double) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Sets the weight of an instance.
- setWeight(int, double) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbf
-
Sets the ith weight of a neuron
- setWeight(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset.Instance
-
Sets the weigth of this instance
- setWeight(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.Link
-
Sets the weight associated to this link
- setWeight(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbf
-
Sets the weights of a neuron
- setWeight(int, double) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbf
-
Sets the ith weight of a neuron
- setWeight(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbf
-
Sets the weights of a neuron
- setWeight(int, double) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbf
-
Sets the ith weight of a neuron
- setWeight(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbf
-
Sets the weights of a neuron
- setWeight(int, double) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbf
-
Sets the ith weight of a neuron
- setWeight(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbf
-
Sets the weights of a neuron
- setWeight(int, double) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbf
-
Sets the ith weight of a neuron
- setWeight(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbf
-
Sets the weights of a neuron
- setWeight(int, double) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbf
-
Sets the ith weight of a neuron
- setWeight(double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbf
-
Sets the weights of a neuron
- setWeight(int, double) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbf
-
Sets the ith weight of a neuron
- setWeight(double) - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.pnPair
-
It sets the new weight for the pnPair
- setWeight(double) - Method in class keel.Algorithms.Rule_Learning.AQ.Complex
-
It assigns the weight of the complex computed as:
Covered positives - covered negatives / number of selectors
- setWeight(double) - Method in class keel.Algorithms.Rule_Learning.ART.Itemset
-
Function to set the weight.
- setWeight(double) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Itemset
-
Function to set the weight.
- setWeight(double) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
-
Function to set the weight.
- setWeight(double) - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
-
Function to set the weight.
- setWeight(double) - Method in class keel.Algorithms.Rule_Learning.PART.Itemset
-
Function to set the weight.
- setWeight(double) - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
- setWeight(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
-
Function to set the weight.
- setWeight(double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Assigns a new weight to the prototype.
- setWeight(double) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Sets the weight of an instance.
- setWeightAtrib(double[]) - Method in class keel.Algorithms.Hyperrectangles.EACH.HyperrectangleSet
-
- setWeightRange(Interval) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Sets the weight range associated to the links
- setWeights(double[]) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.Rbf
-
Sets the weights of a neuron
- setWeights(double[]) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ConjGradNN
-
Copy the weights contained in p to the weights matrix.
- setWeights(double[]) - Method in class keel.Algorithms.Shared.ClassicalOptim.ConjGradNN
-
Copy the weights contained in p to the weights matrix.
- setWeightVector(double[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- setWError(double) - Static method in class keel.Algorithms.Instance_Selection.CoCoIS.Subpopulation
-
Sets the WError parameter
- setWError(double) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Subpopulation
-
Sets the WError parameter
- setWhitoutValues(boolean) - Method in class keel.GraphInterKeel.experiments.UseCase
-
Sets if the method's variables has no values for some examples
- setWithImprecise(boolean) - Method in class keel.GraphInterKeel.experiments.UseCase
-
Sets if the method's variables has imprecise values for some examples
- setWk(double[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
-
- setWorst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Poblacion
-
- setWorst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Poblacion
-
- setWorst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Poblacion
-
- setWorst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Poblacion
-
- setWorst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Poblacion
-
- setWorst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Poblacion
-
- setWorst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Poblacion
-
- setWorst(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Poblacion
-
- setWracc(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Rule
-
It sets the Wracc of the rule
- setWracc(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Rule
-
- setWReduction(double) - Static method in class keel.Algorithms.Instance_Selection.CoCoIS.Subpopulation
-
Sets the WReduction parameter
- setWReduction(double) - Static method in class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Subpopulation
-
Sets the WReduction parameter
- setwRule(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Structure
-
It sets the position of the first rule that wrongly classifies the example stored in the structure
- setwRule(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Structure
-
It sets the position of the first rule that wrongly classifies the example stored in the structure
- setX(double[]) - Method in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- setX(double[]) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- setX(double[]) - Method in class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- setx0(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Difuso
-
- setx0(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Difuso
-
- setx0(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Difuso
-
- setx0(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Difuso
-
- setx0(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Difuso
-
- setx0(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Difuso
-
- setx0(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Difuso
-
- setx0(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Difuso
-
- setX0(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.FuzzyRegion
-
It sets the X0 value of a fuzzy region
- setX0(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.FuzzyRegion
-
It sets the X0 value of a fuzzy region
- setX0(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.FuzzyRegion
-
It sets the X0 value of a fuzzy region
- setX0(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.FuzzyRegion
-
It sets the X0 value of a fuzzy region
- setx1(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Difuso
-
- setx1(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Difuso
-
- setx1(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Difuso
-
- setx1(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Difuso
-
- setx1(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Difuso
-
- setx1(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Difuso
-
- setx1(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Difuso
-
- setx1(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Difuso
-
- setX1(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.FuzzyRegion
-
It sets the X1 value of a fuzzy region
- setX1(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.FuzzyRegion
-
It sets the X1 value of a fuzzy region
- setX1(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.FuzzyRegion
-
It sets the X1 value of a fuzzy region
- setX1(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.FuzzyRegion
-
It sets the X1 value of a fuzzy region
- setx2(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Difuso
-
- setx2(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Difuso
-
- setx2(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Difuso
-
- setx2(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Difuso
-
- setx2(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Difuso
-
- setx2(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Difuso
-
- setx2(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Difuso
-
- setx2(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Difuso
-
- setx3(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Difuso
-
- setx3(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Difuso
-
- setx3(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Difuso
-
- setx3(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Difuso
-
- setx3(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Difuso
-
- setx3(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Difuso
-
- setx3(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Difuso
-
- setx3(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Difuso
-
- setX3(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.FuzzyRegion
-
It sets the X3 value of a fuzzy region
- setX3(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.FuzzyRegion
-
It sets the X3 value of a fuzzy region
- setX3(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.FuzzyRegion
-
It sets the X3 value of a fuzzy region
- setX3(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.FuzzyRegion
-
It sets the X3 value of a fuzzy region
- setXOver(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- setXOverRate(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- sety(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Replace
-
It sets in the structure the class of the example.
- sety(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Structure
-
It sets in the structure the class of the example
- sety(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Replace
-
It sets in the structure the class of the example
- sety(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Structure
-
It sets in the structure the class of the example
- sety(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Difuso
-
- sety(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Difuso
-
- sety(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Difuso
-
- sety(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Difuso
-
- sety(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Difuso
-
- sety(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Difuso
-
- sety(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Difuso
-
- sety(double) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Difuso
-
- setY(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.FuzzyRegion
-
It sets the Y value of a fuzzy region
- setY(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.FuzzyRegion
-
It sets the Y value of a fuzzy region
- setY(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.FuzzyRegion
-
It sets the Y value of a fuzzy region
- setY(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.FuzzyRegion
-
It sets the Y value of a fuzzy region
- setYulesQ(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AssociationRule
-
It sets the yulesQ of an association rule
- setYulesQ(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
-
- setYulesQ(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
-
- setYulesQ(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.AssociationRule
-
It sets the yulesQ of an association rule
- setYulesQ(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
-
It sets the yulesQ of an association rule
- setYulesQ(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
-
- setYulesQ(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
-
- setZeroValue(double) - Method in class keel.Algorithms.Hyperrectangles.EACH.Selector
-
Assign the value
- SFEntropyGain() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Returns the total SF, which is the null model entropy minus
the scheme entropy.
- SFGSS(PrototypeSet[], int, int, double) - Method in class keel.Algorithms.Instance_Generation.DROP3SFLSDE.DROP3SFLSDE
-
SFGSS local Search.
- SFGSS(PrototypeSet[], int, int, double) - Method in class keel.Algorithms.Instance_Generation.ICFSFLSDE.ICFSFLSDE
-
SFGSS local Search.
- SFGSS(PrototypeSet, double) - Method in class keel.Algorithms.Instance_Generation.IPLDE.IPLDEGenerator
-
SFGSS local Search.
- SFGSS(PrototypeSet[], int, int, double) - Method in class keel.Algorithms.Instance_Generation.SFLSDE.SFLSDEGenerator
-
SFGSS local Search.
- SFGSS(PrototypeSet[], int, int, double) - Method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
SFGSS local Search.
- SFHC(PrototypeSet[], int, int, double, double) - Method in class keel.Algorithms.Instance_Generation.DROP3SFLSDE.DROP3SFLSDE
-
SFHC local search
- SFHC(PrototypeSet[], int, int, double, double) - Method in class keel.Algorithms.Instance_Generation.ICFSFLSDE.ICFSFLSDE
-
SFHC local search
- SFHC(PrototypeSet, double, double) - Method in class keel.Algorithms.Instance_Generation.IPLDE.IPLDEGenerator
-
SFHC local search
- SFHC(PrototypeSet[], int, int, double, double) - Method in class keel.Algorithms.Instance_Generation.SFLSDE.SFLSDEGenerator
-
SFHC local search
- SFHC(PrototypeSet[], int, int, double, double) - Method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
SFHC local search
- SFLSDEAlgorithm - Class in keel.Algorithms.Instance_Generation.SFLSDE
-
SFLSDE algorithm calling.
- SFLSDEAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.SFLSDE.SFLSDEAlgorithm
-
- SFLSDEGenerator - Class in keel.Algorithms.Instance_Generation.SFLSDE
-
- SFLSDEGenerator(PrototypeSet, int, int, int, int, double, double, int) - Constructor for class keel.Algorithms.Instance_Generation.SFLSDE.SFLSDEGenerator
-
Build a new SFLSDEGenerator Algorithm
- SFLSDEGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.SFLSDE.SFLSDEGenerator
-
Build a new SFLSDEGenerator Algorithm
- SFMeanEntropyGain() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Returns the SF per instance, which is the null model entropy
minus the scheme entropy, per instance.
- SFMeanPriorEntropy() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Returns the entropy per instance for the null model
- SFMeanSchemeEntropy() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Returns the entropy per instance for the scheme
- SFPriorEntropy() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Returns the total entropy for the null model
- SFS - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_IEP_FS
-
SFS Algorithm
- SFS(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_IEP_FS.SFS
-
Creates a new instance of SA
- SFS - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_LIU_FS
-
SFS Algorithm
- SFS(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_LIU_FS.SFS
-
Creates a new instance of SA
- SFS - Class in keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_MI_FS
-
SFS Algorithm
- SFS(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.nonevolutionary_algorithms.SFS_MI_FS.SFS
-
Creates a new instance of SA
- SFSchemeEntropy() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Returns the total entropy for the scheme
- SGA - Class in keel.Algorithms.Instance_Selection.SGA
-
File: SGA.java
Steady-State Genetic algorithm for Instance Selection.
- SGA(String) - Constructor for class keel.Algorithms.Instance_Selection.SGA.SGA
-
Default builder.
- SGA - Class in keel.Algorithms.Preprocess.Instance_Selection.SGA
-
File: SGA.java
Steady-State Genetic algorithm for Instance Selection.
- SGA(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.SGA.SGA
-
Default builder.
- SGERD - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD
-
It contains the implementation of the SGERD algorithm
- SGERD() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.SGERD
-
Default constructor
- SGERD(parseParameters) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.SGERD
-
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
- SGPAlgorithm - Class in keel.Algorithms.Instance_Generation.SGP
-
PSO algorithm calling.
- SGPAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.SGP.SGPAlgorithm
-
- SGPGenerator - Class in keel.Algorithms.Instance_Generation.SGP
-
- SGPGenerator(PrototypeSet, int, int, int) - Constructor for class keel.Algorithms.Instance_Generation.SGP.SGPGenerator
-
Build a new SGPGenerator Algorithm
- SGPGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.SGP.SGPGenerator
-
Build a new SGPGenerator Algorithm
- ShapiroWilkC - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Classification Shapiro Wilk Stat-test identifier.
- ShapiroWilkR - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Regression Shapiro Wilk Stat-test identifier.
- shift(int, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Shifts an element to another position.
- shiftRange(int, int, Dataset, int, int) - Method in class keel.Algorithms.Decision_Trees.C45.Classification
-
Function to shift all itemsets in given range from one value to another.
- shiftRange(int, int, Dataset, int, int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Classification
-
Function to shift all itemsets in given range from one value to another.
- shiftRange(int, int, MyDataset, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Classification
-
Function to shift all itemsets in given range from one value to another.
- shiftRange(int, int, Dataset, int, int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Classification
-
Function to shift all itemsets in given range from one value to another.
- shiftRange(int, int, Dataset, int, int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Classification
-
Function to shift all itemsets in given range from one value to another.
- shiftRange(int, int, MyDataset, int, int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Classification
-
Function to shift all itemsets in given range from one value to another.
- shiftRange(int, int, MyDataset, int, int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Classification
-
Function to shift all itemsets in given range from one value to another.
- shiftRange(int, int, MyDataset, int, int) - Method in class keel.Algorithms.Rule_Learning.PART.Classification
-
Function to shift all itemsets in given range from one value to another.
- shiftRange(int, int, Dataset, int, int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Classification
-
Function to shift all itemsets in given range from one value to another.
- shiftToEnd(int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Shifts an element to the end of the vector.
- shouldSelectCell(EventObject) - Method in class keel.GraphInterKeel.datacf.util.EachRowEditor
-
Should a cell be selected
- show() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzy
-
- show() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyPartition
-
- show(FileWriter) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
-
- show() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.Interval
-
- show() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzy
-
- show() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyPartition
-
- show(FileWriter) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
-
- show() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.Interval
-
- show() - Method in class keel.Algorithms.LQD.methods.FGFS_Original.partition
-
- show(FileWriter) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.rule
-
- show() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.partition
-
- show(FileWriter) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
-
- show() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.partition
-
- show(FileWriter) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
-
- show() - Method in class keel.Algorithms.LQD.preprocess.Expert.fuzzy
-
- show() - Method in class keel.Algorithms.LQD.preprocess.Expert.interval
-
- show() - Method in class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.fuzzy
-
- show() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzy
-
- show() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzypartition
-
- show() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.interval
-
- show() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzy
-
- show() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzypartition
-
- show() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.interval
-
- show() - Method in class keel.Algorithms.LQD.tests.IntermediateBoost.fuzzy
-
- show(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractAttribute
-
Show an String which represents a given real value
- show(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.CategoricalAttribute
-
Show an String which represents a given real value
- show(double) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.data.IAttribute
-
Show an String which represents a given real value
- show(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.IntegerNumericalAttribute
-
Show an String which represents a given real value
- show(double) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.RealNumericalAttribute
-
Show an String which represents a given real value
- show1() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
-
- show1() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
-
- show1() - Method in class keel.Algorithms.LQD.methods.FGFS_Original.rule
-
- show1() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
-
- show1() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
-
- show1() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzyrule
-
- show1() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzyrule
-
- show_fitness() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.AlgGenetic
-
- show_fitness() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.AlgGenetic
-
- show_fitness() - Method in class keel.Algorithms.LQD.methods.FGFS_Original.AlgGenetic
-
- show_fitness() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.AlgGenetic
-
- show_fitness() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.AlgGenetic
-
- show_fitness_total(int) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.AlgGenetic
-
- show_fitness_total(int) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.AlgGenetic
-
- show_fitness_total(int) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.AlgGenetic
-
- show_fitness_total(int, int) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.AlgGenetic
-
- show_fitness_total(int, int) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.AlgGenetic
-
- show_fitness_total_test(float[][], int) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.AlgGenetic
-
- show_fitness_total_test(float[][], int) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.AlgGenetic
-
- show_fitness_total_test(float[][], int) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.AlgGenetic
-
- show_fitness_total_test(float[][], int) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.AlgGenetic
-
- show_fitness_total_test_ltf(float[][], int) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.AlgGenetic
-
- show_fitness_total_test_ltf(float[][], int) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.AlgGenetic
-
- showAlgButton - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- showDatasetStatistics() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessDataset
-
prints to standard output statistics about the dataset.
- showDatasetStatistics() - Method in class keel.Algorithms.Shared.Parsing.ProcessDataset
-
prints to standard output statistics about the dataset.
- showDialog() - Method in class keel.GraphInterKeel.experiments.Algorithm
-
Shows the parameter dialog
- showDialog() - Method in class keel.GraphInterKeel.experiments.DataSet
-
Show data set dialog
- showDialog() - Method in class keel.GraphInterKeel.experiments.Jclec
-
Show dialog
- showDialog() - Method in class keel.GraphInterKeel.experiments.Multiplexor
-
Show dialog
- showDialog() - Method in class keel.GraphInterKeel.experiments.Node
-
Shows the new dialog associated to this node
- showDialog() - Method in class keel.GraphInterKeel.experiments.Test
-
Show associated dialog
- showDialog() - Method in class keel.GraphInterKeel.experiments.UserMethod
-
Show associated dialog
- showInsertKeel - Variable in class keel.GraphInterKeel.datacf.importData.ImportPanel
-
This is used for showing or not the insert to keel option
- showPartition - Variable in class keel.GraphInterKeel.datacf.editData.EditPanel
-
- showResultsOfAccuracy(int, int, int, PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
Internal function that shows in the screen the parameters of accuracy of the condensation
- showResultsOfAccuracy(String, int, PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
Internal function that shows in the screen the parameters of accuracy of the condensation
- Shrink - Class in keel.Algorithms.Instance_Selection.Shrink
-
File: Shrink.java
The Shrink Instance Selection algorithm.
- Shrink(String) - Constructor for class keel.Algorithms.Instance_Selection.Shrink.Shrink
-
Default constructor.
- Shrink - Class in keel.Algorithms.Preprocess.Instance_Selection.Shrink
-
File: Shrink.java
The Shrink Instance Selection algorithm.
- Shrink(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.Shrink.Shrink
-
Default constructor.
- shrinking - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- shrinking - Variable in class org.libsvm.svm_parameter
-
- SIA - Class in keel.Algorithms.Genetic_Rule_Learning.SIA
-
Title: Main class of the algorithm
Description: It contains the esential methods for the SIA algorithm
Copyright: Copyright (c) 2004
Company: KEEL
- SIA() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.SIA.SIA
-
Default Builder
- SIA(String, String, String, String, String, String, long, int, double, double, double) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.SIA.SIA
-
Builder of the class SIA
It carries out a local copy of the name of the files for their posterior use
Then, obtains the data from the input files and stores it in a structure for the program
Finally, it creates the possible bounds for the attribute values
- siblingRef - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.PtreeNode
-
Pointer to sibling structurte.
- siEstaCubierta() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Muestra
-
Sets the example as covered.
- siEstaCubierta() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Muestra
-
Sets the example as covered.
- siEstaCubierta() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Muestra
-
Sets the example as covered.
- siEstaCubierta() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Muestra
-
Sets the example as covered.
- siEstaCubierta() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Muestra
-
Sets the example as covered.
- sigmaTipText() - Method in class keel.Algorithms.SVM.SMO.supportVector.Puk
-
Returns the tip text for this property
- SigmLayer - Class in keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet
-
Represents a neural net layer with all the neurons of SigmNeuron type
- SigmLayer() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.SigmLayer
-
Empty constructor
- SigmNeuron - Class in keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet
-
Represents a sigmoidal neuron of a neural net
- SigmNeuron() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.SigmNeuron
-
Empty constructor
- SigmNeuronParametricMutator - Class in keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric
-
Parametric Mutator of Sigmoidal Neurons.
- SigmNeuronParametricMutator() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.SigmNeuronParametricMutator
-
Empty constructor
- SigmNeuronStructuralMutator - Class in keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural
-
Structural Mutator of Sigmoidal Neurons.
- SigmNeuronStructuralMutator() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.SigmNeuronStructuralMutator
-
Empty constructor
- SIGMOID - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- SIGMOID - Static variable in class org.libsvm.svm_parameter
-
- SIGMOIDAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.ProbabilityManagement
-
- SIGMOIDAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.ProbabilityManagement
-
- SIGMOIDAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.ProbabilityManagement
-
- SIGMOIDAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ProbabilityManagement
-
- sign() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns the signs of all elements in terms of -1, 0 and +1.
- sign - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.ExponentialFormat
-
Sign flag.
- signChange(double[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns a copy of the parameter vector with changed sign.
- signChange(double[][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns a copy of the matrix a with changed sign.
- signChange(double[][][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns a copy of the parameter vector with changed sign.
- signChange(double[]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns a copy of the parameter vector with changed sign.
- signChange(double[][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns a copy of the matrix a with changed sign.
- signChange(double[][][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns a copy of the parameter vector with changed sign.
- significativeWeight - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.initiators.RandomInitiator
-
Minimum absolute value of the new weights
- significativeWeigth - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.ExpNeuronStructuralMutator
-
Minimum value of new weigths
- significativeWeigth - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.LinearNeuronStructuralMutator
-
Minimum value of new weigths
- significativeWeigth - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.SigmNeuronStructuralMutator
-
Minimum value of new weigths
- significativeWeigth - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Minimum value of new weigths
- similar2dec(double, double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Compares two real numbers and returns true if the two numbers are
the same within two decimal places.
- similargene(int, ArrayList<Integer>, ArrayList<Integer>, int, int, DenseMatrix, DenseMatrix, ArrayList<Integer>, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.LLSImpute
-
Computes the most similar (nearest) instances to a given one.
- similaridadJurio(double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Rule
-
- SimpleCharStream - Class in keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser
-
An implementation of interface CharStream, where the stream is assumed to
contain only ASCII characters (without unicode processing).
- SimpleCharStream(Reader, int, int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- SimpleCharStream(Reader, int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- SimpleCharStream(Reader) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- SimpleCharStream(InputStream, int, int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- SimpleCharStream(InputStream, int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- SimpleCharStream(InputStream) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- SimpleCharStream - Class in keel.Algorithms.Rule_Learning.Swap1
-
An implementation of interface CharStream, where the stream is assumed to
contain only ASCII characters (without unicode processing).
- SimpleCharStream(Reader, int, int, int) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- SimpleCharStream(Reader, int, int) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- SimpleCharStream(Reader) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- SimpleCharStream(InputStream, String, int, int, int) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- SimpleCharStream(InputStream, int, int, int) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- SimpleCharStream(InputStream, String, int, int) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- SimpleCharStream(InputStream, int, int) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- SimpleCharStream(InputStream, String) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- SimpleCharStream(InputStream) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- SimpleCharStream - Class in keel.Dataset
-
An implementation of interface CharStream, where the stream is assumed to
contain only ASCII characters (without unicode processing).
- SimpleCharStream(Reader, int, int, int) - Constructor for class keel.Dataset.SimpleCharStream
-
- SimpleCharStream(Reader, int, int) - Constructor for class keel.Dataset.SimpleCharStream
-
- SimpleCharStream(Reader) - Constructor for class keel.Dataset.SimpleCharStream
-
- SimpleCharStream(InputStream, String, int, int, int) - Constructor for class keel.Dataset.SimpleCharStream
-
- SimpleCharStream(InputStream, int, int, int) - Constructor for class keel.Dataset.SimpleCharStream
-
- SimpleCharStream(InputStream, String, int, int) - Constructor for class keel.Dataset.SimpleCharStream
-
- SimpleCharStream(InputStream, int, int) - Constructor for class keel.Dataset.SimpleCharStream
-
- SimpleCharStream(InputStream, String) - Constructor for class keel.Dataset.SimpleCharStream
-
- SimpleCharStream(InputStream) - Constructor for class keel.Dataset.SimpleCharStream
-
- SimpleRule - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Represent one single rule of the form: exemple[a]==v,
exemple[a]>=v or exemple[a]<=v.
- SimpleRule() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleRule
-
Default constructor (the attribute's id and value are undefined)
- SimpleRule(int, double, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleRule
-
Constructs a SimpleRule with a given attribute and value
- SimpleRule - Class in keel.Algorithms.Genetic_Rule_Learning.PART
-
Represent one single rule of the form: exemple[a]==v,
exemple[a]>=v or exemple[a]<=v.
- SimpleRule() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.SimpleRule
-
Default constructor (the attribute's id and value are undefined)
- SimpleRule(int, double, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.SimpleRule
-
Constructs a SimpleRule with a given attribute and value
- SimpleRule - Class in keel.Algorithms.Rule_Learning.C45Rules
-
Represent one single rule of the form: exemple[a]==v,
exemple[a]>=v or exemple[a]<=v.
- SimpleRule() - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.SimpleRule
-
Default constructor (the attribute's id and value are undefined)
- SimpleRule(int, double, int) - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.SimpleRule
-
Constructs a SimpleRule with a given attribute and value
- SimpleRule - Class in keel.Algorithms.Rule_Learning.C45RulesSA
-
Represent one single rule of the form: exemple[a]==v,
exemple[a]>=v or exemple[a]<=v.
- SimpleRule() - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.SimpleRule
-
Default constructor (the attribute's id and value are undefined)
- SimpleRule(int, double, int) - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.SimpleRule
-
Constructs a SimpleRule with a given attribute and value
- SimpleRule - Class in keel.Algorithms.Rule_Learning.PART
-
Represent one single rule of the form: exemple[a]==v,
exemple[a]>=v or exemple[a]<=v.
- SimpleRule() - Constructor for class keel.Algorithms.Rule_Learning.PART.SimpleRule
-
Default constructor (the attribute's id and value are undefined)
- SimpleRule(int, double, int) - Constructor for class keel.Algorithms.Rule_Learning.PART.SimpleRule
-
Constructs a SimpleRule with a given attribute and value
- SimpleRule - Class in keel.Algorithms.Rule_Learning.Ripper
-
Represent one single rule of the form: exemple[a]==v,
exemple[a]>=v or exemple[a]<=v.
- SimpleRule() - Constructor for class keel.Algorithms.Rule_Learning.Ripper.SimpleRule
-
Default constructor (the attribute's id and value are undefined)
- SimpleRule(int, double, int) - Constructor for class keel.Algorithms.Rule_Learning.Ripper.SimpleRule
-
Constructs a SimpleRule with a given attribute and value
- SimpleRule - Class in keel.Algorithms.Rule_Learning.Slipper
-
Represent one single rule of the form: exemple[a]==v
exemple[a]>=v or exemple[a]<=v.
- SimpleRule() - Constructor for class keel.Algorithms.Rule_Learning.Slipper.SimpleRule
-
Default constructor (the attribute's id and value are undefined)
- SimpleRule(int, double, int) - Constructor for class keel.Algorithms.Rule_Learning.Slipper.SimpleRule
-
Constructs a SimpleRule with a given attribute and value
- SimpleStatistics - Class in keel.Algorithms.Decision_Trees.M5
-
A class to store simple statistics
- SimpleStatistics() - Constructor for class keel.Algorithms.Decision_Trees.M5.SimpleStatistics
-
- SimpleStatistics - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
A class to store simple statistics
- SimpleStatistics() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleStatistics
-
- SimulatedAnnealing - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Algorithms
-
SimulatedAnnealing is the simulated annealing evolutionary algorithm and
programming (SAP) algorithm as detailed in "Combining GP operators with SA
search to evolve fuzzy rule based classifiers", Sanchez, Couso, Corrales
Information Sciences 136 (2001).
- SimulatedAnnealing(GeneticIndividual, double, double, double, double, double, int, Randomize, int, int, int, int, double) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Algorithms.SimulatedAnnealing
-
Class constructor with the following parameters:
- SingleIndex - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
Class representing a single cardinal number.
- SingleIndex() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.SingleIndex
-
Default constructor.
- SingleIndex(String) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.SingleIndex
-
Constructor to set initial index.
- singleNodeToString() - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Converts the information stored at this node to a string
- singleNodeToString() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Converts the information stored at this node to a string
- SINGULAR - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.Fitness
-
- SingularValueDecomposition - Class in keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix
-
Singular Value Decomposition.
- SingularValueDecomposition(Matrix) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.SingularValueDecomposition
-
Construct the singular value decomposition
- SInstances - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets
-
- SInstances(Reader) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SInstances
-
- SInstances(Reader, int) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SInstances
-
- SInstances(Instances) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SInstances
-
- SInstances(Instances, int) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SInstances
-
- SInstances(Instances, int, int) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SInstances
-
- SInstances(String, FastVector, int) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SInstances
-
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.Itemset
-
It returns the size of the itemset (the number of items it has).
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
Returns the total number of instances in the data-set.
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.RuleBase
-
It returns the number of rules in the rule base
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.Itemset
-
It returns the size of the itemset (the number of items it has)
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.RuleBase
-
It returns the number of rules in the rule base
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
It return the size of the data-set
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
It return the size of the data-set
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.RuleBase
-
It returns the number of rules in the rule base
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.Itemset
-
It returns the size of the itemset (the number of items it has)
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.RuleBase
-
It returns the number of rules in the rule base
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Individual
-
It returns the number of rules in the rule base
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Itemset
-
It returns the size of the itemset (the number of items it has)
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.RuleBase
-
It returns the number of rules in the rule base
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Individual
-
It returns the number of rules in the rule base
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.Itemset
-
It returns the size of the itemset (the number of items it has)
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
It return the size of the data-set
- size() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.RuleBase
-
It returns the number of rules in the rule base
- size() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It return the size of the data-set
- size() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.Rule
-
Returns the number of selectors in the rule.
- size() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.RuleBase
-
Returns the number of rules in the rule base
- size() - Method in class keel.Algorithms.Decision_Trees.DT_GA.BaseR
-
Return the number of existing rules in the rulebase.
- size() - Method in class keel.Algorithms.Decision_Trees.DT_GA.Individuo
-
Returns the size of the chromosome.
- size() - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
Returns the total number of instances in the data-set.
- size() - Method in class keel.Algorithms.Decision_Trees.DT_GA.Regla
-
Returns the size of the rule (number of antecedents).
- size() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.Individuo
-
Returns the size of the chromosome.
- size() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Decision_Trees.M5.M5Vector
-
Returns the vector's current size.
- size() - Method in class keel.Algorithms.Decision_Trees.M5.Queue
-
Gets queue's size.
- size() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Discretizers.UCPD.Itemset
-
It returns the size (number of different attributes) of this itemset
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.BaseR
-
It returns the number of rules
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
It return the size of the data-set
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
It returns the number of examples of the data-set
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.RuleBase
-
It returns the size of the Rule Base
- Size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.domain_t
-
- Size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.domain_t
-
Returns the number of labels in the domain
- Size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.domain_t
-
- Size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.domain_t
-
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
It returns the number of examples of the data-set
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.BaseR
-
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Individuo
-
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.BaseR
-
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
It return the size of the data-set
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
It returns the number of examples of the data-set
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Individual
-
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Itemset
-
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.RuleBase
-
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Classifier.FuzzyClassifier
-
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.GenotypePitts
-
This method returns the number of rules of the FRBS
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.Individuo
-
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.FastVector
-
Returns the vector's current size.
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Queue
-
Gets queue's size.
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RipperRule
-
the number of antecedents of the rule
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Rule
-
The size of the rule.
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyPartition
-
Returns the number of fuzzy sets in the partition
- size() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.RuleBase
-
Returns the number of rules.
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.myDataset
-
It returns the number of examples of the data-set
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
It return the size of the data-set
- size - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_ADI
-
- size - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_GABIL
-
- size - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_UBR
-
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
It return the size of the data-set
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
It return the size of the data-set
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
It returns the number of exemple of the dataset
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue
-
Gets queue's size.
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Rule
-
Returns the size (number of simple rules) of the rule
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Ruleset
-
Returns the size (number of rules) of the ruleset.
- size - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_ADI
-
- size - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_GABIL
-
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.BaseR
-
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Poblacion
-
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
It returns the number of exemple of the dataset
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Rule
-
Returns the size (number of simple rules) of the rule
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Ruleset
-
Returns the size (number of rules) of the ruleset.
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.myDataset
-
It returns the number of examples of the data-set
- size() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.ruleSet
-
It returns the size of the rule set
- size() - Method in class keel.Algorithms.Hyperrectangles.EACH.Complex
-
Returns the size of the complex
- size() - Method in class keel.Algorithms.Hyperrectangles.EACH.EachDataSet
-
Returns the number of examples of the data set
- size() - Method in class keel.Algorithms.Hyperrectangles.EACH.RuleSet
-
Returns the number of rules we are working with
- size() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It return the size of the data-set
- size() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Rule
-
Returns the number of selectors in the rule.
- size() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.RuleBase
-
Returns the number of rules in the rule base
- size() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
It returns the number of examples of the data-set
- size() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.FastVector
-
Returns the vector's current size.
- size() - Method in class keel.Algorithms.Instance_Generation.GMCA.Cluster
-
Gets the number of prototypes that forms the cluster.
- size() - Method in class keel.Algorithms.Instance_Generation.GMCA.ClusterSet
-
Gets the number of clusters of the set.
- size() - Method in class keel.Algorithms.Instance_Generation.VQ.Cluster
-
Returns the size of the cluster.
- size() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyPartition
-
- size() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
-
- size() - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.IndMichigan
-
- size() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyPartition
-
- size() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
-
- size() - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.IndMichigan
-
- size() - Method in class keel.Algorithms.LQD.methods.FGFS_Original.IndMichigan
-
- size() - Method in class keel.Algorithms.LQD.methods.FGFS_Original.partition
-
- size() - Method in class keel.Algorithms.LQD.methods.FGFS_Original.rule
-
- size() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.IndMichigan
-
- size() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.partition
-
- size() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
-
- size() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.IndMichigan
-
- size() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.partition
-
- size() - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
-
- size() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzypartition
-
- size() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzyrule
-
- size() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzypartition
-
- size() - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzyrule
-
- size() - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbfn
-
Returns the number of neurons in the net
- size() - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
-
Returns the number of neurons in the net
- size() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
-
Returns the number of neurons in the net
- size() - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
-
Returns the number of neurons in the net
- size() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
-
Returns the number of neurons in the net
- size() - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
-
Returns the number of neurons in the net
- size() - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.IntegerSet
-
It returns the size of the set
- size() - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.BaseR
-
- size() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.MatrizR
-
- size() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Rule_Learning.AQ.Complex
-
It returns the number of selectors of the complex
- size() - Method in class keel.Algorithms.Rule_Learning.AQ.myDataset
-
It returns the number of examples of the data-set
- size() - Method in class keel.Algorithms.Rule_Learning.AQ.ruleSet
-
It returns the size of the rule set
- size() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
It returns the number of exemple of the dataset
- size() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Rule
-
Returns the size (number of simple rules) of the rule
- size() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Ruleset
-
Returns the size (number of rules) of the ruleset.
- size() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
It returns the number of exemple of the dataset
- size() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Rule
-
Returns the size (number of simple rules) of the rule
- size() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Ruleset
-
Returns the size (number of rules) of the ruleset.
- size() - Method in class keel.Algorithms.Rule_Learning.CN2.Complex
-
It returns the number of selectors of the complex
- size() - Method in class keel.Algorithms.Rule_Learning.CN2.myDataset
-
It returns the number of examples of the data-set
- size() - Method in class keel.Algorithms.Rule_Learning.CN2.ruleSet
-
It returns the size of the rule set
- size() - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
It returns the number of exemple of the dataset
- size() - Method in class keel.Algorithms.Rule_Learning.PART.Rule
-
Returns the size (number of simple rules) of the rule
- size() - Method in class keel.Algorithms.Rule_Learning.PART.Ruleset
-
Returns the size (number of rules) of the ruleset.
- size() - Method in class keel.Algorithms.Rule_Learning.Prism.Complejo
-
Returns the size of the complex
- size() - Method in class keel.Algorithms.Rule_Learning.Prism.ConjDatos
-
Returns the number of examples of our set of data items
- size() - Method in class keel.Algorithms.Rule_Learning.Prism.ConjReglas
-
Returns the number of rules we are working with
- size() - Method in class keel.Algorithms.Rule_Learning.Riona.Complex
-
Return the size complex
- size() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Rule_Learning.Ripper.Rule
-
Returns the size (number of simple rules) of the rule
- size() - Method in class keel.Algorithms.Rule_Learning.Ripper.Ruleset
-
Returns the size (number of rules) of the ruleset.
- size() - Method in class keel.Algorithms.Rule_Learning.Ripper.Score
-
Returns the size of the vector (the number of values).
- size() - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Rule_Learning.Slipper.Rule
-
Returns the size (number of simple rules) of the rule
- size() - Method in class keel.Algorithms.Rule_Learning.Slipper.Ruleset
-
Returns the size (number of rules) of the ruleset.
- size() - Method in class keel.Algorithms.Rule_Learning.Slipper.Score
-
Returns the size of the vector (the number of values).
- size() - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
-
It returns the number of examples
- size() - Method in class keel.Algorithms.Rule_Learning.UnoR.Complejo
-
Return the size complex
- size() - Method in class keel.Algorithms.Rule_Learning.UnoR.ConjDatos
-
Returns the number of examples of our set of data items
- size() - Method in class keel.Algorithms.Rule_Learning.UnoR.ConjReglas
-
Returns the number of rules we are working with
- size() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.FastVector
-
Returns the vector's current size.
- size() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Gets the size of the vector.
- size() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Gets the size of the vector.
- size() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.ConjDatos
-
Returns the number of examples of our set of data items
- size() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.ConjReglas
-
Returns the number of rules we are working with
- size() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Regla
-
Returns the rule size (number of attributes/antecedents)
- size() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Complejo
-
Return the size complex
- size() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.ConjDatos
-
Returns the number of examples of our set of data items
- size() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.ConjReglas
-
Returns the number of rules we are working with
- size() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Complex
-
Return the size of the complex
- size() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.SetData
-
Return the number of instances
- size() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.SetRules
-
Return the number of rules
- size() - Method in class keel.Algorithms.SVM.SMO.core.FastVector
-
Returns the vector's current size.
- size() - Method in class keel.Algorithms.SVM.SMO.core.Queue
-
Gets queue's size.
- size() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Itemset
-
It returns the number of items contained into an itemset
- size() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Itemset
-
It returns the number of items contained into an itemset
- size() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.Itemset
-
It returns the number of items contained into an itemset
- size() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Itemset
-
It returns the number of items contained into an itemset
- size() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Itemset
-
It returns the number of items contained into an itemset
- size() - Method in class keel.GraphInterKeel.experiments.DinamicParameter
-
- SizeBinary(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.genetcode
-
- SizeBinary(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.genetcode
-
- SizeBinary(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.genetcode
-
- sizeD - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_UBR
-
- SizeDomain() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.variable_t
-
- SizeDomain(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
Returns the number of labels belonging to the domain of the variable "variable"
- SizeDomain() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Retuns the number of labels in the variable's domain.
- SizeDomain(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Retuns the number of labels in the variable in position "variable" of the list domain.
- SizeDomain() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.variable_t
-
- SizeDomain(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
Returns the number of labels belonging to the domain of the variable "variable"
- SizeDomain() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.variable_t
-
- SizeDomain(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
Returns the number of labels belonging to the domain of the variable "variable"
- SizeInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.genetcode
-
- SizeInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.genetcode
-
- SizeInteger(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.genetcode
-
- sizePenaltyMinRules - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- sizePenaltyMinRules - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- SizeReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.genetcode
-
- SizeReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.genetcode
-
- SizeReal(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.genetcode
-
- sizeWithoutMissing() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.myDataset
-
It return the size of the data-set without having account the missing values.
- sizeWithoutMissing() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.myDataset
-
It return the size of the data-set without having account the missing values
- sizeWithoutMissing() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.myDataset
-
It return the size of the data-set without having account the missing values
- Skg(int, int[][], int[][]) - Method in class keel.Algorithms.Instance_Generation.SADE.SADEGenerator
-
- skipHeader(BufferedReader) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Skips the header of the results file.
- skipHeader(BufferedReader) - Method in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Skips the header of the results file.
- Slipper - Class in keel.Algorithms.Rule_Learning.Slipper
-
Implementation of the classification algorithm Slipper, according to the paper [AAAI99].
- Slipper(parseParameters) - Constructor for class keel.Algorithms.Rule_Learning.Slipper.Slipper
-
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
- slipper(MyDataset, Mask, Mask, int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Slipper
-
It implements the algorithm Slipper (2 class version).
- slipperMulticlass(MyDataset) - Method in class keel.Algorithms.Rule_Learning.Slipper.Slipper
-
It implements a multiclass variation of the algorithm Slipper:
1.
- SLIQ - Class in keel.Algorithms.Decision_Trees.SLIQ
-
Implementation of the SLIQ algorithm.
- SLIQ(String) - Constructor for class keel.Algorithms.Decision_Trees.SLIQ.SLIQ
-
Constructor.
- slope - Variable in class keel.Algorithms.MIL.Diverse_Density.Optimization.Optimization
-
- sm(double, double) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Tests if a is smaller than b.
- sm(double, double) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Tests if a is smaller than b.
- sm(double, double) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Tests if a is smaller than b.
- sm(double, double) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Tests if a is smaller than b.
- sm(double, double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Tests if a is smaller than b.
- sm(double, double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Tests if a is smaller than b.
- sm(double, double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Tests if a is smaller than b.
- sm(double, double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Tests if a is smaller than b.
- sm(double, double) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Tests if a is smaller than b.
- SMALL - Static variable in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
The small deviation allowed in double comparisons
- SMALL - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
The small deviation allowed in double comparisons.
- SMALL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
The small deviation allowed in double comparisons
- SMALL - Static variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
The small deviation allowed in double comparisons
- SMALL - Static variable in class keel.Algorithms.Rule_Learning.Slipper.Utilities
-
The small deviation allowed in double comparisons
- SMALL - Static variable in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
The small deviation allowed in double comparisons.
- SMALL - Static variable in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
The small deviation allowed in double comparisons.
- SMALL - Static variable in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
The small deviation allowed in double comparisons.
- SMALL - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
The small deviation allowed in double comparisons
- SMALL - Static variable in class keel.Algorithms.SVM.SMO.core.Utils
-
The small deviation allowed in double comparisons
- smartInit - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PopulationWrapper
-
- smartInit - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PopulationWrapper
-
- smartInitMethod - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- SMO - Class in keel.Algorithms.SVM.SMO
-
Implements John Platt's sequential minimal optimization algorithm for training a support vector classifier.
- SMO(String) - Constructor for class keel.Algorithms.SVM.SMO.SMO
-
Creates a new instance of SMO with a file parameter of KEEL format
- SMO() - Constructor for class keel.Algorithms.SVM.SMO.SMO
-
Default constructor
- SMO.BinarySMO - Class in keel.Algorithms.SVM.SMO
-
Class for building a binary support vector machine.
- smoothen() - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Smoothens all unsmoothed formulae at the tree leaves under this node.
- smoothen() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Smoothens all unsmoothed formulae at the tree leaves under this node.
- smoothenFormula(M5TreeNode) - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Recursively smoothens the unsmoothed linear model at this node with the
unsmoothed linear models at the nodes above this
- smoothenFormula(M5TreeNode) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Recursively smoothens the unsmoothed linear model at this node with the
unsmoothed linear models at the nodes above this
- smoothenValue(double, double, int, int) - Static method in class keel.Algorithms.Decision_Trees.M5.M5
-
Returns the smoothed values according to the smoothing formula (np+kq)/(n+k)
- smoothenValue(double, double, int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
Returns the smoothed values according to the smoothing formula (np+kq)/(n+k)
- SMOreg - Class in keel.Algorithms.SVM.SMO
-
Implements Alex Smola and Bernhard Scholkopf's sequential minimal optimization algorithm for training a support vector regression model.
- SMOreg() - Constructor for class keel.Algorithms.SVM.SMO.SMOreg
-
- smOrEq(double, double) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Tests if a is smaller or equal to b.
- smOrEq(double, double) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Tests if a is smaller or equal to b.
- smOrEq(double, double) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Tests if a is smaller or equal to b.
- smOrEq(double, double) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Tests if a is smaller or equal to b.
- smOrEq(double, double) - Static method in class keel.Algorithms.Rule_Learning.Slipper.Utilities
-
Tests if a is smaller or equal to b.
- smOrEq(double, double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Tests if a is smaller or equal to b.
- smOrEq(double, double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Tests if a is smaller or equal to b.
- smOrEq(double, double) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Tests if a is smaller or equal to b.
- smOrEq(double, double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Tests if a is smaller or equal to b.
- smOrEq(double, double) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Tests if a is smaller or equal to b.
- SMOset - Class in keel.Algorithms.SVM.SMO.supportVector
-
Stores a set of integer of a given size.
- SMOset(int) - Constructor for class keel.Algorithms.SVM.SMO.supportVector.SMOset
-
Creates a new set of the given size.
- SMOSSLAlgorithm - Class in keel.Algorithms.Semi_Supervised_Learning.SMOSSL
-
SMOSSL algorithm calling.
- SMOSSLAlgorithm() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.SMOSSL.SMOSSLAlgorithm
-
- SMOSSLGenerator - Class in keel.Algorithms.Semi_Supervised_Learning.SMOSSL
-
This class implements the Self-traning wrapper.
- SMOSSLGenerator(PrototypeSet, int, int, int, int, double, double, double, double, double) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.SMOSSL.SMOSSLGenerator
-
Build a new SMOSSLGenerator Algorithm
- SMOSSLGenerator(PrototypeSet, PrototypeSet, PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.SMOSSL.SMOSSLGenerator
-
Build a new SMOSSLGenerator Algorithm
- SMOTE(double[][], double[][], int[][], boolean[][], int[], double[][], double[][], int[][], boolean[][], int[], int, int, double, boolean, int, int, int, int, boolean) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Instance_Selection.EUSCHCQstat.EUSCHCQstat
-
SMOTE preprocessing procedure
- SMOTE - Class in keel.Algorithms.ImbalancedClassification.Ensembles.SMOTE
-
- SMOTE(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.SMOTE.SMOTE
-
- SMOTE(InstanceSet, long, int, int, boolean, double, String) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.SMOTE.SMOTE
-
- SMOTE - Class in keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H
-
File: SMOTE.java
The SMOTE algorithm is an oversampling method used to deal with the imbalanced
problem.
- SMOTE(String) - Constructor for class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.SMOTE
-
Constructor of the class.
- SMOTE - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE
-
File: SMOTE.java
The SMOTE algorithm is an oversampling method used to deal with the imbalanced
problem.
- SMOTE(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE.SMOTE
-
Constructor of the class.
- SMOTE_ENN - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_ENN
-
File: SMOTE_ENN.java
The SMOTE ENN algorithm is an oversampling method used to deal with
the imbalanced problem.
- SMOTE_ENN(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_ENN.SMOTE_ENN
-
Constructor of the class.
- SMOTE_RSB - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB
-
File: SMOTE_RSB.java
The SMOTE_RSB algorithm is an oversampling method used to deal with the imbalanced
problem.
- SMOTE_RSB(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.SMOTE_RSB
-
- SMOTE_TomekLinks - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_TomekLinks
-
File: SMOTE_TomekLinks.java
The SMOTE Tomek Links algorithm is an oversampling method used to deal with
the imbalanced problem.
- SMOTE_TomekLinks(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_TomekLinks.SMOTE_TomekLinks
-
Constructor of the class.
- SNN - Class in keel.Algorithms.Instance_Selection.SNN
-
File: SNN.java
The SNN Instance Selection algorithm.
- SNN(String) - Constructor for class keel.Algorithms.Instance_Selection.SNN.SNN
-
Default constructor.
- SNN - Class in keel.Algorithms.Preprocess.Instance_Selection.SNN
-
File: SNN.java
The SNN Instance Selection algorithm.
- SNN(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.SNN.SNN
-
Default constructor.
- SNNRCEAlgorithm - Class in keel.Algorithms.Semi_Supervised_Learning.SNNRCE
-
SNNRCE algorithm calling.
- SNNRCEAlgorithm() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.SNNRCE.SNNRCEAlgorithm
-
- SNNRCEGenerator - Class in keel.Algorithms.Semi_Supervised_Learning.SNNRCE
-
This class implements the Self-traning wrapper.
- SNNRCEGenerator(PrototypeSet, int, int, int, int, double, double, double, double, double) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.SNNRCE.SNNRCEGenerator
-
Build a new SNNRCEGenerator Algorithm
- SNNRCEGenerator(PrototypeSet, PrototypeSet, PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.SNNRCE.SNNRCEGenerator
-
Build a new SNNRCEGenerator Algorithm
- socialNetwork - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Matrix that stores the complete social network
- SoftmaxClassificationProblemEvaluator - Class in keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax
-
Softmax Classification problem evaluator
- SoftmaxClassificationProblemEvaluator() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.SoftmaxClassificationProblemEvaluator
-
Empty constructor
- softmaxProbabilities(double[]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.neuralnet.NeuralNetClassifier
-
Obtain the normalized softmax probabilities of classes of
one observation
- softmaxProbabilities(double[][]) - Method in class keel.Algorithms.Neural_Networks.NNEP_Clas.neuralnet.NeuralNetClassifier
-
Obtain the normalized softmax probabilities of classes
of a set of observations, through their inputs values
- softmaxProbabilities(double[]) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.ISoftmaxClassifier
-
Obtain the normalized softmax probabilities of classes of
one observation
- softmaxProbabilities(double[][]) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.ISoftmaxClassifier
-
Obtain the normalized softmax probabilities of classes
of a set of observations, through their inputs values
- solucion() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.Algorithm
-
It returns the best solution
- solve(IOptimizableFunc) - Method in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Apply the iRprop+ over a function that implements the IOptimizableFunc
interface.
- solve(Matrix) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.CholeskyDecomposition
-
Solve A*X = B
- solve(Matrix) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.LUDecomposition
-
Solve A*X = B
- solve(Matrix) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Solve A*X = B
- solve(Matrix) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.QRDecomposition
-
Least squares solution of A*X = B
- solve(double[]) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Solve A*X = B using backward substitution.
- solveTranspose(Matrix) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Solve X*A = B, which is also A'*X' = B'
- solveTriangle(double[][], double[], boolean, boolean[]) - Method in class keel.Algorithms.MIL.Diverse_Density.Optimization.Optimization
-
- solveTriangle(Matrix, double[], boolean, boolean[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
Solve the linear equation of TX=B where T is a triangle matrix
It can be solved using back/forward substitution, with O(N^2)
complexity
- some_active(Vector, ExternalObjectDescription, Vector, int, Point) - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Updates status of active data sets
- sonn - Class in keel.Algorithms.Neural_Networks.gmdh
-
Class for the algorithm sonn
- sonn(SetupParameters, Data) - Constructor for class keel.Algorithms.Neural_Networks.gmdh.sonn
-
Constructor
- sons - Variable in class keel.Algorithms.Decision_Trees.C45.Tree
-
Sons of the node.
- sons - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Tree
-
Sons of the node.
- sons - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
-
Sons of the node.
- sons - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Tree
-
Sons of the node.
- sons - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Tree
-
Sons of the node.
- sons - Variable in class keel.Algorithms.Rule_Learning.C45Rules.Tree
-
Sons of the node.
- sons - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Tree
-
Sons of the node.
- sons - Variable in class keel.Algorithms.Rule_Learning.PART.Tree
-
Sons of the node.
- sons - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
-
Sons of the node.
- sort() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.RuleBase
-
Function to sort the rule base
- sort() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.RuleBase
-
Function to sort the rule base
- sort() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.RuleBase
-
Function to sort the rule base
- sort() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.RuleBase
-
Function to sort the rule base
- sort() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.RuleBase
-
Function to sort the rule base
- sort() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.RuleBase
-
Function to sort the rule base
- sort(int) - Method in class keel.Algorithms.Decision_Trees.C45.Dataset
-
Function to sort the dataset based on an attribute.
- sort(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Dataset
-
Function to sort the dataset based on an attribute.
- sort(int) - Method in class keel.Algorithms.Decision_Trees.ID3.Dataset
-
Function to sort the dataset based on an attribute.
- sort(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Sorts the instances based on an attribute.
- sort(M5Attribute) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Sorts the instances based on an attribute.
- sort(int[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Sorts a given array of integers in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- sort(double[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the
original array in the sorted array.
- sort(int) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Dataset
-
Function to sort the dataset based on an attribute.
- sort(double[], int, int) - Static method in class keel.Algorithms.Discretizers.HellingerBD.Quicksort
-
It sorts the values array based on opt
- sort(double[], int, int) - Static method in class keel.Algorithms.Discretizers.UCPD.Quicksort
-
It sorts the values array basing on opt
- sort() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.RuleBase
-
It sorts the rule base according to the fitness of the rules
- Sort() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- Sort(int, int[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
Sorts the individuals according to their fitness values
- Sort() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- Sort() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
- Sort() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.vectordouble
-
Sorts the values in the vector (in ascending order)
- Sort() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
Sorts the individuals according to their fitness values
- Sort() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- Sort() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationinteger
-
- Sort() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
Sorts the individuals according to their fitness values
- Sort() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- Sort() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationinteger
-
- sort() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.RuleBase
-
- sort(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Sorts the instances based on an attribute.
- sort(AttributeWeka) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Sorts the instances based on an attribute.
- sort(int[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Sorts a given array of integers in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- sort(double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the
original array in the sorted array.
- sort(double[], int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Quicksort
-
Sorts the values array basing on opt
- sort(int[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Sorts a given array of integers in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- sort(double[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the
original array in the sorted array.
- sort(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Function to sort the dataset based on an attribute.
- sort(MyAttribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Function to sort the dataset based on an attribute.
- sort(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Dataset
-
Function to sort the dataset based on an attribute.
- sort(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
Function to sort the dataset based on an attribute.
- sort(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Dataset
-
Function to sort the dataset based on an attribute.
- sort(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Dataset
-
Function to sort the dataset based on an attribute.
- sort(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Sorts the instances based on an attribute.
- sort(Attribute) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Sorts the instances based on an attribute.
- sort(int[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Sorts a given array of integers in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- sort(double[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the
original array in the sorted array.
- sort(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Sort the prototype set in ascending distance to current prototype.
- sort(double[], int, int) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Quicksort
-
It sorts the values array based on opt
- sort(double[], int, int) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Quicksort
-
Sorts the values array basing on opt
- sort(double[], int, int) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Quicksort
-
Sorts the values array basing on opt
- sort(int) - Method in class keel.Algorithms.Rule_Learning.ART.Dataset
-
Function to sort the dataset based on an attribute.
- sort(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Function to sort the dataset based on an attribute.
- sort(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Function to sort the dataset based on an attribute.
- sort(int) - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Dataset
-
Function to sort the dataset based on an attribute.
- sort(int) - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
Function to sort the dataset based on an attribute.
- sort() - Method in class keel.Algorithms.Rule_Learning.Ripper.Score
-
Sorts the trios stored with the mergesort algorithm.
- sort() - Method in class keel.Algorithms.Rule_Learning.Slipper.Score
-
Sorts the trios stored with the mergesort algorithm.
- sort(int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Sorts a given array of integers in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- sort(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the
original array in the sorted array.
- sort(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Dataset
-
Function to sort the dataset based on an attribute.
- sort(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Sort the prototype set in ascending distance to current prototype.
- sort(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Sorts the instances based on an attribute.
- sort(int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Sorts a given array of integers in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- sort(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the
original array in the sorted array.
- sort(int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Sorts a given array of integers in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- sort(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the
original array in the sorted array.
- sort() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Sorts the array in place
- sort() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Sorts the elements in place
- sort(int[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Sorts a given array of integers in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- sort(double[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the
original array in the sorted array.
- sort(int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Sorts the instances based on an attribute.
- sort(Attribute) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Sorts the instances based on an attribute.
- sort(int[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Sorts a given array of integers in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- sort(double[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the
original array in the sorted array.
- Sort - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh
-
Title: Class Sort
Description: Here you have methods to sort populations
Company: KEEL
- Sort() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Sort
-
- Sort - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII
-
Title: Class Sort
Description: Here you have methods to sort populations
Company: KEEL
- Sort() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Sort
-
- Sort_4L(example_set, int, int[], int[][], double[], double[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
Sorts the individuals according to their fitness values
- sort_population() - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Sorts population
- sortByAmplitude(ArrayList<Chromosome>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.AlatasetalProcess
-
Sorts the population given by their amplitude values.
- sortByAverageClassValues() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Computes the average class values for each attribute and value,
and sort them by it.
- sortDatasetC() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Sort the data sets list loaded from disc, so they
appear in alphabetic order
- sortDatasetC() - Method in class keel.GraphInterKeel.experiments.SelectData
-
This function sorts the inserted data set lists,
so they will appear sorted in the GUI
- sortDatasetC_LQD() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Sort the data sets list loaded from disc, so they
appear in alphabetic order
- sortDatasetC_LQD() - Method in class keel.GraphInterKeel.experiments.SelectData
-
This function sorts the inserted data set lists,
so they will appear sorted in the GUI
- sortDatasetLQD_C() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Sort the data sets list loaded from disc, so they
appear in alphabetic order
- sortDatasetLQD_C() - Method in class keel.GraphInterKeel.experiments.SelectData
-
This function sorts the inserted data set lists,
so they will appear sorted in the GUI
- sortDatasets() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Sort the data sets list loaded from disc, so they
appear in alphabetic order
- sortDatasets() - Method in class keel.GraphInterKeel.experiments.SelectData
-
This function sorts the inserted data set lists,
so they will appear sorted in the GUI
- sortGenes(ArrayList<Gene>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
-
- sortGenes(ArrayList<Gene>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
-
- sortGenes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Chromosome
-
- sortGenes(ArrayList<Gene>) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
-
- sortGenes() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Chromosome
-
- sortItemSet(short[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Sorts an unordered item set.
- sortItemSet(short[]) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Sorts an unordered item set.
- sortItemSet(short[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Sorts an unordered item set.
- sortMembershipFunctions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Gene
-
It orders the membership functions involved in a gene
- sortMembershipFunctions() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Gene
-
It orders the membership functions involved in a gene
- sortPopulation(int, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Sorts the population with a quicksort algorithm.
- sortPopulation(int, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Sorts the population with a quicksort algorithm.
- sortValues(int, int[], int, int) - Method in class keel.Algorithms.Discretizers.Basic.Discretizer
-
Sorts the instances values of the attribute given.
- sortValues(int, int[], int, int) - Method in class keel.Algorithms.Discretizers.Chi2_Discretizer.Discretizer
-
Sorts the instances values of the attribute given.
- sortValues(int, int[], int, int) - Method in class keel.Algorithms.Discretizers.ExtendedChi2_Discretizer.Discretizer
-
Sorts the instances values of the attribute given.
- sortValues(Quicksort.OrderStructure[], int, int) - Static method in class keel.Algorithms.Discretizers.HellingerBD.Quicksort
-
It sorts the values between the begin and the end indexes
- sortValues(IDD.rank[], int, int, int) - Method in class keel.Algorithms.Discretizers.IDD.IDD
-
Sorts an array
- sortValues(int, int[], int, int) - Method in class keel.Algorithms.Discretizers.ModifiedChi2_Discretizer.Discretizer
-
Sorts the instances values of the attribute given.
- sortValues(int, int[], int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.Basic.Discretizer
-
- sortValues(Quicksort.OrderStructure[], int, int) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Quicksort
-
It sorts the values between the begin and the end indexes
- sortValues(int, int[], int, int) - Method in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Discretizer
-
- sortWithIndex() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Sorts the array in place with index returned
- sortWithIndex(int, int, IntVector) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Sorts the array in place with index changed
- sparseIndices() - Method in class keel.Algorithms.SVM.SMO.SMO
-
Returns the indices in sparse format.
- SparseInstance - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets
-
Class for storing an instance as a sparse vector.
- SparseInstance() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Dafault constructor.
- SparseInstance(Instance) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Constructor that generates a sparse instance from the given
instance.
- SparseInstance(SparseInstance) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Constructor that copies the info from the given instance.
- SparseInstance(double, double[]) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Constructor that generates a sparse instance from the given
parameters.
- SparseInstance(double, double[], int[], int) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Constructor that inititalizes instance variable with given
values.
- SparseInstance(int) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Constructor of an instance that sets weight to one, all values to
be missing, and the reference to the dataset to null.
- sparseWeights() - Method in class keel.Algorithms.SVM.SMO.SMO
-
Returns the weights in sparse format.
- specialConstructor - Variable in exception keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParseException
-
This variable determines which constructor was used to create
this object and thereby affects the semantics of the
"getMessage" method (see below).
- specialConstructor - Variable in exception keel.Algorithms.Rule_Learning.Swap1.ParseException
-
This variable determines which constructor was used to create
this object and thereby affects the semantics of the
"getMessage" method (see below).
- specialConstructor - Variable in exception keel.Dataset.ParseException
-
This variable determines which constructor was used to create
this object and thereby affects the semantics of the
"getMessage" method (see below).
- specializeProbability - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- specialToken - Variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Token
-
This field is used to access special tokens that occur prior to this
token, but after the immediately preceding regular (non-special) token.
- specialToken - Variable in class keel.Algorithms.Rule_Learning.Swap1.Token
-
This field is used to access special tokens that occur prior to this
token, but after the immediately preceding regular (non-special) token.
- specialToken - Variable in class keel.Dataset.Token
-
This field is used to access special tokens that occur prior to this
token, but after the immediately preceding regular (non-special) token.
- species - Static variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.KEELIRPropPlusWrapperClas
-
Individual species
- species - Static variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Regr.KEELIRPropPlusWrapperRegr
-
Individual species
- species - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.algorithm.NeuralNetAlgorithm
-
Individual species
- species - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.initiators.PureLayerInitiator
-
Associated species
- species - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.NeuralNetMutator
-
Individuals species
- species - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetCreator
-
Associated species
- SPECIFY - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- Specify - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
The class implement the specify operator proposed by Lanzi
- SPIDER - Class in keel.Algorithms.ImbalancedClassification.Ensembles.SPIDER
-
- SPIDER(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.SPIDER.SPIDER
-
- SPIDER(InstanceSet, int, String, String) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.SPIDER.SPIDER
-
- SPIDER - Class in keel.Algorithms.ImbalancedClassification.Resampling.SPIDER
-
File: SPIDER.java
The SPIDER algorithm is an instance selection method used to deal with
the imbalanced problem.
- SPIDER(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SPIDER.SPIDER
-
Constructor of the class.
- SPIDER2 - Class in keel.Algorithms.ImbalancedClassification.Resampling.SPIDER2
-
File: SPIDER2.java
The SPIDER algorithm is an instance selection method used to deal with
the imbalanced problem.
- SPIDER2(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SPIDER2.SPIDER2
-
Constructor of the class.
- splineDegreeOne(double[], double[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EM.Interpolation
-
finds the piecewice linear function whose graph interpolates the points (ti,xi)
- Split - Class in keel.Algorithms.Decision_Trees.FunctionalTrees
-
Data structure that is used during the construction of the decision tree.
- split(Split, int) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Splits a node into two nodes from a split following the identifier of a given number into an arraylist
of nodes.
- split(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Splits the node recursively, unless there are few instances or
instances have similar values of the class attribute
- split(Split, int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Node
-
Splits a node into two nodes from a split following the identifier of a given number into an arraylist
of nodes.
- Split - Class in keel.Algorithms.Decision_Trees.PUBLIC
-
File: Split.java
Data structure that is used during the construction of the decision tree.
- split(ArrayList<Double>, int, int, int, int[]) - Method in class keel.Algorithms.Discretizers.MODL.MODL
-
Search for the best cutpoint in a given interval.
- split(MyDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Splits the node recursively, unless there are few itemsets or
itemsets have similar values of the class attribute
- split(Rule) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
It split phisically the itemsets into two subdatasets,
according to the coverage of a rule.
- split(Rule) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
It split phisically the itemsets into two subdatasets,
according to the coverage of a rule.
- split(double, Randomize) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Mask
-
Splits, at random, this mask in two new masks
- split(double, Randomize) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Mask
-
Splits, at random, this mask in two new masks
- split(Rule) - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
It split phisically the itemsets into two subdatasets,
according to the coverage of a rule.
- split(double, Randomize) - Method in class keel.Algorithms.Rule_Learning.Ripper.Mask
-
Splits, at random, this mask in two new masks
- split(double, Randomize) - Method in class keel.Algorithms.Rule_Learning.Slipper.Mask
-
Splits, at random, this mask in two new masks
- splitData(Instances, double, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Antd
-
- splitData(Instances, double, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.NominalAntd
-
Implements the splitData function.
- splitData(Instances, double, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.NumericAntd
-
Implements the splitData function.
- splitData(PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.RandomTree
-
Splits instances into subsets based on the given split.
- splitData(PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.RandomTree
-
Splits instances into subsets based on the given split.
- splitData(PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.RandomTree
-
Splits instances into subsets based on the given split.
- SplitInfo - Class in keel.Algorithms.Decision_Trees.M5
-
Stores split information.
- SplitInfo(int, int, int) - Constructor for class keel.Algorithms.Decision_Trees.M5.SplitInfo
-
Constructs an object which contains the split information
- SplitInfo - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Stores split information.
- SplitInfo(int, int, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SplitInfo
-
Constructs an object which contains the split information
- splitOptions(String) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Split up a string containing options into an array of strings,
one for each option.
- splitOptions(String) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Split up a string containing options into an array of strings,
one for each option.
- splitOptions(String) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Split up a string containing options into an array of strings,
one for each option.
- splitOptions(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Split up a string containing options into an array of strings,
one for each option.
- splitOptions(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Split up a string containing options into an array of strings,
one for each option.
- splitOptions(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Split up a string containing options into an array of strings,
one for each option.
- splitOptions(String) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Split up a string containing options into an array of strings,
one for each option.
- splitOptions(String) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Split up a string containing options into an array of strings,
one for each option.
- splitPoint - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.NumericAntd
-
The split point for this numeric antecedent
- splitRule(int) - Method in class keel.Algorithms.Decision_Trees.Target.Tree
-
Splits the rule of the given node.
- splitSet(int, double, double) - Method in class keel.Algorithms.Decision_Trees.Target.Nodo
-
Splits the node with the given attribute randomly with the given probabilities.
- splitSet(int) - Method in class keel.Algorithms.Decision_Trees.Target.Tree
-
Splits the given node.
- splittedRule() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierGABIL.splittedRule
-
- SPrint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.domain_t
-
- SPrint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.fuzzy_t
-
- SPrint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.ruleset
-
- SPrint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.domain_t
-
Prints as a String the name of the label number i in the domain
- SPrint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.fuzzy_t
-
Prints in a String the name of the label
- SPrint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.domain_t
-
- SPrint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.fuzzy_t
-
- SPrint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.ruleset
-
- SPrint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.domain_t
-
- SPrint() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.fuzzy_t
-
- SPrint(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.ruleset
-
- SPrintDomain(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.variable_t
-
- SPrintDomain(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- SPrintDomain(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Returns a string with the name of the label "value" of the variable.
- SPrintDomain(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Returns a string with the name of the label "value" of the variable in position "variable" in the list.
- SPrintDomain(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.variable_t
-
- SPrintDomain(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- SPrintDomain(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.variable_t
-
- SPrintDomain(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- sprintf(Object[]) - Method in class keel.Algorithms.Neural_Networks.gmdh.PrintfFormat
-
Format an array of objects.
- sprintf() - Method in class keel.Algorithms.Neural_Networks.gmdh.PrintfFormat
-
Format nothing.
- sprintf(int) - Method in class keel.Algorithms.Neural_Networks.gmdh.PrintfFormat
-
Format an int.
- sprintf(long) - Method in class keel.Algorithms.Neural_Networks.gmdh.PrintfFormat
-
Format an long.
- sprintf(double) - Method in class keel.Algorithms.Neural_Networks.gmdh.PrintfFormat
-
Format a double.
- sprintf(String) - Method in class keel.Algorithms.Neural_Networks.gmdh.PrintfFormat
-
Format a String.
- sprintf(Object) - Method in class keel.Algorithms.Neural_Networks.gmdh.PrintfFormat
-
Format an Object.
- SPrintVar() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.variable_t
-
- SPrintVar() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Returns a string with the name of the variable.
- SPrintVar(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Returns a string with the name of the variable in position "variable" in the list
- SPrintVar() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.variable_t
-
- SPrintVar() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.variable_t
-
- sqr() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyAlphaCut
-
Returns the square of the present FuzzyInterval.
- sqrSum(int, M5Instances) - Static method in class keel.Algorithms.Decision_Trees.M5.M5
-
Returns the squared sum of the instances values of an attribute
- sqrSum(int, MyDataset) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
Returns the squared sum of the itemsets values of an attribute
- sqrt() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyAlphaCut
-
Returns the square root of the present FuzzyInterval.
- sqrt() - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Performs sqrt operation to all the inputs of the prototype.
- sqrt(DenseVector) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
Square root of the elements of the vector
- sqrt() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Performs sqrt operation to all the inputs of the prototype.
- sqrt() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns the square-root of all the elements in the vector
- sqrt() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
returns the square root of the matrix, i.e., X from the equation
X*X = A.
- SQRT_EPSILON - Static variable in class keel.Algorithms.Preprocess.Missing_Values.BPCA.MachineAccuracy
-
SQRT Machine accuracy constant
- SQRT_EPSILON - Static variable in class keel.Algorithms.Preprocess.Missing_Values.EM.util.MachineAccuracy
-
SQRT Machine accuracy constant
- SQRT_SQRT_EPSILON - Static variable in class keel.Algorithms.Preprocess.Missing_Values.BPCA.MachineAccuracy
-
SQRT SQRT Machine accuracy constant
- SQRT_SQRT_EPSILON - Static variable in class keel.Algorithms.Preprocess.Missing_Values.EM.util.MachineAccuracy
-
SQRT SQRT Machine accuracy constant
- SQRTH - Static variable in class keel.Algorithms.Lazy_Learning.Statistics
-
squared root of H
- SQRTH - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
- SQTPI - Static variable in class keel.Algorithms.Lazy_Learning.Statistics
-
squared root of PI
- SQTPI - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
- square() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns the squared vector
- square(double) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Maths
-
Returns the square of a value
- squaredEuclideanDistance(Prototype, Prototype) - Static method in class keel.Algorithms.Instance_Generation.utilities.Distance
-
Compute the squared euclidean distance between two prototypes.
- squaredEuclideanDistance(Prototype, Prototype) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Distance
-
Compute the squared euclidean distance between two prototypes.
- SquaredSinc - Static variable in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
Type of Positive Definite Functions supported (Squared sinc)
- squaredSinc(double) - Method in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
Computes the result of the Squared Sinc PDRF
- SquaresErrorNN - Class in keel.Algorithms.Preprocess.NoiseFilters.ANR
-
Derived class from FUN that implements the error for a perceptron trained with conjugated gradient.
- SquaresErrorNN(ConjGradNN) - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.ANR.SquaresErrorNN
-
Constructor of an error calculator for neural network based on the conjugated gradient.
- SquaresErrorNN - Class in keel.Algorithms.Shared.ClassicalOptim
-
Derived class from FUN that implements the error for a perceptron trained with conjugated gradient.
- SquaresErrorNN(ConjGradNN) - Constructor for class keel.Algorithms.Shared.ClassicalOptim.SquaresErrorNN
-
Constructor of an error calculator for neural network based on the conjugated gradient.
- SquaresErrorQUAD - Class in keel.Algorithms.Shared.ClassicalOptim
-
Derived class from FUN that implements the error for a perceptron trained with quadratic conjugated gradient.
- SquaresErrorQUAD(ConjGradQUAD, double[][], double[][]) - Constructor for class keel.Algorithms.Shared.ClassicalOptim.SquaresErrorQUAD
-
Constructor of an error calculator for neural network based on the quadratic conjugated gradient.
- SSFileEnvironment - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
This is the base class for all the single step problems environments
that read the examples from a file.
- SSFileEnvironment(String, boolean) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.SSFileEnvironment
-
It's the constructor of the class.
- SSFileEnvironment - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This is the base class for all the single step problems environments
that read the examples from a file.
- SSFileEnvironment(String, boolean) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.SSFileEnvironment
-
It's the constructor of the class.
- SSGABinaryIncon - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_BinCod.filter
-
MAIN CLASS FOR STATIONARY STATE GA FOR FEATURES SELECTION
USING INCONSISTENCY RATIO AS EVALUATION MEASURE
- SSGABinaryIncon(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_BinCod.filter.SSGABinaryIncon
-
Creates a new instance of SSGABinaryIncon
- SSGABinaryLVO - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_BinCod.wrapper
-
MAIN CLASS FOR STATIONARY STATE GA FOR FEATURES SELECTION
USING LVO AS WRAPPER ALGORITHM
- SSGABinaryLVO(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_BinCod.wrapper.SSGABinaryLVO
-
Creates a new instance of SSGABinaryLVO
- SSGAIntegerIncon - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_IntCod.filter
-
MAIN CLASS FOR STATIONARY STATE GA FOR FEATURES SELECTION
USING INCONSISTENCY RATIO AS EVALUATION MEASURE
- SSGAIntegerIncon(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_IntCod.filter.SSGAIntegerIncon
-
Creates a new instance of SSGAIntegerIncon
- SSGAIntegerLVO - Class in keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_IntCod.wrapper
-
SSGAIntegerLVO.java
Main class for stationary state GA with integer encoding for feature selection using LVO as wrapper algorithm
Inputs: seed, nearest neighbours for KNN Classifier, population size, number of evaluations, number of selected features
Encoding: Integer
Selection: NO SELECTION.
- SSGAIntegerLVO(String) - Constructor for class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.GA_SS_IntCod.wrapper.SSGAIntegerLVO
-
Creates a new instance of SSGAIntegerLVO
- SSL - Static variable in class keel.GraphInterKeel.experiments.Experiments
-
- SSL_mouseEntered(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Enter in SSLbutton
- SSL_mouseExited(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Exit from ssl button
- SSL_mouseReleased(MouseEvent) - Method in class keel.GraphInterKeel.menu.FrameModules
-
Entering in ssl module
- SSMA - Class in keel.Algorithms.Instance_Selection.SSMA
-
File: SGA.java
Steady-State Menetic algorithm for Instance Selection.
- SSMA(String) - Constructor for class keel.Algorithms.Instance_Selection.SSMA.SSMA
-
Default builder.
- SSMA - Class in keel.Algorithms.Preprocess.Instance_Selection.SSMA
-
File: SGA.java
Steady-State Menetic algorithm for Instance Selection.
- SSMA(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.SSMA.SSMA
-
Default builder.
- SSMALVQ3 - Class in keel.Algorithms.Instance_Generation.SSMALVQ3
-
- SSMALVQ3(String) - Constructor for class keel.Algorithms.Instance_Generation.SSMALVQ3.SSMALVQ3
-
- SSMAPSO - Class in keel.Algorithms.Instance_Generation.SSMAPSO
-
- SSMAPSO(String) - Constructor for class keel.Algorithms.Instance_Generation.SSMAPSO.SSMAPSO
-
Builder.
- SSMASFLSDE - Class in keel.Algorithms.Instance_Generation.SSMASFLSDE
-
- SSMASFLSDE(String) - Constructor for class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
- SSMASFLSDE(String, InstanceSet) - Constructor for class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
- stableSort(double[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- stableSort(double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- stableSort(double[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- stableSort(double[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- stableSort(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- stableSort(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- stableSort(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- stableSort(double[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- stableSort(double[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Sorts a given array of doubles in ascending order and returns an
array of integers with the positions of the elements of the original
array in the sorted array.
- STANDARD - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividual
-
Operator flag (STANDARD).
- STANDARDACCURACY - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Standard accuracy identifier.
- standardize(double, int) - Method in class keel.Algorithms.SVM.SMO.SMO
-
Standardize the provided value, converting it to a new double value from
a normal distribution with mean = 0 and std. deviation = 1
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.CsvToKeel
-
Method used to transform the data from the csv file given as parameter to
KEEL format file which will be stored in the second file given.
- Start(String) - Method in class keel.Algorithms.Preprocess.Converter.DbToKeel
-
Method used to transform the data from the SQL database table to
KEEL format file which will be stored in the second file given.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.DifToKeel
-
Method used to transform the data from the DIF file given as parameter to
KEEL format file which will be stored in the second file given.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.ExcelToKeel
-
Method used to transform the data from the excel file given as parameter to
KEEL format file which will be stored in the second file given.
- Start(String) - Method in class keel.Algorithms.Preprocess.Converter.Exporter
-
This method reads the data stored in KEEL format file and initializes all
the structures needed to export the data to other formats.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.HtmlToKeel
-
Method used to transform the data from the html file given as parameter to
KEEL format file which will be stored in the second file given.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToCsv
-
Method used to transform the data from the KEEL file given as parameter to
CSV format file which will be stored in the second file given.
- Start(String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToDb
-
Method used to transform the data from the KEEL file given as parameter to
a new SQL database table.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToDif
-
Method used to transform the data from the KEEL file given as parameter to
DIF format file which will be stored in the second file given.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToExcel
-
Method used to transform the data from the KEEL file given as parameter to
Excel format file which will be stored in the second file given.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToHtml
-
Method used to transform the data from the KEEL file given as parameter to
HTML format file which will be stored in the second file given.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToPrn
-
Method used to transform the data from the KEEL file given as parameter to
PRN format file which will be stored in the second file given.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToPropertyList
-
Method used to transform the data from the KEEL file given as parameter to
PropertyList format file which will be stored in the second file given.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToTxt
-
Method used to transform the data from the KEEL file given as parameter to
TXT format file which will be stored in the second file given.
- Start(String, String, String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToUci
-
Method used to transform the data from the KEEL file given as parameter to
UCI format files which will be stored in the second file given.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToWeka
-
Method used to transform the data from the KEEL file given as parameter to
Weka format file which will be stored in the second file given.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToXml
-
Method used to transform the data from the KEEL file given as parameter to
XML format file which will be stored in the second file given.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.PrnToKeel
-
Method used to transform the data from the PRN file given as parameter to
KEEL format file which will be stored in the second file given.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.PropertyListToKeel
-
Method used to transform the data from the PropertyList file given as parameter to
KEEL format file which will be stored in the second file given.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.TxtToKeel
-
Method used to transform the data from the TXT file given as parameter to
KEEL format file which will be stored in the second file given.
- Start(String, String, String) - Method in class keel.Algorithms.Preprocess.Converter.UciToKeel
-
Method used to transform the data from the UCI file given as parameter to
KEEL format file which will be stored in the second file given.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.WekaToKeel
-
Method used to transform the data from the Weka file given as parameter to
KEEL format file which will be stored in the second file given.
- Start(String, String) - Method in class keel.Algorithms.Preprocess.Converter.XmlToKeel
-
Method used to transform the data from the XML file given as parameter to
KEEL format file which will be stored in the second file given.
- start() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- start() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- start() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- start() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- start() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- start() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- start() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- start() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- start() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- start() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- start() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- start() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- start() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- start() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- start() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- start() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.StopWatch
-
Starts the stop watch, saves the start time and clears old times.
- startChronCrossover() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Enables crossover's chronometer
- startChronCrossover() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Enables crossover's chronometer
- startChronEvaluation() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Enables evaluation's chronometer
- startChronEvaluation() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Enables evaluation's chronometer
- startChronGAOperators() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Enables GA operators' chronometer
- startChronGAOperators() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Enables GA operators' chronometer
- startChronMutation() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Enables mutation's chronometer
- startChronMutation() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Enables mutation's chronometer
- startChronReplacement() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Enables selection's chronometer
- startChronReplacement() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Enables selection's chronometer
- startChronSelection() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Enables selection's chronometer
- startChronSelection() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Enables selection's chronometer
- startChronStatistics() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Enables statistics' chronometer
- startChronStatistics() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Enables statistics' chronometer
- startCMARclassification() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFP_CMAR
-
Starts CMAR classifier generation proces.
- startCMARclassificationWithOutput() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFP_CMAR
-
Starts CMAR classifier generation proces (version with full output).
- startCMARrulelist - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
The reference to start of the CMAR rule list.
- startElement(String, String, String, Attributes) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.FuncionEvaluacionBeanHandler
-
- startElement(String, String, String, Attributes) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.OperacionHandler
-
- startMining() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.FPtree
-
Top level "FP-growth method" to mine the FP tree.
- startMining(FPtree.FPgrowthItemPrefixSubtreeNode, short, short[]) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.FPtree
-
Commence process of mining FP tree with respect to a single element in
the header table.
- startMining() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.FPtree
-
Top level "FP-growth method" to mine the FP tree.
- startMining(FPtree.FPgrowthItemPrefixSubtreeNode, short, short[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.FPtree
-
Commence process of mining FP tree with respect to a single element in
the header table.
- startPtreeTable - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.PartialSupportTree
-
Array of arrays data structures for P-tree table (used as a
computational efficiency measure).
- startReductXCS() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.XCS
-
Applies the reduction choosen by the user.
- startRulelist - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
The reference to start of the rule list.
- startRulelist - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
The reference to start of the rule list.
- startRulelist - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
The reference to start of the rule list.
- startTestXCS() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.XCS
-
Runs one test XCS experiment.
- startTime - Variable in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
The instant of starting the algorithm.
- startTime - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
The instant of starting the algorithm.
- startTime - Variable in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
The instant of starting the algorithm.
- startTime - Variable in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Starting time of the execution.
- startTime - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
The instant of starting the algorithm.
- startTime - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
The instant of starting the algorithm.
- startTime - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
The instant of starting the algorithm.
- startTime - Variable in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
The instant of starting the algorithm.
- startTime - Variable in class keel.Algorithms.Rule_Learning.C45Rules.Algorithm
-
The instant of starting the algorithm.
- startTime - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Algorithm
-
The instant of starting the algorithm.
- startTime - Variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
The instant of starting the algorithm.
- startTime - Variable in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
The instant of starting the algorithm.
- startTrainUCS() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.UCS
-
Runs one UCS train experiment.
- startTrainXCS() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.XCS
-
Runs one XCS train experiment.
- startTtreeRef - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
The reference to start of t-tree.
- startTtreeRef - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.TotalSupportTree
-
The reference to start of t-tree.
- startTtreeRef - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.TotalSupportTree
-
The reference to start of t-tree.
- startup() - Method in class keel.GraphInterKeel.datacf.DataCFApp
-
At startup create and show the main frame of the application.
- StatCellEditor - Class in keel.GraphInterKeel.statistical
-
File: statCellEditor.java.
- StatCellEditor() - Constructor for class keel.GraphInterKeel.statistical.StatCellEditor
-
- StatFunc - Class in keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat
-
Statistical Functions
- StatFunc() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.StatFunc
-
- staticFlag - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- staticFlag - Static variable in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- staticFlag - Static variable in class keel.Dataset.SimpleCharStream
-
- Statistic - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
This class is used to show and configurate all the possible statistics.
- Statistic() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.Statistic
-
Creates an Statistic object.
- Statistic - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This class is used to show and configurate all the possible statistics.
- Statistic(String, String) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.Statistic
-
Creates an Statistic object.
- StatisticalF - Class in keel.GraphInterKeel.statistical
-
- StatisticalF() - Constructor for class keel.GraphInterKeel.statistical.StatisticalF
-
Builder
- statisticalTest(int, boolean, ProcessConfig) - Method in class keel.Algorithms.Statistical_Tests.Shared.ParseFileList
-
Parse a list of files and perform certain the statistical test identified by 'selector' over them
- statisticFileOutName - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It is the name of the file where the statistics will be written in.
- STATISTICFILEOUTNAME - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- statisticFileOutName1 - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
It is the name of the file where the statistics will be written in ("outFile1.txt").
- statisticFileOutName2 - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
It is the name of the file where the statistics will be written in ("outFile2.txt").
- statisticFileOutName3 - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
It is the name of the file where the statistics will be written in ("outFile3.txt").
- Statistics - Class in keel.Algorithms.Complexity_Metrics
-
This is the main class of the Statistics computation
- Statistics - Class in keel.Algorithms.Genetic_Rule_Learning.GAssist
-
Computes and stores several statistics about the learning process
- Statistics() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GAssist.Statistics
-
- Statistics - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
-
Computes and stores several statistics about the learning process
- Statistics() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Statistics
-
- STATISTICS - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- Statistics - Class in keel.Algorithms.Lazy_Learning
-
Class implementing some distributions, tests, etc.
- Statistics() - Constructor for class keel.Algorithms.Lazy_Learning.Statistics
-
- Statistics - Class in keel.Algorithms.Statistical_Classifiers.Logistic.core
-
Class implementing some distributions, tests, etc.
- Statistics() - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.Statistics
-
- StatisticsStore - Class in keel.Algorithms.Decision_Trees.M5
-
Stores some statistics.
- StatisticsStore(int, int, int, M5Instances) - Constructor for class keel.Algorithms.Decision_Trees.M5.StatisticsStore
-
Constructs an object which stores some statistics of the instances such
as sum, squared sum, variance, standard deviation
- StatisticsStore - Class in keel.Algorithms.Genetic_Rule_Learning.M5Rules
-
Stores some statistics.
- StatisticsStore(int, int, int, MyDataset) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.M5Rules.StatisticsStore
-
Constructs an object which stores some statistics of the itemsets such
as sum, squared sum, variance, standard deviation
- statisticsToFile() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Statistics
-
- statisticsToFile() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Statistics
-
- statisticWindowSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
It the size of the window for the incremental statistics.
- statisticWindowSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It the size of the window for the incremental statistics.
- STATISTICWINDOWSIZE - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- Stats - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets
-
A class to store simple statistics
- Stats() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Stats
-
- statTableModel - Class in keel.GraphInterKeel.statistical
-
File: statTableModel.java.
- statTableModel() - Constructor for class keel.GraphInterKeel.statistical.statTableModel
-
- StatTest - Class in keel.Algorithms.Statistical_Tests.Shared
-
In this class all the statistical tests and output modules are defined
- StatTest(int, double[][][][], double[][][][], double, String, String, Vector, String[]) - Constructor for class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
This method calls the selected statistical test or output module.
- StatTest.InformationAboutClass - Class in keel.Algorithms.Statistical_Tests.Shared
-
Class to store general information of the algorithms.
- status - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- statusBarItem - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- std_dev - Variable in class keel.Algorithms.SVM.SMO.SMO
-
Variable with the std deviation of each attribute.
- stdDev(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
It returns the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.myDataset
-
It returns the standard deviation of an specific attribute
- stdDev - Static variable in class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Standard deviation.
- stdDev(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int, M5Instances) - Static method in class keel.Algorithms.Decision_Trees.M5.M5
-
Returns the standard deviation value of the instances values of an attribute
- stdDev - Variable in class keel.Algorithms.Decision_Trees.M5.SimpleStatistics
-
The std deviation of values at the last calculateDerived() call
- stdDev(int) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierIshibuchi99.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierShi_Eberhart_Chen.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Dataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int, MyDataset) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
Returns the standard deviation value of the itemsets values of an attribute
- stdDev - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleStatistics
-
The std deviation of values at the last calculateDerived() call
- stdDev(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
It return the standard deviation of an specific attribute
- stdDev - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Metodo
-
- stdDev(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It return the standard deviation of an specific attribute
- stdDev - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
- stdDev(int) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
It return the standard deviation of an specific attribute
- stdDev - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Stats
-
The std deviation of values at the last calculateDerived() call
- stdDev - Static variable in class keel.Algorithms.Preprocess.Basic.Metodo
-
Standard deviation.
- stdDev(int) - Method in class keel.Algorithms.PSO_Learning.CPSO.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.PSO_Learning.REPSO.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.RE_SL_Methods.P_FCS1.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.RE_SL_Methods.SEFC.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Rule_Learning.LEM1.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Rule_Learning.LEM2.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Rule_Learning.Ritio.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Rule_Learning.Rules6.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Rule_Learning.SRI.myDataset
-
It return the standard deviation of an specific attribute
- stdDev(int) - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
-
It return the standard deviation of an specific attribute
- SteadyStepReproduction(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
-
Reproductdion schema - Modified steady step
Not used
- SteadyStepReproductionCAN(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Uses a Steady Step method
- SteadyStepReproductionDNF(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Genetic
-
Uses a Steady Step method
- step(int, String) - Method in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.INFFC_2STEPS
-
- stim(Prototype, Prototype) - Method in class keel.Algorithms.Instance_Generation.PSCSA.PSCSAGenerator
-
Stim function.
- stimString(String[][], int, String[][], int) - Method in class keel.Algorithms.Instance_Generation.PSCSA.PSCSAGenerator
-
Stim for binary codification
- stimString2(String[], String[]) - Method in class keel.Algorithms.Instance_Generation.PSCSA.PSCSAGenerator
-
Stim for binary codification
- stirling(int) - Static method in class keel.Algorithms.Discretizers.MODL.MODL
-
Stirling formula for aproximating Log(n!)
- stop() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.StopWatch
-
Stops the watch and saves the end time.
- stop() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.StopWatch
-
Stops the watch and saves the end time.
- stop() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.StopWatch
-
Stops the watch and saves the end time.
- stop() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.StopWatch
-
Stops the watch and saves the end time.
- stop() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.StopWatch
-
Stops the watch and saves the end time.
- stop() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.StopWatch
-
Stops the watch and saves the end time.
- stop() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.StopWatch
-
Stops the watch and saves the end time.
- stop() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.StopWatch
-
Stops the watch and saves the end time.
- stop() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.StopWatch
-
Stops the watch and saves the end time.
- stop() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.StopWatch
-
Stops the watch and saves the end time.
- stop() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.StopWatch
-
Stops the watch and saves the end time.
- stop() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.StopWatch
-
Stops the watch and saves the end time.
- stop() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.StopWatch
-
Stops the watch and saves the end time.
- stop() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.StopWatch
-
Stops the watch and saves the end time.
- stop() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.StopWatch
-
Stops the watch and saves the end time.
- stop() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.StopWatch
-
Stops the watch and saves the end time.
- stopCellEditing() - Method in class keel.GraphInterKeel.datacf.util.EachRowEditor
-
Stops the cell editor
- stopChronCrossover() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Stops crossover's chronometer
- stopChronCrossover() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Stops crossover's chronometer
- stopChronEvaluation() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Stops evaluation's chronometer
- stopChronEvaluation() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Stops evaluation's chronometer
- stopChronGAOperators() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Stops GA operators' chronometer
- stopChronGAOperators() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Stops GA operators' chronometer
- stopChronMutation() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Stops crossover's chronometer
- stopChronMutation() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Stops crossover's chronometer
- stopChronReplacement() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Stops selection's chronometer
- stopChronReplacement() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Stops selection's chronometer
- stopChronSelection() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Stops selection's chronometer
- stopChronSelection() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Stops selection's chronometer
- stopChronStatistics() - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Stops statistics' chronometer
- stopChronStatistics() - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Stops statistics' chronometer
- stopCriteria(TreeNode) - Method in class keel.Algorithms.Decision_Trees.CART.CART
-
It checks if the stop criteria has been reached
- stopProcess() - Method in class keel.RunKeelTxtDocente.EducationalRunKeelTxt
-
This method is used for stop the experiment.
- StopWatch - Class in keel.Algorithms.Subgroup_Discovery.SDMap.SDMap
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- StopWatch - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- StopWatch - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- StopWatch - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- StopWatch - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- StopWatch - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- StopWatch - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- StopWatch - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- StopWatch - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- StopWatch - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- StopWatch - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- StopWatch - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- StopWatch - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- StopWatch - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- StopWatch - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- StopWatch - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII
-
Class for timing applications.
- StopWatch() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.StopWatch
-
Basic constructor for getting an instance of a StopWatch.
- store_in_memory(Hyperrectangle) - Method in class keel.Algorithms.Hyperrectangles.EACH.HyperrectangleSet
-
Stores in memory the new hyperrectangle
- Store_Variable(String, double[], double[], double[], double[], String[], Double_t, Double_t, boolean, int, int) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- Store_Variable(String, double[], double[], double[], double[], String[], Double_t, Double_t, boolean, int, int) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- STPMX - Variable in class keel.Algorithms.MIL.Diverse_Density.Optimization.Optimization
-
- stratify(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Stratifies a set of instances according to its class values
if the class attribute is nominal (so that afterwards a
stratified cross-validation can be performed).
- stratify(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Stratifies a set of instances according to its class values
if the class attribute is nominal (so that afterwards a
stratified cross-validation can be performed).
- stratify(Instances, int, Randomize) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Stratify the given data into the given number of bags based on the class
values.
- stratify(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Stratifies a set of itemsets according to its class values
if the class attribute is nominal (so that afterwards a
stratified cross-validation can be performed).
- stratify(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Stratifies a set of instances according to its class values if the class
attribute is nominal (so that afterwards a stratified cross-validation
can be performed).
- stratify(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Stratifies a set of instances according to its class values
if the class attribute is nominal (so that afterwards a
stratified cross-validation can be performed).
- stratify(int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Stratifies a set of instances according to its class values
if the class attribute is nominal (so that afterwards a
stratified cross-validation can be performed).
- stratStep(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Help function needed for stratification of set.
- stratStep(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Help function needed for stratification of set.
- stratStep(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Help function needed for stratification of set.
- stratStep(int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Help function needed for stratification of set.
- STRING - Static variable in class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Constant set for attributes with string values.
- STRING - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Constant set for attributes with string values.
- STRING - Static variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Constant set for attributes with string values.
- StringCompare() - Constructor for class keel.Algorithms.SVM.SMO.core.ClassDiscovery.StringCompare
-
- stringFreeStructure() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Create a copy of the structure, but "cleanse" string types (i.e.
- stringFreeStructure() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Create a copy of the structure if the data has string or
relational attributes, "cleanses" string types (i.e. doesn't
contain references to the strings seen in the past) and all
relational attributes.
- stringFreeStructure() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Create a copy of the structure, but "cleanse" string types (i.e. doesn't
contain references to the strings seen in the past).
- StringKernel - Class in keel.Algorithms.SVM.SMO.supportVector
-
Implementation of the subsequence kernel (SSK) as described in [1] and of the subsequence kernel with lambda pruning (SSK-LP) as described in [2].
- StringKernel() - Constructor for class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
default constructor
- StringKernel(Instances, int, int, double, boolean) - Constructor for class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
creates a new StringKernel object.
- StringLocator - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
This class locates and records the indices of String attributes,
recursively in case of Relational attributes.
- StringLocator(Instances) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.StringLocator
-
initializes the StringLocator with the given data
- StringLocator(Instances, int, int) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.StringLocator
-
Initializes the StringLocator with the given data.
- StringLocator(Instances, int[]) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.StringLocator
-
Initializes the AttributeLocator with the given data.
- stringValue(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Returns the value of a nominal (or string) attribute
for the instance.
- stringValue(M5Attribute) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Returns the value of a nominal (or string) attribute
for the instance.
- stringValue(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns the value of a nominal, string, date, or relational attribute
for the instance as a string.
- stringValue(AttributeWeka) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns the value of a nominal, string, date, or relational attribute
for the instance as a string.
- stringValue(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns the value of a nominal, string, date, or relational attribute
for the instance as a string.
- stringValue(Attribute) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns the value of a nominal, string, date, or relational attribute
for the instance as a string.
- stringValue(int) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Returns the value of a nominal, string, date, or relational attribute
for the instance as a string.
- stringValue(Attribute) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Returns the value of a nominal, string, date, or relational attribute
for the instance as a string.
- stringWithoutHeader() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Returns the instances in the dataset as a string in ARFF format.
- stringWithoutHeader() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Returns the instances in the dataset as a string in ARFF format.
- stringWithoutHeader() - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the instances in the dataset as a string in ARFF format.
- StructuralMutator<I extends NeuralNetIndividual> - Class in keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural
-
Structural mutator for neural nets
IMPORTANT NOTE: Structural mutator works directly with he individuals instead
of returning a mutated copy of them.
- StructuralMutator() - Constructor for class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Empty Constructor
- Structure - Class in keel.Algorithms.Associative_Classification.ClassifierCBA
-
This class contains the representation of the structure .
- Structure() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.Structure
-
Default Constructor
- Structure(int, int, int, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA.Structure
-
Parameters Constructor
- Structure - Class in keel.Algorithms.Associative_Classification.ClassifierCBA2
-
This class contains the representation of the structure
- Structure() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.Structure
-
Default Constructor
- Structure(int, int, int, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCBA2.Structure
-
Parameters Constructor
- StructureEstimationCriterion(node[], Data, SetupParameters) - Method in class keel.Algorithms.Neural_Networks.gmdh.node
-
Calculates the Structure Estimation Criterion
- student(double, int) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.StatFunc
-
Student t Distribution Function.
- studentPercentage(double, int) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.StatFunc
-
Percentage point of the student t distribution.
- studentTConfidenceInterval(int, double, double) - Static method in class keel.Algorithms.Decision_Trees.M5.Distributions
-
Computes absolute size of half of a student-t confidence interval
for given degrees of freedom, probability, and observed value.
- su(int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
Up
- su(int, int, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Evolucion
-
Up
- sub(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Performs substract operation between two prototypes.
- sub(Function, Function) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EM.Function
-
the difference of two functions
- sub(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Performs substract operation between two prototypes.
- SUBGROUPDISCOVERY - Static variable in class keel.GraphInterKeel.experiments.Experiments
-
- subMul(Prototype, double) - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Performs substract and product operation between two prototypes.
- subMul(Prototype, double) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Performs substract and product operation between two prototypes.
- Subpopulation - Class in keel.Algorithms.Genetic_Rule_Learning.CORE
-
This class represents a subpopulation of rules belonging to a same feature (class).
- Subpopulation() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.CORE.Subpopulation
-
Default constructor.
- Subpopulation - Class in keel.Algorithms.Instance_Selection.CoCoIS
-
File: Subpopulation.java
This class manage the subpopulations of selectors of the CoCoIS model
- Subpopulation(int, double[][], int[]) - Constructor for class keel.Algorithms.Instance_Selection.CoCoIS.Subpopulation
-
Builder.
- Subpopulation - Class in keel.Algorithms.Preprocess.Instance_Selection.CoCoIS
-
File: Subpopulation.java
This class manage the subpopulations of selectors of the CoCoIS model
- Subpopulation(int, double[][], int[]) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.CoCoIS.Subpopulation
-
Builder.
- Subpopulation_Binary(int, int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
Returns the binary subpopulation of the individual "individuo"
- Subpopulation_Binary(int, int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
Returns the binary subpopulation of the individual "individuo"
- Subpopulation_Binary(int, int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
Returns the binary subpopulation of the individual "individuo"
- Subpopulation_Integer(int, int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
Returns the integer subpopulation of the individual "individuo"
- Subpopulation_Integer(int, int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
Returns the integer subpopulation of the individual "individuo"
- Subpopulation_Integer(int, int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
Returns the integer subpopulation of the individual "individuo"
- Subpopulation_Real(int, int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
Returns the real subpopulation of the individual "individuo"
- Subpopulation_Real(int, int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
Returns the real subpopulation of the individual "individuo"
- Subpopulation_Real(int, int, Int_t) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
Returns the real subpopulation of the individual "individuo"
- subsequenceLengthTipText() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Returns the tip text for this property
- subsetDL(double, double, double) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
Subset description length:
S(t,k,p) = -k*log2(p)-(n-k)log2(1-p)
Details see Quilan: "MDL and categorical theories (Continued)",ML95
- subsetDL(double, double, double) - Static method in class keel.Algorithms.Rule_Learning.C45Rules.Rule
-
Subset description length:
S(t,k,p) = -k*log2(p)-(n-k)log2(1-p)
Details see Quilan: "MDL and categorical theories (Continued)",ML95
- subsetDL(double, double, double) - Static method in class keel.Algorithms.Rule_Learning.C45RulesSA.Rule
-
Subset description length:
S(t,k,p) = -k*log2(p)-(n-k)log2(1-p)
Details see Quilan: "MDL and categorical theories (Continued)",ML95
- subsetDL(double, double, double) - Static method in class keel.Algorithms.Rule_Learning.Ripper.Rule
-
Subset description length:
S(t,k,p) = -k*log2(p)-(n-k)log2(1-p)
Details see Quilan: "MDL and categorical theories (Continued)",ML95
- substract(Mask, int, double, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
It substracts the instances covered by a simple rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, SimpleRule) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
It substracts the instances covered by a simple rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, Rule) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
It substracts the instances covered by a rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, Ruleset) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
It substracts the instances covered by a set of rule from this dataset;
i.e., it deactivates the instances covered by that ruleset.
- substract(Mask, Ruleset, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
It substracts the instances covered by a set of rules from this dataset;
i.e., it deactivates the instances covered by that ruleset.
- substract(Mask, int, double, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
It substracts the instances covered by a simple rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, SimpleRule) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
It substracts the instances covered by a simple rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, Rule) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
It substracts the instances covered by a rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, Ruleset) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
It substracts the instances covered by a set of rule from this dataset;
i.e., it deactivates the instances covered by that ruleset.
- substract(Mask, Ruleset, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
It substracts the instances covered by a set of rules from this dataset;
i.e., it deactivates the instances covered by that ruleset.
- substract(Mask, int, double, int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
It substracts the instances covered by a simple rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, SimpleRule) - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
It substracts the instances covered by a simple rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, Rule) - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
It substracts the instances covered by a rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, Ruleset) - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
It substracts the instances covered by a set of rule from this dataset;
i.e., it deactivates the instances covered by that ruleset.
- substract(Mask, Ruleset, int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
It substracts the instances covered by a set of rules from this dataset;
i.e., it deactivates the instances covered by that ruleset.
- substract(Mask, int, double, int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
It substracts the instances covered by a simple rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, SimpleRule) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
It substracts the instances covered by a simple rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, Rule) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
It substracts the instances covered by a rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, Ruleset) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
It substracts the instances covered by a set of rule from this dataset;
i.e., it deactivates the instances covered by that ruleset.
- substract(Mask, Ruleset, int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
It substracts the instances covered by a set of rules from this dataset;
i.e., it deactivates the instances covered by that ruleset.
- substract(Mask, int, double, int) - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
It substracts the instances covered by a simple rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, SimpleRule) - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
It substracts the instances covered by a simple rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, Rule) - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
It substracts the instances covered by a rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, Ruleset) - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
It substracts the instances covered by a set of rule from this dataset;
i.e., it deactivates the instances covered by that ruleset.
- substract(Mask, Ruleset, int) - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
It substracts the instances covered by a set of rules from this dataset;
i.e., it deactivates the instances covered by that ruleset.
- substract(Mask, int, double, int) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It substracts the instances covered by a simple rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, SimpleRule) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It substracts the instances covered by a simple rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, Rule) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It substracts the instances covered by a rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, Ruleset) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It substracts the instances covered by a set of rule from this dataset;
i.e., it deactivates the instances covered by that ruleset.
- substract(Mask, Ruleset, int) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
It substracts the instances covered by a set of rules from this dataset;
i.e., it deactivates the instances covered by that ruleset.
- substract(Mask, int, double, int) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It substracts the instances covered by a simple rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, SimpleRule) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It substracts the instances covered by a simple rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, Rule) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It substracts the instances covered by a rule from this dataset;
i.e., it deactivates the instances covered by that rule.
- substract(Mask, Ruleset) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It substracts the instances covered by a set of rule from this dataset;
i.e., it deactivates the instances covered by that ruleset.
- substract(Mask, Ruleset, int) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
It substracts the instances covered by a set of rules from this dataset;
i.e., it deactivates the instances covered by that ruleset.
- subsumes(Attribute) - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Attribute
-
It checks if that attribute of the representation of the classifier can subsume the attribute passed as a
parameter
- subsumes(Attribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
Returns true if the current representation allele subsumes the representation allele passed as a parameter
- subsumes(Attribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
Returns true if the allele is subsumed by the ternary representation given as a parameter.
- subsumes(Attribute) - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
-
It checks if that attribute of the representation of the classifier can subsume the attribute passed as a
parameter
- subsumes(Attribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
Returns true if the current representation allele subsumes the representation allele passed as a parameter
- subsumes(Attribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
Returns true if the current representation allele subsumes the representation allele passed as a parameter
- subsumes(Representation) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Representation
-
Returns true if the current representation subsumes the representation passed as a parameter
- subsumes(Attribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
Returns true if the allele is subsumed by the ternary representation given as a parameter.
- subsumido(Selector) - Method in class keel.Algorithms.Rule_Learning.AQ.Selector
-
It checks if the values of a selector are subsumed in another
- subsumido(Selector) - Method in class keel.Algorithms.Rule_Learning.CN2.Selector
-
It checks if the values of a selector are subsumed in another
- subtFont - Variable in class keel.GraphInterKeel.experiments.Credits
-
- subtract(double) - Method in class keel.Algorithms.Decision_Trees.M5.SimpleStatistics
-
Removes a value to the observed values (no checking is done
that the value being removed was actually added).
- subtract(double, double) - Method in class keel.Algorithms.Decision_Trees.M5.SimpleStatistics
-
Subtracts a value that has been seen n times from the observed values
- subtract(FuzzyAlphaCut) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyAlphaCut
-
Returns the subtract of the present FuzzyInterval and the parameter x.
- subtract(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleStatistics
-
Removes a value to the observed values (no checking is done
that the value being removed was actually added).
- subtract(double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleStatistics
-
Subtracts a value that has been seen n times from the observed values
- subtract(double) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Stats
-
Removes a value to the observed values (no checking is done
that the value being removed was actually added).
- subtract(double, double) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Stats
-
Subtracts a value that has been seen n times from the observed values
- subtract(double[], double[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns the subtraction of vector a and b.
- subtract(double[][], double[][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns the subtraction of matrix a and b.
- subtract(double[][][], double[][][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns the subtraction of matrix a and b.
- subtract(double[], double[]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns the subtraction of vector a and b.
- subtract(double[][], double[][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns the subtraction of matrix a and b.
- subtract(double[][][], double[][][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns the subtraction of matrix a and b.
- subvector(int, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns a subvector.
- subvector(IntVector) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns a subvector.
- subvector(int, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Returns a subvector.
- subvector(IntVector) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Returns a subvector as indexed by an IntVector.
- successRatio - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricSRMutator
-
Ratio of successful mutations
- sum(int, M5Instances) - Static method in class keel.Algorithms.Decision_Trees.M5.M5
-
Returns the sum of the instances values of an attribute
- sum(double[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Computes the sum of the elements of an array of doubles.
- sum(int[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Computes the sum of the elements of an array of integers.
- sum - Variable in class keel.Algorithms.Decision_Trees.M5.SimpleStatistics
-
The sum of values seen
- sum(double[], double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method implements the sum of vectors
- sum(double[][], double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method implements the sum of matrix
- sum(double[][][], double[][][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.OPV
-
This static method implements the sum of cubic matrix
- sum(double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Computes the sum of the elements of an array of doubles.
- sum(int[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Computes the sum of the elements of an array of integers.
- sum(FuzzyAlphaCut) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyAlphaCut
-
Returns the sum of the present FuzzyInterval and the parameter x.
- sum - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.RuleBase
-
Sum configuration flag.
- sum(int, MyDataset) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
Returns the sum of the itemsets values of an attribute
- sum(double[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Computes the sum of the elements of an array of doubles.
- sum(int[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Computes the sum of the elements of an array of integers.
- sum - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleStatistics
-
The sum of values seen
- sum - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Stats
-
The sum of values seen
- sum(double[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Computes the sum of the elements of an array of doubles.
- sum(int[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Computes the sum of the elements of an array of integers.
- sum(DenseVector) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
Sum of the elements of the vector
- sum(double[]) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.Gcvfctn
-
Computes the sum of the elements of the vector
- sum(DenseVector) - Method in class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.LLSImpute
-
Compute the sum of all members of vector v
- sum(double[], double[]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns the sum of vector a and b.
- sum(double[][], double[][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns the sum of matrix a and b.
- sum(double[][][], double[][][]) - Static method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.OPV
-
returns the sum of matrix a and b.
- sum(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Computes the sum of the elements of an array of doubles.
- sum(int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Computes the sum of the elements of an array of integers.
- sum(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Computes the sum of the elements of an array of doubles.
- sum(int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Computes the sum of the elements of an array of integers.
- sum(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Computes the sum of the elements of an array of doubles.
- sum(int[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Computes the sum of the elements of an array of integers.
- sum(double[], double[]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns the sum of vector a and b.
- sum(double[][], double[][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns the sum of matrix a and b.
- sum(double[][][], double[][][]) - Static method in class keel.Algorithms.Shared.ClassicalOptim.OPV
-
returns the sum of matrix a and b.
- sum() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns the sum of all elements in the vector.
- sum(double[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Computes the sum of the elements of an array of doubles.
- sum(int[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Computes the sum of the elements of an array of integers.
- sum(double[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Computes the sum of the elements of an array of doubles.
- sum(int[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Computes the sum of the elements of an array of integers.
- sum2() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns the squared sum of all elements in the vector.
- sum2(DoubleVector) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns ||u-v||^2
- SUMA - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Selec.Fuzzy_Ish
-
- suma(double, double) - Static method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Discretizacion
-
Sums two number.
- suma(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzy
-
- suma(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzy
-
- suma(Interval) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.Interval
-
- suma(Interval) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.Interval
-
- suma(Interval) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.Interval
-
- suma(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Expert.fuzzy
-
- suma(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.fuzzy
-
- suma(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzy
-
- suma(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzy
-
- suma(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.tests.IntermediateBoost.fuzzy
-
- suma_ltf(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzy
-
- suma_ltf(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzy
-
- suma_ltf(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Expert.fuzzy
-
- suma_ltf(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.fuzzy
-
- suma_ltf(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzy
-
- suma_ltf(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzy
-
- suma_ltf(fuzzy, fuzzy) - Static method in class keel.Algorithms.LQD.tests.IntermediateBoost.fuzzy
-
- sumar(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Sums two prototype sets, element by element.
- sumar(PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
SUMAR dos conjuntos de prototipos , uno a uno.
- sumarValor(float) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Atributo
-
Sums the value given to the one stored.
- sumarValor(float) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Condicion
-
Sums the value given to the one stored.
- sumatoria() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.myDataset
-
Computes the summation of the output values as real.
- sumatoria() - Method in class keel.Algorithms.RE_SL_Postprocess.Genetic_NFRM.myDataset
-
Computes the sum of the outputs of every instances.
- sumatorio(Vector<Float>, Vector<Float>) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.AlgGenetic
-
- sumatorio(Vector<Float>, Vector<Float>) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.AlgGenetic
-
- sumatorio(float, float, int) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzyrule
-
- sumatorio(float, float, int) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzyrule
-
- sumbyRows(DenseMatrix) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
Performs the sum by the rows of the matrix
- sumbyRows(DenseMatrix) - Method in class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.LLSImpute
-
From a given matrix mat, it performs the summatory by rows of such matrix
- sumDifferentClasses(int, int) - Method in class keel.Algorithms.Preprocess.Feature_Selection.Datos
-
Sums the prior probabilities of the classes that are different to the one of the example given.
- sumInterval - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
-
- sumInterval - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- sumInterval - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
-
- sumInterval - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
- summary() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.Histogram
-
Returns a String summary with all the statistical variables
- summary - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- summaryC - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
First classification algorithm summary of data identifier.
- summaryI - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Summary of data, 1 algorithm imbalanced
- summaryR - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
First regression algorithm summary of data identifier.
- summation(Vector<Float>, Vector<Float>) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.AlgGenetic
-
- summation(Vector<Float>, Vector<Float>) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.AlgGenetic
-
- summation(Vector<Float>, Vector<Float>) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.AlgGenetic
-
- sumMinorityClasses() - Method in class keel.Algorithms.Genetic_Rule_Learning.OCEC.myDataset
-
Returns the summation of the number of instances that belong to the minority classes
- sumOfWeights() - Method in class keel.Algorithms.Decision_Trees.C45.Dataset
-
Function to compute the sum of all the weights of the itemsets.
- sumOfWeights() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Dataset
-
Function to compute the sum of all the weights of the itemsets.
- sumOfWeights() - Method in class keel.Algorithms.Decision_Trees.ID3.Dataset
-
Function to compute the sum of all the weights of the itemsets.
- sumOfWeights() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Computes the sum of all the instances' weights.
- sumOfWeights() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Dataset
-
Function to compute the sum of all the weights of the itemsets.
- sumOfWeights() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Computes the sum of all the instances' weights.
- sumOfWeights() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Function to compute the sum of all the weights of the itemsets.
- sumOfWeights() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Dataset
-
Function to compute the sum of all the weights of the itemsets.
- sumOfWeights() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
Function to compute the sum of all the weights of the itemsets.
- sumOfWeights() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Dataset
-
Function to compute the sum of all the weights of the itemsets.
- sumOfWeights() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Dataset
-
Function to compute the sum of all the weights of the itemsets.
- sumOfWeights() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Computes the sum of all the instances' weights.
- sumOfWeights(int, Vector<pnPair>) - Method in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.SaturationFilter
-
Constructor of the class
- sumOfWeights() - Method in class keel.Algorithms.Rule_Learning.ART.Dataset
-
Function to compute the sum of all the weights of the itemsets.
- sumOfWeights() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Function to compute the sum of all the weights of the itemsets.
- sumOfWeights() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Function to compute the sum of all the weights of the itemsets.
- sumOfWeights() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Dataset
-
Function to compute the sum of all the weights of the itemsets.
- sumOfWeights() - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
Function to compute the sum of all the weights of the itemsets.
- sumOfWeights() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Dataset
-
Function to compute the sum of all the weights of the itemsets.
- sumOfWeights() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
- sumOfWeights() - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Computes the sum of all the instances' weights.
- sumPairFreq(String, String) - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqListPair
-
Searches for the all the pairs which have its elements equals to the provided ones,
and return their cummulative frequency
- sumSq - Variable in class keel.Algorithms.Decision_Trees.M5.SimpleStatistics
-
The sum of values squared seen
- sumSq - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleStatistics
-
The sum of values squared seen
- sumSq - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Stats
-
The sum of values squared seen
- Sup_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.domain_t
-
- Sup_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.variable_t
-
- Sup_Range(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- Sup_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.domain_t
-
Retuns the upper value for all the labels in the domain.
- Sup_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Returns the upper value of the definition interval of variable's domain.
- Sup_Range(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Returns the upper value of the definition interval of variable in position "var" of the list
- Sup_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.domain_t
-
- Sup_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.variable_t
-
- Sup_Range(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- Sup_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.domain_t
-
- Sup_Range() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.variable_t
-
- Sup_Range(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- SupBound(int[][], int[][]) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ApproximateSets
-
- superior - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ApproximateSets
-
Aprox Superior
- superSetInputFormat(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Store the input formats
- superSetInputFormat(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.ReplaceMissingValuesFilter
-
Sets the format of the input instances.
- support - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Command line argument for % support (default = 1%).
- support - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.PtreeNode
-
Partial support for the rows.
- support - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.PtreeNodeTop
-
Partial support for the rows.
- support - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TtreeNode
-
The support associate wuth the itemset represented by the node.
- support() - Method in class keel.Algorithms.Discretizers.MVD.Interval
-
Provides the number of instances covered by this interval
- support() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.Fuzzy
-
Creates and returns a FuzzyInterval with unique point of the support set.
- support() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyAlphaCut
-
Creates and returns a FuzzyInterval with the extremes of the support set.
- support() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyInterval
-
Creates and returns a FuzzyInterval with the extremes of the support set.
- support() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyNumberTRIANG
-
Creates and returns a FuzzyInterval with the extremes of the support set.
- support() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyNumberTRLEFT
-
Creates and returns a FuzzyInterval with the extremes of the support set.
- support() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzySingleton
-
Creates and returns a FuzzyInterval with unique point of the support set.
- support - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
% support.
- support - Variable in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.TtreeNode
-
The support associate with the itemset represented by the node.
- support - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
% support.
- support - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.TtreeNode
-
The support associate with the itemset represented by the node.
- support - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
-
- support - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- support - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
-
- support - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- support - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
-
- support - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
- supportBound - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.NumericAntd
-
The edge point for the fuzzy set of this numeric antecedent
- SVBPS - Class in keel.Algorithms.Instance_Selection.SVBPS
-
File: SVBPS.java
The SVBPS Instance Selection algorithm.
- SVBPS(String) - Constructor for class keel.Algorithms.Instance_Selection.SVBPS.SVBPS
-
Default constructor.
- SVBPS - Class in keel.Algorithms.Preprocess.Instance_Selection.SVBPS
-
File: SVBPS.java
The SVBPS Instance Selection algorithm.
- SVBPS(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.SVBPS.SVBPS
-
Default constructor.
- svd() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Singular Value Decomposition
- SVDimpute - Class in keel.Algorithms.Preprocess.Missing_Values.SVDimpute
-
This class implements the Single Value Decomposition Imputation
- SVDimpute(String) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.SVDimpute.SVDimpute
-
Creates a new object of SVDI based on the parameter file provided
- svm - Class in keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost
-
- svm() - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm
-
- SVM - Static variable in class keel.Algorithms.Instance_Generation.HYB.HYBGenerator
-
SVM title text
- svm - Class in org.libsvm
-
- svm() - Constructor for class org.libsvm.svm
-
- svm_check_parameter(svm_problem, svm_parameter) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm
-
- svm_check_parameter(svm_problem, svm_parameter) - Static method in class org.libsvm.svm
-
- svm_check_probability_model(svm_model) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm
-
- svm_check_probability_model(svm_model) - Static method in class org.libsvm.svm
-
- svm_cross_validation(svm_problem, svm_parameter, int, double[]) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm
-
- svm_cross_validation(svm_problem, svm_parameter, int, double[]) - Static method in class org.libsvm.svm
-
- svm_get_labels(svm_model, int[]) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm
-
- svm_get_labels(svm_model, int[]) - Static method in class org.libsvm.svm
-
- svm_get_nr_class(svm_model) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm
-
- svm_get_nr_class(svm_model) - Static method in class org.libsvm.svm
-
- svm_get_svm_type(svm_model) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm
-
- svm_get_svm_type(svm_model) - Static method in class org.libsvm.svm
-
- svm_get_svr_probability(svm_model) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm
-
- svm_get_svr_probability(svm_model) - Static method in class org.libsvm.svm
-
- svm_load_model(String) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm
-
- svm_load_model(String) - Static method in class org.libsvm.svm
-
- svm_model - Class in keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost
-
- svm_model() - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_model
-
- svm_model - Class in org.libsvm
-
- svm_model() - Constructor for class org.libsvm.svm_model
-
- svm_node - Class in keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost
-
- svm_node() - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_node
-
- svm_node - Class in org.libsvm
-
- svm_node() - Constructor for class org.libsvm.svm_node
-
- svm_parameter - Class in keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost
-
- svm_parameter() - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- svm_parameter - Class in org.libsvm
-
- svm_parameter() - Constructor for class org.libsvm.svm_parameter
-
- svm_predict(svm_model, svm_node[]) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm
-
- svm_predict(svm_model, svm_node[]) - Static method in class org.libsvm.svm
-
- svm_predict_probability(svm_model, svm_node[], double[]) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm
-
- svm_predict_probability(svm_model, svm_node[], double[]) - Static method in class org.libsvm.svm
-
- svm_predict_values(svm_model, svm_node[], double[]) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm
-
- svm_predict_values(svm_model, svm_node[], double[]) - Static method in class org.libsvm.svm
-
- svm_problem - Class in keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost
-
- svm_problem() - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_problem
-
- svm_problem - Class in org.libsvm
-
- svm_problem() - Constructor for class org.libsvm.svm_problem
-
- svm_save_model(String, svm_model) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm
-
- svm_save_model(String, svm_model) - Static method in class org.libsvm.svm
-
- svm_train(svm_problem, svm_parameter) - Static method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm
-
- svm_train(svm_problem, svm_parameter) - Static method in class org.libsvm.svm
-
- svm_type - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- svm_type - Variable in class org.libsvm.svm_parameter
-
- svmClassifier - Class in keel.Algorithms.SVM.C_SVM
-
This class is a wrapper to the LibSVM C-SVM classifier, in order to operate with KEEL data sets and parameters.
- svmClassifier(String) - Constructor for class keel.Algorithms.SVM.C_SVM.svmClassifier
-
Creates a new instance of svmClassifier
- svmClassifier - Class in keel.Algorithms.SVM.NU_SVM
-
This class is a wrapper to the LibSVM Nu-SVM classifier, in order to operate with KEEL data sets and parameters.
- svmClassifier(String) - Constructor for class keel.Algorithms.SVM.NU_SVM.svmClassifier
-
Creates a new instance of svmClassifier
- svmClassifierCost - Class in keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost
-
This class is a wrapper to the LibSVM C-SVM classifier, in order to operate with KEEL data sets and parameters.
- svmClassifierCost(String) - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svmClassifierCost
-
Creates a new instance of svmClassifier
- svmImpute - Class in keel.Algorithms.Preprocess.Missing_Values.svmImpute
-
This class imputes the missing values by means of the SVM regression.
- svmImpute(String) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.svmImpute.svmImpute
-
Creates a new instance of svmImpute
- SVMOutput(int, Instance) - Method in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
Computes SVM output for given instance.
- SVMOutput(int) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
SVMOutput of an instance in the training set, m_data
This uses the cache, unlike SVMOutput(Instance)
- SVMOutput(Instance) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
- SVMreg - Class in keel.Algorithms.SVM.SMO
-
SVMreg implements the support vector machine for regression.
- SVMreg() - Constructor for class keel.Algorithms.SVM.SMO.SVMreg
-
- svmRegression - Class in keel.Algorithms.SVM.EPSILON_SVR
-
This class is a wrapper to the LibSVM eps-SVR regression, in order to operate with KEEL data sets and parameters.
- svmRegression(String) - Constructor for class keel.Algorithms.SVM.EPSILON_SVR.svmRegression
-
Creates a new instance of svmRegression
- svmRegression - Class in keel.Algorithms.SVM.NU_SVR
-
This class is a wrapper to the LibSVM eps-SVR regression, in order to operate with KEEL data sets and parameters.
- svmRegression(String) - Constructor for class keel.Algorithms.SVM.NU_SVR.svmRegression
-
Creates a new instance of svmRegression
- SVMSEL - Class in keel.Algorithms.Instance_Generation.HYB
-
SVM process of selection of prototype set.
- SVMSEL(PrototypeSet, String, double, double, int, double, double, double, int) - Constructor for class keel.Algorithms.Instance_Generation.HYB.SVMSEL
-
Performs an selection of the training data set using SVM.
- SVMSEL(PrototypeSet, String) - Constructor for class keel.Algorithms.Instance_Generation.HYB.SVMSEL
-
Performs an selection of the training data set using SVM.
- swap(int, int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Vector
-
Swaps two elements in the vector.
- Swap(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- Swap(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- Swap(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
- Swap(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- Swap(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- Swap(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- Swap(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationinteger
-
- Swap(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- Swap(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- Swap(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- Swap(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationinteger
-
- Swap(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationreal
-
- swap(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.FastVector
-
Swaps two elements in the vector.
- swap(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Swaps two instances in the set.
- swap(Chromosome, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Chromosome
-
Performs the one-point crossover with other chromosome
- swap(int, int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.FastVector
-
Swaps two elements in the vector.
- swap(int, int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Swaps two instances in the set.
- swap(int, int) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Swaps two elements of the prototype set.
- swap(int, int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Swaps two elements of the prototype set.
- swap(int, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.FastVector
-
Swaps two elements in the vector.
- swap(int, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Swaps the values stored at i and j
- swap(int, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Swaps the values stored at i and j
- swap(int, int) - Method in class keel.Algorithms.SVM.SMO.core.FastVector
-
Swaps two elements in the vector.
- swap(int, int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Swaps two instances in the set.
- swap1 - Class in keel.Algorithms.Rule_Learning.Swap1
-
- swap1(String, String) - Constructor for class keel.Algorithms.Rule_Learning.Swap1.swap1
-
Parameter Constructor.
- Swap_bool(boolean[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- Swap_bool(boolean[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- Swap_bool(boolean[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
- Swap_bool(boolean[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- Swap_bool(boolean[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- Swap_bool(boolean[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- Swap_bool(boolean[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationinteger
-
- Swap_bool(boolean[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- Swap_bool(boolean[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- Swap_bool(boolean[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- Swap_bool(boolean[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationinteger
-
- Swap_bool(boolean[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationreal
-
- Swap_double(double[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- Swap_double(double[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- Swap_double(double[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
- Swap_double(double[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- Swap_double(double[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- Swap_double(double[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- Swap_double(double[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationinteger
-
- Swap_double(double[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- Swap_double(double[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- Swap_double(double[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- Swap_double(double[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationinteger
-
- Swap_double(double[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationreal
-
- Swap_int(int[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- Swap_int(int[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
- Swap_int(int[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
- Swap_int(int[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
- Swap_int(int[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- Swap_int(int[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
- Swap_int(int[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationinteger
-
- Swap_int(int[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
- Swap_int(int[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- Swap_int(int[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
- Swap_int(int[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationinteger
-
- Swap_int(int[], int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationreal
-
- swapOnePoint(Chromosome) - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Chromosome
-
Crossover between chromosomes, using the swap from one point approach
- SwitchTo(int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserTokenManager
-
- SwitchTo(int) - Static method in class keel.Algorithms.Rule_Learning.Swap1.DataParserTokenManager
-
- SwitchTo(int) - Static method in class keel.Dataset.DataParserTokenManager
-
- symbolicRegressionFuzzyGAP(int, boolean, ProcessConfig, Randomize) - Static method in class keel.Algorithms.Symbolic_Regression.Shared.ParseFileRegSym
-
This method learns a symbolic model for training input data given in pc using the Genetic Algorithm Programming (GAP) paradigm.
- symbolicRegressionFuzzySAP(int, boolean, ProcessConfig, Randomize) - Static method in class keel.Algorithms.Symbolic_Regression.Shared.ParseFileRegSym
-
This method learns a symbolic model for training input data given in pc using the Simulated Anneling Programming (SAP) paradigm.
- symmetricalUncertainty(double[][]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.ContingencyTables
-
Calculates the symmetrical uncertainty for base 2.
- symmetricalUncertainty(double[][]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.ContingencyTables
-
Calculates the symmetrical uncertainty for base 2.
- symmetricalUncertainty(double[][]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.ContingencyTables
-
Calculates the symmetrical uncertainty for base 2.
- SymmetricTriangle - Static variable in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
Type of Positive Definite Functions supported (Symmetric Triangle)
- symmetricTriangle(double) - Method in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
Computes the result of the Symmetric Triangle PDRF
- synopsis() - Method in class keel.Algorithms.Decision_Trees.M5.Information
-
Returns the option's synopsis.
- synopsis() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Option
-
Returns the option's synopsis.
- synopsis() - Method in class keel.Algorithms.SVM.SMO.core.Option
-
Returns the option's synopsis.
- SystemCommandExecutor - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams
-
- SystemCommandExecutor(List<String>) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.SystemCommandExecutor
-
T
- T - Variable in class keel.Algorithms.Instance_Generation.VQ.AVQGenerator
-
Partition of the training data set used as training.
- T - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- T_Consequent - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL
-
Each consequent type has this form
- T_Consequent() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.T_Consequent
-
- T_FRM - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL
-
Each FRM type has this form
- T_FRM() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.T_FRM
-
- T_Min() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.BaseR
-
- tabla - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Sel
-
Dataset.
- tabla - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Tun
-
Dataset.
- tablaDataset - Variable in class keel.GraphInterKeel.datacf.editData.EditDataPanel
-
- TableDat - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF
-
Class defined to store the information of the complete dataset
- TableDat() - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableDat
-
Creates a new instance of TableDat
- TableDat - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD
-
Class defined to store the information of the complete dataset
- TableDat() - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableDat
-
Creates a new instance of TableDat
- TableDat - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA
-
Class defined to store the information of the complete dataset
- TableDat() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableDat
-
Creates a new instance of TableDat
- tableHeader - Variable in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelAttribute
-
Table header
- tableType1 - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
tableType1 (YES or NO)
- tableType1 - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Table type flag 1.
- tableType2 - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
tableType2 (YES or NO)
- tableType2 - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Table type flag 2.
- tableType3 - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
tableType3 (YES or NO)
- tableType3 - Static variable in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Table type flag 3.
- TableVar - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF
-
Class defined to store the information of the variable of the dataset
- TableVar() - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TableVar
-
Creates a new instance of TableVar
- TableVar - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD
-
Class defined to store the information of the variable of the dataset
- TableVar() - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TableVar
-
Creates a new instance of TableVar
- TableVar - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA
-
Class defined to store the information of the variable of the dataset
- TableVar() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TableVar
-
Creates a new instance of TableVar
- tableVector - Variable in class keel.GraphInterKeel.experiments.DataSet
-
- tableVector - Variable in class keel.GraphInterKeel.experiments.Joint
-
- tabSize - Static variable in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- tabSize - Static variable in class keel.Dataset.SimpleCharStream
-
- tabularC - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Summary of classification data for multiple algorithms identifier.
- tabularI - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Summary of data, multiple algorithms imbalanced
- tabularR - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Summary of regression data for multiple algorithms identifier.
- Tag - Class in keel.Algorithms.SVM.SMO.core
-
A Tag
simply associates a numeric ID with a String description.
- Tag(int, String) - Constructor for class keel.Algorithms.SVM.SMO.core.Tag
-
Creates a new Tag
instance.
- Tag(int, String, String) - Constructor for class keel.Algorithms.SVM.SMO.core.Tag
-
Creates a new Tag
instance.
- TAGS_FILTER - Static variable in class keel.Algorithms.SVM.SMO.SMO
-
The filter to apply to the training data
- TAGS_FILTER - Static variable in class keel.Algorithms.SVM.SMO.SMOreg
-
The filter to apply to the training data
- TAGS_FILTER - Static variable in class keel.Algorithms.SVM.SMO.SVMreg
-
The filter to apply to the training data
- TAGS_MODEL_TYPES - Static variable in class keel.Algorithms.Decision_Trees.M5.M5
-
Tags for the model types.
- TAGS_PRUNING - Static variable in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Pruning methods
- takeStep(int, int, double) - Method in class keel.Algorithms.SVM.SMO.SMO.BinarySMO
-
Method solving for the Lagrange multipliers for
two instances.
- takeStep(int, int) - Method in class keel.Algorithms.SVM.SMO.SMOreg
-
Method solving for the Lagrange multipliers for
two instances.
- takeStep(int, int, double, double, double) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
-
takeStep method from pseudocode.
- takeStep(int, int, double, double, double) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
takeStep method from Shevade et al.s paper.
- tam_population - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.Parameters
-
Population size.
- tam_population - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.Parameters
-
- tam_population - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.Parameters
-
- tamanio() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.ConjuntoDatos
-
Returns the number of examples in the dataset.
- tamanio() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.ConjuntoDatos
-
Returns the number of examples in the dataset.
- tamanio() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.ConjuntoDatos
-
Returns the number of examples in the dataset.
- tamanio() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.ConjuntoDatos
-
Returns the number of examples in the dataset.
- tamanio() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.ConjuntoDatos
-
Returns the number of examples in the dataset.
- tamano - Variable in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Individual
-
Size of the individual.
- tamano - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Individual
-
Size of the individual.
- tamano - Variable in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Individual
-
Size of the individual.
- tamCromosoma - Variable in class keel.Algorithms.Preprocess.Feature_Selection.evolutionary_algorithms.Cromosoma
-
chromosome length
- Target - Class in keel.Algorithms.Decision_Trees.Target
-
Title: Target
Description: It contains the implementation of the algorithm Target
Company: KEEL
- Target() - Constructor for class keel.Algorithms.Decision_Trees.Target.Target
-
Default constructor
- Target(parseParameters) - Constructor for class keel.Algorithms.Decision_Trees.Target.Target
-
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
- target - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.Link
-
Target neuron
- tauVal(double[][]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.ContingencyTables
-
Computes Goodman and Kruskal's tau-value for a contingency table.
- tauVal(double[][]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.ContingencyTables
-
Computes Goodman and Kruskal's tau-value for a contingency table.
- tauVal(double[][]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.ContingencyTables
-
Computes Goodman and Kruskal's tau-value for a contingency table.
- TBAR - Class in keel.Algorithms.Rule_Learning.ART
-
A Java implementation of the TBAR algorithm
- TBAR(int, double, Vector, List<Attribute>) - Constructor for class keel.Algorithms.Rule_Learning.ART.TBAR
-
Parameter constructor.
- tC - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Classification t Stat-test identifier.
- TCNN - Class in keel.Algorithms.Instance_Selection.TCNN
-
File: TCNN.java
The TCNN Instance Selection algorithm.
- TCNN(String) - Constructor for class keel.Algorithms.Instance_Selection.TCNN.TCNN
-
Default constructor.
- TCNN - Class in keel.Algorithms.Preprocess.Instance_Selection.TCNN
-
File: TCNN.java
The TCNN Instance Selection algorithm.
- TCNN(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.TCNN.TCNN
-
Default constructor.
- tconorma(float, float) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
-
- tconorma(float, float) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
-
- tconorma(float, float) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.rule
-
- tconorma(float, float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
-
- tconorma(float, float) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
-
- tconorma(float, float) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzyrule
-
- tconorma(float, float) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzyrule
-
- TEACHING - Static variable in class keel.GraphInterKeel.experiments.Experiments
-
- teaching_mouseEntered(MouseEvent) - Method in class keel.GraphInterKeel.menu.Frame
-
Enter in teaching button
- teaching_mouseExited(MouseEvent) - Method in class keel.GraphInterKeel.menu.Frame
-
Exit from teaching button
- teaching_mouseReleased(MouseEvent) - Method in class keel.GraphInterKeel.menu.Frame
-
Entering in Educational module
- TechnicalInformation - Class in keel.Algorithms.Statistical_Classifiers.Logistic.core
-
Used for paper references in the Javadoc and for BibTex generation.
- TechnicalInformation(TechnicalInformation.Type) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation
-
Initializes the information with the given type
- TechnicalInformation(TechnicalInformation.Type, String) - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation
-
Initializes the information with the given type
- TechnicalInformation - Class in keel.Algorithms.SVM.SMO.core
-
Used for paper references in the Javadoc and for BibTex generation.
- TechnicalInformation(TechnicalInformation.Type) - Constructor for class keel.Algorithms.SVM.SMO.core.TechnicalInformation
-
Initializes the information with the given type
- TechnicalInformation(TechnicalInformation.Type, String) - Constructor for class keel.Algorithms.SVM.SMO.core.TechnicalInformation
-
Initializes the information with the given type
- TechnicalInformation.Field - Enum in keel.Algorithms.Statistical_Classifiers.Logistic.core
-
the possible fields
- TechnicalInformation.Field - Enum in keel.Algorithms.SVM.SMO.core
-
the possible fields
- TechnicalInformation.Type - Enum in keel.Algorithms.Statistical_Classifiers.Logistic.core
-
the different types of information
- TechnicalInformation.Type - Enum in keel.Algorithms.SVM.SMO.core
-
the different types of information
- TechnicalInformationHandler - Interface in keel.Algorithms.Statistical_Classifiers.Logistic.core
-
For classes that are based on some kind of publications.
- TechnicalInformationHandler - Interface in keel.Algorithms.SVM.SMO.core
-
For classes that are based on some kind of publications.
- temp - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Temporal instance.
- temp - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Temporal instance.
- temp - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Temporal instance.
- temp - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Temporal instance.
- temp - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Temporal instance.
- temp - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Temporal instance.
- temp - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Temporal instance.
- temp - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Temporal instance.
- temperExponent - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricMutator
-
Temperature exponent for the mutations
- temperExponent - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator
-
Temperature exponent for the mutations
- Tend - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
- Tend - Variable in class keel.Algorithms.Neural_Networks.gmdh.SetupParameters
-
- tenthDataSets - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
3-data array to hold 10th sets of input data.
- terminate() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.EARMGAProcess
-
- terminate() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENARProcess
-
Checks the stop condition for the algorithm.
- terminateProgram() - Static method in class keel.Algorithms.Instance_Generation.utilities.Debug
-
Exits the current program
- terminateProgram() - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Debug
-
Exits the current program
- TERMS - Static variable in class keel.Algorithms.Neural_Networks.gmdh.node
-
Number of terms
- TernaryMutation - Interface in keel.Algorithms.Genetic_Rule_Learning.UCS
-
Ternary mutation.
- TernaryMutation - Interface in keel.Algorithms.Genetic_Rule_Learning.XCS
-
Ternary Mutation.
- ternaryRep - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Represents the type of the representation.
- TernaryRep - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
It contains a char value, that represents the value of the alelle.
- TernaryRep() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
It is the default constructor of the class.
- TernaryRep(double) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
It's the constructor of the class value from the environmental value.
- TernaryRep(char) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
It is the constructor of the class.
- TernaryRep(Attribute) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
It is the constructor of the class.
- ternaryRep - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Represents the type of the representation.
- TernaryRep - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
It contains a char value, that represents the value of the alelle.
- TernaryRep() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
It is the default constructor of the class.
- TernaryRep(double) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
It's the constructor of the class value from the environmental value.
- TernaryRep(char) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
It is the constructor of the class.
- TernaryRep(Attribute) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
It is the constructor of the class.
- test - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Test dataset
- test - Variable in class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Test dataset.
- test(String[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Method for testing this class.
- test - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Test dataset.
- TEST - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- test(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Gene
-
Test if the passed value (index of the nominal in the
attribute) is covered by this gene
- test(double) - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Gene
-
Test a value from an instance (of the data set), to see if it is covered.
- TEST - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- test - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Test dataset
- test - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Data
-
Testing data
- test - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Metodo
-
- test - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
- test(String[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Method for testing this class.
- TEST - Static variable in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
Type of file: test data set.
- test - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Test dataset.
- TEST - Variable in class keel.Algorithms.Neural_Networks.ensemble.Ensemble
-
Training flag.
- test - Variable in class keel.Algorithms.Neural_Networks.gann.Data
-
Testing data
- test - Variable in class keel.Algorithms.Neural_Networks.gmdh.Data
-
Testing data
- test - Variable in class keel.Algorithms.Neural_Networks.net.Data
-
Testing data
- test - Variable in class keel.Algorithms.Preprocess.Basic.Metodo
-
Test dataset
- test - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Test dataset
- test - Static variable in class keel.Algorithms.PSO_Learning.CPSO.CPSO
-
Training dataset.
- test - Static variable in class keel.Algorithms.PSO_Learning.LDWPSO.LDWPSO
-
Training dataset.
- test - Static variable in class keel.Algorithms.PSO_Learning.REPSO.REPSO
-
Training dataset.
- test - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Test dataset
- test() - Method in class keel.Algorithms.Rule_Learning.Swap1.swap1
-
Test process.
- TEST - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Type of file: test data set.
- Test - Class in keel.GraphInterKeel.experiments
-
- Test() - Constructor for class keel.GraphInterKeel.experiments.Test
-
Builder
- Test(ExternalObjectDescription, Point, GraphPanel) - Constructor for class keel.GraphInterKeel.experiments.Test
-
Builder
- Test(ExternalObjectDescription, Point, GraphPanel, Vector, int, int) - Constructor for class keel.GraphInterKeel.experiments.Test
-
- test_data - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Check if test,validation or cross validation data is going to be used
- test_data - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Check if test,validation or cross validation data is going to be used
- test_data - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Check if test,validation or cross validation data is going to be used
- test_data - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Check if test,validation or cross validation data is going to be used
- Test_Example(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
-
- Test_Example(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Returns the number of examples belonging to the partition "particion"
- Test_Example(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.example_set
-
- Test_Example(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.example_set
-
- test_file - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
File names
- test_file - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
File names
- test_file - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
File names
- test_file - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
File names
- test_output - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
File names
- test_output - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
File names
- test_output - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
File names
- test_output - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
File names
- testClasification(double[][], int, int[], int, int) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbfn
-
Evaluates the net for clasification problem
- testClasification(double[][], int, int[], int, int) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
-
Evaluates the net for clasification problem
- testClasification(double[][], int, int[], int, int) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
-
Evaluates the net for clasification problem
- testClasification(double[][], int, int[], int, int) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
-
Evaluates the net for clasification problem
- testClasification(double[][], int, int[], int, int) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
-
Evaluates the net for clasification problem
- testClasification(double[][], int, int[], int, int) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
-
Evaluates the net for clasification problem
- testClassification(String, Configuration) - Static method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- testClassifier(Classifier, String, String, String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PopulationWrapper
-
- testClassifier(Classifier, String, String, String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PopulationWrapper
-
- testCombinations(short[]) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
Commences the process of testing whether the N-1 sized sub-sets of a
newly created T-tree node are supported elsewhere in the Ttree --- (a
process refered to as "X-Checking").
- testCorrect - Variable in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
Correctly classified in test.
- testCorrect - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
Correctly classified in test.
- testCorrect - Variable in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
Correctly classified in test.
- testCorrect - Variable in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Number of correctly classified example from test dataset.
- testCorrect - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
Correctly classified in test.
- testCorrect - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
Correctly classified in test.
- testCorrect - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
Correctly classified in test.
- testCorrect - Variable in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
Correctly classified in test.
- testCorrect - Variable in class keel.Algorithms.Rule_Learning.C45Rules.Algorithm
-
Correctly classified in test.
- testCorrect - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Algorithm
-
Correctly classified in test.
- testCorrect - Variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
Correctly classified in test.
- testCorrect - Variable in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
Correctly classified in test.
- testCV(int, int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Creates the test set for one fold of a cross-validation on
the dataset.
- testCV(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Creates the test set for one fold of a cross-validation on
the dataset.
- testCV(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Creates the test set for one fold of a cross-validation on
the dataset.
- testCV(int, int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Creates the test set for one fold of a cross-validation on the dataset.
- testCV(int, int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Creates the test set for one fold of a cross-validation on
the dataset.
- testCV(int, int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Creates the test set for one fold of a cross-validation on
the dataset.
- testData - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Test input data.
- testData - Variable in class keel.Algorithms.Decision_Trees.CART.RunCART
-
Test dataset read.
- testData - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Test input data.
- testData - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- testData - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Test input data.
- testData - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Test input data.
- testData - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Test input data.
- testData - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Test input data.
- testData - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Test input data.
- testData - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Test input data.
- testDataArray - Variable in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
2-D array to hold the test data Note that classifiaction
involves producing a set of Classification Rules (CRs) from a training
set and then testing the effectiveness of the CRs on a test set.
- testDataSet(myDataset, DataBase) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AprioriTFPclass
-
Populates test and training datasets.
- testDataset - Variable in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
The test dataset.
- testDataset - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
The test dataset.
- testDataset - Variable in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
The test dataset.
- testDataset - Variable in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Test dataset.
- testDataset - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
The test dataset.
- testDataset - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
The test dataset.
- testDataset - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
The test dataset.
- testDataset - Static variable in class keel.Algorithms.MIL.AbstractMIAlgorithm
-
- testDataset() - Method in class keel.Algorithms.MIL.ExceptionDatasets
-
- testDataset - Variable in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
The test dataset.
- testDataset - Variable in class keel.Algorithms.Rule_Learning.C45Rules.Algorithm
-
The test dataset.
- testDataset - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Algorithm
-
The test dataset.
- testDataset - Variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
The test dataset.
- testDataset - Variable in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
The test dataset.
- testDataset - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.C45
-
The test dataset.
- testDataSet - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Test prototype set.
- testea(Dataset, boolean) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Hider
-
Test rules with a test file in the 'DataSet' object
- TestEnsembleInClassification(EnsembleParameters, double[][], int) - Method in class keel.Algorithms.Neural_Networks.ensemble.Ensemble
-
Test ensemble in classification
- TestEnsembleInRegression(EnsembleParameters, double[][], int) - Method in class keel.Algorithms.Neural_Networks.ensemble.Ensemble
-
Test ensemble in regression
- testExtension(Rule) - Method in class keel.Algorithms.Hyperrectangles.INNER.Rule
-
Performs an extension of a rule to another
- testFile - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Test file name
- testFile - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Test file name.
- testFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
It the BD of test examples
- testFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It the BD of test examples
- TESTFILE - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- testFile - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Test file name
- testFile - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Test file name.
- testFile - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Test file name
- testFile - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Test file name
- testFileName - Static variable in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
The name of the file that contains the information to make the test.
- testFileName - Static variable in class keel.Algorithms.Decision_Trees.CART.RunCART
-
The name of the file that contains the information to make the test.
- testFileName - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
The name of the file that contains the information to make the test.
- testFileName - Static variable in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
The name of the file that contains the information to make the test.
- testFileName - Static variable in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Test dataset file's name.
- testFileName - Static variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
The name of the file that contains the information to make the test.
- testFileName - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
The name of the file that contains the information to make the test.
- testFileName - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
The name of the file that contains the information to make the test.
- testFileName - Static variable in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
Test data set file name.
- testFileName - Static variable in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
The name of the file that contains the information to make the test.
- testFileName - Static variable in class keel.Algorithms.Rule_Learning.C45Rules.Algorithm
-
The name of the file that contains the information to make the test.
- testFileName - Static variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Algorithm
-
The name of the file that contains the information to make the test.
- testFileName - Static variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
The name of the file that contains the information to make the test.
- testFileName - Static variable in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
The name of the file that contains the information to make the test.
- testFileName - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Test data set file name.
- testingModel - Variable in class keel.GraphInterKeel.datacf.exportData.ExportPanel
-
The model for storing the testing files used in the partition mode
- testingModel - Variable in class keel.GraphInterKeel.datacf.importData.ImportPanel
-
The model for storing the testing files used in the partition mode
- testInputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- testInputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- testInputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- testInputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Parameters
-
Original Test data filename.
- testInputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.Parameters
-
Original Test data filename.
- testInputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Parameters
-
Original Test data filename.
- testInputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
Original Test data filename.
- testInputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.Parameters
-
Original Test data filename.
- testInputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Parameters
-
Original Test data filename.
- testInputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Parameters
-
Original Test data filename.
- testInputFile - Static variable in class keel.Algorithms.Rule_Learning.Swap1.Parameters
-
- testInputFile - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerCSVM
-
Test dataset filename.
- testInputFile - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerSMO
-
Test dataset filename.
- testInputFile - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.ParametersSMO
-
Test input filename.
- testInstances - Variable in class keel.Algorithms.MIL.AbstractMIAlgorithm
-
- testModeling(double[][], int, double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbfn
-
Evaluates the net for modeling problem
- testModeling(double[][], int, double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
-
Evaluates the net for modeling problem
- testModeling(double[][], int, double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
-
Evaluates the net for modeling problem
- testModeling(double[][], int, double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
-
Evaluates the net for modeling problem
- testModeling(double[][], int, double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
-
Evaluates the net for modeling problem
- testModeling(double[][], int, double[]) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
-
Evaluates the net for modeling problem
- TestNetworkInClassification(Parameters, double[][], int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Test network in classification
- TestNetworkInClassification(SetupParameters, double[][], int) - Method in class keel.Algorithms.Neural_Networks.gann.Network
-
Test network in classification
- TestNetworkInClassification(Parameters, double[][], int) - Method in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Test network in classification
- TestNetworkInClassification(Parameters, double[][], int) - Method in class keel.Algorithms.Neural_Networks.net.Network
-
Test network in classification
- TestNetworkInRegression(Parameters, double[][], int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Test network in regression
- TestNetworkInRegression(SetupParameters, double[][], int) - Method in class keel.Algorithms.Neural_Networks.gann.Network
-
Test network in regression.
- TestNetworkInRegression(Parameters, double[][], int) - Method in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Test network in regression.
- TestNetworkInRegression(Parameters, double[][], int) - Method in class keel.Algorithms.Neural_Networks.net.Network
-
Test network in regression
- TestNominalOutOfRange - Static variable in class keel.Algorithms.Rule_Learning.Swap1.ErrorInfo
-
- TestNominalOutOfRange - Static variable in class keel.Dataset.ErrorInfo
-
- TestNumberOutOfRange - Static variable in class keel.Algorithms.Rule_Learning.Swap1.ErrorInfo
-
- TestNumberOutOfRange - Static variable in class keel.Dataset.ErrorInfo
-
- testOutput - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Test output data.
- testOutput - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Test output data.
- testOutput - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Test output data.
- testOutput - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Test output data.
- testOutput - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Test output data.
- testOutput - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Test output data.
- testOutput - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Test output data.
- testOutput - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Test output data.
- testOutputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- testOutputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- testOutputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- testOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Parameters
-
Modified Training data filename.
- testOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.Parameters
-
Modified Training data filename.
- testOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Parameters
-
Modified Training data filename.
- testOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
Modified Training data filename.
- testOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.Parameters
-
Modified Training data filename.
- testOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Parameters
-
Modified Training data filename.
- testOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Parameters
-
Modified Training data filename.
- testOutputFile - Static variable in class keel.Algorithms.Rule_Learning.Swap1.Parameters
-
- testOutputFileName - Static variable in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
The name of the test output file.
- testOutputFileName - Static variable in class keel.Algorithms.Decision_Trees.CART.RunCART
-
The name of the test output file.
- testOutputFileName - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
The name of the test output file.
- testOutputFileName - Static variable in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
The name of the test output file.
- testOutputFileName - Static variable in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Name of the test output file.
- testOutputFileName - Static variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
The name of the test output file.
- testOutputFileName - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
The name of the test output file.
- testOutputFileName - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
The name of the test output file.
- testOutputFileName - Static variable in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
The name of the test output file.
- testOutputFileName - Static variable in class keel.Algorithms.Rule_Learning.C45Rules.Algorithm
-
The name of the test output file.
- testOutputFileName - Static variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Algorithm
-
The name of the test output file.
- testOutputFileName - Static variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
The name of the test output file.
- testOutputFileName - Static variable in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
The name of the test output file.
- testPrediction - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Predicted classes for the test dataset.
- testPrediction - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Test predicted classes
- testReportFileName - Variable in class keel.Algorithms.MIL.AbstractMIAlgorithm
-
- testroyston(double[]) - Static method in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
This method computes the statistic and the p-value of Shapiro Wilk test using Royston algorithm.
- testRuleUsingChiSquaredTesting(double, double, double, double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.RuleList
-
Tests a classification rule with the given parameters to determine
the interestingness/surprisingness of the rule.
- testSelectionTree - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- TestSONNInClassification(SetupParameters, double[][], int) - Method in class keel.Algorithms.Neural_Networks.gmdh.sonn
-
Obtains fitness for a classification problem
- TestSONNInRegression(SetupParameters, double[][], int) - Method in class keel.Algorithms.Neural_Networks.gmdh.sonn
-
Test the SONN algorithm in a regression problem
- TestsResults - Class in keel.RunKeelGraph
-
File: TestResults.java
Class to help in the processing of the execution of a experiment.
- TestsResults(Frame, String, boolean) - Constructor for class keel.RunKeelGraph.TestsResults
-
Builder
- TestsResults() - Constructor for class keel.RunKeelGraph.TestsResults
-
Default builder
- testsw(double[][][], double, PrintStream) - Static method in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Computes the p-value of Shapiro Wilk statistical test for a set of samples obtained from
two algorithms and an arbitrary number of datasets
- testTime - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Test prediction time.
- testTime - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Test prediction time.
- testTime - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Test prediction time.
- testWindow - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Indicates the number of train executions that has to be made
to do a test execution.
- testWindow - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Indicates the number of train executions that has to be made
to do a test execution.
- TESTWINDOW - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- testWithFail(Dataset) - Static method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.DatasetChecker
-
- texto_actionPerformed(ActionEvent) - Method in class keel.GraphInterKeel.help.HelpOptions
-
Manages changes in text
- textRules - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Matrix that stores the text of the rules.
- TFreeMutation - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
This class implements the free mutation.
- TFreeMutation() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.TFreeMutation
-
- TFreeMutation - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This class implements the free mutation.
- TFreeMutation() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.TFreeMutation
-
- themes - Variable in class keel.GraphInterKeel.datacf.help.HelpFrame
-
- theoryDL(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RuleStats
-
The description length of the theory for a given rule.
- theoryDL(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Rule
-
The description length of the theory for a given rule.
- theoryDL(MyDataset) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Rule
-
The description length of the theory for a given rule.
- theoryDL(MyDataset) - Method in class keel.Algorithms.Rule_Learning.Ripper.Rule
-
The description length of the theory for a given rule.
- theoryLength - Variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Classifier
-
- theoryLength - Variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Classifier
-
- theoryWeight - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- theoryWeight - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- thereInstancesOfClass(int) - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
-
Checks if in the instances set left instances of a determined class
- theta_del - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Is the deletion threshold.
- theta_del - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Is the deletion threshold.
- THETA_DEL - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- theta_GA - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
It represents the time from last GA aplication for aplicate again the GA
in the action set.
- theta_GA - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It represents the time from last GA aplication for aplicate again the GA
in the action set.
- THETA_GA - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- theta_mna - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Number of classifiers that has to be covered when creating the
prediction array.
- THETA_MNA - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- theta_reduct - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Is the reduction threshold.
- THETA_REDUCT - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- theta_sub - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Is the subsumption threshold.
- theta_sub - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Is the subsumption threshold.
- THETA_SUB - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- ThreadedStreamHandler - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams
-
- threeDecPlaces(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Converts given real number to real number rounded up to three decimal
places.
- threshold - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Problem coefficients
- threshold - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Problem coefficients
- threshold - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Problem coefficients
- threshold - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Problem coefficients
- threshold - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
Threshold value.
- Thrift - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift
-
Title: Algorithm
Description: It contains the implementation of the algorithm
Company: KEEL
- Thrift() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.Thrift
-
Default constructor
- Thrift(parseParameters) - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.Thrift
-
It reads the data from the input files (training, validation and test) and parse all the parameters
from the parameters array.
- tiempoTotal() - Method in class keel.Algorithms.PSO_Learning.CPSO.Crono
-
Returns the total time recorded.
- tiempoTotal() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.Crono
-
Returns the total time recorded.
- tiempoTotal() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.Crono
-
Returns the total time recorded.
- tiempoTotal() - Method in class keel.Algorithms.PSO_Learning.REPSO.Crono
-
Returns the total time recorded.
- tieneValor(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Condicion
-
Checks if the pair attribute id and operator given are the one set on this condition.
- tieneValor(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Condicion
-
Checks if the pair attribute id and operator given are the one set on this condition.
- tieneValor(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Condicion
-
Checks if the pair attribute id and operator given are the one set on this condition.
- tieneValor(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.Condicion
-
Checks if the pair attribute id and operator given are the one set on this condition.
- tieneValorAtributo(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.Regla
-
Checks if the given attribute is already in the rule with a value
and the given operator.
- tieneValorAtributo(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.Regla
-
Checks if the given attribute is already in the rule with a value
and the give operator.
- tieneValorAtributo(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.Regla
-
Checks if the given attribute is already in the rule with a value.
- tieneValorAtributo(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.Regla
-
Checks if the given attribute is already in the rule with a value
and the given operator.
- TimeControl - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
This class makes the UCS time control.
- TimeControl() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.TimeControl
-
Default Constructor.
- TimeControl - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This class makes the XCS time control
- TimeControl() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.TimeControl
-
Default constructor.
- timeConverter(long, long) - Static method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.WrapperManager
-
- Timer - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning
-
File: Timer.java
Auxiliar class to support timing reports in model+training+test algorithms
- Timer() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.Timer
-
- Timer - Class in keel.Algorithms.RST_Learning
-
File: Timer.java
Auxiliar class to support timing reports in model+training+test algorithms
- Timer() - Constructor for class keel.Algorithms.RST_Learning.Timer
-
- timerEvolutionStats - Class in keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
- timerEvolutionStats() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.BioHEL.timerEvolutionStats
-
- timerMDL - Class in keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
- timerMDL() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.BioHEL.timerMDL
-
- timers - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- Timers - Class in keel.Algorithms.Genetic_Rule_Learning.GAssist
-
Manages timers: flags and parameters that are triggered at
certain iterations
- Timers() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GAssist.Timers
-
- Timers - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
-
Manages timers: flags and parameters that are triggered at
certain iterations
- Timers() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Timers
-
- timersManagement - Class in keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
- timersManagement() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.BioHEL.timersManagement
-
- times(double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Multiplies a scalar
- times(DoubleVector) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Multiplies another DoubleVector element by element
- times(double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Multiply a matrix by a scalar, C = s*A
- times(Matrix) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Linear algebraic matrix multiplication, A * B
- times - Variable in class keel.GraphInterKeel.experiments.Joint
-
- timesEquals(double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Multiply a vector by a scalar in place, u = s * u
- timesEquals(DoubleVector) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Multiplies another DoubleVector element by element in place
- timesEquals(double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Multiply a matrix by a scalar in place, A = s*A
- timingProcess - Class in keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
- timingProcess() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.BioHEL.timingProcess
-
- tipify_inputs - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Check if is going to be tipified
- tipify_inputs - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Check if is going to be tipified
- tipify_inputs - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Check if is going to be tipified
- tipify_inputs - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Check if is going to be tipified
- TipifyInputData(Parameters) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Data
-
Tipify all data inputs
- TipifyInputData(SetupParameters) - Method in class keel.Algorithms.Neural_Networks.gann.Data
-
Tipify all data inputs
- TipifyInputData(Parameters) - Method in class keel.Algorithms.Neural_Networks.gmdh.Data
-
Tipify all data inputs
- TipifyInputData(Parameters) - Method in class keel.Algorithms.Neural_Networks.net.Data
-
Tipify all data inputs
- tipo_modificadores - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Sel
-
Type of fuzzy rules identifier.
- tipo_modificadores - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Tun
-
Type of fuzzy rules identifier.
- tipo_reglas - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Sel
-
Type of fuzzy rules identifier.
- tipo_reglas - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.RuleBase_Tun
-
Type of fuzzy rules identifier.
- tipoBC() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Ecm
-
Returns the BC type.
- TipoIntervalo - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs
-
Class that defines the TipoIntervalo
- TipoIntervalo() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.TipoIntervalo
-
- TipoIntervalo - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs
-
Class that defines the TipoIntervalo
- TipoIntervalo() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.TipoIntervalo
-
- TipoIntervalo - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs
-
Class that defines the TipoIntervalo (Interval)
- TipoIntervalo() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.TipoIntervalo
-
- TipoIntervalo - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs
-
Class that defines the TipoIntervalo
- TipoIntervalo() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.TipoIntervalo
-
- TipoIntervalo - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs
-
Class that defines the TipoIntervalo
- TipoIntervalo() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.TipoIntervalo
-
- TipoIntervalo - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs
-
Class that defines the TipoIntervalo
- TipoIntervalo() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.TipoIntervalo
-
- TipoIntervalo - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs
-
Class that defines the TipoIntervalo
- TipoIntervalo() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.TipoIntervalo
-
- TipoIntervalo - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs
-
Class that defines the TipoIntervalo
- TipoIntervalo() - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.TipoIntervalo
-
- TIPOMAX - Static variable in class keel.Algorithms.Genetic_Rule_Learning.LogenPro.Condition
-
Tag (MAX TYPE).
- tiposVar() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.myDataset
-
Returns the type of each input attribute (NOMINAL = 0 OR NUMERIC = 1)
- tiposVar() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.myDataset
-
Returns the type of each input attribute (NOMINAL = 0 OR NUMERIC = 1)
- tiposVar() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.myDataset
-
Returns the type of each input attribute (NOMINAL = 0 OR NUMERIC = 1)
- tiposVar() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.myDataset
-
Returns the type of each input attribute (NOMINAL = 0 OR NUMERIC = 1)
- tiposVar() - Method in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Dataset
-
It returns the types of each input (NOMINAL[0] or NUMERIC[1])
- tiposVar() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.myDataset
-
Returns the type of each input attribute (NOMINAL = 0 OR NUMERIC = 1)
- tiposVar() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Dataset
-
It returns the types of each input (NOMINAL[0] or NUMERICAL[1])
- tiposVar() - Method in class keel.Algorithms.Rule_Learning.AQ.Dataset
-
It returns the types of each input (NOMINAL[0] or NUMERICAL[1])
- tiposVar() - Method in class keel.Algorithms.Rule_Learning.CN2.Dataset
-
It returns the types of each input (NOMINAL[0] or NUMERICAL[1])
- tiposVar() - Method in class keel.Algorithms.Rule_Learning.Prism.Dataset
-
Return the types of each in-put(NOMINAL[0] o NUMERIC[1])
- tiposVar() - Method in class keel.Algorithms.Rule_Learning.UnoR.Dataset
-
Return the types of each in-put(NOMINAL[0] o NUMERIC[1])
- tiposVar() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.Dataset
-
It returns the types of each input (NOMINAL[0] or NUMERIC[1])
- tiposVar() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.Dataset
-
It returns the types of each input (NOMINAL[0] or NUMERIC[1])
- tiposVar() - Method in class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Dataset
-
It returns the types of each input (NOMINAL[0] or NUMERICAL[1])
- titleFont - Variable in class keel.GraphInterKeel.experiments.Credits
-
- titleLabel - Variable in class keel.GraphInterKeel.experiments.Credits
-
- tMDL - Variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.timersManagement
-
- tmGlobalCrossover - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmGlobalCrossover - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmGlobalEvaluation - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmGlobalEvaluation - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmGlobalGAOperators - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmGlobalGAOperators - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmGlobalMutation - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmGlobalMutation - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmGlobalReplacement - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmGlobalReplacement - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmGlobalSelection - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmGlobalSelection - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmGlobalStatistics - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmGlobalStatistics - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmInitialGlobalCrossover - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmInitialGlobalCrossover - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmInitialGlobalEvaluation - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Parameters controlling evaluation time
- tmInitialGlobalEvaluation - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Parameters controlling evaluation time
- tmInitialGlobalGAOperators - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Parameters controlling genetic operators' time
- tmInitialGlobalGAOperators - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Parameters controlling genetic operators' time
- tmInitialGlobalMutation - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmInitialGlobalMutation - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmInitialGlobalReplacement - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Parameters controlling reemplacement time
- tmInitialGlobalReplacement - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Parameters controlling reemplacement time
- tmInitialGlobalSelection - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Parameters controlling selection time
- tmInitialGlobalSelection - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Parameters controlling selection time
- tmInitialGlobalStatistics - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
Parameters controlling statistics time
- tmInitialGlobalStatistics - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
Parameters controlling statistics time
- tmIterationCrossover - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmIterationCrossover - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmIterationEvaluation - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmIterationEvaluation - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmIterationGAOperators - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmIterationGAOperators - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmIterationMutation - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmIterationMutation - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmIterationReplacement - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmIterationReplacement - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmIterationSelection - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmIterationSelection - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmIterationStatistics - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Chronometer
-
- tmIterationStatistics - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Chronometer
-
- tmpTestingImportedFile - Variable in class keel.GraphInterKeel.datacf.importData.ImportPanel
-
Temporal File used for previsualizing the results of the import proccess (in testing)
- tmpTrainingExportedFile - Variable in class keel.GraphInterKeel.datacf.exportData.ExportPanel
-
Temporal File used for previsualizing the results of the export proccess (in training)
- tmpTrainingImportedFile - Variable in class keel.GraphInterKeel.datacf.importData.ImportPanel
-
Temporal File used for previsualizing the results of the import proccess (in training)
- TMtablaAtributos - Variable in class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelAttribute
-
Attribute table
- TN - Variable in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- TN - Variable in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- TN - Variable in class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- TNichedMutation - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
This class applies the niched mutation.
- TNichedMutation() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.TNichedMutation
-
- TNichedMutation - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This class applies the niched mutation.
- TNichedMutation() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.TNichedMutation
-
- tnorm(double, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.RuleBase
-
Returns the T-Norm of two membership values.
- tnorma(double, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.FuzzyRule
-
- tnorma(float, float, int) - Method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fuzzyRule
-
- tnorma(float, float, int) - Method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fuzzyRule
-
- tnorma(float, float, int) - Method in class keel.Algorithms.LQD.methods.FGFS_Original.rule
-
- tnorma(float, float, int) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.rule
-
- tnorma(float, float, int) - Method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.rule
-
- tnorma(float, float, int) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling.fuzzyrule
-
- tnorma(float, float, int) - Method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fuzzyrule
-
- TNormLukasiewicz(double, double) - Static method in class keel.Algorithms.RST_Learning.Operators
-
Lukasiewicz T-Norm
- TNormMin(double, double) - Static method in class keel.Algorithms.RST_Learning.Operators
-
Returns the smaller of two double
values.
- TNormProd(double, double) - Static method in class keel.Algorithms.RST_Learning.Operators
-
Returns the product of two double
values.
- To - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
- To - Variable in class keel.Algorithms.Neural_Networks.gmdh.SetupParameters
-
- to8GrayString() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Transform the prototypeSet (this) in a matrix of binary string Gray Code
- to8GrayString() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Transform the prototypeSet (this) in a matrix of binary string Gray Code
- to_fuzzy(String) - Static method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fun_aux
-
Convert the number in fuzzy
- to_fuzzy(String) - Static method in class keel.Algorithms.LQD.methods.FGFS_Minimum_Risk.fun_aux
-
Convert the number in fuzzy
- to_fuzzy(String) - Static method in class keel.Algorithms.LQD.methods.FGFS_Original.fun_aux
-
Convert the number in fuzzy
- to_fuzzy(String) - Static method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight.fun_aux
-
Convert the number in fuzzy
- to_fuzzy(String) - Static method in class keel.Algorithms.LQD.methods.FGFS_Rule_Weight_Penalty.fun_aux
-
Convert the number in fuzzy
- to_fuzzy(String) - Static method in class keel.Algorithms.LQD.preprocess.Expert.fun_aux
-
Convert the number in fuzzy
- to_fuzzy(String) - Static method in class keel.Algorithms.LQD.preprocess.Fuzzy_SMOTE.fun_aux
-
Convert the number in fuzzy
- to_fuzzy(String) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling.fun_aux
-
Convert the number in fuzzy
- to_fuzzy(String) - Static method in class keel.Algorithms.LQD.preprocess.Prelabelling_Expert.fun_aux
-
Convert the number in fuzzy
- toArray() - Method in class keel.Algorithms.Decision_Trees.M5.M5Vector
-
Returns all the elements of this vector as an array
- toArray() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.FastVector
-
Returns all the elements of this vector as an array
- toArray() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.FastVector
-
Returns all the elements of this vector as an array
- toArray() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.FastVector
-
Returns all the elements of this vector as an array
- toArray() - Method in class keel.Algorithms.SVM.SMO.core.FastVector
-
Returns all the elements of this vector as an array
- toBibTex() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation
-
Returns a BibTex string representing this technical information.
- toBibTex() - Method in class keel.Algorithms.SVM.SMO.core.TechnicalInformation
-
Returns a BibTex string representing this technical information.
- toBinaryString() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Transform the prototypeSet (this) in a matrix of binary string 8-bit codification.
- toBinaryString() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Transform the prototypeSet (this) in a matrix of binary string 8-bit codification.
- toBitString() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Rule
-
- toBitString(myDataset, int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Rule
-
It return a bit string correspoding to a certain example
- toByteArray(Object, boolean) - Static method in class keel.Algorithms.Decision_Trees.M5.SerializedObject
-
Serializes the supplied object to a byte array.
- toClassDetailsString() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Returns a string with the deatails of this class.
- toClassDetailsString(String) - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Generates a breakdown of the accuracy for each class,
incorporating various information-retrieval statistics, such as
true/false positive rate, precision/recall/F-Measure.
- toCumulativeMarginDistributionString() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Output the cumulative margin distribution as a string suitable
for input for gnuplot or similar package.
- todoBien() - Method in class keel.Algorithms.Rule_Learning.Prism.Prism
-
Checks if there're sets or not.
- todoBien() - Method in class keel.Algorithms.Subgroup_Discovery.aprioriSD.aprioriSD
-
Checks if all the attributes are nominal/discrete.
- todoBien() - Method in class keel.Algorithms.Subgroup_Discovery.CN2SD.CN2SD
-
- toDoubleArray() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Returns the values of each attribute as an array of doubles.
- toDoubleArray() - Method in class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Returns the values of each attribute as an array of doubles.
- toDoubleArray() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns the values of each attribute as an array of doubles.
- toDoubleArray() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns the values of each attribute as an array of doubles.
- toDoubleArray() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Returns the values of each attribute as an array of doubles.
- toDoubleArray() - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Returns the values of each attribute as an array of doubles.
- toHashMap() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Converts the dataset into a hashmap (Prototype p, index of p in the set)
- toHashMap() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Converts the dataset into a hashmap (Prototype p, index of p in the set)
- toHashSet() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Converts the dataset into a hashset ¿Para qué cojones se usa?
- toHashSet() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Converts the dataset into a hashset ¿Para qué cojones se usa?
- toInstanceSet() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Transform the prototype set to a instance set object.
- toInteger() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Entero
-
- token - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- Token - Class in keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser
-
Describes the input token stream.
- Token() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Token
-
- token - Static variable in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- Token - Class in keel.Algorithms.Rule_Learning.Swap1
-
Describes the input token stream.
- Token() - Constructor for class keel.Algorithms.Rule_Learning.Swap1.Token
-
- token - Static variable in class keel.Dataset.DataParser
-
- Token - Class in keel.Dataset
-
Describes the input token stream.
- Token() - Constructor for class keel.Dataset.Token
-
- token_competition() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Core
-
Performs the token competition.
- token_source - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Parser
-
- token_source - Static variable in class keel.Algorithms.Rule_Learning.Swap1.DataParser
-
- token_source - Static variable in class keel.Dataset.DataParser
-
- tokenCaptured() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Chromosome
-
Increases the amount of captured tokens by 1
- tokenImage - Variable in exception keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParseException
-
This is a reference to the "tokenImage" array of the generated
parser within which the parse error occurred.
- tokenImage - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- tokenImage - Static variable in interface keel.Algorithms.Rule_Learning.Swap1.DataParserConstants
-
Token images array.
- tokenImage - Variable in exception keel.Algorithms.Rule_Learning.Swap1.ParseException
-
This is a reference to the "tokenImage" array of the generated
parser within which the parse error occurred.
- tokenImage - Static variable in interface keel.Dataset.DataParserConstants
-
- tokenImage - Variable in exception keel.Dataset.ParseException
-
This is a reference to the "tokenImage" array of the generated
parser within which the parse error occurred.
- tokenLost() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Chromosome
-
Decreases the amount of captured tokens by 1
- TokenMgrError - Error in keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser
-
Ordinals for various reasons why an Error of this type can be thrown.
- TokenMgrError() - Constructor for error keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.TokenMgrError
-
- TokenMgrError(String, int) - Constructor for error keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.TokenMgrError
-
- TokenMgrError(boolean, int, int, int, String, char, int) - Constructor for error keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.TokenMgrError
-
- TokenMgrError - Error in keel.Algorithms.Rule_Learning.Swap1
-
- TokenMgrError() - Constructor for error keel.Algorithms.Rule_Learning.Swap1.TokenMgrError
-
- TokenMgrError(String, int) - Constructor for error keel.Algorithms.Rule_Learning.Swap1.TokenMgrError
-
- TokenMgrError(boolean, int, int, int, String, char, int) - Constructor for error keel.Algorithms.Rule_Learning.Swap1.TokenMgrError
-
- TokenMgrError - Error in keel.Dataset
-
- TokenMgrError() - Constructor for error keel.Dataset.TokenMgrError
-
- TokenMgrError(String, int) - Constructor for error keel.Dataset.TokenMgrError
-
- TokenMgrError(boolean, int, int, int, String, char, int) - Constructor for error keel.Dataset.TokenMgrError
-
- toleranceParameterTipText() - Method in class keel.Algorithms.SVM.SMO.SMO
-
Returns the tip text for this property
- toleranceParameterTipText() - Method in class keel.Algorithms.SVM.SMO.SMOreg
-
Returns the tip text for this property
- toleranceTipText() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
Returns the tip text for this property
- TOLX - Variable in class keel.Algorithms.MIL.Diverse_Density.Optimization.Optimization
-
- toMatlab() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
converts the Matrix into a single line Matlab string: matrix is enclosed
by parentheses, rows are separated by semicolon and single cells by
blanks, e.g., [1 2; 3 4].
- toMatlab() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
converts the Matrix into a single line Matlab string: matrix is enclosed
by parentheses, rows are separated by semicolon and single cells by
blanks, e.g., [1 2; 3 4].
- toMatrixString() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Calls toMatrixString() with a default title.
- toMatrixString(String) - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Outputs the performance statistics as a classification confusion
matrix.
- TomekLinks - Class in keel.Algorithms.ImbalancedClassification.Resampling.TomekLinks
-
File: TomekLinks.java
The TomekLinks algorithm is an undersampling method that can be used to deal with the imbalanced
problem.
- TomekLinks(String) - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.TomekLinks.TomekLinks
-
Constructor of the class.
- toOptionList(Tag[]) - Static method in class keel.Algorithms.SVM.SMO.core.Tag
-
returns a list that can be used in the listOption methods to list all
the available ID strings, e.g.: <0|1|2> or <what|ever>
- toOptionSynopsis(Tag[]) - Static method in class keel.Algorithms.SVM.SMO.core.Tag
-
returns a string that can be used in the listOption methods to list all
the available options, i.e., "\t\tID = Text\n" for each option
- top - Variable in class keel.GraphInterKeel.datacf.help.HelpOptions
-
Top of the tree
- toPrototypeSet(String[][], double[]) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Transform a matrix of binary string 8-bit codification in a double PrototypeSEt
- toPrototypeSet(String[][], double[]) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Transform a matrix of binary string 8-bit codification in a double PrototypeSEt
- toString() - Method in class keel.Algorithms.Decision_Trees.C45.C45
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Decision_Trees.C45.Itemset
-
Function to print the itemset.
- toString() - Method in class keel.Algorithms.Decision_Trees.C45.Tree
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Decision_Trees.CART.tree.DecisionTree
-
Returns tree as a String in preorder format.
- toString() - Method in class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
-
Returns a String representation of the node and its descendents.
- toString() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.C45
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
-
Function to print the itemset.
- toString() - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Tree
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myAttribute
-
Overriden function that converts the class to a string
- toString() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.myDataset
-
Overriden function that converts the class to a string
- toString() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.Split
-
Overriden function that converts the class to a string
- toString() - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Overriden function that converts the class to a string
- toString() - Method in class keel.Algorithms.Decision_Trees.ID3.Itemset
-
Function to print the itemset.
- toString(M5Instances, int) - Method in class keel.Algorithms.Decision_Trees.M5.Function
-
Converts a function to a string
- toString() - Method in class keel.Algorithms.Decision_Trees.M5.Impurity
-
Converts an Impurity object to a string
- toString(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.InformationHandler
-
Prints information stored in an 'InformationHandler' object, basically containing
command line options
- toString() - Method in class keel.Algorithms.Decision_Trees.M5.Interval
-
Constructs a representation of the current range.
- toString() - Method in class keel.Algorithms.Decision_Trees.M5.M5
-
Converts the output of the training process into a string
- toString() - Method in class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Returns a description of this attribute in ARFF format.
- toString() - Method in class keel.Algorithms.Decision_Trees.M5.M5AttrStats
-
Returns a human readable representation of this AttributeStats instance.
- toString() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Returns the description of one instance.
- toString(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Returns the description of one value of the instance as a
string.
- toString(M5Attribute) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Returns the description of one value of the instance as a
string.
- toString() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Returns the dataset as a string.
- toString() - Method in class keel.Algorithms.Decision_Trees.M5.M5Kernel
-
Display a representation of this estimator
- toString(int, int, int, int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Matrix
-
Converts a matrix to a string
- toString() - Method in class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Returns the description of one instance in sparse format.
- toString(double, double, String, String) - Method in class keel.Algorithms.Decision_Trees.M5.Measures
-
Converts the performance measures to a string
- toString() - Method in class keel.Algorithms.Decision_Trees.M5.Queue
-
Produces textual description of queue.
- toString() - Method in class keel.Algorithms.Decision_Trees.M5.Results
-
Converts the evaluation results of a model to a string
- toString() - Method in class keel.Algorithms.Decision_Trees.M5.SerializedObject
-
Returns a text representation of the state of this object.
- toString() - Method in class keel.Algorithms.Decision_Trees.M5.SimpleStatistics
-
Returns a string summarising the stats so far.
- toString(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.SplitInfo
-
Converts the spliting information to string
- toString() - Method in class keel.Algorithms.Decision_Trees.M5.StatisticsStore
-
Converts the stats to a string
- toString() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myAttribute
-
Overriden function that converts the class to a string
- toString() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.myDataset
-
Overriden function that converts the class to a string
- toString() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Node
-
Overriden function that converts the class to a string
- toString() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Register
-
Overriden function that converts the class to a string
- toString() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Split
-
Overriden function that converts the class to a string
- toString() - Method in class keel.Algorithms.Decision_Trees.PUBLIC.TreeNode
-
Overriden function that converts the class to a string
- toString() - Method in class keel.Algorithms.Decision_Trees.SLIQ.Itemset
-
Function to print the itemset.
- toString() - Method in class keel.Algorithms.Discretizers.MVD.Interval
-
Returns the object in form of string
- toString() - Method in exception keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs.ErrorDimension
-
- toString() - Method in exception keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs.ErrorSingular
-
- toString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Antd
-
- toString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeLocator
-
returns a string representation of this object
- toString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns a description of this attribute in ARFF format.
- toString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns the description of one instance.
- toString(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns the description of one value of the instance as a
string.
- toString(AttributeWeka) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns the description of one value of the instance as a
string.
- toString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Returns the dataset as a string in ARFF format.
- toString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.NominalAntd
-
Prints this antecedent
- toString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.NumericAntd
-
Prints this antecedent
- toString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Queue
-
Produces textual description of queue.
- toString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Range
-
Constructs a representation of the current range.
- toString(AttributeWeka) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.RipperRule
-
Prints this rule
- toString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.SingleIndex
-
Constructs a representation of the current range.
- toString() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Prints the all the rules of the rule learner.
- toString(myDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.Condition
-
- toString(myDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.Rule
-
- toString(myDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.RuleSet
-
- toString(myDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Condition
-
- toString(myDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Rule
-
- toString(myDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.RuleSet
-
- toString(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.BaseDatos
-
ToString Function.
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Corte
-
Returns the object Corte (Cut) as a String
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Discretizacion
-
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Entero
-
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Resultado
-
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.Hider.Union
-
- toString(MyDataset, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Function
-
Converts a function to a string
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Function
-
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Impurity
-
Converts an Impurity object to a string
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Function to print the itemset.
- toString(MyAttribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Function to print of one value of the itemset.
- toString(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Returns the description of one value of the instance as a
string.
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
Converts the output of the training process into a string
- toString(int, int, int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5Matrix
-
Converts a matrix to a string
- toString(double, double, String, String) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Measures
-
Converts the performance measures to a string
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Returns a string representation of the entries of this MyDataset.
- toString(Mask) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Returns a string representation of the active entries of this MyDataset.
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Queue
-
Produces textual description of queue.
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Results
-
Converts the evaluation results of a model to a string
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Rule
-
Returns a string representation of this Rule, containing the String representation of each SimpleRule.
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Ruleset
-
Returns a string representation of this Ruleset, containing the String representation of each Rule.
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleRule
-
Returns a string representation of this SimpleRule
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SimpleStatistics
-
Returns a string summarising the stats so far.
- toString(MyDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.SplitInfo
-
Converts the spliting information to string
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.StatisticsStore
-
Converts the stats to a string
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
-
Function to print the itemset.
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexResult
-
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.C45
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
-
Function to print the itemset.
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
Returns a string representation of the entries of this MyDataset.
- toString(Mask) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
Returns a string representation of the active entries of this MyDataset.
- toString(IncrementalMask) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyDataset
-
Returns a string representation of the active entries of this MyDataset.
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Rule
-
Returns a string representation of this Rule, containing the String representation of each SimpleRule.
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Ruleset
-
Returns a string representation of this Ruleset, containing the String representation of each Rule.
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.SimpleRule
-
Returns a string representation of this SimpleRule
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Token
-
Returns the image.
- toString() - Method in class keel.Algorithms.Hyperrectangles.BNGE.Rule
-
To String method
- toString() - Method in class keel.Algorithms.Hyperrectangles.EHS_CHC.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Hyperrectangles.EHS_CHC.Hyper
-
- toString() - Method in class keel.Algorithms.Hyperrectangles.INNER.Rule
-
To String method
- toString() - Method in class keel.Algorithms.Hyperrectangles.RISE.Rule
-
To String method
- toString() - Method in class keel.Algorithms.ImbalancedClassification.Auxiliar.AUC.PosProb
-
Aggregates the class of the associated instance together with its associated probability
- toString() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.C45CS
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
-
Function to print the itemset.
- toString() - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Tree
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Referencia
-
- toString() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.C45
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
-
Function to print the itemset.
- toString() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Tree
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Referencia
-
To String Method
- toString() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Instance_Selection.EUSCHCQstat.Chromosome
-
Prints the chrosome into a string value
- toString() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns a description of this attribute in ARFF format.
- toString() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.AttributeStats
-
Returns a human readable representation of this AttributeStats instance.
- toString() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns the description of one instance.
- toString(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns the description of one value of the instance as a
string.
- toString(Attribute) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns the description of one value of the instance as a
string.
- toString() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Returns the dataset as a string in ARFF format.
- toString() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Returns the description of one instance in sparse format.
- toString() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Stats
-
Returns a string summarising the stats so far.
- toString() - Method in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Converts the prototype to a String object
- toString() - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Converts data set into a String.
- toString() - Method in class keel.Algorithms.Instance_Generation.SSMALVQ3.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Instance_Generation.SSMAPSO.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Instance_Generation.utilities.Pair
-
Show par as String.
- toString() - Method in class keel.Algorithms.Instance_Selection.CCIS.Pareja
-
- toString() - Method in class keel.Algorithms.Instance_Selection.CHC.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Instance_Selection.CPruner.Trio
-
- toString() - Method in class keel.Algorithms.Instance_Selection.GA_MSE_CC_FSM.Cromosoma
-
- toString() - Method in class keel.Algorithms.Instance_Selection.GGA.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Instance_Selection.IGA.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Instance_Selection.MNV.ReferenciaMNV
-
- toString() - Method in class keel.Algorithms.Instance_Selection.PBIL.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Instance_Selection.SGA.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Instance_Selection.SSMA.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Instance_Selection.ZhangTS.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet
-
Returns a string representation of the DataSet
- toString() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
-
Returns a string representation of the neural net
- toString() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.ExpNeuron
-
Returns a string representation of the ExpNeuron
- toString() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputNeuron
-
Returns a string representation of the InputNeuron
- toString() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinearNeuron
-
Returns a string representation of the LinearNeuron
- toString() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.SigmNeuron
-
Returns a string representation of the SigmNeuron
- toString() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividual
-
Converts a individual to string
- toString() - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.util.random.RanNnep
-
Returns a String representation of the random generator
- toString() - Method in class keel.Algorithms.Preprocess.Basic.Referencia
-
To String Method
- toString() - Method in class keel.Algorithms.Preprocess.Feature_Selection.Shared.Chromosome
-
To string method
- toString() - Method in class keel.Algorithms.Preprocess.Instance_Selection.CCIS.Pareja
-
- toString() - Method in class keel.Algorithms.Preprocess.Instance_Selection.CHC.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Preprocess.Instance_Selection.CPruner.Trio
-
- toString() - Method in class keel.Algorithms.Preprocess.Instance_Selection.GA_MSE_CC_FSM.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Preprocess.Instance_Selection.GGA.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Preprocess.Instance_Selection.IGA.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Preprocess.Instance_Selection.MNV.ReferenciaMNV
-
- toString() - Method in class keel.Algorithms.Preprocess.Instance_Selection.PBIL.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Preprocess.Instance_Selection.SGA.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Preprocess.Instance_Selection.SSMA.Cromosoma
-
To String Method
- toString() - Method in class keel.Algorithms.Preprocess.Instance_Selection.ZhangTS.Cromosoma
-
To String Method
- toString(double[]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EM.Interpolation
-
converts a double[] array to a String object
- toString(double[][]) - Static method in class keel.Algorithms.Preprocess.Missing_Values.EM.Interpolation
-
converts a double[][] array to a String object
- toString() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.ConfidenceInterval
-
- toString() - Method in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.C45
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.C45
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.C45
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.C45
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.RST_Learning.EFS_RPS.Chromosome
-
- toString() - Method in class keel.Algorithms.RST_Learning.EIS_RFS.Chromosome
-
- toString() - Method in class keel.Algorithms.Rule_Learning.ART.Itemset
-
Function to print the itemset.
- toString() - Method in class keel.Algorithms.Rule_Learning.C45Rules.C45
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Itemset
-
Function to print the itemset.
- toString() - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Returns a string representation of the entries of this MyDataset.
- toString(Mask) - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Returns a string representation of the active entries of this MyDataset.
- toString(IncrementalMask) - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyDataset
-
Returns a string representation of the active entries of this MyDataset.
- toString() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Rule
-
Returns a string representation of this Rule, containing the String representation of each SimpleRule.
- toString() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Ruleset
-
Returns a string representation of this Ruleset, containing the String representation of each Rule.
- toString() - Method in class keel.Algorithms.Rule_Learning.C45Rules.SimpleRule
-
Returns a string representation of this SimpleRule
- toString() - Method in class keel.Algorithms.Rule_Learning.C45Rules.Tree
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.C45
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
-
Function to print the itemset.
- toString() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Returns a string representation of the entries of this MyDataset.
- toString(Mask) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Returns a string representation of the active entries of this MyDataset.
- toString(IncrementalMask) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyDataset
-
Returns a string representation of the active entries of this MyDataset.
- toString() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Rule
-
Returns a string representation of this Rule, containing the String representation of each SimpleRule.
- toString() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Ruleset
-
Returns a string representation of this Ruleset, containing the String representation of each Rule.
- toString() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.SimpleRule
-
Returns a string representation of this SimpleRule
- toString() - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Tree
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
-
Function to print the itemset.
- toString() - Method in class keel.Algorithms.Rule_Learning.PART.C45
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Rule_Learning.PART.Itemset
-
Function to print the itemset.
- toString() - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
Returns a string representation of the entries of this MyDataset.
- toString(Mask) - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
Returns a string representation of the active entries of this MyDataset.
- toString(IncrementalMask) - Method in class keel.Algorithms.Rule_Learning.PART.MyDataset
-
Returns a string representation of the active entries of this MyDataset.
- toString() - Method in class keel.Algorithms.Rule_Learning.PART.Rule
-
Returns a string representation of this Rule, containing the String representation of each SimpleRule.
- toString() - Method in class keel.Algorithms.Rule_Learning.PART.Ruleset
-
Returns a string representation of this Ruleset, containing the String representation of each Rule.
- toString() - Method in class keel.Algorithms.Rule_Learning.PART.SimpleRule
-
Returns a string representation of this SimpleRule
- toString() - Method in class keel.Algorithms.Rule_Learning.PART.Tree
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
Returns a string representation of the entries of this MyDataset.
- toString(Mask) - Method in class keel.Algorithms.Rule_Learning.Ripper.MyDataset
-
Returns a string representation of the active entries of this MyDataset.
- toString() - Method in class keel.Algorithms.Rule_Learning.Ripper.Rule
-
Returns a string representation of this Rule, containing the String representation of each SimpleRule.
- toString() - Method in class keel.Algorithms.Rule_Learning.Ripper.Ruleset
-
Returns a string representation of this Ruleset, containing the String representation of each Rule.
- toString() - Method in class keel.Algorithms.Rule_Learning.Ripper.Score
-
Returns a string representation of this Score, containing the String representation of each Trio.
- toString(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Score
-
Returns a string representation of this Score, containing the String representation of each Trio, taking into account the given attribute's id.
- toString() - Method in class keel.Algorithms.Rule_Learning.Ripper.SimpleRule
-
Returns a string representation of this SimpleRule
- toString() - Method in class keel.Algorithms.Rule_Learning.Ripper.Trio
-
Returns a string that represent a Trio.
- toString(int) - Method in class keel.Algorithms.Rule_Learning.Ripper.Trio
-
Returns a string that represent a Trio, taking into account the given attribute's id.
- toString() - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
Returns a string representation of the entries of this MyDataset.
- toString(Mask) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
Returns a string representation of the active entries of this MyDataset.
- toString(Mask, double[]) - Method in class keel.Algorithms.Rule_Learning.Slipper.MyDataset
-
Returns a string representation of the active entries of this MyDataset
wiht its associated weights.
- toString() - Method in class keel.Algorithms.Rule_Learning.Slipper.Rule
-
Returns a string representation of this Rule, containing the String representation of each SimpleRule.
- toString() - Method in class keel.Algorithms.Rule_Learning.Slipper.Ruleset
-
Returns a string representation of this Ruleset, containing the String representation of each Rule.
- toString() - Method in class keel.Algorithms.Rule_Learning.Slipper.Score
-
Returns a string representation of this Score, containing the String representation of each Trio.
- toString(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Score
-
Returns a string representation of this Score, containing the String representation of each Trio, taking into account the given attribute's id.
- toString() - Method in class keel.Algorithms.Rule_Learning.Slipper.SimpleRule
-
Returns a string representation of this SimpleRule
- toString() - Method in class keel.Algorithms.Rule_Learning.Slipper.Trio
-
Returns a string that represent a Trio.
- toString(int) - Method in class keel.Algorithms.Rule_Learning.Slipper.Trio
-
Returns a string that represent a Trio, taking into account the given attribute's id.
- toString() - Method in class keel.Algorithms.Rule_Learning.Swap1.Attribute
-
It returns a String with the attribute information in keel format
- toString() - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
It does return an string with the instance information.
- toString(InstanceAttributes) - Method in class keel.Algorithms.Rule_Learning.Swap1.Instance
-
Prints the instance in KEEL format, according to the given Attributes definition
- toString() - Method in class keel.Algorithms.Rule_Learning.Swap1.Token
-
Returns the image.
- toString() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.C45
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
-
Function to print the itemset.
- toString() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
-
Function to print the tree.
- toString() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Converts the prototype to a String object
- toString() - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Converts data set into a String.
- toString() - Method in class keel.Algorithms.Semi_Supervised_Learning.utilities.Pair
-
Show par as String.
- toString() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Convert the DoubleVecor to a string
- toString(int, boolean) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Convert the DoubleVecor to a string
- toString() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Converts the IntVecor to a string
- toString(int, boolean) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.IntVector
-
Convert the IntVecor to a string
- toString() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.LinearRegression
-
returns the coefficients in a string representation
- toString() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Converts a matrix to a string.
- toString() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Converts a matrix to a string
- toString() - Method in enum keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation.Field
-
returns the display string of the Type
- toString() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation
-
Returns a plain-text string representing this technical information.
- toString() - Method in enum keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation.Type
-
returns the display string of the Type
- toString() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
Gets a string describing the classifier.
- toString() - Method in exception keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.ErrorDimension
-
- toString() - Method in exception keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.ErrorSingular
-
- toString() - Method in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Relation
-
To string method
- toString() - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.SDMap.AssociationRule
-
It returns a raw string representation of an association rule
- toString() - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Returns the description of one instance.
- toString(int) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Returns the description of one value of the instance as a
string.
- toString() - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Returns the dataset as a string in ARFF format.
- toString() - Method in class keel.Algorithms.SVM.SMO.core.Queue
-
Produces textual description of queue.
- toString() - Method in class keel.Algorithms.SVM.SMO.core.SelectedTag
-
returns the selected tag in string representation
- toString() - Method in class keel.Algorithms.SVM.SMO.core.Tag
-
returns the IDStr
- toString() - Method in enum keel.Algorithms.SVM.SMO.core.TechnicalInformation.Field
-
returns the display string of the Type
- toString() - Method in class keel.Algorithms.SVM.SMO.core.TechnicalInformation
-
Returns a plain-text string representing this technical information.
- toString() - Method in enum keel.Algorithms.SVM.SMO.core.TechnicalInformation.Type
-
returns the display string of the Type
- toString() - Method in class keel.Algorithms.SVM.SMO.supportVector.KernelEvaluation
-
returns the current result
- toString() - Method in class keel.Algorithms.SVM.SMO.supportVector.NormalizedPolyKernel
-
returns a string representation for the Kernel
- toString() - Method in class keel.Algorithms.SVM.SMO.supportVector.PDRFKernel
-
returns a string representation for the Kernel
- toString() - Method in class keel.Algorithms.SVM.SMO.supportVector.PolyKernel
-
returns a string representation for the Kernel
- toString() - Method in class keel.Algorithms.SVM.SMO.supportVector.Puk
-
returns a string representation for the Kernel
- toString() - Method in class keel.Algorithms.SVM.SMO.supportVector.RBFKernel
-
returns a string representation for the Kernel
- toString() - Method in class keel.Algorithms.SVM.SMO.SVMreg
-
Prints out the classifier.
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.AssociationRule
-
It returns a raw string representation of an association rule
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Chromosome
-
It returns a raw string representation of a chromosome
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.FuzzyAttribute
-
It returns a raw string representation of a fuzzy attribute
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.FuzzyRegion
-
It returns a raw string representation of a fuzzy region
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Gene
-
It returns a raw string representation of a gene
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Item
-
It returns a raw string representation of an item
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal.Itemset
-
It returns a raw string representation of an itemset
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.AssociationRule
-
It returns a raw string representation of an association rule
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.FuzzyRegion
-
It returns a raw string representation of a fuzzy region
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.Item
-
It returns a raw string representation of an item
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.FuzzyApriori.Itemset
-
It returns a raw string representation of an itemset
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.AssociationRule
-
It returns a raw string representation of an association rule
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Chromosome
-
It returns a raw string representation of a chromosome
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.FuzzyAttribute
-
It returns a raw string representation of a fuzzy attribute
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.FuzzyRegion
-
It returns a raw string representation of a fuzzy region
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Gene
-
It returns a raw string representation of a gene
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Item
-
It returns a raw string representation of an item
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.Itemset
-
It returns a raw string representation of an itemset
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori.MembershipFunction
-
It returns a raw string representation of a membership function
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.AssociationRule
-
It returns a raw string representation of an association rule
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Chromosome
-
It returns a raw string representation of a chromosome
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.FuzzyAttribute
-
It returns a raw string representation of a fuzzy attribute
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.FuzzyRegion
-
It returns a raw string representation of a fuzzy region
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Gene
-
It returns a raw string representation of a gene
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Item
-
It returns a raw string representation of an item
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.Itemset
-
It returns a raw string representation of an itemset
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyAprioriDC.MembershipFunction
-
It returns a raw string representation of a membership function
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.AssociationRule
-
It returns a raw string representation of an association rule
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Chromosome
-
It returns a string representation of a chromosome
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Gene
-
It returns a string representation of a gene
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.AssociationRule
-
It returns a raw string representation of an association rule
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.AssociationRule
-
It returns a raw string representation of an association rule
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
-
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Gene
-
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.AssociationRule
-
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Chromosome
-
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.Gene
-
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.AssociationRule
-
It returns a raw string representation of an association rule
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.AssociationRule
-
It returns a raw string representation of an association rule
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.AssociationRule
-
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Chromosome
-
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.Gene
-
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.AssociationRule
-
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Chromosome
-
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.Gene
-
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.AssociationRule
-
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Chromosome
-
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.Gene
-
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
-
It returns a raw string representation of an association rule
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
It returns a string representation of a chromosome
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Gene
-
It returns a string representation of a gene
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
-
It returns a raw string representation of an association rule
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
It returns a string representation of a chromosome
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
-
It returns a string representation of a gene
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
-
It returns a raw string representation of an association rule
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
It returns a string representation of a chromosome
- toString() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Gene
-
It returns a string representation of a gene
- toString() - Method in class keel.Dataset.Attribute
-
It returns a String with the attribute information in keel format
- toString() - Method in class keel.Dataset.Instance
-
It does return an string with the instance information.
- toString(InstanceAttributes) - Method in class keel.Dataset.Instance
-
Prints the instance in KEEL format, according to the given Attributes definition
- toString() - Method in class keel.Dataset.Token
-
Returns the image.
- toString() - Method in class keel.GraphInterKeel.datacf.help.HelpSheet
-
Overriding toString method to obtain a description of the class
- toString() - Method in class keel.GraphInterKeel.experiments.ExternalObjectDescription
-
To string method
- toString() - Method in class keel.GraphInterKeel.experiments.UseCase
-
Writes the Use Case to an String
- toString() - Method in class keel.GraphInterKeel.help.HelpSheet
-
To string method
- toString() - Method in class keel.GraphInterKeel.statistical.tests.Relation
-
To string method
- toStringOVO() - Method in class keel.Algorithms.Decision_Trees.C45.Tree
-
Function to print the tree (OVO code).
- toSummaryString() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Calls toSummaryString() with no title and no complexity stats
- toSummaryString(boolean) - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Calls toSummaryString() with a default title.
- toSummaryString(String, boolean) - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Outputs the performance statistics in summary form.
- toSummaryString() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Generates a string summarizing the set of instances.
- toSummaryString() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Generates a string summarizing the set of instances.
- toSummaryString() - Method in class keel.Algorithms.SVM.SMO.supportVector.KernelEvaluation
-
returns a summary string of the evaluation with a no title
- toSummaryString(String) - Method in class keel.Algorithms.SVM.SMO.supportVector.KernelEvaluation
-
returns a summary string of the evaluation with a default title
- totalClass - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PerformanceAgent
-
- totalClass - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PerformanceAgent
-
- totalCost() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Gets the total cost, that is, the cost of each prediction times the
weight of the instance, summed over all instances.
- totalCount - Variable in class keel.Algorithms.Decision_Trees.M5.M5AttrStats
-
The total number of values (i.e. number of instances)
- totalCount - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.AttributeStats
-
The total number of values (i.e. number of instances)
- totalElements - Variable in class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.FreqList
-
Total elements in the list.
- totalElements - Variable in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.FreqList
-
Total elements in the list.
- totalElements - Variable in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.FreqList
-
Total elements in the list.
- totalElements - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqList
-
Total elements in the list.
- totalElements - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqListPair
-
Total elements in the list.
- totalElements - Variable in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.FreqList
-
Total elements in the list.
- totalElements - Variable in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.FreqList
-
Total elements in the list.
- totalElements - Variable in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.FreqList
-
Total elements in the list.
- totalElements - Variable in class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.FreqList
-
Total elements in the list.
- totalElements - Variable in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.FreqList
-
Total elements in the list.
- totalElements - Variable in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.FreqList
-
Total elements in the list.
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.FreqList
-
The total number of elements stored, i.e. the sum of all the frequencies
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.FreqList
-
The total number of elements stored, i.e. the sum of all the frequencies
- totalElems - Variable in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.VAList
-
Total number of elements in the list.
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.valueAssociations
-
Gives the total number of elements in the list (i.e. the sum of the frequencies).
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.FreqList
-
The total number of elements stored, i.e. the sum of all the frequencies
- totalElems - Variable in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.VAList
-
Total number of elements in the list.
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.valueAssociations
-
Gives the total number of elements in the list (i.e. the sum of the frequencies).
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqList
-
The total number of elements stored, i.e. the sum of all the frequencies
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.FreqListPair
-
The total number of elements stored, i.e. the sum of all the frequencies
- totalElems - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.VAList
-
Total number of elements in the list.
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.valueAssociations
-
Gives the total number of elements in the list (i.e. the sum of the frequencies).
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.FreqList
-
The total number of elements stored, i.e. the sum of all the frequencies
- totalElems - Variable in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.VAList
-
Total number of elements in the list.
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.valueAssociations
-
Gives the total number of elements in the list (i.e. the sum of the frequencies).
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.FreqList
-
The total number of elements stored, i.e. the sum of all the frequencies
- totalElems - Variable in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.VAList
-
Total number of elements in the list.
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.valueAssociations
-
Gives the total number of elements in the list (i.e. the sum of the frequencies).
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.FreqList
-
The total number of elements stored, i.e. the sum of all the frequencies
- totalElems - Variable in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.VAList
-
Total number of elements in the list.
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.valueAssociations
-
Gives the total number of elements in the list (i.e. the sum of the frequencies).
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.FreqList
-
The total number of elements stored, i.e. the sum of all the frequencies
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.FreqList
-
The total number of elements stored, i.e. the sum of all the frequencies
- totalElems - Variable in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.VAList
-
Total number of elements in the list.
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.valueAssociations
-
Gives the total number of elements in the list (i.e. the sum of the frequencies).
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.FreqList
-
The total number of elements stored, i.e. the sum of all the frequencies
- totalElems - Variable in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.VAList
-
Total number of elements in the list.
- totalElems() - Method in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.valueAssociations
-
Gives the total number of elements in the list (i.e. the sum of the frequencies).
- totalFiringDegrees - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Vector that contains the total firing degrees of rules.
- totalFractions - Variable in class keel.GraphInterKeel.datacf.partitionData.HoldOutOptionsJDialog
-
Number of fractions
- totalNominales(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
It returns the number of nominal values for a given variable
- totalNominales(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
It returns the number of nominal values for a given variable
- totalNominales(int) - Method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
It returns the number of nominal values for a given variable
- totalNominales(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
It returns the number of nominal values for a given variable
- totalNominals(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It returns the number of nominal values for a given variable
- totalReplacement() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.geneticAlgorithm
-
- TotalSupportTree - Class in keel.Algorithms.Associative_Classification.ClassifierCMAR
-
Methods concerned with the generation, processing and manipulation of
T-tree data storage structures used to hold the total support counts for large
itemsets.
- TotalSupportTree(double, double, int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCMAR.TotalSupportTree
-
Processes command line arguments.
- TotalSupportTree - Class in keel.Algorithms.Subgroup_Discovery.SDMap.FPTree
-
Methods concerned with the generation, processing and manipulation of T-tree data
storage structures used to hold the total support counts for large itemsets
- TotalSupportTree(myDataset, double, double) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.TotalSupportTree
-
Constructor to process dataset and parameters.
- TotalSupportTree - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD
- TotalSupportTree(myDataset, double, double) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.TotalSupportTree
-
Constructor to process dataset and parameters.
- totalValores(int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
Function to get the number of different feasible values for a given attribute
- TotalVariables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- TotalVariables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Retuns the number of variables in the list
- TotalVariables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- TotalVariables() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- TOURNAMENT - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- Tournament(double[], int, int, SetupParameters) - Static method in class keel.Algorithms.Neural_Networks.gann.Selector
-
Tournament selection method
- tournament_selection() - Method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Core
-
Applies a tournament selection, with tournament size of 2
- tournament_selection() - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.Ilga
-
Applies a tournament selection, with tournament size of 2
- tournament_selection() - Method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.SEM
-
Applies a tournament selection, with tournament size of 2
- tournament_selection() - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.Oiga
-
Applies a tournament selection, with tournament size of 2
- tournament_selection() - Method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.SEM
-
Applies a tournament selection, with tournament size of 2
- TOURNAMENT_WOR - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- TournamentSelection() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.geneticAlgorithm
-
- tournamentSelection() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
It implements tournament selection.
- TournamentSelection - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
This class implements the tournament selection method.
- TournamentSelection() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.TournamentSelection
-
Creates a TournamentSelection object
- TournamentSelection - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This class implements the tournament selection method.
- TournamentSelection() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.TournamentSelection
-
Creates a TournamentSelection object
- TournamentSelectionWOR() - Method in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.geneticAlgorithm
-
- tournamentSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- tournamentSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- tournamentSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- tournamentSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
It represents the percentage of population that has to be selected
to make tournament.
- tournamentSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It represents the percentage of population that has to be selected
to make tournament.
- TOURNAMENTSIZE - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- toVector() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyPartition
-
Characteristic points from fuzzy partition are copied to a vector of numbers.
- TP - Variable in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- TP - Variable in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- TP - Variable in class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- TPA() - Method in class keel.Algorithms.Instance_Generation.ICPL.ICPLGenerator
-
TPA.
- tr(double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- tr(double[][]) - Static method in class keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.MatrixCalcs
-
- tR - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Regression t Stat-test identifier.
- tra_val - Variable in class keel.GraphInterKeel.experiments.Parameters
-
- trace(DenseMatrix) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
Sum of the diagonal elements
- trace() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Matrix trace.
- trailing - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.ExponentialFormat
-
Trailing flag.
- trailing - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.FloatingPointFormat
-
Trailing flag.
- train - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Training dataset
- train - Variable in class keel.Algorithms.Decision_Trees.C45.Tree
-
The dataset.
- train - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Tree
-
The dataset.
- train - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Training dataset.
- TRAIN - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- train - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
-
The dataset.
- train - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Training dataset
- train - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Tree
-
The dataset.
- train - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Data
-
Training data
- train - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Tree
-
The dataset.
- train - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Training dataset.
- TRAIN - Variable in class keel.Algorithms.Neural_Networks.ensemble.Ensemble
-
Training flag.
- train - Variable in class keel.Algorithms.Neural_Networks.gann.Data
-
Training data
- train - Variable in class keel.Algorithms.Neural_Networks.gmdh.Data
-
Training data
- train - Variable in class keel.Algorithms.Neural_Networks.net.Data
-
Training data
- train - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Training dataset
- train - Static variable in class keel.Algorithms.PSO_Learning.CPSO.CPSO
-
Training dataset.
- train - Static variable in class keel.Algorithms.PSO_Learning.LDWPSO.LDWPSO
-
Training dataset.
- train - Static variable in class keel.Algorithms.PSO_Learning.REPSO.REPSO
-
Training dataset.
- train - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Training dataset
- train - Variable in class keel.Algorithms.Rule_Learning.C45Rules.Tree
-
The dataset.
- train - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Tree
-
The dataset.
- train - Variable in class keel.Algorithms.Rule_Learning.PART.Tree
-
The dataset.
- train() - Method in class keel.Algorithms.Rule_Learning.Swap1.swap1
-
Training process.
- train - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
-
The dataset.
- train - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Training instances set.
- train2InputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- train2InputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- train2InputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- train2InputFile - Static variable in class keel.Algorithms.Rule_Learning.Swap1.Parameters
-
- train_file - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
File names
- train_file - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
File names
- train_file - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
File names
- train_file - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
File names
- train_output - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
File names
- train_output - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
File names
- train_output - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
File names
- train_output - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
File names
- trainConfMatrix - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Confusion matrix for training
- trainConfMatrix - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Training Confusion matrix.
- trainCV(int, int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Creates the training set for one fold of a cross-validation
on the dataset.
- trainCV(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Creates the training set for one fold of a cross-validation
on the dataset.
- trainCV(int, int, Randomize) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Creates the training set for one fold of a cross-validation
on the dataset.
- trainCV(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Creates the training set for one fold of a cross-validation
on the dataset.
- trainCV(int, int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Creates the training set for one fold of a cross-validation on the
dataset.
- trainCV(int, int, Random) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Creates the training set for one fold of a cross-validation on the
dataset.
- trainCV(int, int) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Creates the training set for one fold of a cross-validation
on the dataset.
- trainCV(int, int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Creates the training set for one fold of a cross-validation
on the dataset.
- trainCV(int, int, Random) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Creates the training set for one fold of a cross-validation
on the dataset.
- trainData - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Training input data.
- trainData - Variable in class keel.Algorithms.Decision_Trees.CART.RunCART
-
Training dataset read.
- trainData - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Training input data.
- trainData - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- trainData - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Training input data.
- trainData - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Training input data.
- trainData - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Training input data.
- trainData - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Training input data.
- trainData - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Training input data.
- trainData - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Training input data.
- trainDataset - Variable in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
The train dataset.
- trainDataset - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
The train dataset.
- trainDataset - Variable in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
The train dataset.
- trainDataset - Variable in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Training dataset.
- trainDataset - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
The train dataset.
- trainDataset - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
The train dataset.
- trainDataset - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
The train dataset.
- trainDataset - Static variable in class keel.Algorithms.MIL.AbstractMIAlgorithm
-
- trainDataset - Variable in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
The train dataset.
- trainDataset - Variable in class keel.Algorithms.Rule_Learning.C45Rules.Algorithm
-
The train dataset.
- trainDataset - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Algorithm
-
The train dataset.
- trainDataset - Variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
The train dataset.
- trainDataset - Variable in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
The train dataset.
- trainDataset - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.C45
-
The train dataset.
- TrainEnsemble(EnsembleParameters, Data) - Method in class keel.Algorithms.Neural_Networks.ensemble.Ensemble
-
Train Ensemble
- TrainEnsembleAda(EnsembleParameters, Data) - Method in class keel.Algorithms.Neural_Networks.ensemble.Ensemble
-
Train ensemble using Ada
- TrainEnsembleArcing(EnsembleParameters, Data) - Method in class keel.Algorithms.Neural_Networks.ensemble.Ensemble
-
Train ensemble using Arcing
- TrainEnsembleBagging(EnsembleParameters, Data) - Method in class keel.Algorithms.Neural_Networks.ensemble.Ensemble
-
Train ensemble using Bagging
- TrainEnsembleNoSampling(EnsembleParameters, Data) - Method in class keel.Algorithms.Neural_Networks.ensemble.Ensemble
-
Train ensemble without sampling
- trainFile - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Train file name
- trainFile - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Train file name.
- trainFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
It the BD of train examples
- trainFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It the BD of train examples
- TRAINFILE - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- trainFile - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Train file name
- trainFile - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Train file name.
- trainFile - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Train file name
- trainFile - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Train file name
- trainFileName - Static variable in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
The name of the file that contains the information to make the training.
- trainFileName - Static variable in class keel.Algorithms.Decision_Trees.CART.RunCART
-
The name of the file that contains the information to make the training.
- trainFileName - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
The name of the file that contains the information to make the training.
- trainFileName - Static variable in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
The name of the file that contains the information to make the training.
- trainFileName - Static variable in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Training dataset file's name.
- trainFileName - Static variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
The name of the file that contains the information to make the training.
- trainFileName - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
The name of the file that contains the information to make the training.
- trainFileName - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
The name of the file that contains the information to make the training.
- trainFileName - Static variable in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
The name of the file that contains the information to make the training.
- trainFileName - Static variable in class keel.Algorithms.Rule_Learning.C45Rules.Algorithm
-
The name of the file that contains the information to make the training.
- trainFileName - Static variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Algorithm
-
The name of the file that contains the information to make the training.
- trainFileName - Static variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
The name of the file that contains the information to make the training.
- trainFileName - Static variable in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
The name of the file that contains the information to make the training.
- training - Variable in class keel.Algorithms.Decision_Trees.C45_Binarization.Metodo
-
Training dataset.
- training - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Basic.Metodo
-
- training - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.Metodo
-
- TRAINING - Static variable in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
Type of file: training data set.
- training - Variable in class keel.Algorithms.Preprocess.Basic.Metodo
-
Training dataset
- TRAINING - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Type of file: training data set.
- Training_Example(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
-
- Training_Example(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Returns the number of examples belonging to the partition "particion"
- Training_Example(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.example_set
-
- Training_Example(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.example_set
-
- trainingDataSet - Variable in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator
-
Original data set to be condensed
- trainingDataSet - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Training prototype set.
- trainingFileName - Static variable in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
Training data set file name.
- trainingFileName - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Training data set file name.
- trainingModel - Variable in class keel.GraphInterKeel.datacf.exportData.ExportPanel
-
The model for storing the training files used in the partition mode
- trainingModel - Variable in class keel.GraphInterKeel.datacf.importData.ImportPanel
-
The model for storing the training files used in the partition mode
- trainingResults(double[], double[]) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Writes the training result file with expected and obtained data for modelling problems.
- trainingResults(int[], int[]) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Writes the training result file with expected and obtained data for classification problems.
- trainingResults(double[][], int[]) - Method in class keel.Algorithms.Preprocess.NoiseFilters.ANR.ProcessConfig
-
Writes the training result file with pattern and obtained data for clustering problems.
- trainingResults(double[], double[]) - Method in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Writes the training result file with expected and obtained data for modelling problems.
- trainingResults(int[], int[]) - Method in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Writes the training result file with expected and obtained data for classification problems.
- trainingResults(double[][], int[]) - Method in class keel.Algorithms.Shared.Parsing.ProcessConfig
-
Writes the training result file with pattern and obtained data for clustering problems.
- trainingTime - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Training prediction time.
- trainingTime - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Training prediction time.
- trainingTime - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Training prediction time.
- trainInputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- trainInputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- trainInputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- trainInputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Parameters
-
Original Training data filename.
- trainInputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.Parameters
-
Original Training data filename.
- trainInputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Parameters
-
Original Training data filename.
- trainInputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
Original Training data filename.
- trainInputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.Parameters
-
Original Training data filename.
- trainInputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Parameters
-
Original Training data filename.
- trainInputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Parameters
-
Original Training data filename.
- trainInputFile - Static variable in class keel.Algorithms.Rule_Learning.Swap1.Parameters
-
- trainInputFile - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerCSVM
-
Training dataset filename.
- trainInputFile - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.HandlerSMO
-
Training dataset filename.
- trainInputFile - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.ParametersSMO
-
Training input filename.
- trainInstances - Variable in class keel.Algorithms.MIL.AbstractMIAlgorithm
-
- trainInstancesCopy - Variable in class keel.Algorithms.MIL.AbstractMIAlgorithm
-
- trainLMS(double[][], double[][], int, int, double) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Trains a Population of RBFNs
- trainLMS(double[][], double[][], int, int, double) - Method in class keel.Algorithms.Neural_Networks.RBFN.Rbfn
-
Uses LMS to train the net.
- trainLMS(double[][], double[][], int, int, double) - Method in class keel.Algorithms.Neural_Networks.RBFN_CL.Rbfn
-
Uses LMS to train the net.
- trainLMS(double[][], double[][], int, int, double) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental.Rbfn
-
Uses LMS to train the net.
- trainLMS(double[][], double[][], int, int, double) - Method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbfn
-
Uses LMS to train the net.
- trainLMS(double[][], double[][], int, int, double) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental.Rbfn
-
Uses LMS to train the net.
- trainLMS(double[][], double[][], int, int, double) - Method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbfn
-
Uses LMS to train the net.
- trainLMS_subPop(double[][], double[][], int, int, double) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Trains a Population of RBFNs
- TrainNetwork(Parameters, double[][], int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Train network without cross validation
- TrainNetwork(EnsembleParameters, double[][], int) - Method in class keel.Algorithms.Neural_Networks.ensemble.EnsembleNetwork
-
Back-propagation algorithm without cross validation
- TrainNetwork(SetupParameters, double[][], int) - Method in class keel.Algorithms.Neural_Networks.gann.Network
-
Train network without cross validation
- TrainNetwork(Parameters, double[][], int) - Method in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Train network without cross validation
- TrainNetwork(Parameters, double[][], int) - Method in class keel.Algorithms.Neural_Networks.net.Network
-
Train network without cross validation
- TrainNetworkWithCrossvalidation(Parameters, Data) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Train Network using cross validation
- TrainNetworkWithCrossvalidation(EnsembleParameters, Data) - Method in class keel.Algorithms.Neural_Networks.ensemble.EnsembleNetwork
-
Back-propagation algorithm using cross validation
- TrainNetworkWithCrossvalidation(SetupParameters, Data) - Method in class keel.Algorithms.Neural_Networks.gann.Network
-
Train Network using cross validation
- TrainNetworkWithCrossvalidation(Parameters, Data) - Method in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Train the Network using cross validation
- TrainNetworkWithCrossvalidation(Parameters, Data) - Method in class keel.Algorithms.Neural_Networks.net.Network
-
Train Network using cross validation
- trainNominal - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Training nominal input data.
- TrainNominalOutOfRange - Static variable in class keel.Algorithms.Rule_Learning.Swap1.ErrorInfo
-
- TrainNominalOutOfRange - Static variable in class keel.Dataset.ErrorInfo
-
- trainNulls - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Training missing input data.
- TrainNumberOutOfRange - Static variable in class keel.Algorithms.Rule_Learning.Swap1.ErrorInfo
-
- TrainNumberOutOfRange - Static variable in class keel.Dataset.ErrorInfo
-
- trainOutput - Variable in class keel.Algorithms.Coevolution.CoevolutionAlgorithm
-
Training output data.
- trainOutput - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Training output data.
- trainOutput - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Training output data.
- trainOutput - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Training output data.
- trainOutput - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Training output data.
- trainOutput - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Training output data.
- trainOutput - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Training output data.
- trainOutput - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Training output data.
- trainOutputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- trainOutputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- trainOutputFile - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- trainOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.Parameters
-
Modified Training data filename.
- trainOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.CVCommitteesFilter.Parameters
-
Modified Training data filename.
- trainOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.Parameters
-
Modified Training data filename.
- trainOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
Modified Training data filename.
- trainOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.IterativePartitioningFilter.Parameters
-
Modified Training data filename.
- trainOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.PANDA.Parameters
-
Modified Training data filename.
- trainOutputFile - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.SaturationFilter.Parameters
-
Modified Training data filename.
- trainOutputFile - Static variable in class keel.Algorithms.Rule_Learning.Swap1.Parameters
-
- trainOutputFileName - Static variable in class keel.Algorithms.Decision_Trees.C45.Algorithm
-
The name of the train output file.
- trainOutputFileName - Static variable in class keel.Algorithms.Decision_Trees.CART.RunCART
-
The name of the train output file.
- trainOutputFileName - Static variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Algorithm
-
The name of the train output file.
- trainOutputFileName - Static variable in class keel.Algorithms.Decision_Trees.ID3.Algorithm
-
The name of the train output file.
- trainOutputFileName - Static variable in class keel.Algorithms.Decision_Trees.SLIQ.Algorithm
-
Name of the training output file.
- trainOutputFileName - Static variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Algorithm
-
The name of the train output file.
- trainOutputFileName - Static variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Algorithm
-
The name of the train output file.
- trainOutputFileName - Static variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Algorithm
-
The name of the train output file.
- trainOutputFileName - Static variable in class keel.Algorithms.Rule_Learning.ART.Algorithm
-
The name of the train output file.
- trainOutputFileName - Static variable in class keel.Algorithms.Rule_Learning.C45Rules.Algorithm
-
The name of the train output file.
- trainOutputFileName - Static variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Algorithm
-
The name of the train output file.
- trainOutputFileName - Static variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Algorithm
-
The name of the train output file.
- trainOutputFileName - Static variable in class keel.Algorithms.Rule_Learning.PART.Algorithm
-
The name of the train output file.
- trainPrediction - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Predicted classes for the training dataset.
- trainPrediction - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Predictions for training
- trainPrediction - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Predited classes of the training instances.
- trainPrediction - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Training predicted classes.
- trainPrediction - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Training predicted classes.
- trainPrediction - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Training predicted classes
- trainReal - Variable in class keel.Algorithms.Preprocess.Feature_Selection.Shared.FSAlgorithm
-
Training real input data.
- trainRealClass - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
real classes values for training
- trainRealClass - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Real classes of the training instances.
- trainRealClass - Variable in class keel.Algorithms.Preprocess.NoiseFilters.ClassificationFilter.KNN
-
Real training classes.
- trainRealClass - Variable in class keel.Algorithms.Preprocess.NoiseFilters.EnsembleFilter.KNN
-
Real training classes.
- trainReportFileName - Variable in class keel.Algorithms.MIL.AbstractMIAlgorithm
-
- trainSize - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Training size.
- trainSize - Variable in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Number of instances on training dataset.
- trainTestC - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Summary of data, train & test, one algorithm identifier (classification).
- trainTestR - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Summary of data, train & test, one algorithm identifier (regression).
- trainUnclassified - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
number of instances unclassified for training
- trainUnclassified - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Number of unclassified training instances.
- transductiveDataSet - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerator
-
Transductive prototype set.
- transfer - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Transfer function of each layer (LOG | HTAN | LINEAR)
- transfer - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Transfer function ( LOG | HTAN | LINEAR )
- transfer - Variable in class keel.Algorithms.Neural_Networks.gann.Network
-
Transfer function of each layer (LOG | HTAN | LINEAR)
- transfer - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Transfer function ( LOG | HTAN | LINEAR )
- transfer - Variable in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Transfer function of each layer (LOG | HTAN | LINEAR)
- transfer - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Transfer function ( LOG | HTAN | LINEAR )
- transfer - Variable in class keel.Algorithms.Neural_Networks.net.Network
-
Transfer function of each layer (LOG | HTAN | LINEAR)
- transfer - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Transfer function ( LOG | HTAN | LINEAR )
- transform(DataBase) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.myDataset
-
Transform the data-set given as argument to correspond the fuzzy labels.
- transform() - Method in class keel.Algorithms.Preprocess.Transformations.Nominal2Binary.Nominal2Binary
-
Process the training and test files provided in the parameters file to the constructor.
- transpose(int, int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Matrix
-
Returns the transpose of a matrix [0:n-1][0:m-1]
- transpose(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5Matrix
-
Returns the transpose of a matrix [0:n-1][0:m-1]
- transpose() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Matrix transpose.
- transpose() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Returns the transpose of a matrix.
- trapezoidal(String) - Static method in class keel.Algorithms.LQD.methods.FGFS_costInstances.fun_aux
-
Convert the number in fuzzy in trapezoidal way.
- trapezoidal(String) - Static method in class keel.Algorithms.LQD.tests.IntermediateBoost.fun_aux
-
Convert the number in fuzzy with trapezoidal scheme.
- Tree - Class in keel.Algorithms.Decision_Trees.C45
-
Class to handle the classifier tree
- Tree(SelectCut, boolean, float) - Constructor for class keel.Algorithms.Decision_Trees.C45.Tree
-
Constructor.
- Tree - Class in keel.Algorithms.Decision_Trees.DT_GA.C45
-
Class to handle the classifier tree
- Tree(SelectCut, boolean, float) - Constructor for class keel.Algorithms.Decision_Trees.DT_GA.C45.Tree
-
Constructor.
- Tree - Class in keel.Algorithms.Decision_Trees.DT_oblicuo
-
Title: Tree.
- Tree() - Constructor for class keel.Algorithms.Decision_Trees.DT_oblicuo.Tree
-
Default Constructor.
- Tree(Tree, myDataset, int, int[], int) - Constructor for class keel.Algorithms.Decision_Trees.DT_oblicuo.Tree
-
Paramenter constructor.
- Tree - Class in keel.Algorithms.Decision_Trees.Target
-
Title: Tree
Description: It contains the implementation of the tree structure
Company: KEEL
- Tree() - Constructor for class keel.Algorithms.Decision_Trees.Target.Tree
-
Default Constructor.
- Tree(Tree, myDataset, double, boolean, double, double) - Constructor for class keel.Algorithms.Decision_Trees.Target.Tree
-
Paramenter constructor.
- Tree - Class in keel.Algorithms.Genetic_Rule_Learning.PART
-
Class to handle the classifier tree
- Tree() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
-
Constructor.
- Tree(SelectCut, boolean, float) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.Tree
-
Constructor.
- Tree - Class in keel.Algorithms.ImbalancedClassification.CSMethods.C45CS
-
Class to handle the classifier tree
- Tree(SelectCut, boolean, float) - Constructor for class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Tree
-
Constructor.
- Tree - Class in keel.Algorithms.ImbalancedClassification.Ensembles.C45
-
Class to handle the classifier tree
- Tree(SelectCut, boolean, float) - Constructor for class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Tree
-
Constructor.
- Tree - Class in keel.Algorithms.Rule_Learning.C45Rules
-
Class to handle the classifier tree
- Tree(SelectCut, boolean, float) - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.Tree
-
Constructor.
- Tree - Class in keel.Algorithms.Rule_Learning.C45RulesSA
-
Class to handle the classifier tree
- Tree(SelectCut, boolean, float) - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.Tree
-
Constructor.
- Tree - Class in keel.Algorithms.Rule_Learning.PART
-
Class to handle the classifier tree
- Tree() - Constructor for class keel.Algorithms.Rule_Learning.PART.Tree
-
Constructor.
- Tree(SelectCut, boolean, float) - Constructor for class keel.Algorithms.Rule_Learning.PART.Tree
-
Constructor.
- Tree - Class in keel.Algorithms.Semi_Supervised_Learning.Basic.C45
-
Class to handle the classifier tree
- Tree(SelectCut, boolean, float) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Tree
-
Constructor.
- tree - Variable in class keel.GraphInterKeel.datacf.help.HelpOptions
-
Help options tree
- TreeNode - Class in keel.Algorithms.Decision_Trees.CART.tree
-
Class that implements a tree used by the CART algorithm
- TreeNode(TreeNode) - Constructor for class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
-
Default Constructor.
- TreeNode(TreeNode, int[]) - Constructor for class keel.Algorithms.Decision_Trees.CART.tree.TreeNode
-
Constructor.
- TreeNode - Class in keel.Algorithms.Decision_Trees.FunctionalTrees
-
Data structure that is used in the construction of the decision tree.
- TreeNode - Class in keel.Algorithms.Decision_Trees.PUBLIC
-
File: TreeNode.java
Data structure that is used in the construction of the decision tree.
- treeSwap(int, int, Tree) - Method in class keel.Algorithms.Decision_Trees.Target.Tree
-
Swaps the two trees given with the given tree.
- treeToString(int, double) - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Converts the tree under this node to a string
- treeToString(int, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Converts the tree under this node to a string
- Trials - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- trimToSize() - Method in class keel.Algorithms.Decision_Trees.M5.M5Vector
-
Sets the vector's capacity to its size.
- trimToSize() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.FastVector
-
Sets the vector's capacity to its size.
- trimToSize() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.FastVector
-
Sets the vector's capacity to its size.
- trimToSize() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.FastVector
-
Sets the vector's capacity to its size.
- trimToSize() - Method in class keel.Algorithms.SVM.SMO.core.FastVector
-
Sets the vector's capacity to its size.
- Trio - Class in keel.Algorithms.Instance_Selection.CPruner
-
Trio implementation.
- Trio() - Constructor for class keel.Algorithms.Instance_Selection.CPruner.Trio
-
Default constructor.
- Trio(int, int, double) - Constructor for class keel.Algorithms.Instance_Selection.CPruner.Trio
-
Parameter constructor.
- Trio - Class in keel.Algorithms.Preprocess.Instance_Selection.CPruner
-
Trio implementation.
- Trio() - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.CPruner.Trio
-
Default constructor.
- Trio(int, int, double) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.CPruner.Trio
-
Parameter constructor.
- Trio - Class in keel.Algorithms.Rule_Learning.Ripper
-
Auxiliar class.
- Trio() - Constructor for class keel.Algorithms.Rule_Learning.Ripper.Trio
-
Default constructor.
- Trio(double) - Constructor for class keel.Algorithms.Rule_Learning.Ripper.Trio
-
Constructs a Trio with the given value and 0 instaces for both positives and negatives.
- Trio - Class in keel.Algorithms.Rule_Learning.Slipper
-
Auxiliar class.
- Trio() - Constructor for class keel.Algorithms.Rule_Learning.Slipper.Trio
-
Default constructor.
- Trio(double) - Constructor for class keel.Algorithms.Rule_Learning.Slipper.Trio
-
Constructs a Trio with the given value and 0 instaces for both positives and negatives.
- Trio(double, double, int) - Constructor for class keel.Algorithms.Rule_Learning.Slipper.Trio
-
Constructs a Trio with the given value and 0 instaces for both positives and negatives.
- Triplet - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.JFKNN
-
File: Triplet.java
A Triplet class for the JFKNN algorithm.
- Triplet(int, int) - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.JFKNN.Triplet
-
Parameter constructor.
- Triplet(double[][]) - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.JFKNN.Triplet
-
Parameter constructor.
- Triplet(Triplet) - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.JFKNN.Triplet
-
Copy Constructor.
- TriTrainingAlgorithm - Class in keel.Algorithms.Semi_Supervised_Learning.TriTraining
-
TriTraining algorithm calling.
- TriTrainingAlgorithm() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.TriTraining.TriTrainingAlgorithm
-
- TriTrainingGenerator - Class in keel.Algorithms.Semi_Supervised_Learning.TriTraining
-
This class implements the Tri-training.
- TriTrainingGenerator(PrototypeSet, int, int, int, int, double, double, double, double, double) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.TriTraining.TriTrainingGenerator
-
Build a new TriTrainingGenerator Algorithm
- TriTrainingGenerator(PrototypeSet, PrototypeSet, PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Semi_Supervised_Learning.TriTraining.TriTrainingGenerator
-
Build a new TriTrainingGenerator Algorithm
- TRIVIAL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.OCEC.Organizacion
-
- TrivialAlgorithm - Class in keel.Algorithms.Instance_Generation.Trivial
-
Main class
- TrivialAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.Trivial.TrivialAlgorithm
-
- TRKNN - Class in keel.Algorithms.Instance_Selection.TRKNN
-
File: TRKNN.java
The TRKNN Instance Selection algorithm.
- TRKNN(String) - Constructor for class keel.Algorithms.Instance_Selection.TRKNN.TRKNN
-
Default constructor.
- TRKNN - Class in keel.Algorithms.Preprocess.Instance_Selection.TRKNN
-
File: TRKNN.java
The TRKNN Instance Selection algorithm.
- TRKNN(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.TRKNN.TRKNN
-
Default constructor.
- TRS - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Type of file: trs data set.
- trueHShaffer(int) - Static method in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Multiple
-
Computes the trueHShaffer distribution from a given parameter.
- trueHShaffer(int) - Static method in class keel.GraphInterKeel.statistical.tests.Multiple
-
Computes the trueHShaffer distribution from a given parameter.
- trueNegativeRate(int) - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Calculate the true negative rate with respect to a particular class.
- truePositiveRate(int) - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Calculate the true positive rate with respect to a particular class.
- TruncaElite() - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
-
TruncaElite
Stores in elite part of the non-dominated individuals of temporal
This is because temporal contains more non-dominated that fits in elite
- tst_val - Variable in class keel.GraphInterKeel.experiments.Parameters
-
- Ttabla - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs
-
Class that defines the Ttabla
- Ttabla(int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Ttabla
-
Constructor with one parameter
- Ttabla(double[], double, double, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Ttabla
-
Constructor that defines all elements of the class
- Ttabla - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs
-
Class that defines the Ttabla
- Ttabla(int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Ttabla
-
Constructor with one parameter
- Ttabla(double[], double, double, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Ttabla
-
Constructor that defines all elements of the class
- Ttabla - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs
-
Class that defines the Ttabla
- Ttabla(int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Ttabla
-
Constructor with one parameter
- Ttabla(double[], double, double, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Ttabla
-
Constructor that defines all elements of the class
- Ttabla - Class in keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs
-
Class that defines the Ttabla
- Ttabla(int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Ttabla
-
Constructor with one parameter
- Ttabla(double[], double, double, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Ttabla
-
Constructor that defines all elements of the class
- Ttabla - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs
-
Class that defines the Ttabla
- Ttabla(int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Ttabla
-
Constructor with one parameter
- Ttabla(double[], double, double, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Ttabla
-
Constructor that defines all elements of the class
- Ttabla - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs
-
Class that defines the Ttabla
- Ttabla(int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Ttabla
-
Constructor with one parameter
- Ttabla(double[], double, double, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Ttabla
-
Constructor that defines all elements of the class
- Ttabla - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs
-
Class that defines the Ttabla
- Ttabla(int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Ttabla
-
Constructor with one parameter
- Ttabla(double[], double, double, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Ttabla
-
Constructor that defines all elements of the class
- Ttabla - Class in keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs
-
Class that defines the Ttabla
- Ttabla(int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Ttabla
-
Constructor with one parameter
- Ttabla(double[], double, double, int) - Constructor for class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Ttabla
-
Constructor that defines all elements of the class
- TTable - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate
-
This class is defined to contain a bidimensional array with the instances
of the dataset, the class of the instance and if it is covered by any rule
- TTable() - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.TTable
-
Creates a new instance of TTable
- TTable - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate
-
This class is defined to contain a bidimensional array with the instances
of the dataset, the class of the instance and if it is covered by any rule
- TTable() - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.TTable
-
Creates a new instance of TTable
- TTable - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate
-
This class is defined to contain a bidimensional array with the instances
of the dataset, the class of the instance and if it is covered by any rule
- TTable() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.TTable
-
Creates a new instance of TTable
- TTLS - Static variable in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
TTLS flag.
- TtreeNode - Class in keel.Algorithms.Associative_Classification.ClassifierCMAR
-
Methods concerned with Ttree node structure.
- TtreeNode() - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCMAR.TtreeNode
-
Default constructor
- TtreeNode(int) - Constructor for class keel.Algorithms.Associative_Classification.ClassifierCMAR.TtreeNode
-
One argument constructor.
- TtreeNode - Class in keel.Algorithms.Subgroup_Discovery.SDMap.FPTree
-
Methods concerned with Ttree node structure.
- TtreeNode() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.TtreeNode
-
Default constructor
- TtreeNode(int) - Constructor for class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.TtreeNode
-
One argument constructor.
- TtreeNode - Class in keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD
- TtreeNode() - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.TtreeNode
-
Default constructor
- TtreeNode(int) - Constructor for class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.TtreeNode
-
One argument constructor.
- Tuneados - Class in keel.GraphInterKeel.datacf
-
- Tuneados() - Constructor for class keel.GraphInterKeel.datacf.Tuneados
-
- tuneInterval(myDataset, int[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Gene
-
- tuneInterval(myDataset, int[]) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Gene
-
- turnChecksOff() - Method in class keel.Algorithms.SVM.SMO.SMO
-
Turns off checks for missing values, etc.
- turnChecksOff() - Method in class keel.Algorithms.SVM.SMO.SMOreg
-
Turns off checks for missing values, etc.
- turnChecksOn() - Method in class keel.Algorithms.SVM.SMO.SMO
-
Turns on checks for missing values, etc.
- turnChecksOn() - Method in class keel.Algorithms.SVM.SMO.SMOreg
-
Turns on checks for missing values, etc.
- turningConjunctionIntoDisjunction(myDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Rule
-
- twoDecPlaces(double) - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.AssocRuleMining
-
Converts given real number to real number rounded up to two decimal
places.
- twoDecPlaces(double) - Method in class keel.Algorithms.Subgroup_Discovery.SDMap.FPTree.AssocRuleMining
-
Converts given real number to real number rounded up to two decimal
places.
- twoDecPlaces(double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth.LUCS_KDD.AssocRuleMining
-
Converts given real number to real number rounded up to two decimal
places.
- TwoPointCrossover - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
This class implements the two-point crossover operator.
- TwoPointCrossover() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.TwoPointCrossover
-
Creates an object of the class.
- TwoPointCrossover - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
Implements the two point crossover.
- TwoPointCrossover() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.TwoPointCrossover
-
Creates an object of the class.
- TwoPointsCrossover() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
Two-points crossover operator
- TwoPointsCrossover_operator(int, int, int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
Given the individuals "indiv1" and "indiv2", it selects two points
exchanging their central zones.
- TwoPointsCrossover_operator(int, int, int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
Given the individuals "indiv1" and "indiv2", it selects two points
exchanging their central zones.
- TwoPointsCrossover_Stationary(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
Given the individuals "indiv1" and "indiv2", it selects two points
exchanging their central zones.
- TwoPointsCrossover_Stationary(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
Given the individuals "indiv1" and "indiv2", it selects two points
exchanging their central zones.
- TwoPointsCrossover_Stationary(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
Given the individuals "indiv1" and "indiv2", it selects two points
exchanging their central zones.
- TxtToKeel - Class in keel.Algorithms.Preprocess.Converter
-
TxtToKeel
This class extends from the Importer class.
- TxtToKeel(String) - Constructor for class keel.Algorithms.Preprocess.Converter.TxtToKeel
-
TxtToKeel class Constructor.
- type() - Method in class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Returns the attribute's type as an integer.
- type - Variable in class keel.Algorithms.Discretizers.MODL.Neighbour
-
type: Split, MergeSplit or MergeMergeSplit
- type() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.Node
-
This method return the type of node
- type() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns the attribute's type as an integer.
- type() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns the attribute's type as an integer.
- type - Static variable in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Type of each attribute of the set.
- type - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
-
Type of each LinkedLayer of the neural nets
- type - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Type of layer (HIDDEN_LAYER or OUTPUT_LAYER)
- type - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Type of each attribute of the set.
- type - Variable in class keel.GraphInterKeel.experiments.Node
-
- type_lqd() - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
Nodes of type LQD
- type_lqd - Variable in class keel.GraphInterKeel.experiments.Joint
-
- type_lqd - Variable in class keel.GraphInterKeel.experiments.Node
-
- TypeAlreadyFixed - Static variable in class keel.Algorithms.Rule_Learning.Swap1.ErrorInfo
-
- TypeAlreadyFixed - Static variable in class keel.Dataset.ErrorInfo
-
- TypeDat - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF
-
Class defined to store the data characteristics
- TypeDat() - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeDat
-
Creates a new instance of TypeDat
- TypeDat - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD
-
Class defined to store the data characteristics
- TypeDat() - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeDat
-
Creates a new instance of TypeDat
- TypeDat - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA
-
Class defined to store the data characteristics
- TypeDat() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeDat
-
Creates a new instance of TypeDat
- typeOfAttributes - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Represents the type of each attribute of a classifier.
- typeOfAttributes - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Represents the type of each attribute of a classifier.
- typeOfCrossover - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Represents the type of crossover.
- typeOfCrossover - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Represents the type of crossover.
- TYPEOFCROSSOVER - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- typeOfError - Variable in class keel.Algorithms.Rule_Learning.Swap1.ErrorInfo
-
It stores the type of the error
- typeOfError - Variable in class keel.Dataset.ErrorInfo
-
It stores the type of the error
- typeOfInitialReduction - Variable in class keel.Algorithms.Instance_Generation.HYB.HYBGenerator
-
Type of initial reduction.
- typeOfMutation - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Represents the type of mutation.
- typeOfMutation - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Represents the type of mutation.
- TYPEOFMUTATION - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- typeOfProblem - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
It represents the type of problem to be executed.
- typeOfProblem - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It represents the type of problem to be executed.
- TYPEOFPROBLEM - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- typeOfReduction - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Indicates the type of reduction to be made.
- TYPEOFREDUCTION - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- typeOfSelection - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
Represents the type of selection.
- typeOfSelection - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
Represents the type of selection.
- TYPEOFSELECTION - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- types - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_ADI
-
- types - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.Globals_UBR
-
- types - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Globals_ADI
-
- typesOfReduction - Static variable in class keel.Algorithms.Instance_Generation.HYB.HYBGenerator
-
Titles of types of initial reduction
- typesVariable() - Method in class keel.Algorithms.Hyperrectangles.EACH.Dataset
-
Return the types of each in-put(NOMINAL[0] o NUMERIC[1])
- TypeVar - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate
-
Class defined to store the attributes characteristics
- TypeVar() - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.TypeVar
-
Creates a new instance of TypeVar
- TypeVar - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF
-
Class defined to store the attributes characteristics
- TypeVar() - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.TypeVar
-
Creates a new instance of TypeVar
- TypeVar - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate
-
Class defined to store the attributes characteristics
- TypeVar() - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.TypeVar
-
Creates a new instance of TypeVar
- TypeVar - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD
-
Class defined to store the attributes characteristics
- TypeVar() - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.TypeVar
-
Creates a new instance of TypeVar
- TypeVar - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate
-
Class defined to store the attributes characteristics
- TypeVar() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.TypeVar
-
Creates a new instance of TypeVar
- TypeVar - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA
-
Class defined to store the attributes characteristics
- TypeVar() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.TypeVar
-
Creates a new instance of TypeVar
- typicality(int) - Method in class keel.Algorithms.Instance_Generation.ICPL.ICPLGenerator
-
U
- UcFirst(String) - Method in class keel.Algorithms.Preprocess.Converter.Importer
-
Sets as capital letter the first one of the line given as parameter.
- UcFirst(String) - Method in class keel.Algorithms.Preprocess.Converter.KeelToDb
-
Sets as capital letter the first one of the line given as parameter.
- UciToKeel - Class in keel.Algorithms.Preprocess.Converter
-
UciToKeel
This class extends from the Importer class.
- UciToKeel(String) - Constructor for class keel.Algorithms.Preprocess.Converter.UciToKeel
-
UciToKeel class Constructor.
- UCPD - Class in keel.Algorithms.Discretizers.UCPD
-
This class implements the UCPD algorithm
- UCPD(InstanceSet) - Constructor for class keel.Algorithms.Discretizers.UCPD.UCPD
-
Constructor of the class
- UCS - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
This class controls the UCS run.
- UCS(String) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.UCS
-
Initializes an UCS object.
- UCSControl - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
UCSControl.
- UCSControl() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.UCSControl
-
- UCSControl() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.UCSControl
-
UCSControl
This is the main class of the package.
- UCSRun - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
It represents the number of explores iterations that have to be
made to do a exploit
- ult_cambio_eval - Variable in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Population
-
Last change in the population
- uminus() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Unary minus
- UnassignedClassException - Exception in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
Exception that is raised when trying to use some data that has no
class assigned to it, but a class is needed to perform the operation.
- UnassignedClassException() - Constructor for exception keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.UnassignedClassException
-
Creates a new UnassignedClassException with no message.
- UnassignedClassException(String) - Constructor for exception keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.UnassignedClassException
-
Creates a new UnassignedClassException.
- UnassignedClassException - Exception in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets
-
Exception that is raised when trying to use some data that has no
class assigned to it, but a class is needed to perform the operation.
- UnassignedClassException() - Constructor for exception keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.UnassignedClassException
-
Creates a new UnassignedClassException with no message.
- UnassignedClassException(String) - Constructor for exception keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.UnassignedClassException
-
Creates a new UnassignedClassException.
- UnassignedClassException - Exception in keel.Algorithms.SVM.SMO.core
-
Exception that is raised when trying to use some data that has no
class assigned to it, but a class is needed to perform the operation.
- UnassignedClassException() - Constructor for exception keel.Algorithms.SVM.SMO.core.UnassignedClassException
-
Creates a new UnassignedClassException with no message.
- UnassignedClassException(String) - Constructor for exception keel.Algorithms.SVM.SMO.core.UnassignedClassException
-
Creates a new UnassignedClassException.
- UnassignedDatasetException - Exception in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
Exception that is raised when trying to use something that has no
reference to a dataset, when one is required.
- UnassignedDatasetException() - Constructor for exception keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.UnassignedDatasetException
-
Creates a new UnassignedDatasetException with no message.
- UnassignedDatasetException(String) - Constructor for exception keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.UnassignedDatasetException
-
Creates a new UnassignedDatasetException.
- UnassignedDatasetException - Exception in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets
-
Exception that is raised when trying to use something that has no
reference to a dataset, when one is required.
- UnassignedDatasetException() - Constructor for exception keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.UnassignedDatasetException
-
Creates a new UnassignedDatasetException with no message.
- UnassignedDatasetException(String) - Constructor for exception keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.UnassignedDatasetException
-
Creates a new UnassignedDatasetException.
- UnassignedDatasetException - Exception in keel.Algorithms.SVM.SMO.core
-
Exception that is raised when trying to use something that has no
reference to a dataset, when one is required.
- UnassignedDatasetException() - Constructor for exception keel.Algorithms.SVM.SMO.core.UnassignedDatasetException
-
Creates a new UnassignedDatasetException with no message.
- UnassignedDatasetException(String) - Constructor for exception keel.Algorithms.SVM.SMO.core.UnassignedDatasetException
-
Creates a new UnassignedDatasetException.
- unbackQuoteChars(String) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
The inverse operation of backQuoteChars().
- unbackQuoteChars(String) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
The inverse operation of backQuoteChars().
- unbackQuoteChars(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
The inverse operation of backQuoteChars().
- unbackQuoteChars(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
The inverse operation of backQuoteChars().
- unbackQuoteChars(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
The inverse operation of backQuoteChars().
- unbackQuoteChars(String) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
The inverse operation of backQuoteChars().
- unbackQuoteChars(String) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
The inverse operation of backQuoteChars().
- unclassified() - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Gets the number of instances not classified (that is, for
which no prediction was made by the classifier).
- unclassified - Variable in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
number of instances unclassified for test
- unclassified - Variable in class keel.Algorithms.Lazy_Learning.LazyAlgorithm
-
Number of unclassified test instances.
- uncoveredExamples - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
Uncovered examples.
- undefinedDistribution - Static variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Maths
-
Distribution type: undefined
- undoRandomizeAttribute() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Does an undo of a previous call to randomizeAttribute, so that the
original values of the attribute are restored.
- UNEQUAL - Static variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Gene
-
- UniformBiasedMutation(TableVar) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Genetic
-
Applies the mutation operator.
- UniformCrossover - Class in keel.Algorithms.Genetic_Rule_Learning.UCS
-
Implements crossover according to the uniform crossover operator
- UniformCrossover() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.UCS.UniformCrossover
-
Creates an object of the class.
- UniformCrossover - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
Introduce a new crossover model (uniform crossover), implements Crossover.
- UniformCrossover() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.UniformCrossover
-
Creates an object of the class.
- uniformFrequencyCutpoints(int, double[][], int) - Method in class keel.Algorithms.Discretizers.UCPD.UCPD
-
It calculates the cutpoints with uniform frequency
- UniformFrequencyDiscretizer - Class in keel.Algorithms.Discretizers.UniformFrequency_Discretizer
-
This class implements the Uniform Frequency discretizer.
- UniformFrequencyDiscretizer(int) - Constructor for class keel.Algorithms.Discretizers.UniformFrequency_Discretizer.UniformFrequencyDiscretizer
-
Constructor of the class, initializes the numInt attribute
- UniformFrequencyDiscretizer - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.UniformFrequency_Discretizer
-
- UniformFrequencyDiscretizer(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.UniformFrequency_Discretizer.UniformFrequencyDiscretizer
-
- UniformFrequencyDiscretizer - Class in keel.Algorithms.Preprocess.NoiseFilters.PANDA
-
This class implements the Uniform Frequency discretizer.
- UniformFrequencyDiscretizer(int) - Constructor for class keel.Algorithms.Preprocess.NoiseFilters.PANDA.UniformFrequencyDiscretizer
-
Constructor of the class, initializes the numInt attribute
- UniformMutation() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
Uniform mutation operator
- UniformMutation() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationbinary
-
Uniform mutation operator
- UniformMutation() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.populationreal
-
Uniform mutation operator
- UniformMutation() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
Uniform mutation operator
- UniformMutation() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.populationbinary
-
Uniform mutation operator
- UniformMutation_Stationary() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
Stationary uniform mutation operator
- UniformMutation_Stationary() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationbinary
-
Stationary uniform mutation operator
- UniformMutation_Stationary() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationinteger
-
Stationary uniform mutation operator
- UniformMutation_Stationary() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.populationreal
-
Stationary uniform mutation operator
- UniformWidthDiscretizer - Class in keel.Algorithms.Discretizers.UniformWidth_Discretizer
-
This class implements the Uniform Width discretizer.
- UniformWidthDiscretizer(int) - Constructor for class keel.Algorithms.Discretizers.UniformWidth_Discretizer.UniformWidthDiscretizer
-
Constructor of the class, initializes the numCP attribute
- UniformWidthDiscretizer - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.UniformWidth_Discretizer
-
- UniformWidthDiscretizer(int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.UniformWidth_Discretizer.UniformWidthDiscretizer
-
- Union - Class in keel.Algorithms.Genetic_Rule_Learning.Hider
-
- Union() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Hider.Union
-
Empty constructor
- Union(Corte, double, int) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.Hider.Union
-
Constructor
- Union(int[][]) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ApproximateSets
-
- union(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Join two prototype sets
- union(PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Join two prototype sets
- unionVectores(Vector<Integer>, Vector<Integer>) - Static method in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Multiple
-
Joins two vectors
- unionVectores(Vector<Integer>, Vector<Integer>) - Static method in class keel.GraphInterKeel.statistical.tests.Multiple
-
Joins two vectors
- uniqueAdd(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Adds prototype only if it is not already in the set.
- uniqueAdd(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Adds prototype only if it is not already in the set.
- uniqueCount - Variable in class keel.Algorithms.Decision_Trees.M5.M5AttrStats
-
The number of values that only appear once
- uniqueCount - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.AttributeStats
-
The number of values that only appear once
- unitNeuronsWeights(ExpNeuron, ExpNeuron, LinkedLayer, LinkedLayer, int, int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.ExpNeuronStructuralMutator
-
Units the weights of two specific neurons, and stores
the result in the first neuron
- unitNeuronsWeights(N, N, LinkedLayer, LinkedLayer, int, int) - Method in interface keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.INeuronStructuralMutator
-
Units the weights of two specific neurons, and stores
the result in the first neuron
- unitNeuronsWeights(LinearNeuron, LinearNeuron, LinkedLayer, LinkedLayer, int, int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.LinearNeuronStructuralMutator
-
Units the weights of two specific neurons, and stores
the result in the first neuron
- unitNeuronsWeights(SigmNeuron, SigmNeuron, LinkedLayer, LinkedLayer, int, int) - Method in class keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.SigmNeuronStructuralMutator
-
Units the weights of two specific neurons, and stores
the result in the first neuron
- UnivariateFunction - Interface in keel.Algorithms.Preprocess.Missing_Values.EM.util
-
Interface for a function of one variable.
- UnivariateMinimum - Class in keel.Algorithms.Preprocess.Missing_Values.EM.util
-
minimization of a real-valued function of one variable
without using derivatives.
- UnivariateMinimum() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EM.util.UnivariateMinimum
-
- UNKNOW_INDEX - Static variable in class keel.Algorithms.Instance_Generation.Basic.Prototype
-
Informs that the prototype has not got a definided index.
- UNKNOW_INDEX - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
Informs that the prototype has not got a definided index.
- unknownValue - Static variable in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
It represents the unkown value in a training instance
- UnMark(int[], int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Marks the examples in "v" as uncovered and set their coverage degree to -1
- UnMark(int[], int, double[]) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Marks the examples in "v" as uncovered and set their coverage degree to the negative value for the one in "grado"
- UnMarkAll() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
-
Set all positions (referred to examples) of vector "covered" to false (not covered)
Set all positions (referred to examples) of vector "gcovered" (degree of coverage) to 0
Set all positions (referred to examples) of vectors "g_positive_covered" and "g_negative_covered" (degree of positive/negative coverage) to 0
Set all positions (referred to examples) of vectors "peso_positive" and "peso_negative" (positive/negative weights) to 0
- UnMarkAll() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.example_set
-
Marks all the examples as uncovered and set their coverage degree to 0
- UnMarkAll() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.example_set
-
Set all positions (referred to examples) of vector "covered" to false (not covered)
Set all positions (referred to examples) of vector "gcovered" (degree of coverage) to 0
- UnMarkAll() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.example_set
-
Set all positions (referred to examples) of vector "covered" to false (not covered)
Set all positions (referred to examples) of vector "gcovered" (degree of coverage) to 0
- unnormalizedKernel(char[], char[]) - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
evaluates the unnormalized kernel between s and t.
- UnoR - Class in keel.Algorithms.Rule_Learning.UnoR
-
Contents the principal methods of the UnoR algorithm
- UnoR() - Constructor for class keel.Algorithms.Rule_Learning.UnoR.UnoR
-
Default constructor.
- UnoR(String, String, String, String, String, long, int) - Constructor for class keel.Algorithms.Rule_Learning.UnoR.UnoR
-
Constructor with all the attributes to initialize
- unpivoting(IntVector, int) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns a vector from the pivoting indices.
- unquote(String) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
unquotes are previously quoted string (but only if necessary), i.e., it
removes the single quotes around it.
- unquote(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
unquotes are previously quoted string (but only if necessary), i.e., it
removes the single quotes around it.
- unquote(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
unquotes are previously quoted string (but only if necessary), i.e., it
removes the single quotes around it.
- unquote(String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
unquotes are previously quoted string (but only if necessary), i.e., it
removes the single quotes around it.
- unquote(String) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
unquotes are previously quoted string (but only if necessary), i.e., it
removes the single quotes around it.
- unquote(String) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
unquotes are previously quoted string (but only if necessary), i.e., it
removes the single quotes around it.
- unscaledMax - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Auxiliary arrays
- unscaledMin - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Auxiliary arrays
- unscaledTestData - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Unscaled test DataSet with data to evaluate the individuals
- unscaledTrainData - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.problem.ProblemEvaluator
-
Unscaled train DataSet with data to evaluate the individuals
- unsetAttribute(int) - Static method in class keel.Algorithms.RST_Learning.EFS_RPS.ISW
-
- unsetAttribute(int) - Static method in class keel.Algorithms.RST_Learning.RSTData
-
- unsorted() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.DoubleVector
-
Returns true if vector not sorted
- UnsupportedAttributeTypeException - Exception in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
Exception that is raised by an object that is unable to process some of the
attribute types it has been passed.
- UnsupportedAttributeTypeException() - Constructor for exception keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.UnsupportedAttributeTypeException
-
Creates a new UnsupportedAttributeTypeException with no message.
- UnsupportedAttributeTypeException(String) - Constructor for exception keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.UnsupportedAttributeTypeException
-
Creates a new UnsupportedAttributeTypeException.
- unthresholdedOutput(Instance) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.PDFCS.FuzzyRuleSet
-
This method computes the input output mapping of this rule set
- UnZipFiles(String, String) - Static method in class keel.GraphInterKeel.experiments.FileUtils
-
Unzip a .zip file
- update(Instance) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.ApproximateSets
-
Updates the Edit2RS to cater for the new added instance.
- update(Instance) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Arrays
-
Updates the Edit2RS to cater for the new added instance.
- update(MyDataset, Rule, Mask, Mask, double[], double) - Method in class keel.Algorithms.Rule_Learning.Slipper.Slipper
-
It reweights the instances, making use of the confidence of the last rule.
- update(double) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.FlexibleDecimalFormat
-
Updates the format of the FlexibleDecimalFormat by parsering a number given.
- update() - Method in class keel.GraphInterKeel.experiments.DinamicDataset
-
Update data sets
- updateAlpha(int) - Method in class keel.Algorithms.Instance_Generation.VQ.VQGenerator
-
Update alpha in stage t to the stage t+1
- updateBoundaries(int, double) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
updates boundaries bLow and bHi and corresponding indexes
- UpdateCache(EnsembleParameters, Data) - Method in class keel.Algorithms.Neural_Networks.ensemble.Ensemble
-
Update cache data
- updateCholeskyFactor(double[][], double[], double[], double, boolean[]) - Method in class keel.Algorithms.MIL.Diverse_Density.Optimization.Optimization
-
- updateCholeskyFactor(Matrix, double[], double[], double, boolean[]) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Optimization
-
One rank update of the Cholesky factorization of B matrix in BFGS updates,
i.e.
- updateFitness(double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Classifier
-
Updates the fitness of a classifier
- updateFitness(double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
-
Updates the fitness of a classifier
- updateFitness(double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Updates the fitness of a classifier
- updateFitness(double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Updates the fitness of a classifier
- updateFuzzyLabels(double[][]) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.DataBase
-
Updates the fuzzy labels stored in the current database according to a lateral tuning given
- updateFuzzyLabels(double[][], myDataset, double) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.Rule
-
Updates the current rule according to a specified lateral tuning of the associated fuzzy labels
- updateIndexSetFor(int, double) - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
updates the index sets I0a, IOb, I1, I2 and I3 for vector i
- UpdateLineColumn(char) - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.SimpleCharStream
-
- UpdateLineColumn(char) - Static method in class keel.Algorithms.Rule_Learning.Swap1.SimpleCharStream
-
- UpdateLineColumn(char) - Static method in class keel.Dataset.SimpleCharStream
-
- updateMatches(int[], int, int[], int) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ClassifierGABIL
-
- UpdateMemory(String[][], double[], int, String[], double, String[], double, String[], double) - Method in class keel.Algorithms.Instance_Generation.PSCSA.PSCSAGenerator
-
Update of immne Memory
- updateMPA(int, matchProfileAgent) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.ruleOrderAgent
-
- updateParameters(double, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Classifier
-
Updates the parameters of a classifier.
- updateParameters(double, double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Parameters
-
Updates the parameters of a classifier (reinforcement component)
- updateParameters(double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Classifier
-
Updates the parameters of a classifier (reinforcement component)
- updateParameters(double, double) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Parameters
-
Updates the parameters of a classifier (reinforcement component)
- updateParametersSet(double, double[], int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Population
-
Updates UCS' parameters.
- updateParametersSet(double, double, double[], int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Population
-
Updates the XCS parameters of the set.
- updatePosition(MouseEvent) - Method in class keel.GraphInterKeel.experiments.GraphPanel
-
Updates the position of the node in the panel
- updatePriors(M5Instance) - Method in class keel.Algorithms.Decision_Trees.M5.EvaluateModel
-
Updates the class prior probabilities (when incrementally
training)
- updateProbability(int, int[][], int[][]) - Method in class keel.Algorithms.Instance_Generation.SADE.SADEGenerator
-
- updateReductionTime(long) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TimeControl
-
Updates the reduction time.
- updateRow(Vector, int, Attribute) - Method in class keel.GraphInterKeel.datacf.util.AttributeTable
-
Updates a row in the table using a vector with its new values
- updateState() - Method in class keel.GraphInterKeel.experiments.Node
-
It does update the state of the node, regarding the variables
that define the types of values accepted as input and output
- updateTestTime(long) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TimeControl
-
Update the test time
- updateTestTime(long) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TimeControl
-
Update the test time
- updateTotalTime(long) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TimeControl
-
Update the total time
- updateTotalTime(long) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TimeControl
-
Update the total time.
- updateTrainTime(long) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TimeControl
-
Updates the training time
- updateTrainTime(long) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TimeControl
-
Updates the training time
- updateV(Particle) - Method in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- updateV(Particle, double) - Method in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- updateV(Particle) - Method in class keel.Algorithms.PSO_Learning.PSOLDA.Particle
-
- updateV(Particle, double) - Method in class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- updateX() - Method in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- updateX() - Method in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- updateX() - Method in class keel.Algorithms.PSO_Learning.PSOLDA.Particle
-
- updateX() - Method in class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- upper_aproximation() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsCuttoff
-
Compute the upper aproximation
- upper_aproximation - Variable in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsOriginal
-
- upper_aproximation() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsOriginal
-
Compute the upper aproximation
- upper_aproximation_Set(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsCuttoff
-
Compute the upper aproximation of a set
- upper_aproximation_Set(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.RoughSetsOriginal
-
Compute the upper aproximation of a set
- upperbound - Variable in class keel.Algorithms.Discretizers.MVD.Interval
-
Interval upper bound.
- upperNumericBoundIsOpen() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns whether the upper numeric bound of the attribute is open.
- upperrealBoundIsOpen() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns whether the upper real bound of the attribute is open.
- urlAdress - Variable in class keel.GraphInterKeel.datacf.help.HelpSheet
-
Current URL Adress
- USDDiscretizer - Class in keel.Algorithms.Discretizers.USD_Discretizer
-
This class implements the USD discretizer.
- USDDiscretizer() - Constructor for class keel.Algorithms.Discretizers.USD_Discretizer.USDDiscretizer
-
- USDDiscretizer - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.USD_Discretizer
-
- USDDiscretizer() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Discretizers.USD_Discretizer.USDDiscretizer
-
- use - Static variable in class keel.Algorithms.Instance_Generation.utilities.Parameters
-
Contains the message of correct use to the user of the program.
- use - Static variable in class keel.Algorithms.Semi_Supervised_Learning.utilities.Parameters
-
Contains the message of correct use to the user of the program.
- use_C45 - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
If the C4.5 is used.
- use_KNN - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
If the KNN is used.
- use_LOG - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
If the LOG is used.
- use_SVM - Static variable in class keel.Algorithms.Preprocess.NoiseFilters.INFFC.Parameters
-
If the SVM is used.
- useAttb(Gene) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.Chromosome
-
- UseCase - Class in keel.GraphInterKeel.experiments
-
- UseCase() - Constructor for class keel.GraphInterKeel.experiments.UseCase
-
- useCaseTextArea - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- used - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.OptimLocal.FUN
-
Mark the used rules
- useDiscrete - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- useFilter(M5Instances, NominalToBinaryFilter) - Static method in class keel.Algorithms.Decision_Trees.M5.NominalToBinaryFilter
-
Filters an entire set of instances through a filter and returns
the new set.
- useFilter(M5Instances, ReplaceMissingValuesFilter) - Static method in class keel.Algorithms.Decision_Trees.M5.ReplaceMissingValuesFilter
-
Uses the Missing value filter given as parameter to the given dat.
- usefulAttribute(Attribute) - Method in class keel.Algorithms.Preprocess.Transformations.CleanAttributes.CleanAttributes
-
Returns true if the attribute given is useful, false otherwise.
- useLowerOrderTipText() - Method in class keel.Algorithms.SVM.SMO.supportVector.PolyKernel
-
Returns the tip text for this property
- useMDL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- useMDL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- useMDL - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- useNormalizationTipText() - Method in class keel.Algorithms.SVM.SMO.supportVector.StringKernel
-
Returns the tip text for this property
- useNumberOfPrototypes - Variable in class keel.Algorithms.Instance_Generation.PNN.PNNGenerator
-
Informs if the algorithm must generate a specified number of prototypes.
- user - Variable in class keel.GraphInterKeel.experiments.DatasetXML
-
- UserMethod - Class in keel.GraphInterKeel.experiments
-
- UserMethod(ExternalObjectDescription, Point, GraphPanel) - Constructor for class keel.GraphInterKeel.experiments.UserMethod
-
Builder
- UserMethod(ExternalObjectDescription, Point, GraphPanel, Parameters, int) - Constructor for class keel.GraphInterKeel.experiments.UserMethod
-
Builder
- useRuleStretchingTipText() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.FURIA
-
Returns the tip text for this property
- useVariant1TipText() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
Returns the tip text for this property
- Util - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning
-
File: Util.java
Auxiliar class with useful function for working with fuzzy instance learning based methods
- Util() - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.Util
-
- Util - Class in keel.Algorithms.RST_Learning
-
File: Util.java
Auxiliar class with useful function for working with instance based methods
- Util() - Constructor for class keel.Algorithms.RST_Learning.Util
-
- Utilidades - Class in keel.Algorithms.Semi_Supervised_Learning.Basic
-
Utilities class.
- Utilidades() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.Basic.Utilidades
-
- Utilities - Class in keel.Algorithms.Genetic_Rule_Learning.PART
-
Collection of auxiliary methods.
- Utilities() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.PART.Utilities
-
- Utilities - Class in keel.Algorithms.Rule_Learning.C45Rules
-
Collection of auxiliar methods.
- Utilities() - Constructor for class keel.Algorithms.Rule_Learning.C45Rules.Utilities
-
- Utilities - Class in keel.Algorithms.Rule_Learning.C45RulesSA
-
Collection of auxiliar methods.
- Utilities() - Constructor for class keel.Algorithms.Rule_Learning.C45RulesSA.Utilities
-
- Utilities - Class in keel.Algorithms.Rule_Learning.PART
-
Collection of auxiliar methods.
- Utilities() - Constructor for class keel.Algorithms.Rule_Learning.PART.Utilities
-
- Utilities - Class in keel.Algorithms.Rule_Learning.Ripper
-
Collection of auxiliar methods.
- Utilities() - Constructor for class keel.Algorithms.Rule_Learning.Ripper.Utilities
-
- Utilities - Class in keel.Algorithms.Rule_Learning.Slipper
-
Collection of auxiliar methods.
- Utilities() - Constructor for class keel.Algorithms.Rule_Learning.Slipper.Utilities
-
- utilRules - Static variable in class keel.Algorithms.Genetic_Rule_Learning.GAssist.PerformanceAgent
-
- utilRules - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.PerformanceAgent
-
- Utils - Class in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
Class implementing some simple utility methods.
- Utils() - Constructor for class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
- Utils - Class in keel.Algorithms.Genetic_Rule_Learning.GAssist
-
Small routines doing trivial stuff here
- Utils() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GAssist.Utils
-
- Utils - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
-
Small routines doing trivial stuff here
- Utils() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Utils
-
- Utils - Class in keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets
-
Class implementing some simple utility methods.
- Utils() - Constructor for class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
- Utils - Class in keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest
-
Class implementing some simple utility methods.
- Utils() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
- Utils - Class in keel.Algorithms.Semi_Supervised_Learning.CLCC
-
Class implementing some simple utility methods.
- Utils() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
- Utils - Class in keel.Algorithms.Semi_Supervised_Learning.CoForest
-
Class implementing some simple utility methods.
- Utils() - Constructor for class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
- Utils - Class in keel.Algorithms.Statistical_Classifiers.Logistic.core
-
Class implementing some simple utility methods.
- Utils() - Constructor for class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
- Utils - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate
-
Assorted methods to manage several topics
- Utils() - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Utils
-
- Utils - Class in keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF
-
Assorted methods to manage several topics
- Utils() - Constructor for class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Utils
-
- Utils - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate
-
Assorted methods to manage several topics
- Utils() - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Utils
-
- Utils - Class in keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD
-
Assorted methods to manage several topics
- Utils() - Constructor for class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.Utils
-
- Utils - Class in keel.Algorithms.Subgroup_Discovery.SDAlgorithm
-
Assorted methods to manage several topics
- Utils() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDAlgorithm.Utils
-
- Utils - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate
-
Assorted methods to manage several topics
- Utils() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Utils
-
- Utils - Class in keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA
-
Assorted methods to manage several topics
- Utils() - Constructor for class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.Utils
-
- Utils - Class in keel.Algorithms.SVM.SMO.core
-
Class implementing some simple utility methods.
- Utils() - Constructor for class keel.Algorithms.SVM.SMO.core.Utils
-
V
- V(int) - Method in class keel.Algorithms.Decision_Trees.PUBLIC.Node
-
Calculates V for the data in this node with k class, in other words, this calculates the minimum
cost of specifying the split value at the parent of a node containing the data in this node
- V - Variable in class keel.Algorithms.Instance_Generation.VQ.AVQGenerator
-
Partition of the training data set used as validation set.
- V - Variable in class keel.Algorithms.Preprocess.Missing_Values.EM.EV
-
eigenvectors
- V - Variable in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- V - Variable in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- V - Variable in class keel.Algorithms.PSO_Learning.PSOLDA.Particle
-
- V - Variable in class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- vaciar() - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.Condition
-
- vacio() - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Checks if there is a class without instances.
- VAL - Variable in class keel.Algorithms.Neural_Networks.ensemble.Ensemble
-
Training flag.
- val - Static variable in class keel.Algorithms.PSO_Learning.CPSO.CPSO
-
Training dataset.
- val - Static variable in class keel.Algorithms.PSO_Learning.LDWPSO.LDWPSO
-
Training dataset.
- val - Static variable in class keel.Algorithms.PSO_Learning.REPSO.REPSO
-
Training dataset.
- val_data - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Check if test,validation or cross validation data is going to be used
- val_data - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Check if test,validation or cross validation data is going to be used
- val_data - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Check if test,validation or cross validation data is going to be used
- val_data - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Check if test,validation or cross validation data is going to be used
- val_file - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
File names
- val_file - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
File names
- val_file - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
File names
- val_file - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
File names
- val_output - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
File names
- val_output - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
File names
- valid_split(Split) - Method in class keel.Algorithms.Decision_Trees.FunctionalTrees.TreeNode
-
Checks if a split is valid for a TreeNode, this means, that it will generate valid child nodes
- validacionCruzada(boolean[]) - Method in class keel.Algorithms.Preprocess.Feature_Selection.Datos
-
calculates the precision (errors/total_instances) in the classification of all instances in the TEST DATASET
using the given features and THE TRAINING DATASET TO PREDICT.
- validation(M5Instances) - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Computes performance measures for both unsmoothed and smoothed models
- validation(MyDataset) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Computes performance measures for both unsmoothed and smoothed models
- validation - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Data
-
Validation data
- VALIDATION - Static variable in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
Type of file: test data set.
- validation - Variable in class keel.Algorithms.Neural_Networks.gann.Data
-
Validation data
- validation - Variable in class keel.Algorithms.Neural_Networks.gmdh.Data
-
Validation data
- validation - Variable in class keel.Algorithms.Neural_Networks.net.Data
-
Validation data
- validation(Vector<String>, String, String, int, JTextField) - Method in class keel.GraphInterKeel.experiments.Container_Selected
-
- VAList - Class in keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues
-
This class stores a list of Value-attribute elements.
- VAList() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.VAList
-
Creates a new instance of VAList
- VAList - Class in keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue
-
This class stores a list of Value-attribute elements.
- VAList() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.VAList
-
Creates a new instance of VAList
- VAList - Class in keel.Algorithms.Preprocess.Missing_Values.EventCovering
-
This class stores a list of Value-attribute elements.
- VAList() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.VAList
-
Creates a new instance of VAList
- VAList - Class in keel.Algorithms.Preprocess.Missing_Values.fkmeans
-
This class stores a list of Value-attribute elements.
- VAList() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.fkmeans.VAList
-
Creates a new instance of VAList
- VAList - Class in keel.Algorithms.Preprocess.Missing_Values.kmeansImpute
-
This class stores a list of Value-attribute elements.
- VAList() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.VAList
-
Creates a new instance of VAList
- VAList - Class in keel.Algorithms.Preprocess.Missing_Values.knnImpute
-
This class stores a list of Value-attribute elements.
- VAList() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.knnImpute.VAList
-
Creates a new instance of VAList
- VAList - Class in keel.Algorithms.Preprocess.Missing_Values.svmImpute
-
This class stores a list of Value-attribute elements.
- VAList() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.svmImpute.VAList
-
Creates a new instance of VAList
- VAList - Class in keel.Algorithms.Preprocess.Missing_Values.wknnImpute
-
This class stores a list of Value-attribute elements.
- VAList() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.VAList
-
Creates a new instance of VAList
- valor(int, int) - Method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
Returns the value of a given attribute in a given position (id).
- valor - Variable in class keel.Algorithms.Decision_Trees.SLIQ.ListaAtributos
-
Attribute value
- valor - Variable in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.MultiplePair
-
second element
- valor - Variable in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.Pair
-
second element
- valor - Variable in class keel.GraphInterKeel.statistical.tests.MultiplePair
-
second element
- valor - Variable in class keel.GraphInterKeel.statistical.tests.Pair
-
second element
- valorAtributo(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.RMini.myDataset
-
It returns de ith value of the nominal given attribute
- valores_propios(double[][], double[][], double[][]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.MatrixCalcs
-
- valores_propios(double[][], double[][], double[][]) - Static method in class keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.MatrixCalcs
-
- valoresMin() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner.myDataset
-
It returns an array with the minimum values of the attributes
- valoresMin() - Method in class keel.Algorithms.Genetic_Rule_Learning.Advanced_Ant_Miner_Plus.myDataset
-
It returns an array with the minimum values of the attributes
- valoresMin() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner.myDataset
-
It returns an array with the minimum values of the attributes
- valoresMin() - Method in class keel.Algorithms.Genetic_Rule_Learning.Ant_Miner_Plus.myDataset
-
It returns an array with the minimum values of the attributes
- valoresMin() - Method in class keel.Algorithms.Genetic_Rule_Learning.PSO_ACO.myDataset
-
It returns an array with the minimum values of the attributes
- valoresMin() - Method in class keel.Algorithms.Genetic_Rule_Learning.SIA.Dataset
-
It returns an array with the lower ranges of the attributes
- valorNominal(int, double) - Static method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
Returns a nominal representation of a attribute's real value given as argument.
- valorNominal(int, double) - Static method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
Returns a nominal representation of a attribute's real value given as argument.
- valorNominal(int, double) - Static method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
Returns a nominal representation of a attribute's real value given as argument.
- valorNominal(int, double) - Static method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Returns a nominal representation of a attribute's real value given as argument.
- valorReal(int, String) - Static method in class keel.Algorithms.Decision_Trees.DT_GA.myDataset
-
Returns a real representation of a attribute's nominal value given as argument.
- valorReal(int, String) - Static method in class keel.Algorithms.Decision_Trees.DT_oblicuo.myDataset
-
Returns a real representation of a attribute's nominal value given as argument.
- valorReal(int, String) - Static method in class keel.Algorithms.Decision_Trees.Target.myDataset
-
Returns a real representation of a attribute's nominal value given as argument.
- valorReal(int, String) - Static method in class keel.Algorithms.ImbalancedClassification.Ensembles.myDataset
-
Returns a real representation of a attribute's nominal value given as argument.
- value(int) - Method in class keel.Algorithms.Decision_Trees.C45.Attribute
-
Returns the value with the given index.
- value(int) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Attribute
-
Returns the value with the given index.
- value(int) - Method in class keel.Algorithms.Decision_Trees.ID3.Attribute
-
Returns the value with the given index.
- value(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Attribute
-
Returns a value of a nominal or string attribute.
- value(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Returns an instance's attribute value in internal format.
- value(M5Attribute) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Returns an instance's attribute value in internal format.
- value(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5SparseInstance
-
Returns an instance's attribute value in internal format.
- value(int) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Attribute
-
Returns the value with the given index.
- value - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.Double_t
-
Double value.
- value - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.Int_t
-
Integer value.
- value - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.Double_t
-
Double value.
- value - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.Int_t
-
Integer value.
- value - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.Double_t
-
Double value.
- value - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.Int_t
-
Integer value.
- value - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Antd
-
The attribute value of the antecedent.
- value(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns a value of a nominal or string attribute.
- value(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns an instance's attribute value in internal format.
- value(AttributeWeka) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns an instance's attribute value in internal format.
- value(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
-
Returns the value with the given index.
- value(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA_Attribute
-
Returns the value with the given index.
- value(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyAttribute
-
Returns the value with the given index.
- value - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Pair
-
Pair's value.
- value(int) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Attribute
-
Returns the value with the given index.
- value - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_node
-
- value(int) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Attribute
-
Returns the value with the given index.
- value(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns a value of a nominal or string attribute.
- value(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns an instance's attribute value in internal format.
- value(Attribute) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns an instance's attribute value in internal format.
- value(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.SparseInstance
-
Returns an instance's attribute value in internal format.
- Value - Variable in class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.ValueFreq
-
String value.
- value - Variable in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.valueAssociations
-
Associated value.
- Value - Variable in class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.ValueFreq
-
String value.
- value - Variable in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.valueAssociations
-
Associated value.
- Value - Variable in class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.ValueFreq
-
String value.
- value - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat.ConfidenceInterval
-
Value inside the interval.
- value - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.valueAssociations
-
Associated value.
- Value - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.ValueFreq
-
String value.
- value - Variable in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.valueAssociations
-
Associated value.
- Value - Variable in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.ValueFreq
-
String value.
- value - Variable in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.valueAssociations
-
Associated value.
- Value - Variable in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.ValueFreq
-
String value.
- value - Variable in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.valueAssociations
-
Associated value.
- Value - Variable in class keel.Algorithms.Preprocess.Missing_Values.knnImpute.ValueFreq
-
String value.
- value - Variable in class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.IndexValuePair
-
Value stored.
- Value - Variable in class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.ValueFreq
-
String value.
- value - Variable in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.valueAssociations
-
Associated value.
- Value - Variable in class keel.Algorithms.Preprocess.Missing_Values.svmImpute.ValueFreq
-
String value.
- value - Variable in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.valueAssociations
-
Associated value.
- Value - Variable in class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.ValueFreq
-
String value.
- value(int) - Method in class keel.Algorithms.Rule_Learning.ART.Attribute
-
Returns the value with the given index.
- value(int) - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyAttribute
-
Returns the value with the given index.
- value(int) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyAttribute
-
Returns the value with the given index.
- value(int) - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Attribute
-
Returns the value with the given index.
- value(int) - Method in class keel.Algorithms.Rule_Learning.PART.MyAttribute
-
Returns the value with the given index.
- value - Variable in class keel.Algorithms.Rule_Learning.PART.Pair
-
value of the pair.
- value - Variable in class keel.Algorithms.Rule_Learning.Ripper.Pair
-
value of the pair.
- value - Variable in class keel.Algorithms.Rule_Learning.Slipper.Pair
-
Pair's value.
- value(int) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Returns an instance's attribute value in internal format.
- value(Attribute) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Returns an instance's attribute value in internal format.
- value(ActionEvent, JTextField, int, Joint, String) - Method in class keel.GraphInterKeel.experiments.Container_Selected
-
- value - Variable in class keel.GraphInterKeel.experiments.Parameters
-
- value - Variable in class org.libsvm.svm_node
-
- Value1 - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.ValuesFreq
-
First String value.
- Value2 - Variable in class keel.Algorithms.Preprocess.Missing_Values.EventCovering.ValuesFreq
-
Second String value.
- value_show(ActionEvent, JTextField, int, Joint, String) - Method in class keel.GraphInterKeel.experiments.Container_Selected
-
- value_show_ant(ActionEvent, JTextField, int, Joint, String) - Method in class keel.GraphInterKeel.experiments.Container_Selected
-
- valueAssociations - Class in keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues
-
This class stores a frequency list of classes for a given value, i.e. for a same value in a attribute,
it stores the number of times a determined class is associated with the value.
- valueAssociations(double) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.valueAssociations
-
Creates a new instance of valueAssociations
- valueAssociations - Class in keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue
-
This class stores a frequency list of classes for a given value, i.e. for a same value in a attribute,
it stores the number of times a determined class is associated with the value.
- valueAssociations(double) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.valueAssociations
-
Creates a new instance of valueAssociations
- valueAssociations - Class in keel.Algorithms.Preprocess.Missing_Values.EventCovering
-
This class stores a frequency list of classes for a given value, i.e. for a same value in a attribute,
it stores the number of times a determined class is associated with the value.
- valueAssociations(double) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.valueAssociations
-
Creates a new instance of valueAssociations
- valueAssociations - Class in keel.Algorithms.Preprocess.Missing_Values.fkmeans
-
This class stores a frequency list of classes for a given value, i.e. for a same value in a attribute,
it stores the number of times a determined class is associated with the value.
- valueAssociations(double) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.fkmeans.valueAssociations
-
Creates a new instance of valueAssociations
- valueAssociations - Class in keel.Algorithms.Preprocess.Missing_Values.kmeansImpute
-
This class stores a frequency list of classes for a given value, i.e. for a same value in a attribute,
it stores the number of times a determined class is associated with the value.
- valueAssociations(double) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.valueAssociations
-
Creates a new instance of valueAssociations
- valueAssociations - Class in keel.Algorithms.Preprocess.Missing_Values.knnImpute
-
This class stores a frequency list of classes for a given value, i.e. for a same value in a attribute,
it stores the number of times a determined class is associated with the value.
- valueAssociations(double) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.knnImpute.valueAssociations
-
Creates a new instance of valueAssociations
- valueAssociations - Class in keel.Algorithms.Preprocess.Missing_Values.svmImpute
-
This class stores a frequency list of classes for a given value, i.e. for a same value in a attribute,
it stores the number of times a determined class is associated with the value.
- valueAssociations(double) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.svmImpute.valueAssociations
-
Creates a new instance of valueAssociations
- valueAssociations - Class in keel.Algorithms.Preprocess.Missing_Values.wknnImpute
-
This class stores a frequency list of classes for a given value, i.e. for a same value in a attribute,
it stores the number of times a determined class is associated with the value.
- valueAssociations(double) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.valueAssociations
-
Creates a new instance of valueAssociations
- valueAt(double) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.Function
-
the value of the function at the point x
- valueAt(int, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.fkmeans.fuzzygCenter
-
Get the value of an attribute of the indicated centroid
- valueAt(int, int) - Method in class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.gCenter
-
Get the value of an attribute of the indicated centroid
- valueAttribute(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
Returns the given value of the given attribute.
- valueAttribute(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
Returns the given value of the given attribute.
- valueExample(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.DMEL.myDataset
-
Returns the value of the given attribute of a given example.
- valueExample(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.GIL.myDataset
-
Returns the value of the given attribute of a given example.
- ValueFitness(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- ValueFitness(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- ValueFitness(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- ValueFitness(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- ValueFitness(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- ValueFitness(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- ValueFreq - Class in keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues
-
this class store a value (String) and its frequency (int)
- ValueFreq() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.ValueFreq
-
Creates a new instance of Pair Value-frequency
- ValueFreq(String, int) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.AllPossibleValues.ValueFreq
-
Creates a new pair with established value and frequency
- ValueFreq - Class in keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues
-
this class store a value (String) and its frequency (int)
- ValueFreq() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.ValueFreq
-
Creates a new instance of Pair Value-frequency
- ValueFreq(String, int) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues.ValueFreq
-
Creates a new pair with established value and frequency
- ValueFreq - Class in keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue
-
this class store a value (String) and its frequency (int)
- ValueFreq() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.ValueFreq
-
Creates a new instance of Pair Value-frequency
- ValueFreq(String, int) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.ConceptMostCommonValue.ValueFreq
-
Creates a new pair with established value and frequency
- ValueFreq - Class in keel.Algorithms.Preprocess.Missing_Values.EventCovering
-
this class store a value (String) and its frequency (int)
- ValueFreq() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.ValueFreq
-
Creates a new instance of Pair Value-frequency
- ValueFreq(String, int) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.ValueFreq
-
Creates a new pair with established value and frequency
- ValueFreq - Class in keel.Algorithms.Preprocess.Missing_Values.fkmeans
-
this class store a value (String) and its frequency (int)
- ValueFreq() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.fkmeans.ValueFreq
-
Creates a new instance of Pair Value-frequency
- ValueFreq(String, int) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.fkmeans.ValueFreq
-
Creates a new pair with established value and frequency
- ValueFreq - Class in keel.Algorithms.Preprocess.Missing_Values.kmeansImpute
-
this class store a value (String) and its frequency (int)
- ValueFreq() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.ValueFreq
-
Creates a new instance of Pair Value-frequency
- ValueFreq(String, int) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.kmeansImpute.ValueFreq
-
Creates a new pair with established value and frequency
- ValueFreq - Class in keel.Algorithms.Preprocess.Missing_Values.knnImpute
-
this class store a value (String) and its frequency (int)
- ValueFreq() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.knnImpute.ValueFreq
-
Creates a new instance of Pair Value-frequency
- ValueFreq(String, int) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.knnImpute.ValueFreq
-
Creates a new pair with established value and frequency
- ValueFreq - Class in keel.Algorithms.Preprocess.Missing_Values.MostCommonValue
-
this class store a value (String) and its frequency (int)
- ValueFreq() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.ValueFreq
-
Creates a new instance of Pair Value-frequency
- ValueFreq(String, int) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.MostCommonValue.ValueFreq
-
Creates a new pair with established value and frequency
- ValueFreq - Class in keel.Algorithms.Preprocess.Missing_Values.svmImpute
-
this class store a value (String) and its frequency (int)
- ValueFreq() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.svmImpute.ValueFreq
-
Creates a new instance of Pair Value-frequency
- ValueFreq(String, int) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.svmImpute.ValueFreq
-
Creates a new pair with established value and frequency
- ValueFreq - Class in keel.Algorithms.Preprocess.Missing_Values.wknnImpute
-
this class store a value (String) and its frequency (int)
- ValueFreq() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.ValueFreq
-
Creates a new instance of Pair Value-frequency
- ValueFreq(String, int) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.ValueFreq
-
Creates a new pair with established value and frequency
- valueIndex(String) - Method in class keel.Algorithms.Decision_Trees.C45.Attribute
-
Function to get the index of a value in the list of values.
- valueIndex(String) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Attribute
-
Function to get the index of a value in the list of values.
- valueIndex(String) - Method in class keel.Algorithms.Decision_Trees.ID3.Attribute
-
Function to get the index of a value in the list of values.
- valueIndex(String) - Method in class keel.Algorithms.Decision_Trees.SLIQ.Attribute
-
Function to get the index of a value in the list of values.
- valueIndex(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyAttribute
-
Function to get the index of a value in the list of values.
- valueIndex(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA_Attribute
-
Function to get the index of a value in the list of values.
- valueIndex(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.MyAttribute
-
Function to get the index of a value in the list of values.
- valueIndex(String) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Attribute
-
Function to get the index of a value in the list of values.
- valueIndex(String) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Attribute
-
Function to get the index of a value in the list of values.
- valueIndex(String) - Method in class keel.Algorithms.Rule_Learning.ART.Attribute
-
Function to get the index of a value in the list of values.
- valueIndex(String) - Method in class keel.Algorithms.Rule_Learning.C45Rules.MyAttribute
-
Function to get the index of a value in the list of values.
- valueIndex(String) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.MyAttribute
-
Function to get the index of a value in the list of values.
- valueIndex(String) - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.Attribute
-
Function to get the index of a value in the list of values.
- valueIndex(String) - Method in class keel.Algorithms.Rule_Learning.PART.MyAttribute
-
Function to get the index of a value in the list of values.
- ValueIndividual(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.multipopulation
-
- ValueIndividual(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.multipopulation
-
- ValueIndividual(int, int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.multipopulation
-
- valueNode() - Method in class keel.Algorithms.Decision_Trees.M5.M5TreeNode
-
Takes a constant value as the function at the node
- valueNode() - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5TreeNode
-
Takes a constant value as the function at the node
- valueOf(String) - Static method in enum keel.Algorithms.Neural_Networks.NNEP_Common.data.AttributeType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation.Field
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation.Type
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum keel.Algorithms.SVM.SMO.core.TechnicalInformation.Field
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum keel.Algorithms.SVM.SMO.core.TechnicalInformation.Type
-
Returns the enum constant of this type with the specified name.
- values - Variable in class keel.Algorithms.Decision_Trees.C45.Itemset
-
Values of the itemset.
- values - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
-
Values of the itemset.
- values - Variable in class keel.Algorithms.Decision_Trees.ID3.Itemset
-
Values of the itemset.
- values - Variable in class keel.Algorithms.Decision_Trees.SLIQ.Itemset
-
Values of the itemset.
- values - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
Values of the itemset.
- values - Variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
-
Values of the itemset.
- values - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
-
Values of the itemset.
- values - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
-
Values of the itemset.
- values - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
-
Values of the itemset.
- values - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset.Instance
-
Attribute values
- values() - Static method in enum keel.Algorithms.Neural_Networks.NNEP_Common.data.AttributeType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values - Variable in class keel.Algorithms.Rule_Learning.ART.Itemset
-
Values of the itemset.
- values - Variable in class keel.Algorithms.Rule_Learning.C45Rules.Itemset
-
Values of the itemset.
- values - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
-
Values of the itemset.
- values - Variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
-
Values of the itemset.
- values - Variable in class keel.Algorithms.Rule_Learning.PART.Itemset
-
Values of the itemset.
- values - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
-
Values of the itemset.
- values() - Static method in enum keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation.Field
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum keel.Algorithms.Statistical_Classifiers.Logistic.core.TechnicalInformation.Type
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum keel.Algorithms.SVM.SMO.core.TechnicalInformation.Field
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum keel.Algorithms.SVM.SMO.core.TechnicalInformation.Type
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- valuesAt(double[]) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.Function
-
the array of values of this function at an array of values
- valuesAt(double[][]) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.Function
-
the array of values of this function at a 2 dimensional array of values
- ValuesFreq - Class in keel.Algorithms.Preprocess.Missing_Values.EventCovering
-
this class store a pair of values (String) and their frequency (int)
- ValuesFreq() - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.ValuesFreq
-
Creates a new instance of Pair Value-frequency
- ValuesFreq(String, String, int) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.EventCovering.ValuesFreq
-
Creates a new pair with established values and frequency
- valueSparse(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Returns an instance's attribute value in internal format.
- valueSparse(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns an instance's attribute value in internal format.
- valueSparse(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns an instance's attribute value in internal format.
- valueSparse(int) - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Returns an instance's attribute value in internal format.
- Variable() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.variable_t
-
- Variable(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.vectorvar
-
- Variable() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.variable_t
-
Returns a copy of the variable
- Variable(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE.VectorVar
-
Creates a new variable_t object containing the variable in position "var" of the list
- Variable() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.variable_t
-
- Variable(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.vectorvar
-
- Variable() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.variable_t
-
- Variable(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.vectorvar
-
- variable_t - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
-
- variable_t - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE
- variable_t - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
-
- variable_t - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
-
- variableNames(long) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.RuleBase
-
Returns a String with the antecedents (Vi) of rule r.
- Variables_per_rule() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.ruleset
-
Returns the average number of variables per rule.
- Variables_per_rule() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.ruleset
-
Returns the average number of variables per rule.
- Variables_per_rule() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.ruleset
-
Returns the average number of variables per rule.
- Variables_Used() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.ruleset
-
Returns the rate of variables used in rules related to all variables involved.
- Variables_Used() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.ruleset
-
Returns the rate of variables used in rules related to all variables involved.
- Variables_Used() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.ruleset
-
Returns the rate of variables used in rules related to all variables involved.
- variableTable - Variable in class keel.GraphInterKeel.datacf.editData.EditVariablePanel
-
- VariableTable - Class in keel.GraphInterKeel.datacf.util
-
Implements a table for storing variables for a dataset
- VariableTable(Dataset, JPanel) - Constructor for class keel.GraphInterKeel.datacf.util.VariableTable
-
Constructor
- variableType() - Method in class keel.Algorithms.Rule_Learning.Riona.Dataset
-
Returns the types of each in-put (NOMINAL[0] or NUMERICO[1])
- variance(int, M5Instances) - Static method in class keel.Algorithms.Decision_Trees.M5.M5
-
Returns the variance value of the instances values of an attribute
- variance(int) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Computes the variance for a numeric attribute.
- variance(M5Attribute) - Method in class keel.Algorithms.Decision_Trees.M5.M5Instances
-
Computes the variance for a numeric attribute.
- variance(double[]) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Computes the variance for an array of doubles.
- variance(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift.myDataset
-
It return the variance of an specific attribute
- variance(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Computes the variance for a numeric attribute.
- variance(AttributeWeka) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instances
-
Computes the variance for a numeric attribute.
- variance(double[]) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Computes the variance for an array of doubles.
- variance(int, MyDataset) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5
-
Returns the variance value of the itemsets values of an attribute
- variance(double[]) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Computes the variance for an array of doubles.
- variance(int) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Computes the variance for a numeric attribute.
- variance(MyAttribute) - Method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.MyDataset
-
Computes the variance for a numeric attribute.
- variance(int) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Computes the variance for a numeric attribute.
- variance(Attribute) - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instances
-
Computes the variance for a numeric attribute.
- variance(double[]) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Computes the variance for an array of doubles.
- variance(PrototypeSet, Prototype) - Static method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Returns variance of prototype set to the center.
- variance(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Computes the variance for an array of doubles.
- variance(PrototypeSet, Prototype) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Returns variance of prototype set to the center.
- variance(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Computes the variance for an array of doubles.
- variance(double[]) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Computes the variance for an array of doubles.
- variance(double[]) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Computes the variance for an array of doubles.
- variance(int) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Computes the variance for a numeric attribute.
- variance(Attribute) - Method in class keel.Algorithms.SVM.SMO.core.Instances
-
Computes the variance for a numeric attribute.
- variance(double[]) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Computes the variance for an array of doubles.
- varName(int) - Method in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
It returns the attribute name of a given variable
- varName(int) - Method in class keel.Algorithms.Statistical_Classifiers.Naive_Bayes.myDataset
-
It gets the name of the variable
- varNames() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.myDataset
-
It returns an array with the names of the input attributes
- varNames() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.myDataset
-
It returns an array with the names of the input attributes
- varNames() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.myDataset
-
It returns an array with the names of the input attributes
- varNames() - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.myDataset
-
It returns an array with the names of the input attributes
- varValues - Variable in class keel.Algorithms.MIL.Diverse_Density.Optimization.Optimization
-
- vector2doubles(Vector) - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
-
Turns vector of strings into a double array.
- vector2doubles(Vector) - Static method in class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
-
Turns vector of strings into a double array.
- vector2doubles(Vector) - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
-
Turns vector of strings into a double array.
- vector2doubles(Vector) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
-
Turns vector of strings into a double array.
- vector2doubles(Vector) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
-
Turns vector of strings into a double array.
- vector2doubles(Vector) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
-
Turns vector of strings into a double array.
- vector2doubles(Vector) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
-
Turns vector of strings into a double array.
- vector2Input(Vector, int) - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
-
Turns vector of strings into a double array containing only the inputs
- vector2Input(Vector, int) - Static method in class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
-
Turns vector of strings into a double array containing only the inputs
- vector2Input(Vector, int) - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
-
Turns vector of strings into a double array containing only the inputs
- vector2Input(Vector, int) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
-
Turns vector of strings into a double array containing only the inputs
- vector2Input(Vector, int) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
-
Turns vector of strings into a double array containing only the inputs
- vector2Input(Vector, int) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
-
Turns vector of strings into a double array containing only the inputs
- vector2Input(Vector, int) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
-
Turns vector of strings into a double array containing only the inputs
- vector2InputOutput(Vector, int, double[], double[]) - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
-
Turns vector of strings into two double arrays, one for inputs and other for outputs.
- vector2InputOutput(Vector, int, double[], double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
-
Turns vector of strings into two double arrays, one for inputs and other for outputs.
- vector2InputOutput(Vector, int, double[], double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
-
Turns vector of strings into two double arrays, one for inputs and other for outputs.
- vector2InputOutput(Vector, int, double[], double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
-
Turns vector of strings into two double arrays, one for inputs and other for outputs.
- vector2InputOutput(Vector, int, double[], double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
-
Turns vector of strings into two double arrays, one for inputs and other for outputs.
- vector2InputOutput(Vector, int, double[], double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
-
Turns vector of strings into two double arrays, one for inputs and other for outputs.
- vector2InputOutput(Vector, int, double[], double[]) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
-
Turns vector of strings into two double arrays, one for inputs and other for outputs.
- vector2Output(Vector, int) - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
-
Turns vector of strings into a double array containing only the outputs
- vector2Output(Vector, int) - Static method in class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
-
Turns vector of strings into a double array containing only the outputs
- vector2Output(Vector, int) - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
-
Turns vector of strings into a double array containing only the outputs
- vector2Output(Vector, int) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
-
Turns vector of strings into a double array containing only the outputs
- vector2Output(Vector, int) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
-
Turns vector of strings into a double array containing only the outputs
- vector2Output(Vector, int) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
-
Turns vector of strings into a double array containing only the outputs
- vector2Output(Vector, int) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
-
Turns vector of strings into a double array containing only the outputs
- vectordouble - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
-
- vectordouble - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE
- vectordouble - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
-
- vectordouble - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
-
- vectorsNeighbors - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- vectorvar - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV
-
- VectorVar - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE
-
Defines a list of variables
- vectorvar - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2
-
- vectorvar - Class in keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0
-
- verbose - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Parameters
-
Verbose output
- verbose(String) - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
-
Prints the parameter without adding new line only if verbosity has been set to True.
- verbose - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
Verbose output
- verbose - Variable in class keel.Algorithms.Neural_Networks.gmdh.Parameters
-
Verbose output
- verbose - Variable in class keel.Algorithms.Neural_Networks.net.Parameters
-
Verbose output
- verbose(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
-
Prints the parameter without adding new line only if verbosity has been set to True.
- verbose(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
-
Prints the parameter without adding new line only if verbosity has been set to True.
- verbose(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
-
Prints the parameter without adding new line only if verbosity has been set to True.
- verbose(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
-
Prints the parameter without adding new line only if verbosity has been set to True.
- verbose(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
-
Prints the parameter without adding new line only if verbosity has been set to True.
- verbose(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
-
Prints the parameter without adding new line only if verbosity has been set to True.
- VERBOSE - Static variable in class keel.Algorithms.SVM.SMO.core.ClassDiscovery
-
whether to output some debug information
- verboseln(String) - Static method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RBFUtils
-
Prints the parameter and adds a new line only if verbosity has been set to True.
- verboseln(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN.RBFUtils
-
Prints the parameter and adds a new line only if verbosity has been set to True.
- verboseln(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN_CL.RBFUtils
-
Prints the parameter and adds a new line only if verbosity has been set to True.
- verboseln(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental.RBFUtils
-
Prints the parameter and adds a new line only if verbosity has been set to True.
- verboseln(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.RBFUtils
-
Prints the parameter and adds a new line only if verbosity has been set to True.
- verboseln(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental.RBFUtils
-
Prints the parameter and adds a new line only if verbosity has been set to True.
- verboseln(String) - Static method in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.RBFUtils
-
Prints the parameter and adds a new line only if verbosity has been set to True.
- verifyInterval() - Method in interface keel.Algorithms.Genetic_Rule_Learning.UCS.Attribute
-
Does verify that the interval construction is correct
- verifyInterval() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.RealRep
-
Verifies if the interval is correct (if the upper value
is greater or equal than the lower value).
- verifyInterval() - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.TernaryRep
-
- verifyInterval() - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Attribute
-
Does verify that the interval construction is correct
- verifyInterval() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.IntegerRep
-
Verifies if the interval is correct (if the upper value
is greather or equal than the lower value).
- verifyInterval() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RealRep
-
Verifies if the interval is correct (if the upper value
is greater or equal than the lower value).
- verifyInterval() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.TernaryRep
-
- vertices - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.FuzzyPartition
-
- visit(Node, int) - Static method in class keel.Algorithms.Statistical_Tests.Shared.genLatex
-
This method visits all the nodes in our DOM tree
- visit(Node, int) - Static method in class keel.Algorithms.Statistical_Tests.Shared.outputFile
-
This method visits all the nodes in our DOM tree
- VisualizePanel - Class in keel.GraphInterKeel.datacf.visualizeData
- VisualizePanel() - Constructor for class keel.GraphInterKeel.datacf.visualizeData.VisualizePanel
-
Constructor that initializes the panel
- VisualizePanelAttribute - Class in keel.GraphInterKeel.datacf.visualizeData
- VisualizePanelAttribute() - Constructor for class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelAttribute
-
Constructor that initializes the panel
- VisualizePanelCharts2D - Class in keel.GraphInterKeel.datacf.visualizeData
- VisualizePanelCharts2D() - Constructor for class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelCharts2D
-
Constructor that initializes the panel
- VisualizePanelDataset - Class in keel.GraphInterKeel.datacf.visualizeData
- VisualizePanelDataset() - Constructor for class keel.GraphInterKeel.datacf.visualizeData.VisualizePanelDataset
-
Constructor that initializes the panel
- visualizeSelectionTree - Variable in class keel.GraphInterKeel.experiments.Experiments
-
- vname - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.NameClasses
-
Classes names.
- vname - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVE2.NameClasses
-
Classes names.
- vname - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierSLAVEv0.NameClasses
-
Classes names.
- volSphere(int) - Method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.Population
-
VolSphere
volSphere
volSphere calculates the area of a sphere in n dimensions for use in the
SPEA2 density calculation
- volume() - Method in class keel.Algorithms.Hyperrectangles.EHS_CHC.Hyper
-
- votingRule(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.ADE_CoForestGenerator
-
Predicted class of the given prototype.
- votingRule(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.CLCCGenerator
-
Returns the predicted class for a given prototype.
- votingRule(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.CoForestGenerator
-
Classifies the instance given.
- votingRule(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.DE_TriTraining.DE_TriTrainingGenerator
-
Classifies the instance with the index given.
- votingRule(int) - Method in class keel.Algorithms.Semi_Supervised_Learning.TriTraining.TriTrainingGenerator
-
Classifies a instance with the given index.
- VQ - Static variable in class keel.Algorithms.Instance_Generation.HYB.HYBGenerator
-
VQGenerator title text
- VQAlgorithm - Class in keel.Algorithms.Instance_Generation.VQ
-
VQ algorithm calling.
- VQAlgorithm() - Constructor for class keel.Algorithms.Instance_Generation.VQ.VQAlgorithm
-
- VQGenerator - Class in keel.Algorithms.Instance_Generation.VQ
-
Class that contains Vector Quantization algorithm
- VQGenerator(PrototypeSet, int, int, double, int) - Constructor for class keel.Algorithms.Instance_Generation.VQ.VQGenerator
-
Constructs a new VQGenerator algorithm.
- VQGenerator(PrototypeSet, int, double, double, int) - Constructor for class keel.Algorithms.Instance_Generation.VQ.VQGenerator
-
Constructs a new VQGenerator algorithm (using 1-Np rule).
- VQGenerator(PrototypeSet, Parameters) - Constructor for class keel.Algorithms.Instance_Generation.VQ.VQGenerator
-
Constructs a new VQGenerator algorithm (using K-Np rule).
- VSM - Class in keel.Algorithms.Instance_Selection.VSM
-
File: VSM.java
The VSM Instance Selection algorithm.
- VSM(String) - Constructor for class keel.Algorithms.Instance_Selection.VSM.VSM
-
Default constructor.
- VSM - Class in keel.Algorithms.Preprocess.Instance_Selection.VSM
-
File: VSM.java
The VSM Instance Selection algorithm.
- VSM(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.VSM.VSM
-
Default constructor.
- VWFuzzyKNN - Class in keel.Algorithms.Fuzzy_Instance_Based_Learning.VWFuzzyKNN
-
File: VWFuzzyKNN.java
The VWFuzzyKNN algorithm.
- VWFuzzyKNN(String) - Constructor for class keel.Algorithms.Fuzzy_Instance_Based_Learning.VWFuzzyKNN.VWFuzzyKNN
-
Main builder.
W
- w - Variable in class keel.Algorithms.Fuzzy_Instance_Based_Learning.JFKNN.Triplet
-
Tripel weights.
- w - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.MLPerceptronBackpropCS.Network
-
Matrix of weights
- w - Variable in class keel.Algorithms.Neural_Networks.gann.Network
-
Matrix of weights
- w - Variable in class keel.Algorithms.Neural_Networks.gmdh.Network
-
Matrix of weights
- w - Variable in class keel.Algorithms.Neural_Networks.net.Network
-
Matrix of weights
- W - Static variable in class keel.Algorithms.Rule_Learning.Ripper.Ripper
-
Flag ('Worth' metric)
- W - Static variable in class keel.Algorithms.Rule_Learning.Slipper.Slipper
-
'Worth' metric
- w_k - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
- w_k - Variable in class keel.Algorithms.Neural_Networks.gmdh.SetupParameters
-
- w_mse - Variable in class keel.Algorithms.Neural_Networks.gann.Parameters
-
- w_mse - Variable in class keel.Algorithms.Neural_Networks.gmdh.SetupParameters
-
- w_range - Variable in class keel.Algorithms.Neural_Networks.gann.SetupParameters
-
- wasCorrect() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.DECEnvironment
-
Determines if the classification performed was good
- wasCorrect() - Method in interface keel.Algorithms.Genetic_Rule_Learning.XCS.Environment
-
Determines if the classification was good
- wasCorrect() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MPEnvironment
-
Determines if the classification was good
- wasCorrect() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.MSEnvironment
-
Determines if the classification was good
- wasCorrect() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.PAREnvironment
-
Determines if the classification was good
- wasCorrect() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.POSEnvironment
-
Determines if the classification was good
- wasCorrect() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.RMPEnvironment
-
Determines if the classification was good
- wasCorrect() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.SSFileEnvironment
-
Does determine if the classification was good
- wcoef(int, int) - Static method in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Obtains an array of weights for calculating Shapiro Wilk statistic
Translated from Fortran to C and from C to Java.
- WECOA() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GFS_RB_MF.BaseR
-
Returns the centre of gravity weight by matching
- weight - Variable in class keel.Algorithms.Decision_Trees.C45.Itemset
-
The weight of the itemset.
- weight - Variable in class keel.Algorithms.Decision_Trees.DT_GA.C45.Itemset
-
The weight of the itemset.
- weight - Variable in class keel.Algorithms.Decision_Trees.ID3.Itemset
-
The weight of the itemset.
- weight() - Method in class keel.Algorithms.Decision_Trees.M5.M5Instance
-
Returns the instance's weight.
- weight - Variable in class keel.Algorithms.Decision_Trees.SLIQ.Itemset
-
The weight of the itemset.
- weight - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.IntDouble
-
Weight to be displayed.
- weight() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.AttributeWeka
-
Returns the attribute's weight.
- weight() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Instance
-
Returns the instance's weight.
- weight - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.FuzzyRule
-
Weight of the rule.
- weight - Variable in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.Itemset
-
The weight of the itemset.
- weight - Variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.Itemset
-
The weight of the itemset.
- weight - Variable in class keel.Algorithms.Genetic_Rule_Learning.PART.Itemset
-
The weight of the itemset.
- weight - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Itemset
-
The weight of the itemset.
- weight - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- weight - Variable in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Itemset
-
The weight of the itemset.
- weight() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Attribute
-
Returns the attribute's weight.
- weight() - Method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Instance
-
Returns the instance's weight.
- weight - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.data.AbstractDataset.Instance
-
weight of this instance
- weight - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.Link
-
Weight value
- weight - Variable in class keel.Algorithms.Neural_Networks.RBFN_decremental_CL.Rbf
-
RBF Weights.
- weight - Variable in class keel.Algorithms.Neural_Networks.RBFN_incremental_CL.Rbf
-
RBF weights.
- weight - Variable in class keel.Algorithms.Rule_Learning.ART.Itemset
-
The weight of the itemset.
- weight - Variable in class keel.Algorithms.Rule_Learning.C45Rules.Itemset
-
The weight of the itemset.
- weight - Variable in class keel.Algorithms.Rule_Learning.C45RulesSA.Itemset
-
The weight of the itemset.
- weight - Variable in class keel.Algorithms.Rule_Learning.DataSqueezer.Itemset
-
The weight of the itemset.
- weight - Variable in class keel.Algorithms.Rule_Learning.PART.Itemset
-
The weight of the itemset.
- weight - Variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Itemset
-
The weight of the itemset.
- weight - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.Prototype
-
weight of instance.
- weight() - Method in class keel.Algorithms.SVM.SMO.core.Instance
-
Returns the instance's weight.
- weight - Variable in class org.libsvm.svm_parameter
-
- Weight_Is_Negative_Covered(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
-
- Weight_Is_Positive_Covered(int) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV.example_set
-
- weight_label - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_parameter
-
- weight_label - Variable in class org.libsvm.svm_parameter
-
- WeightedInstancesHandler - Interface in keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core
-
Interface to something that makes use of the information provided
by instance weights.
- WeightedInstancesHandler - Interface in keel.Algorithms.Statistical_Classifiers.Logistic.core
-
Interface to something that makes use of the information provided
by instance weights.
- WeightedInstancesHandler - Interface in keel.Algorithms.SVM.SMO.core
-
Interface to something that makes use of the information provided
by instance weights.
- weightRange - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Weight range
- weightRanges - Variable in class keel.Algorithms.Neural_Networks.NNEP_Common.AbstractNeuralNetSpecies
-
Weight ranges of each LinkedLayer of the neural nets
- weightRelaxFactor - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- weightRelaxFactor - Static variable in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.Parameters
-
- weights(Itemset) - Method in class keel.Algorithms.Decision_Trees.C45.Cut
-
Returns weights if itemset is assigned to more than one subset, null otherwise.
- weights(Itemset) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Returns weights if itemset is assigned to more than one subset, null otherwise.
- weights(Itemset) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Cut
-
Returns weights if itemset is assigned to more than one subset, null otherwise.
- weights(Itemset) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Cut
-
Returns weights if itemset is assigned to more than one subset, null otherwise.
- weights(Itemset) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Returns weights if itemset is assigned to more than one subset, null otherwise.
- weights - Variable in class keel.Algorithms.Neural_Networks.ensemble.Ensemble
-
Ensemble weights.
- weights(Itemset) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Cut
-
Returns weights if itemset is assigned to more than one subset, null otherwise.
- weights(Itemset) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Cut
-
Returns weights if itemset is assigned to more than one subset, null otherwise.
- weights(Itemset) - Method in class keel.Algorithms.Rule_Learning.PART.Cut
-
Returns weights if itemset is assigned to more than one subset, null otherwise.
- weights(Itemset) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Cut
-
Returns weights if itemset is assigned to more than one subset, null otherwise.
- weightVector - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- WekaToKeel - Class in keel.Algorithms.Preprocess.Converter
-
WekaToKeel
This class extends from the Importer class.
- WekaToKeel() - Constructor for class keel.Algorithms.Preprocess.Converter.WekaToKeel
-
- whichAtt - Variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.classifier_hyperrect_list_real
-
- whichSubset(Itemset) - Method in class keel.Algorithms.Decision_Trees.C45.Cut
-
Returns index of subset itemset is assigned to.
- whichSubset(Itemset) - Method in class keel.Algorithms.Decision_Trees.DT_GA.C45.Cut
-
Returns index of subset itemset is assigned to.
- whichSubset(Itemset) - Method in class keel.Algorithms.Genetic_Rule_Learning.PART.Cut
-
Returns index of subset itemset is assigned to.
- whichSubset(Itemset) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C45CS.Cut
-
Returns index of subset itemset is assigned to.
- whichSubset(Itemset) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.C45.Cut
-
Returns index of subset itemset is assigned to.
- whichSubset(Itemset) - Method in class keel.Algorithms.Rule_Learning.C45Rules.Cut
-
Returns index of subset itemset is assigned to.
- whichSubset(Itemset) - Method in class keel.Algorithms.Rule_Learning.C45RulesSA.Cut
-
Returns index of subset itemset is assigned to.
- whichSubset(Itemset) - Method in class keel.Algorithms.Rule_Learning.PART.Cut
-
Returns index of subset itemset is assigned to.
- whichSubset(Itemset) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.C45.Cut
-
Returns index of subset itemset is assigned to.
- width() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.ExponentialFormat
-
Returns the width of the exponential numbers format.
- width() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.FlexibleDecimalFormat
-
Returns the width of the flexible decimal numbers format.
- width - Variable in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.FloatingPointFormat
-
Total width of the integer number.
- width() - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.FloatingPointFormat
-
Returns the width of the numbers format.
- Wilcoxon - Class in keel.GraphInterKeel.statistical.tests
-
File: Wilcoxon.java.
- Wilcoxon() - Constructor for class keel.GraphInterKeel.statistical.tests.Wilcoxon
-
Builder
- WilcoxonC - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Classification Wilcoxon signed ranks Stat-test identifier.
- WilcoxonDistribution - Class in keel.GraphInterKeel.statistical.tests
-
File: WilcoxonDistribution.java.
- WilcoxonDistribution() - Constructor for class keel.GraphInterKeel.statistical.tests.WilcoxonDistribution
-
- WilcoxonR - Static variable in class keel.Algorithms.Statistical_Tests.Shared.StatTest
-
Regression Wilcoxon signed ranks Stat-test identifier.
- WilsonReduction - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This class implements the reduction Interface.
- WilsonReduction() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.WilsonReduction
-
Creates one WilsonReduction Object.
- windowActivated(WindowEvent) - Method in class keel.GraphInterKeel.experiments.EducationalRun
-
- windowClosed(WindowEvent) - Method in class keel.GraphInterKeel.experiments.EducationalRun
-
- windowClosing(WindowEvent) - Method in class keel.GraphInterKeel.experiments.EducationalRun
-
When the user close the window of
partitions.
- windowDeactivated(WindowEvent) - Method in class keel.GraphInterKeel.experiments.EducationalRun
-
- windowDeiconified(WindowEvent) - Method in class keel.GraphInterKeel.experiments.EducationalRun
-
- windowIconified(WindowEvent) - Method in class keel.GraphInterKeel.experiments.EducationalRun
-
- windowing - Class in keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
- windowing() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowing
-
- Windowing - Class in keel.Algorithms.Genetic_Rule_Learning.GAssist
-
Manages the subset of training instances
that is used at each iteration to perform the fitness computations
- Windowing(InstanceWrapper[]) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.GAssist.Windowing
-
- Windowing - Class in keel.Algorithms.Genetic_Rule_Learning.MPLCS
-
Manages the subset of training instances
that is used at each iteration to perform the fitness computations
- Windowing(InstanceWrapper[]) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Windowing
-
- windowingGWS - Class in keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
- windowingGWS() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowingGWS
-
- windowingILAS - Class in keel.Algorithms.Genetic_Rule_Learning.BioHEL
-
- windowingILAS() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.BioHEL.windowingILAS
-
- windowingMethod - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- windowLowerBound - Variable in class keel.Algorithms.Instance_Generation.LVQ.LVQ2
-
Window width lower bound
- windowOpened(WindowEvent) - Method in class keel.GraphInterKeel.experiments.EducationalRun
-
- WindowsSize - Static variable in class keel.Algorithms.Genetic_Rule_Learning.Globals.Parameters
-
- windowWidth - Variable in class keel.Algorithms.Instance_Generation.LVQ.LVQ2
-
Window width parameter
- windowWidth - Variable in class keel.Algorithms.Instance_Generation.LVQ.LVQPRU
-
Window width of the LVQ2.1 algorithm.
- winMethod - Static variable in class keel.Algorithms.Genetic_Rule_Learning.BioHEL.Parameters
-
- WINNING_RULE - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.Fuzzy_Chi
-
Configuration flags.
- WINNING_RULE - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Fuzzy_Ish
-
Configuration flags.
- WINNING_RULE - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.Fuzzy_Ish
-
Configuration flag (WINNING_RULE ).
- WINNING_RULE - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.GP_COACH
-
Configuration flag (WINNING_RULE).
- WINNING_RULE - Static variable in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.GP_COACH_H
-
Configuration flag (WINNING_RULE)
- without(PrototypeSet) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Returns a copy of the set without an element.
- without(Prototype) - Method in class keel.Algorithms.Instance_Generation.Basic.PrototypeSet
-
Returns a copy of the set without an prototype.
- without(PrototypeSet) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Returns a copy of the set without an element.
- without(Prototype) - Method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeSet
-
Returns a copy of the set without an prototype.
- wknnImpute - Class in keel.Algorithms.Preprocess.Missing_Values.wknnImpute
-
This class computes the mean (numerical) or mode (nominal) value of the attributes with missing values for the selected neighbours,
weighting them according to the relative distance to the considered instance with missing values.
- wknnImpute(String) - Constructor for class keel.Algorithms.Preprocess.Missing_Values.wknnImpute.wknnImpute
-
Creates a new instance of MostCommonValue
- Worst_current_perf1 - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- Worst_current_perf2 - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- Worst_guy1 - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- Worst_guy2 - Variable in class keel.Algorithms.Genetic_Rule_Learning.Corcoran.Corcoran
-
- WrapperManager - Class in keel.Algorithms.Genetic_Rule_Learning.olexGA
-
- WrapperManager() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.olexGA.WrapperManager
-
- wrapUp() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegOptimizer
-
wrap up various variables to save memeory and do some housekeeping after optimization
has finished.
- wrapUp() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMO
-
wrap up various variables to save memeory and do some housekeeping after optimization
has finished.
- wrapUp() - Method in class keel.Algorithms.SVM.SMO.supportVector.RegSMOImproved
-
wrap up various variables to save memeory and do some housekeeping after optimization
has finished.
- write(String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Config
-
- write(String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
- write(String, String) - Static method in class keel.Algorithms.Instance_Generation.utilities.KeelFile
-
Write in Keel-style a file.
- write(String, double, double, Base, Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.EscribeBCLing
-
It the function that writes
- write(String, double, double, Base, Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.EscribeBCLing
-
It the function that writes
- write(String, double, double, Base, Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.EscribeBCLing
-
It the function that writes
- write(String, double, double, Base, Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.EscribeBCLing
-
It the function that writes
- write(String, double, double, Base, Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.EscribeBCLing
-
It the function that writes
- write(String, double, double, Base, Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.EscribeBCLing
-
It the function that writes
- write(String, double, double, Base, Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.EscribeBCLing
-
It the function that writes
- write(String, double, double, Base, Poblacion) - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.EscribeBCLing
-
It the function that writes
- write(String, String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.KeelFile
-
Write in Keel-style a file.
- write(Writer) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.matrix.Matrix
-
Writes out a matrix.
- write(Writer) - Method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Matrix
-
Deprecated.
Writes out a matrix.
- Write(String) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.Calculate.Semantics
-
This method writes the semantics of the linguistic variables at the file specified
- Write(String) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.Calculate.Semantics
-
This method writes the semantics of the linguistic variables at the file specified
- Write(String) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.Calculate.Semantics
-
This method writes the semantics of the linguistic variables at the file specified
- write(String, Object) - Static method in class keel.Algorithms.SVM.SMO.core.SerializationHelper
-
serializes the given object to the specified file
- write(OutputStream, Object) - Static method in class keel.Algorithms.SVM.SMO.core.SerializationHelper
-
serializes the given object to the specified stream
- write() - Method in class keel.GraphInterKeel.experiments.Graph
-
Prints in the standard output the graph
- write_results(String, String[][], InstanceSet) - Method in class keel.Algorithms.Preprocess.Missing_Values.BPCA.BPCA
-
Write data matrix X to disk, in KEEL format
- write_results(String, String[][], InstanceSet) - Method in class keel.Algorithms.Preprocess.Missing_Values.EM.EM
-
Write data matrix X to disk, in KEEL format
- write_results(String, String[][], InstanceSet) - Method in class keel.Algorithms.Preprocess.Missing_Values.LLSImpute.LLSImpute
-
Write data matrix X to disk, in KEEL format
- write_results(String, String[][], InstanceSet) - Method in class keel.Algorithms.Preprocess.Missing_Values.SVDimpute.SVDimpute
-
- writeAUCresults(String) - Method in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svmClassifierCost
-
Writes the AUC results in an aditional output file if the integral approximation of the AUC needs to be computed
- writeChar(char) - Method in class keel.Algorithms.Genetic_Rule_Learning.Globals.FileManagement
-
Writes a char from file.
- writeChar(char) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.FileManagement
-
Writes a char from file.
- writeConfig(Algorithm, String, String, String, String, String, boolean, Joint, int, String, int, Vector, String, boolean, String) - Method in class keel.GraphInterKeel.experiments.Experiments
-
Write a configuration script for the method, employing its parameters
- writeDataBase(String) - Method in class keel.Algorithms.ImbalancedClassification.ImbalancedAlgorithms.GP_COACH_H.GP_COACH_H
-
It writes the Data Base into an output file
- writeEvo() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.IVTURS
-
- writeExpectedTestOut(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Statistic
-
It writes to the test statistics file the expected out compared with the
output predicted by the system.
- writeExpectedTestOut(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Statistic
-
It writes to the test statistics file the expected out compared with the
output predicted by the system.
- writeExpectedTrainOut(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.UCS.Statistic
-
It writes to the train statistics file the expected out compared with the
output predicted by the system.
- writeExpectedTrainOut(int, int) - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.Statistic
-
It writes to the train statistics file the expected out compared with the
output predicted by the system.
- writeFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.DataBase
-
It writes the Data Base into an output file
- writeFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Chi_RW.RuleBase
-
It writes the rule base into an ouput file
- writeFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzySGERD.Population
-
It writes the best rule base obtained into file
- writeFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.DataBase
-
It writes the Data Base into an output file
- writeFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.Population
-
Writes the best population / RB into file
- writeFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Fuzzy_Ish_Hybrid.RuleBase
-
It writes the rule base into an ouput file
- writeFile(String) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.GP_COACH.DataBase
-
It writes the Data Base into an output file
- writeFile(String, String) - Static method in class keel.GraphInterKeel.experiments.Files
-
Writes a text in a output file
- writeFile(String, String) - Static method in class keel.GraphInterKeel.statistical.Files
-
Writes data in the file, overwriting previous content
- writeFile(String, String) - Static method in class org.core.Files
-
Writes data in the file, overwriting previous content
- writeLine(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.Globals.FileManagement
-
Write a line given.
- writeLine(String) - Method in class keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.FileManagement
-
Writes a given line in the file.
- WriteMyFile(String, String) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL.MyFile
-
Function for writing a String Object in a file
- WriteOutDataset(String) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.MESDIF
-
Dataset file writting to output file
- WriteOutDataset(String) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.NMEEFSD
-
Dataset file writting to output file
- WriteOutDataset(String) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.SDIGA
-
Dataset file writting to output file
- writeOutput(String, int[][], int[][], Attribute[], Attribute, String) - Static method in class keel.Algorithms.Decision_Trees.C45_Binarization.KNN
-
Prints output files.
- writeOutput(String, int[], int[]) - Method in class keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm
-
Prints KEEL standard output files.
- writeOutput(String, String[], String[], Attribute[], Attribute, int, String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.COGIN.Cogin
-
Writes the output in KEEL format
- writeOutput(String, String[], String[], Attribute[], Attribute, int, String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.CORE.Core
-
Writes the output in KEEL format
- writeOutput(String, String[], String[], Attribute[], Attribute, int, String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.ILGA.Ilga
-
Writes the output in KEEL format
- writeOutput(String, String[], String[], Attribute[], Attribute, int, String) - Static method in class keel.Algorithms.Genetic_Rule_Learning.OIGA.Oiga
-
Writes the output in KEEL format
- writeOutput(AccAUC, AccAUC, String) - Method in class keel.Algorithms.ImbalancedClassification.Ensembles.multi_C45
-
It writes on a file the full ensemble (C4.5 rule sets)
- writeOutput(String, int[][], int[][], Attribute[], Attribute, String) - Static method in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.KNN
-
Prints output files.
- writeOutput(String, int[][], int[][], Attribute[], Attribute, String) - Static method in class keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm
-
Prints output files.
- writeOutput(String, int[][], int[][], Attribute[], Attribute, String) - Static method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
Prints output files.
- writeOutput(String, int[][], int[][], Attribute[], Attribute, String) - Static method in class keel.Algorithms.Preprocess.Basic.KNN
-
Prints output files.
- writeOutput(String, int[], int[]) - Method in class keel.Algorithms.RST_Learning.RSTAlgorithm
-
Prints KEEL standard output files.
- writeOutput(String, String[], String[]) - Method in class keel.Algorithms.Rule_Learning.Swap1.swap1
-
Prints KEEL standard output files.
- writeOutput(String, int[][], int[][], Attribute[], Attribute, String) - Static method in class keel.Algorithms.Semi_Supervised_Learning.Basic.PrototypeGenerationAlgorithm
-
Prints output files.
- writeOutput(String, String[], String[], Attribute[], Attribute, int, String) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.Logistic
-
Creates the output file in KEEL format of this method
- writeOutput(String, String[], String[], Attribute[], Attribute, int, String) - Static method in class keel.Algorithms.SVM.SMO.SMO
-
Creates the output file in KEEL format of this method
- writeParsedSVGBuffer(String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.AdministrativeStaff
-
- writeResults(byte[][], byte[][]) - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
-
This method print the output file in Keel format for classification problems
- writeResults(double[], double[]) - Method in class keel.Algorithms.Decision_Trees.CART.ResultPrinter
-
This method print the output file in Keel format for regression problems
- writeResults() - Method in class keel.Algorithms.Rule_Learning.Swap1.swap1
-
Reports the results obtained
- writeRules() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Farchd
-
Add all the rules generated by the classifier to fileRules file.
- writeRules() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.IVTURS
-
- writeRules() - Method in class keel.Algorithms.Hyperrectangles.Basic.HyperrectanglesAlgorithm
-
Writes the final ruleset obtained, in the ruleSetText variable.
- writeRules() - Method in class keel.Algorithms.Hyperrectangles.BNGE.BNGE
-
Writes the final ruleset obtained, in the ruleSetText variable.
- writeRules() - Method in class keel.Algorithms.Hyperrectangles.INNER.INNER
-
Writes the final ruleset obtained, in the ruleSetText variable.
- writeRules() - Method in class keel.Algorithms.Hyperrectangles.RISE.RISE
-
Writes the final ruleset obtained, in the ruleSetText variable.
- writeRules() - Method in class keel.Algorithms.Rule_Learning.DataSqueezer.DataSqueezer
-
Function to write the list of rules.
- writeScienceMapToFile(String, List<String>, List<String>, List<Integer>, List<Integer>, List<List<Double>>, double) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.AdministrativeStaff
-
- writeScripts(String, String, String, String, Vector, String, boolean, int, int, int) - Method in class keel.GraphInterKeel.experiments.Parameters
-
Write a configuration script for the method, employing its parameters
- WriteSegDataset(String) - Static method in class keel.Algorithms.Subgroup_Discovery.MESDIF.MESDIF.MESDIF
-
Dataset file writting to tracking file
- WriteSegDataset(String) - Static method in class keel.Algorithms.Subgroup_Discovery.NMEEFSD.NMEEFSD.NMEEFSD
-
Dataset file writting to tracking file
- WriteSegDataset(String) - Static method in class keel.Algorithms.Subgroup_Discovery.SDIGA.SDIGA.SDIGA
-
Dataset file writting to tracking file
- writeStringToFile(String, String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.AdministrativeStaff
-
- writeTestOutput(String, InstanceSet, int[], Attribute[], Attribute, int, String) - Static method in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.OutputFS
-
General Test data output method.
- writeTestOutput(String, InstanceSet, int[], Attribute[], Attribute, int, String) - Static method in class keel.Algorithms.Preprocess.Basic.OutputFS
-
General Test data output method.
- writeTestScripts(String, String, String, String, Vector, String, boolean, String, String, int) - Method in class keel.GraphInterKeel.experiments.Parameters
-
Write a configuration script for the test, employing its parameters
- writeTime() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA.CBA
-
It writes the processing times in the output file
- writeTime() - Method in class keel.Algorithms.Associative_Classification.ClassifierCBA2.CBA2
-
It prints the running time of the algorithm
- writeTime() - Method in class keel.Algorithms.Associative_Classification.ClassifierCMAR.CMAR
-
It writes the time the algorithm takes on classify a given dataset.
- writeTime() - Method in class keel.Algorithms.Associative_Classification.ClassifierCPAR.CPAR
-
It writes the running time of the algorithm
- writeTime() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyCFAR.CFAR
-
It add the runtime to fileHora file
- writeTime() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Farchd
-
It add the runtime to fileHora file.
- writeTime() - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFCRA.FCRA
-
It add the runtime to fileHora file
- writeTime() - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.IVTURS
-
- writeTime() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Alatasetal.Alatasetal
-
Write the time of the execution on the output file.
- writeTime() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Apriori.Apriori
-
Prints a line with the time taken by the algorithm's execution on the output file.
- writeTime() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.ARMMGA.ARMMGA
-
Write the time of the execution on the output file.
- writeTime() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.EARMGA.EARMGA
-
Writes the time taken to execute the algorithm.
- writeTime() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.Eclat.Eclat
-
Prints a line with the time taken by the algorithm's execution on the output file.
- writeTime() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GAR.GAR
-
Prints a line with the time taken by the algorithm's execution on the output file.
- writeTime() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.GENAR.GENAR
-
Prints a line with the time taken by the algorithm's execution on the output file.
- writeTime() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR.MODENAR
-
Prints a line with the time taken by the algorithm's execution on the output file.
- writeTime() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_Ghosh
-
Prints a line with the time taken by the algorithm's execution on the output file.
- writeTime() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.MOEA_Gosh
-
Prints a line with the time taken by the algorithm's execution on the output file.
- writeTime() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.MOPNAR
-
- writeTime() - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.QAR_CIP_NSGAII
-
- writeToFileNetwork(List<List<Double>>, String, String) - Method in class keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams.Fingrams
-
- writeTrainOutput(String, double[][], int[][], boolean[][], int[], int[], Attribute[], Attribute, int, String) - Static method in class keel.Algorithms.ImbalancedClassification.Ensembles.Preprocess.Basic.OutputFS
-
General Train data output method.
- writeTrainOutput(String, double[][], int[][], boolean[][], int[], int[], Attribute[], Attribute, int, String) - Static method in class keel.Algorithms.Preprocess.Basic.OutputFS
-
General Train data output method.
- writeTree(Node, String) - Method in class keel.Algorithms.Decision_Trees.ID3.ID3
-
Function to write the decision tree in the form of rules.
- writeTree(Node, String) - Method in class keel.Algorithms.Rule_Learning.ART.ART
-
Function to write the decision tree in the form of rules.
X
- X - Variable in class keel.Algorithms.Decision_Trees.C45_Binarization.myDataset
-
examples array.
- x - Variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.GenotypeBoosting
-
- X - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForClassification
-
- X - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForModels
-
- X - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForSymbRegr
-
- x - Variable in class keel.Algorithms.Hyperrectangles.EHS_CHC.Hyper
-
- x - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_problem
-
- x - Variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Input array
- X - Variable in class keel.Algorithms.PSO_Learning.CPSO.Particle
-
- X - Variable in class keel.Algorithms.PSO_Learning.LDWPSO.Particle
-
- X - Variable in class keel.Algorithms.PSO_Learning.PSOLDA.Particle
-
- X - Variable in class keel.Algorithms.PSO_Learning.REPSO.Particle
-
- x - Variable in class org.libsvm.svm_problem
-
- x0() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Difuso
-
- x0() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Difuso
-
- x0() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Difuso
-
- x0() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Difuso
-
- x0() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Difuso
-
- x0() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Difuso
-
- x0() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Difuso
-
- x0() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Difuso
-
- x1() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Difuso
-
- x1() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Difuso
-
- x1() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Difuso
-
- x1() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Difuso
-
- x1() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Difuso
-
- x1() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Difuso
-
- x1() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Difuso
-
- x1() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Difuso
-
- x2() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Difuso
-
- x2() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Difuso
-
- x2() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Difuso
-
- x2() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Difuso
-
- x2() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Difuso
-
- x2() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Difuso
-
- x2() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Difuso
-
- x2() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Difuso
-
- x3() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Difuso
-
- x3() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Difuso
-
- x3() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Difuso
-
- x3() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Difuso
-
- x3() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Difuso
-
- x3() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Difuso
-
- x3() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Difuso
-
- x3() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Difuso
-
- x_fix(Rbfn) - Method in class keel.Algorithms.Neural_Networks.EvRBF_CL.RbfnPopulation
-
Performs the X_FIX crossover operator: replaces numNeurons neurons from
_net, taking numNeurons from a randomly chosen net.
- XCS - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
This is the main class of the XCS.
- XCS(String) - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.XCS
-
Initializes an XCS object.
- XCSControl - Class in keel.Algorithms.Genetic_Rule_Learning.XCS
-
The XCSControl class creates an XCS object and makes a run, or makes a
cross validation run.
- XCSControl() - Constructor for class keel.Algorithms.Genetic_Rule_Learning.XCS.XCSControl
-
- XCSControl() - Method in class keel.Algorithms.Genetic_Rule_Learning.XCS.XCSControl
-
Creates an XCSControl object
- XCSI - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- XCSI_L0 - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- XCSI_M0 - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- XCSI_R0 - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- XCSRun - Static variable in class keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config
-
It represents the number of explores iterations that have to be
made to do a exploit
- XCSRUN - Static variable in interface keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.ParserConstants
-
- Xfuzzy - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForSymbRegr
-
- xlogx(int) - Static method in class keel.Algorithms.Decision_Trees.M5.M5StaticUtils
-
Returns c*log2(c) for a given integer value c.
- xlogx(int) - Static method in class keel.Algorithms.Fuzzy_Rule_Learning.Hybrid.FURIA.core.Utils
-
Returns c*log2(c) for a given integer value c.
- xlogx(int) - Static method in class keel.Algorithms.Genetic_Rule_Learning.M5Rules.M5StaticUtils
-
Returns c*log2(c) for a given integer value c.
- xlogx(int) - Static method in class keel.Algorithms.ImbalancedClassification.Resampling.SMOTE_RSB.Rough_Sets.Utils
-
Returns c*log2(c) for a given integer value c.
- xlogx(int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.ADE_CoForest.Utils
-
Returns c*log2(c) for a given integer value c.
- xlogx(int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CLCC.Utils
-
Returns c*log2(c) for a given integer value c.
- xlogx(int) - Static method in class keel.Algorithms.Semi_Supervised_Learning.CoForest.Utils
-
Returns c*log2(c) for a given integer value c.
- xlogx(int) - Static method in class keel.Algorithms.Statistical_Classifiers.Logistic.core.Utils
-
Returns c*log2(c) for a given integer value c.
- xlogx(int) - Static method in class keel.Algorithms.SVM.SMO.core.Utils
-
Returns c*log2(c) for a given integer value c.
- XML - Static variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet
-
Marshal/Unmarshal input layer, hidden layers and output layer
- XML - Static variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputLayer
-
Marshal/Unmarshal maximum number of neurons and each neuron
- XML - Static variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.InputNeuron
-
Marshal/Unmarshal neuron index
- XML - Static variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.Link
-
Marshal/Unmarshal weight and state of the link
- XML - Static variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer
-
Marshal/Unmarshal initial number of neurons, maximum number of
neurons, each neuron, layer type, weigth range, and a boolean
indicating if the layer is input-biased
- XML - Static variable in class keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron
-
Marshal/Unmarshal links and and a boolean indicating if the
neuron is input-biased
- XML - Static variable in class keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividual
-
Marshal individual fitness (inherited format).
- XmlToKeel - Class in keel.Algorithms.Preprocess.Converter
-
XmlToKeel
This class extends from the Importer class.
- XmlToKeel(String, String) - Constructor for class keel.Algorithms.Preprocess.Converter.XmlToKeel
-
CsvToKeel class Constructor.
- xnormi(double) - Static method in class keel.Algorithms.Statistical_Tests.Shared.nonParametric.CDF_Normal
-
This method calculates the normal cdf inverse function.
- xnormi(double) - Static method in class keel.GraphInterKeel.statistical.tests.CDF_Normal
-
This method calculates the normal cdf inverse function.
- XOVER_METHOD - Static variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- XOVER_RATE - Static variable in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- xOverMethodTipText() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- xOverRateTipText() - Method in class keel.Algorithms.Genetic_Rule_Learning.olexGA.OlexGA
-
- xPC_BLX(Individual, double) - Method in class keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD.Individual
-
Crosses the individuals using the BLX operator.
- xPC_BLX(Individual, double) - Method in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.IVTURS.Individual
-
Y
- Y - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForModels
-
- Y - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForSymbRegr
-
- y - Variable in class keel.Algorithms.Hyperrectangles.EHS_CHC.Hyper
-
- y - Variable in class keel.Algorithms.ImbalancedClassification.CSMethods.C_SVMCost.svm_problem
-
- y - Variable in class keel.Algorithms.Neural_Networks.IRPropPlus_Clas.IRPropPlus
-
Output array
- y() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_LatAmp_FRBSs.Difuso
-
- y() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_T_Lateral_FRBSs.Difuso
-
- y() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_LatAmp_FRBSs.Difuso
-
- y() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_A_TS_Lateral_FRBSs.Difuso
-
- y() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_LatAmp_FRBSs.Difuso
-
- y() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_T_Lateral_FRBSs.Difuso
-
- y() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_LatAmp_FRBSs.Difuso
-
- y() - Method in class keel.Algorithms.RE_SL_Postprocess.Post_G_TS_Lateral_FRBSs.Difuso
-
- y - Variable in class org.libsvm.svm_problem
-
- YES - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.AdHoc.Fuzzy_Ish_Weighted.Fuzzy_Ish
-
Configuration flags.
- yes - Static variable in class keel.Algorithms.Instance_Generation.Basic.AccuracyMeter
-
Posible yes variants of the command line.
- yes - Static variable in class keel.Algorithms.Semi_Supervised_Learning.Basic.AccuracyMeter
-
Posible yes variants of the command line.
- Yfuzzy - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForSymbRegr
-
- Yo - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForModels
-
- Yo - Static variable in class keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.GeneticIndividualForSymbRegr
-
- yulesQ - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.AssociationRule
-
- yulesQ - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOEA_Ghosh.Chromosome
-
- yulesQ - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.AssociationRule
-
- yulesQ - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MOPNAR.Chromosome
-
- yulesQ - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.AssociationRule
-
- yulesQ - Variable in class keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.QAR_CIP_NSGAII.Chromosome
-
Z
- z_score - Class in keel.Algorithms.Preprocess.Transformations.z_score
-
This class performs the z-score transformation.
- z_score(String) - Constructor for class keel.Algorithms.Preprocess.Transformations.z_score.z_score
-
Creates a new instance of z_score
- zero - Variable in class keel.Algorithms.MIL.Diverse_Density.Optimization.Optimization
-
- ZetaDiscretizer - Class in keel.Algorithms.Discretizers.Zeta_Discretizer
-
This is the class with the operations of the Zeta based discretization.
- ZetaDiscretizer() - Constructor for class keel.Algorithms.Discretizers.Zeta_Discretizer.ZetaDiscretizer
-
- ZhangTS - Class in keel.Algorithms.Instance_Selection.ZhangTS
-
File: ZhangTS.java
The ZhangTS Instance Selection algorithm.
- ZhangTS(String) - Constructor for class keel.Algorithms.Instance_Selection.ZhangTS.ZhangTS
-
Default constructor.
- ZhangTS - Class in keel.Algorithms.Preprocess.Instance_Selection.ZhangTS
-
File: ZhangTS.java
The ZhangTS Instance Selection algorithm.
- ZhangTS(String) - Constructor for class keel.Algorithms.Preprocess.Instance_Selection.ZhangTS.ZhangTS
-
Default constructor.
- ZipFiles(String, Vector) - Static method in class keel.GraphInterKeel.experiments.FileUtils
-
Compress a list of files in a .zip file
_
- _1nn(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.DROP3LVQ3.DROP3LVQ3
-
Implements the 1NN algorithm
- _1nn(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.DROP3PSO.DROP3PSO
-
Implements the 1NN algorithm
- _1nn(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.DROP3SFLSDE.DROP3SFLSDE
-
Implements the 1NN algorithm
- _1nn(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.ICFLVQ3.ICFLVQ3
-
Implements the 1NN algorithm
- _1nn(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.ICFPSO.ICFPSO
-
Implements the 1NN algorithm
- _1nn(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.ICFSFLSDE.ICFSFLSDE
-
Implements the 1NN algorithm
- _1nn(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.SSMALVQ3.SSMALVQ3
-
Implements the 1NN algorithm
- _1nn(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.SSMAPSO.SSMAPSO
-
Implements the 1NN algorithm
- _1nn(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.SSMASFLSDE.SSMASFLSDE
-
Implements the 1NN algorithm
- _1nn(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Instance_Generation.utilities.KNN.KNN
-
Implements the 1NN algorithm
- _1nn(Prototype, PrototypeSet) - Static method in class keel.Algorithms.Semi_Supervised_Learning.utilities.KNN.KNN
-
Implements the 1NN algorithm
- _2LBGPartition(double) - Method in class keel.Algorithms.Instance_Generation.VQ.Cluster
-
Part the cluster by the LBG method.
- _5x2 - Static variable in class keel.GraphInterKeel.datacf.partitionData.PartitionGenerator
-
Constant representing 5x2 of Dietterich partition
- _DOBSCV_FOLD - Static variable in class keel.GraphInterKeel.datacf.partitionData.PartitionGenerator
-
Constant representing K-Fold Distribution Optimally Balanced Stratified Cross Validation partition
- _HOLDOUT - Static variable in class keel.GraphInterKeel.datacf.partitionData.PartitionGenerator
-
Constant representing Holdout partition
- _K_FOLD - Static variable in class keel.GraphInterKeel.datacf.partitionData.PartitionGenerator
-
Constant representing KFold partition
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _