FUZZ-IEEE 2011 Tutorial, Taipei, Taiwan Morning Session: 9:00-12:30, July 27, 2011

Evolutionary Multi-Objective Design of Fuzzy Rule-Based Systems

Rafael Alcalá

Dpto. Computer Science and A.I. University of Granada 18071 – SPAIN

Contents

1. Basics on Genetic Fuzzy Systems (GFS)

- Introduction to Genetic Fuzzy System Research
- An Example on a Real Application

2. Interpretability-Accuracy Tradeoff of Fuzzy Systems: *Two*

contradictory objectives

- Interpretability Issues in Fuzzy System Design
- Applicability of MOGFSs to the I-A problem
- **3. Evolutionary Multiobjective Optimization (EMO)**
 - Some Basic Concepts in Multiobjective Optimization
 - Framework of Evolutionary Multiobjective Optimization

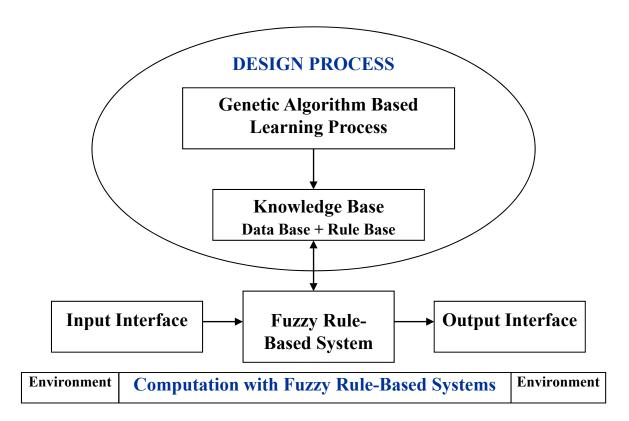
4. Multiobjective Genetic Fuzzy Systems (MoGFS)

- Overview of MoGFS Research (some representative examples)
- New Research Directions in MoGFS

Contents

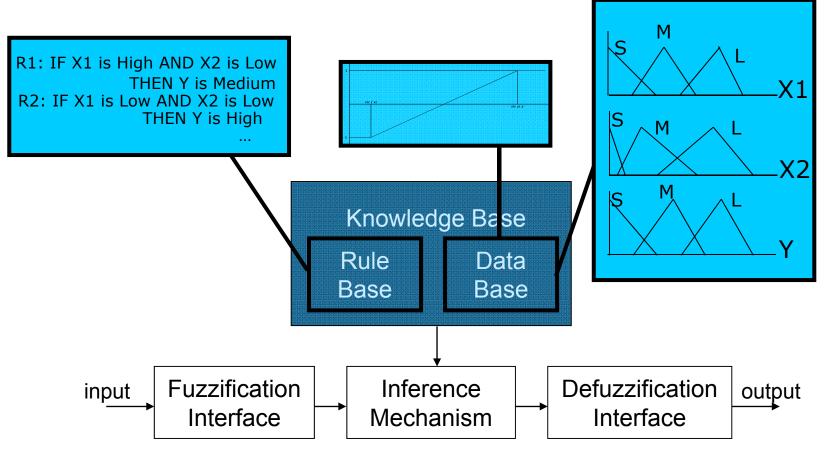
- 1. Basics on Genetic Fuzzy Systems (GFS)
 - Introduction to Genetic Fuzzy System Research
 - An Example on a Real Application
- **2.** Interpretability-Accuracy Tradeoff of Fuzzy Systems: *Two*
 - contradictory objectives
 - Interpretability Issues in Fuzzy System Design
 - Applicability of MOGFSs to the I-A problem
- 3. Evolutionary Multiobjective Optimization (EMO)
 - Some Basic Concepts in Multiobjective Optimization
 - Framework of Evolutionary Multiobjective Optimization
- 4. Multiobjective Genetic Fuzzy Systems (MoGFS)
 - Overview of MoGFS Research (some representative examples)
 - New Research Directions in MoGFS

Introduction to genetic fuzzy systems


- Brief Introduction
- Taxonomy of Genetic Fuzzy Systems
- Why do we use GAs?
- The birth, GFSs roadmap, current state and most cited papers

- The use of genetic/evolutionary algorithms (GAs) to design fuzzy systems constitutes one of the branches of the Soft Computing paradigm: genetic fuzzy systems (GFSs)
- The most known approach is that of genetic fuzzy rulebased systems, where some components of a fuzzy rulebased system (FRBS) are derived (adapted or learnt) using a GA
- Some other approaches include genetic fuzzy neural networks and genetic fuzzy clustering, among others

Evolutionary algorithms and machine learning:

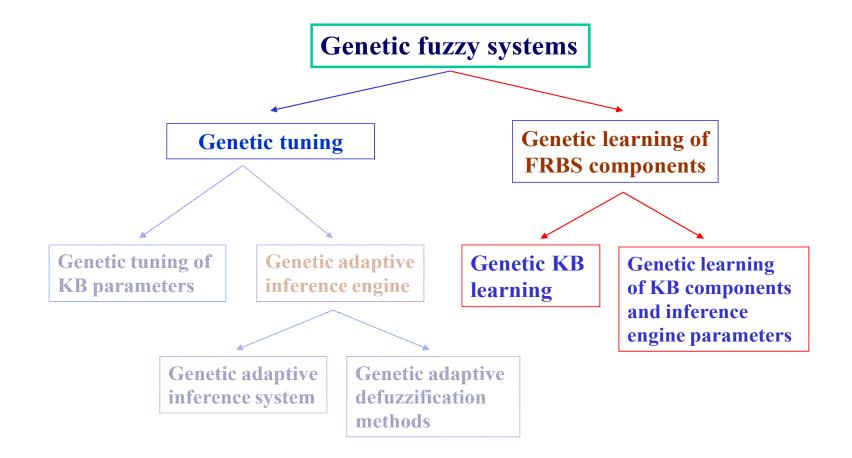

- Evolutionary algorithms were not specifically designed as machine learning techniques, like other approaches like neural networks
- However, it is well known that a learning task can be modelled as an optimization problem, and thus solved through evolution
- Their powerful search in complex, ill-defined problem spaces has permitted applying evolutionary algorithms successfully to a huge variety of machine learning and knowledge discovery tasks
- Their flexibility and capability to incorporate existing knowledge are also very interesting characteristics for the problem solving.

Genetic Fuzzy Rule-Based Systems:

Design of fuzzy rule-based systems:

- An FRBS (regardless it is a fuzzy model, a fuzzy logic controller or a fuzzy classifier), is comprised by two main components:
 - The Knowledge Base (KB), storing the available problem knowledge in the form of fuzzy rules
 - The Inference System, applying a fuzzy reasoning method on the inputs and the KB rules to give a system output
- Both must be designed to build an FRBS for a specific application:
 - The KB is obtained from expert knowledge or by machine learning methods
 - The Inference System is set up by choosing the fuzzy operator for each component (conjunction, implication, defuzzifier, etc.) Sometimes, the latter operators are also parametric and can be tuned using automatic methods 8

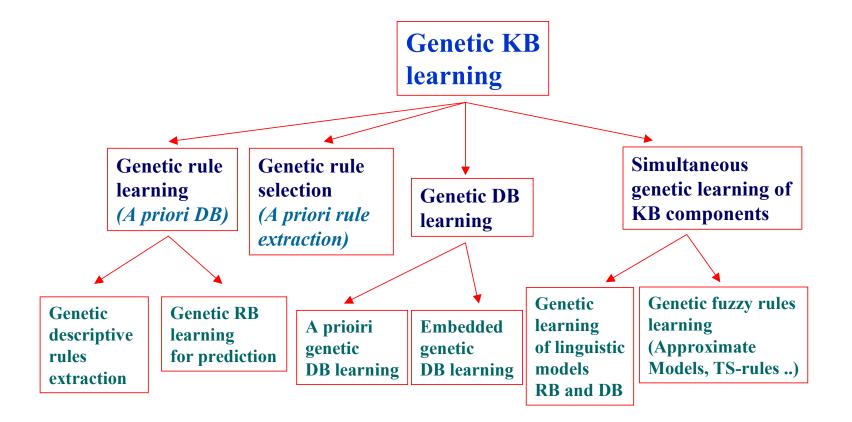
An Example of Fuzzy rule-based system


The KB design involves two subproblems, related to its two subcomponents:

- Definition of the Data Base (DB):
 - Variable universes of discourse
 - Scaling factors or functions
 - Granularity (number of linguistic terms/labels) per variable
 - Membership functions associated to the labels
- Derivation of the Rule Base (RB): fuzzy rule composition

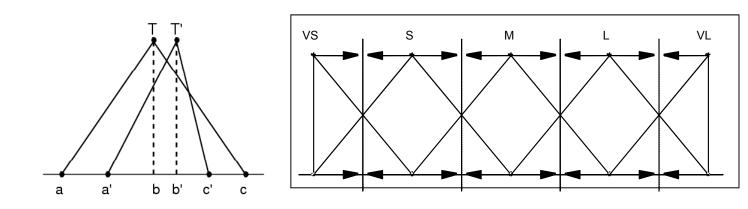
As said, there are two different ways to design the KB:

- From human expert information
- By means of machine learning methods guided by the existing numerical information (fuzzy modeling and classification) or by a model of the system being controlled

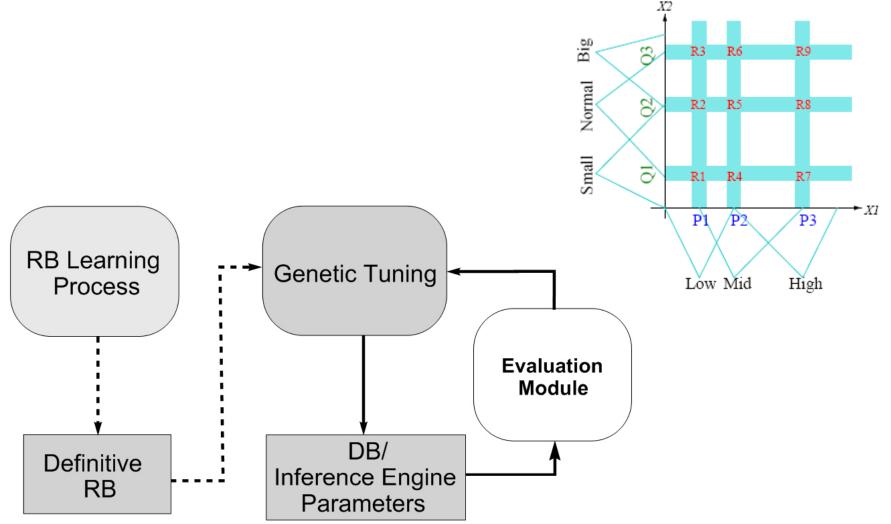

Introduction to genetic fuzzy systems Taxonomy of Genetic Fuzzy Systems

F. Herrera, Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects. Evolutionary Intelligence 1 (2008) 27-46 doi: 10.1007/s12065-007-0001-5

Associated Website: http://sci2s.ugr.es/gfs/

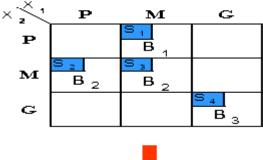

Introduction to genetic fuzzy systems Taxonomy of Genetic Fuzzy Systems

Introduction to genetic fuzzy systems 1. Genetic Tuning


Classically:

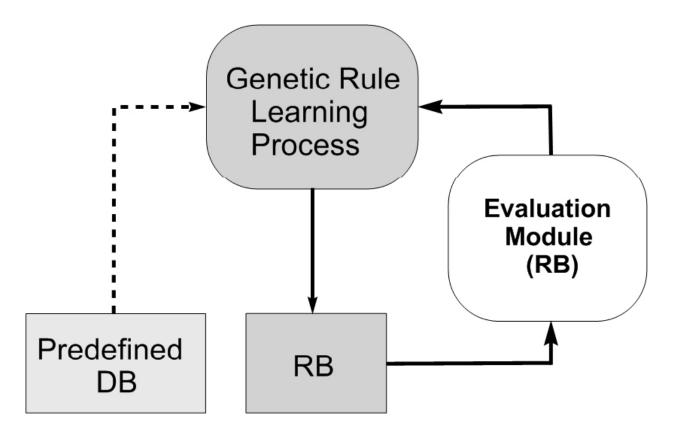
- performed on a predefined DB definition
- tuning of the membership function shapes by a GA

– tuning of the inference parameters


Introduction to genetic fuzzy systems 1. Genetic Tuning

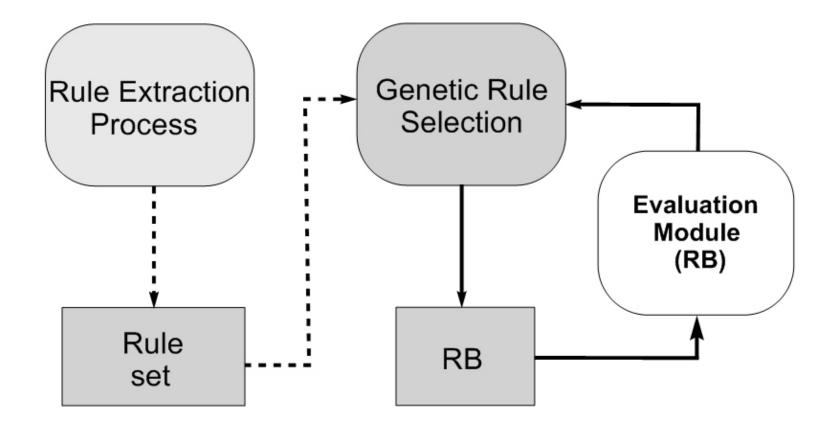
Introduction to genetic fuzzy systems 2. Genetic Rule Learning

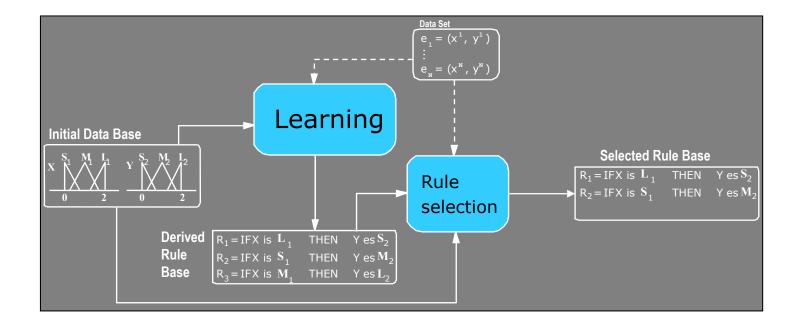
A predefined Data Base definition is assumed


 The fuzzy rules (usually Mamdani-type) are derived by a GA

Rule Base

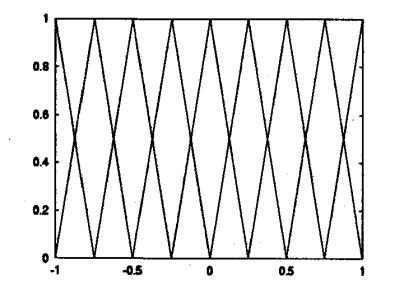
$R_1 = IF X_1$ is	${f M}$ and	X	is P	THEN	Y is B1
$R_2 = IF \times is$	${f p}$ and	× 2	is M	THEN	Y is \mathbf{B}_2
R ₃ = IF X is	${f M}$ and	× 2	is M	THEN	Y is \mathbf{B}_2
$R_4 = IF X_1 is$	${f G}$ and	X _2	is G	THEN	Y is ${f B}_3$

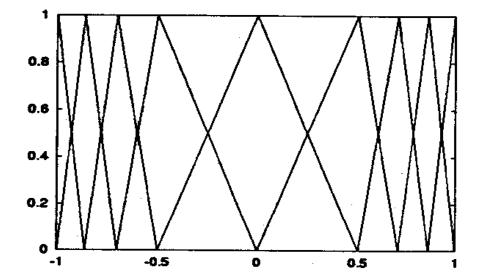

Introduction to genetic fuzzy systems 2. Genetic Rule Learning


Introduction to genetic fuzzy systems 3. Genetic Rule Selection

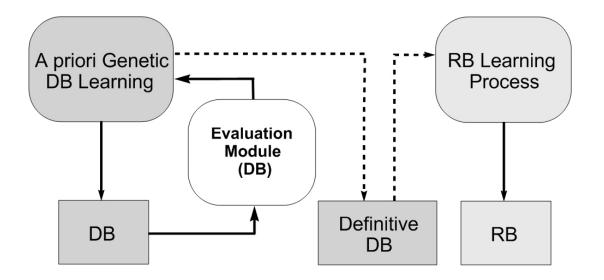
- A predefined Rule Bases definition is assumed
- The fuzzy rules are selection by a GA for getting a compact rule base (more interpretable, more precise)

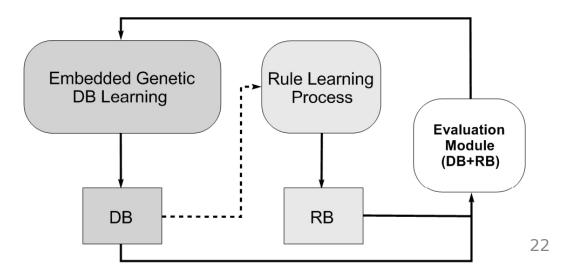
Introduction to genetic fuzzy systems 3. Genetic Rule Selection

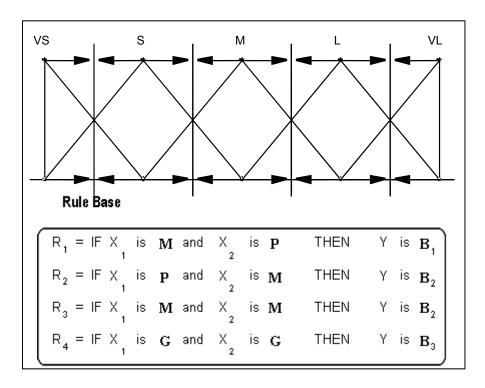

Introduction to genetic fuzzy systems 3. Genetic Rule Selection

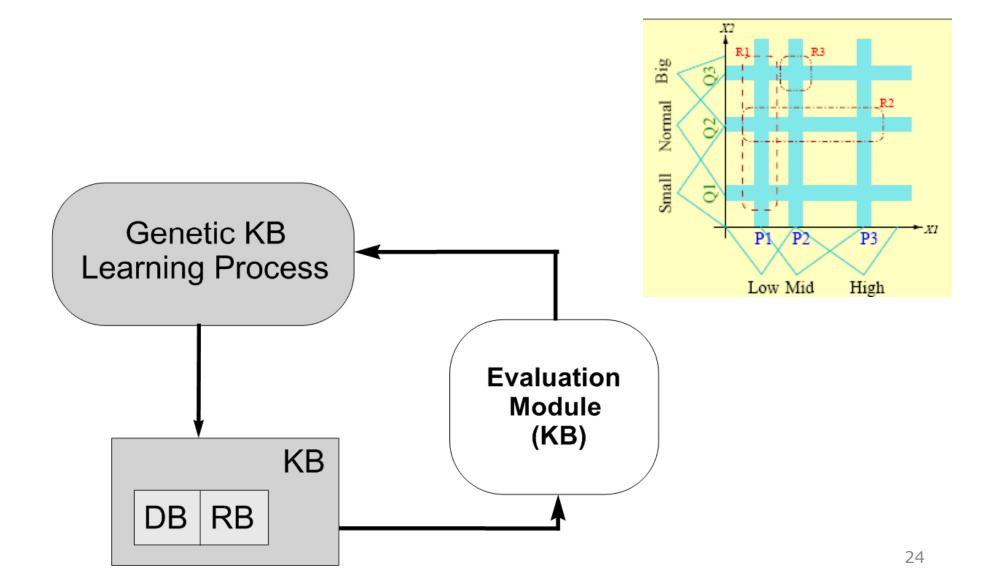


Example of genetic rule selection

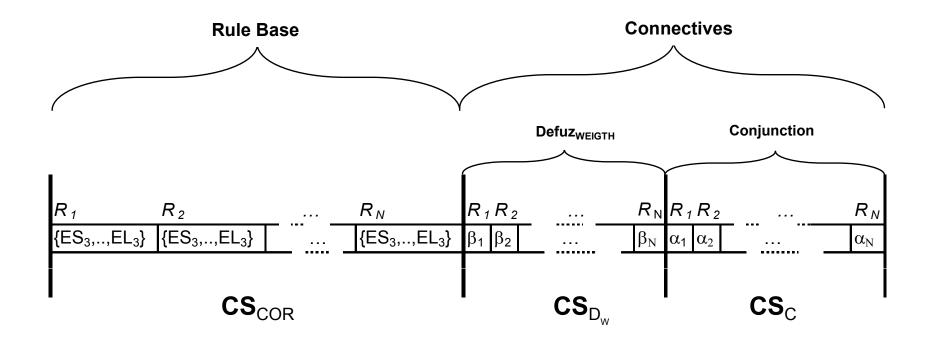

Introduction to genetic fuzzy systems 4. Genetic DB Learning


- Learning of the membership function shapes by a GA

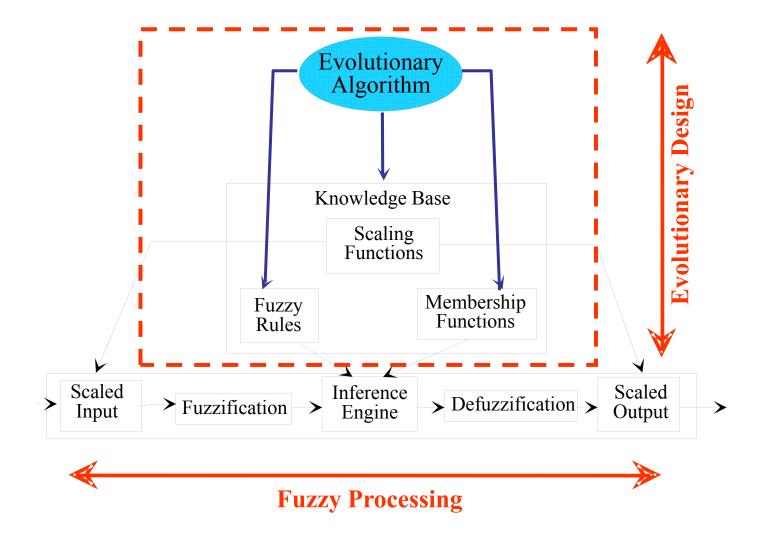

Introduction to genetic fuzzy systems 4. Genetic DB Learning



Introduction to genetic fuzzy systems 5. Simultaneous Genetic Learning of KB Components


The simultaneous derivation properly addresses the strong dependency existing between the RB and the DB

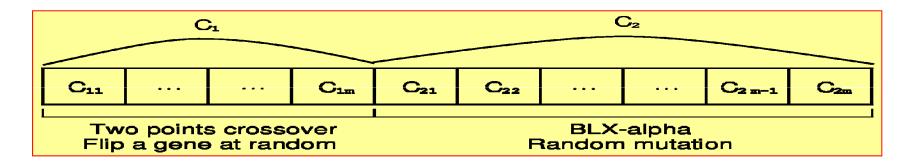
Introduction to genetic fuzzy systems 5. Simultaneous Genetic Learning of KB Components



Introduction to genetic fuzzy systems 6. Genetic Learning of KB Components and Inference Engine Parameters

Example of the coding scheme for learning an RB and the inference connective parameters

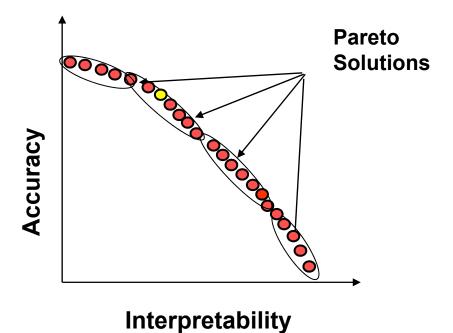
Introduction to genetic fuzzy systems



Introduction to genetic fuzzy systems Why do we use GAs?

Advantages of the Genetic Fuzzy Systems

- We can code different FS components in a chromosome:
 - Identify relevant inputs
 - Scaling factors
 - Membership functions, shape functions, optimal shape of membership funct., granularity (number of labels per variable)
 - Fuzzy rules, Any inference parameter,


We can define different mechanism for managing them (combining genetic operators, coevolution,...)

Introduction to genetic fuzzy systems Why do we use GAs?

Advantages of the Genetic Fuzzy Systems

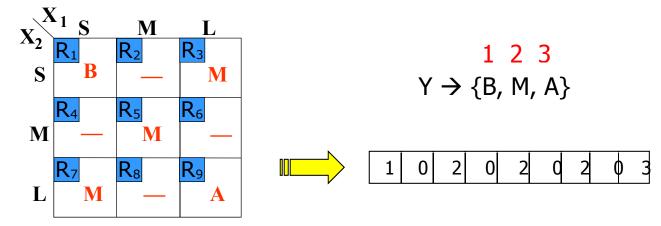
 We can consider multiple objectives in the learning model (interpretability, precision,)

Introduction to genetic fuzzy systems

The birth, GFSs roadmap, current status and most cited papers

The birth of GFSs: 1991

- Thrift's ICGA91 paper (Mamdani-type Rule Base Learning. Pittsburgh approach)
- Thrift P (1991) **Fuzzy logic synthesis with genetic algorithms.** In: Proc. of 4th International Conference on Genetic Algorithms (ICGA'91), pp 509-513
- Valenzuela-Rendón's PPSN-I paper (Scatter Mamdani-type KB Learning. Michigan approach)
- Valenzuela-Rendon M (1991) **The fuzzy classifier system: A classifier system for continuously varying variables**. *In: Proc. of 4th International Conference on Genetic Algorithms (ICGA'91), pp 346-353*
- Pham and Karaboga's Journal of Systems Engineering paper (Relational matrixbased FRBS learning. Pittsburgh approach)
- Pham DT, Karaboga D (1991) **Optimum design of fuzzy logic controllers using genetic** algorithms. *Journal of Systems Engineering* 1:114-118).
- Karr's AI Expert paper (Mamdani-type Data Base Tuning)
- Karr C (1991) Genetic algorithms for fuzzy controllers. AI Expert 6(2):26-33.


Almost the whole basis of the area were established in the first year!

Introduction to genetic fuzzy systems The birth, GFSs roadmap, current status and most cited papers

Thrift's GFS:

P. Thrift, Fuzzy logic synthesis with genetic algorithms, Proc. Fourth Intl. Conf. on Genetic Algorithms (ICGA'91), San Diego, USA, 1991, pp. 509–513

- Classical approach: Pittsburgh the decision table is encoded in a rule consequent array
- The output variable linguistic terms are numbered from 1 to n and comprise the array values. The value 0 represents the rule absence, thus making the GA able to learn the optimal number of rules
- The ordered structure allows the GA to use simple genetic operators

Introduction to genetic fuzzy systems The birth, GFSs roadmap, current status and most cited papers

GFSs roadmap

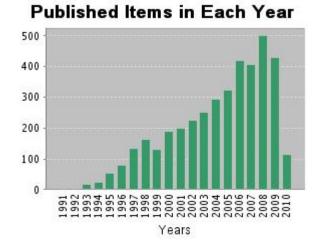
1991-1996/7: INITIAL GFS SETTING: KB LEARNING:

- Establishment of the three classical learning approaches in the GFS field: Michigan, Pittsburgh, and IRL
- Different FRBS types: Mamdani, Mamdani DNF, Scatter Mamdani, TSK
- Generic applications: Classification, Modeling, and Control

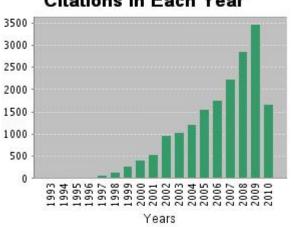
1995-...: FUZZY SYSTEM TUNING:

- First: Membership function parameter tuning
- Later: other DB components adaptation: scaling factors, context adaptation (scaling functions), linguistic hedges, ...
- Recently: interpretability consideration

Introduction to genetic fuzzy systems The birth, GFSs roadmap, current status and most cited papers


GFSs roadmap

1998-...: APPROACHING TO MATURITY? NEW GFS LEARNING APPROACHES:


- New EAs: Bacterial genetics, DNA coding, Virus-EA, genetic local search (memetic algorithms), ...
- Hybrid learning approaches: a priori DB learning, GFNNs, Michigan-Pitt hybrids, ...
- Multiobjective evolutionary algorithms
- Interpretability-accuracy trade-off consideration
- Course of dimensionality (handling large data sets and complex problems):
 - Rule selection (1995-...)
 - Feature selection at global level and fuzzy rule level
 - Hierarchical fuzzy modeling
- "Incremental" learning

Introduction to genetic fuzzy systems Current state of the GFS area

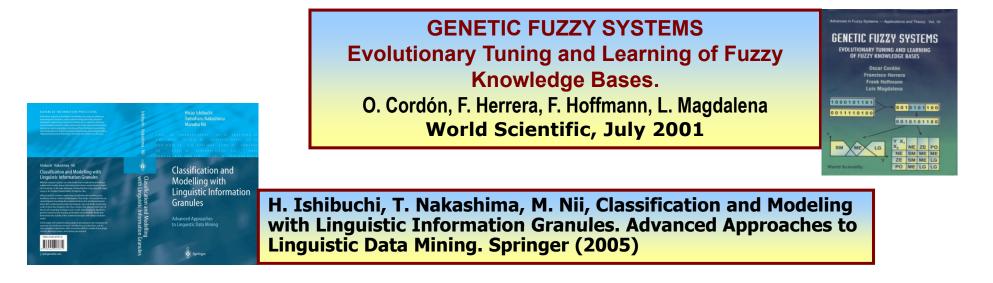
Number of papers on GFSs published in JCR journals

Number of citations: **18298**

Citations in Each Year

Source: The Thomson Corporation ISI Web of Knowledge

Query: (TS = (("GA-" OR "GA based" OR evolutionary OR "genetic algorithm*" OR "genetic programming" OR "evolution strate*" OR "genetic learning" OR "particle swarm" OR "differential evolutio*" OR "ant system*" OR "ant colony" OR "genetic optimi*" OR "estimation of distribution algorithm*") AND ("fuzzy rule*" OR "fuzzy system*" OR "fuzzy neural" OR "neuro-fuzzy" OR "fuzzy control*" OR "fuzzy logic cont*" OR "fuzzy class*" OR "fuzzy if" OR "fuzzy model*" OR "fuzzy association rule*" OR "fuzzy regression")) 33 Date of analysis: July 6th, 2010 Number of papers: **3962**


Average citations per paper: 4.62

Introduction to genetic fuzzy systems Current state of the GFS area

Most cited papers on GFSs (classic approaches - papers until 2000)

- 1. Homaifar, A., McCormick, E., Simultaneous Design of Membership Functions and rule sets for fuzzy controllers using genetic algorithms, IEEE TFS 3 (2) (1995) 129-139. Citations: 302
- 2. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H., Selecting fuzzy if-then rules for classification problems using genetic algorithms, IEEE TFS 3 (3) (1995) 260-270. Citations: 284
- 3. Setnes, M., Roubos, H., GA-fuzzy modeling and classification: complexity and performance, IEEE TFS 8 (5) (2000) 509-522. Citations: 215
- 4. Ishibuchi, H., Nakashima, T., Murata, T., Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems, IEEE TSMC B 29 (5) (1999) 601-618. Citations: 177
- 5. Shi, Y.H., Eberhart, R., Chen, Y.B., Implementation of evolutionary fuzzy systems, IEEE TFS 7 (2) (1999) 109-119. Citations: 126
- 6. Park, D., Kandel, A., Langholz, G., Genetic-based new fuzzy reasoning models with application to fuzzy control, IEEE TSMC B 24 (1) (1994) 39-47. Citations: 125
- 7. Jin, YC (2000) Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement. IEEE Transactions on Fuzzy Systems 8(2):212-221. Citations: 121
- 8. Ishibuchi H, Murata T, Turksen IB (1997) Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems. Fuzzy Sets and Systems 89(2):135-150 Citations: 116
- 9. Juang, C.F., Lin, J.Y., Lin, C.T., Genetic reinforcement learning through symbiotic evolution for fuzzy controller design, IEEE TSMC B 30 (2) (2000) 290-302. Citations: 109
- 10. Herrera, F., Lozano, M., Verdegay, J.L., Tuning fuzzy-logic controllers by genetic algorithms, IJAR 12 (3-4) (1995) 299-315. Citations: 108

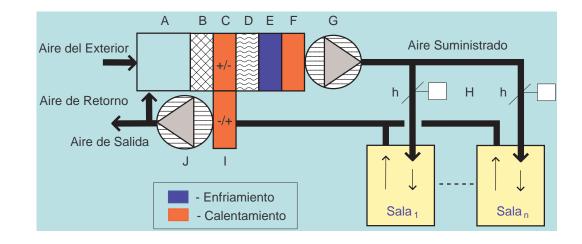
Introduction to genetic fuzzy systems Some References

- F. Herrera, Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects. *Evolutionary Intelligence 1 (2008) 27-46 doi: 10.1007/s12065-007-0001-5,*
- F. Herrera, Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions, International Journal of Computational Intelligence Research 1 (1) (2005) 59-67
- O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena, Ten Years of Genetic Fuzzy Systems: Current Framework and New Trends, FSS 141 (1) (2004) 5-31
- F. Hoffmann, Evolutionary Algorithms for Fuzzy Control System Design, Proceedings of the IEEE 89 (9) (2001) 1318-1333

Introduction to genetic fuzzy systems GFSs Website

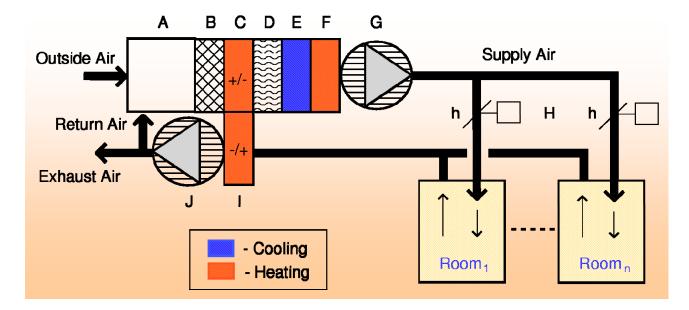
http://sci2s.ugr.es/gfs/

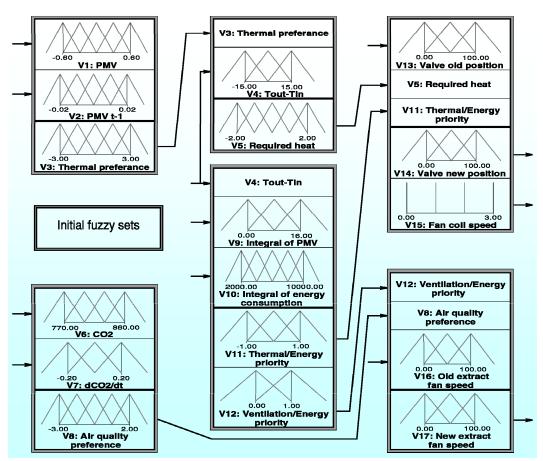
SCI2S (Soft Computing and ... 🐳


Top of Page Recent Journal Papers on Genetic Fuzzy Rule Based Systems (2007-Present) This is a bibliography compilation about journal papers on Genetic Fuzzy Rule-Based Systems (from 2007 to present). It is **JGIR** maintained by R. Alcalá and M. J. Gacto. It is based on the next query ("Advanced Search") at Comp. Int. http://scientific.thomson.com/products/wos/: TS = (("GA-" OR "GA based" OR evolutionary OR "genetic algorithm*" OR "genetic programming" OR "evolution strate*" OR "genetic learning" OR "particle swarm" OR "differential evolutio*" OR "ant system*" OR "ant KEEL colony" OR "genetic optimi*" OR "estimation of distribution algorithm*") AND ("fuzzy rule*" OR "fuzzy system*" Software OR "fuzzy neural" OR "neuro-fuzzy" OR "fuzzy control*" OR "fuzzy logic cont*" OR "fuzzy class*" OR "fuzzy if" SECAB OR "fuzzy model*" OR "fuzzy association rule*" OR "fuzzy regression")) If you would like to include or correct any of the references on this page, please contact the maintainers in their e-mail addresses: alcala@decsai.ugr.es or mgacto@ujaen.es & Visitors Links of Interest Online First (3 Papers), 2009 (156 Papers), 2008 (103 Papers), 2007 (121 Papers) http://sci2s.ugr.es/gfs/biblio.php Seminars **Online First (3 papers)** 36 Alcalá, R., Ducange, P., Herrera, F., Lazzerini, B., Marcelloni, F. A multi-objective evolutionary approach to concurrently learn rule and data MMLa bases of linguistic fuzzy rule-based systems. IEEE Transactions on Fuzzy Systems (2009) In press, doi:10.1109/TFUZZ.2009.2023113 Lab

GENETIC FUZZY SYSTEMS: APPLICATION TO A HVAC PROBLEM

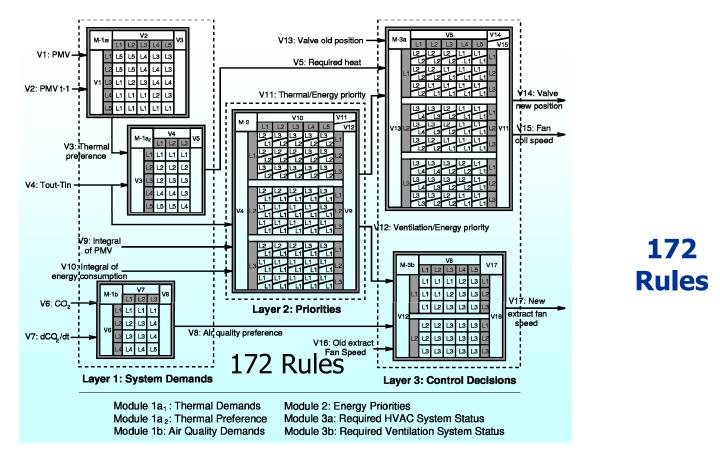
Heating Ventilating and Air Conditioning Systems: Problem

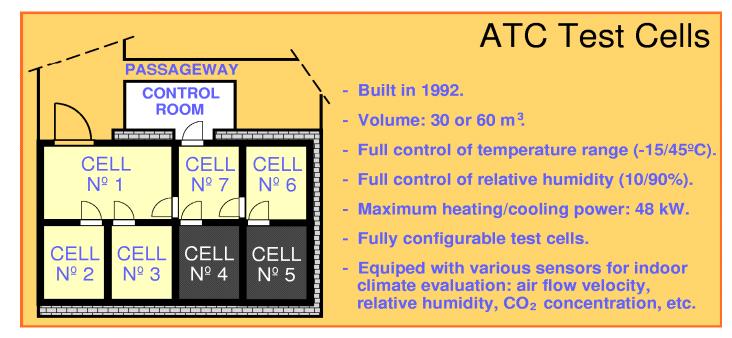

JOULE-THERMIE JOE-CT98-0090


Heating Ventilating and Air Conditioning Systems: Problem

- Energy consumption in buildings is the 40% of the total and more than a half is for indoor climate conditions
- The use of specific technologies can save up to a 20% of the energy consumption
- The use of appropriate automatic control strategies could result in energy savings ranging 15-85 %
- Moreover, in current systems, several criteria are considered and optimized independently without a global strategy

Generic Structure of an Office Building HVAC System


- It maintain a good thermal quality in summer and winter
- It dilutes and removes emissions from people, equipment and activities and supplies clean air


Initial Data Base

17 Variables

Initial Rule Base and FLC Structure

Representation of the Test Cells

Two adjacent twin cells were available

A calibrated and validated model of this site was developed to evaluate each FLC

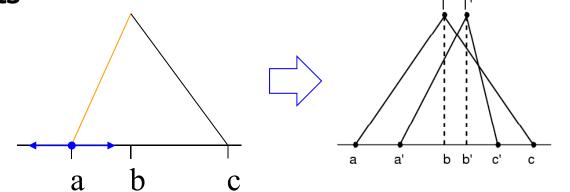
- Goal: multi-criteria optimization of an expert FLC for an HVAC system: reduction of the energy consumption but maintaining the required indoor comfort levels
 - O_1 Upper thermal comfort limit ³: if $PMV > 0.5, O_1 = O_1 + (PMV 0.5)$.
 - O_2 Lower thermal comfort limit: if $PMV < -0.5, O_2 = O_2 + (-PMV 0.5)$.
 - O_3 IAQ requirement: if CO_2 conc. > 800ppm, $O_3 = O_3 + (CO_2 800)$.
 - O_4 Energy consumption: $O_4 = O_4 +$ Power at time t.
 - O_5 System stability: $C_5 = C_5 +$ System change from time t to (t-1).

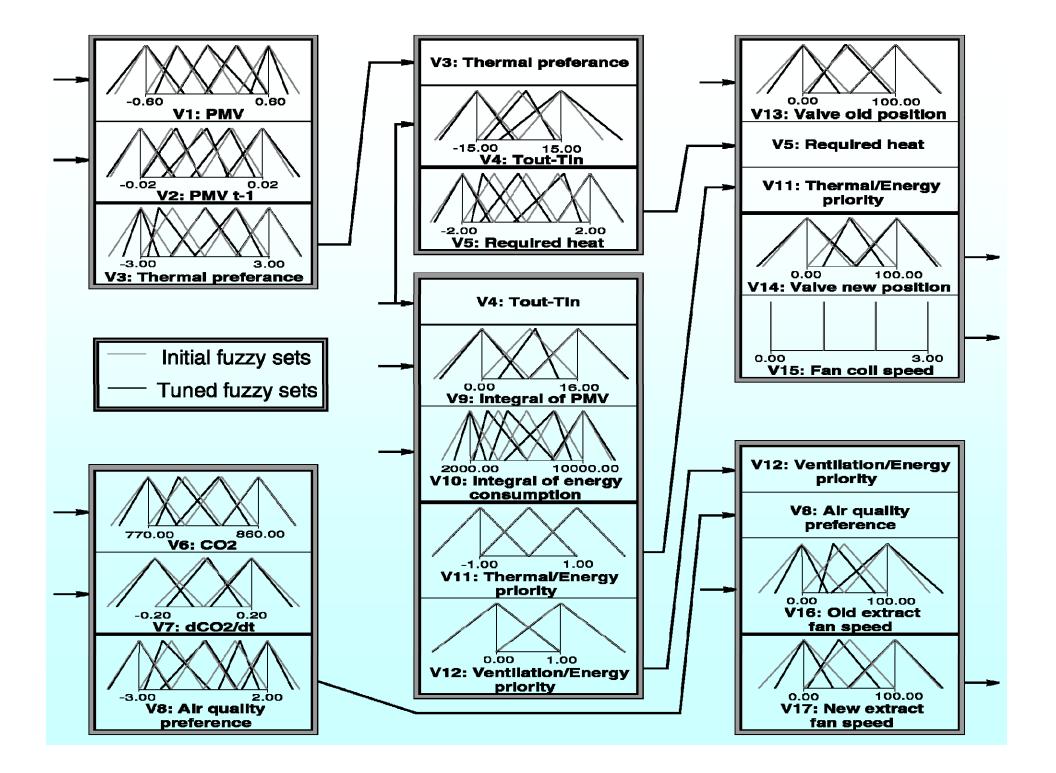
MODELS	#R	PMV>0.5	PMV<-0.5	C0 ₂	ENER	ENERGY		STABILITY	
		01	02	03	04	%	05	%	
ON-OFF	-	0,0	0	0	3206400	-	1136	-	
FLC	172	0,0	0	0	2901686	9,50	1505	-32,48	

• INITIAL RESULTS

GFS Models for Fuzzy Control of HVAC Systems: Genetic Tuning

Problem Restrictions

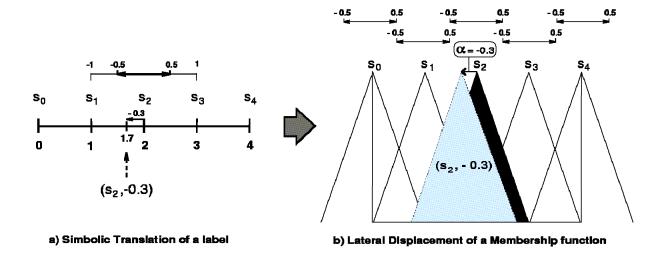

- The controller accuracy is assessed by means of simulations which approximately take 3-4 minutes
 - Efficient tuning methodologies:
 - Local adjustment of each tuned parameter
 - Steady-State Genetic Algorithms: quick convergence
 - 2000 evaluations \Rightarrow 1 run takes approximately 4 days
 - Considering a small population (31 individuals)


GFS Models for Fuzzy Control of HVAC Systems: Genetic Tuning

Improving the FLC Performance

The main objective was the reduction of the energy consumption (10%), improving the stability of the controller, maintaining the required indoor comfort levels

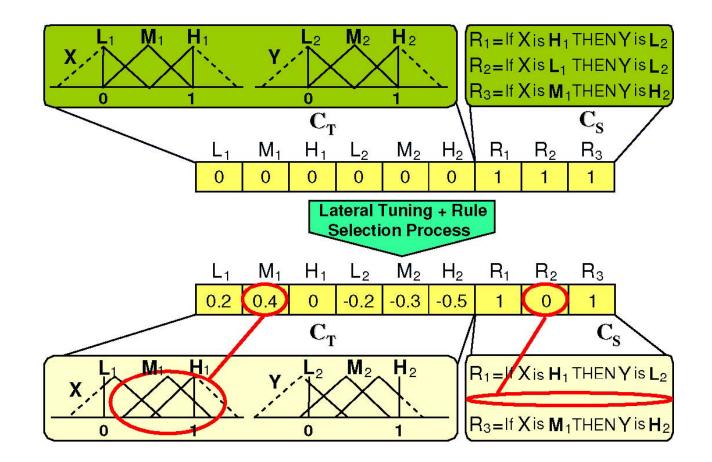
- Classic genetic tuning of the Data Base
 - Local modification of the membership function definition points



GFS Models for Fuzzy Control of HVAC Systems: Genetic Lateral Tuning + Rule Selection

New coding schemes: 2- and 3-tuples:

<u>R. Alcalá, J. Alcalá-Fdez, M.J. Gacto, F. Herrera</u>, Improving Fuzzy Logic Controllers Obtained by Experts: A Case Study in HVAC Systems. *Applied Intelligence*, <u>doi:10.1007/s10489-007-0107-6</u>, 31:1 (2009) 10-35.


- 2-tuples: label id. i and a displacement parameter $\alpha_i \in [-0.5, 0.5]$

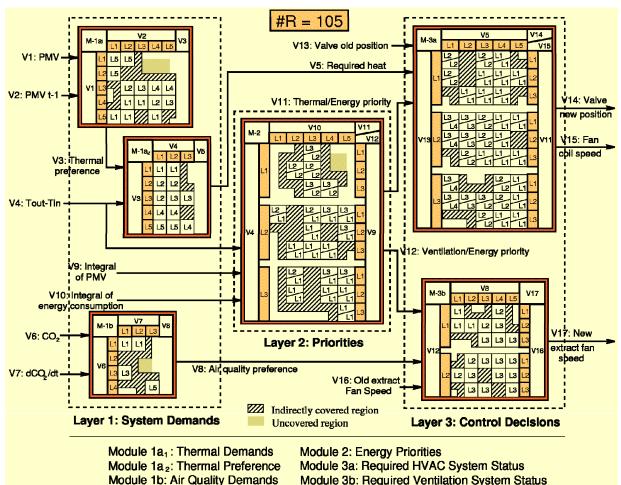
- New rule structure:

IF X₁ IS (S¹_i, α_1) AND ... AND X_n IS (Sⁿ_i, α_n) THEN Y IS (S^y_i, α_y)

GFS Models for Fuzzy Control of HVAC Systems: Genetic Lateral Tuning + Rule Selection (2)

Example of genetic lateral tuning and rule selection

GFS Models for Fuzzy Control of HVAC Systems: Genetic Lateral Tuning and Rule Selection


MODELS	#R	PMV>0.5	PMV<-0.5		C0 ₂		ENERGY		ESTABILITY	
		01	02		03		04	%	0 ₅	%
ON-OFF	-	0,0	0		0		3206400	-	1136	-
FLC	172	0,0	0		0		2901686	9,50	1505	-32,48
TUNING	172	0,0	0		0		2596875	19,01	1051	7,48
SELECTION	147	0,2	0		0		2867692	10,56	991	12,76
SEL + TUNING	109	0,1	0		0		2492462	22,27	989	12,94
SEL + WEIGHTS	102	0,7	0		0		2731798	14,80	942	17,08
GL 2	172	0,9	0		0		2268689	29,25	1080	4,93
LL 1	172	0,9	0		0		2386033	25,59	896	21,13
GL - S 1	105	1,0	0		0	I	2218598	30,81	710	37,50
GL - S 2	115	0,4	0		0	I	2358405	26,45	818	27,99
GL - S 3	118	0,8	0		0	Τ	2286976	28,68	872	23,24
LL – S 1	133	0,5	0		0		2311986	27,90	788	30,63
LL – S 2	104	0,6	0		0		2388470	25,51	595	47,62
LL – S 3	93	0,5	0		0	I	2277807	28,96	1028	9,51

GFS Models for Fuzzy Control of HVAC Systems: Genetic Lateral Tuning and Rule Selection

V16 V110.60 1.00 770.00 -1.00 100.00 860.00 0.00 V12V17 -0.20 0.20 0.00 1.00 100.00 0.02 0.00 3.00 0.00 100.00 -3 00 2.00 -3.00 V9**V14** GENESYS FLC V4DATA BASE 16.00 0.00 -15.00 15.00 0.00 100.00 V15 initial tuned 2.00 2000.00 10000.00 0.00 3.00 2.00

Tuned Data Base (GL-S₁):

GFS Models for Fuzzy Control of HVAC Systems: Genetic Lateral Tuning and Rule Selection

Selected Rule Base (GL-S₁):

GFS Models for Fuzzy Control of HVAC Systems

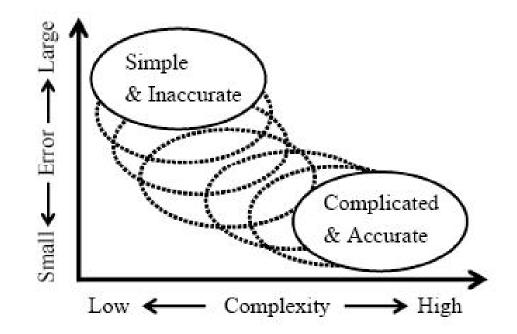
Bibliography

<u>R. Alcalá</u>, J.M. Benítez, <u>J. Casillas</u>, <u>O. Cordón</u>, R. Pérez, Fuzzy Control of HVAC Systems Optimized by Genetic Algorithms. *Applied Intelligence 18:2 (2003) 155-177*.

<u>R. Alcalá</u>, <u>J. Casillas</u>, <u>O. Cordón</u>, A. González, <u>F. Herrera</u>, A Genetic Rule Weighting and Selection Process for Fuzzy Control of Heating, Ventilating and Air Conditioning Systems. *Engineering Applications of Artificial Intelligence 18:3* (2005) 279-296.

R. Alcalá, J. Alcalá-Fdez, M.J. Gacto, F. Herrera, Improving Fuzzy Logic Controllers Obtained by Experts: A Case Study in HVAC Systems. *Applied Intelligence 31:1* (2009) 10-35.

M.J. Gacto, R. Alcalá, F. Herrera, A Multi-Objective Evolutionary Algorithm for an Effective Tuning of Fuzzy Logic Controllers in Heating, Ventilating and Air Conditioning Systems. *Applied Intelligence*, <u>doi: 10.1007/s10489-010-0264-x</u>, in press (2011)


An Example on the usefulness of MOGFSs: Improved results with more than 30% in Energy and more than 50% in Stability using an improved MOEA

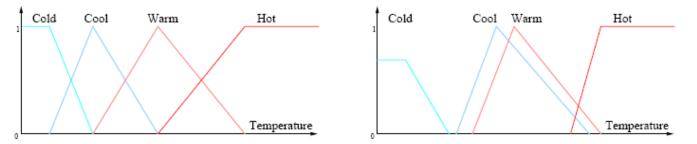
Contents

- 1. Basics on Genetic Fuzzy Systems (GFS)
 - Introduction to Genetic Fuzzy System Research
 - An Example on a Real Application
- 2. Interpretability-Accuracy Tradeoff of Fuzzy Systems: Two
 - contradictory objectives
 - Interpretability Issues in Fuzzy System Design
 - Applicability of MOGFSs to the I-A problem
- 3. Evolutionary Multiobjective Optimization (EMO)
 - Some Basic Concepts in Multiobjective Optimization
 - Framework of Evolutionary Multiobjective Optimization
- 4. Multiobjective Genetic Fuzzy Systems (MoGFS)
 - Overview of MoGFS Research (some representative examples)
 - New Research Directions in MoGFS

Interpretability Issues in Fuzzy System Design Complexity Criteria

Highly used criteria: Complexity criteria in the learning of FRBSs.

Number of variables, labels, rules, conditions ...

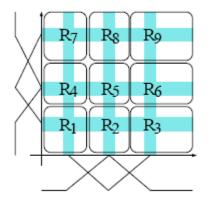

Interpretability Issues in Fuzzy System Design Semantic Criteria

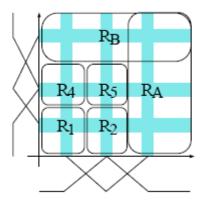
Interpretability quality: associated to the meaning of the labels and the size of the rule base

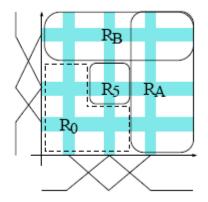
Interpretability considerations: semantic criteria

Semantics: the study of meanings

- Distinguishability: Each linguistic label has semantic meaning
- Number of elements: Compatible with human capabilities
- Coverage: Any element belongs to at least one fuzzy set
- Normalization: At least one element has unitary membership
- Complementarity: For each element, the sum of memberships is one

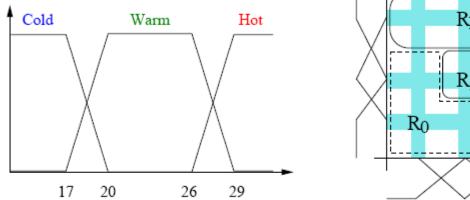

Interpretability Issues in Fuzzy System Design Syntactic Criteria

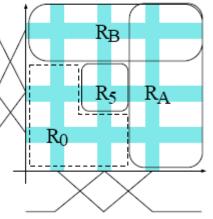

Interpretability quality: associated to the meaning of the labels and the size of the rule base


Interpretability considerations: syntactic criteria

Syntax: the way in which linguistic elements are put together

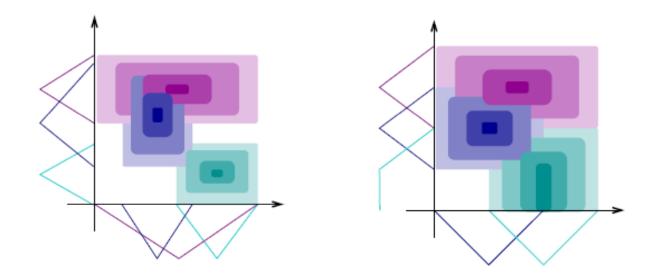
- Completeness: for any input, at least one rule must fire
- Rule-base simplicity: Set of rules as small as possible
- Rule readability: small number of conditions in rule antecedents
- Consistency: rules firing simultaneously must have similar consequents

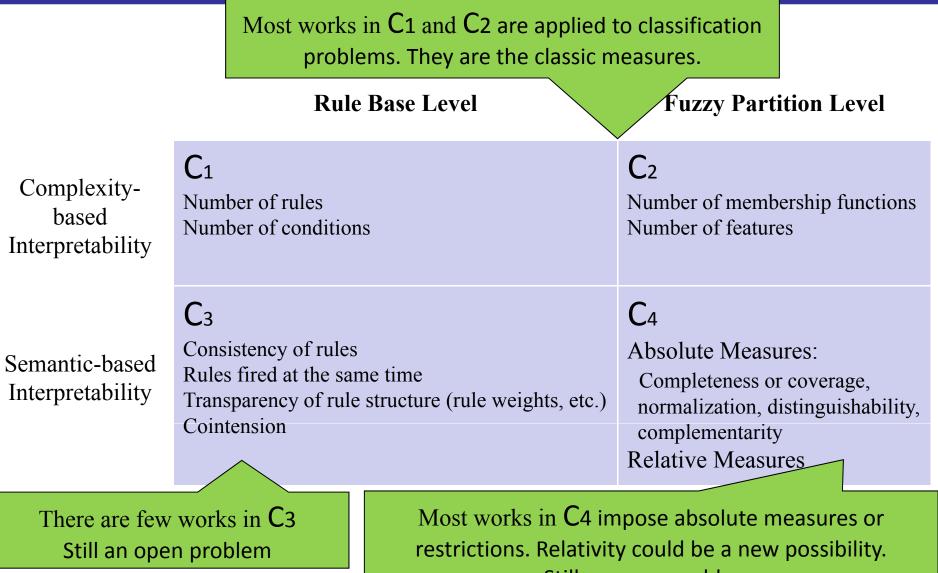



Interpretability Issues in Fuzzy System Design Strategies to Satisfy Interpretability

Interpretability quality: associated to the meaning of the labels and the size of the rule base

Strategies to satisfy interpretability criteria


- Linguistic labels shared by all rules
- Normal, orthogonal membership functions
- Don't care conditions


Interpretability Issues in Fuzzy System Design Still not Clear Concepts

Interpretability quality:

What is the most interpretable rule base?

A Taxonomy on the Existent Interpretability Measures for Linguistic FRBSs

Still an open problem.

A Taxonomy on the Existent Interpretability Measures for Linguistic FRBSs (2)

□ Interpretability of FRBSs is still an open problem since there is no single (or global) comprehensive measure to quantify the interpretability of linguistic models

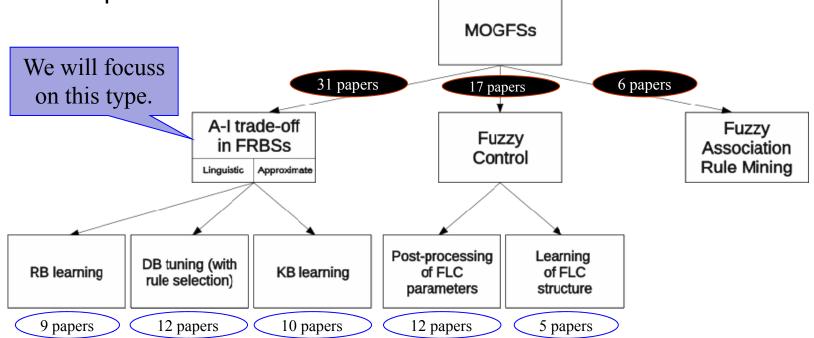
□ To get a good global measure it would be necessary to consider appropriate measures from all of the quadrants, in order to take into account the different interpretability properties required for these kinds of systems together.

M.J. Gacto, R. Alcalá, F. Herrera Interpretability of Linguistic Fuzzy Rule-Based Systems: An Overview on Interpretability Measures Information Sciences, doi: 10.1016/j.ins.2011.02.021, in press (2011) A thematic website is being developed to maintain this study at: <u>http://sci2s.ugr.es/</u> (under construction)

Applicability of MOGFSs to the I-A problem

□ The different measures from each quadrant could be optimized as different objectives within a multi-objective framework.

□ They are contradictory to some degree. Not only accuracy is contradictory to interpretability. The different measures represent different properties and requirements.


□ Together with accuracy, many interpretability objectives should be optimized at the same. Two different solutions:

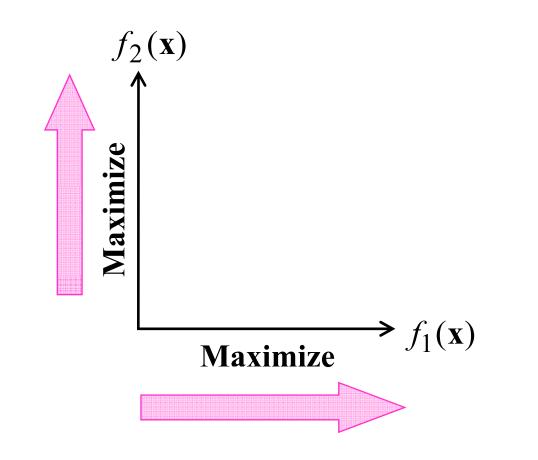
- Development of new EMO algorithms for many objective problems (incoming for future)
- By grouping complexity measures and semantic measures into two respective indexes.

(it would represent the present)

Applicability of MOGFSs to the I-A problem (2)

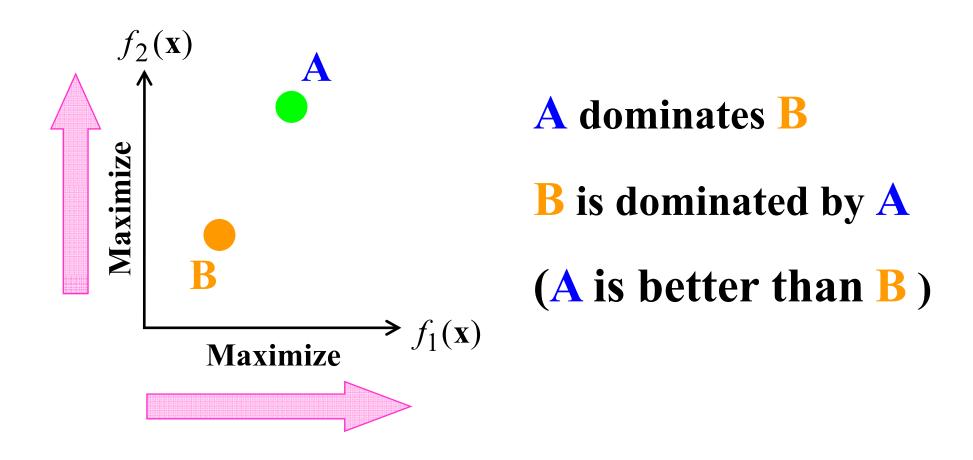
□ In fact, a revision on the application of MOGFSs indicates that most of the approaches have been applied to the Interpretability-accuracy trade-off problem.

Michela Fazzolari, Rafael Alcalá, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. *A review on the application of Multi-Objective Genetic Fuzzy Systems: current status and further directions*, in submission, 2011 (*Available soon*).

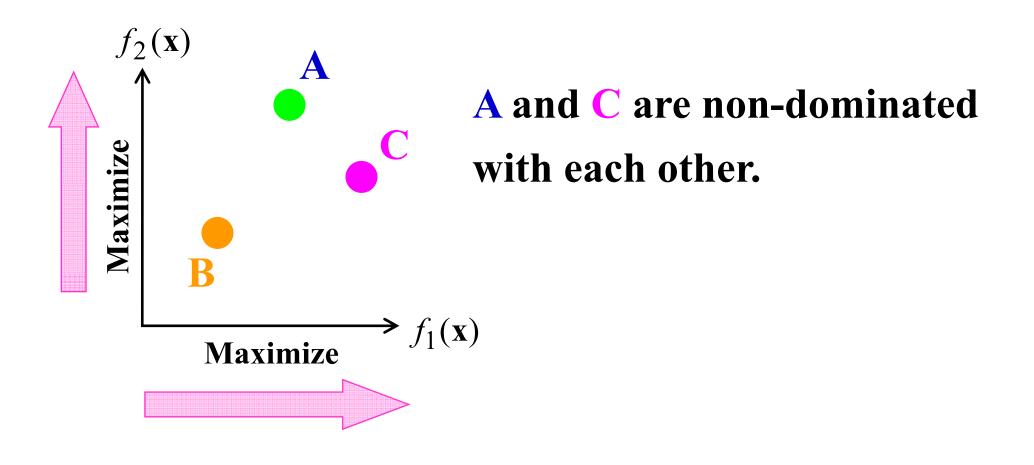

Contents

- 1. Basics on Genetic Fuzzy Systems (GFS)
 - Introduction to Genetic Fuzzy System Research
 - An Example on a Real Application
- **2.** Interpretability-Accuracy Tradeoff of Fuzzy Systems: *Two*
 - contradictory objectives
 - Interpretability Issues in Fuzzy System Design
 - Applicability of MOGFSs to the I-A problem
- 3. Evolutionary Multiobjective Optimization (EMO)
 - Some Basic Concepts in Multiobjective Optimization
 - Framework of Evolutionary Multiobjective Optimization
- 4. Multiobjective Genetic Fuzzy Systems (MoGFS)
 - Overview of MoGFS Research (some representative examples)
 - New Research Directions in MoGFS

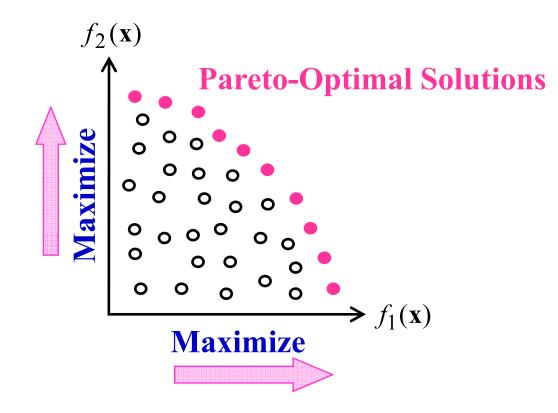
Multiobjective Optimization


Two-Objective Maximization Problem:

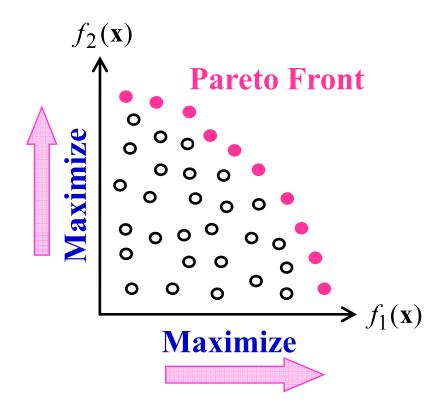
Maximize $f(x) = (f_1(x), f_2(x))$


Comparison between Two Solutions

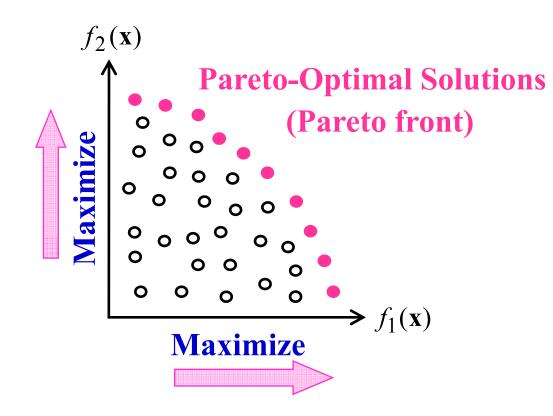
Maximize $f(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}))$


Comparison between Two Solutions

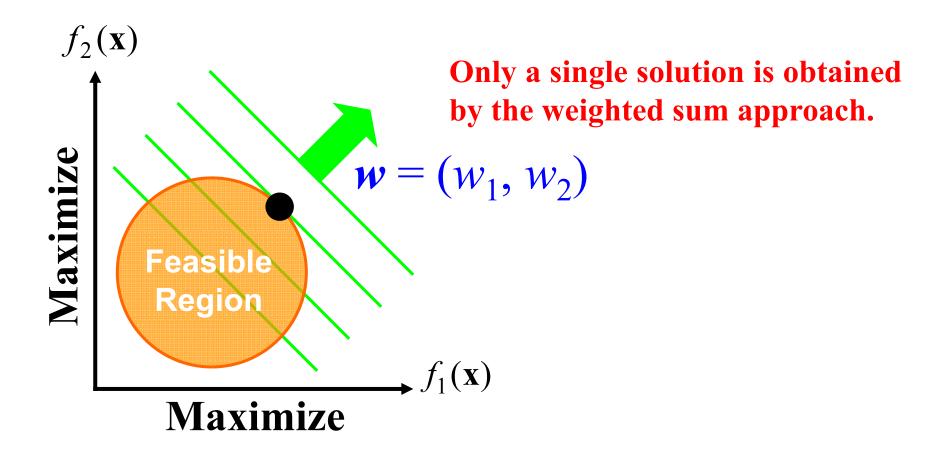
Maximize $f(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}))$


Pareto-Optimal Solutions

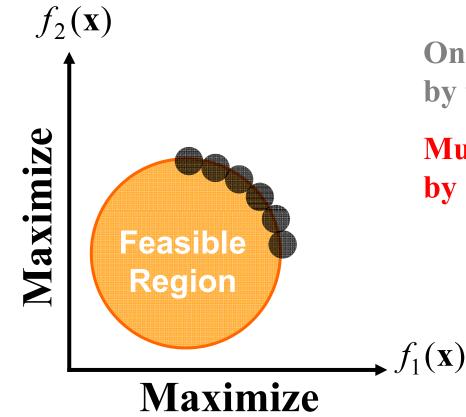
A Pareto-optimal solution is a solution that is not dominated by any other solutions.


Pareto Front

The set of all Pareto-optimal solutions is called the Pareto front of the problem.


EMO Algorithms

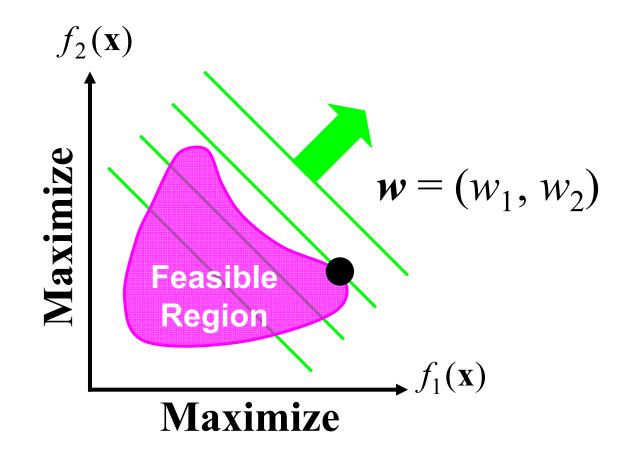
Evolutionary multiobjective optimization (EMO) algorithms have been designed to search for Pareto-optimal solutions in their single run.


Comparison: Weighted Sum Approach

Maximize
$$g(x) = w_1 f_1(x) + w_2 f_2(x)$$

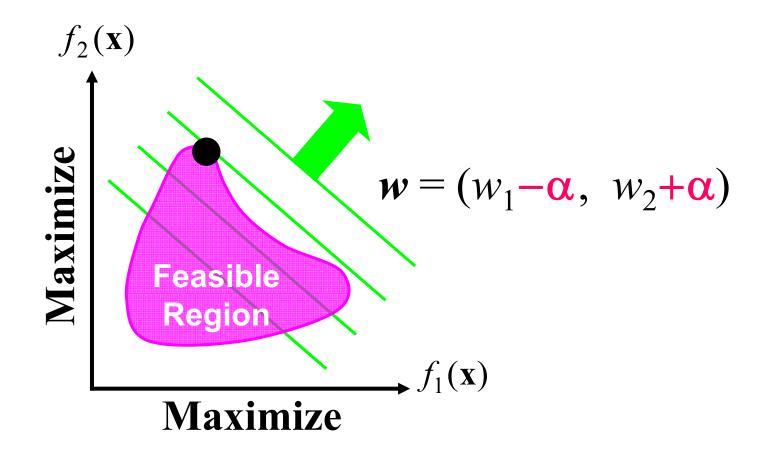
Comparison: EMO Approach

Maximize $f_1(x)$, $f_2(x)$

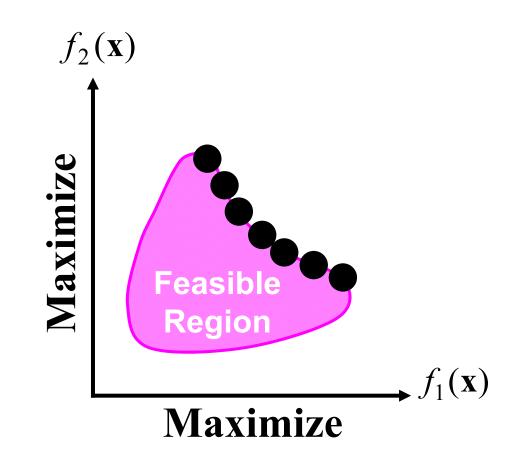


Only a single solution is obtained by the weighted sum approach.

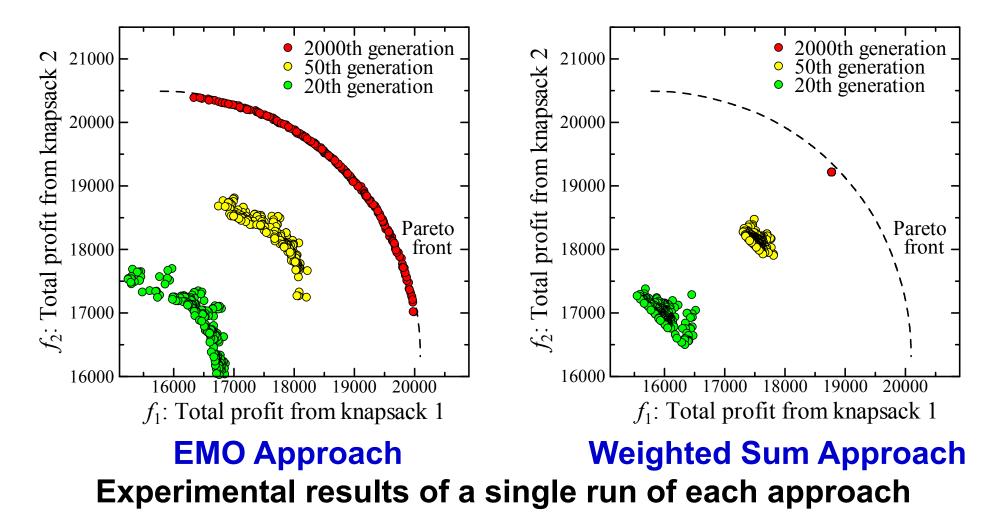
Multiple solutions are obtained by an EMO algorithm.


Difficulties in Weighted Sum Approach

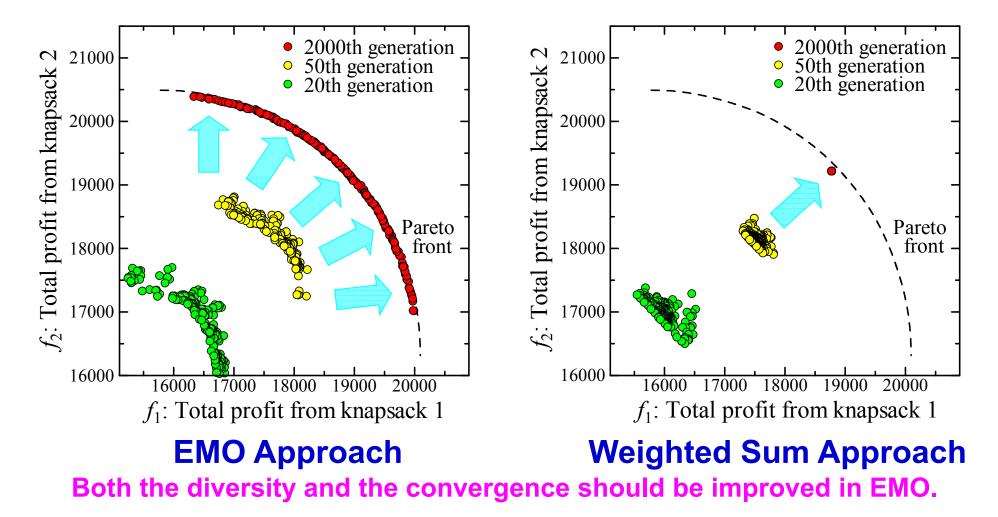
- This approach is sensitive to the weight vector specification.
- This approach can not find any Pareto-optimal solutions in a non-convex region of the Pareto front in the objective space.


Difficulties in Weighted Sum Approach

- This approach is sensitive to the weight vector specification.
- This approach can not find any Pareto-optimal solutions in a non-convex region of the Pareto front in the objective space.


EMO Approach

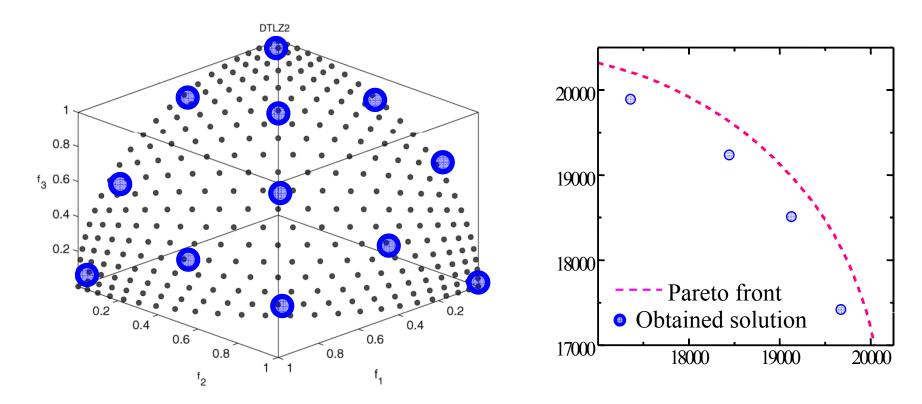
- EMO approach can find Pareto-optimal solutions even in a nonconvex region of the Pareto front in the objective space.


Comparison of the Two Approaches

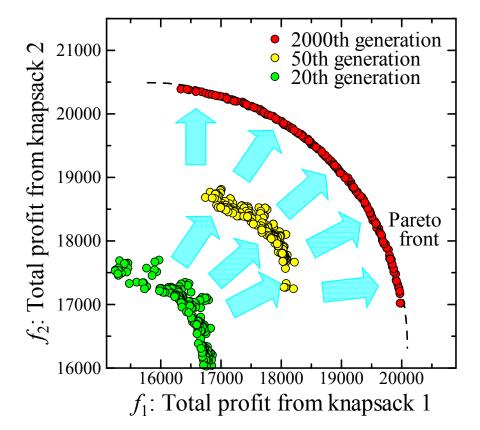
Two-objective maximization problem

Search Direction in Each Approach

Two-objective maximization problem


Highly Cited EMO Papers Two Dominant Algorithms: NSGA-II and SPEA

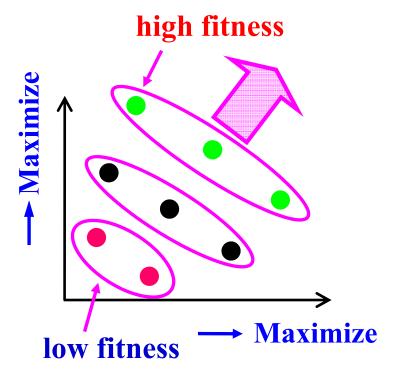
- 1. Deb K et al. (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE TEC. NSGA-II
- 2. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: A comparative case study and the Strength Pareto approach. *IEEE TEC*. SPEA (=> SPEA2 in TIK-Report)
- 3. Fonseca CM, Fleming PJ (1998) Multiobjective optimization and multiple constraint handling with evolutionary algorithms (Part I): A unified formulation, *IEEE SMC Part A*.
- 4. Zitzler E, Thiele L, Laumanns M (2003) Performance assessment of multiobjective optimizers: An analysis and review. *IEEE TEC*.
- 5. Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its application to flowshop scheduling, *IEEE SMC Part C*.


Goal of EMO Algorithms

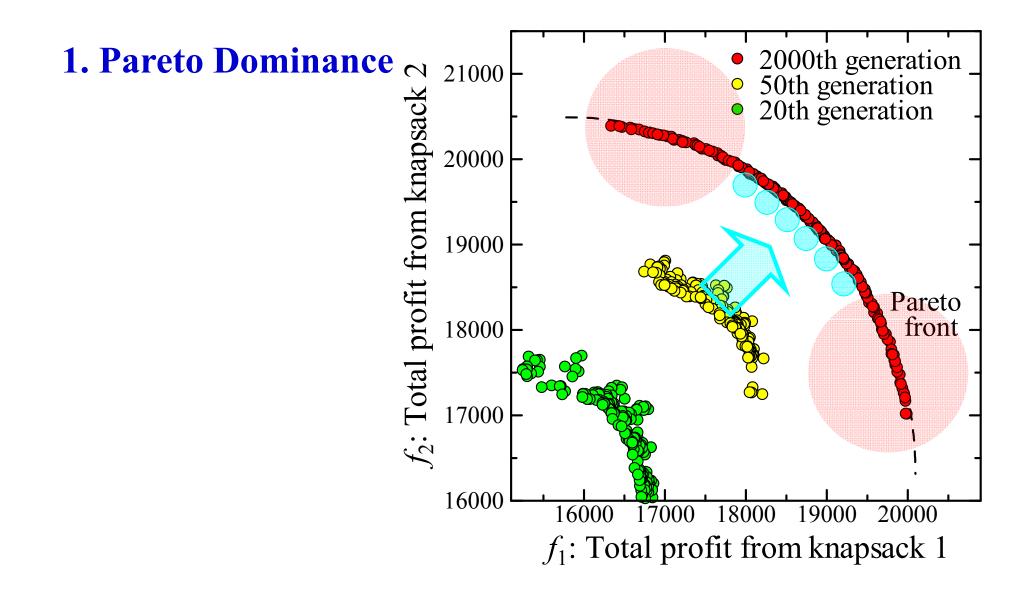
An EMO algorithm is designed to search for

- all Pareto-optimal solutions
- uniformly distributed Pareto optimal solutions
- a solution set which approximates the Pareto front in their single run.

Recently developed well-known EMO algorithms such as NSGA-II and SPEA2 have some common features.

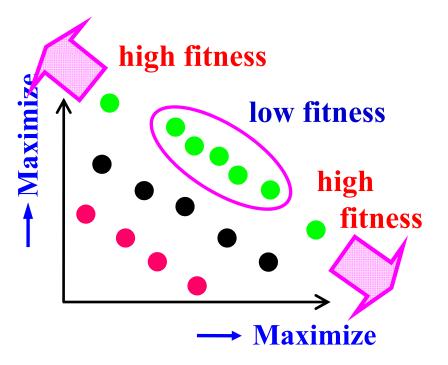


Desired search behavior of EMO algorithms

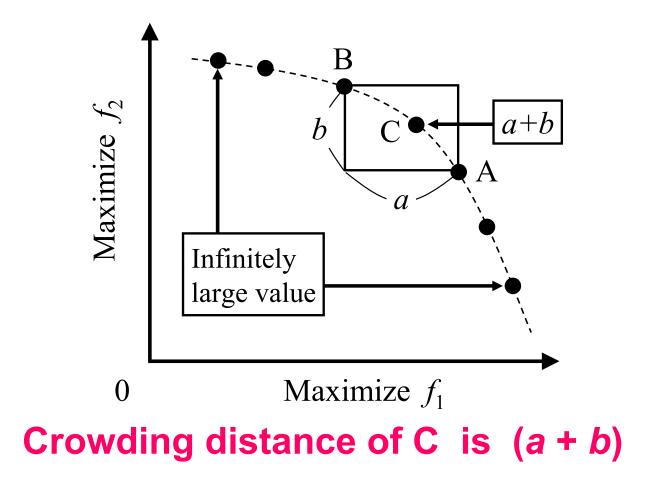

Recently developed well-known EMO algorithms such as NSGA-II and SPEA2 have some common features:

(1) Pareto Dominance

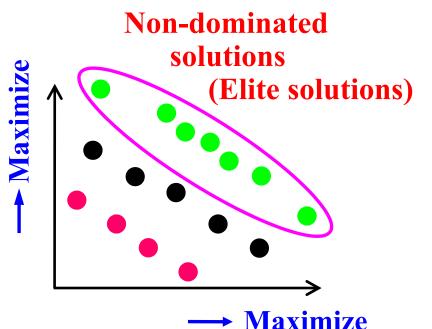
Converge to the Pareto front



Basic Ideas in Recent EMO Algorithms


Recently developed well-known EMO algorithms such as NSGA-II and SPEA2 have some common features:

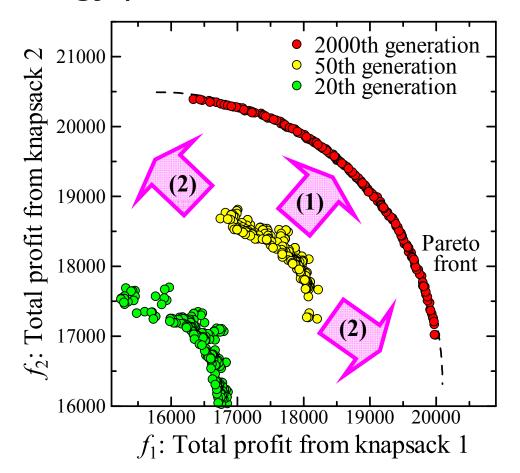
(1) Pareto Dominance
Converge to the Pareto front
(2) Crowding
Diversity maintenance


Example: Crowding Distance in NSGA-II

Distance between adjacent individuals

Recently developed well-known EMO algorithms such as NSGA-II and SPEA2 have some common features:

(1) Pareto Dominance
 Converge to the Pareto front
 (2) Crowding
 Diversity maintenance



(3) Elitist Strategy

Non-dominated solutions are handled as elite solutions.

Basic Ideas in Recent EMO Algorithms

(1) Pareto Dominance (Convergence to the Pareto front)
(2) Crowding (Diversity Maintenance)
(3) Elite Strategy (Non-Dominated Solutions)

Hot Issues in EMO Research

Utilization of Decision Maker's Preference

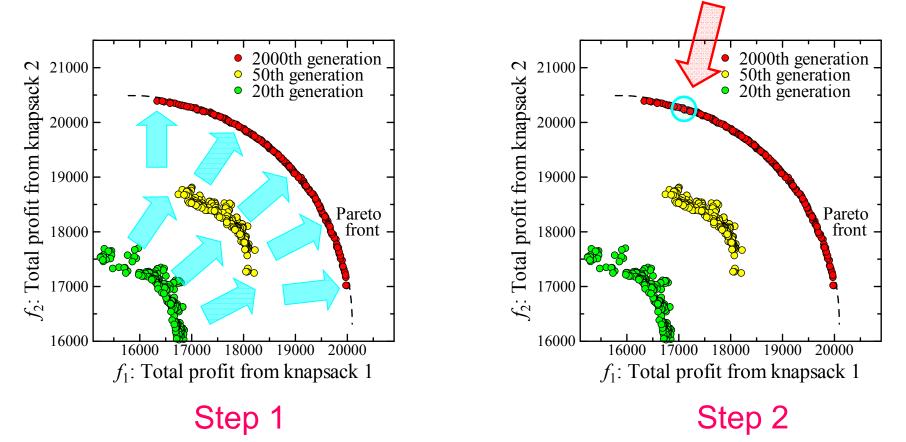
- Preference is incorporated into EMO algorithms.
- Interactive EMO approaches seem to be promising.

Handling of Many Objectives by EMO Algorithms

- Pareto dominance-based algorithms do not work well.
- More selection pressure is needed.

Hybridization with Local Search

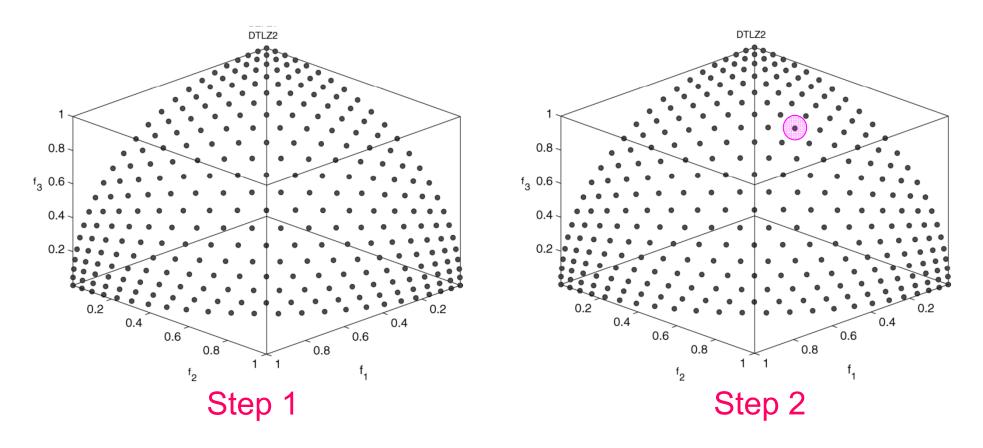
- Hybridization often improves the performance of EMO.
- Balance between local and genetic search is important.


Design of New EMO Algorithms

- Indicator-based EMO algorithms
- Scalarizing function-based EMO algorithms
- Use of other search methods such as PSO, ACO and DE.

Hot Issue: Preference Incorporation EMO Approach to Decision Making

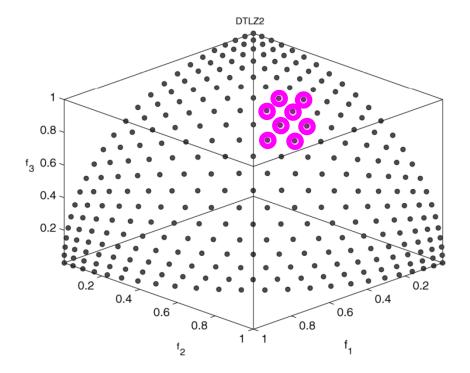
Step 1: Evolutionary multiobjective optimization ==> Many non-dominated solutions (Candidates).


Step 2: Choice of a single solution by the decision maker.

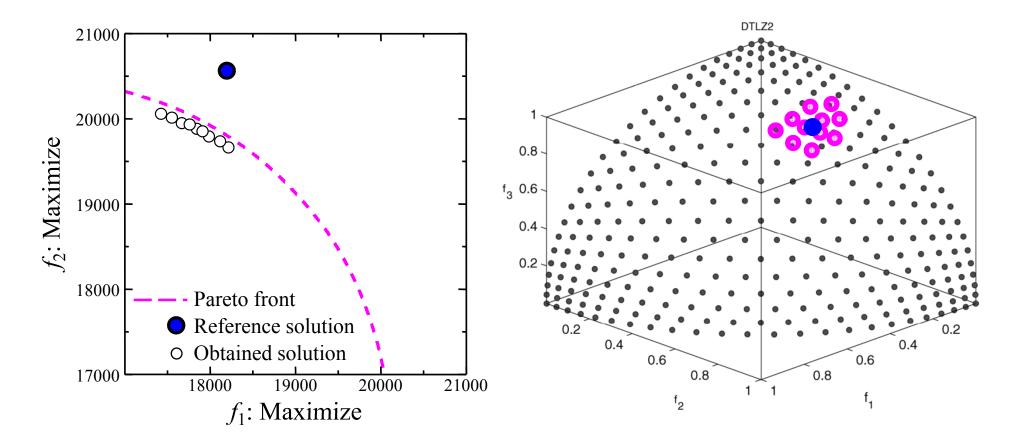
EMO Approach to Decision Making

Difficulty in Step 1: It is not always easy to find a set of nondominate solutions that covers the entire Pareto front.

Difficulty in Step 2: It is not always easy for the DM to choose a single solution form a large number of alternatives.

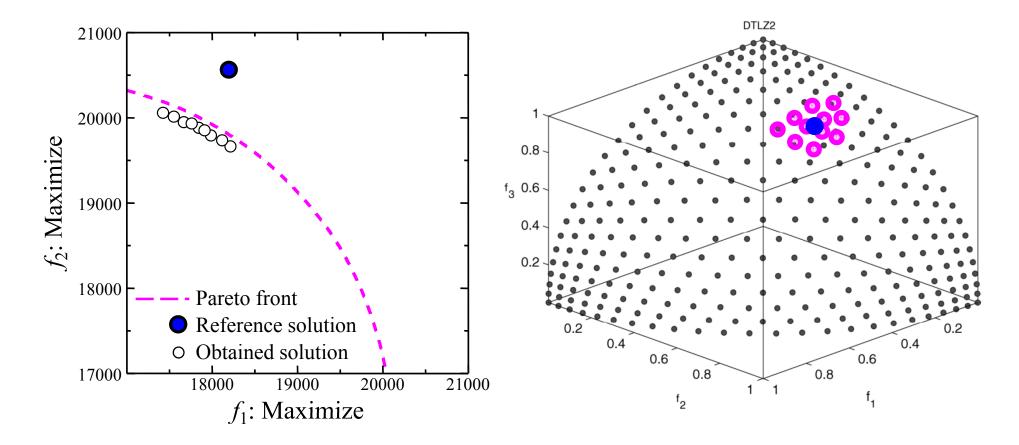


EMO Approach to Decision Making

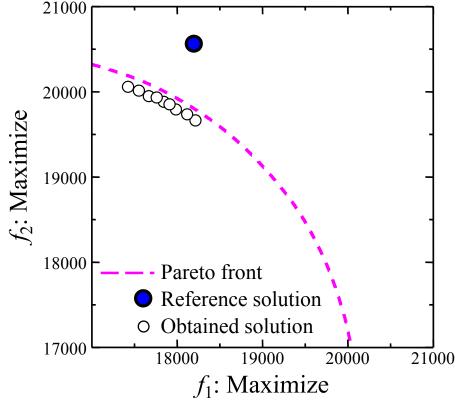

Difficulty in Step 1: It is not always easy to find a set of nondominate solutions that covers the entire Pareto front.

Difficulty in Step 2: It is not always easy for the DM to choose a single solution form a large number of alternatives.

One idea to tackle these two difficulties: To search for a small number of non-dominate solutions.



Utilization of Preference Information


Basic Idea: Concentration on the preferred region of the Pareto front. The decision maker is not always interested in all the Pareto-front.

Utilization of Preference Information

Difficulty: It is not easy to extract preference information from the decision maker (DM). It may be much simpler to compare different solutions. ==> Interactive Approaches.

Extraction of Preference Information

Preference Extraction

- (1) Relatively Easy Case
- Number of Objectives: Two
- Pareto Front: Known
- The DM knows the problem

(2) Very Difficult Case

- Number of Objectives: Many
- Pareto Front: Unknown
- The DM does not know the problem very well.

Example: Flight Tickets (Cost, # of Stops, Total Time)

Case 1: You are planning to buy a ticket to your home town. Case 2: You are planning to buy a ticket to Easter Island.

Another Hot Issue: Evolutionary Many-Objective Optimization

Why are many-objective problems difficult?

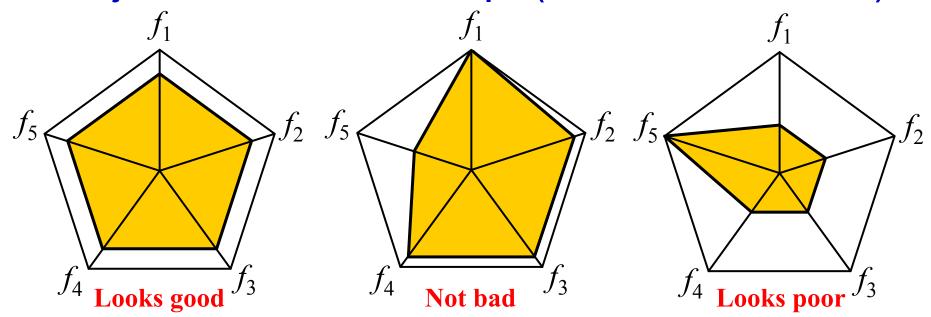
1. Many Objectives: Difficulty in Multiobjective Search

Selection pressure toward the Pareto front becomes very weak since almost all solutions are non-dominated.

2. Many Solutions: Difficulty in Approximation

A large number of non-dominated solutions are needed to approximate the entire Pareto front.

3. Many Solutions with Many Objectives: Presentation


It is very difficult to present a large number of obtained solutions in the high-dimensional object space to the decision maker in a visually understandable manner.

Difficulties in Many-Objective Optimization

Q. Why are many-objective problems hard for EMO ?

A. Solutions with many objectives are usually non-dominated with each other. This means very low selection pressure toward the Pareto front in Pareto dominance-based EMO.


Five-Objective Maximization Example (Non-dominated Vectors)

Difficulties in Many-Objective Optimization

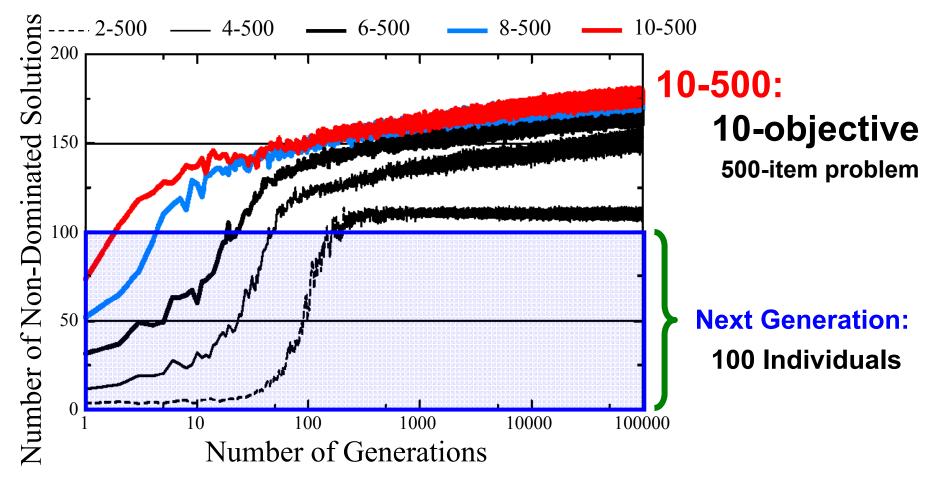
Percentage of Non-Dominated Vectors

We randomly generate vectors in a *k*-dimensional space.

Experimental Results of NSGA-II

Standard Implementation of NSGA-II

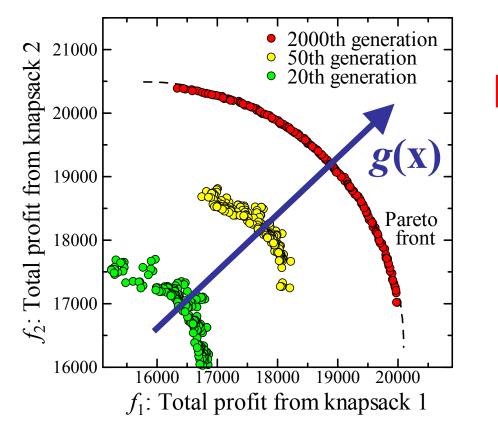
Generation Update: (100 + 100) ES


Current Population: 100 Individuals Offspring Population: 100 Individuals Next Population: The best 100 individuals from the current population and the offspring population.

Fitness Evaluation: 1st Criterion: Pareto Dominance 2nd Criterion: Crowding Distance

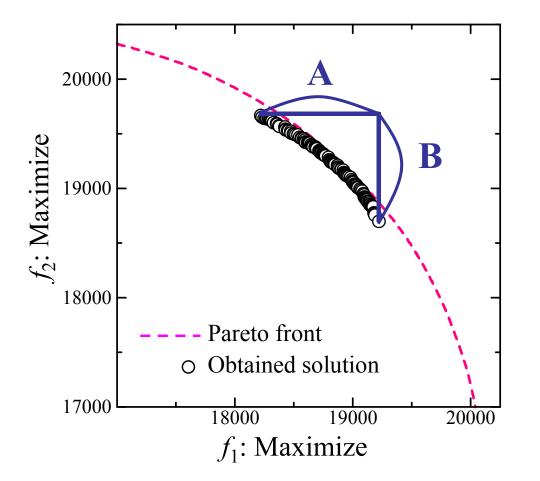
Test Problems

k-objective 500-item knapsack problems (*k*-500 problem) k = 2, 4, 6, 8, 10

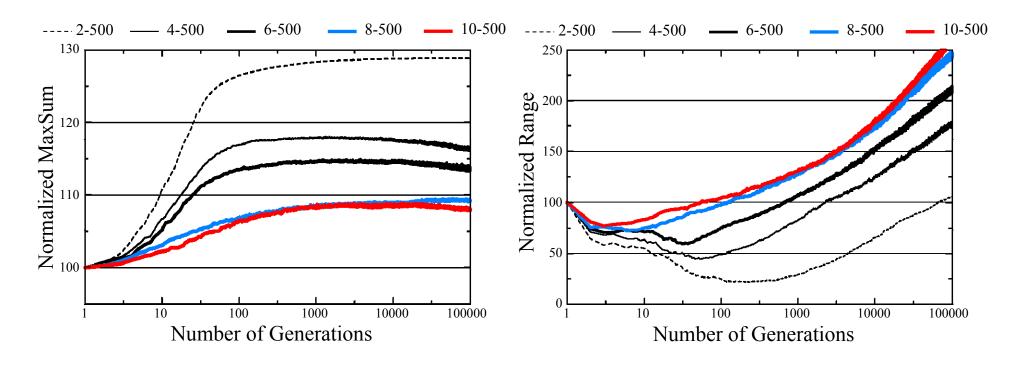

Number of Non-Dominated Solutions (Among 200 solutions before the generation update in NSGA-II)

All individuals are non-dominated solutions after a few generations (10-500 problem) and after about 200 generations (2-500 problem).

Very Simple Measure of Convergence


The sum of the given objectives: $g(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x})$

 $MaxSum = Max \{g(\mathbf{x})\}$

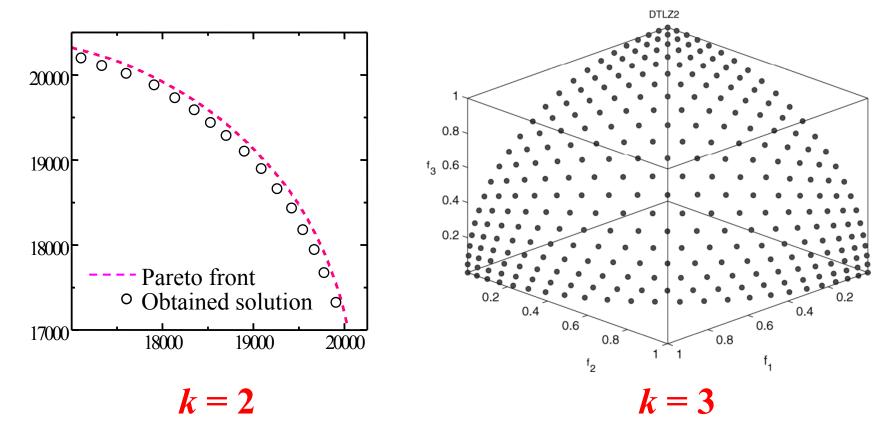

Very Simple Measure of Diversity

Range Measure

Range = A + B

Experimental Results of NSGA-II

MaxSum: Convergence

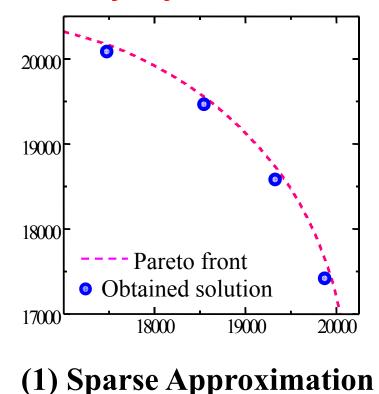

Range: Diversity of solutions

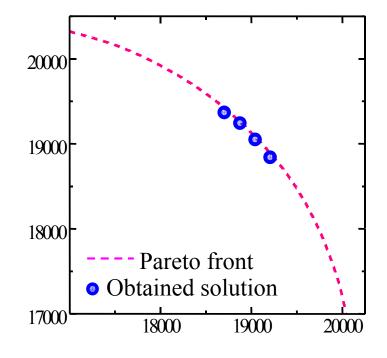
Observation: Only the convergence was improved in the early generations. After that, only the diversity was improved.

Approximation of the Pareto Front

Q:How many non-dominated solutions are needed to approximate the entire Pareto-front of the k-objective problem? (k = 2, 3, 4, ...)

A: Huge when k is large (It exponentially increases with k)

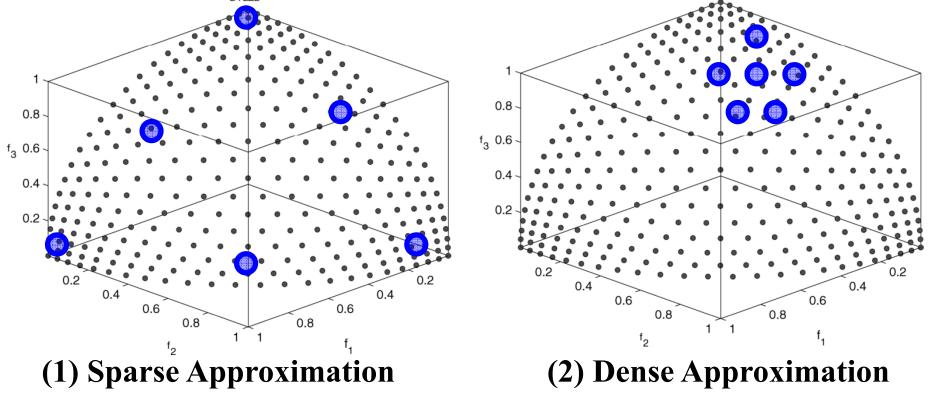



Approximation with Finite Solutions

Two Strategies for Many-Objective Problems

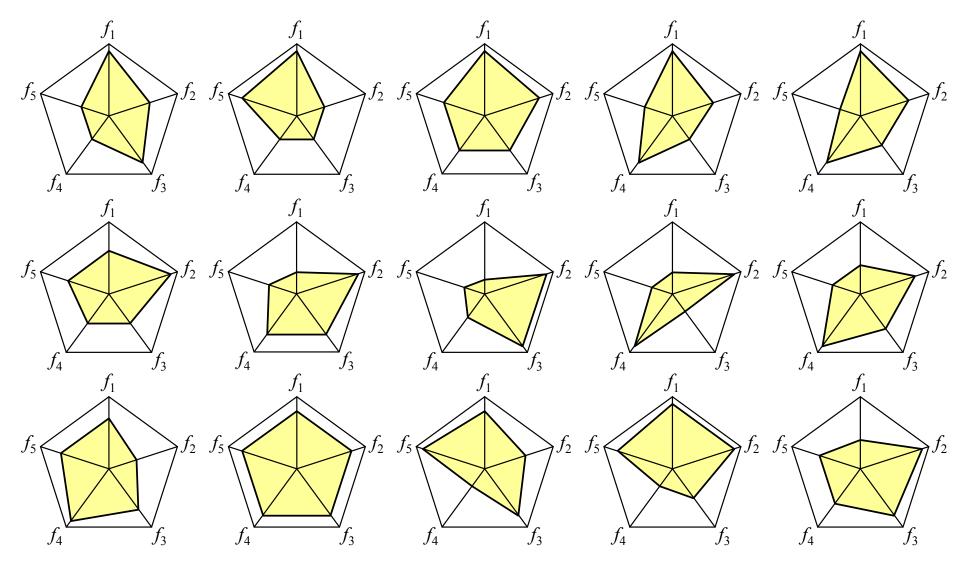
(1) Sparse approximation of the entire Pareto front.(2) Dense approximation of only a part of the Pareto front.

Dense approximation of the entire Pareto front is impossible in the case of many objectives.


(2) Dense Approximation

Approximation with Finite Solutions

Two Strategies for Many-Objective Problems


(1) Sparse approximation of the entire Pareto front.(2) Dense approximation of only a part of the Pareto front.Dense approximation of the entire Pareto front is impossible in the

case of many objectives.

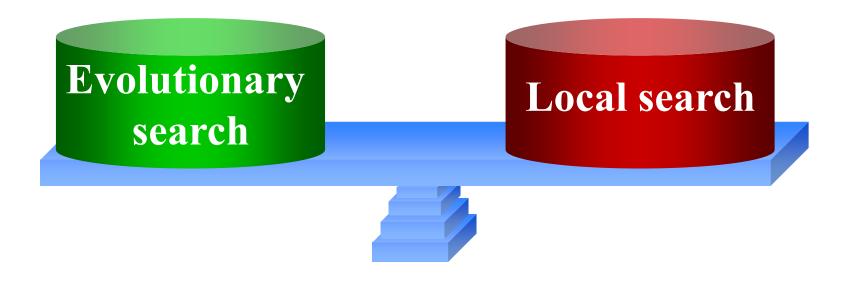
Handling of Obtained Solutions

Difficulty: How to show a large number of non-dominated solutions.

Another Hot Issue: Hybridization Multiobjective Memetic Algorithm (MOMA)

Powerful Approach to Single-Objective Optimization: MA

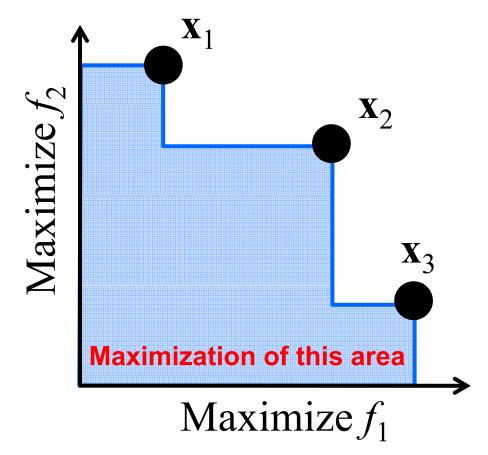
Multiobjective Memetic Algorithm: MOMA



Design of MA and MOMA

One important implementation issue:

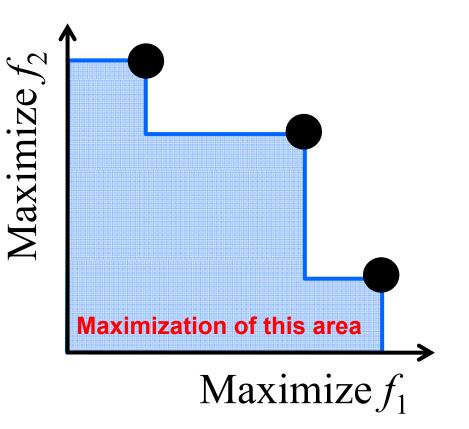
Specification of the balance between evolutionary search and local search (or its dynamic adaptation).


Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. *IEEE Trans. on Evolutionary Computation.*

New Trend in EMO Algorithm Design IBEA: Indicator-Based Evolutionary Algorithm

Basic Idea

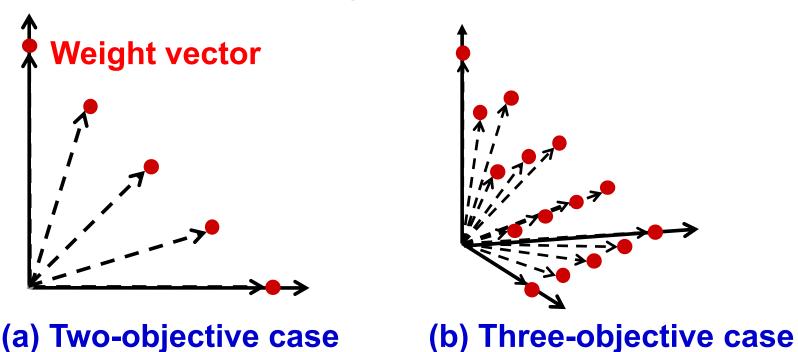
To maximize a performance indicator of a solution set (not a solution): Hypervolume is often used.

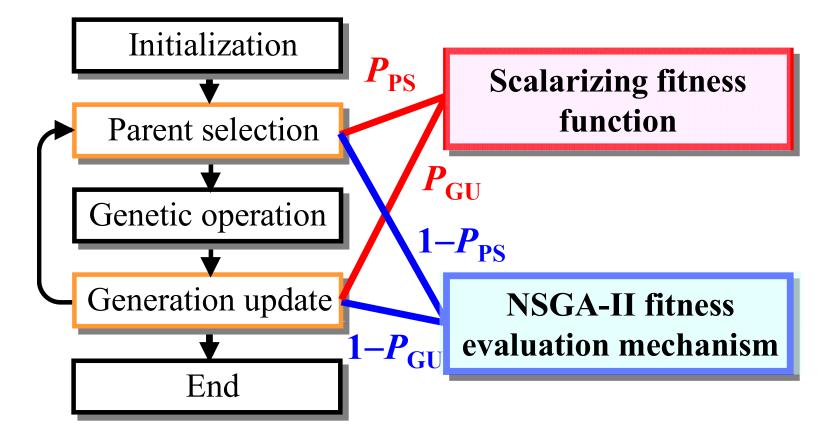


New Trend in EMO Algorithm Design IBEA: Indicator-Based Evolutionary Algorithm

Maximize I(S) (Maximization of an Indicator Function) subject to $|S| \le N$ where $S \subset \{x \mid x \in X\}$

S: A set of solutions N: A pre-specified number of required solutions


X: A feasible region


New Trend in EMO Algorithm Design MOEA/D: Use of Scalarizing Functions

MOEA/D: Multi-objective evolutionary algorithm based on decomposition by Zhang and Li (IEEE TEC 2007)

Its Basic Idea (Decomposition): A multi-objective problem is handled as a set of scalarizing function optimization problems with different weight vectors.

New Trend in EMO Algorithm Design Hybrid Method: Use of Scalarizing Functions

Probability for scalarizing fitness functions:

Parent selection: P_{PS} Generation update: P_{GU}

Ishibuchi et al. (PPSN 2006)

New Trend in EMO Algorithm Design Use of Other Meta-Heuristics (PSO, ACO, etc.)

Highly Cited Papers

- [1] Coello CAC, Pulido GT, Lechuga MS (2004) Handling Multiple Objectives with Particle Swarm Optimization, IEEE TEC
- [2] McMullen PR (2001) An Ant Colony Optimization Approach to Addressing a JIT Sequencing Problem with Multiple Objectives, Artificial Intelligence in Engineering
- [3] Ray T, Liew KM (2002) A Swarm Metaphor for Multiobjective Design Optimization, Engineering Optimization
- [4] Li XD (2003) A Non-Dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization, GECCO 2003.
- [5] Ho SL et al. (2005) A Particle Swarm Optimization-Based Method for Multiobjective Design Optimizations, IEEE Trans. on Magnetics

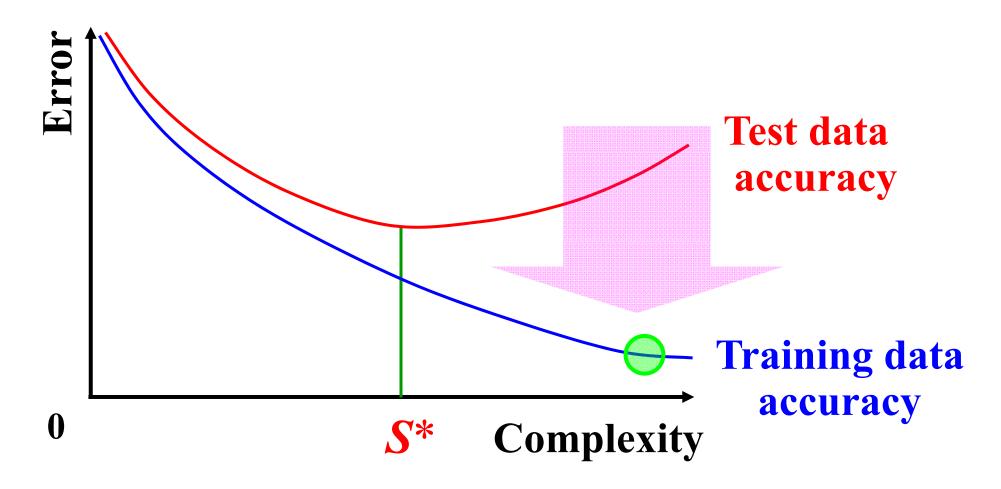
For More Information Webpage for EMO Papers: EMOO

🖉 EMOO Home Page – Windows Internet Explorer	
😋 👽 🖉 http://www.lania.mx/~ccoello/EMOO/	
: ファイル(E) 編集(E) 表示(V) お気に入り(A) ツール(D) ヘルプ(H)	
🔶 🏈 EMOO Home Page	
ENOO Neb page	
Complete List of Re in alphabetical	ferences order

http://www.lania.mx/~ccoello/EMOO/

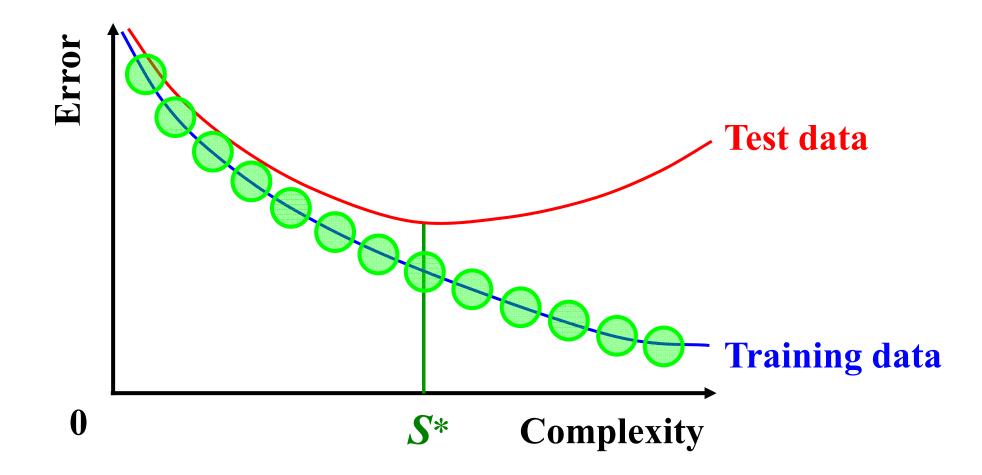
For More Information Webpage for EMO Algorithms and Problems: PISA

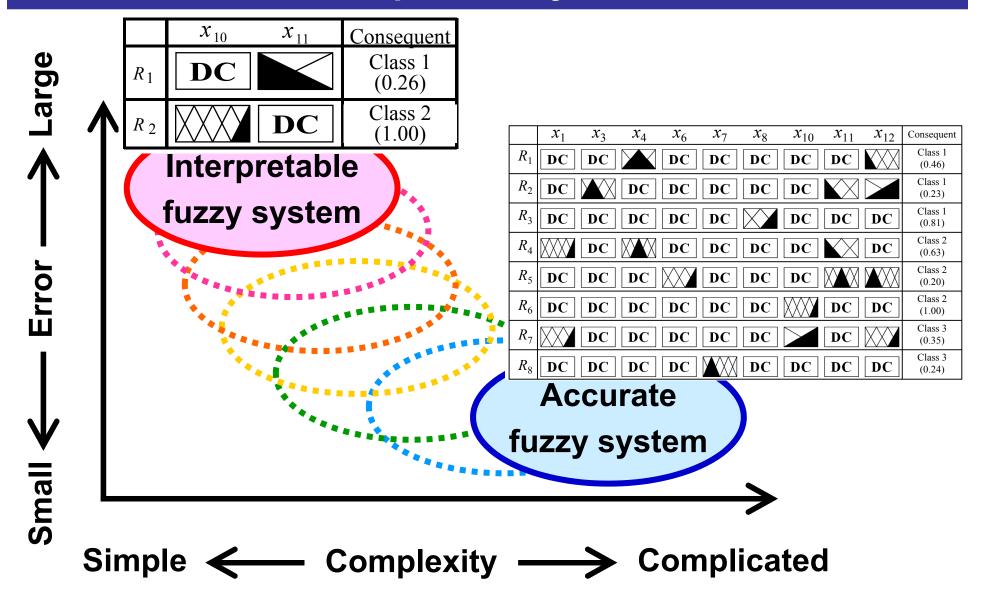
SOP http://www.tik.ee.ethz.ch/sop/pis	sa/ 🔹 🚱 🔀 Live Search	
Pイル(E) 編集(E) 表示(V) お気に入り(A) ツール(D)		
SOP ETH - SOP - PISA		
	European Operation	
ETH	Systems Optimization	
Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	News & Events Contact	
survey received institute of receiving y current	About Us People Search GO	
	Research	
	Education	
	Publications	
	Downloads/Materials	
ETH Zürich - D-ITET - TIK - SO	OP - PISA	
	ā	
	PISA	
PISA		
Principles and Documentation		
Principles and Documentation	A Platform and Programming Language	TOP
Principles and	A Platform and Programming Language Independent Interface for Search	TOP
Principles and Documentation	A Platform and Programming Language	


Contents

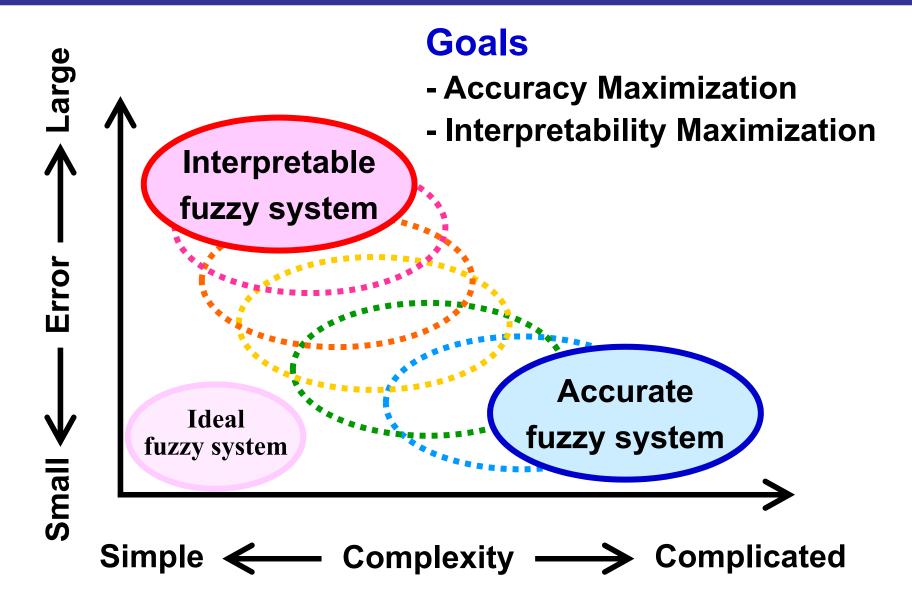
- 1. Basics on Genetic Fuzzy Systems (GFS)
 - Introduction to Genetic Fuzzy System Research
 - An Example on a Real Application
- **2.** Interpretability-Accuracy Tradeoff of Fuzzy Systems: *Two*
 - contradictory objectives
 - Interpretability Issues in Fuzzy System Design
 - Applicability of MOGFSs to the I-A problem
- 3. Evolutionary Multiobjective Optimization (EMO)
 - Some Basic Concepts in Multiobjective Optimization
 - Framework of Evolutionary Multiobjective Optimization
- 4. Multiobjective Genetic Fuzzy Systems (MoGFS)
 - Overview of MoGFS Research (some representative examples)
 - New Research Directions in MoGFS

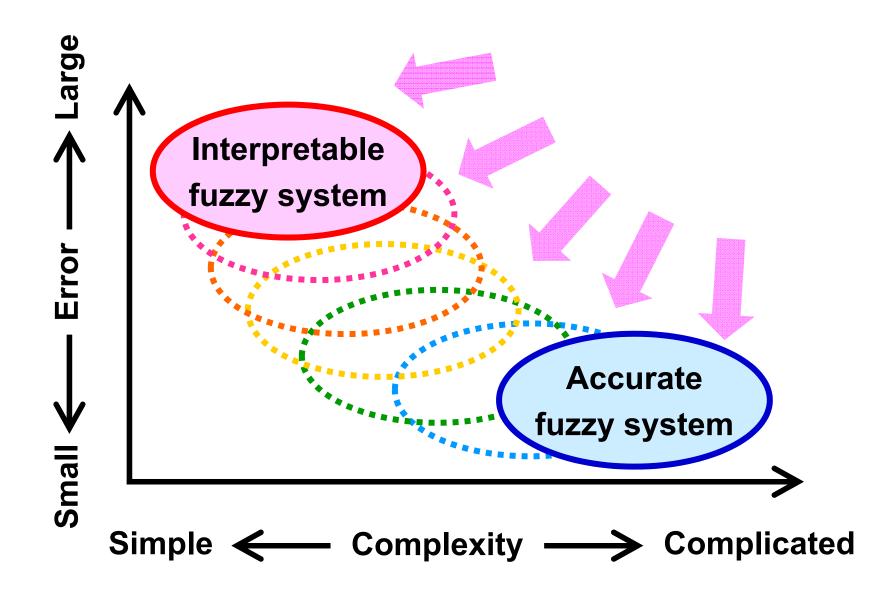
Main Motivations for MoGFSs Overfitting and Poor Interpretability

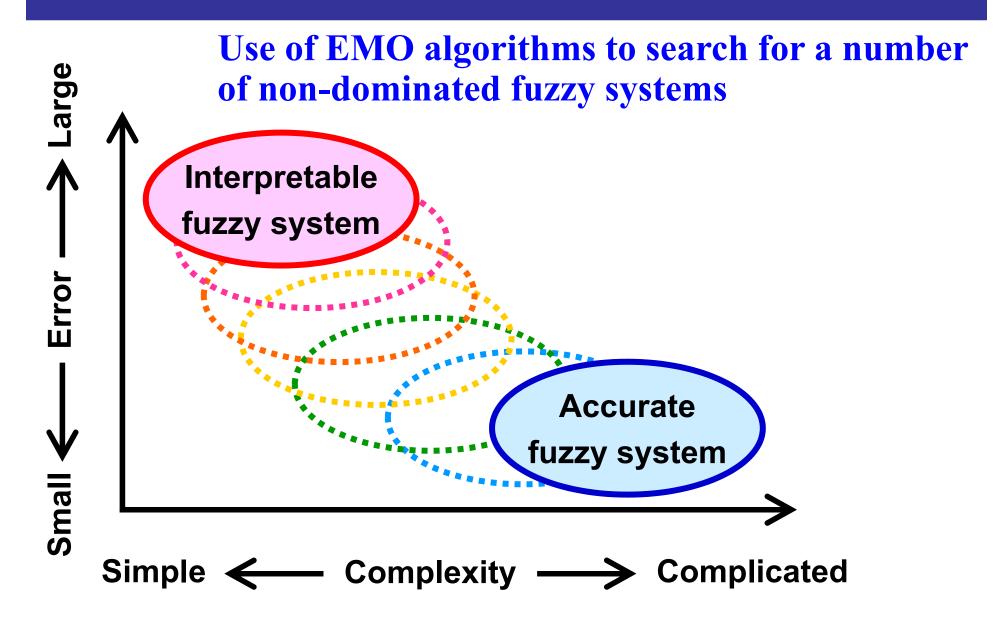

Accuracy maximization

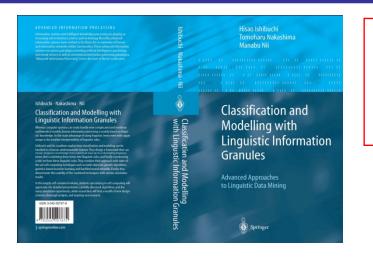


Multiobjective Design of Fuzzy Systems


Many non-dominated fuzzy systems can be obtained along the tradeoff surface by a single run of an EMO algorithm.


Main Motivations for MoGFSs Deterioration in Interpretability


Current Trend in Fuzzy System Design Multiobjective Fuzzy System Design (Late 1990s -)


Direction of Fuzzy System Research Multiobjective Fuzzy System Design (Late 1990s -)

Multiobjective Design of Fuzzy Systems

Multiobjective Genetic Fuzzy Systems Bibliography

H. Ishibuchi, T. Nakashima, M. Hii. Classification and Modelling with Linguistic Information Granules. Advanced Approaches to Linguistic Data Mining. Springer-Verlag, 2004.

Jin, Yaochu (Ed.) Multi-Objective Machine Learning Springer-Verlag, 2006

Literature (http://www.keel.es) Multiobjective Genetic Algorithms and Rule Learning

http://sci2s.ugr.es/keel/specific.php?area=44

Highly Cited MoGFS Papers

- [1] Ishibuchi et al. (1997) Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems. *Fuzzy Sets & Systems.*
- [2] Ishibuchi et al. (2001) Three-objective genetics-based machine learning for linguistic rule extraction. *Information Sciences.*
- [3] Ishibuchi & Yamamoto (2004) Fuzzy rule selection by multiobjective genetic local search algorithms and rule evaluation measures in data mining. *Fuzzy Sets & Systems*.
- [4] Wang et al. (2005) Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. *Fuzzy Sets & Systems*.
- [5] Johansen & Babuska (2003) Multiobjective identification of Takagi-Sugeno fuzzy models. *IEEE TFS*.

Different Models of Multiobjective GFSs Bibliography on Interpretability/Accuracy

	A-I trade-off		FRBS ap	proach	(Objectives	MOEA			
	Authors	Year	Rules	Type	#Obj.	Type	Name	Gen.	Type	Problem type
	Ishibuchi et al.	1997, 1998	MAM.	LING.	2	A+C	NoN.	1st	Ν	CLAS.
ø	Ishibuchi et al.	2001	MAM.	LING.	3	A+C+C	GBML	1st	N	CLAS.
NIN N	Ishibuchi et al.	2004	MAM.	LING.	3	A+C+C	MOGLS	1st	N	CLAS.
(R.)	Setzkorn et al.	2005	MAM.	LING.	3	A+C+C	NoN.	2nd	Ι.	CLAS.
RB LEARNING	Ishibuchi et al.	2006	MAM.	LING.	2	A+C	NSGA-II	2nd	G	CLAS.
	Ishibuchi et al.	2007	MAM.	LING.	3	A+C+C	GBML	2nd	Ι†	CLAS.
E.	Cococcioni et al.	2007	MAM.	LING.	2	A+C	(2+2)M-PAES	2nd	I *	Reg.
	Xing et al.	2007	TSK	Ling. *	2	A+C	PMOCCA	2nd	N	Reg., Ts.
	Ducange et al.	2010	MAM.	LING.	3	A+A+C	NSGA-II	2nd	G	IMB. CLAS.
	Wang et al.	2005	TSK	Ling. *	5	A+C+C+S+S	MOHGA	1st	Ιo	Reg.
SELECT.)	Alcalá et al.	2007	MAM.	LING.	2	A+C	$SPEA2_{ACC}$	2nd	Ι.	Reg.
E	Gonzalez et al.	2007	TSK	Approx.	2	A+C	NoN.	2nd	Ιţ	Reg.
	Gomez et al.	2007	TSK	Approx.	4	A+C+C+S	MONEA	2nd	N	Reg.
EB	Pulkkinen et al.	2008	MAM.	Ling.	3	A+C+C	NSGA-II	2nd	G	CLAS.
g (+rule	Pulkkinen et al.	2008	MAM.	LING.	3	A+A+S	NSGA-II	2nd	G	CLAS.
	Guenounou et al.	2009	TSK	LING. *	2	A+C	NSGA-II	2nd	G	REG.
	Gacto et al.	2009	MAM.	LING.	2	A+C	VARIOUS	2nd	G	REG.
TUNING	Botta et al.	2009	MAM.	LING.	2	A+S	NSGA-II	2nd	G	Reg.
Ē	Marquez et al.	2009	MAM.	LING.	2	A+C	VARIOUS	2nd	I †•	Reg.
DBJ	Marquez et al.	2010	MAM.	LING.	3	A+C+S	NoN.	2nd	I †	Reg.
ā	Gacto et al.	2010	MAM.	Ling.	3	A+C+S	SPEA2-SI	2nd	Ι.	Reg.
	Cordón et al.	2003	MAM.	Ling.	2	A+C	NoN.	1st	Ν	CLAS.
c	Alcalá et al.	2009	MAM.	Ling.	2	A+C	(2+2)M-PAES	2nd	Ι×	Reg.
NIN	Antonelli et al.	2009	MAM.	LING.	2	A+C	(2+2)M-PAES	2nd	Ι×	Reg.
R	Antonelli et al.	2009	MAM.	LING.	2	A+C	(2+2)M-PAES	2nd	Ι×	Reg.
LEARNING	Casillas et al.	2009	DNF-RULES	LING.	2	A+C	NoN.	2nd	I †	Reg.
E E	Pulkkinen et al.	2010	MAM.	Ling.	2	A+C	NoN.	2nd	I †	Reg.
X	Alcalá et al.	2010	MAM.	LING.	3	A+C+C	NSGA-II	2nd	g	CLAS.
	Antonelli et al.	2011	MAM.	LING.	3	A+C+S	(2+2)M-PAES	2nd	Ĭ *	Reg.
	Antonelli et al.	2011	MAM.	LING.	2	A+(C+S)	(2+2)M-PAES	2nd	I *	REG.
	Alcalá et al.	2011	MAM.	LING.	2	A+C	NoN.	2nd	Ι†	Reg.

MAM. = Mamdani, TSK = Takagi-Sugeno-Kang, LING. = Linguistic, APPROX. = Approximate, *In the antecedent; A = Accuracy, C = Complexity, S = Semantic aspects;

NoN. = No name, N = New algorithm, I = Improved version, G = General use;

CLAS. = Classification, REG. = Regression, TS. = Time Series, IMB. = Imbalanced;

 $\dagger NSGA-II$ based, $\star PAES$ based, $\circ MOGA$ based, $\bullet SPEA2$ based.

- Most of them are based on 2nd gen. MOEAs
- Usually no more than 3 objectives
- Complexity at the beginning; Semantic aspects in the last years
- Most of them are Linguistic and Mamdani type based approaches
- KB learning in the last years (granularity as important factor)
- Most of them are improved versions of the most known MOEAs (particularly in the case of KB learning)

Michela Fazzolari, Rafael Alcalá, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. *A review on the application of Multi-Objective Genetic Fuzzy Systems: current status and further directions*, in submission, 2011.

Different Models of Multiobjective GFSs Bibliography on Interpretability/Accuracy

	A-I trade-off		FRBS ap	proach	(Objectives	MOI	EA		
	Authors	Year	Rules	Type	#Obj.	Туре	Name	Gen.	Type	Problem type
	Ishibuchi et al.	1997,1998	Mam.	LING.	2	A+C	NoN.	1st	N	CLAS.
0	Ishibuchi et al.	2001	Mam.	LING.	3	A+C+C	GBML	1st	N	CLAS.
LEARNING	Ishibuchi et al.	2004	Mam.	LING.		A+C+C	MOGLS	1st	N	CLAS
B	Setzkorn et al.	2005	Mam.	Ling.	3	A+C+C	NoN.	2nd	Ι.	CLAS.
Ē	Ishibuchi et al.	2006	MAM.	LING.	2	A+C	NSGA-II	2nd	G	CLAS.
B	Ishibuchi et al.	2007	MAM.	LING.	3	A+C+C	GBML	2nd	I†	CLAS.
2	Cococcioni et al.	2007	MAM.	LING.	2	A+C	(2+2)M-PAES	2nd	I *	Reg.
	Xing et al.	2007	TSK	Ling. *	2	A+C	PMOCCA	2nd	N	Reg., Ts.
	Ducange et al.	2010	MAM.	LING.	3	A+A+C	NSGA-II	2nd	G	IMB. CLAS.
	Wang et al.	2005	TSK	Ling. *	5	A+C+C+S+S	MOHGA	1st	Ιo	Reg.
SELECT.)	Alcalá et al.	2007	MAM.	LING.	2	A+C	SPEA2ACC	2nd	1.	REG.
EB	Gonzalez et al.	2007	TSK	Approx.	2	A+C	NoN.	2nd	Ι†	Reg.
SE	Gomez et al.	2007	TSK	Approx.	4	A+C+C+S	MONEA	2nd	N	Reg.
E	Pulkkinen et al.	2008	MAM.	LING.	3	A+C+C	NSGA-II	2nd	G	CLAS.
+RULE	Pulkkinen et al.	2008	MAM.	LING.	3	A+A+S	NSGA-II	2nd	G	CLAS.
Ŧ	Guenounou et al.	2009	TSK	LING. *	2	A+C	NSGA-II	2nd	G	REG.
U	Gacto et al.	2009	Мам.	LING.	2	A+C	VARIOUS	2nd	G	REG
TUNING	Botta et al.	2009	Mam.	Ling.	2	A+S	NSGA-II	2nd	G	Reg.
Ē	Marquez et al.	2009	MAM.	LING.	2	A+C	VARIOUS	2nd	I †•	Reg.
6	Marquez et al.	2010	MAM.	LING.	3	A+C+S	NoN.	2nd	I †	Reg.
ā	Gacto et al.	2010	MAM.	LING.	3	A+C+S	SPEA2-SI	2nd	Ι.	Reg.
	Cordón et al.	2003	Mam.	LING.	2	A+C	NoN.	1st	Ν	CLAS.
Ċ	Alcalá et al.	2009	MAM.	LING.	2	A+C	(2+2)M-PAES	2nd	I *	REG.
LEARNING	Antonelli et al.	2009	Mam.	LING.	2	A+C	(2+2)M-PAES	2nd	Ι×	Reg.
AR.	Antonelli et al.	2009	MAM.	LING.	2	A+C	(2+2)M-PAES	2nd	I *	BRC
Ē	Casillas et al.	2009	DNF-RULES	LING.	2	A+C	NoN.	2nd	I†	In the following we will
Ð	Pulkkinen et al.	2010	MAM.	LING.	2	A+C	NoN.	2nd	I† -	In the following we will
×	Alcalá et al.	2010	MAM.	LING.	3	A+C+C	NSGA-II	2nd	g I *	representative example
	Antonelli et al.	2011	MAM.	LING.	3	A+C+S	(2+2)M-PAES	2nd	Ι×	iopresentative example
	Antonelli et al.	2011	MAM.	LING.	2	A+(C+S)	(2+2)M-PAES	2nd	Ι×	
	Alcalá et al.	2011	MAM.	LING.	2	A+C	NoN.	2nd	I† ,	o FIRST TYPE: RB Lear
MAN	MAM. = Mamdani, TSK = Takagi-Sugeno-Kang, LING. = Linguistic, APPROX. = Approximate, *Ir								, *Ir	
	Accuracy, $C =$		0 0			,			·	
	1×10^{-1}	•	Sec. 1		*	0 0	1			 SECOND TYPE: DB Tu

NoN. = No name, N = New algorithm, I = Improved version, G = General use;CLAS. = Classification, REG. = Regression, TS. = Time Series, IMB. = Imbalanced;

†NSGA-II based, ★PAES based, ∘MOGA based, •SPEA2 based.

in deep a

ach type:

o SECOND TYPE: DB Tuning + Rule Select.

o THIRD TYPE: KB Learning

Michela Fazzolari, Rafael Alcalá, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the application of Multi-Objective Genetic Fuzzy Systems: current status and further directions, in submission, 2011.

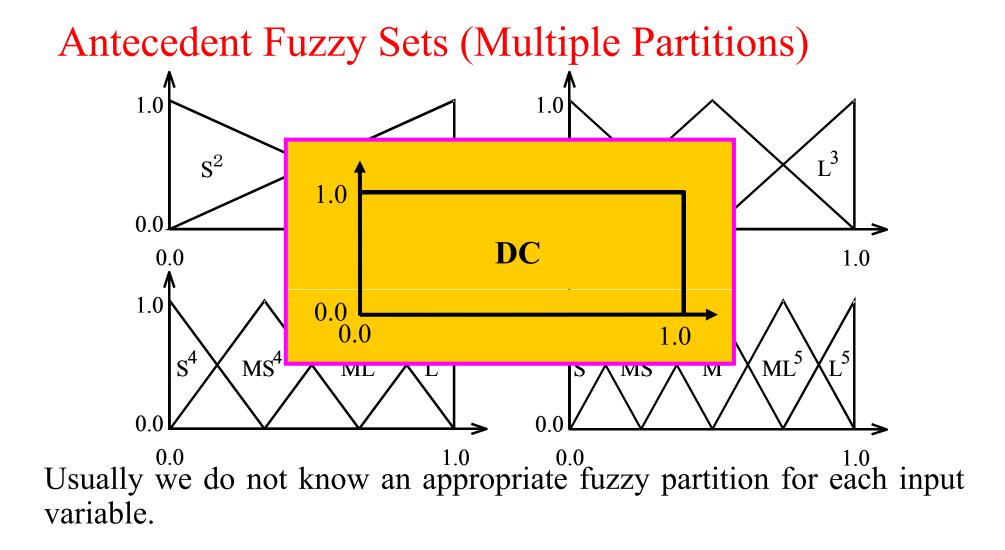
FIRST TYPE: RULE BASE LEARNING - CLASSIFICATION

H. Ishibuchi, T. Yamamoto, Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining, *Fuzzy Sets and Systems, Vol. 141, pp. 59-88 (2004)*

Two-Stage Approach

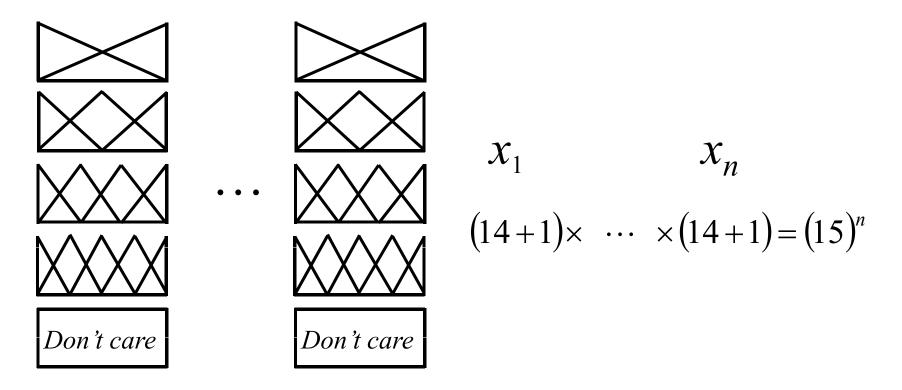
1. Heuristic Rule Extraction

A pre-specified number of candidate fuzzy rules are extracted from numerical data using a heuristic rule evaluation criterion (data mining).


2. Multiobjective Genetic Fuzzy Rule Selection

A small number of fuzzy rules are selected from the extracted candidate rules using a multi-objective genetic algorithm (evolutionary optimization).

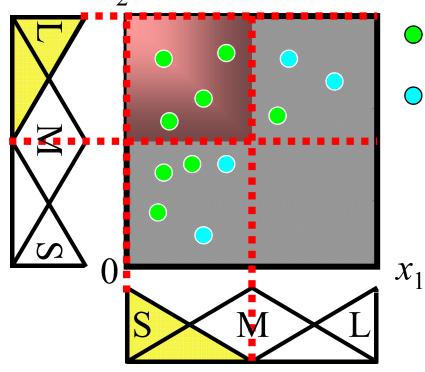
H. Ishibuchi and T. Yamamoto, "Fuzzy rule selection by multiobjective genetic local search algorithms and rule evaluation measures in data mining," *Fuzzy Sets and Systems*, Vol. 141, pp. 59-88 (2004).


Fuzzy Rules for *n*-dimensional Problems If x_1 is A_1 and ... and x_n is A_n then Class C with CF

 A_i :Antecedent fuzzy setClass C:Consequent classCF:Rule weight (Certainty factor)

Possible Fuzzy Rules

Total number of possible fuzzy rules

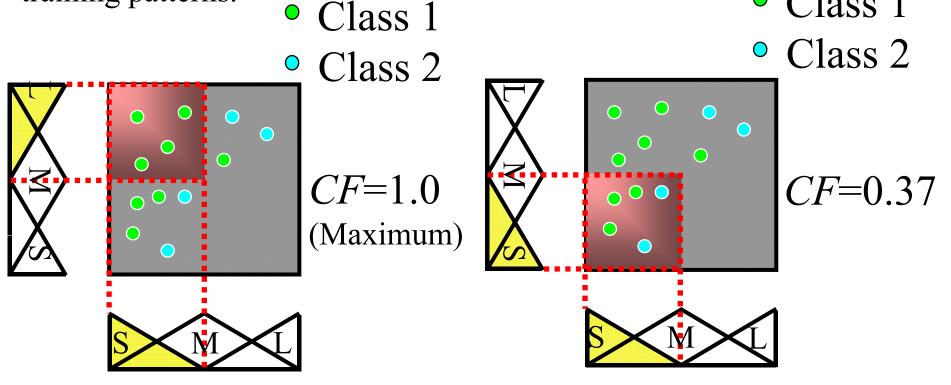

Examined Fuzzy Rules

They only examine short fuzzy rules with only a few antecedent conditions.

If x_1 is *small* and x_{48} is *large* then Class 1 with 0.58

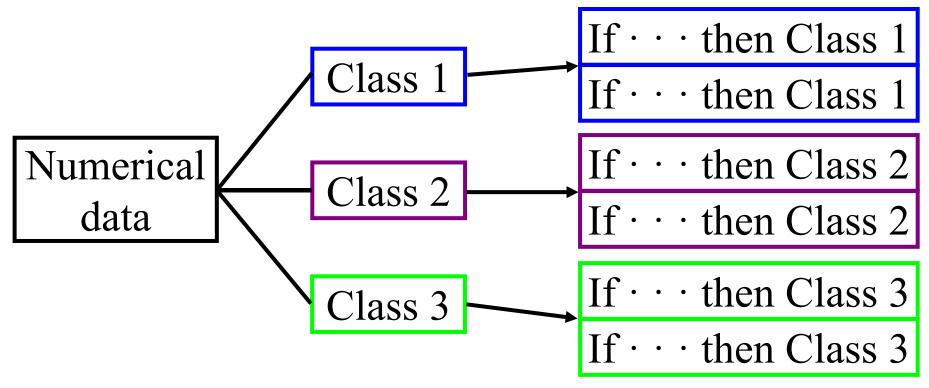
Consequent Class

The consequent class of each fuzzy rule is determined by compatible training patterns (i.e., the dominant class in the corresponding fuzzy subspace).


Class 2

Class 1

If x_1 is *small* and x_2 is *large* then Class 1 with 1.0


Rule Weight (Certainty Factor)

The rule weight *CF* of each fuzzy rule is calculated from compatible training patterns. • Class 1

Heuristic Rule Extraction

They extract a pre-specified number of the best fuzzy rules with respect to a pre-specified heuristic rule evaluation criterion.

The best rules for each class **300 fuzzy rules for each class**

Two-Stage Approach

1. Heuristic Rule Extraction

A pre-specified number of candidate fuzzy rules are extracted from numerical data using a heuristic rule evaluation criterion (data mining).

2. Multiobjective Genetic Fuzzy Rule Selection

A small number of fuzzy rules are selected from the extracted candidate rules using a multi-objective genetic algorithm (evolutionary optimization).

H. Ishibuchi and T. Yamamoto, "Fuzzy rule selection by multiobjective genetic local search algorithms and rule evaluation measures in data mining," *Fuzzy Sets and Systems*, Vol. 141, pp. 59-88 (2004).

Implementation of Multiobjective approach

Coding: $S = s_1 s_2 \cdots s_N$ *N*: Total number of candidate rules $s_j = \{0, 1\}$: Inclusion or exclusion of the *j*-th rule

Objectives: $f_1(S)$, $f_2(S)$, $f_3(S)$

 $f_1(S)$: Number of correctly classified patterns by S

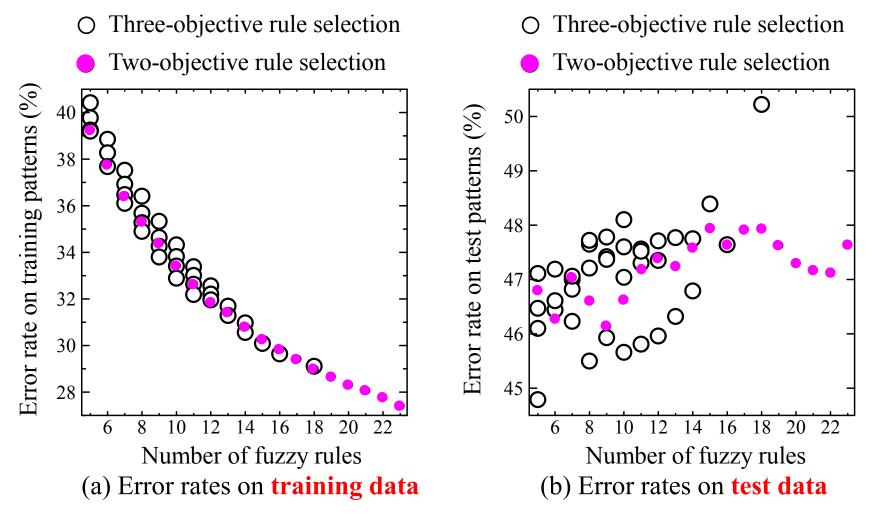
 $f_2(S)$: Number of selected rules in S

 $f_3(S)$: Total number of antecedent conditions in S

Comparison of Four Approaches

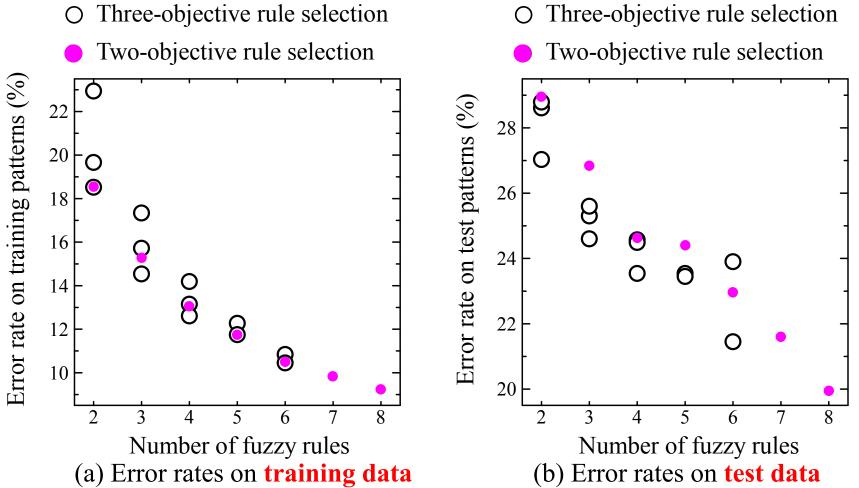
(1) Two-objective approach Maximize $f_1(S)$ and minimize $f_2(S)$

(2) Weighted sum of the two objectives Maximize $W_1 \cdot f_1(S) - W_2 \cdot f_2(S)$

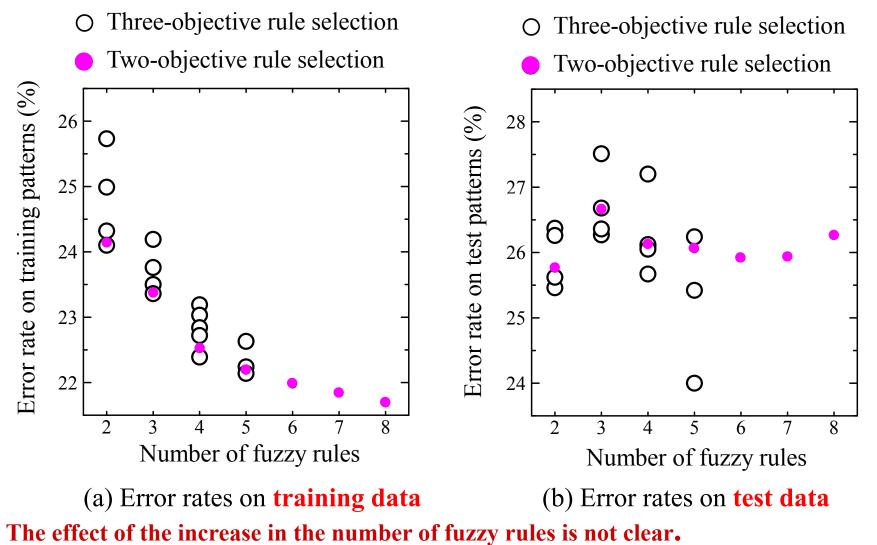

(3) Three-objective approach Maximize $f_1(S)$ and minimize $f_2(S)$, $f_3(S)$

(4) Weighted sum of the three objectives Maximize $w_1 \cdot f_1(S) - w_2 \cdot f_2(S) - w_3 \cdot f_3(S)$

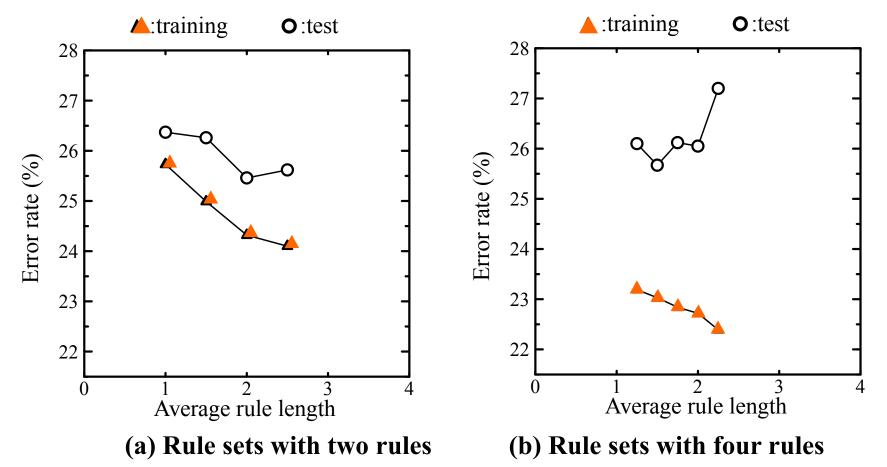
Data Sets


Data set	Attributes	Patterns	Classes	Length
Breast W	9	683*	2	3
Diabetes	8	768	2	3
Glass	9	214	6	3
Heart C	13	297*	5	3
Iris	4	150	3	3
Sonar	60	208	2	2
Wine	13	178	3	3

Experimental Results (Cleveland Heart)

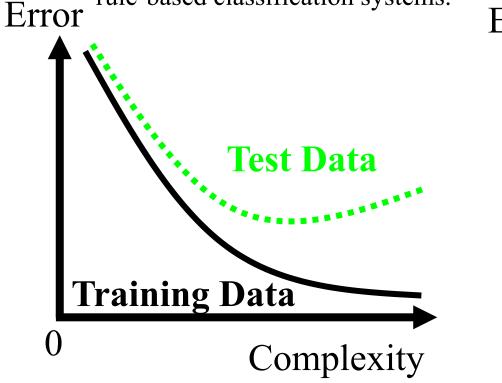

We can observe the overfitting due to the increase in the number of fuzzy rules.

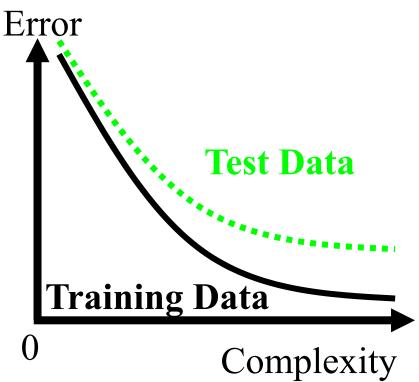
Experimental Results (Sonar)



The generalization ability is increased by increasing the number of fuzzy rules (i.e., the overfitting is not observed).

Experimental Results (Diabetes)

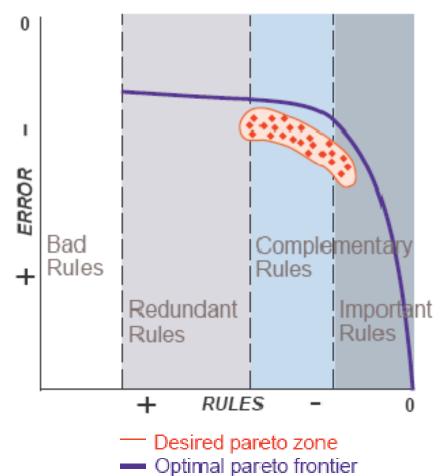

Experimental Results (Diabetes)



We can observe the overfitting due to the increase in the rule length in the right figure for rule sets with four fuzzy rules.

Observation

- (1) Experimental results showed that each test problem has a different tradeoff structure.
- (2) Knowledge on the tradeoff structure is useful in the design of fuzzy rule-based classification systems.


SECOND TYPE: DATA BASE TUNING (+ RULE SELECT.) - REGRESSION

- **R.** Alcalá, J. Alcalá-Fdez, M.J. Gacto, F. Herrera, A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems, *International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems*, 15:5 (2007) 539–557
- M.J. Gacto, R. Alcalá, F. Herrera, Adaptation and Application of Multi-Objective Evolutionary Algorithms for Rule Reduction and Parameter Tuning of Fuzzy Rule-Based Systems. *Soft Computing 13:5 (2009) 419-436*

R. Alcalá, J. Alcalá-Fdez, M.J. Gacto, F. Herrera, A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems, *International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems*, 15:5 (2007) 539–557,

- Multi-objective EAs are powerful tools to generate GFSs but they are based on getting a large, well distributed and spread off, Pareto set of solutions
- The two criteria to optimize in GFSs are accuracy and interpretability. The former is more important than the latter, so many solutions in the Pareto set are not useful
- Solution: Inject knowledge through the MOEA run to bias the algorithm to generate the desired Pareto front part

Pareto front classification in an interpretability-accuracy GFSs:

- Bad rules zone: solutions with bad performance rules. Removing them improves the accuracy, so no Pareto solutions are located here
- Redundant rules zone: solutions with irrelevant rules. Removing them does not affect the accuracy and improves the interpretability
- Complementary rules zone: solutions with neither bad nor irrelevant rules. Removing them slightly decreases the accuracy
- Important rules zone: solutions with essential rules. Removing them significantly decreases the accuracy

Accuracy-oriented modifications performed:

- Restart the genetic population at the middle of the run time, keeping the individual with the highest accuracy as the only one in the external population and generating all the new individuals with the same number of rules it has
- In each MOGA step, the number of chromosomes in the external population considered for the binary tournament is decreased, focusing the selection on the higher accuracy individuals

Obtained results for the medium voltage line problem:

Multi-objective genetic tuning + rule selection method:

Method	$\#\mathbf{R}$	MSE_{tra}	σ_{tra}	t-test	MSE_{tst}	σ_{tst}	t-test
WM	65	57605	2841	+	57934	4733	+
WM+T	65	18602	1211	+	22666	3386	+
WM+S	40.8	41086	1322	+	59942	4931	+
WM+TS	41.9	14987	391	+	18973	3772	+
NSGAII	41.0	14488	965	+	18419	3054	+
NSGAII_{ACC}	48.1	16321	1636	+	20423	3138	+
SPEA2	33	13272	1265	+	17533	3226	+
$SPEA2_{ACC}$	34.5	11081	1186	*	14161	2191	*

- 5-fold cross validation × 6 runs = 30 runs per algorithm
- T-student test with 95% confidence

STUDY ON SEVERAL ALTERNATIVE APPROACHES AND IMPROVEMENTS: ADAPTATION AND APPLICATION OF MOEAS

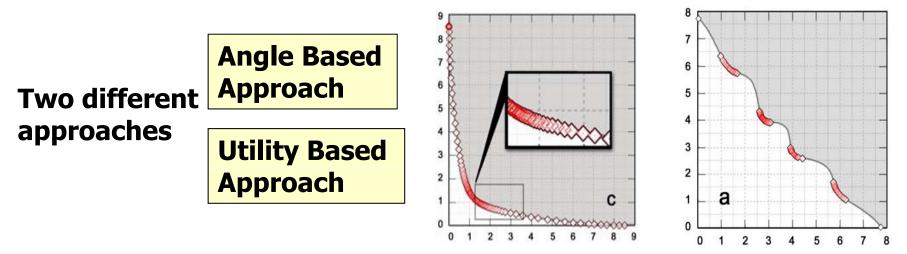
M.J. Gacto, R. Alcalá, F. Herrera,

Adaptation and Application of Multi-Objective Evolutionary Algorithms for Rule Reduction and Parameter Tuning of Fuzzy Rule-Based Systems, *Soft Computing 13:5 (2009) 419-436*,

- To perform the study we have applied six different approaches based on the two most known and successful MOEAs:
 - Application of *SPEA2* and *NSGA-II* Two versions of NSGA-II for finding knees, *NSGA-II_A* and *NSGA-II_U* Two extensions for specific application,

SPEA2_{Acc} and SPEA2_{Acc2}

Two objectives are considered:
 MSE and Number of Rules


Method	Description						
WM	Wang & Mendel algorithm						
Т	Tuning of Parameters						
s	Rule Selection						
TS	Tuning & Selection						
Application of	standard MOEAs for general use						
TS-SPEA2	Tuning & Selection by SPEA2						
TS-NSGA-II	Tuning & Selection by NSGA-II						
$ ext{TS-NSGA-II}_A$	Tuning & Selection by NSGA-II _{angle}						
$ ext{TS-NSGA-II}_U$	Tuning & Selection by NSGA-II _{utility}						
Extended N	IOEAs for specific application						
${ m TS-SPEA2}_{Acc}$	Accuracy-Oriented SPEA2						
$\mathrm{TS} ext{-}\mathrm{SPEA2}_{Acc^2}$	Extension of $SPEA2_{Acc}$						

Proper operators have to be selected.

NSGA-II FOR FINDING KNEES

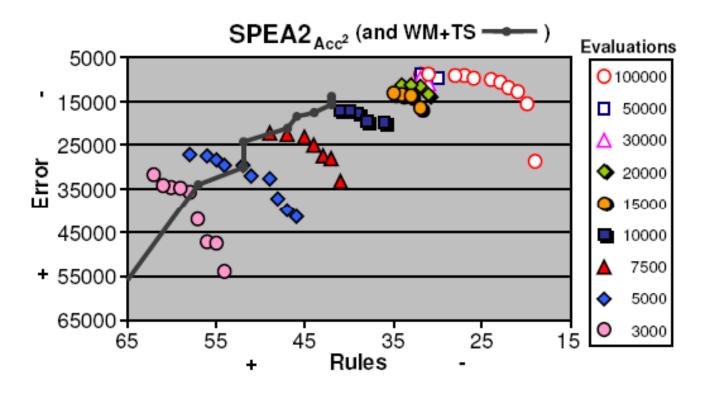
J. Branke, K. Deb, H. Dierolf, and M. Osswald, "Finding Knees in Multi-objective Optimization," Proc. Parallel Problem Solving from Nature Conf. - PPSN VIII, LNCS 3242, (Birmingham, UK, 2004) 722–731.

A variation of NSGAII in order to find knees in the Pareto front by replacing the crowding measure by either an anglebased measure or an utility-based measure

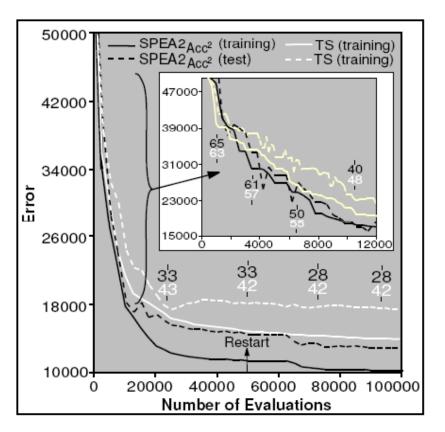
In our case, a knee could represent the best compromise between accuracy and number of rules.

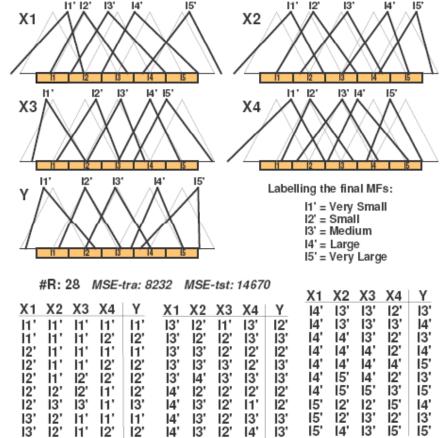
Extension of SPEA2_{Acc} (SPEA2_{Acc2})

A New Crossover Operator for the Rule Part


- Objective: to improve the search with a more intelligent operator replacing the HUX crossover in SPEA2_{ACC}
- Once BLX is applied a normalized euclidean distance is calculated between the centric point of the MFs used by each rule of the offpring and each parent
- The closer parent determines if this rule is selected or not for this offpring
- Whit this crossover operator, mutation can be particularly used to remove rules

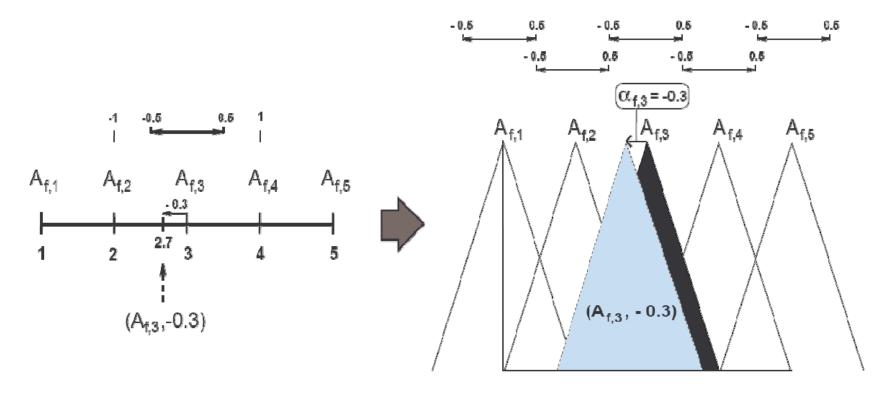
Obtained results for the medium voltage line problem:


Method	#R	MSE_{tra}	σ_{tra}	t	MSE_{tst}	σ_{tst}	t
		100,000 evalu	uations				
WM	65.0	57605	2841	+	57934	4733	+
Т	65.0	17020	1893	+	21027	4225	+
S	40.9	41158	1167	+	42988	4441	+
TS	41.3	13387	1153	+	17784	3344	+
TS-SPEA2	28.9	11630	1283	+	15387	3108	+
TS-NSGA-II	31.4	11826	1354	+	16047	4070	+
TS-NSGA-II _A	29.7	11798	1615	+	16156	4091	+
TS-NSGA-II _U	30.7	11954	1768	+	15879	4866	+
TS-SPEA2 _{Acc}	32.3	10714	1392	=	14252	3181	=
TS-SPEA2 _{Acc2}	29.8	10325	1121	*	13935	2759	*


- 5-fold cross validation × 6 runs = 30 runs per algorithm
- T-student test with 95% confidence

Comparison of the SPEA2acc² and classical GA for for the medium voltage line problem:

Convergence and an example model

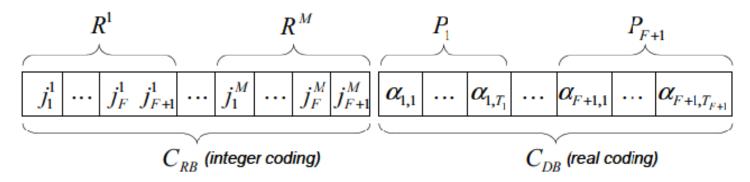


THIRD TYPE: KNOLEDGE BASE LEARNING - REGRESSION

R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, F. Marcelloni, A Multi-Objective Evolutionary Approach to Concurrently Learn Rule and Data Bases of Linguistic Fuzzy Rule-Based Systems, *IEEE Transactions on Fuzzy Systems* 17:5 (2009) 1106-1122, <u>doi:10.1109/TFUZZ.2009.2023113</u>

R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, F. Marcelloni, A Multi-Objective Evolutionary Approach to Concurrently Learn Rule and Data Bases of Linguistic Fuzzy Rule-Based Systems 17:5 (2009) 1106-1122, *IEEE Transactions on Fuzzy Systems, doi:10.1109/TFUZZ.2009.2023113,*

- Rule bases and parameters of the membership functions of the associated linguistic labels are learnt concurrently.
- Accuracy and interpretability are measured in terms of approximation error (MSE) and rule base complexity (#Conditions), respectively.
- To manage the size of the search space, the linguistic 2-tuple representation model, which allows the symbolic translation of a label by only considering one parameter, has been exploited


a) Simbolic Translation of a label

b) Lateral Displacement of a Membership function

This proposal decreases the tuning complexity, since the 3 parameters per label of the classical tuning are reduced to only 1 translation parameter (the tuning is applied to the level of linguistic partitions)

Coding Scheme and Operators

• A double coding scheme $(C = C_{RB} + C_{DB})$

Crossover operator: one point + BLX-*α* **crossovers** (2 offsprings)

Mutation operators:

Rule Adding: It adds γ random rules to the RB, where γ is randomly chosen in [1, γ_{max}]

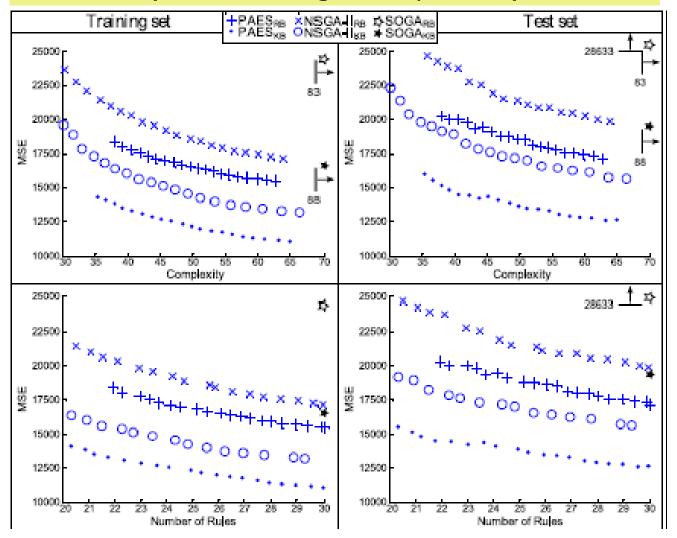
Operators and Selection Schemes

• Modify RB: It randomly changes δ elements of the RB part. The number δ is randomly generated in [1, δ_{max}]

Modify DB: It changes a gene value at random in the DB part

> PAES, NSGA-II and SOGA were applied using this representation and crossover

```
[p<sub>1</sub>, p<sub>2</sub>] = selection(archive/population);
if (rand() < P<sub>cross</sub>)
        [s_1, s_2] = crossover (p_1, p_2)
        Pm_{RP} = 0.01;
else
        \mathfrak{S}_1 = \mathfrak{P}_1 \mathfrak{I}
        S_2 = P_2 i
        Pm_{ex} = 1
endif
Loop 1=1,2
        if (rand() < Pm_{PP})
                 if (rand <Pmsaa)
                         s_1 = add rule();
                 else
                         s_i = modify_rule_base()
                endif
        endif
        if (rand() < Pm_{DE})
                 s_{i} = mutate DB();
        endif
endLoop
```


Analysed Methods

Method	Description	Pop. size
SOGA _{RB}	Rule Base learning with SOGA	64
NSGA-II _{RB}	Rule Base learning with NSGA-II	64
PAES _{RB}	Rule Base learning with PAES	64
SOGA _{KB}	(Rule Base + Data Base) learning with SOGA	64
NSGA-II _{KB}	(Rule Base + Data Base) learning with NSGA-II	64
PAES _{KB}	(Rule Base + Data Base) learning with PAES	64

Different population sizes were probed for these MOEAs showing better results when the population used for parent selection has similar sizes than those considered by single objective oriented algorithms.

300,000 evaluations to allow complete convergence in all the algorithms

Average Pareto Fronts and average solution by SOGA (medium voltage lines problem)

5 Data partitions 80% - 20%6 Runs per partition A total of 30 Runs Test t-student $\alpha = 0.05$

- 1. Most accurate solution is selected from each Pareto
- 2. Average values are computed and represented
- 3. These solutions are no more used

4. Repeat to extract the desired avarage Pareto

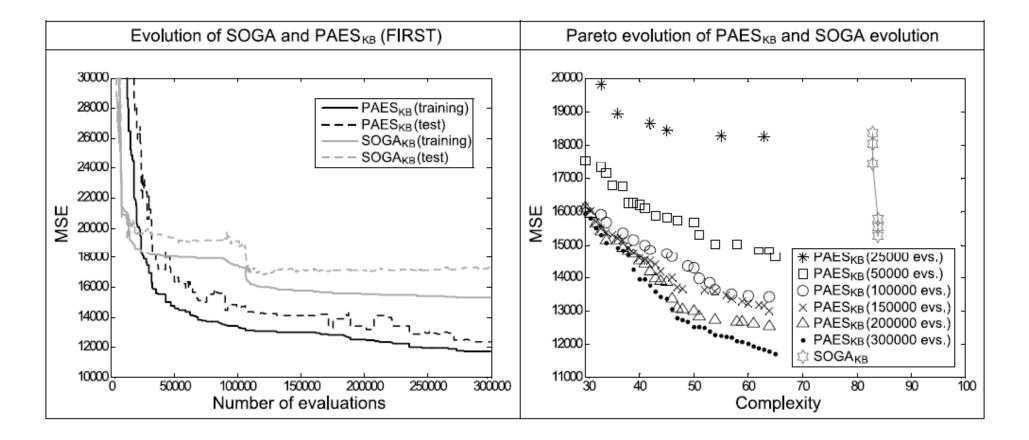
Only the first 20 solutions are considered

Statistical Analysis

Statistical comparison among MOEAs

	Using the Pareto most accurate solution				Using the Pareto median solution				Using the Pareto simplest solution												
(FIRST)						(MED	IAN)					(LA	ST)							
Method	# R/C	\mathbf{E}_{tra}	σ_{tra}	t-t	\mathbf{E}_{tst}	σ_{tst}	t-t	# R/ C	\mathbf{E}_{tra}	σ_{tra}	t-t	\mathbf{E}_{tst}	σ_{tst}	t-t	# R/C	\mathbf{E}_{tra}	σ_{tra}	t-t	\mathbf{E}_{tst}	σ_{tst}	t-t
$NSGA-II_{RB}$	30/64	17116	4283	+	19834	4996	+	25/48	18853	4672	+	21533	5149	+	18/30	23649	5852	+	26660	6342	+
PAES _{RB}	30/63	15454	3882	+	17135	4234	+	27/51	16378	4112	+	18472	4740	+	22/38	18352	4631	+	20238	5419	+
$NSGA-II_{KB}$	29/67	13137	3378	+	15587	4806	+	23/46	15073	4126	+	17581	5853	+	17/29	21629	12156	+	25716	14722	+
PAESKB	30/65	11044	2771	*	12607	3106	*	25/50	12133	3380	*	13622	3353	*	20/35	14297	4449	٠	15951	4405	*

Statistical comparison of the best MOEA with SOGA


Method	# R/C	E_{tra}	σ_{tra}	t-t	\mathbf{E}_{tst}	σ_{tst}	t-t
SOGA _{RB}	30/83	24340	8450	+	28633	11861	+
SOGAKB	30/88	16502	5136	0	19112	6273	0
PAES _{KB} (First)	30/65						
$PAES_{KB}$ (Median)					13622		
$PAES_{KB}$ (Last)	20/35	14297	4449	=‡	15951	4405	

[‡] It is (-) with 91% confidence

REMINDER

5 Data partitions 80% - 20%6 Runs per partition A total of 30 Runs Test t-student $\alpha = 0.05$

Convergence

- The models obtained by these new approaches presented a better trade-off than those obtained by only considering performance measures.
- Between both multi-objective experimented, namely a modified (2+2)PAES and the classical NSGA-II, the modified (2+2)PAES has shown a better behavior than NSGA-II.
- Finally, the linguistic 2-tuples representation presented has shown a good positive synergy.

Webpage of EMOFRBSs

😻 The EMO of FRBSs Bibliogra	phy Page - Mozilla Firefox		
<u>A</u> rchivo <u>E</u> ditar <u>V</u> er Hi <u>s</u> torial <u>M</u> a	rcadores Herramien <u>t</u> as Ay <u>u</u> da		12
🔇 💽 - C 🗙 🏠 🍥 r	nttp://www2.ing.unipi.it/~g000502/emofrbss.html	र्न्न • Google 🔎	8
🖻 Más visitados 💐 Hotmail gratuito	📶 Personalizar vínculos 🗋 Windows Media 📄 Windows		
	Welcome to EMOFRBSs		Image: 1 to 1 t
	The Evolutionary Multiobjective Op Fuzzy Rule-Based Syster Bibliography Page		
	Abstract		
well-established research area. It prospects", Evo. Intel. (2008), 1: the set of objetives used are not possible to papers dealing with Pa of Multiobjective Genetic Fuzzy S of Fuzz-IEEE'07, pp. 1-6). For a m	disao Ishibuchi in middle nineties, Pareto-based Evolutionary Multiobjective Opt t is a branch of the more general Evolutionary/Genetic Fuzzy Systems (see <u>F. He</u> 27-46 and <u>this</u> bibliography page on recent publications on the topic, maintaine aggregated in order to reconduct the problem to a single objective optimizatio areto-based EMO of FRBSs. (Pareto-based) EMOs of FRBSs are special cases of Mu Systems (MGFSs). For a review on the last topic, see <u>H. Ishibuchi</u> , "Multiobjective pore general overview of multiobjective optimization in machine learning please Studies", IEEE Trans. on Syst., Man and Cyb., part C, (2008), 38(3): 397- 415. Fo <u>Prof. Carlos A. Coello Coello</u> .	rrera, "Genetic Fuzzy systems: Taxonomy, current research trends and d by <u>R. Alcalá</u> and <u>M. J. Gacto</u>). In Pareto-based evolutionary optimization n problem. This page is intended to collect as many references as ultiobjective Evolutionary Fuzzy Systems (MEFSs), which include the class e Genetic Fuzzy Systems: review and future research directions", in Proc. e refer to <u>Y. Jin</u> and B. Sendhoff, "Pareto-Based Multiobjective Machine	
Image: Content of the second secon	This page was created and is mantained by <u>Marco Cococcion</u> ANY SUGGESTION/CONTRIBUTION IS WELCOME! (on the		×
Terminado			

http://www.iet.unipi.it/m.cococcioni/emofrbss.html

Webpage of EMOFRBSs: List of 116 MGFSs contributions

	//www2.ing.unipi.it/~g000502/emofrbss.html	☆ • Google					
1ás visitados 💐 Hotmail gratuito 💹 P	ersonalizar vínculos 🗋 Windows Media 🗋 Windows						
QuickSearch:	clear Number of matching entries: 116/116.						
Author	Title	Year	Journal/Proceedings	Reftype	D0I/URL		
Alcala, R., Alcala-Fdez, J., Gacto, M.J., Herrera, F.	On the Usefulness of MOEAs for Getting Compact FRBSs Under Parameter Tuning and Rule Selection	2008	in: Multi-objective Evolutionary Algorithms for Knowledge Discovery from Data Bases, Ghosh, A., Dehuri, S., Ghosh, S. (eds), Studies in Computational Intelligence, 2008Multi- objective Evolutionary Algorithms for Knowledge Discovery from Data Bases	inbook			
Alcala, R., Alcala-Fdez, J., Gacto, M.J., Herrera, F.	A Multi-objective Genetic Algorithm for Tuning and Rule Selection to Obtain Accurate and Compact Linguistic Fuzzy Rule-Based Systems	2007	International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems	article			
Alcala, R., Alcala-Fdez, J., Gacto, M.J., Herrera, F.	A Multi-Objective Evolutionary Algorithm for Rule Selection and Tuning on Fuzzy Rule-Based Systems	2007	Publications by Ye	19 19			
Alcala, R., Alcala-Fdez, J., Gacto, M.J., Herrera, F.	Obtencion de Sistemas Basados en Reglas Difusas Precisos y Compactos Mediante Algoritmos Geneticos Multiobjetivo	2006	18 InProceedings (conference papers) InBooks (book chapters)	18	-		
Alcala, R., Alcala-Fdez, J., Gacto, M.J., Herrera, F.	Obtaining Compact and Still Accurate Linguistic Fuzzy Rule-Based Systems by Using Multi-Objetive Genetic Algorithms	2006	16 - 14 -		-		
Alcalá, R., Ducange, P., Herrera, F., Lazzerini, B., Marcelloni, F.	A Multi-objective Evolutionary Approach to Concurrently Learn Rule and Data Bases of Linguistic Fuzzy Rule-Based Systems	2009	12 - 116 publications in total (until May 19, 2009		-		
Antonelli, M., Ducange, P., Lazzerini, B., Marcelloni, F.	Learning Concurrently Partition Granularities and Rule Bases of Mamdani Fuzzy Systems in a Multi-objective Evolutionary Framework	2009	10 - 8 - <u>7 7</u>	9			
Antonelli, M., Ducange, P., Lazzerini, B., Marcelloni, F.	Learning Concurrently Granularity, Membership Function Parameters and Rules of Mamdani Fuzzy Rule-based Systems	2009	6- 5				
ninado	11		4 3 3				

Recent Keynote materials

5th IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems April 15 2011 - Paris

Multi-objective Evolutionary Learning of Fuzzy Rule-based Systems for Regression Problems

Francesco Marcelloni Computational Intelligence Group

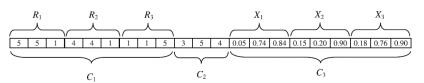
Department of Information Engineering University of Pisa

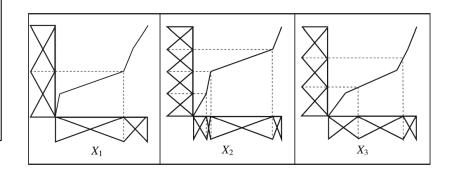
Italy E-mail: f.marcelloni@ing.unipi.it

A vision on the current state-of-the-art

Available at http://sci2s.ugr.es/gfs/#six

Current and Future Research Directions in MGFSs

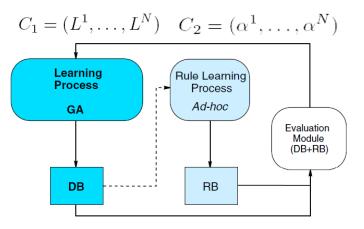

1) Development of New MGFS Methods with Improved Algorithms


- Particular algorithms for multiobjective input selection
- Particular algorithms for multiobjective fuzzy partition learning
- ...

An example for learning granularities and selecting conditions can be found in:

M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, "Learning concurrently partition granularities and rule bases of Mamdani fuzzy systems in a multi-objective evolutionary framework," Int. J. Approx. Reason., vol. 50, n. 7, pp. 1066–1080, 2009.

M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, "Multi-objective evolutionary learning of granularity, membership function parameters and rules of Mamdani fuzzy systems," Evolutionary Intelligence, vol. 2, n. 1-2, pp. 21–37, 2009. Exploiting the concept of virtual partitions with modified PAES



Current and Future Research Directions in MGFSs (2)

1) Development of New MGFS Methods with Improved Algorithms (2)

An example for learning granularities and for selecting variables can be found in:

R. Alcala, M. J. Gacto, and F. Herrera, "A Fast and Scalable Multi-Objective Genetic Fuzzy System for Linguistic Fuzzy Modeling in High-Dimensional Regression Problems," IEEE Transactions on Fuzzy System, doi: 10.1109/TFUZZ.2011.2131657, in press (2011). Exploiting the embedded learning of the DB with improved SPEA2

2) Performance evaluation of MOGFSs

- Visualization of Pareto-Optimal Fuzzy Systems
- How to compare MGFSs
 - A statistical Analysis is needed
 - Use of non-parametric statistical tests

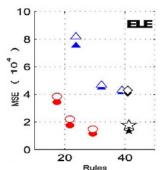
Evaluation indexes in the EMO framework evaluate the exploration and exploitation capabilities of the MOEA. But we are also interested in generalization capabilities of the FRBSs

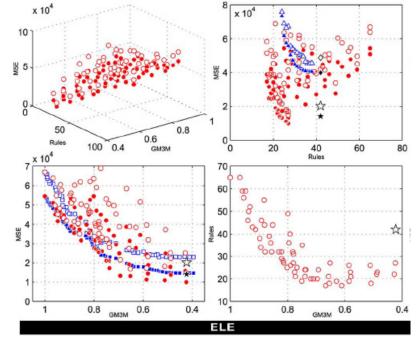
Current and Future Research Directions in MGFSs (3)

2) Performance evaluation of MOGFSs

How to compare MGFSs

A recent possibility to apply non-parametric statistical tests:

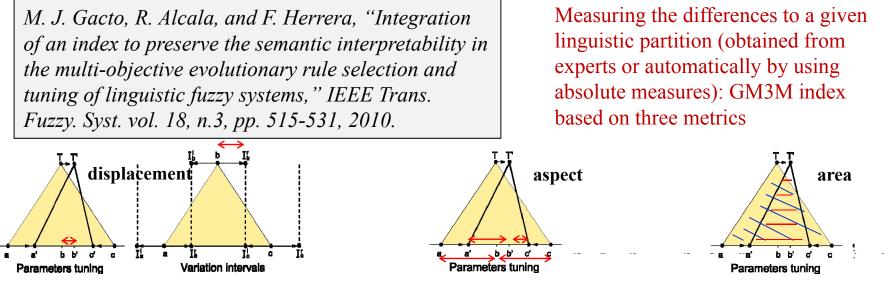

R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, and F. Marcelloni, "A Multi-objective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy rule-based systems," IEEE Trans. Fuzzy. Syst., vol. 17, n. 5, pp. 1106–1122, 2009.


An extension for the case of more than two objectives:

M. J. Gacto, R. Alcala, and F. Herrera, "Integration of an index to preserve the semantic interpretability in the multi-objective evolutionary rule selection and tuning of linguistic fuzzy systems," IEEE Trans. Fuzzy. Syst. vol. 18, n.3, pp. 515-531, 2010.

Projections on bi-objective planes. Then, representative points can be obtained in the new non-dominated solutions

Analyzing the averages on three representative points by non-parametric statistical tests for bi-objective problems (FIRST, MEDIAN, LAST)



Current and Future Research Directions in MGFSs (4)

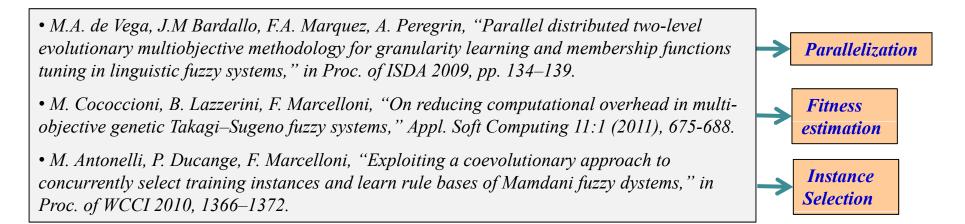
- 3) Reliable Interpretability Measures (Formulations of the Interpretability)
- We need well established and accepted measures
- Use of new ones for C3 (semantic-RB) as cointension or number of fired rules

The use of relative measures for C4 (semantic-DB) could be promising. First proposal in:

Some recent approaches are also using this kind of measures:

M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, "Learning knowledge bases of multi-objective evolutionary fuzzy systems by simultaneously optimizing accuracy, complexity and partition integrity, Soft Computing, DOI: 10.1007/s00500-010-0665-0, in press.

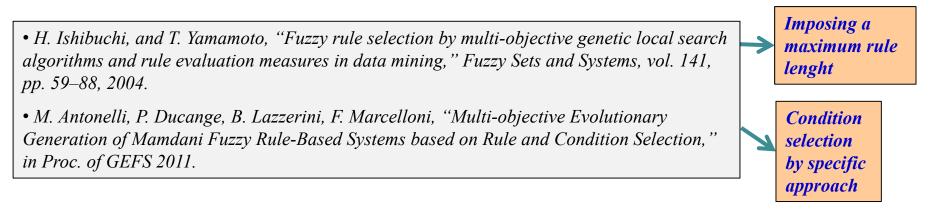
Current and Future Research Directions in MGFSs (5)


4) Objective dimensionality

- New EMO algorithms
- Aggregation or selection of a reasonable set of significant measures

5) Scalability issues

- High Dimensinality (handling the length of the rules)
- Large scale problems (using a reduced subset of examples)


Some approaches dealing with large scale problems:

Current and Future Research Directions in MGFSs (6)

5) Scalability issues (2)

Some approaches dealing with high dimensional problems:

An approach dealing with both high dimensional and large scale problems:

• R. Alcala, M. J. Gacto, F. Herrera, "A Fast and Scalable Multi-Objective Genetic Fuzzy System for Linguistic Fuzzy Modeling in High-Dimensional Regression Problems," IEEE Trans. on Fuzzy Systems, doi: 10.1109/TFUZZ.2011.2131657, in press (2011).

Using a specific approach for variable selection and fitness stimation by using a short subset of the examples

Current and Future Research Directions in MGFSs (7)

6) Automatic selection of the most suitable solution

- Determining those solutions with the best generalization ability
- Only training data can be took into account

FUZZ-IEEE 2011 Tutorial, Taipei, Taiwan Morning Session: 9:00-12:30, July 27, 2011

Evolutionary Multi-Objective Design of Fuzzy Rule-Based Systems

Thank you very much for your attention !!! Questions?

Rafael Alcalá

Dpto. Computer Science and A.I. University of Granada 18071 – SPAIN

