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OVERVIEW

Strong interest on classifier ensembles (CEs) in the

classical machine learning field: High accuracy

Fuzzy rule-based classification systems (FRBCSs)

achieve good performance: Soft boundaries (and

interpretability)

Problems with high complexity data: Curse of
dimensionality

Fuzzy rule-based classification ensembles (FRBCEs)

ability to deal with high complexity data
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OVERVIEW

Well established and recent advanced CE design

methods to increase accuracy by inducing diversity

Existing mechanisms to look for the best accuracy-

complexity tradeoff in CEs: overproduce-and-choose

Evolutionary multiobjective optimization (EMO) ability

to deal with conflicting optimization criteria

Our proposal:
A novel framework incorporating classical and advanced CE 
methodologies and evolutionary algorithms to design fuzzy 

rule-based classification ensembles (FRBCEs)
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OVERVIEW

A CE is the result of the combination of the outputs of a
group of individually trained classifiers to get a more
accurate system that any of its components

CEs are able not only to outperform a single classifier but
also to deal with complex and high dimensional
classification problems

CE design is mainly based on two stages:

learning of the component classifiers

combination of the individual decisions provided into the

global output

The CE accuracy relies on the performance and the
proper integration of these two tasks
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1. Introduction
Classifier ensembles (II)

CORRECT ANSWER?

One person

QUESTION

Several people

QUESTION

CORRECT ANSWER?

Diversity helps to improve accuracy
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OVERVIEW

Diversity – An individual classifier must provide different

generalization patterns to obtain a diverse set of classifiers

The best situation is that where the individual classifiers are both

accurate and fully complementary (they make their errors on

different parts of the problem space)

Different methods to induce diversity among the base classifiers

(first stage):

1. Introduction
Classifier ensemble design issues: diversity induction

Different classifiers: Different “inputs”/features:
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OVERVIEW
Combination methods used in the second stage:

not only consider the issue of aggregating the results
provided by all the initial set of component classifiers
(classifier fusion),

but also can involve:

either locally selecting the best single/subgroup of

classifier(s) to be used to provide a decision for each

specific input pattern (dynamic classier selection),

or globally selecting the subgroup of classifiers to be

considered for every input pattern (static classier selection)

1. Introduction
Classifier ensemble design issues: combination methods
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OVERVIEW

1. Introduction
Classifier ensemble design issues: classifier fusion

Two strategies to combine the results of individual classifiers:

1) Classifier fusion methods

Individual

Classifier

Individual

Classifier

Individual

Classifier

Individual

Classifier

Direct

combination
OUTPUT

Hypothesis: all classifiers make 

independent errors

Examples of combination:

→ Majority voting, sum, product, max, min, …

Most extended method:

→ weighted majority voting [Lam and Suen, 1997]
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OVERVIEW

1. Introduction
Classifier ensemble design issues: classifier selection

Two strategies to combine the results of individual classifiers:

2) Classifier selection methods

Individual

Classifier

Individual

Classifier

Individual

Classifier

Individual

Classifier

Selection

Individual

Classifier

Individual

Classifier

Individual

Classifier

Individual

Classifier

OUTPUT

•Static classifier selection

•Dynamic classifier 

selection [Giacinto, 2001]

•Overproduce and choose 

strategies [Partridge, 96]

Hypothesis: only some classifiers 

have influence on the final result
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OVERVIEW

Our proposal involves a global methodology to design
accurate, diverse and compact FRBCEs

Different independent specific methods are proposed for
each of the FRBCE design stages:

A quick and accurate fuzzy rule generation method (FURIA)

including dimensionality (feature selection) is considered for the

base classifier generation

At this stage, diversity is induced by a classical data resampling

approach (bootstrap aggregating, bagging) or

An advanced method (random oracles) based on training data

splitting can additionally be considered

2. Proposed Framework
Description
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OVERVIEW

The second stage can either involve only classifier selection or

joint classifier selection and fusion

Classifier selection is made by means of the classical

overproduce-and-choose (OCS) strategy allowing us to both

increase the accuracy and reduce the complexity

Use of EMO ability to deal with conflicting optimization criteria to

improve OCS (accuracy, complexity and diversity criteria)

Advanced interpretable mechanism to combine component

classifiers by means of a FRBCS (joint classifier fusion and

classifier selection)

2. Proposed Framework
Description (II)
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OVERVIEW

2. Proposed Framework
Graphical Representation
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OVERVIEW
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OVERVIEW

3.1. Bagging FURIA-based fuzzy classifier ensembles (Static) 
Overall view

Method combining several classical techniques to quickly
generate accurate and diverse base fuzzy classifiers:

A parallel approach: bootstrap aggregating (bagging)

A dimensionality reduction method (feature selection)

A quick and accurate fuzzy rule generation method (FURIA)

Bagging

AND 

Feature Selection

FURIA-based 
FRBCEs

FURIA       

Bagging + feature selection is a generic approach to
design good performance CEs (Panov & al, 2007)
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OVERVIEW

Bagging Predictors (Breiman, 1996):

Boostrap AGGregatING: create multiple boostrap samples, train

a classifier on each, and combine the classifier outputs by voting

The individual classifiers (weak learners) are independently

learnt from resampled training sets (“bags”), which are randomly

selected with replacement from the original training data set

Good for unstable (large bias) classifiers (e.g. decision trees)

3.1. Bagging FURIA-based fuzzy classifier ensembles (Static) 
Bagging
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OVERVIEW

Feature selection:

Another classical approach to induce diversity

Good to use for not so unstable classifier design methods, such

as many fuzzy rule generation methods

Three different feature selection methods used:

3.1. Bagging FURIA-based fuzzy classifier ensembles (Static) 
Feature selection

S
a
m

p
le

s

F1 F2 F3 F4 F5 F6 F7

S1

S2

S3

S4

S5

S6

S7

S8

Features

F1 F2 F3 F4 F5 F6 F7

Bagging

+ feature selection

MIFS greedy method (Battiti, 1994)

Randomly (random subspace, Breiman 2001)

Random greedy (combines MIFS with RS)
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OVERVIEW

FURIA (Fuzzy Unordered Rule Induction Algorithm)
(Hüllermeier et al., 2009):

• A rule learning algorithm extending RIPPER

• Generates simple and compact fuzzy classification rules

• Decision tree-based learning approach: deals properly
with high dimensional datasets and incorporates feature
selection

• Very quick generation method

• Performs well comparing to C4.5 and RIPPER

AIM: Improve accuracy by embedding
FURIA into the FRBCE framework

3.1. Bagging FURIA-based fuzzy classifier ensembles (Static) 
FURIA
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OVERVIEW

3.1. Bagging FURIA-based fuzzy classifier ensembles (Static) 
FURIA (II)

Fuzzy rules – soft boundaries

A. Crisp rules B. Fuzzy rules

Soft boundaries provided by fuzzy rules (Hüllermeier et al. 2009) 
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OVERVIEW

3.1. Bagging FURIA-based fuzzy classifier ensembles (Static)
General Scheme

K. Trawinski, O. Cordón, A. Quirin. On designing fuzzy multiclassifier systems by combining FURIA with 

bagging and feature selection. International Journal of Uncertainty, Fuzziness, and Knowledge-based 

Systems 19:4 (2011) 589-633. IF: 1.781. Cat: CS, AI. O: 31/111. Q2
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OVERVIEW

Proposed Framework Graphical Representation
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OVERVIEW

Random Oracles (ROs) is a recent proposal of a generic
and fast CE design method introducing additional
diversity and thus improving accuracy

We aim to incorporate ROs into bagging FURIA-based
FRBCEs:

The ensemble accuracy can be improved thanks to the

dynamic approach and the additional diversity induced

The additional diversity can also be beneficial for an a

posteriori global classifier selection process

3.2. Random Oracle-based Bagging FURIA FRBCEs (Dynamic) 
Overall view
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OVERVIEW

3.2. Random Oracle-based Bagging FURIA FRBCEs (Dynamic) 
Random Oracles

The RO algorithm:

Learning. Each base classifier (k=1, …, K) is constructed
as follows:

Draw a random hyperplane hk in the feature space of problem P

Split the training set Tk into two parts, T+
k and T-

k, depending on
which side of hk the points lie

Train a classifier for each side/part, D+
k=D(T+

k,Cj) and D-
k(T

-
k,Cj)

Classification. For each new data example x, assign the
decision of each ensemble component by choosing D+

k or
D-

k depending on which side of hk x lays
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OVERVIEW

3.2. Random Oracle-based Bagging FURIA FRBCEs (Dynamic) 
Random Oracles (II)

Two different RO variants according to the oracle plane generation:

Random Linear Oracles (RLOs) use a randomly generated hyperplane while

Random Spherical Oracles (RSOs) consider a random hypersphere

RLO (hyperplane):

Select randomly a pair of examples from the training set

Find the line segment between these points passing through the

middle point M

Calculate the hyperplane perpendicular to the obtained line

segment and containing M

RSO (hypersphere and feature selection):

Select randomly at least the half (≥50%) of the features

Choose randomly a training set example to become the center

Calculate the distances from the center to E examples (chosen at

random); the median of these distances is the hypersphere radius
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OVERVIEW

3.2. Random Oracle-based Bagging FURIA FRBCEs (Dynamic) 
Random Oracles (III)

RO main features:

Fast to train and evaluate

Embeds only the base classifier. Thus,

any CE strategy can be applied;

any classifier learning algorithm (sub-classifier) can be
used

Combines classifier fusion and classifier selection

Increases diversity and thus the final CE accuracy
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OVERVIEW

3.2. Random Oracle-based Bagging FURIA FRBCEs (Dynamic) 
General Scheme

K. Trawinski, O. Cordón, A. Quirin. On Applying Random Oracles to Fuzzy Rule-Based Classifier 

Ensembles for High Complexity Datasets. Proc. EUSFLAT-2013, September 2013.

K. Trawinski, O. Cordón, A. Quirin. Random Oracles Fuzzy Rule-Based Multiclassifiers for High 

Complexity Datasets. Proc. FuzzIEEE2013, July 2013
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OVERVIEW

3.3. Experiments
Experimental setup

UCI and KEEL datasets:

Large number of datasets 

considered: 29

Every attribute is continuous 

(abalone has one nominal,

bioassay_688red has some 

binary attributes)

Complex and high 

dimensional: large number 

of features (617), classes 

(28), and instances (58.000)

Pentium i-5 3.1 GHz, 4 GB, 

4 cores
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OVERVIEW

3.3. Experiments
Experimental setup (II)

Validation:

Dietterich’s 5x2-fold cross validation

Statistical tests:

Friedman and Iman Davenport tests for multiple

comparison

Holm (1×n) and Shaffer (n×n) tests for pairwise comparison

Test accuracy and #rules as the performance measures

Parameter values:

100 classifiers for classical bagging FRBMCSs and 75 for RLO-

based bagging FRBMCSs generated

The confidence level for the null hypothesis rejection for all

statistical tests = 5%
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3.3. Experiments
Fuzzy rule-based classifier ensemble results

FRBCE Accuracy Benchmarking:

RO-based bagging FRBCEs
outperform bagging FRBCEs:

BAG 5 wins (1 tie);

RLO 8 wins (2 ties);

RSO 19 wins (2 ties)

Better average, lower std. dev.

Statistical tests:

Friedman and Iman Davenport

Shaffer
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FRBCE Accuracy Benchmarking:

RO-based bagging FRBCEs
outperform bagging FRBCEs:

BAG 5 wins (1 tie);

RLO 8 wins (2 ties);

RSO 19 wins (2 ties)

Better average, lower std. dev.

Statistical tests:

Friedman and Iman Davenport

Shaffer

3.3. Experiments
Fuzzy rule-based classifier ensemble results (II)
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3.3. Experiments
Fuzzy rule-based classifier ensemble results (III)

FRBCE Complexity Benchmarking:

RO-based bagging FRBCEs
outperform bagging FRBCEs:

BAG 2 wins;

RLO 25 wins;

RSO 2 wins

Better average, lower std. dev.

Statistical tests:

Friedman and Iman Davenport

Shaffer
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FRBCE Complexity Benchmarking:

RO-based bagging FRBCEs
outperform bagging FRBCEs:

BAG 2 wins;

RLO 25 wins;

RSO 2 wins

Better average, lower std. dev.

Statistical tests:

Friedman and Iman Davenport

Shaffer

3.3. Experiments
Fuzzy rule-based classifier ensemble results (IV)
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3.3. Experiments
Fuzzy rule-based classifier ensemble results (V)

Classical CE-FRBCE
Accuracy Benchmarking:

RSO-based bagging FRBCEs

outperform classical CEs:

RSO 14 wins (2 ties);

BAG C4.5 10 wins (2 ties);

BAG NB 2 wins;

RF 7 wins (1 tie)

Better average, lower std. dev.

Statistical tests:

Friedman and Iman Davenport

Holm
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Classical CE-FRBCE
Accuracy Benchmarking:

RSO-based bagging FRBCEs

outperform classical CEs:

RSO 14 wins (2 ties);

BAG C4.5 10 wins (2 ties);

BAG NB 2 wins;

RF 7 wins (1 tie)

Better average, lower std. dev.

Statistical tests:

Friedman and Iman Davenport

Holm

3.3. Experiments
Fuzzy rule-based classifier ensemble results (VI)
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OVERVIEW
OCS is an extended classifier selection strategy both reducing

the complexity and improving the accuracy of CEs

Accuracy is usually considered as the main optimization criterion

but complexity and diversity are also interesting (not well known

relation between accuracy and diversity)

Evolutionary algorithms have been widely used for OCS. EMO

shows a strong ability in the optimization of conflicting criteria

We aim to propose an EMO-based OCS strategy as a

component of our framework:

Joint optimization of up to three different kinds of criteria

Obtaining of a set of CE designs with different accuracy-complexity

tradeoffs in a single algorithm run

Specific: Check how beneficial the additional diversity induced by

ROs is for EMO OCS-based FRBCEs

4. Evolutionary Multiobjective Selection of the Component Classifiers
Overall view
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OVERVIEW
OCS strategy (Partridge and Yates, 1996) :

Generate many classifiers and select the best cooperating

subset

Decrease complexity/eliminate useless classifiers to improve

accuracy

4. Evolutionary Multiobjective Selection of the Component Classifiers
EMO-based overproduce & choose

Training 
Set

Testing 
Set

EMO-base 
OCS

FRBCS 2

FRBCS n

Data
(normalized)

Pure voting
(no weights)

FRBCS 1

FRBCS 2

FRBCS n

component 
FRBCS

FRBCS 3

…

Bagging

Instance

selection

+
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OVERVIEW
NSGA-II EMO algorithm (Deb et al., 2002):

Produces a set of efficient solutions (Pareto-optimal set) in a

single run

Based on Pareto dominance depth approach, where population

is divided into several fronts

Solutions in the same front have the same fitness rank

Crowding distance to promote

Pareto front spreading

4. Evolutionary Multiobjective Selection of the Component Classifiers
NSGA-II

1st Front

1st objective
2
n

d
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b
je

c
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v
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3rd Front 2nd Front
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OVERVIEW

NSGA-II-based EMO OCS method components:

Binary coding –

General: a binary value is assigned to each component

classifier (1 → selected classifier; 0 → discarded classifier)

RO-specific: a binary value is assigned to each RO

subclassifier

Generational approach and elitist replacement strategy

Binary tournament

Classical two-point crossover and bit-flip mutation or
biased (towards smaller ensembles) bit-flip mutation

4. Evolutionary Multiobjective Selection of the Component Classifiers
NSGA-II-based OCS method
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OVERVIEW

Reparation operator (RO-specific coding scheme):

As the oracle assigns only half-a-region of the feature
space to each subclassifier, NSGA-II may select a subset
of subclassifiers not covering the entire feature space

To avoid that, at least one subclassifier in the RO pair is
forced to be selected

Procedure:

Generate all the possible combinations containing a single

RO pair (to cover the entire feature space)

Evaluate them in the objective space and remove the

dominated ones

Select one of the non-dominated solutions at random

4. Evolutionary Multiobjective Selection of the Component Classifiers
NSGA-II-based OCS method (II)
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OVERVIEW

Objective functions: Three-objective fitness function
designed from an evaluation criteria taken from each of the
existing families:

accuracy

complexity (#classifiers)

diversity: variance (θ)

4. Evolutionary Multiobjective Selection of the Component Classifiers
NSGA-II-based OCS method (III)

A lexicographic order of:

3) Classification margin m2

2) Error margin m1

1) Training error e

1. Introduction

2. Proposed 
Framework

3. FRBCE Design 
from Classical ML 
Approaches

4. EMO Selection 
of Component 
Classifiers

5. Classifier Selection 
and Fusion via an 
Interpretable GFS

6. Conclusions



FRBCE Framework using Diversity Induction and EA-based Classifier Selection/Fusion

IWANN 2013. June, 12-14, Tenerife (Spain) Oscar Cordón41

OVERVIEW

4. Evolutionary Multiobjective Selection of the Component Classifiers
General Scheme

K. Trawinski, O. Cordón, A. Quirin. A Study on the Use of Multiobjective Genetic Algorithms for Classifier 
Selection in FURIA-based Fuzzy Multiclassifiers. Int. J. Comp. Intel. Syst. 5:2 (2012) 231-253

K. Trawinski, O. Cordón, A. Quirin. Multiobjective Genetic Classier Selection For Random Oracles Fuzzy Rule-
Based Classier Ensembles: How Beneficial Is The Additional Diversity? Knowledge-based Systems (2013) 
Submitted. IF 2011: 2.422. Cat: CS, AI. O: 15/111. Q1
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OVERVIEW

4. Evolutionary Multiobjective Selection of the Component Classifiers
Experimental setup

Same datasets and validation mechanism than in the
previous experimental study:

Design choices and parameter values:

Comparison between different fuzzy component classifier

generation methods and EMO OCS strategy variants

Test accuracy and #rules of each Pareto-optimal solution are

measured to allow for a global comparison

NSGA-II parameters: 200 individuals, 1000 generations,

crossover prob. 0.6, mutation prob. 0.1

Hypervolume Ratio (HVR) indicator considered to compare the

obtained Pareto front approximations (PFAs)
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The FRBCE/EMO variants for the comparison purpose:

4. Evolutionary Multiobjective Selection of the Component Classifiers
Experimental setup (II)
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4. Evolutionary Multiobjective Selection of the Component Classifiers
EMO-based OCS results

Comparison of PFAs
using the HVR measure:

Reference PFAs considered 
(O1:Test Error, O2: #rules)

Variant ADV-BI-RLO clearly 
reports the best performance
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4. Evolutionary Multiobjective Selection of the Component Classifiers
EMO-based OCS results (II)

REFERENCE PFAs (O1:Test Error, O2:Complexity)
obtained for sensor_read_24 by all the EMO variants

ZOOM
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4. Evolutionary Multiobjective Selection of the Component Classifiers
EMO-based OCS results (III)

Comparison of averaged performance of
four single solutions selected from the obtained Pareto sets
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4. Evolutionary Multiobjective Selection of the Component Classifiers
EMO-based OCS results (IV)

Comparison of averaged performance of
four single solutions selected from the obtained Pareto sets

Statistical tests:

Friedman and Iman Davenport

Holm
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4. Evolutionary Multiobjective Selection of the Component Classifiers
EMO-based OCS results (V)

Accuracy Benchmarking of EMO OCS RSO-based FRBCEs
versus static FURIA-based FRBCEs and classical CEs
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4. Evolutionary Multiobjective Selection of the Component Classifiers
EMO-based OCS results (VI)

Accuracy Benchmarking of EMO OCS RSO-based FRBCEs
versus static FURIA-based FRBCEs and classical CEs

Statistical tests:

Friedman and Iman Davenport

Holm
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OVERVIEW

Proposed Framework Graphical Representation
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OVERVIEW
Accuracy and complexity can be both improved by developing a

combination method involving joint classifier selection and fusion

Using a fuzzy linguistic system for this task would provide some

interpretability about the classifier fusion method operation

We will introduce the use of a FRBCS-based combination
method (FRBCS-CM):

Combining classifier fusion and classifier selection at class level

Working on any classifier with class certainty degrees

Showing a human-understandable structure

Being automatically learned from training data using a genetic

algorithm (GA) → genetic fuzzy system

FRBCE-specific: Two-level hierarchical structure with component

FRBCSs in the 1st level and the FRBCS-CM in the 2nd (stacking)

5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
Overall view
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OVERVIEW

5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
Component classifier output

Component

Cl. 1

Component

Cl. 2

Component

Cl. 3

Component

Cl. 4

… … …

IF x is A1 THEN class C1 WITH CF1
IF x is A2 THEN class C1 WITH CF2
…
IF x is Ai THEN class C2 WITH CFi
IF x is Ai+1 THEN class C2 WITH CFi+1

…

All rules for class 1

All rules for class 2

Etc.

RULE BASE

TO CLASSIFY x ? (for each individual classifier)

Certainty degree

for class 1,

))(ACF()(1 xxR jj
j

⋅∨=

Only from rules coding for class 1

Certainty degree

for class 2,

))(ACF()(2 xxR jj
j

⋅∨=

SO, WHICH CLASS ?

)(maxarg }#,...,1{ xRiclassesi∈

Only from rules coding for class 2
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)(maxarg }#,...,1{ xRiclassesi∈

RULE BASE

IF x is A1 THEN class C1 WITH CF1
IF x is A2 THEN class C1 WITH CF2
…
IF x is Ai THEN class C2 WITH CFi
IF x is Ai+1 THEN class C2 WITH CFi+1

…

All rules for class 1

All rules for class 2

Etc.

TO CLASSIFY x ? (for each individual classifier)

Certainty degree

for class 1,

))(ACF()(1 xxR jj
j

⋅∨=

Only from rules coding for class 1

Certainty degree

for class 2,

))(ACF()(2 xxR jj
j

⋅∨=

SO, WHICH CLASS ?

Only from rules coding for class 2

OVERVIEW

5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
Component classifier output fusion

Component

Cl. 1

Component

Cl. 2

Component

Cl. 3

Component

Cl. 4

… … …

• Binary matrix bck

• Size: #classes x #classifiers 
• 2nd level of our system

))((1 xACFbR jjck

BIN

class ⋅⋅∨=1

1
…

0

0
…

0

1
…

1

0
…

Classifier selection:
For each classifier

For each
class
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Classifier selection:

IF (Classifier 1 says that class is 1)

or (Classifier 4 says that class is 1) 

THEN class is 1

…
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)(maxarg }#,...,1{ xRiclassesi∈

RULE BASE

IF x is A1 THEN class C1 WITH CF1
IF x is A2 THEN class C1 WITH CF2
…
IF x is Ai THEN class C2 WITH CFi
IF x is Ai+1 THEN class C2 WITH CFi+1

…

All rules for class 1

All rules for class 2

Etc.

TO CLASSIFY x ? (for each individual classifier)

Certainty degree

for class 1,

))(ACF()(1 xxR jj
j

⋅∨=

Only from rules coding for class 1

Certainty degree

for class 2,

))(ACF()(2 xxR jj
j

⋅∨=

SO, WHICH CLASS ?

Only from rules coding for class 2

OVERVIEW

5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
Component classifier output fusion (II)

Component

Cl. 1

Component

Cl. 2

Component

Cl. 3

Component

Cl. 4

… … …

• Binary matrix wck

• Size: #classes x #classifiers 
• 2nd level of our system
(also fuzzy inference)

))((1 xACFwR jjck

WEIGHT

class ⋅⋅∨=0.5

0.1

…

0.0

0.0

…

0.0

0.2

…

0.3

0.0

…

Classifier selection
and fusion:

For each classifier

For each
class
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FUSION
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Classifier selection and fusion:

IF (Classifier 1 says that class is 1 with w11=0.5)

or (Classifier 4 says that class is 1 with w41=0.3) 

THEN class is 1

…
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OVERVIEW

5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
Constraint and coding scheme

0.5

0.1

…

0.0

0.0

…

0.0

0.2

…

0.3

0.0

…

The weights are learnt by a GA:

Constraint: the percentage of wck  ≠ 0 is defined by the user,
thus selecting the desired accuracy-complexity tradeoff

Chromosome representation: coding for a sparse matrix

GA

0.5

0.1

…

0.0

0.0

…

0.0

0.2

…

0.3

0.0

…

(1,1) (1,4) (2,1) (2,3)

0.5 0.3 0.1 0.2

Position

Values wck
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OVERVIEW

5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
Operators and fitness function

Initial population: totally random

Crossover:
(1,1) (1,4) (2,1) (2,3)

0.5 0.3 0.1 0.2

(1,3) (2,1) (2,2) (3,4)

0.8 0.7 0.9 0.4

(1,1) (1,4) (2,1) (2,3)

0.8 0.7 0.9 0.4

(1,3) (2,1) (2,2) (3,4)

0.5 0.3 0.1 0.2

Mutation: random mutation of a value or the full chromosome

Fitness function:

a lexicographic order of:

3) Classification margin m2

2) Error margin m1

1) Training error e
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OVERVIEW

5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
General Scheme

K. Trawinski, O. Cordón, L. Sánchez, A. Quirin. A Genetic Fuzzy Linguistic Combination Method for 

Fuzzy Rule-Based Multiclassifiers. IEEE Transactions on Fuzzy Systems (2013), to appear. IF 2011: 

4.260. Cat: CS, AI. O: 5/111. Q1
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OVERVIEW

5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
Experimental setup

Considered UCI datasets:

Significant number of 

datasets considered: 20

Every attribute is continuous

From small to large number

of features (64), classes

(28), instances (19020)

Pentium 2.4 GHz, 2 GB, 2-4

cores (Granada cluster)

Validation: Dietterich’s 5x2-fold cross validation
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Parameter values:

50 bagging FURIA component classifiers generated

Steady-state GA with parameters: 100 individuals, 1000
generations, crossover prob. 0.6, mutation prob. 0.1

% of weights = {10%, 25%, 50%, 75%, 90%}

Wilcoxon test to find statistical differences

Test accuracy and #rules for a global comparison and
some interpretability insights

5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
Experimental setup (II)
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Methods considered for comparison:

Bagging FRBCE full ensemble with standard Majority
Voting fusion method

Combination of state-of-the-art fusion:

Majority Voting (MV), Average (AVG), and Decision
Templates (DT)

and selection methods:

Greedy Forward (high reduction) and Backward selection

(low reduction)

[Dimililer et al. 2009]: recent GA-based proposal
performing both classifier selection at class level and
classifier fusion (mid reduction)

5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
Experimental setup (III)
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5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
FRBCS-CM results (I)

Our approach is competitive in terms of accuracy
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5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
FRBCS-CM results (II)

Accuracy benchmarking vs. original Bagging FRBCEs
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5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
FRBCS-CM results (III)

Accuracy benchmarking vs. low reduction and existing fusion methods
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5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
FRBCS-CM results (IV)

Accuracy benchmarking vs. high reduction and existing fusion methods

No statistical 

differences



FRBCE Framework using Diversity Induction and EA-based Classifier Selection/Fusion

IWANN 2013. June, 12-14, Tenerife (Spain) Oscar Cordón65

5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
FRBCS-CM results (V)

Accuracy benchmarking vs. joint classifier selection (mid red.) and fusion
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5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
FRBCS-CM results (VI)

Our approach is competitive in terms of complexity
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5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
FRBCS-CM results (VII)

Complexity benchmarking vs. original Bagging FRBCEs
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5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
FRBCS-CM results (VIII)

Complexity benchmarking vs. low reduction and existing fusion methods
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5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
FRBCS-CM results (IX)

Complexity benchmarking vs. high reduction and existing fusion methods
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5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
FRBCS-CM results (X)

Complexity benchmarking vs. joint classifier selection (mid red.) and fusion
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5. Classifier Selection & Fusion via an Interpretable Genetic Fuzzy System
FRBCS-CM results (XI)

Our approach provides interpretability to the FRBCEs to some extent
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An advanced framework to design FRBCEs using classical and

recent diversity induction methods and EAs has been presented

Different specific methods for the two CE design stages have

been proposed under the general umbrella

In particular, the proposal of an interpretable FRBCS-CM

performing joint classifier selection and fusion over any weight-

based classifier constitute a very novel development

The obtained FRBCEs have shown to be competitive with state-

of-the-art classical Ces

The framework has been applied to solve a real-world topology-

based WiFi indoor localization problem

K. Trawinski et al. A multiclassifier approach for topology-based wifi indoor localization. Soft 

Computing (2013), to appear. IF 2011: 1.880. Cat: CS, Int. App. O: 24/99. Q1
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