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Classification with Imbalanced Data Sets

In a concept-learning problem, the data SRR
set Is said to present a class imbalance if et LT
It contains many more examples of one
class than the other. T

There exist many domains that do not have a balanced data
set. There are a lot of problems where the most important

knowledge usually resides in the minority class.

Ej.. Detection of uncommon diseases presents Imbalanced data
Few sick persons and lots of healthy persons.

Some real-problems: Fraudulent credit card transactions,
Learning word pronunciation, Prediction of
telecommunications equipment failures, Detection oil spills
from satellite images, Detection of Melanomas, Intrusion
detection, Insurance risk modeling, Hardware fault detection



Classification with Imbalanced Data Sets

Such a situation poses challenges for typical :
classifiers such as decision tree induction . R __ |
systems that are designed to optimize overall PR
accuracy without taking into account the
relative distribution of each class.

As a result, these classifiers tend to ignore small classes while
concentrating on classifying the large ones accurately.

This course introduce the “classification
with imbalanced data sets” analyzing in
depth the problems and their solutions.
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Introduction to Imbalanced Data Sets

Data sets are said to be balanced if there are,
approximately, as many positive examples of the concept as
there are negative ones.

The positive examples are more interesting or their
misclassification has a higher associate cost.



Introduction to Imbalanced Data Sets

Problem:

* The problem with class imbalances is that standard learners are
often biased towards the majority class.

* That is because these classifiers attempt to reduce global
guantities such as the error rate, not taking the data distribution into
consideration.

Result:

v'examples from the overwhelming class are well-classified
v'whereas examples from the minority class tend to be misclassified.

v'As a result, these classifiers tend to ignore small classes while
concentrating on classifying the large ones accurately.



Introduction to Imbalanced Data Sets
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Introduction to Imbalanced Data Sets

S anolicat

Sun, A., Lim, E.-P., Liu, Y. On strategies for imbalanced text classification using SVM: A
comparative study (2009) Decision Support Systems, 48 (1), pp. 191-201.

Tsai, C.-h., Chang, L.-c., Chiang, H.-c. Forecasting of ozone episode days by cost-sensitive
neural network methods (2009) Science of the Total Environment, 407 (6), pp. 2124-2135.

W.-Z. Lu, D. Wang, Ground-level ozone prediction by support vector machine approach
with a cost-sensitive classification scheme, Science of the Total Environment 395 (2-3)
(2008) 109-116

Y.-H. Liu, Y.-T. Chen, Face recognition using total margin-based adaptive fuzzy support
vector machines, IEEE Transactions on Neural Networks 18 (1) (2007) 178-192.

L. Xu, M.Y. Chow, L.S. Taylor, Power distribution fault cause identification with
imbalanced data using the data mining-based fuzzy classification E-Algorithm, IEEE
Transactions on Power Systems 22 (1) (2007) 164-171.

Y. M. Huang, C. M. Hung, and H. C. Jiau, “Evaluation of neural networks and data
mining methods on a credit assessment task for class imbalance problem,” Nonlinear
Anal. Real World Applicat., vol. 7, no. 4, pp. 720-747, 2006.



Introduction to Imbalanced Data Sets

S anolicat

Vilarino, F., Spyridonos, P., Deiorio, F., Vitria, J., Azpiroz, F., Radeva, P.
Intestinal motility assessment with video capsule endoscopy: Automatic
annotation of phasic intestinal contractions (2010) IEEE Transactions on
Medical Imaging, 29 (2), art. no. 4909037, pp. 246-259.

Tek, F.B., Dempster, A.G., Kale, I. Parasite detection and identification for automated
thin blood film malaria diagnosis (2010) Computer Vision and Image Understanding, 114
(1), pp. 21-32.

D. Williams, V. Myers, M. Silvious, Mine classification with imbalanced data, IEEE
Geoscience and Remote Sensing Letters 6 (3) (2009) 528-532.

Yang, P., Xu, L., Zhou, B.B., Zhang, Z., Zomaya, A.Y. A particle swarm based hybrid
system for imbalanced medical data sampling (2009) BMC Genomics, 10 (SUPPL. 3), art.
no. S34.

Taft, L.M., Evans, R.S., Shyu, C.R., Egger, M.J., Chawla, N., Mitchell, J.A., Thornton,
S.N., Bray, B., Varner, M. Countering imbalanced datasets to improve adverse drug event
predictive models in labor and delivery (2009) Journal of Biomedical Informatics, 42 (2),

pp. 356-364.



Introduction to Imbalanced Data Sets

Imbalance Data Sets: Problem
Some recent applications

How can we evaluate an algorithm in imbalanced

domains?

Strategies to deal with imbalanced data sets



Introduction to Imbalanced Data Sets

How can we evaluate an algorithm in imbalanced domains?

Confusion matrix for a two-class problem

Positive Negative
Prediction Prediction

Positive Class alse Negative It doesn’t take

(TP) (FN) into account the
False Negative
Negative False Positive rue Negative Rate, which is
Class (FP) (TN) very important in
imbalanced
Classical evaluation: problems

Error Rate: (FP + FN)/N
Accuracy Rate: (TP + TN) /N




Introduction to Imbalanced Data Sets

Imbalanced evaluation based on the geometric mean:

Positive t tio: a* = TP/(TP+FN Sensitivity = &k
ositive true ratio: a* = ( ) TP+ FN
: o N
Negative true ratio: a = TN / (FP+TN) Specificity = TN
TN + FP

Evaluation function: True ratio

g=vV(a -a)
Precision = TP/(TP+FP)
Recall = TP/(TP+FN)

F-measure: (2 x precision X recall) / (recall + precision)

R. Barandela, J.S. Sanchez, V. Garcia, E. Rangel. Strategies for learning in class imbalance
problems. Pattern Recognition 36:3 (2003) 849-851




Introduction to Imbalanced Data Sets

“Receiver-Operator Characteristics” — used by mathematicians t
analyse radar data. Applied in signal detection to show tradeoff
between hit rate and false alarm rate over noisy channel.

A ROC curve
displays a relation
between sensitivity
and specificity for a
given classifier
(binary problems,
parameterized
classifier or a score
classification)
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Introduction to Imbalanced Data Sets

ROC Curves (It is a two-dimensional graph to depicts
trade-offs between benefits (true positives) and costs (false

positives). Real
The confusion matrix is PP | NP
normalized by columns pred |__PC | 08 | 0121
NC {702 {0879

N &
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Introduction to Imbalanced Data Sets

AUC: Area under ROC curve. Scalar quantity widle used for
estimating classifiers performance.
ROC curve
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Introduction to Imbalanced Data Sets

Strategies to deal with imbalanced data sets

Focused

Motivation
Over-Sam plm
Random

Retain influential examples
Balance the training set

nder-Samplin
Random

Focused/ —

Remove noisy instances in
the decision boundaries

Reduce the training set

Cost Modifying (cost-sensitive)

-

iInductive bhias.

Algorithm-level approaches: A commont strategy to deal
with the class imbalance is to choose an appropriate

Boosting approaches: ensemble learning, AdaBoost, ...
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Resampling the original data sets

Resampling is the process of manipulating the distribution
of the training examples in an effort to improve the
performance of classifiers.

There is no guarantee that the training examples occur in
their optimal distribution in practical problems, and thus,
the idea of resampling is “to add or remove examples with
the hope of reaching the optimal distribution of the training
examples” and thus, realizing the potential ability of
classifiers.

i
u Supervised sample

selection balanced dataset)

imbalanced dataset)



Resampling the original data sets

Undersampling vs oversampling

ples —
xamples +
ander-sampling
# examples — *

#examples+ [ ]

over-sampling
#examples —
#examples+ [1 EE [ ] [ ]




Resampling the original data sets

Undersampling vs oversampling

Over Sampling 0
Random - I
D
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Resampling the original data sets

Undersampling vs oversampling

Over Sampling

Focused

# examples of - T
# examples of +



Resampling the original data sets

Undersampling vs oversampling

Under Sampling

Random

# examples of - *

# examples of +
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Undersampling vs oversampling

| I
Under Sampling -3
+
Focused
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# examples of -

# examples of +
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Resampling the original data sets

Under-sampling

Tomek Links
* To remove both noise and borderline ]
examples of the majority class R
 Tomek link o '+ -
—Ei, Ej belong to different classes, T+

L |

d (Ei, Ej) is the distance between them.

—A (Ei, Ej) pair is called a Tomek link if -
there is no example El, such that d(Ei, e - T
El) < d(Ei, Ej) or d(Ej, El) < d(Ei, Ej). . v




Resampling the original data sets

Under-sampling
CNN

* To remove both noise and borderline
examples

* Algorithm:
* Let E be the original training set

 Let E’ contains all positive
examples from S and one randomly
selected negative example

» Classify E with the 1-NN rule using
the examples in E’

* Move all misclassified example
fromEto E’




Resampling the original data sets

Under-sampling

0SS, CNN+TL, NCL "NCL o
To remove majority class examples
*One-sided selection Different from OSS, emphasize
—Tomek links + CNN more data cleaning than data
:CNN + Tomek links reduction
Algorithm:
—Proposed by the author — Find three nearest neighbors for
—Finding Tomek links is each example Ei in the training set
computationally demanding, - If Ei belongs to majority class, & the
it would be computationally three nearest neighbors classify it to

be minority class, then remove Ei

— If Ei belongs to minority class, and
the three nearest neighbors classify
it to be majority class, then remove
the three nearest neighbors

cheaper if it was performed
on a reduced data set.



Resampling the original data sets

Under-sampling

Evolutionary Algorithms

Evolutionary
Under-Sampling

Evolutionary Balancing Evolutionary Under-
Under-Sampling Sampling guided for
Classification Measures

Global Selectmn Majority Selechon Global Selechon l‘-.-'1:::jnc:unt':.,.r Selection
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Resampling the original data sets

Oversampling: Replicating examples

SMOTE: Instead of replicating, let us invent
some new Instances

E O I S W oW N W el | w ww w §

N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer. SMOTE: synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research 16 (2002) 321-357




Resampling the original data sets

Oversampling: State-of-the-art algorithm, SMOTE

To form new minority class examples by interpolating
between several minority class examples that lie together.

* in feature space" rather than "data space"

* Algorithm: For each minority class example, introduce
synthetic examples along the line segments joining any/all of
the k minority class nearest neighbors.

* For each minority Sample
— Find its k-nearest minority neighbours
— Randomly select j of these neighbours

— Randomly generate synthetic samples along the lines joining
the minority sample and its j selected neighbours

(j depends on the amount of oversampling desired)



Resampling the original data sets

Oversampling: State-of-the-art algorithm, SMOTE

Note: Depending upon the amount of over-sampling required,
neighbors from the A nearest neighbors are randomly chosen.

For example: if we are using 5 nearest neighbors, if the
amount of over-sampling needed is 200%, only two

neighbors from the five nearest neighbors are chosen and
one sample is generated in the direction of each.



Resampling the original data sets

Oversampling: State-of-the-art algorithm, SMOTE

] Synthetic samples are
generated in the following way:

> Take the difference between
the feature vector (sample)
under consideration and its
nearest neighbor.

» Multiply this difference by
a random number between
0and 1

> Add it to the feature vector
under consideration.

Consider a sample (6,4) and let (4,3) be
its nearest neighbor.

(6,4) is the sample for which k-nearest
neighbors are being identified

(4,3) is one of its k-nearest neighbors.

Let:

fl1=61f21=4f21-fL 1=-2

fl2=41f22=3f22-f12=-1

The new samples will be generated as

(f1',f2') = (6,4) + rand(0-1) * (-2,-1)

rand(0-1) generates a random number
between 0 and 1.




Resampling the original data sets

Oversampling: State-of-the-art algorithm, SMOTE

N.V. Chawla, K.W. Bowyer, L.O.

Hall, W.P. Kegelmeyer. SMOTE: O
synthetic minority over-sampling __ But what if there
technique. Journal of Artificial

Intelligence Research 16 (2002) is a maj ority sample

321-357 O
Q/®/ \@\ Nearby‘?
O : Minority sample Q : Majority sample

O : Synthetic sample
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Resampling the original data sets

Oversampling: State-of-the-art algorithm, SMOTE

SMOTE’s Informed vs. Random Oversampling

« Random Oversampling (with replacement) of the
minority class has the effect of making the decision
region for the minority class very specific.

 In adecision tree, it would cause a new split and often
lead to overfitting.

« SMOTE’s informed oversampling generalizes the
decision region for the minority class.

 As aresult, larger and less specific regions are
learned, thus, paying attention to minority class
samples without causing overfitting.



Resampling the original data sets

SMOTE Shortcomings

 Overgeneralization

— SMOTE’s procedure is inherently dangerous since it
blindly generalizes the minority area without regard
to the majority class.

— This strategy is particularly problematic in the case
of highly skewed class distributions since, in such
cases, the minority class is very sparse with respect
to the majority class, thus resulting in a greater
chance of class mixture.

 Lack of Flexibility

— The number of synthetic samples generated by
SMOTE is fixed in advance, thus not allowing for any
flexibility in the re-balancing rate.




Resampling the original data sets

SMOTE Shortcomings

O\ ©
-~ ® 0° %
O
© O Overgeneralization!!!
O O
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© @ "0
Q : Minority sample O : Synthetic sample

Q : Majority sample



Resampling the original data sets

SMOTE: Hybridization

d Problem with Smote: might introduce the artificial
minority class examples too deeply in the majority
class space.

O Tomek links: data cleaning

JdSmote + Tomek links: Instead of removing only
the majority class examples that form Tomek links,
examples from both classes are removed
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Resampling the original data sets

SMOTE hybridization: SMOTE + ENN

B ENN removes any example whose class label differs
from the class of at least two of their neighbors

B ENN remove more examples than the Tomek links
does

B ENN remove examples from both classes



Resampling the original data sets

SMOTE and hybridization: Analysis

Table 6: Performance ranking for original and balanced data sets for pruned decision trees.

Data set 1° o |3':' |4':' h° 6° 8" 0" 10° 11°

Pima Smt RdOvr  Smt+TmkSmt+ENN Tmk NCL RdlUdr CNN+Tmk [CNN* 0SS*
German RdOvr  Smt+TmkSmt+ENNSmt RdUdr  [CNN  [CNN+TmkHOSS Tmk* NCL*
Post-operativeRdOvr — Smt+ENNSmt ‘NN RdUdr [CNN4+Tmlk [O55* g Smt+Tmk*
Haberman — Smt+ENNSmt+Tmk Smt RdOvr  |NCL RdUdr [Tmk

Splice-ie RdOvr mk Smt CNN NCL  Smt+Tmk

Splice-ei Smt Smi-+TmkSmt+ENNCNN4+TmlOSS

Vehicle ™ RdOvr  Smt Smt+Tmk[055 CNN Smt+ENN* [Rd
Letter-vowel Smt-+ENNSmt+Tmk Smt RdOvr  [Tmk* CNN4+Tmk*RAUdrt  [O5S5*
New-thyroid Smt+ENNSmt+Tmk Smt RdOvr  [RdUdr CNN+Tmk [NCL (0SS
ECoi  Smt+TmkSmt Smt+ENNRAOvr  [NCL Tmk 085S CNN+TmkACNNT
Satimage Smt+ENNSmt Smt+TmkRdOvr  [NCL CNN+Tmk*RdUde*  [CNN*
Flag RdOvr  Smt+ENNSmt4+Tmk{CNN+TmlkSmt (0SS* Tmk* m
Glass  Smt+ENNRAOvr Ml—lémti&nt-l-Tm ' RdUdr  [CNN4+TmkMOSS

Letter-a Smt+TmkSmt+ENNSmt RdOvr 0SS mk CNN4+TmkNCL CNN RdUdr*
Nursery RdOvr W-N{.‘-L CNN* Smi+Tmk* Smt* CNN4+Tmk*Smt4+ENN* RdUdr*

G.E.A.P.A. Batista, R.C. Prati, M.C. Monard. A study of the behavior of several methods
for balancing machine learning training data. SIGKDD Explorations 6:1 (2004) 20-29




Resampling the original data sets

Other SMOTE hybridizations

Safe Level SMOTE: C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap. Safe-level-

SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced
problem. Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-09). LNAI
5476, Springer-Verlag 2005, Bangkok (Thailand, 2009) 475-482

Borderline SMOTE: H. Han, W.Y. Wang, B.H. Mao. Borderline-SMOTE: a new over-
sampling method in imbalanced data sets learning. International Conference on Intelligent
Computing (ICIC'05). Lecture Notes in Computer Science 3644, Springer-Verlag 2005, Hefei
(China, 2005) 878-887

SMOTE_LLE: J. Wang, M. Xu, H. Wang, J. Zhang. Classification of imbalanced data by using
the SMOTE algorithm and locally linear embedding. IEEE 8th International Conference on Signal
Processing, 2006.

LN-SMOTE: T. Maciejewski and J. Stefanowski. Local Neighbourhood Extension of SMOTE
for Mining Imbalanced Data. IEEE SSCI, Paris, CIDM , 2011.

SMOTE-RSB*: E. Ramentol, Y. Caballero, R. Bello, F. Herrera, SMOTE-RSB*: A Hybrid
Preprocessing Approach based on Oversampling and Undersampling for High Imbalanced Data-Sets
using SMOTE and Rough Sets Theory. Knowledge and Information Systems 33:2 (2012) 245-265.



Resampling the original data sets

SMOTE hybridization: SMOTE-Bordeline

Example: Borderline-SMOTE

Fig. 1. (a) The original distribution of Circle data set. (b) The borderline minority examples
(solid squares). (c¢) The borderline synthetic minority examples (hollow sguares).

H. Han, W. Wang, B. Mao. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data
Sets Learning. In: ICIC 2005. LNCS 3644 (2005) 878-887.




Resampling the original data sets

Other Oversampling algorithms:

SMOTE-RSB*:

E. Ramentol, Y. Caballero, R. Bello,
F. Herrera

SMOTE-RSB*: A Hybrid
Preprocessing Approach based on
Oversampling and Undersampling
for High Imbalanced Data-Sets
using SMOTE and Rough Sets
Theory.

Knowledge and Information Systems,
33:2(2012) 245-265

Algorithm steps
1. Stepl: Using SMOTE we create a set synthetic data (syntheticInstance|)
for the minority class until the traiming set 1s balanced.
2. Step2: Create resultSet: including the original instances.
3. Step3: Construct the similarityMatriz for synthetic instances organized
i rows and negative mstances (majority class) in columns, using expres-
sion 7 and considering all the features in the eguivalence relation. In the
similarityMatriz(i, ) we will find the similarity degree between instances 1
and j.
4. Stepd: For every synthetic example conunt the number of similar examples in
the negative class.
npos — syn: mumber of synthetic instances
similarityValue := 0.4
While (resultSet is empty) & (similarityValue < 0.9) do
for ¢ — 1 to npos — syn
for j — 1 to nneg
if (similarityMatriz(i, j) =similarityValue)
then contli] + +
endfor
if cont[i] = 0 then // the instances are in the lower approximation,
insert syntheticInstanceli] in resultset //(final training set)
endfor
similarityValue = similarityValue + 0.05
endwhile
5. Step5: If there are no instances in the lower approximation, ie all
synthetic instances are similar to other positive ones, the solution is given as
the set balanced with SMOTE, all synthetic instances are included in "resultset”.

Fig. 5 Algorithm SMOTE-RSB,
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Other Oversampling algorithms:
SMOTE-RSB*: Experimental Study: 44 high imbalanced data-sets, C4.5 learning algorithm

Table 3 Winner algorithm

Original Smote S-TL S-ENN  Borderl  Border2  Safelevel S-RSBy  Total

Test  1/3 i 41 412 0/4 52 m 15/3 39/5 ties

Absolute winner/ties

Table 5 Rankings obtained

through Friedman's test Algorithm Ranking
S5-RSB, 2.61364
S-ENN 3.92045
5-TL 3.96591
Smote 423864
Safelevel 4.34001
Boderline-SMOTE2 5.18182
Boderline-SMOTEI 5.36364

Table & Holm's table for ¢ = 0.03, 5-RSBx is the control method

i Algorithm z=(Ryp— R;))/SE p Holm/Hochberg/Hommel  Hypothesis
6  Borderline-SMOTE1  5.2658490926 1.395E-7  0.008333 Reject
5 Borderline-SMOTE2  4.0176937807 8.756E-7 0.01 Reject
4 Safelevel 3.3074754631 0414E4  0.0125 Reject
3 Smote 31116381002 0.001860  0.016667 Reject
2 STL 2.5804051323 0.009614  0.025 Reject

S-ENN 2.5023663043 0.012336  0.05 Reject
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Other Oversampling algorithms:

ADASYN: H. He, Y. Bai, E. A. Garcia, S. Li. ADASYN: Adaptive Synthetic Sampling
Approach for Imbalanced Learning. International Joint Conference on Neural Networks
(IJCNN’08) art. no. 4633969, pp. 1322-1328

ADOMS: S. Tang, S. Chen. The Generation Mechanism of Synthetic Minority Class
Examples. 5th Int. Conference on Information Technology and Applications in Biomedicine,

ITAB 2008 in conjunction with 2nd Int. Symposium and Summer School on Biomedical and
Health Engineering, IS3BHE 2008, art. no. 4570642, pp. 444-447

ASMO T 1n annd Tawl-~xzrin "TML,,L“,.,,,\,] MNata Antiniiner cxritlh Qerintla ads A
VVCUIB, D A dallu Jdpl&UWlbL lV ., 11110d1allCCU DJdla OCL Lcdllllllé Wll,ll leltllcllb

Examples", presented at the IRIS Machine Learning Workshop, Ottawa, June 9, 2004.

Polynomial Fitting: S. Gazzah, N.E.B. Amara. New oversampling approaches based on

polynomial fitting for imbalanced data sets. The Eighth IAPR International Workshop on
Document Analysis Systems (DASO08). (2008) 677-684

SPIDER 2: Krystyna Napierala, Jerzy Stefanowski, and Szymon Wilk. Learning from
Imbalanced Data in Presence of Noisy and Borderline Examples. M. Szczuka et al. (Eds.):
RSCTC 2010, LNAI 6086, pp. 158-167, 2010.
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Training

Set

Class 0
. Class 1

Data

>

ampling

o ¢

Data

Creation

Data :> Now
Cleaning Training
y
{

Be Careful! We are changing

-

~

what we were supposed to learn!

J




Resampling the original data sets

¥inal comments

**Analysing the balance for resampling (see the study)

Chawla NV, Cieslak DA, Hall LO, Joshi A. Automatically countering
Imbalance and its empirical relationship to cost.

Data Mining and Knowledge Discovery 17:2 (2008) 225-252.

* It is not possible to know, apriori, whether a given domain
favours oversampling or undersampling and what resampling rate
IS best.

It would have interest to create combination schemes that
considers both strategies at various rates.

“*Improvements on resampling — specialized resampling

*** New approches for creating artificial instances >
% How to choose the amount to sample? }
“* New hybrid approaches oversampling vs undersampling
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Some results on the use of evolutionary

Why evolutionary prototype selection?

« Randomly we can remove majority class examples.

 Risk of losing potentially important majority class

examples that help stablish the discriminating power.

 Evolutionary algorithms can be gquided by different

measures avoiding the lost of potential important

examples.
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Evolutionary Under-Sampling
Experimental Framework and Results

Evolutionary Training Set Selection to Optimize C4.5 in

Imbalanced Problems

Concluding Remarks Future work

Source:

S. Garcia, F. Herrera, Evolutionary Under-Sampling for Classification with
Imbalanced Data Sets: Proposals and Taxonomy. Evolutionary Computation 17:3
(2009) 275-306.

S. Garcia, A. Fernandez, F. Herrera, Enhancing the Effectiveness and Interpretability
of Decision Tree and Rule Induction Classifiers with Evolutionary Training Set
Selection over Imbalanced Problems. Applied Soft Computing 9 (2009) 1304-1314
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Evolutionary Under-sampling

Motivation: Evolutionary algorithms/genetic
algorithms for instance selection (prototype
selection and training sets selection)

Representation: ‘
Selected pattern for classifying

With 1-NN
Eliminated pattern

Evolutionary algorithms are good global search methods
62
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Evolutionary Under-sampling

Previous results on Evolutionary Instance Selection:

J.R. Cano, F. Herrera, M. Lozano, Using Evolutionary Algorithms as Instance
Selection for Data Reduction in KDD: An Experimental Study. IEEE Trans. on
Evolutionary Computation 7:6 (2003) 561-575, doi: 10.1109/TEVC.2003.819265

J.R. Cano, F. Herrera, M. Lozano, Stratification for Scaling Up Evolutionary Prototype
Selection. Pattern Recognition Letters, 26, (2005), 953-963, doi:
10.1016/].patrec.2004.09.043

J.R. Cano, F. Herrera, M. Lozano, On the Combination of Evolutionary Algorithms and
Stratified Strategies for Training Set Selection in Data Mining. Applied Soft
Computing 6 (2006) 323-332, doi: 10.1016/j.as0c.2005.02.006

J.R. Cano, F. Herrera, M. Lozano, Evolutionary Stratified Training Set Selection for
Extracting Classification Rules with Trade-off Precision-Interpretability. Data and
Knowledge Engineering 60 (2007) 90-108, doi:10.1016/j.datak.2006.01.008

S. Garcia, J.R. Cano, F. Herrera, A Memetic Algorithm for Evolutionary Prototype
Selection: A Scaling Up Approach. Pattern Recognition 41:8 (2008) 2693-2709,
doi:10.1016/j.patcog.2008.02.006

63
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Evolutionary Under-sampling

Genetic algorithms

They are optimization algorithms,
search

and learning

inspired in the process of

Natural and
Genetic Evolution




Some results on the use of evolutionary

a A a a a
v JULULY L

Evolutionary Under-sampling

CROSSOVER is the fundamenral mechanism of

genetic rear
for both real and genetic algorithms

PARENTS
g
$ Representation Crossover
g Initialization
O) Population Mutation

POPULATION Fitness function

DESCENDANTS
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Evolutionary Under-sampling

It introduces different
Representation: features to obtain a
ol1l1l1lo0lol1lolol1 trade—off between
exploration and
exploitation; such as

Base Method: CHC < incest prevention,

Models: EBUS and EUSCM reinitialization of the
search process when

-EBUS: Aim for an optimal balancing of data without it becomes blocked
and

loss of effectiveness in classification accuracy

the competition
-EUSCM: Aim for an optimal power of classification among parents and

offspring into the
replacement process

without taking into account the balancing of data, considering

the latter as a subobjective that may be an implicit process.
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Evolutionary Under-sampling

Type of Selection:

- GS: Global Selection, the selection scheme proceeds over any
kind of instance.

- MS: Majority Selection, the selection scheme only
proceeds over majority class instances.

Evaluation Measures:

- GM: Geometric Mean
- AUC: Area under ROC Curve
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Evolutionary Under-sampling

Taxonomy:

Evolutionary
Under-Sampling

Evolutionary Balancing Evolutionary Under-
Under-Sampling Sampling guided for
Classification Measures

Global Selectmn Majority Selechon Global Selechon l‘-.-'1:::jnc:unt':.,.r Selection
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Evolutionary Under-sampling

Fitness function in EBUS model:

n—

AUC — |1 — 22| P ifn~ >0
AUC — P ifn= =0

nt e

Fitnesspq(S) = g—I1- '”__| P iftn™ >0 Fitnesspq(S) =
g— P itn==20

P: is a penalization factor that controls the intensity and

importance of the balance during the evolutionary search.

P = (.2 works appropriately.
Fitness function in EUSCM model:

Fitness(S) = g, Fitness(S) = AUC,
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Experimental framework and results

Algorithms used in the comparison:

Prototype Selection: Under-Sampling
IB3 DROP3  EPS-CHC  EPS-IGA | jouerng
Undersampling:

Random Under-Samplig TomekLinks (TL)

CNN OSS CNN+TL NCL

CPM SBC |<
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Experimental framework and results

Data sets:

Data sel | #Examples | #Attribules | Class (min., maij.} [ "eClassimin.maj. ITE
GlassBWMNFEFP 214 E] (build-window-non_float-proc, (25.51, 64.49) 1.82
remainder)
EcoliCP-1M 220 7 {im,cp) (35.00, 65.00) 1.86
IR . Pima 768 5 i(1,0) (34.77, 66.23) 1.9
. GlassBWFFP 214 El (build-window-float-proc, (32.71, 67.29) 206
remainder)
German JNTATH] 20 (1, (30,00, 70.00) 2.33
Haberman 306 3 (Die, Survive) (26.47, 73.53) 2.68
Imbalance Splice i 3176 50 (ie, remainder) (24.09, 75.91) 315
. Splice-ei 317e (&N (ei,remainder) (23,99, 76.01) 317
ratlo: GlassNW Z14 E] (mon-windows glass, remainder) (23.93, 76.17) 319
Vehicle VAN EE 18 (van, remainder) (23.52, 76.48) 3.25
EcolilMM 336 7 (im, remainder) (22,92, 77.08) 3.3
Number L;Neeu-'— Fh}-.mid En'l_,'_:'- .5 (hg{,-p-o_.re ntmin_de r) |£16. 25, 83. z2j 4.92
Segmentl 2310 ] (1, remainder) (14.29, 85.71) @, 00
. EcolilhMLT 336 7 {(iMU, remainder) (10.42, 89.58) 819
negatlve Opidigits0 5564 64 (0, remainder) (9.90, 90.10) 9.10
Satimage4 6435 36 (4, remainder) (9.73, 90.27) Q.28
eXampleS / Vowell 990 13 {0, remainder) {0.01, 90.99) 0.1
GlassV WEIP 214 ] {(Ve-win- float- proc, remainder) (794, 9Q2.06) 10.39
Number EcolitOh 336 7 {om, remainder) (0.74, 93.26) 132.54
GlassContainers 214 9 ([containers, remaincler) (6.07,93.93) 15.4%7
.. Abalone9-18 731 9 (15, 9) (5.75, 94.25) 16.68
pOSItlve GlassTableware 214 Q (tableware, remainder) (4.2, 95.8) 22581
1 YeastCY T-POe 483 5 (POX, CYT) (4.14, 95.806) 2315
YeastMEZ 1454 5 (MEZ, remainder) (2,43, 96.57) 28.41
examp €S YeastMEL 1454 5 (MEL, remainder) (2.96, 97.04) 3278
YWeastEXC 1484 E ({EXC, remainder) (249, 97.51) 3916
ar 1728 [5] (good, remalnder) (3.99, 956.01) 7l.94
Abalonel19 4177 El (19, remainder) (0.77,99.23) 128.87
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Experimental framework and results

Part I: Classical prototype selection as imbalanced
undersampling

Friedman Rankings

__________

Classical prototype selection is not recommendable for tackling
imbalanced data sets. 1-NN without preprocessing behaves the
best.
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Experimental framework and results

Part I1: Comparison among the eight proposals of Evolutionary
Under-Sampling

Friedman Rankings Friedman Rankings

Tj’-
el Och

IR<9 IR>9
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Experimental framework and results

Part I1: Comparison among the eight proposals of Evolutionary
Under-Sampling

IR <9:

- EUSCM behaves better than EBUS (P factor has little interest)
- Little differences between GM and AUC.
IR>9:

- GS mechanism has no sense due to the high imbalance ratio.
MS is preferable.

- P factor is very useful in this case. EBUS outperforms EUSCM
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Experimental framework and results

Part I11: Comparison with other under-sampling approaches

Holm's procedure

0.1 -
0.09 |
0.08 |
0.07
0.08 |
0.05 —_——-
0.04 1
0.03 | |

ooz4 | ! _I-- -
0.01 4 ===

—— e O wT T

—Fm— =—mmm=- WRATa} 0.001 Q002 Pos .11 537 e
T

p-value

LBC CPM Ll none L5 Ohh L RS ML

Control Algorithm: EBUS-NMS-GIM

Considering all data sets
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Experimental framework and results

Part I1I: Comparison with other under-sampling approaches

OGM mAUC Helm's Procedure “ f;’ﬁ
m :_. :_ ENEEEEEEE
0.1 -
.09
.08
Q.07 -
E .08
g .05 = — -
= D04 1
Q.03 - i :
UIDE ] r- L I ] - .
r ---------
U-D1 i e ]
o O.0010:10000453 QO0M S 000658 00168 00455
T g T T
5% 4 Wi EB LS -Pi s -0a P L
Control Algorithm: MCL

Considering data sets with IR <9
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Experimental framework and results

Part I11: Comparison with other under-sampling approaches

Holm's Procedure a-0.0s T E

[1.1{1  e=smss==

0.1 -
0.09 4
0.08 |
0.07
0.08

p-value

0.05 - - - -—-

1
0.04 1
0.03 - I :
0.02 r
---------- r Tt T ===-
0.01 -
R D LS LU 0.0x32 0.4028
: S CE S ) |
a8 . e FLIS

Control Algorithm: EBUS-M5-GM

Considering data sets with IR > 9
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Experimental framework and results

Part I11: Comparison with other under-sampling approaches

- EUS models usually present an equal or better performance
than the remaining methods, independently of the degree of
imbalance of data.

- The best performing under-sampling model over imbalance
data sets is EBUS-MSGM

- The tendency of the EUS models follows an improving of the
behaviour in classification when the data turns to a high
degree of imbalance.
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Experimental framework and results

Prototype Selections methods are not useful when handling
imbalanced problems.

Evolutionary under-sampling is an effective model in instance-
based learning.

Majority selection mechanism obtains more accurate subsets of
instances, but presents a lower reduction rate.

No difference between GM and AUC (different evaluation
measures) is observed.

For dealing with low imbalance rates, EUSCM model is the best
choice

For dealing with high imbalance rates, EBUS model is the best.



Some results on the use of evolutionary

Evolutionary Training Set Selection to Optimize

C4.5 in Imbalanced Problems
N\
Training EUSTSS Instances
Data Selacted

Model
>
Test Data obtained

S. Garcia, A. Fernandez, F. Herrera, Enhancing the Effectiveness and Interpretability
of Decision Tree and Rule Induction Classifiers with Evolutionary Training Set
Selection over Imbalanced Problems. Applied Soft Computing 9 (2009) 1304-1314
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Evolutionary Training Set Selection to Optimize
C4.5 in Imbalanced Problems

Avoiding overfitting in TSS:

= Although C4.5 incorporates a pruning mechanism to
avoid overfitting, the use of an induction tree process
within an evolutionary cycle may yield optimal models for
training data, losing generalization capabilities.

= To avoid it, we include classification costs in the fithess
function. A well classified instance scores a value of W if
It IS not selected in the chromosome and it scores 1ifitis
selected in the chromosome. The penalization yielded Iin
case of misclassification is the same.

= Qur empirical studies determine that W=3 works well.
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Evolutionary Training Set Selection to Optimize
C4.5 in Imbalanced Problems

Data sets:

We have used 10-fcv. Algorithms in the comparison: OSS, NCL, SMOTE,

[ Data set | #Examples | #Attributes | Class (min., maj.}) | %Classimin..maj.) |
Abalonet-13 731 ] (18, 9] (5.75.94.25)
EcoliCP-IM 220 7 {im.cp) (35.00, 65.00)
EcolilM 336 7 (im.remainder) (22.92, 77.08)
EcolilMU 336 7 {(iMU, remainder) (1042, 80.58)
EcoliOM 336 7 (om, remainder) (6,74, 93.26)
German 1000 20 i1, 0y (30,00, 70,00y
GlassBWEFP 214 ] {build-window-float-proc, (32.71.67.29)

remainder)
GlassBWNFP 214 ] (build-window-non_float-proc, (35.51. 64.49)
remainder)
GlassNW 214 ] (non-windows glass, remainder) (2393, 7617
GlassVWEP 214 ] {Ve-win-float-proc, remainder) (7.94, 92.06)
Haberman 306 3 (Die, Survive) (2647, 73.53)
MNew-thyroid 215 5 (hypo.remainder) (16.28, 83.72)
Pima Jak 8 (1.0 (34.77.6623)
Yehicle VAN B840 18 (van.remainder) (23.52. 76.48)
Yowel(d Q00 13 {0, remainder) (0,01, 90.,99)
YeastCY T-POX 483 & (POX, CYT) (4. 14, 95.80)

SMOTE + TL, SMOTE + ENN
Parameters of EUSTSS: Pop =50, Eval =10000.
Parameters of SMOTE: k =5, Balancing Ratio 1:1.
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Evolutionary Training Set Selection to Optimize
C4.5 in Imbalanced Problems

Results obtained by C4.5 using GM evaluation measure over test data

none 0SS NCL SMOTE
SMOTE + TL SMOTE + ENN ===EUSTSS
abalone9-18
yeastCYT-POX ecoliCP-IM Average Accuracy
vowel0 \ / ecolilM O’ 85
0,80 —
0,75 —
vehicle ~ ecoliMU 0,70 +— —
0,65 +— —
0,60 u |
pima ecoliOM
Q
e FROLY S &
/N ~ O R S
/N NP
/] TLL
new-thyroid / ~ german § O&
o S cﬁ‘
haberman \/ glassBWFP

glassVWEP ‘ glassBWNEFP
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Evolutionary Training Set Selection to Optimize

C4.5in Imbalanced Problems
Average number of rules obtained by C4.5 decision tree

none 0SS NCL SMOTE SMOTE + TL SMOTE + ENN =———EUSTSS

abalone9-18
yeastCYT-POX ecoliCP-IM Average number of rules

vowel0 ecolilM
25

vehicle ecoliMU

pima

4 | \ O &Q) <
new-thyroid ’ \erman ($ @O

haberman / \ glassBWFP

glassVWFP glassBWNFP
glassNW
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Evolutionary Training Set Selection to Optimize
C4.5 in Imbalanced Problems

« EUSTSS obtains the best average result in GM. It clearly
outperforms the other undersampling methods (OSS and NCL)
and it improves the accuracy even when comparing with over-
sampling approaches.

 Over-sampling is clearly superior to under-sampling, except for
the EUSTSS technique.

 Except for OSS, EUSTSS produces decision trees with lower
number of rules than the remaining methods. Although the
combination OSS + C4.5 yields less rules, its accuracy in GM is
the worst of all the resampling methods.

« QOver-sampling force to C4.5 to produce many rules. This fact is
not desirable when our interest lies in obtaining interpretable
models.
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Evolutionary Training Set Selection to Optimize
C4.5 in Imbalanced Problems

Wilcoxon’s test results over GM and nhumber of

EUSTSS EUSTSS
algorithm GM num. rules

none + (.001) + (.088)

0SS + (.003) - (.052)
NCL + (.047) + (.074)
SMOTE + (.052) + (.000)
SMOTE + TL = (.501) + (.000)

SMOTE + ENN | =(.363) + (.000)

 Wilcoxon’s test confirms the improvement offered by
EUSTSS in accuracy.

e It again confirms that EUSTSS produces smaller decision
trees than all the remaining method, except OSS.
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EGIS-CHC: Evolutionary Based selection of
Generalized Instances

This paper proposes a method belonging to the family of
the nested generalized exemplar that accomplishes
learning by storing objects in Euclidean n-space.
Classification of new data is performed by computing their
distance to the nearest generalized exemplar. The
method is optimized by the selection of the most suitable
generalized exemplars based on evolutionary algorithms.

S. Garcia, J. Derrac, I. Triguero, C.J. Carmona, F. Herrera, Evolutionary-
Based Selection of Generalized Instances for Imbalanced Classification.
Knowledge Based Systems 25:1 (2012) 3-12.
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DT OTOTY][
IPADE-ID: Evolutionary instance generation

Iterative Instance Adjustment for Imbalanced Domains (IPADE-
ID) algorithm.

[t 1s an evolutionary framework, which uses an instance generation
technique, designed to face the existing imbalance modifying the
original training set.

e The method, iteratively learns the appropriate number of examples that
represent the classes and their particular positioning.

* The learning process contains three key operations in its design: a
customized initialization procedure, an evolutionary optimization of the
positioning of the examples and a selection of the most representative
examples for each class.

V. Lopez, 1. Triguero, C.J. Carmona, S. Garcia, F. Herrera, Addressing Imbalanced

Classification with Instance Generation Techniques: IPADE-ID. Neurocomputing, in
press (2013).
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Concluding remaks and future work

 Evolutionary under-sampling is an effective model in instance-
based learning.

 For dealing with low imbalance rates, EUSCM model is the
best choice

 For dealing with high imbalance rates, EBUS model is the best.

« EUSTSS allows to C4.5 to obtain very accurate trees in
Imbalanced classification.

e The models are very competitive with respect to advanced
hybrids of over-sampling and under-sampling.

e The number of leafs is decreased so the trees obtained are
more interpretable.
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Concluding remaks and future work

o Study the scalability of these models in very large data
sets.

e Hybridize evolutionary under-sampling with SMOTE or
other over-sampling approaches.

 Data complexity analysis of the the EUS and EUSTSS
behaviour

J. Luengo, A. Fernandez, S. Garcia, F. Herrera, Addressing Data Complexity
for Imbalanced Data Sets: Analysis of SMOTE-based Oversampling and
Evolutionary Undersampling. Soft Computing, 15 (10) (2011) 1909-1936
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Cost-sensitive learning

Cost modification consists of weighting errors made
on examples of the minority class higher than those
made on examples of the majority class in the
calculation of the training error.

This, in effect, rectifies the bias given to the majority

class by standard classifiers when the training error
corresponds to the simple (non-weighted) accuracy.
..... T Y e Y ——————————

proportlonate example weighting, in: Proceedings of the 2003 IEEE
Internatlonal Conference on Data Mining (ICDM'03), 2003. :

C. Elkan, The foundations of cost-sensitive learning, in: Proceedings of the
17th International Joint Conference on Artificial Intelligence, 2001, pp. 973—
- 978.



Cost-sensitive learning

Cost Moditying 1

# examples of - T
# examples of +



Cost-sensitive learning

* Needs a cost matrix, which encodes the penalty of
misclassifying samples.
e In the scenario of imbalanced data-sets, the significance of
the recognition of positive instances might be higher:
o C(+9 ') > C('9 +)
— C(+,t)=C(-,-)=0
 Consider the cost-matrix during the model building for
achieving the lowest cost.

« However, the cost matrix is often unavalaible

actual negative | actual positive fraudulent | legitimate
predict negative | C'(0,0) = oo | C(0,1) = coy refuse $20 —$20
predict positive | C'(1,0) = ¢ | C(1,1) = ¢4 approve — 0.02x

- C. Elkan, The foundations of cost-sensitive learning, in: Proceedings of the 17th
Internatmnal Joint Conference on Artificial Intelligence, 2001, pp. 973-978. 94



Cost-sensitive learning

 How can it be applied?
— Weighting the data space (data level):

 Change the distribution of the training sets (translation theorem) or
* Modifying final decision thresholds

— Making a specific classifier learning algorithm cost-sensitive
(algorithm level)

* Change the inner way the classifier works
« Use a boosting approach

— Using Bayes risk theory to assign each sample to its lowest risk
class (algorithm level) ;.. ;) _ S PGi#)C G, j)

P. Domingos, Metacost: a general method for making classifiers cost sensitive, in: 5" Int’l Conf. on
. Knowledge Discovery and Data Mining (KDD’99), San Diego, CA, 1999, pp. 155-164.

. Ting, K.M. An instance-weighting method to induce cost-sensitive trees
(2002) IEEE Transactions on Knowledge and Data Engineering, 14 (3), pp. 659-665.

_Y Sun, M. S. Kamel, A. K. C. Wong and Y. Wang, Cost-sensitive boosting for classification of
. imbalanced data, Pattern Recognition 40(12) (2007) 3358-3378



Cost-sensitive learning

Two weighting approaches

 Up-weighting, analogous to over-sampling,
Increases the weight of one of the classes
keeping the weight of the other class at one

d Down-weighting, analogous to under-sampling,
decreases the weight of one of the classes
keeping the weight of the other class at one



Cost-sensitive learning

Hybridization. Automatically countering imbalance

|_ Undersample original L
frain et
—_— —_
frain =t
\ Estimate undersampling )I undersampling parameters |
parameters
Fe— uses a cost-gensitive learning method
undersampled
/ train set
Estimate oversampling
parameters
uses 3 cost-sensitive learning method |
_Cwersgple u_nder'a;p ied_l
oversampling parameters train st
- — - - 4
Y
classify using aversampled
cost-sensitive |« after undersampling
learning dassifier frain test

Chawla, N. V., Cieslak, D. A., Hall, L. O., Joshi, A., 2008. Automatically countering imbalance
. and its empirical relationship to cost. Data Mining and Knowledge Discovery 17 (2), 225-252 :



Cost-sensitive learning

Algorithms selected for the study

Acronym

None

SMOTE
SENN
CS

Wr SMOTE

Wr_US

Wr SENN

Description

The original classifier that names the algorithm family

The original classifier that names the algorithm family applied to a data-set
preprocessed with the SMOTE algorithm

The original classifier that names the algorithm family applied to a data-set
preprocessed with the SMOTE+ENN algorithm

The cost-sensitive version of the original classifier from the corresponding
algorithm family.

Version of the Wrapper routine that uses as main algorithm the cost-sensitive

version of the algorithm family and only performs the oversampling step with
SMOTE

Version of the Wrapper routine that uses as main algorithm the cost-sensitive
version of the algorithm family, performs the undersampling step with a random
undersampling algorithm and the oversampling step with the SMOTE algorithm

Version of the Wrapper routine that uses as main algorithm the cost-sensitive
version of the algorithm family and only performs the oversampling step with the
SMOTE+ENN algorithm



Cost-sensitive learning

Algorithms selected for the study (2)

Decision Trees: C4.5

—  Original: Quinlan, J. R., 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San
Mateo—California.

—  Cost-Sensitive: Ting, K.M. An instance-weighting method to induce cost-sensitive trees (2002) IEEE
Transactions on Knowledge and Data Engineering, 14 (3), pp. 659-665.

Support Vector Machines
— Original: Vapnik, V., 1998. Statistical Learning Theory. Wiley, New York, U.S.A.

—  Cost-Sensitive: R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for
training SVM. Journal of Machine Learning Research 6, 1889-1918, 2005.

F uzzy Rule Based Classification Systems: FH-GBML

Original: Ishibuchi, H., Yamamoto, T., Nakashima, T., 2005. Hybridization of fuzzy GBML approaches for
pattern classification problems IEEE Transactlons on System, Man and Cybernetics B 35 (2), 359-365.

—  Cost-Sensitive: V. Lopez, A. Fernandez, F. Herrera, A First Approach for Cost-Sensitive Classification with
Linguistic Genetic Fuzzy Systems in Imbalanced Data-sets. 10th International Conference on Intelligent
Systems Design and Applications (ISDA2010), pp 676-681.

Lazy Learning: k-NN
—  Original: Cover, T. M., and P. E. Hart, (1967). Nearest Neighbor Pattern Classification. Institute of Electrical
and Electronics Engineers Transactions on Information Theory, Vol. 13, No. 1, pp. 21-27.

—  Cost-Sensitive: D.J. Hand and V. Vinciotti. Choosing k for two-class nearest neighbour classifiers with
unbalanced classes. Pattern Recognition Letters, 24:1555-1562, 2003.



Cost-sensitive learning

Algorithm Family | Parameters

Data-sets and

confidence = 0.25

minimum number of item-sets per leaf = 2
Parameters
C=100.0

tolerance of termination criterion = 0.001

degree (for kernel function) =1
gamma (for kernel function) = 0.01

* 66 real-world data-sets coef (for kernel function) = 0.0
. . use the shrinking heuristics = true
* 5 fOld-crOSS Valldatlon FH-GBML conjunction operator = product t-norm
. ule weight = PCF (FH-GBML and FH-GBML Processin
« Available at KEEL data-set S (PH.COMLCS) Fpreprocessing)
repOSitOry: tuzzy reasoning method = winning rule

number of fuzzy rules =5 - d (max. 50 rules)

http://www.keel.es/dataset.phy

number of rule sets =200

crossover probability = 0.9

mutation probability =1/4d

number of replaced rules = all rules except the best-one
(Pittsburgh-part, elitist approach) number of rules/5
(GCCL-part)

total number of generations = 1.000

don't care probability = 0.5

probability of the application of the GCCL iteration = 0.5

k-NN k=3

distance = Heterogeneous Value Difference Metric (HVDM)




Cost-sensitive learning

Results and Statistical Analysis
e Case of Study: C4.5

Similar results and conclusions for the remaining
classification paradigms

Algorithm AUC; AUCqst

C45 0.8774 + 0.0392  0.7902 + 0.0804

C45 SMOTE 0.9606 + 0.0142  0.8324 + 0.0728

C45 SENN 0.9471 £ 0.0154  0.8390 + 0.0772

C45CS 0.9679 £ 0.0103  0.8294 + 0.0758

C45 Wr_SMOTE | 0.9679 4 0.0103  0.8296 + 0.0763

C45 Wr_US 0.9635 £ 0.0139  0.8245 + 0.0760

C45 Wr_SENN | 0.9083 4+ 0.0377 0.8145 + 0.0712

V. Lépez, A. Fernandez, J. G. Moreno-Torres, F. Herrera, Analysis of preprocessing vs. cost-sensitive
learning for imbalanced classification. Open problems on intrinsic data characteristics. Expert Systems
with Applications 39:7 (2012) 6585-6608.




Cost-sensitive learning

Results and Statistical Analysis

* Rankings obtained by
Friedman test for the
different approaches of

C4.5.
e Shaffer test as post-hoc to

C4.5 Algorithms

5.4470

3.5455 3.5455 3.5606

3.1854

nang

SMOTE SEMN

Wr_SMOTE  Wr_Us

Wr_SENN

detect statistical
differences (a = 0.05)

C4.5 none SMOTE SENN S Wr_SMOTE Wr_US Wr_SENN
none X ' . . = . . ,
SMOTE +(6.404E- X =(1.0) =(1.0) =(1.0) =(1.0) +(.04903)
SENN +(4.058E- =(1.0) X =(1.0) =(1.0) =(.22569) +(.00152)
CS +(6.404E- =(1.0) =(1.0) X =(1.0) =(1.0) +(.04903)
Wr_SMOT +(7.904E-6 — — — X =(1.0) +(.04903)
Wr_US +(.00341) =(1.0) =(.22569) =(1.0) =(1.0) X =(1.0)

Wr_SENN =(.37846) -(.04903) -(.00152) -(.04903) -(.04903) =(1.0) X




Cost-sensitive learning

« Preprocessing and cost-sensitive learning improve the base
classifier.

 No differences among the different preprocessing techniques.

« Both preprocessing and cost-sensitive learning are good and
equivalent approaches to address the imbalance problem.

 In most cases, the preliminary versions of hybridization techniques
do not show a good behavior in contrast to standard
preprocessing and cost sensitive.

Z» Some authors claim: “Cost-Adjusting is slightly more effective

than random or directed over- or under- sampling although all
approaches are helpful, and directed oversampling is close to cost-

adjusting”. Our study shows similar results.

V. Lépez, A. Fernandez, J. G. Moreno-Torres, F. Herrera, Analysis of preprocessing vs. cost-sensitive
learning for imbalanced classification. Open problems on intrinsic data characteristics. Expert Systems
with Applications 39:7 (2012) 6585-6608.
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Why is difficult to learn in imbalanced domains?

* Preprocessing and cost sensitive learning have a similar
behavior.

* Performance can still be improved, but we must analyze in
deep the nature of the imbalanced data-set problem:

— Imbalance ratio is not a determinant factor
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Fig. 4 C4.5 AUC in Training/Test sorted by IR

. J. Luengo, A. Fernandez, S. Garcia, and F. Herrera. Addressing data complexity for imbalanced data sets: analysis of SMOTE-
: based oversampling and evolutionary undersampling. Soft Computing 15 (2011) 1909-1936, doi: 10.1007/s00500-010-0625-8.



Introduction to Imbalanced Data Sets

“Why is difficult to learn in imbalanced domains?

An easler problem

Imbalance — why is it
difficult?

[

More difficult one

Majority classes overlaps the
minority class:

Ambiguous boundary between
classes

Influence of noisy examples
Difficult border, ...




Why is difficult to learn in imbalanced domains?

Intrinsic data cl orists

Overlapping

Small disjuncts/rare data sets
Density: Lack of data
Bordeline and Noise data

Dataset shift



Why is difficult to learn in imbalanced domains?

Class imbalance is |
not the only R 1l
responsible of the -_'+-_-: ¥ T
lack in accuracy of ' +
an algorithm.

The class overlapping also
Influences the behaviour of the
algorithms, and it is very typical
In these domains.

V. Garcia, R.A. Mollineda, J.S. Sanchez. On the k-NN performance in a challenging scenario of
imbalance and overlapping. Pattern Anal Applic (2008) 11: 269-280




Why is difficult to learn in imbalanced domains?

Intrinsic data cl orists

e There is an interesting relationship between
imbalance and class overlapping:

F3

(a) Class overlapping



Why is difficult to learn in imbalanced domains?

Intrinsic data cl orists

e There is an interesting relationship between
imbalance and class overlapping:

Two different levels of class overlapping: (a) 20% and (b) 80%

V. Léopez, A. Fernandez, S. Garcia, V. Palade, F. Herrera, An Insight into Classification with Imbalanced Data: Empirical Results
and Current Trends on Using Data Intrinsic Characteristics. Information Sciences, doi: 10.1016/].ins.2013.07.007, in press (2013).




Why is difficult to learn in imbalanced domains?

Intrinsic data cl orists

e There is an interesting relationship between
imbalance and class overlapping:

Table 13 Performance obtained by C4.5 with different degrees of overlap

Owverlap Degree | T FPrate TNpate AUC
0 % 1.000 1.000 1.000
20 % .79.00 1.000 8950
40 % 4900 1.000 7450
50 % 4700 1.000 7350
60 % 4200 1.000 7100
80 % 2100 0989 6044
100 % 0000 1.000 5000

V. Léopez, A. Fernandez, S. Garcia, V. Palade, F. Herrera, An Insight into Classification with Imbalanced Data: Empirical Results
and Current Trends on Using Data Intrinsic Characteristics. Information Sciences, doi: 10.1016/].ins.2013.07.007, in press (2013).




Why is difficult to learn in imbalanced domains?

e There is an interesting relationship between
imbalance and class overlapping:

1,00 ',u
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TINNTHTAL \%[AWA [ FI: maximum Fisher’s discriminant ratio.
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- : |V i
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Fig. 4 C4.5 AUC in Training/Test sorted by IR

J. Luengo, A. Fernandez, S. Garcia, F. Herrera, Addressing Data Complexity for Imbalanced Data Sets: Analysis of SMOTE- :
. based Oversampling and Evolutionary Undersampling. Soft Computing, 15 (10) 1909-1936 :



Why is difficult to learn in imbalanced domains?

V. Garcia, R.A. Mollineda, J.S. Sanchez. On the k-NN performance in a challenging scenario

OV er I ap p | n g of imbalance and overlapping. Pattern Anal Applic (2008) 11: 269-280
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Fig. Two different levels of class overlapping: a 0% and b 60%

Experiment I: The positive examples are defined on the X-axis in the range [50-100],
while those belonging to the majority class are generated in [0—50] for 0% of class overlap,
[10—60] for 20%, [20—70] for 40%, [30—80] for 60%, [40-90] for 80%, and [50—-100] for
100% of overlap.

The overall imbalance ratio matches the imbalance ratio corresponding to the overlap
region, what could be accepted as a common case.




Why is difficult to learn in imbalanced domains?

40 B % e S
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% Overlapping

Fig. Performance metrics in k-NN rule and other learning
algorithms for experiment I



Why is difficult to learn in imbalanced domains?

V. Garcia, R.A. Mollineda, J.S. Sanchez. On the k-NN performance in a challenging scenario of

OV er I ap p I n imbalance and overlapping. Pattern Anal Applic (2008) 11: 269-280
1O T T T P I IS S Fig. Two different cases in
P e T T e ey IR .
2T H sl %ﬁ} ] S i experiment II: [75-100] and [85-
] Y ' i 70h " . o . tmoar .
ol e I SR : - g 100]. For this latter case, note that
o S ok P E ~re T . . __—
ol . m ol LT L w<.="]1n the overlap region, the majority
w0, . R ot T class 1s under-represented 1n
201 - B * -‘:""';::i a0 . +:-1'r- - . . .
ol o "‘::;'*'ﬁ‘ i ol S S comparison to the minority class.
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(a) (h)

Experiment II: The second experiment has been carried out over a collection of five
artificial imbalanced data sets in which the overall minority class becomes the majority in
the overlap region. To this end, the 400 negative examples have been defined on the X-axis
to be in the range [0—100] 1n all data sets, while the 100 positive cases have been generated
in the ranges [75—-100], [80—100], [85—100], [90—-100], and [95—100]. The number of
elements in the overlap region varies from no local imbalance in the first case, where both
classes have the same (expected) number of patterns and density, to a critical inverse
imbalance in the fifth case, where the 100 minority examples appears as majority in the
overlap region along with about 20 expected negative examples.
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Overlapping
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Fig. Performance metrics in k-NN rule and other learning
algorithms for experiment II
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Overlapping “"%'"'"

Conclusions: Results (in this paper) show :.:Exgbf?'g.y

that the class more represented in overlap @ &%~

regions tends to be better classified by (a) Class overlapping

methods based on global learning, while the class less
represented in such regions tends to be better classified by local

methods.

In this sense, as the value of k of the k-NN rule increases, along
with a weakening of its local nature, it was progressively
approaching the behaviour of global models.




Why is difficult to learn in imbalanced domains?

Overlapping 0% e 0ol
0%0®% l': N
Sovperaths,
O @ /
Open problem: To design new :'=%§6f? ; gi}
approaches (resampling or learning ¢ :'.i:ﬁ:ﬁ%
methods) to deal with the overlapping. e ™

(a) Class overlapping



Why is difficult to learn in imbalanced domains?

Intrinsic data cl orists

Overlapping

Small disjuncts/rare data sets
Density: Lack of data
Bordeline and Noise data

Dataset shift



Why is difficult to learn in imbalanced domains?

Class imbalance is
not the only
responsible of the
lack in accuracy of
an algorithm.

® 04
._.,\.

o Small disjuncts

\@

v

Class imbalances may yield small disjuncts
which, in turn, will cause degradation.

Rare cases or Small disjuncts are those disjuncts in

the learned classifier that cover few training

examples.

T. Jo, N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations 6:1 (2004) 40-49




Why is difficult to learn in imbalanced domains?

Intrinsic data cl orists

Rare or exceptional cases correspond to small numbers of
training examples in particular areas of the feature space. When
learning a concept, the presence of rare cases in the domain is an
Important consideration. The reason why rare cases are of interest is
that they cause small disjuncts to occur, which are known to be more
error prone than large disjuncts.

In the real world domains, rare cases are unknown since high
dimensional data cannot be visualized to reveal areas of low coverage.

Dataset Knowledge Model
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' —7 & % +f|l
Lo #hE ﬁ-x*
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Why is difficult to learn in imbalanced domains?

Intrinsic data cl orists

Rare or excepcional cases

Rarity: Rare Cases versus

Rare Classes

A3
T

B2

AL ]

| "+ +|

| S —

_—

+
HE
+ =
+

+

]

H

Fignre 1: Graphical representation of a rare class and rare case

Class A is the rare (minority
class and B is the common
(majority class).

Subconcepts A2-A5 correspond
to rare cases, whereas Al
corresponds to a fairly common
case, covering a substantial
portion of the instance space.

Subconcept B2 corresponds to a
rare case, demonstrating that
common classes may contain
rare cases.

G.M. Weiss. Mining with Rarity: A Unifying Framework. SIGKDD Explorations 6:1 (2004) 7-19




Why is difficult to learn in imbalanced domains?

Intrinsic data cl orists

Small disjuncts/Rare or excepcional cases

In the real-word domains, rare cases are not easily identified. An
approximation is to use a clustering algorithm on each class.

Jo and Japkowicz, 2004: CBO: Cluster-based oversampling: A
method for inflating small disjuncts.

CBO method: Cluster-based resampling identifies rare
cases and re-samples them individually, so as to avoid
the creation of small disjuncts in the learned hypothesis.

T. Jo, N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations 6:1 (2004) 40-49




Why is difficult to learn in imbalanced domains?

I | [ [ J i | ] | ([ ] |
Small disjuncts/Rare or excepcional cases

Once the training examples of each class have been clustered,
CBO method: oversampling starts. In the majority class, all the clusters, except
for the largest one, are randomly oversampled so as to get the
same number of training examples as the largest cluster. Let
maxclasssize be the overall size of the large class. In the minority
class, each cluster is randomly oversampled until each cluster
00000 contains maxclasssize/Nsmallclass where Nsmallclass represents
Q.0 O A :

O ¥ @ the number of subclusters in the small class.

li..’ )

(k) Small disjuncts

T. Jo, N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations 6:1 (2004) 40-49
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(a) Artificial dataset: small disjuncts for (b) Subclus dataset: small disjuncts for
the minority class both classes

Fig. 5 Example of small disjuncts on imbalanced data

Table 12 Performance obtained by C4.5 in datasets suffering from small disjuncts

Dataset

Original Data Preprocessed Data with CBO
Tpf.r‘ate Tivf.r‘ate AUC TP’i"ﬂﬁE Ti\"?rate. AUC
Artificial dataset .0000 1.000 .5000 1.000 1.000 1.000

Subclus dataset 1.000 9029 9514 1.000 1.000 1.000

V. Léopez, A. Fernandez, S. Garcia, V. Palade, F. Herrera, An Insight into Classification with Imbalanced Data: Empirical Results
and Current Trends on Using Data Intrinsic Characteristics. Information Sciences, doi: 10.1016/].ins.2013.07.007, in press (2013).
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Intrinsic data cl orists

Small disjuncts/Rare or excepcional cases

A (a) Artificial dataset with the original
data: 20 positive and 182 negative
= instances
B3 (b) Artificial dataset with CBO: 228

positive and 228 negative instances

(¢) Subclus dataset with the original
data: 100 positive and 700 negative
instances

(d) Subclus dataset with CBO: 780
positive and 780 negative instances

Figure: Boundaries obtained by C4.5 with the original and preprocessed data using CBO for
addressing the problem of small disjuncts. The new instances for (b) and (d) are just replicates of
the initial examples.

V. Lopez, A. Fernandez, S. Garcia, V. Palade, F. Herrera, An Insight into Classification with Imbalanced Data: Empirical Results
and Current Trends on Using Data Intrinsic Characteristics. Information Sciences, doi: 10.1016/].ins.2013.07.007, in press (2013).
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Intrinsic data cl orists

Small disjuncts/Rare or excepcional cases

Small disjuncts play arole in the performance loss of class imbalanced
domains.

Jo and Japkowicz results show that it is the small disjuncts problem
more than the class imbalance problem that is responsible for the this
decrease in accuracy.

The performance of classifiers, though hindered by class imbalanced, is
repaired as the training set size increases.

An open question: Whether it is more effective to use
solutions that address both the class imbalance and the
small disjunct problem simultaneously than it is to use
solutions that address the class imbalance problem or the
small disjunct problem, alone.

T. Jo, N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations 6:1 (2004) 40-49
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Intrinsic data cl orists

Overlapping

Small disjuncts/rare data sets
Density: Lack of data
Bordeline and Noise data

Dataset shift



Why is difficult to learn in imbalanced domains?

= =
fa) 10 % of training instancos {b) 100 % of training instancas

Fipnre 11: Lack of density or amall sample size on the yeastd datasat

The lack of density in the training
data may also cause the
introduction of small disjuncts.

It becomes very hard for the
learning algorithm to obtain
a model that is able to
perform a good
generalization when there is
not enough data that
represents the boundaries of
the problem and, what it is
also most significant, when
the concentration of
minority examples is so low
that they can be simply
treated as noise.
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Intrinsic data cl orists

Density: Lack of data

Table 5. The Distribution of Training Examples in Pima
Indian Diabetes

Positive (*17) Negative (*0")

0 |40 |4 36 Experimental
100 | 10 90 study with
200120 180 different levels

1:3 40 10 30 N TN PR
00 > s Ol 1iripdialice
0 T 50 = and density

1:1 40 20 20
100 50 50
200 100 100

T. Jo, N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations 6:1 (2004) 40-49
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Density: Lack of data

Left-C4.5, right-Backpropagation: These resultas show
that the performance of classifiers, though hindered by
class imbalances, is repaired as the training set size
Incresses. This sugests that small disjuncts play arole in
the performance loss of class imbalanced domains.

=
0=
0 1:9 o7 o120
1:3 e m1:3
05
0=} o1l

7

-0 100 IO

T. Jo, N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations 6:1 (2004) 40-49




Why is difficult to learn in imbalanced domains?

Density: Lack of data

100,00 /
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From this
graph, we may
distinguish a
growth rate
directly
proportional to
the number of
training
instances that are
being used. This
behavior reflects
the findings
enumerated
previously.

Fig. 8 AUC performance for the C4.5 classifier regarding the proportion of examples 1n the

training set for the vowel) problem

V. Lopez, A. Fernandez, S. Garcia, V. Palade, F. Herrera, An Insight into Classification with Imbalanced Data: Empirical Results
and Current Trends on Using Data Intrinsic Characteristics. Information Sciences, doi: 10.1016/].ins.2013.07.007, in press (2013).
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Intrinsic data cl orists

Overlapping

Small disjuncts/rare data sets
Density: Lack of data
Bordeline and Noise data

Dataset shift
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Kind of examples: The need of resampling or to
manage the overlapping with other strategies

/EI Noise examples \ —

] Borderline exampl — - = =

Borderline examples a — — _ - =
unsafe since a small

amount of noise can make _ -
th\.«lll fall Ull ‘«h\/ VVl nlls + ++ -
side of the decision 4+ + + - =
border. + -
o+
] Redundant examples

 Safe examples An approach: Detect and remove such
majority noisy and borderline examples
in filtering before inducing the classifier.
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Borderline and Noise data
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Intrinsic data cl orists

Borderline and Noise data

3 kind of artificial problems:

Subclus: examples from the minority class are located inside rectangles following related works on small
disjuncts.

Clover: It represents a more difficult, non-linear setting, where the minority class resembles a flower with
elliptic petals.

Paw: The minority class is decomposed into 3 elliptic sub-regions of varying cardinalities, where two
subregions are located close to each other, and the remaining smaller sub-region is separated.

L ey *
Fae
&

*

Clover data Paw data Subclus data
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Clover data Paw data
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Borderline and Noise data Subclus data

(a) Original problem and decision functions (b) Noisy instances and new undesirable
decision functions 20% gaussian noise

Fig. 10 Example of the effect of noise in imbalanced datasets for SMOTE+C4.5 in the Subeclus

dataset

V. Lopez, A. Fernandez, S. Garcia, V. Palade, F. Herrera, An Insight into Classification with Imbalanced Data: Empirical Results
and Current Trends on Using Data Intrinsic Characteristics. Information Sciences, doi: 10.1016/j.ins.2013.07.007, in press (2013).
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Intrinsic data cl orists

Borderline and Noise data

SPIDER 2: Spider family (Selective Preprocessing of
Imbalanced Data) rely on the local characteristics of examples
discovered by analyzing their k-nearest neighbors.

J. Stefanowski, S. Wilk. Selective pre-processing of imbalanced data for improving classification

performance. 10th International Conference in Data Warehousing and Knowledge Discovery
(DaWaK2008). LNCS 5182, Springer 2008, Turin (Italy, 2008) 283-292.

K.Napierala, J. Stefanowski, and S. Wilk. Learning from Imbalanced Data in Presence of Noisy
and Borderline Examples. 7th International Conference on Rough Sets and Current Trends in
Computing , 7th International Conference on Rough Sets and Current Trends in Computing, RSCTC
2010, LNAI 6086, pp. 158-167, 2010.




Why is difficult to learn in imbalanced domains?

Borderline and Noise data_. . Cis

Base RO CO NCR SP2

subclus-0 0.9540 0.9500 0.9500 0.9460 0.9640
subclus-30 || 0.4500 0.6840 0.6720 0.7160 0.7720
subclus-50 || 0.1740 0.6160 0.6000 0.7020 0.7700
subclus-70 || 0.0000 0.6380 0.7000 05700 0.8300
clover-0 0.4280 0.8340 0.8700 0.4300 0.4860
clover-30 0.1260 0.7180 0.7060 0.5820 0.7260
clover-50 0.0540 0.6560 0.6960 0.4460 0.7700
clover-70 0.0080 0.6340 0.6320 0.5460 0.8140

paw-0 0.5200 0.9140 0.9000 0.4900 0.5960
N O I S e d ata paw-30 (J.:;G4D 0.7920 ﬂ.IQED 0.8540 0.8680
paw-50 0.1840 0.7480 0.7200 0.8040 0.8320
paw-T0 0.0060 0.7120 0.6800 0.7460 0.8780

Table 14 Performance obtained by C4.5 in the Subclus dataset with and without noisy in-

stances

Dataset Original Data 20% of Gaussian Noise
Tprate Tf"'l'rrat-e AUC Tprate Tf"'l'rrate AUC

None 1.000 9029 9514 .0000 1.000 5000

RandomUnderSampling 1.000 L7800 8900 9700 7400 8550

SMOTE 9614 9529 9571 8914 8800 8857

SMOTE+ENN 9676 9623 9649 9625 9573 9599

SPIDER2 1.000 1.000 1.000 9480 9033 9256
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Borderline and Noise data_. . Cis

Base RO CO NCR SP2

subclus-0 0.9540 0.9500 0.9500 0.9460 0.9640

i - subeclus-30 || 0.4500 0.6840 0.6720 0.7160 0.7720

Small disjunct and Noise data subclus-50 || 0.1740 0.6160 0.6000 0.7020 0.7700
subelus-70 || 0.0000 0.6380 0.7000 0.5700 0.8300

clover-0 0.4280 0.8340 0.8700 0.4300 0.4860

Borderline and Noise data clover-30 || 0.1260 0.7180 0.7060 0.5820 0.7260
clover-50 || 0.0540 0.6560 0.6960 0.4460 0.7700

clover-70 || 0.0080 0.6340 0.6320 0.5460 0.8140

paw-0 0.5200 0.9140 0.9000 0.4900 0.5960

i i paw-30 0.2640 0.7920 0.7960 0.8540 0.8680
Borderline and Noise data paw-50 0.1840 0.7480 0.7200 0.8040 0.8320
paw-T0 0.0060 0.7120 0.6800 0.7460 0.8780

Table 14 Performance obtained by C4.5 in the Subclus dataset with and without noisy in-

stances

Dataset Original Data 20% of Gaussian Noise
Tprate Tf"'l'rrat-e AUC Tprate Tf"'l'rrate AUC

None 1.000 9029 9514 .0000 1.000 5000

RandomUnderSampling 1.000 L7800 8900 9700 7400 8550

SMOTE 9614 9529 9571 8914 8800 8857

SMOTE+ENN 9676 9623 9649 9625 9573 9599

SPIDER2 1.000 1.000 1.000 9480 9033 9256
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Intrinsic daf ] eristi
Borderline and Noise data

« SPIDER 2: allows to get good results in comparison with
classical ones.

« It has interest to analyze the use of noise filtering algorithms for
these problems: IPF filtering algorithm shows good results.

» Specific methods for managing the noise and bordeline
problems are necessary.
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Intrinsic data cl eristi
Overlapping
Small disjuncts/rare data sets
Three
roblems
Borderline and Noise data v P

Dataset shift
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Intrinsic data cl orists

Small disjuncts and density

Rare cases may be due to a lack of data. Relative lack of
data, relative rarity.

¥ - -]

Figure 2: The impact of an “absolute” lack of data

G.M. Weiss. Mining with Rarity: A Unifying Framework. SIGKDD Explorations 6:1 (2004) 7-19
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Intrinsic data cl eristi
Small disjuncts and Noise data

Noise data will affect the way any data mining system
behaves. Noise has a greater impact on rare cases than on
common cases.
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Figure 3: The effect of noise on rare cases

G.M. Weiss. Mining with Rarity: A Unifying Framework. SIGKDD Explorations 6:1 (2004) 7-19
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Overlapping
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Dataset shift

" Basic assumption in classification:

Accurate
Class
Prediction

Training set

Accurate
Obtains Class

Tezae Sz
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Dataset shift
" But sometimes....

Accurate
Class

Prediction

Training set

Build a

Obtains

Test set

® The classifier has an overfitting problem.

* Is there a change in data distribution between training and

test sets (Data fracture)?. Q



The Problem of Dataset Shift

® The classifier has an overfitting problem.

—  Change the parameters of the algorithm.
— Use amore general learning method.

® There is a change in data distribution between
training and test sets (Dataset shift).

— Train a new classifier for the test set.

— Adapt the classifier.

— Modify the data in the test set ...



The Problem of Dataset Shift

The problem of data-set shift is defined as the case where
training and test data follow different distributions.

J. G. Moreno-Torres, T. R. Raeder, R. Alaiz-Rodriguez, N. V. Chawla, F. Herrera, A
unifying view on dataset shift in classification. Pattern Recognition 45:1 (2012) 521-530,
doi:10.1016/j.patcog.2011.06.019.




The Problem of Dataset Shift

The problem of data-set shift is defined as the case where
training and test data follow different distributions.

Covariate Shift: The inputs of the problem differ in training

and test sets.

J. G. Moreno-Torres, T. R. Raeder, R. Aldiz-Rodriguez, N. V. Chawla, F. Herrera, A
unifying view on dataset shift in classification. Pattern Recognition 45:1 (2012) 521-
530, doi:10.1016/j.patcog.2011.06.019.
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Intrinsic daf ] eristi
Dataset shift

This 1s a common problem that can affect all kind of classification
problems, and 1t often appears due to sample selection bias issues.

However, the data-set shift issue is specially relevant when
dealing with imbalanced classification, because in highly
imbalanced domains, the minority class is particularly sensitive to
singular classification errors, due to the typically low number of
examples 1t presents.

In the most extreme cases, a single misclassified example of the
minority class can create a significant drop in performance.
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Intrinsic daf ] eristi
Dataset shift

Since dataset shift 1s a highly relevant issue in imbalanced
classification, due to the minority class examples.

JLTrﬂir'l ‘Ei?'-;k | Test
I. I. .‘Tiﬁ_rﬁ kg '.. '.’. * Y
. -.:.ifir;{ . -.:.‘i'-i’ 4
® ee_, ® o0? 7
l:-- % -: -:-- % l:
ee %, ee %,
-. ™ ® e -. ™ * .ﬁ'ﬁ'

Figure 18: Example of the impact of data-set shift in imbalanced do-

MAINS.



Causes of Dataset Shift

We comment on some of the most common causes of
Dataset Shift:

Sample selection bias and non-stationary environments.

These concepts have created confusion at times, so it is
Important to remark that these terms are factors that
can lead to the appearance of some of the shifts
explained, but they do not constitute Dataset Shift
themselves.



Causes of Dataset Shift

Sample selection bias:

SoTe e SaTeonte
o & o0 &
e &y o
o) o)
&% 000 O °0
®s s
B ® ® @
(a) Full dataset (b) Training set (c) Test set

Fig. 1: Extreme example of partition-based covariate shift.
Note how the examples on the bottom left of the “cross™ class
will be wrongly classified due to covariate shift.



Causes of Dataset Shift

ampe bias selection: Influence of parllonmg on classifiers perormance

Iteration 216 [teration 459
C45 | HDDT || C45 | HDDT
breast-w || 0.9784 | 0.9753 [ 0.9768 | 0.9820 e C(lassifier performance results
bupa 0.6936 | 0.6913 || 0.6521 | 0.6531 . .
credita || 0.8996 | 0.8967 || 0.9044 | 0.8967 over two separate iterations of
orx 0.8993 | 0.8877 | 0.9021 | 0.8898 _ _
heart-c 0.8431 | 0.8181 || 0.8161 | 0.8333 random 10-fold cross
heart-h 0.8756 | 0.8290 || 0.8376 | 0.8404 validation.
horse-colic || 0.8646 | 0.8848 || 0.8742 | 0.8928
fon 09353 | 0.9301 || 09247 | 0.9371
krkp 0.0992 | 0.9993 || 0.9988 | 0.9991 .
pima 0.7781 | 0.7717 || 0.7661 | 0.7696 o A consistent random number

promoters 0.8654 | 0.8514 || 0.8676 | 0.8774
ringnorm || 0.8699 | 0.8533 || 0.8660 | 0.8727 seed was used across al

sonar 0.8053 | 0.7929 || 0.8076 | 0.8127 datasets within an iteration.
threenorm 0.7964 | 0.7575 0.7419 | 0.7311

tic-tac-toe 09354 | 0.9254 || 0.9342 | 0.9273
twonorm 0.8051 | 0.8023 || 0.7722 | 0.7962

T. Raeder, T. R. Hoens, and N. V. Chawla,

vote 09843 109874 [ 09828 | 09835 “Consequences of variability in classifier
votel 0.9451 | 0.9343 || 0.9497 | 0.9426 performance estimates,” Proceedings of
avg. rank 1.11 1.89 1.72 1.28 the 2010 IEEE International Conference
a=0.10 v v on Data Mining, 2010, pp. 421-430.
a = 0.05 v v

Wilcoxon test: Clear differences for both algorithms



Causes of Dataset Shift

Challenges in correcting the dataset shift generated by the sample selection bias

source domain target domain




Causes of Dataset Shift

Challenges in correcting the dataset shift generated by the sample selection bias

source domain target domain




Causes of Dataset Shift

Challenges in correcting the dataset shift generated by the sample selection bias

Where Does the Difference Come from?

p(X, y) = -
ﬂ Pt;)(y | X) ;é_ptst(y | X)
p()P(y | X) LT N -

| A Pira(X) 7 ptstbg)_|

labeling adaptation instance adaptation
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Dataset shift

GP-RST: From N dimensions to 2
« Goal: obtain a 2-dimensional representation of a
given dataset that is as separable as possible. @ e @ @
* Genetic Programming based: evolves 2 trees

simultaneously as arithmetic functions of the
previous N-dimensions. 2 5 _ ( ) ?. * COS|( Y
11

« Evaluation of an individual dependant on Rough Set
Theory measures.

Moreno-Torres, J. G., & Herrera, F. (2010). A preliminary study on overlapping and data fracture in
imbalanced domains by means of genetic programming-based feature extraction. In Proceedings of the
10th International Conference on Intelligent Systems Design and Applications (ISDA 2010) (pp. 501-506).
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Data-set shift

GP-RST: From N dimensions to 2

- Training
Dataset set
Split I

| Testcet

Bidimensional
Dataset




A Genetic-Programming based Feature Selection

7] . . A . 7l 7 . . . Al

The quality of approximation (=) is  p (x)— s e X : R (2) € X}
the proportion of the elements of a

B, (X))
X

rough set that belong to its lower v(z) =
approximation.

Algorithm 1 Fitness evaluation procedure
1. Obtain E' = {&™ = (fi(e"), fa(e?).C*)/h =1, ... ,n.}, where f; and f; are
the expressions encoded on each of the trees of the individual being evaluated.
2. For each class label C; € C i =1, ..., n.,
2.1 Build a rough set X; containing all the elements of class ;.
2.2 Calculate the lower approximation of X;, B,(X;).
2.3 The fitness of the chromosome for class C; 158 estimated as the quality
of the approximation over X;, v(X;).
3. The fitness of the chromosome 1s the geometric mean of the ones obtained
for each class: fitness = “¢/'[ .5, 7(X;).




A Genetic-Programming based Feature Selection
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Good behaviour. pageblocks 13v4, 15t partition.

Example of good behavior

i
+
o
5 ﬂ
z
+
+ o+
o+ *
'..,i:nE. % M:,‘Es:n:l' S ey
N I

[m
(=]
L=
ﬂ':."'—":'
(=]
[ =] o
]
3 | :
Rl 2
Y2 o
[+
[=]
L]
o [+
L=
=1
L]
] o
oo
=

™

(a) Training set (1.0000) (b) Test set (1.0000)



A Genetic-Programming based Feature Selection
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Dataset shift. ecoli 4, 15 partition.

Example of mild data fracture
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A Genetic-Programming based Feature Selection
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Overlap and dataset shift. glass 016v2, 4™ partition.

Example of overlap and fracture
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(a) Training set (0.3779) (b) Test set (0.0000)




A Genetic-Programming based Feature Selection
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Overlap and dataset shift. glass 2, 2" partition

Example of overlap and fracture
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(a) Training set (0.6794) (b) Test set (0.0000)



Why is difficult to learn in imbalanced domains?

Intrinsic daf ] eristi
Dataset shift

There are two different potential approaches in the study of the
effect and solution of dataset shift in imbalanced domains.

. The first one focuses on intrinsic dataset shift, that is, the data of
interest includes some degree of shift that 1s producing a relevant
drop 1n performance. In this case, we need to:

> De‘v 6101& technialiec tn dicecnver and meaciire the nrecence nf
P l«\/\/llll.l\ibl\/b) LU UldDVU VL1 dliu 111vadul v Uiy PL\JD\JLLU\J Ul
data-set shift adapting them to minority classes.

» Design algorithms that are capable of working under data-set
shift conditions. These could be either preprocessing techniques
or algorithms that are designed to have the capability to adapt
and deal with dataset shift without the need for a preprocessing
step.



Why is difficult to learn in imbalanced domains?

Dataset shift

J The second branch in terms of data-set shift in imbalanced
classification 1s related to induced data-set shift.

Most current state of the art research is validated through stratified
cross-validation techniques, which are another potential source of

shift in the machine learning process.

Example:

/ Training and
test data follow

‘ different

distributions.

vegive B o vegetrs W pntivn
(a) Training data. AUC = 1.000 (b) Test data. AUC = .8750
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Dataset shift

Example:
/ Training and
test data follow
2 | BECE == different
s R distributions.

(a) Training data. AUC = 1.000 (b) Test data. AUC = .8750

A more suitable validation technique needs to be developed in
order to avoid introducing data-set shift issues artificially.
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Dataset shift Proposed solution: DOB-SCV

A more sophisticated technique, known as DOB-SCYV, is
considered:

— Assigning close-by examples to different folds, so that
representative examples for the different regions of the
problem will be represented among them.

Algorithm 1 DOB-SCV Partitioning Method

for each class ¢; € C' do
while count(c;) > 0 do
ep + randomly select an example of class ¢; from D

e; +— ith closest example to eg of class ¢; from D (z =1,....k — 1)
F; <« FilJei(z =0,..., k—1)
D+ D\e (i=0,... . k—1)
end while
end for

J. G. Moreno-Torres, J. A. Sdez, and F. Herrera, “Study on the impact of partition-induced dataset shift on k-fold cross-validation,” IEEE |
Transactions On Neural Networks And Learning Systems, vol. 23, no. 8, pp. 13041313, 2012. |
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Dataset shift Proposed solution: DOB-SCV

This technique aims at carrying out an heterogeneous

organization of the instances of the classes among the
different folds.

Algorithm 1 DOB-SCV Partitioning Method

for each class ¢; € C' do
while count(c;) > 0 do
ep < randomly select an example of class ¢; from D
e; < ith closest example to eg of class ¢; from D (i =1,...,k —1)
Fi; + FilJei(i=0.,.... E—1)
D <+ D\ e 1_[]....,1:.—1}
end while
end for

J. G. Moreno-Torres, J. A. Sdez, and F. Herrera, “Study on the impact of partition-induced dataset shift on k-fold cross-validation,” IEEE |
Transactions On Neural Networks And Learning Systems, vol. 23, no. 8, pp. 13041313, 2012.



Why is difficult to learn in imbalanced domains?

Dataset shift Proposed solution: DOB-SCV

Tahle 3 Awerage test results with AUC metric and percentage differences for the SCV and DOB-SCV

technigues.
IR <0 IR =0 ATl

Rlzorithm TV DOBSCY | % Dt TV DOESCY | % Dt DOBSCY | % Dt
a3 Joul i vl T i i N W ) K ST W e i R T e | 2
Chi 8151 + sz | g187 £ 00 | 051 | 7esE 4 1041 | 7781 £ 0m9 | 124 | 7mes s pen | re1s £ 0733 | 100
i HN 8475+ 42 | 8616 £ 030 | 196 | S22 4 0937 | 2395+ 0855 | 174 | 5341 £ 07 | mdem & 0eRs | 181
SO A573 4 (317 | Bedd £ 0253 | 096 | 8425 & Deos | 2427+ 0606 | 023 | 240 £ 0Sen | 2500 & D4mm | 047
POFC 877+ 029 | monl 4 0263 | 034 | seos 4 0m19 | mer2+ ome | o0ss | mems 4 ness | awe s 050 | oss

Compati sot Rt | B | p-value

C4 S[DOB-2CV ] ws T4 5[5CV] 1391 | 754 | 0.0371

Chi[DOB-3CV] ws Chi[ 3TV ] 1411 | 734 | 00267

f-LIN[DOB-5CW ] we p-WI[SCV] | 1536 | 60% | 0.0024
SIO[DOB -5V ] we SIO[SCV] 15395 | 816 | 00635
PDECIDOR -5CV] we PDECISCV] | 1366 | 845 | 0.0955




Why is difficult to learn in imbalanced domains?

Dataset shift Proposed solution: DOB-SCV

DOB-SCV validation technique achieves a higher
estimation of the performance for most datasets. It is
more robust for analyzing the quality of the models
learned in imbalanced data.

— The higher the IR is, the greater the differences
between the DOB-SCV and the standard SCV.

— The lower the number of positive instances, the more
significant is to maintain the data distribution to avoid
the gap in performance between training and test.



Why is difficult to learn in imbalanced domains?

Intrinsic daf ] eristi
Dataset shift

dIimbalanced classification problems are difficult when
overlap and/or data fracture are present.

 Single outliers can have a great influence on classifier
performance.

] Dataset shift is a novel problem in imbalanced
classification that need a lot of studies.



Why is difficult to learn in imbalanced domains?

Intrinsic data cl orists

What domain characteristics aggravate the problem?

dOverlapping

[ Rare sets/ Small disjuncts: The class imbalance problem may
not be a problem in itself. Rather, the small disjunct problem it
causes is responsible for the decay.

 The overall size of the training set
large training sets yield low sensitivity to class imbalances
] Noise and border data provoke additional problems.

The data partition provokes data fracture: Dataset shift.



Why is difficult to learn in imbalanced domains?

Intrinsic data cl orists

What domain characteristics aggravate the problem?

There is a current need to study the aforementioned
intrinsic characteristics of the data.

So that future research on classification with imbalanced
data should focus on detecting and measuring the most
significant data properties, in order to be able to define
g00d solutions as well as alternatives to overcome the
problems.
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Emsembles to address class imbalance

Ensemble-based classifiers try to
improve the performance of single § ..
classifiers by inducing several gt
classifiers and combining them to
obtain a new classifier that
outperforms every one of them.

ko, & m Om
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Feature 2 -
Feature 2

-.____Fearun!-‘l'r s Feature 1

The basic idea Is to construct
several classifiers from the original
data and then aggregate their
predictions when unknown
Instances are presented.

Fealire 2

This idea follows human natural P
behavior which tend to seek several g %, ko
opinions before making any
Important decision.
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Emsembles to address class imbalance

Ensemble methods classification

Bagging =
Manipu = ‘ = Mampulatlon
with mode @ \ = with data set

(Model= M(a)) e

 Manipulation

i

Boosting =

Manipulation

with model

 Manipulation
with data set

(Avengs)




Emsembles to address class imbalance

Bagging and Boosting
Genel‘al idea Classification method (CM)
Training data > Classifier C

CM

Altered Training data j|> Classifier C1

CM

Altered Training data [ ) Classifier C2

Aggregation .... > Classifier C*




Emsembles to address class imbalance

Bagging (Algorithm 1). It consists in training different classifiers with
bootstrapped replicas of the original training data-set. That is, a new data-
set Is formed to train each classifier by randomly drawing (with
replacement) instances from the original data-set (usually, maintaining
the original data-set size). Hence, diversity is obtained by resampling
different data subsets. Finally, when an unknown instance is presented to
each individual classifier, a majority or weighted vote is used to determine
the class.

Algorithm 1 Bagging

Input: S: Training set; I": Number of iterations;
n: Bootstrap size; I: Weak learner

-
Output: Bagged classifier: Hix) = sign hi(x) | where h; €
P 28

t=1

|—1, 1] are the induced classifiers
l: fort =110 T do
2:  S¢ «+ RandomSampleReplacement(n,S)
3: he 4+ 1(5¢)
4: end for




Emsembles to address class imbalance

FINAL CLASSIFIER

Boosting G(z) = sign [ £, G ()]
. = Gp(x)
The idea

Training Sample JEEEE



Emsembles to address class imbalance

Boosting (AdaBoost, Algorithm 3). AdaBoost is the most representative algorithm
of Boosting family. AdaBoost uses the whole data-set to train each classifier

serially, but after each round, it gives more focus to difficult instances, with the goal of
correctly classifying in the following iteration those examples that were incorrectly
classified during the current one. After each iteration, the weights of misclassified
Instances are increased; on the contrary, the weights of correctly classified
Instances are decreased. Almorihm 3 AdaBoon

Input: Training set S = {x;,4:}. ¢ = 1,...,N; and #; €
{—1,41}; 1" Number of iterations; I: Weak learner

Furthermore, each individual Output: Boosted classifier: H(z) = sign (izlathz(x)) where
classifier is assigned a e el e (0 12) € (1))
weight depending on its tort-iwrd "

overall accuracy (the weight S ”H‘f"‘] Dy()

Is then used in test phase); e >0

more confidence is given to T retum

more accurate classifiers. uoe é)h;(,lfi;). o

11:  Normalize D;4; to be a proper distribution
12: end for
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Ensembles to Address Class Imbalance Problem

//\

Cost-Sensitive Ensembles Data Preprocessing + Ensemble Learning
Cost-Sensitive Boosting Boosting-based Bagging-based Hybrid
« AdaCost [48] « SMOTEBoost [44] s OverBagging [55] » EasyEnsemble [47]
« C5BI1, CSB2[49] « MSMOTEBoost [82] — SMOTEBagging [55] « BalanceCascade [47]
» RareBoost [97] + RUSBoost [45] « UnderBagging [99]
e AdaCl [50] » DataBoost-IM [98] : ;
o AdaC2 [50] — QuasiBagging [100]
e AdaC3 [50] — Asymetric Bagging [101]

— Roughly Balanced Bagging [102]
— Partitioning [103], [104]
— Bagging Ensemble Variation [ 105]
« UnderOverBagging [55]
[IVotes [46]

Fig. 3. Proposed taxonomy for ensembles to address the class imbalance problem.

M. Galar, A. Fernandez, F. E. Barrenechea, H. Bustince, F. Herrera. A Review on Ensembles for Class
. Imbalance Problem: Bagging, Boosting and Hybrid Based Approaches. IEEE TSMC-Par C, 42:4 (2012) 463-484
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TABLE XV
REPRESENTATIVE METHODS SELECTED FOR EACH FAMILY
Family Abbr. Method
Non-ensembles SMT SMOTE g > | 401 2 15 o
Classic M14 AdaBoost M2 (T = 40) £ — -
Cost-sensitive C24 AdaC2 (T = 40) &’ i
Boosting-based RUSI RUSBoost (T' = 10) g ? 1
Bagging-based SBAGH SMOTEBagging (T = 40) = i
Hybrids EASY EasyEnsemble SMT  MI14 €24 RUSI SBAG4 EASY
TABLE XVIII ig. 9. Average rankings of the representatives of each family.
SHAFFER TESTS FOR INTERFAMILY COMPARISON TABLE XVI
Horm TABLE FOR BEST INTERFAMILY ANALYSIS
SMT Mid C24 RUSI SBAG4 EASY
SMT y ~(0.24024) ~(1.0) (0.00858) ~(0.00095) ~(1.0) i Algorithm (Rank) 7z p-value Holm Hypothesis (o = 0.05)
Mi4  =(0.24024) IHX - _{ﬂﬂ3ﬂ|4 7) _{ 0.0) _{ﬂ{]} —I'G.D]-_-"ZS} 3 M4 (4.76) 578350 0.00000 0.01 Rejected for SBAG4
) _ _ _ 4 L 4 SMT (4.01) 390315 0.00009 00125 Rejected for SBAG4
C24 (1.0) +(0.03047) B * N (0.17082) ":L[E'”_ﬁ’}' B ‘L‘_;"f'g_ 3 C24 (3.58) 2.82052  0.00479 001667  Rejected for SBAG4
RUSIT  +(0.00858)  +0.0) (0.17082) % (1.0) (0.22527) 2 EASY (3.51) 264958 000806 0025  Rejected for SBAG4
SBAG4 +(0.00093) H0.0) H0.03356) =( 1.0} ® =(0.05641) [ RUST {2.68) 0.56980  0.56881 0.05 Not Rejected
EASY +D.01725) = 1.0} = 1.0} =(0.22527) =0.05641) X Control method : SBAG4, Rank :2.45.
: : TABLE XVII
SBAG SMOTEBaggIng Baggmg Where eaCh WiLcoxoN TESTS TO SHOW DIFFERENCES BETWEEN SBAG4 anD RUSI1
) H 1 —_
bag S SMOTE quantlty Varles (T_40) Comparison R R Hypothesis(ce = 0.05) p-value
. SBAGY vs. RUSI 527.5 462.5 Not Rejected 07177
Rus Boost (T:]-O) removes Instan CeS from the R+ are tanks for SBAG4Y and R— for RUSL.

majority class by random undersampling the
dataset in each iteration.
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~¥inalcomments ———— — — —

 Ensemble-based algorithms are worthwhile, improving the results
obtained by using data preprocessing technigues and training a
single classifier.

 The use of more classifiers make them more complex, but this
growth is justified by the better results that can be assessed.

 We have to remark the good performance of approaches such as

DI ICRANnct nr CSmntaRannina whirh rloenlfo nf ho nla
NMUODUUSL Ul \JIIIULCUGHUIIIH, WNICN UCopiILlc Oi UCIIIU o|||||J|C

approaches, achieve higher performance than many other more
complex algorithms.

 We have shown the positive synergy between sampling techniques
(e.g., undersampling or SMOTE) and Boosting/Bagging ensemble
learning algorithm.
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Our proposal recent proposal: EUSBoost

We develop a new ensemble construction algorithm (EUSBoost)
based on RUSBoost, one of the simplest and most accurate
ensemble, combining random undersampling with Boosting
algorithm.

Our methodology aims to improve the existing proposals
enhancing the performance of the base classifiers by the usage
of the evolutionary undersampling approach.

Besides, we promote diversity favoring the usage of different
subsets of majority class instances to train each base classifier.

M. Galar, A. Fernandez, E. Barrenechea, F. Herrera, EUSBoost: Enhancing Ensembles for Highly Imbalanced Data-sets
by Evolutionary Undersampling. Pattern Recognition, doi: j.patcog.2013.05.006, in press (2013) '
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EUSBoosT EMNHANMCING EMSEMELES FoF HIGHLY [MBALANCED DATA- SETS

MOTIVATION

m RUSBoost is highly competitive
m Good trade-off: performance/complexity
m Ensembles and random sampling cbtained great results
m Competitive despite its randomness
m Accuracy-diversity relation
m Such a randomness might be iImproved
m |t could discard potentially useful instances
m More probable as the IR increases
m ‘Accurate base classifiers lead to better ensembles than
much diverse ones’ Funceall

Fumcaewal2 L. Kuncheva. A bound on kappa-error diagrams for analysis of dassifier ensembles, IEEE Transactions on
Fnowledge Data Enginesring, doi: 10,1109/ TKDE . 2011.234, 2012 in press.

M. Galar, A. Fernandez, E. Barrenechea, F. Herrera, EUSBoost: Enhancing Ensembles for Highly Imbalanced Data-sets
. by Evolutionary Undersampling. Pattern Recognition, doi: j.patcog.2013.05.006, in press (2013)
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EUSBooOst

m EUSBoost

m Supervised undersampling:

m Evolutionary Undersampling (EUS)
m EUS outperforms random undersampling on highly
imbalanced data-sets

m Diversity promotion mechanism

. M. Galar, A. Fernandez, E. Barrenechea, F. Herrera, EUSBoost: Enhancing Ensembles for Highly Imbalanced Data-sets
. by Evolutionary Undersampling. Pattern Recognition, doi: j.patcog.2013.05.006, in press (2013)
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EURBo0sT ENHANGING ENSEMELES BCOR HI GHLY IMEBALANGED [IATA-SETS

PROMOTING DIVERSITY

Diversity is crucial

m No direct relation between diversity and accuracy

m In imbalanced domains, diversity is a key factor!¥nat2l

m Relation between diversity and single-class measures
m [t positively affects AUC and GM

m EUSBoost: seeking for accuracy causes a loss of diversity

m Solution: promote diversity in the fitness function
m Favor chromosomes better combining accuracy and diversity

m Forcing the usage of different data-subsets

Wanzl2 5. Wang and X Wao, Relationships between diversity of classification ensembles and single-class
parformance measures, IEEE Transactions on Knowledge Data Enginesring, dol:
101109/ TKDE 2011 207, 2012 in press.

. M. Galar, A. Fernandez, E. Barrenechea, F. Herrera, EUSBoost: Enhancing Ensembles for Highly Imbalanced Data-sets
. by Evolutionary Undersampling. Pattern Recognition, doi: j.patcog.2013.05.006, in press (2013)
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EUSBoCsT ENHANCING ENSEMELES FOR HIGHLY IMBALANCED DIATA - SETS

PROMOTING DIVERSITY IN THE EVOLUTIONARY MODEL

m Performance (Perf): AUC or GM, 1NN hold-one-out

GM=+/TPrgs  TNrze
m Fitness function: . |
Perf-|1-J7=-P|  if N™>0
Fitnessgys=
Pert—P It N~ =0

m N~ no. of majority class instances selected
m P=0.2 mportance of the balance
m We use Perf = GM=ereia0?]
m Fitnessgyg original fitness function

m Weighting factor
1'0*10'0—Q+ﬁ  N-t-1
IR p=—"7"

m =1 original EUS

Fitnessgyyg 0= Fitnessgyys -

. M. Galar, A. Fernandez, E. Barrenechea, F. Herrera, EUSBoost: Enhancing Ensembles for Highly Imbalanced Data-sets
. by Evolutionary Undersampling. Pattern Recognition, doi: j.patcog.2013.05.006, in press (2013)
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05T EMHANCING ENSEMELES FOR HI GHLY [IMEALAMGED [IATA - SETS

PROMOTING DIVERSITY IN THE EVOLUTIONARY MODEL

m Several measuregltuncheads]
m (statistic of (V;,V;)
NIINUU . NOINIU
Qij = NTI 00 . NOINIO ©

m N no. of elements with value @ in V; and b in Vi
m Lower values indicates greater diversity

m (s 2 pairwise measure, but we compare several solutions
m [he maximum of all pairwise Q;;

=max (; Vi i=1,...,¢1
Q i:l,...,th’j '

[-1,1]

m If} s the candidate solution, £1s the current iteration

Funcuevad L. | Kuncheva and C. J. Whitaker. Measures of diversity in classifier ensembles and their relationship
with the ensemble accuracy, Machine Learning 51:181-207, 2003,

. M. Galar, A. Fernandez, E. Barrenechea, F. Herrera, EUSBoost: Enhancing Ensembles for Highly Imbalanced Data-sets
. by Evolutionary Undersampling. Pattern Recognition, doi: j.patcog.2013.05.006, in press (2013)
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m 10 classifiers for Boosting-based
m 40 classifiers for Bagging-based

m The 33 most imbalanced data-sets from KEEL repository

120.0

Y sim TABLE : Holm test, EUSB1g vs. state-of-the-art.

Ef.94

B0
60,0
40,0
204 Contral method: EUSE (52.01), AF pvalue 0.00001
0.

Averape Aligned Ranks

RIS SBOL EUSBIG R4 ABAGE i Algorithrm (Rank) £ p-walue Halm Hypathesis [ = 0.05)

4 SEOL (100.23) F51300 000044 n.olzs Fejected for ELISE
3 SEAGY (91.02) 27287e 000834 0016487 Reected for ELJSE
2 LE4 (86.94) 258322 0017146 0.025 Rejected for ELISE
1 RLUS1 (77.81) lalk4da 010622 0. 05 Mot Rejected

FIGURE : Average aligned ranks.

TABLE : Wilcaxon tests to compare EUSB1g with RUS1, ET corresponds to
EUSElg and BT to RUSL

Comparison rt F Hypothesis (o= 0.1) p-walue

EUSBIQ v, REUS1 3785 182.5  Eegjected for EUSBIQ 0.06432

. M. Galar, A. Fernandez, E. Barrenechea, F. Herrera, EUSBoost: Enhancing Ensembles for Highly Imbalanced Data-sets
. by Evolutionary Undersampling. Pattern Recognition, doi: j.patcog.2013.05.006, in press (2013)
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Figure: Average aligned-ranks of the comparison between
Summary- EUSBoost EusBoost and the state-of-the-art ensemble methods.

140,80 4

132.26

117.64

102,30

B G8.53
T 100 82,17
200 a1

Average aligned

RLIS1 SBO1 ELBIQ /B4 SBAGH EASY

m A novel approach to enhance ensembles in highly imbalanced
scenarios

m EUS instead of random undersampling
m Diversity promotion mechanism

m EUSBoost outstands vs. the state-of-the-art methods

m Adaptation of kappa-error diagrams

m Analyze the advantages and disadvantages of EUSBoost
m [he importance of the individual accuracy has been shown

M. Galar, A. Fernandez, E. Barrenechea, F. Herrera, EUSBoost: Enhancing Ensembles for Highly Imbalanced Data-sets
: by Evolutionary Undersampling. Pattern Recognition, doi. j.patcog.2013.05.006, in press (2013)
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Multiple class imbalanced data sets:

 Dairwise learni ]

 Multiple classes imply an additional difficulty with high
imbalance ratio between classes.

 Imbalanced problems: the proposed solutions for the binary
case could not be directly applicable or could obtain a lower
performance than expected.
— Increment of the search space in solutions at the data level
— Difficulty in adapting the solutions at the algorithm level

Object Automated protein
recognition classification
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Multiple class imbalanced data sets:

‘A pairwise learning approach

Pairwise Learning: Binarization

* Decomposition of the multi-class problem
— Divide and conquer strategy

— Multi-class > Multiple easier to solve binary problems
* For each binary problem
— 1 binary classifier = base classifier
* Problem
— How we should make the decomposition?
— How we should aggregate the outputs?

M& Aggregation Final
or
Classifier i - Combination Output

| Classifier n / v
— )




Multiple class imbalanced data sets:

‘A pairwise learning approach

Pairwise Learning: Decomposition Strategies
“One-vs-One strategy” (OVO)

— 1 binary problem for each pair of classes

* Pairwise Learning, Round Robin, All-vs-All...
» Total = m(m-1) / 2 classifiers

. xx
hd b
. ‘.cxxxxxx
. . ®
.. x xx
* o ® *x"‘x
e e ® X R
R
®9_ooeoe ® X
o ¥ o Ll B
]
® xxx
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Multiple class imbalanced data sets:

‘A pairwise learning approach

Pairwise Learning: Decomposition Strategies

e ax ]
=1 o] -

Syotiereathm

FIGURE : A multi-class problem, a new feature is needead



Multiple class imbalanced data sets:

‘A pairwise learning approach

Pairwise Learning: Decomposition Strategies

FIGURE : A multi-class problem



Multiple class imbalanced data sets:

‘A pairwise learning approach

Pairwise Learning: Decomposition Strategies

(a) '1'vs. '7 (b) "1 vs. '8 (¢} '8 vs 'V
FIGURE : One-vsOne scheme



Multiple class imbalanced data sets:
\ Dairwise | : ]

Pairwise Learning: Decomposition Strategies

e e

(d) Aggregation
FIGURE : One-vs-One scheme



Multiple class imbalanced data sets:

‘A pairwise learning approach

Other Decomposition Strategies: One vs All

3 e T
i.; -‘_.--‘_". : ) : :. y- l:T--
qi |I'- | . :: 5 e et .
x >~ l._':.- - _-_;'__"_._._-—-;- H" - .- ._-_.__._..-—-;._'T'_'-:._'“.

() '7'vs '1'and '8’ (b) 'I"vs 7" and '8’ (c) & vs. '1'and 7

(d) Aggregation
FIGURE : One-vs-All scheme



Multiple class imbalanced data sets:

‘A pairwise learning approach

Pairwise Learning: Decomposition Strategies

* Advantages
— Smaller (number of instances)
— Simpler decision boundaries

* Digit recognition problem by pairwise learning

— linearly separable [Knerr90] (first proposal)
— Parallelizable

[Knerr90] S. Knerr, L. Personnaz, G. Dreyfus, Single-layer learning revisited: A stepwise procedure for building
and training a neural network, in: F. Fogelman Soulie, J. Herault (eds.), Neurocomputing:
Algorithms, Architectures and Applications, vol. F68 of NATO ASI Series, Springer-Verlag, 1990, pp. 41-50.



Multiple class imbalanced data sets:

‘A pairwise learning approach

Pairwise Learning: Combination of the outputs

* Aggregation phase
— The way in which the outputs of the base classifiers are
combined to obtain the final output.

* Starting from the score-matrix

- I'12 0 Mm
a1 — T "'2m

'mi1 T'm?2

— rij = confidence of classifier in favor of class i

— rji = confidence of classifier in favor of class |

e Usually: rji = 1 — rij (required for probability estimates)



Multiple class imbalanced data sets:

‘A pairwise learning approach

Pairwise Learning: Combination of the outputs
 Non-Dominance Criterion (ND) [Fernandez10]
— Decision making and preference modeling [Orlovsky78]

— Score-Matrix = preference relation
_ rij
* rji=1-rjif not > normalize " = re; ; i
 Compute the maximal non-dominated elements

. . o Tij — Tji, when Tij > Tji
— Construct the strict preference relation " = otherwise.

— Compute the non-dominance degree ND; =1~ -f?'“g?[r_’fﬂ
JjeC

» the degree to which the class i is dominated by no one of the
remaining classes

— QOutput

[Fernandez10] A. Fernadndez, M. Calderon, E. Barrenechea, H. Bustince, F. Herrera, Solving mult-class problems with

linguistic fuzzy rule based classification systems based on pairwise learning and preference relations, Fuzzy Sets and
Systems /61:23 (2010) 3064-3080

[Orlovsky78] S. A. Orlovsky, Decision-making with a fuzzy preference relation, Fuzzy Sets and Systems 1 (3) (1978) 155—
167.



Multiple class imbalanced data sets:

‘A pairwise learning approach

Our Proposal
A two stage methodology 1s proposed:

1. Stmplifying the mnitial problem in several binary sets.

The “OVO” technique 1s employed:

* More precise for rule learning algorithms [Flrkranz02].

2. Less biased to obtain imbalanced training subsets. The
SMOTE algorithm [Chawla02] 1s applied to those subsets
with a significative Imbalance Ratio (IR). IR threshold = 1.5
(60-40% distribution).

[Fiirnkranz02] Fiirnkranz, J.: Round robin classification. Journal of Machine Learning Research 2 (2002) 721-747

A. Fernandez, M.J. del Jesus, F. Herrera, Multi-class Imbalanced Data-Sets with Linguistic Fuzzy Rule Based
Classification Systems Based on Pairwise Learning. /3th International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems (IPMUZ2010) Dortmund (Germany), LNAI 6178 pp 89-98, 28 June
- 02 July 2010.



Multiple class imbalanced data sets:

‘A pairwise learning approach

Experimental framework
Performance measures in this domain:

The use of common metrics like accuracy rate may lead to erroneus
conclusions.

Confussion Matrix for a binary problem:

T ROC curve
Prediction 1,000
Pos. Class Neg. Class w 0800
i, e2ecee, |, Z 0600 -
Positive Class “IP "t  EN 2 AUC
Real S Ly - g 0400 -
. ° ° g
Negative Class FP feeeeIN, .. -,. 2 0200
‘. 0,000 ‘ ‘ ‘ ‘
4 0,000 0,200 0,400 0,600 0,800 1,000
True Diagona| False Positives

C
o 1+ T Prgte — Flrate payc— ! ATTC (i I
AUC = 5 e C(C—1) ;;* JC(j. k)




Multiple class imbalanced data sets:

‘A pairwise learning approach

Experimental framework

id |Data-set #Ex.|[Z#Atts.|[#Num.|#Nom.|#ClL.| IR
aut |autos 159 25 15 10 6 | 16.00
bal |balance scale 625 4 4 0 3 5.88

16 real-world Data-sets |cle |cleveland 207 | 13 6 7 5 |13.42

. o ; ' ' .

« 5 fold-cross validation | E;tlfzzefﬁ:;ie R ’ i i
der |dermatology 366 33 1 32 6 5.55
eco |ecoli 336 7 7 0 8 | 71.50
gla |glass identification| 214 9 9 0 6 8.44
hay |hayes-roth 132 4 4 0 3 1.70
lym (lyvmphography 148 18 3 15 4 40.50
new [new-thyroid 215 5 5 0 3 4.84
pag |page-blocks h48 10 10 0 5 164.00
pen [pen-based 1,099 16 16 0 10 | 1.95

recognition

shu |shuttle 2.175 9 9 0 5 |853.00
thy [thyroid 720 21 6 15 3 |36.94
win |wine 178 13 13 0 3 1.5
yvea |yeast 1,484 8 8 0 10 | 23.15




Multiple class imbalanced data sets:

‘A pairwise learning approach

Experimental framework

« FH-GBML Algorithm [Ishibuchi05]
— Default configuration KEEL software tool (http://www.keel.es)

 Number of fuzzy rules: 5-d rules (max. 50 rules).
 Number of rule sets: 200 rule sets.

e Crossover probability: 0.9.

* Mutation probability: 1/d.

 Number of replaced rules: All rules except the best-one
(Pittsburgh-part, elitist approach), number of rules / 5
(GCCL-part).

* Total number of generations: 1,000 generations.

* Don’t care probability: 0.5.

* Probability of the application of the GCCL iteration: 0.5.

[Ishibuchi05] Ishibuchi, H., Yamamoto, T., Nakashima, T.: Hybridization of fuzzy GBML approaches for pattern
classification problems. IEEE Transactions on System, Man and Cybernetics B 35(2) (2005) 359-365



Multiple class imbalanced data sets:

‘A pairwise learning approach

Experimental study

* Results for the FH-GBML algorithm with the different
classification approaches

Base OVO OVO+SMOTE
Data-set| AU C}T r AU C}T st AU CTT‘ AU CTst AU CT P AU CTS t
aut 7395 6591 8757 | .6910 | .8032 .6829
bal 7178 .7008 7307 7109 7992 | 7296
cle .6395 BHTT 7366 | .5664 | .7949 .b584
con 5852 5623 6468 6201 6683 | .6294
der 7169 6862 9746 | .9084 | .9614 8716
eco 7564 7811 9269 .8201 9578 | .8321
gla 7426 6920 .8691 7444 9375 | .8207
lym 8590 7626 9349 8397 9284 | .8689
hay 7979 | .6954 | L9597 6656 9663 .6456
new 9490 8861 9967 | .9564 | .9850 9457
pag 7317 .6929 9472 7862 9696 | .8552
pen .8460 .8340 9798 | L9508 | .9740 9387
shu 7253 7709 9319 .8635 9950 | .9516
thy 5198 4992 .5304 4993 9193 | .8763
win 9847 9501 1.000 | .9710 | .9974 9519
yea 6456 6272 .8042 7438 8365 | .7442
Mean 7473 .7099 .8653 7711 9075 | .8064




Multiple class imbalanced data sets:

Experimental study

* Average ranking for the FH-GBML method with the different
classification schemes

3.90

2.88
3.00 -

2.50 1

2.00 4

1.63

1.50
1.50 4

1.00 -

0.50 4

0.00

Basic ovo OVO+SMOTE




Multiple class imbalanced data sets:

‘A pairwise learning approach

Experimental study

* Statistical analysis

— Wilcoxon signed-ranks test. R+ corresponds to the sum of the ranks
for the OVO+SMOTE method and R— to the Basic and OVO
classification schemes

Comparison R™ | R~ |p-value| Hypothesis (a = 0.05)
OVO-+SMOTE vs. Basic|[131.0] 5.0 | 0.001 |Rejected for OVO+SMOTE
OVO+SMOTE vs. OVO| 88.0 [48.0] 0.301 Not Rejected

 The methodology is actually better suited for imbalanced
data-sets with multiple classes than the basic learning
algorithm.

 The application of the oversampling step enables the
achievement of better results than applying the
binarization scheme directly over the original training
data.



Multiple class imbalanced data sets:

‘A pairwise learning approach

Final comments on the pairse learning approach:

 Goodness of using binarization for imbalanced data-sets.

 Improvement by means of the application of preprocessing for each
binary subset.

* Different Machine Learning algorithms to analyse the robustness of
the methodology are used with similar results (C4.5, SVM, PDFC).

A. Fernandez, V. Lopez, M. Galar, M.J. del Jesus, F. Herrera. Analysing the Classification of Imbalanced
Data-sets with Multiple Classes: Binarization Techniques and Ad-Hoc Approaches. Knowledge-Based
Systems 42 (2013) 97-110.

M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, F. Herrera, An Overview of Ensemble Methods for
Binary Classifiers in Multi-class Problems: Experimental Study on One-vs-One and One-vs-All
Schemes. Pattern Recognition 44:8 (2011) 1761-1776, doi: 10.1016/j.patcog.2011.01.017.




Multiple class imbalanced data sets:

 Dairwise learni ]

Random oversampling + AdaBoost.NC

This approach 1s based on AdaBoost algorithm 1n combination with
negative correlation learning.

The main procedure 1s quite similar to any boosting approach, in
which the weights of the examples are updated with an ad hoc
formula depending on the classification or misclassification given by

both the classifier learned in the current iteration. and the glgbal

VAL UL AALAN/A ANWOUAL 1IN/ 11l V1A V3L A NwILIAL LL\/LMLL\JLL,

ensemble.

Initial weights in this boosting approach are assigned in inverse
proportion to the number of instances in the corresponding class.

S. Wang, X. Yao, Multiclass imbalance problems: analysis and potential solutions, IEEE Trans.
Syst., Man, Cybern. B 42 (4) (2012) 1119-1130.




Multiple class imbalanced data sets:

‘A pairwise learning approach

Table 3
Number of instances per dass.

Data Examiples C1 CZ c3 cd C5 Ce ) Ca () Cli
aut 159 46 13 48 29 20 3 - - - -
bal G25 49 288 288 - - - - - - -
cle 4R7 1bd 3k 35 55 13 1kd - - - -
O 1473 B2 333 511 - - - - - - -
der 358 Er b 111 71 48 48 20 - - - -
RO 33k 143 77 2 2 35 20 3 42 - -
fla 1066k 331 235 211 147 93 43 - - - -
#a 214 FaL 7B 17 13 9 29 - - - -
hay 160 B3 Bd 31 - - - - - - -
led 500 45 37 51 57 52 52 47 57 53 45
brm 148 Bl g1 4 2 - - - - - -
neww 215 130 35 30 - - - - - - -
nur 12690 2 4320 4266 328 £ - - - - -
pag 5472 4913 329 87 115 28 - - - - -
pos 87 B2 24 1 - - - - - - -
sat Bd35 1358 BB 707 1508 703 1333 - - - -
shu STOY9 903 4558k 3267 45 171 13 10 - - -
spl 3190 B7 7hBE 1B55 - - - - - - -
thy 7200 Frbrb b 3k8 1kk - - - - - - -
win 178 59 71 48 - - - - - - -
wre 1599 BE1 B3 8 199 53 18 10 - - - -
wwh 489 21948 1457 BE0 175 1e3 20 5 - - -
wea 1484 244 429 4h3 44 35 51 1b3 30 20 5
00 101 41 13 10 20 g8 5 4 - - -

A. Fernandez, V. Lopez, M. Galar, M.J. del Jesus, F. Herrera, Analysing the Classification of Imbalanced
Data-sets with Multiple Classes: Binarization Techniques and Ad-Hoc Approaches. Knowledge-Based
Systems 42 (2013) 97-110, doi: 10.1016/j.knosys.2013.01.018.




Multiple class imbalanced data sets:

‘A pairwise learning approach

”»Random oversampling + AdaBoost.NC”

bIethod Adaptation Cd.5 SR
Avg-Ace Avg-Ace

5td Base 7128 -
Global-C5 7225 7304
Static-SMT 7018 7053
AdaBoost NC 7401 71.70

0o Std-0vo [T R ) B9.1d
ROS 7235 7241
SL-5DT 7235 T2.32
SMT-ENM 7084 71.73
ST 7274 72.98
s 71.095 7270

A. Fernandez, V. Lopez, M. Galar, M.J. del Jesus, F. Herrera, Analysing the Classification of Imbalanced
Data-sets with Multiple Classes: Binarization Techniques and Ad-Hoc Approaches. Knowledge-Based
Systems 42 (2013) 97-110, doi: 10.1016/j.knosys.2013.01.018.




Multiple class imbalanced data sets:

‘A pairwise learning approach

Multiple class imbalanced data sets: Some Comments

* The developed approaches have not considered the intrinsic
data characteristics.

* In the near future, it would have interest to analyze them 1n
order to develop algorithms according to the specific
problems.

e [t would have interest to consider the use of several pre-
processing methods 1n ensembles.

A. Fernandez, V. Lopez, M. Galar, M.J. del Jesus, F. Herrera, Analysing the Classification of Imbalanced
Data-sets with Multiple Classes: Binarization Techniques and Ad-Hoc Approaches. Knowledge-Based
Systems 42 (2013) 97-110, doi: 10.1016/j.knosys.2013.01.018.
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Imbalanced big data

“ Extremely Imbalanced Big Data Problems”

How to tackle them?

MapReduce framework

. 1:_.
.
57
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What is Big Data?

d No single standar definition

L

Y

Big data is a collection of data sets so large f§ 4 |
and complex that it becomes difficult to [
process using on-hand database
management tools or traditional data
processing applications.

“Big Data’ 1s data whose scale, diversity,
and complexity require new architecture,
techniques, algorithms, and analytics to
manage 1t and extract value and hidden
knowledge from 1it...

Processing
Capabilities

Activity: IOPS

File/Ohject Size, Confent Volume



What is Big Data?

Big data is the confluence of the three trends consisting of
Big Transaction Data, Big Interaction and Big Data
Processing.

el omre ncl
MEDIA DATA INTERACTION DATA
PROCESSING (OLAP) &

Scientific

(OLTP) DW APPLIANCES - 2
4 = n m t Clickstream [
b f image/Text TN
Oracle Teradata [ A b
0B2 Redbrick _ A Eﬁﬁ‘? _
= =

Britton-Lee EssBase ; « Genomic/pharma
Ingras Sybase IQ ;b * Medical : };‘]
Informix MNeterza .

Sybase Greenplum : - Machine/Device ‘3
SQLServer DataAllegro - Sensors/imeters!
Asterdata : ] 9 RFID tags
Vertica CDR/mobile
Paraccal -
L 1
(71— —zeit
f-l-‘]/ -:'rf;j.l

hE'EfE?E." ..-.rr.‘ltr-.- -'-'.-.rr.u"lr.lrl.rl-'-.'r



What is Big Data? 3 vs of Big Data

1-Scale (Volume)

° Data Volume The Digital Universe 2009-2020
— 44x increase from 2009 2020 y

— From 0.8 zettabytes to 35zb ®.- Factrorae

* Data volume is increasing exponentially -

Data storage growth
8 In millions of petabytes

6 [One petabyte = 1,024 terabytes) ;"
terabytes petabytes exabytes zettabytes
4 /
the amount of data stored by the average cempany today /
2

Twitter: Tweets Per Day 0 /

| 05 07 09 11 13 ‘15e

Exponential increase in
SRR collected/generated data

0 OO
Jan07 jan08 Ol Sepl0 Jnll Oll Junl2

Lopyright 0 1203 Line Falets corwe Goverave £m P e




What is Big Data? 3 vs of Big Data

2-Complexity (Varity)

 Various formats, types, and
structures

 Text, numerical, images, audio, video,
sequences, time series, social media
data, multi-dim arrays, etc...

o Static data vs. streaming data

« A single application can be
generating/collecting many types of
data

r area (Lat: 33.5N-34.5N, Lon: 77W-76W)

2. it
- \“"\JVW \.,JJ"L\;’% ’Uj\j

To extract knowledge=>» all these
types of data need to linked together




What is Big Data? 3 Vs of Big Data

3-Speed (Velocity)

 Data is begin generated fast and need to be processed fast
* Online Data Analytics

« Late decisions =» missing opportunities

 Examples

— E-Promotions: Based on your current location, your purchase history,
what you like = send promotions right now for store next to you

— Healthcare monitoring: sensors monitoring your activities and body =
any abnormal measurements require immediate reaction



What is

Big Data? 3 Vs of Big Data

Big Data = Transactions + Interactions + Observations

r

BIG DATA
— r Sensors / RFID / Devices User Generated Content
Petabytes . .
yl‘e Mobile Web Seniiment Social Interactions & Feeds
User Click Stream
Spatial & GPS Coordinates
Web logs WE B AJ/B testing
a8 External Demographics
Te@byies Offer history / Dynamic Pricing
Affiliate Networks Business Data Feeds

CRM

HD Video, Audio, Images

Gigabytes Sagmantation Search Marketing
Offer details Speech to Text
ERP Behavioral Targeting
Prirchaks datal Customer Touches
) c e Product'Senvce Logs
Complexity Megabytes Purchase record Support Contacts Dynamic Funnels

Speed

Volume

Payment racord

Increasing Data Variety and

SMS/MMS

Source: Contents of above graphic created in partnership with Teradata. Inc.




What is Big Data? 3 Vs of Big Data

Some Make 1t 4V’s

oy

O
e & ¢ o o
e o 0 0 o —e-—0 —0=e ® ) .
e @ @ 0 @ O O & .
e o 0 0 0 =0 =0 =e=e o |
®e%e’e’e’ ° ¢ O ® e s ®*s o0
'......... =0 =0=0 —® O @ e ©
e o o 0 o ——0=0 —0—=0 ....O ..
® © 0o o o
Data at Rest Data in Motion Data in Many Data in Doubt
Forms
Uncertainty due to
Terabytes to Streaming data, Structured, data inconsistency
exabytes of existing milliseconds to unstructured, text, & incompleteness,
data to process seconds to respond multimedia ambiguities, latency,
deception, model
approximations
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What is Big Data?

E .

Our world revolves around the data

* Science
— Data bases from astronomy, genomics, environmental data, transportation data, ...

« Humanities and Social Sciences
— Scanned books, historical documents, social interactions data, ...

 Business & Commerce
— Corporate sales, stock market transactions, census, airline traffic, ...

 Entertainment
— Internet images, Hollywood movies, MP3 files, ...

 Medicine
— MRI & CT scans, patient records, ...

* Industry, Energy, ...

— Sensors, ...




What is Big Data?

Who’s Generating Big Data?

culiceer

Y woroPrEss

£ YoulTD
flickr

Social media and networks

Social Media

Mobile devices

(tracking all objects

all the time)

Scientific instruments

(all of us are generating data) (collecting all sorts of data)

Sensor technology and networks

(measuring all kinds of data)



Big Data Analysis Example

—_ - \
\ 7 . \ ~ . .
e 4 ool A ; Inheritance \ i { Finding 2
< ) - A 0,0
. gy < . " Sequence of cancer_ ; S - communities  ~\ _7
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Photo of the Hubble Space Telescope

N,

- - + 250M calls/day _ _
. —-_—” 7 =7 = - ,S-N ~, ~
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.3 t:w‘ anging router ~ -+ 40 bytes/call = Finding A’
* 3 G(P = D N_ 7 « 25 Terabytes/y‘éarr communities = \N_~
T '~"',I D '-_/I
‘TT\__r/ ~7<\ ’/

Internet traffic The World-Wid? Web

Google

+ 25 billion pages indexed
+ 10kB/Page

» 47.5billion transactions in 2005

Idwid - . . .
woridwide Traffic in a typical router: » 250 Terabytes of indexed text data
* 115 Terabytes of data transmitted - 42 kB/second . ..
to VisaNet data processing center S + “Deep web” is supposedly 100
in 2004 +« 3.5 Gigabytes/day

times as large
» 1.3 Terabytes/year
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Big D ata. MapReduce Programming

Overview:
m Data-parallel programming model

m An associated parallel and distributed implementation for
commodity clusters

Pioneered by Google
m Processes 20 PB of data per day

Popularized by open-source Hadoop project
m Used by Yahoo!, Facebook, Amazon, and the list is growing ...



Big D ata. MapReduce Programming

o _




Big Data. MapReduce

How to process the data?

Automatic Parallelization:

m Depending on the size of RAW INPUT DATA =» instantiate
multiple MAP tasks

m Similarly, depending upon the number of intermediate <key, value>
partitions =» instantiate multiple REDUCE tasks
Run-time:
m Data partitioning
m Task scheduling
m Handling machine failures

m Managing inter-machine communication

Completely transparent to the programmer/analyst/user



Big Data. MapReduce

Advantages

Scalability to large data volumes:
m Scan 100 TB on 1 node @ 50 MB/sec = 23 days
m Scan on 1000-node cluster = 33 minutes
=>» Divide-And-Conquer (i.e., data partitioning)
Runs on large commodity clusters:
m 1000s to 10,000s of machines
Processes many terabytes of data
Easy to use since run-time complexity hidden from the users
Cost-efficiency:
m Commodity nodes (cheap, but unreliable)
m Commodity network
m  Automatic fault-tolerance (fewer administrators)
m FEasy to use (fewer programmers)

[

12 ()

E



Big Data.MapReduce

MapReduce’s data-parallel programming model hides
complexity of distribution and fault tolerance

Key philosophy:
m Make it scale, so you can throw hardware at problems

m Make it cheap, saving hardware, programmer and
administration costs (but requiring fault tolerance)

MapReduce 1s not suitable for all problems, but when it works, 1t
may save you a lot of time
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Hadoop implements the
computational paradigm
named MapReduce.




Big Data. Hadoop

Apache Hadoop 1s an open-source
software framework that supports
data-intensive distributed

applications, licensed
under the Apache MaP Reduce
v2 license.

HDFS

Created by Doug Cutting (chairman of
board of directors of the Apache Software
Foundation, 2010)

http://hadoop.apache.org/

Task
tracker

Job

tracker

Name

Data node

tracker



Big Data. Hadoop

July 2008 - Hadoop Wins Terabyte Sort Benchmark

One of Yahoo's Hadoop clusters sorted 1 terabyte of data in 209
seconds, which beat the previous record of 297 seconds in the annual
general purpose (Daytona) terabyte short bechmark. This is the first time
that either a Java or an open source program has won.

What Is Apache Hadoop?

The Apache™ Hadoop® project develops open-source software
for reliable, scalable, distributed computing.

http://hadoop.apache.org/



Big Data. Hadoop

The project

The project includes these modules:

Hadoop Common: The common utilities that support the other Hadoop modules.
Hadoop Distributed File System (HDFS™): A distributed file system that provides high-throughput access to application data.
Hadoop YARN: A framework for job scheduling and cluster resource management.

Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.

Other Hadoop-related projects at Apache include:

Avro™: A data serialization system.

Cassandra™: A scalable multi-master database with no single points of failure.

Chukwa™: A data collection system for managing large distributed systems.

HBase™: A scalable, distributed database that supports structured data storage for large tables.
Hive™: A data warehouse infrastructure that provides data summarization and ad hoc guerying.
Mahout™: A Scalable machine learning and data mining library.

Pig™: A high-level data-flow language and execution framework for parallel computation.

ZooKeeper™: A high-performance coordination service for distributed applications.

http://hadoop.apache.org/



Big Data. mManout

Scalable machine learning
and data mining O

Apache Mahout has implementations of a wide range of

machine learning and data mining algorithms:
clustering, classification, collaborative filtering and
frequent pattern mining

. . -
Mahout currently has Parallel Frequent Pattern mining

#* Complementary Maive Bayes classifier

# Collaborative Fitering # Handom forest decision tree based

® Userand tem based recommenders classifier

# EK-Means, Fuzzy K-KMeans clustering # High performance java collections

# HKean Shift clustering (previoushy colt collections)

e Dirichlet process clustering ® A vibrant community

® |atent Dirichlet Allocation ¢ and many more cool stuff to come by this
® Singular value decomposition summer thanks to Google summer of code

http://mahout.apache.org/
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‘Applying Cost-Sensitive Learning to Enhance Extremely

Imbalanced Big Data Problems using Random Forest



Extremely Imbalanced Big Data

Random Forest (RF): The predicted class 1s computed by
aggregating the predictions of the ensembles through majority
voting.

Bootstrap Building

P ajority Woti
sample random trees jarity e

Smlect muarobl=at

3 z/"x
- k]
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Extremely Imbalanced Big Data

The RF Mahout Partial implementation : is an algorithm
that builds multiple trees for different portions of the data.

Two phases:

- Building phase

- Classification phase




Extremely Imbalanced Big Data

Wheighted Random Forest: A cost-sensitive learning based
approach to deal with imbalanced data sets using RF.

Determination of the final class by aggregating the weighted
vote using the weights of the leaf nodes.

Building phase:

s
7
f
/
/
A
CRags
* weight —
Entination
b
9
\
\
Diriginad train dataset '-.‘

Final made|

NmajorityClass
2
i

weightClass; =



Extremely Imbalanced Big Data

Classification phase:

Initial Map Final

Pridliceed class
Prodicred elass
Predicted class
Predicted class

Prvlred dlass
Proedired elass
Predicted class
Predeter class

Estimated class

Predicted class
Original train/test dataset : o
Prediceed dlass
Predicced glass

Mappers train/test set Weighted voting




Extremely Imbalanced Big Data

o 22 cases of study from two real-world imbalanced problem:
o Derived from the KDD Cup 19893 Dataset.

o Record Linkage Comparison Patterns Dataset.

e 10-fold stratified cross-validation model.

e Availables at UC| Machine Learning Repository.

Oatzmets #Ex. Fhtts Class (maj;min) “Class(maj; min) IR
ldcup 10 DoE vermns noimal - AT il (D2 novmre ) 30, 10,190 a.02
kddiecw p 10 [os wer=us PRE 652 LT [[vrs; FRED =E96,10d) 9531
kddicup 10 [os wersus R2L b2 LT i oS, Rl T FE83
kddeup 10 [os wersus 2R 652 VLN I i (LS 2R s 002) fa3 e
kdcup 10 porme ez PRE 101385 dl (norrel; FRE) EEAE A8 2368
kddcup_10_nowme | etz R2L ke St i Mmotmal; F2L) EEa61.1d) 2603
lddcup 10_porme Lvermns 2R =737 dl Cnoernal; LR [tef=) Ly | 16d8.78
ddcup S0_DOE vetsuz ol 242075 4l (DS novre ) (=T, 20003 259
ldeup b0 Do wersps PRE 19622%  dl [[irs; FRED HEA51A5) 9d.43
ki p B0 Do wersus RRL FBprags il D, Rl AT 003 =1 DR )
kdcup S Dos wersps 2R 1=dd71l dl Lz 2R = A1) 7. 1
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kdcup S0 porme Leermus Rl Rk dl mormel; F2L) Eaasn1) 26323
ldeup S0 pome Lver=us 2R d36dle dl [noerral; L2R)) =001 1870731
lddcw pofull D ver= norrnel $3%151 il (D2 novmre ) [FEE7,20003) 3=
kdcu pfull Do ez PRE 32=24d72 dl [[v3; PRED HEAE1A5) Qd.43
by pfullDoos wersns RAL 3989dd dl T, Rl AT 00 Bddi3a2
kdcu pfull Do wersus 2R 3983dne dl (Lo 2R A1) 7.1
ke deu p_fullnoime eersos MRO 1413000 41 (norrml; MRON b L No iy 20057
lddcup fullnome lweras RZL 97807 d mormel; F2L) Eaasn1) 263203
lddcup fullnome lweras 2R 972833 d Cnoernal; LR Eeee 1) 1870733
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Extremely Imbalanced Big Data

o Algorithms:

o Random Forest (RF): available on the Weka Data Mining Tool.
o Cost-5ensitive Random Forest (RF-C5): adapted version using the

previous algorithm as base.
o Big Data Random Forest (RF-BigData): adapted version of the
original Random Forest algorithm available on the Mahout library.

@ Parameter specification:

Algarithm Farameters

RF maxDepth = unlimited, numFeatures = fam{Naez) + 1,
num Trees = 100

RF-C5 maxDepth = unlimited, numFeatures = fog{ Naz) + 1,
nurn Trees = 100, costEstimation = weight Based

RF-BigData  maxDepth = unlimited, numPestures = fom(Nas) + 1,

RF-BigDatalh

nur Partitions = 5/10,/20 num Trees = 20/10/5 [ respectively)
maxDepth = unlimited, numFeatures = jogl Maz) + 1,

num Partitions = 510720 num Trees = 20/10/5 [ respectively],
costEstim ation = weightBased




Extremely Imbalanced Big Data

Average results using the GM measure:

Datasets kddcup_full_DOS_versus_U2R  kddcup_full_normal_versus_R2L  kddcup_full_normal_versus_UZR
GM,, GM,.; GM,, GM GM,, GM s
Sequential versions
RF NC NC 1.0000 0.9832 (.9999 0.6836
RF-CS NC NC 0.9998 0.9976 (.9999 0.9813
Big data versions
RF-BigData — b parts 0.7610 06731 (0.9482 0.9376 (0.3565 0.3333
RF-BigDataCS — b parts  0.8278 0.9608 0.9812 (0.0835 (.9433 0.9960
RF-BigData - 10 parts 0.7045 0.6756 0.9274 0.9261 0.0000 0.0000
RF-BigDataCS — 10 parts 0.8032 0.9822 0.9793 0.9894 0.9381 0.9691
RF-BigData - 20 parts 0.0267 0.0000 05841 0.8767 0.0000 0.0000

RF-BigDataCS — 20 parts 0.9186 0.8853 09719 0.9657 09373 0.9503




Extremely Imbalanced Big Data

Datasets RLCP
GMy  GMyy

Sequential versions

RF NC NC

RF-C5 NC NC

Big data versions

RF-BigData - 10 parts 02171 020562
RF-BigDataCS — 10 parts 09747 0.9201

RF-BigData - 20 parts 0.0572 0.0505
RF-BigDataCS — 20 parts 09661 0.9191




Extremely Imbalanced Big Data

Time elapsed (seconds) for sequential versions:

Datasets RF RF-C5

109/0 509/3 full 109/0 509/0 'FLJ||
DOS_versus_normal 6344.42 4913478 NC 514469 42328.64 NC
DOS_versus_ PRE 4325.48 28819.03 NC 4173.99  30871.02 NC
DOS_versus_R2L 4454 58 28073.79 NC 3811.26 33226.90 NC
DOS_versus_UZ2R 3848.97 24774.03 NC 4240.18 35352.57 NC
normal_versus_PRE 468.75 6011.70 NC 558.38 5630.37 NC
normal_versus_R2L 364.66 4773.00  14703.55 357.69 5404.44 1532486
normal_versus_U2R 205.64 4785.66  14635.36 360.05 5160.40 13910.74

Time elapsed (seconds) for Big data versions with 20 partitions:

Datasets RF-BigData RF-BigDataCS
10%  50%  full 10%  50%  full
DOS_versus_narmal 08 221 236 177 641 701
DOS_versus_PRB 100 186 190 168 504 555
DOS_versus_R2L Q7 157 136 164 469 288
DOS_versus_U2R 03 134 122 150 445 214
normal_versus_PRB 04 58 72 143 70 a9
normal_versus_R2L 02 30 69 140 70 06

normal_versus_U2R 93 52 64 139 218 214




Big Data. Concluding Remarks

e The results obtained demonstrates that it 1s
necessary to address jointly both the big data and
the imbalanced 1ssues as the different techniques
1solated are not able to completely solve the
problem.

 This 1s an 1nitial approach, and there are a lot of
open 1ssues for imbalanced bigdata: how to
preprocess the data? How to deal with
intrinsic data characteristics? How to deal with
noise/missing values ...?
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The Framework of Big Data

APPLICATION DIRECTED ACTIONS TO HUMANS DIRECTED ACTIONS TO MACHINES

ACCESS [ Browser ﬁ':: Custom Hand held ] [ Web services  FTPand SFTP  MQ, JMS, Sockets ]
VISUALIZATION [ Tagdoud  Clustergram History flow  Spatial information flow ]

/ANALYTICS DATA MINING MACHINE LEARNING [ STATISTICS ] N

DATA Association rule Ensemble learning [ NETWORK ANALYSIS ]

AMNALYTICS Classification Pattern recognition

Cluster analysis Supervised learning [ SPATIAL ANALYSIS ]

Predictive modeling Unsupervised learning [ T ]
G | CROWDSOURCE | J
LY
MANAGEMENT [ Distributee File System Detter Storage [ Data Cleaning ] LrIIEBBED

DATA HDFS/GFS/...... Key /value, Column = 4’;}‘
MANAGEMENT Mast-slave, P2P [ Lo bR i ] cassandra
Parallelize computing || .
Mﬂprﬂdlﬂ:ﬂf ______ [ ------ ] :rllmu.:
(. /
: EXTRACT [%ﬂi—ﬂnﬂurefmﬂmdure data extraction ... ]
’Enlerprise: Oracle, SAP, ~ )
Senso Mobiles Web /Unstroctuored ..
DATA SOURCES | Customer, Systems, eic & ' ob/ ‘

260



Contents

V1.
VII.
VIII.
| X.
X.

Introduction to imbalanced data sets
Resampling the original training set

Resampling: Some results on the use of evolutionary prototype 0§\‘\

selection for imbalanced data sets ?«56\
Cost Modifying: Cost-sensitive learning S

Why is difficult to learn in iImbalanced domains? Intrinsic data 6\0\*
characteristics 2

Ensembles to address class imbalance
Multiple class imbalanced data-sets: A pairwise learning approach
Imbalanced Big Data
Class imbalance: Data sets, implementations, ... 6?’6

Class imbalance: Trends and final comments



Class Imbalance: Data sets, implementations,

e, KEEL Tool 2.0

KEEL Data Mining Tool:
It Includes algorithms
and data set partitions

http:/7/www.keel.es o dataset g

Data set repository

KNOWLEDGE
EXTRACTION /7277
EVOLUTIONARY
LEARNING

(o

o




Class Imbalance: Data sets, implementations,

s
Boft mre

J KEEL is an open source (GPLv3) Java
software tool to assess evolutionary
algorithms for Data Mining problems
including m—
regression, classification, clustering, pat
tern mining and so on.

It contains a big collection of classical knowledge
extraction algorithms, preprocessing techniques.

It includes a large list of algorithms for imbalanced
data.

Over-sampling Methods (12)
Under-sampling Methods (8)

Ensembles for Class Imbalance (19)



Class Imbalance: Data sets, implementations,

O We include 111 data sets:|j ;4 D4 DY I dataset

66 for 2
classes, 15 for
multiple classes and 30 for

noise and bardeline.
-1 Imbalanced data sets

Data set repos:tory

We divide our Imbalanced data sets into the following sections:

Imbalance ratio between 1.5 and 9

- Imbalance ratio higher than 9 - Part |
- Imbalance ratio higher than 9 - Part Il

Multiple class imbalanced problems
Moisy and Borderline Examples

We also include the preprocessed data sets.
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Data Level Approaches Algorithm Level Approaches

Introducing Learning Bias One Class Learning

®  Decision Tree *  SVMs
*  5VNMs * BPNNs
*  Assoclalive -

-
1
]
]
1
1
]
]
I
’
Randomly resampling :
;
[}
]
i
[} 1 "
: classification
[}
L
I
[}
i
[l
[}
[}
L
]
i
:
L]
L

Informatively resamping
Synthesizing new data
Combining above methods

e Fre

Resampling Data Space
Adapting Existing Algorithms

Cost-Sensitive Learning

Small-Class Cost-Sensitive Boosting Weighting Data Space : Adapting Learning
Boosting s AdaCl ¢ Translation Theorem | : Algorithms
* RareBoost s AdaC2 1| * Integrating costs into
s SMOTEBoost s AdaC3 E g learning
¢ DataBoost-IM o AdaCost P! Decision making to N
« (SB2 P minimizing costs o
;| ; i

Ysun,AchongandMSKamel

Classification of imbalanced data: A review.

International Journal of Pattern Recognition

4 (2009) 687-719.
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‘New studies, trends and challenges

“* Improvements on resampling — specialized resampling

** New approches for creating artificial instances
** How to choose the amount to sample?

“* New hybrid approaches oversampling vs undersampling

*Cooperation between resampling/cost sensitive/boosting
‘*Cooperation between feature selection and resampling

s*Scalability: high number of features and sparse data

¢



Class Imbalance: Trends and final comments

‘New studies, trends and challenges

In short, it Is necessary to do work for:

:» Establishing some fundamental results regarding:
a) the nature of the problem (fundamental),
b) the behaviour of different types of classifiers, and

c) the relative performance of various previously
proposed schemes for dealing with the problem.

Designing new methods addressing the problem.
Tackling data preprocessing and changing rule
classification strategy. i}

:»Approaches for extremely imbalanced big data.



Class Imbalance: Trends and final comments

¥malcomments ——— —  — — —# —# —

Z»We have presented a challenging and critical
problem in the knowledge discovery field, the
classification with imbalanced data sets.

Z»Due to the intriguing topics and tremendous
potential applications, the classification of
Imbalanced data will continue to receive
more and more attention along next yeatrs.

-

. . ?”
Class of interest is often much smaller or @

rarer (minority class).
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