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Abstract

Applying CNN-based object detection models to the task of weapon detection

in video-surveillance is still producing a high number of false negatives. In this

context, most existing works focus on one type of weapons, mainly firearms, and

improve the detection using different pre- and post-processing strategies. One

interesting approach that has not been explored in depth yet is the exploitation

of the human pose information for improving weapon detection. This paper pro-

poses a top-down methodology that first determines the hand regions guided by

the human pose estimation then analyzes those regions using a weapon detec-

tion model. For an optimal localization of each hand region, we defined a new

factor, called Adaptive pose factor, that takes into account the distance of the

body from the camera. Our experiments show that this top-down Weapon De-

tection over Pose Estimation (WeDePE) methodology is more robust than the

alternative bottom-up approach and state-of-the art detection models in both

indoor and outdoor video-surveillance scenarios.
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1. Introduction

It is unquestionable that the simple presence of a weapon, for example a

handgun or a knife, in different video-surveillance scenarios generates a situation

of danger. If the weapon is held by a person, the situation becomes more

dangerous and requires an urgent security response. Reformulating the problem5

of weapons detection into the detection of a weapon held by a person can surely

reduce the space of the information to be analyzed and hence minimize the

detection errors.

Most existing weapon detection solutions focus only on the detection of

firearms in indoor video-surveillance. In particular, they select one of the most10

relevant object detection models, train it on a custom dataset then, apply differ-

ent pre-processing [1][2] and post-processing [3][4] techniques to further improve

the detection. The proposed approaches mainly search for isolated firearms in

each frame without considering the presence of humans in the scene. Very few

studies tried to exploit the human presence; however the proposed solutions are15

not reproducible and do not provide neither models nor dataset, which make

their evaluation and comparison impossible [5][6][7].

To exploit the presence of one or multiple persons in the scene, this work

propose reducing the search area from the entire frame into the regions that

contain the hands of those persons. Then analyze only those areas of interest20

using a weapon detection model. This approach has a high potential for reducing

the number of False Negatives (FN) and False Positives (FP).

This work presents the top-down Weapon Detection over Pose Estimation

(WeDePE) methodology which is reproducible and traceable, that exploits the

human presence in scenarios in which a person is carrying a weapon, firearm25

or knife. Our objective is mitigating FN of hardly visible weapons as well as

reducing FP in the background. The human presence information is expressed

using the pose estimation to later determine the regions where a hand is located

in the frame. These hand regions will be the regions of interest to detect a
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weapon.30

The designed Top-down WeDePE methodology follows the next stages:

(a) The human pose estimation model analyses the input frame and estimates

the pose of each person in the scene.

(b) The hand regions of each person are localized based on the computed coor-

dinates and the optimal size of each hand region is calculated using a new35

factor named Adaptive pose factor.

(c) All the hand regions are extracted and used to build a new single image.

(d) The weapon detection model analyses the new generated image and outputs

the set of hand-regions that are considered as weapon with high-confidence.

It is also analyzed and compared the performance of this approach with40

two approaches: (i) a bottom-up approach that separately finds a hand and a

weapon in the input frame to later compare whether they are located in the

same region of the image, and (ii) a single weapon detector that analyses the

entire frame looking for a weapon.

This paper is organized as follows. Section 2 depicts the pose estimation45

process and object detection models that are implemented in the Top-down

WeDePE methodology and reviews the most related works on weapon detection

and along with pose estimation. Section 3 describe the Top-down WeDePE

methodology for weapon detection guided by human pose estimation. Section 4

provide the experimental analyses that shows the potential of the proposed top-50

down methodology. Finally, Section 5 summarizes the conclusions and future

work.

2. Preliminaries

This section provides a brief description of the background required to under-

stand the proposed Top-down WeDePE methodology: human pose estimation55

models (Section 2.1) and single image object detection models (Section 2.2) then

related work (Section 2.3).
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2.1. Human pose estimation

Human pose estimation refers to the task of localizing human joints also

called key-points, e.g., right elbow, left elbow, right wrist, left wrist and so on,60

in images or videos. A human pose estimation model analyzes an input image

that contains one or multiple persons and output the coordinates (x, y) of a

maximum of eighteen body joints. The detected number of key-points depends

strongly on the quality of the input image, whether part of the body is hidden

and the distance at which the person is situated with respect to the camera.65

DeepPose model [8] was the first approach in using Convolutional Neural

Networks (CNN) [9] based regression models to estimate body joints. This ap-

proach provided good estimations by that time but with poor generalization

capacity. A subsequent approach [10] reformulated the problem to estimat-

ing a set of heatmaps; each map indicates the location confidence of a certain70

key-point. The output is a discrete heatmap instead of continuous regression.

Heatmaps provided better estimates than the regression-based approach, how-

ever, they lack structure modeling.

An important advance was achieved by Convolutional Pose Machines [11],

an end-to-end model that organizes the joint estimation into layers. This model75

outperformed previous methods obtaining 87.95% PCKh-0.5 (Probability of the

Correct Keypoint with Head lenght reference) on MPII database [12]. The

last architectural optimizations have produced important improvements, up to

92.3% [13] [14]. New feature representation (Part Affinity Fields) [15] allows

faster bottom-up approaches (from a cloud of joints to pose estimation of dif-80

ferent persons), that culminated in the real time multi-person pose estimation

system OpenPose [16].

2.2. Single image object detection models

In general, single-image object detection models can be classified into two

groups single-stage and two-stage detectors.85

Two-stage detectors: This category of detection models is represented

by Region based CNN (R-CNN) [17] and its subsequent optimizations, namely
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Fast R-CNN [18] and Faster R-CNN [19]. This type of detectors operates in

two different stages, the first stage selects the possible areas or regions of the

image that may contain the objects of interest and the second stage analyses90

these candidate regions with a CNN-classification model to determine whether

they contain the searched object of interest.

This type of detectors is more robust especially on higher resolution images

and provide better detections than the single-stage detectors; although they are

more expensive computationally.95

One-stage detectors: This type of detectors directly seeks to predict the

position of the object and the class to which it belongs in a single-stage. The

most important examples are EfficientDet [20], RetinaNet [21], CenterNet [22],

SSD [23], and YOLO [24] [25]. Single-stage algorithms can reach very high frame

rate processing on GPUs and due to their low computational requirements, some100

of them can run on edge computing devices at speeds close to 20 FPS. Usually

these algorithms use lower image resolutions and can have difficulties detecting

small objects.

2.3. Related work to weapon detection in video surveillance

Related works to weapon detection in video-surveillance can be broadly105

divided into two groups. Those that improve the detection by building new

training datasets and utilizing the state-of-the art single-image object detection

models to videos [26] [27] [28] and those that improve the detection by applying

different pre-processing [1] [2] and post-processing [3] [4] optimizations including

data and model fusion [5] [7][6].110

Most works focus on one specific type of weapon, either pistol or knife. The

seminal work in this context is [26], in which the authors built the first firearm

dataset and an alarm system that analyzes the input videos using Faster R-CNN

and triggers an alarm when a pistol is detected in five consecutive frames. The

quality of the detection decreases in low quality videos, i.e., low contrast and115

presence of blur. Subsequently, several works proposed improving the detection

by increasing the size of the training dataset using synthetic images [28] or
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images acquired from a Closed Circuit TeleVision (CCTV) setup [27].

Several works proposed pre-processing techniques that helps reducing the

number of FP and FN in the detection. The authors in [1] proposed a bright-120

ness and contrast correction pre-processing technique to improve detrimental

light reflection produced by metallic weapons. The authors in [2] proposed a

binocular vision based pre-processing technique to eliminate the background and

hence reduce FP and FN. Alternatively, the authors in [3] improved the weapon

detection by analyzing the output of the detection, i.e., predicted regions, using125

an auto-encoder model. While the authors in [4] showed that applying a binary

classification method on the detected regions improves the overall performance.

Very few works considered the presence of persons for improving weapon

detection in videos [5] [6] [7]. The authors in [5] first, apply a person detec-

tion model then analyze the obtained predicted bounding boxes (bbox) using a130

firearm detection model. The most related works to ours are [6] [7].

In [6], the authors used the human skeletal pose estimate to detect the threat

in each frame. They designed a multi-stage classification model, a first CNN

determines whether a person and a handgun are present in an image. If so, a

second CNN estimates the pose of the person and finally a feed-forward neural135

network assesses the threat level based on the joint positions of the persons

skeletal pose estimate from the previous stage. The main drawback of this

approach is that it does not perform a detection task, it only classifies individual

frames.

In [7], the authors first estimate the hand regions based the pose information140

then, jointly analyze the two-halves normalized binary pose image and the hand

regions using a classification model. The authors stated that this approach

provides better overall performance than the one-stage detector YOLOv3 alone.

Unfortunately, this approach is not reproducible as the given description does

not include all the important details. Last but not the least, the fact that145

neither the dataset nor the models are available makes the comparison with our

approach impossible.

The present work is different to all the previous works as it provides a com-
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plete and reproducible approach together with a deep experimental analysis

in both indoor and outdoor scenarios. Besides, we aim at detecting firearms as150

well as knives, while previous works focus on one single type of weapons, mainly

firearms.

3. Top-down Weapon Detection over Pose Estimation methodology

The top-down approach first extracts the hand regions from the input frame

based on the pose information then analyses these regions using a weapon de-155

tection model. The proposed Top-down WeDePE methodology requires a good

human pose estimation and hence a precise estimation of the hand regions, i.e.,

the areas determined by the elbow and wrist joints.

This section present the approach for estimating the region of hands based

on the Adaptive hand regions estimation method in Section 3.1, and the hand160

regions image generation procedure to reduce the computational cost of the

weapon detection stage in Section 3.2. Finally, the flowchart of the Top-down

WeDePE methodology is depicted in Section 3.3.

3.1. Adaptive hand regions estimation method

The localization of the hand and the estimation of the square area that165

surrounds it, is critical as it must include all the necessary information for its

further analysis using a weapon detection model. That is, if part of the weapon is

eliminated, especially in the case of a knife, this will be more likely to produce

a FN since the tip of the knife is the most important feature for its correct

detection.170

In addition, the quality of the pose estimation and hence the quality of the

hand localization depends on the distance between the person and the camera.

The farthest the person from the camera, the more challenging is the estimation

as parts of the body can be either occluded or blurry. To take all these aspects

into account, the new factor, named Adaptive Pose factor, determines the175

optimal size of the square region that surrounds each hand.
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In particular, we use the state-of-the art pose estimation model to calculate

all the pose key-points. Then, we calculate the coordinates of the hand (xH , yH)

in the image (Equation 1) based on the position of the elbow and wrist as follows:

xH = xW + 0.5 ∗ (xW − xE) (1)

yH = yW + 0.5 ∗ (yW − yE)

Where H , E , W refers respectively to hand, elbow and wrist. The value 0.5180

corresponds to the ratio of elbow-wrist limb to get the hand coordinates.

a) Hand coordinates estima-
tion

b) Limbs and leg-to-body ratios used for Adaptive Pose factor

Figure 1: Illustration of (a) the hand coordinates estimation and (b) the leg-to-body ratios
used to compute the Adaptive Pose factor [29] [30].

Finally, the length of the square centered in the hand (See Figure 1 (a)) is

based on the proposed Adaptive pose factor (Equation 2), that modifies the size

of the region according to the position of the person in the scene and a subset

of the more stable limbs shown in Figure 1. It is calculated as follows:185
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Adaptive Pose factor =

N∑
i=0

Li × ratioi
N

(2)

length = Adaptive Pose factor ∗ 1.2

The Adaptive Pose factor is calculated using the leg-to-body ratio informa-

tion provided in [29] and validated in [30] (see Figure 1 (b)). Where N is the

total number of segments determined by the pose model, L is the length of each

limb and ratio is the ratio leg-to-body. The value 1.2 is a parameter determined

experimentally in a way that most weapons fit in the square centred in the hand.190

An illustration can be seen in Figure 2.

Figure 2: Illustration of how the Adaptive Pose Factor adapts the hand regions (i.e., the
bounding box in blue color) at different distances from the camera. The further the smaller.

3.2. Hand regions image generation procedure

The presence of several bodies in a scene implies the analysis of a large

number of hand regions. To reduce the computational cost of this processing, the

proposed Top-down WeDePE methodology includes an additional optimization195

before the weapon detection stage. For each input frame a new single image of

the same size is generated using all the hand regions detected in the input-frame

(see Figure 3). The new generated image can be seen as a grid of cell-images.

The number of cells increases with the detected hands in the input frame.

Given the estimated hand regions, the number of regions determines the200

structure of the grid of R × C regions of the same size, where the number
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Figure 3: The two hand-regions detected in input frame (a) are used to compose a new single
image of the same size (b). The new image is actually a 1 × 2 hand-regions grid.

of rows R and columns C are defined following the pseudo code below (see

Algorithm 1).

Algorithm 1 Generate a new image, which is actually a 2 × 1grid of images,
filled by the extracted hand regions

1: procedure Hand-regions-image(hands number)

2: number of cols C← 2

3: number of rows R← 1

4: while C ×R < hands number do

5: if C < (R× 2) then

6: C ← C + 1

7: else

8: R← R+ 1

The size of the grid is calculated based on Algorithm 1 and is filled with all

the estimated hand regions extracted from the input frame. Each hand region is205

placed in a cell of the grid. For instance, in the example illustrated in Figure 3,

the two estimated hand regions fill a 1× 2 grid. Those hand regions are resized

to fill a grid of the same size as the input-frame. This makes the handled objects

larger, more visible, and with less distracting information or objects.

3.3. Flowchart of the Top-down WeDePE methodology210

The field of view monitored by a video surveillance camera includes a vast

amount of information. Traditionally, all the information is processed by the

detector of the weapon detection system seeking weapons such as a knife or
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a pistol. Nevertheless, the weapon detection can be reformulated as a much

simpler process. First, detecting the presence of persons in the scene then215

analyzing only the hand regions for searching possible handled weapons. This

way, it reduces the amount of background information and increase the size of

analyzed regions.

The Top-down WeDePE methodology addresses this hypothesis by using the

pose information and estimated hand regions as unique regions of interest in the220

image to detect weapons.

Top-down WeDePE methodology is designed to be reproducible and trace-

able. Its different integrated modules combine the information as shown in

Figure 4, and follows the next steps:

Figure 4: Illustration of the flowchart of the Top-down WeDePE methodology for weapon
detection.

(a) Pose estimation: the input frame is analyzed using a pose estimation model225

to compute the pose information of all the underlying bodies. This infor-

mation is actually a set of 2d-coordinates associated to each body.

(b) Hand regions estimation: the Adaptive hand regions estimation method is

applied for each human pose information. The hand localization is calcu-

lated using the direction vector of the elbow-wrist limbs, and the size of the230

square region that delimits each hand region is estimated using the Adaptive

pose factor.
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(c) Hand regions image: the square hand regions are extracted from the un-

derlying frame and a new image is created following the pre-processing

described in Hand regions image construction procedure. The generated235

image has the same size as the input frame and it is built as a grid of im-

ages. Each cell of the grid is occupied by a hand-region image resized to fill

the cell space.

(d) Weapon detection: the weapon detection model analyzes the new hand re-

gions image and outputs the detected weapons with a high confident thresh-240

old value.

4. Experimental analysis

In this section we evaluate and compare the proposed top-down methodology

with a bottom-down WeDePE methodology and also with several state-of-the

art detection models trained for weapon detection.245

The description of the common experimental points is provided in Section

4.1. The analysis and comparison of the top-down and bottom-up approaches,

and single detectors is provided in Section 4.2. An illustrative analysis of the

FN and FP is provided in Section 4.3 and 4.4 respectively.

4.1. Experimental setup250

This section details the common considerations for the experiments as fol-

lows. The detection models and implementation details are described in Sec-

tion 4.1.1. Metrics to compare performance are elaborated in Section 4.1.2.

The dataset and test videos are depicted in Section 4.1.3. Lastly, the flowchart

illustration of the Bottom-up WeDePE methodology in Section 4.1.4.255

4.1.1. Deep Learning models for object detection

The four selected detection models for evaluating the proposed approaches

include the two types of detection architectures. The two-stage detector Faster

R-CNN [19] based on ResNet101, and different one-stage detectors such as SSD

[23] based on ResNet50, EfficientDet [10] based on D3, and CenterNet [22] based260
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on Hourglass104. All the models were pretrained on COCO dataset and fine-

tuned on our dataset for weapons detection using the default hyperparameters,

which are available in 1.

The human pose estimation model that provides the estimated coordinates

of the body points for the experiments is the pre-trained OpenPose model de-265

veloped and provided in [15]. For a the estimation of the key-points of the

body, we used a confidence threshold value of 0.5. The size of the input image

is 328 × 328 pixels.

All the implementation were performed using TensorFlow 2 [31].

4.1.2. Evaluation metrics270

To evaluate and compare the performance of the detection and Top-down

WeDePE methodology as weapon detection systems at the frame level, we used

standard mean average precision (mAP) (Eq. 3) averaging IoU range from 0.5

to 0.95 in 0.05 steps and single 0.5 IoU level.

mAP =

∑K
i=1 APi

K
APi =

1

10

∑
r∈[0.5,...,0.95]

∫ 1

0

p(r)dr (3)

where given K classes (knife, pistol), p precision and r recall define p(r) as275

the area under the interpolated precision-recall curve for class i.

We also used metric Precision, Recall, and F1 score (Eq. 4) to evaluate

detected regions (confidence over 50%) and positive detection (IoU over 50%)

and comparable to mAP [0.5].

precision =
TP

TP + FP
, recall =

TP

TP + FN
, F1 = 2 × precision× recall

precision + recall

(4)

1github.com/tensorflow/models/blob/master/research/object detection/g3doc/tf2 detection zoo.md

13

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md


Where True Positive (TP) refers to the number of weapons correctly detected280

in the frames of the input video. One or more bbox that correctly detect a

weapon are considered once. FP refers to the number of bbox produced by the

detection model in which there is no weapon or IoU less than 50% with the

ground truth. FN refers to the total number of visible weapons not correctly

detected.285

4.1.3. Dataset

The weapon detection models have been trained on the weapon classes,

knives and pistols, provided in Sohas weapon detection dataset [4]2. The total

number of images are 3250, where the knife class includes 1825 images and the

pistol class includes 1425 images.290

Test set. The evaluation of the bottom-up and Top-down WeDePE methodol-

ogy against the single detection model has been performed using fifteen videos

recorded in four different scenarios. The building entrance and back garage

door in outdoor environment, a transit area in indoor and service desk in in-

door. These scenarios are depicted in Figure 5.295

The fifteen test videos show weapons such as knifes or pistols in the four

scenarios. Each scenario presents different challenges as describe below:

• Building entrance from outdoor zone (video 1-4): Outdoor scenario where

a person moves from farther away to closer a position in a complex back-

ground.300

• Back garage door from outdoor zone (video 5-8): Outdoor scenario where

a person moves up to a large distance from the camera on a slightly difficult

background.

• Service desk indoor (video 9-10): Indoor scenario where a person moves

through a passageway, and the frontal angle and distance make complex305

the weapon detection on the stairs.

2https://dasci.es/transferencia/open-data/24705/
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Building entrance in outdoor Back garage door in outdoor

Transit area in indoor Service desk in indoor

Figure 5: Example frame of the four scenarios used in the fifteen test videos.

• Transit area indoor (video 11-15): Indoor scenario where a person stands

behind the desk, and the background include many objects and reflections.

• Indoor transit area with several people located at different distances from

the camera (video 16).310

4.1.4. Bottom-up weapon detection approach combined with pose estimation

For comparison purposes, we have developed a bottom-up weapon detec-

tion approach combining pose estimation and weapon detection models that

addresses potential detection errors in the background. It shares the a, b, and

c stages of the top-down fusion methodology as illustrated in Figure 6.315

The bottom-up approach follows the next steps:

(a) The weapon detection model analyzes each input frame and outputs a num-

ber of candidate detections with a high confident threshold value.

(b) If there is a positive weapon detection, the underlying frame is analyzed us-

ing the pose estimation model, which computes the pose information (joint320

and limbs).
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Figure 6: Illustration of the flowchart of the Bottom-up WeDePE methodology for weapon
detection.. Discarded regions are painted in red in the output frame.

(c) The hand localization is calculated using formula (1). Then length of the

square region centred in the hand is estimated using formula (2).

(d) The region of each positive detection is compared with all hand regions

based only on their coordinates. If the Intersection over Union (IoU) is325

higher than a threshold value, the detection is validated. The regions out

of hand regions are discarded.

4.2. Performance analysis of the Top-down WeDePE methodology in the task

of weapon detection in video-surveillance

We carried out a comparison between the proposed top-down and the Bottom-330

up WeDePE approaches (described in Section 4.1) and several single detection

models over the four considered scenarios, two indoor and two outdoor. The per-

formance in terms of precision, recall and F1 averaged over the four considered

scenarios is shown in Table 1.

The top-down and Bottom-up WeDePE approaches outperform in general335

the single detection model-based solution in all the scenarios and videos (Anal-

ysis per video is provided in Appendix).
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Zone Scene Approach Precision(%) Recall(%) F1(%)

Building entry door outdoor Single detector 79.5 57.0 66.4
Out 1529 frames Top-down 91.2 87.1 89.1

Bottom-up 80.8 56.9 66.7

Back garage door outdoor Single detector 83.1 63.1 71.8
Out 1140 frames Top-down 96.2 83.8 89.6

Bottom-up 85.0 61.0 71.1
Service desk indoor Single detector 73.2 59.1 65.4

In 626 frames Top-down 88.8 62.9 73.6

Bottom-up 76.8 58.0 66.1
Transit area indoor Single detector 60.5 55.5 57.9

In 1729 frames Top-down 90.1 84.1 87.0

Bottom-up 61.8 55.5 58.5
Single detector 74.1 58.7 65.4

Averaged Top-down 91.6 79.5 84.8

Bottom-up 76.1 57.9 65.6

Table 1: Comparison between the bottom-up, top-down and single detection model in four
scenarios, two indoor (In) and two outdoor (Out).

It particular, the Top-down WeDePE methodology provides remarkable per-

formance with respect to the bottom-up approach with up to 29.6%, 30.1%,

and 29.1% improvement respectively in precision, recall and F1, in all scenarios.340

The lowest performance of the top-down approach was obtained in the Service

desk indoor scenario. This is due to the fact that this scenario includes more

detrimental conditions for weapon detection and pose estimation such as sev-

eral important parts of the body are hidden by a desk and Covid-19 protection

screen.345

Besides, we analyzed the impact of single-stage and two-stage detection mod-

els on the performance of top-down and bottom-up using the fifteen test videos.

Table 2 shows the precision, recall and F1 when including Faster R-CNN, SSD,

EfficientDet and CenterNet as weapon detection stage into the top-down and

bottom-up approaches. The performance of single detection models is also in-350

cluded for comparison purposes.

The top-down and bottom-up approaches provide better precision, recall,

and F1 independently on the used detection model. In particular, top-down

approach overcomes the bottom-up one. This improvement is more impressive

when including one-stage detectors instead of two-stage detector, i.e., Faster355
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Included detector Approach Precision(%) Recall(%) F1(%) Frame rate (fps)

FasterR-CNN Single FasterR-CNN 87.0 74.0 80.0 10.36 ± 0.43
Bottom-up 88.4 73.4 80.2 9.51 ± 0.37

Top-down 85.7 83.8 84.7 8.89 ± 0.61

SSD Single SSD 71.0 61.2 65.8 18.63 ± 0.67
Bottom-up 71.4 60.6 65.6 15.38 ± 0.68

Top-down 92.9 79.1 85.4 16.07 ± 0.57
EfficientDet Single EfficientDet 67.7 69.1 68.4 17.38 ± 0.56

Bottom-up 67.8 67.6 67.7 15.48 ± 0.53

Top-down 94.4 91.5 92.9 15.08 ± 0.45
CenterNet Single CenterNet 67.5 29.4 40.9 15.86 ± 0.6

Bottom-up 72.6 29.1 41.6 13.52 ± 0.51

Top-down 94.5 73.6 82.8 13.27 ± 0.4

Table 2: The performance of the top-down and bottom-up with different detection models
over all scenarios.

R-CNN; with a boost of up to 27% in precision, 44.2% in recall, and 41.9% in

F1. This means that the top-down approach becomes a much better weapon

detector when including a one-stage detector, especially EfficientDet. A more

detailed analysis of all the approaches on each one of the fifteen test videos is

provided in the Appendix section 3. In addition, from Table 1 and 2, it can360

be observed that the top-down approach, on average, reduces the frame rate by

14.8% with respect to single detector while maintaining in all cases a general

performance improvement of 19.4%.

Remark: Why mAP is not appropriate for evaluating the Top-down WeDePE

approach for weapon detection?365

As one can observe from Table 3, the bottom-up approach provides higher

mAP and mAP with IoU in 0.5 but with much lower precision, recall and F1 than

the top-down approach. These higher mAP values are actually due to the fact

that Stage (d) in the bottom-up approach filters a large number of inaccurate

candidate regions and validates only few candidate regions, which improves the370

value of mAP. However, Stage (d) in the top-down approach generates a large

number of candidate regions that are very close from the weapon or ground

truth. This is due to the fact that the input image to that stage contains much

3Videos available in: youtube.com/playlist
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less background and hence increases the number of potential incorrect candidate

regions that are not finally considered as TP. The Appendix shows more details375

in terms of TP, FN and FP in all the test videos.

Scene Approach mAP mAP[0.5] Precision(%) Recall(%) F1(%)

Single detector 38.22 72.00 74.1 58.7 65.4

video 1-15 Averaged Top-down 37.49 64.95 91.6 79.5 84.8

Bottom-up 40.72 77.26 76.1 57.9 65.6

Table 3: Comparison between the bottom-up, top-down and the corresponding single detection
model over the fifteen test videos. This results illustrate the inappropriateness of mAP metric
for evaluating the task of weapon detection.

Therefore, this distortion produced in the mAP makes more reliable to eval-

uate the quality of the weapon detection task using the precision, recall and F1

metrics.

4.3. Illustrative analysis of false negative mitigation380

After an exhaustive analysis of the results obtained by the Top-down WeDePE

methodology on the fifteen test videos we found out that there exist three types

of FN or weapons that were not detected as illustrated in Figure 7.
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a) Single CenterNet a) Bottom-up a) Top-down

b) Single Faster R-CNN b) Bottom-up b) Top-down

c) Single CenterNet c) Bottom-up c) Top-down

Figure 7: Examples of FN recovered by the Top-down WeDePE methodology. The frames
are extracted from the scenarios Service desk indoor frame a), Building entry door outdoor
frame b), and Back garage door outdoor frame c). The region outlined by the red lines
shows the area of interest when zoomed in. Color code of bbox for single detection and top-
down approaches shows green-knife and blue-pistols, for bottom-up approach red-discarded
detection and white-valid weapon.

The first type of common FN occurs with clearly visible weapons behind the

Covid-19 protective screen producing a considerable number of miss-detections385

in this part of the image, an example is shown in Figure 7a), where the FN

pistol is not detected by the single detection model and bottom-up approach

but correctly detected by the top-down approach.

The second type of FN is also very common and occurs when the weapon

and background do not produce enough contrast as shown in Figure 7b), where390

the weapon shape is blurred and it can only be detected thanks to the clearer

view in the hand region image from the top-down approach.

The third type of FN occur when the weapon and the person the held that

weapon are far away from the camera, see an example in Figure 7c), where the

pistol is too small in the image to be located by region proposal algorithms (more395

pronounced difficulty for one-stage detectors) however the top-down approach

20



improves the detection of weapons at larger distances.

We have also found that weapons under certain conditions in outdoor scenar-

ios can be barely visible. Diversity of features in the background and increased

exposure to environmental conditions make difficult both the weapon detection400

and image capturing by camera. Which reduces the amount of background in-

formation and increases the size of the handled object and hence improves the

detection capability of top-down approach as shown in Figure 7.

4.4. Illustrative analysis of false positive corrections

The process of FN mitigation carried out by the Top-down WeDePE method-405

ology improves in parallel the detection of some type of FP, especially when a

weapon is confused with other objects in the background. An illustration of this

type of FP that occurs in outdoor scenarios or under challenging conditions is

illustrated in Figure 8.
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a) Single CenterNet a) Bottom-up a) Top-down

b) Single Faster R-CNN b) Bottom-up b) Top-down

c) Single SSD c) Bottom-up c) Top-down

d) Single EfficientDet d) Bottom-up d) Top-down

Figure 8: Examples of type of FP corrected by bottom-up and Top-down WeDePE approach.
The frames are extracted from the scenarios Building entry door outdoor frame a), Back garage
door outdoor frame b), Back garage door outdoor frame c), and Transit area indoor frame d).
The region outlined by the red lines shows the area of interest when zoomed in. Color code
of bbox for single detection and top-down approaches shows green-knife and blue-pistols, for
bottom-up approach red-discarded detection and white-valid weapon.

The first type occurs with metallic objects near the hand area or when the410

weapon is located at a considerable distance to the camera, see examples in

Figure 8a) and d), the FP are validated in the bottom-up approach but are

corrected in the top-down approach thanks to a clearer view of the objects in

the hand region image.

The second type of FP occurs when a weapon on a challenging background is415

not properly adjusted by the region proposal stage showing big and off-centered

bbox, see an example in Figure 8b), the regions remains the same in the bottom-
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up approach, but the pistol is correctly detected by the top-down approach.

Finally, other type of standard detection errors occurs with profile view of

weapons where the characteristic shape of the weapon is lost, see an example in420

Figure 8c), the pistol against the clothing and slightly in profile is detected but

miss-classified then the bottom-up approach can not correct the FP unlike the

top-down approach detecting it despite the detrimental conditions.

5. Conclusions and future works

This work presented a Top-down WeDePE methodology that exploits the425

human pose estimation for mitigating FN in the detection of weapons, firearms

and knives, held by a person in video-surveillance. The proposed methodology

uses the key-points produced by the human pose estimation model to localize the

hand regions in the frame. To estimate the optimal size of the hand-regions that

will be analyzed by the weapon detection stage, we defined a new factor named430

Adaptive pose factor. The experiments showed that the top-down approach

improves the detection performance, with respect to a bottom-up approach, by

up to 17.5% precision, 20.8% recall, and 19.4% F1 score in the fifteen analysed

videos in different scenarios.

As the proposed top-down approach depends on the human pose estimation,435

it can be combined with a single weapon detector to build a more robust CCTV

system since the latter can detect weapons that are not necessarily held by a

human.

As future work, we are planning to integrate the combination of different

weapon detection methodologies for different purposes [26][1][2][4] [32] together440

with the Top-down WeDePE methodology on a CCTV system with the objective

to guarantee the detection of weapons in all the situations and scenarios.
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6. Appendix

This section provides the performance results of the bottom-up, top-down,545

and the corresponding single detector approaches using four different detection

models on fifteen test videos (Table 4-19) in the four video surveillance scenarios

as describe in the Section 4.1.3. #TP, #FP and #FN in Tables 4 to 19 refers

respectively to the number of TP, FP and FN. The averaged results on each

video are provided in Table 20.550

Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 370 29 45 92.7 89.2 90.9
Top-down 391 106 24 78.7 94.2 85.7
Bottom-up 367 14 48 96.3 88.4 92.2

SSD Single SSD 293 24 122 92.4 70.6 80.1
Top-down 300 7 115 97.7 72.3 83.1
Bottom-up 290 24 125 92.4 69.9 79.6

EfficientDet Single EfficientDet 295 7 120 97.7 71.1 82.3
Top-down 377 17 38 95.7 90.8 93.2
Bottom-up 293 7 122 97.7 70.6 82.0

CenterNet Single CenterNet 204 22 211 90.3 49.2 63.7
Top-down 274 12 141 95.8 66.0 78.2
Bottom-up 204 7 211 96.7 49.2 65.2

Table 4: Performance comparison between the bottom-up, top-down and corresponding single
detection model in video 1.

Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 406 10 139 97.6 74.5 84.5
Top-down 473 161 72 74.6 86.8 80.2
Bottom-up 406 10 139 97.6 74.5 84.5

SSD Single SSD 430 2 115 99.5 78.9 88.0
Top-down 449 29 96 93.9 82.4 87.8
Bottom-up 430 2 115 99.5 78.9 88.0

EfficientDet Single EfficientDet 427 24 118 94.7 78.3 85.7
Top-down 480 19 65 96.2 88.1 92.0
Bottom-up 427 24 118 94.7 78.3 85.7

CenterNet Single CenterNet 286 77 259 78.8 52.5 63.0
Top-down 394 5 151 98.7 72.3 83.5
Bottom-up 286 38 259 88.3 52.5 65.8

Table 5: Performance comparison between the bottom-up, top-down and corresponding single
detection model in Video 2.
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Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 216 24 77 90.0 73.7 81.1
Top-down 267 72 26 78.8 91.1 84.5
Bottom-up 216 24 77 90.0 73.7 81.1

SSD Single SSD 60 55 233 52.2 20.5 29.4
Top-down 286 2 7 99.3 97.6 98.5
Bottom-up 60 55 233 52.2 20.5 29.4

EfficientDet Single EfficientDet 94 166 199 36.2 32.1 34.0
Top-down 286 5 7 98.3 97.6 97.9
Bottom-up 94 163 199 36.6 32.1 34.2

CenterNet Single CenterNet 15 0 278 100.0 5.1 9.7
Top-down 269 0 24 100.0 91.8 95.7
Bottom-up 15 0 278 100.0 5.1 9.7

Table 6: Performance comparison between the bottom-up, top-down and corresponding single
detection model in Video 3.

Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 238 17 38 93.3 86.2 89.6
Top-down 250 55 26 82.0 90.6 86.1
Bottom-up 238 17 38 93.3 86.2 89.6

SSD Single SSD 142 108 134 56.8 51.4 54.0
Top-down 233 41 43 85.0 84.4 84.7
Bottom-up 142 108 134 56.8 51.4 54.0

EfficientDet Single EfficientDet 166 110 110 60.1 60.1 60.1
Top-down 262 29 14 90.0 94.9 92.4
Bottom-up 166 110 110 60.1 60.1 60.1

CenterNet Single CenterNet 50 74 226 40.3 18.1 25.0
Top-down 257 14 19 94.8 93.1 94.0
Bottom-up 50 74 226 40.3 18.1 25.0

Table 7: Performance comparison between the bottom-up, top-down and single detection
model in Video 4.

Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 226 17 93 93.0 70.8 80.4
Top-down 240 24 79 90.9 75.2 82.3
Bottom-up 211 5 108 97.7 66.1 78.9

SSD Single SSD 137 41 182 77.0 42.9 55.1
Top-down 235 0 84 100 73.7 84.8
Bottom-up 137 41 182 77.0 42.9 55.1

EfficientDet Single EfficientDet 161 125 158 56.3 50.5 53.2
Top-down 237 50 82 82.6 74.3 78.2
Bottom-up 146 122 173 54.5 45.8 49.7

CenterNet Single CenterNet 91 7 228 92.9 28.5 43.6
Top-down 283 14 36 95.3 88.7 91.9
Bottom-up 91 0 228 100 28.5 44.4

Table 8: Performance comparison between the bottom-up, top-down and corresponding single
detection model in Video 5.
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Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 211 41 29 83.7 87.9 85.8
Top-down 240 0 0 100 100 100
Bottom-up 211 41 29 83.7 87.9 85.8

SSD Single SSD 178 178 62 50.0 74.2 59.7
Top-down 233 12 7 95.1 97.1 96.1
Bottom-up 178 178 62 50.0 74.2 59.7

EfficientDet Single EfficientDet 58 235 182 19.8 24.2 21.8
Top-down 240 5 0 98.0 100 99.0
Bottom-up 58 235 182 19.8 24.2 21.8

CenterNet Single CenterNet 120 36 120 76.9 50.0 60.6
Top-down 226 12 14 95.0 94.2 94.6
Bottom-up 120 12 120 90.9 50.0 64.5

Table 9: Performance comparison between the bottom-up, top-down and corresponding single
detection model in Video 6.

Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 259 7 65 97.4 79.9 87.8
Top-down 293 14 31 95.4 90.4 92.9
Bottom-up 259 7 65 97.4 79.9 87.8

SSD Single SSD 257 5 67 98.1 29.3 87.7
Top-down 254 0 70 100 78.4 87.9
Bottom-up 254 2 70 99.2 78.4 87.6

EfficientDet Single EfficientDet 288 10 36 96.6 88.9 92.6
Top-down 302 17 22 94.7 93.2 93.9
Bottom-up 286 7 38 99.2 78.4 87.6

CenterNet Single CenterNet 180 2 144 98.9 55.6 71.1
Top-down 233 7 91 97.1 71.9 82.6
Bottom-up 180 2 144 98.9 55.6 71.1

Table 10: Performance comparison between the bottom-up, top-down and corresponding single
detection model in Video 7.

Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 199 0 58 100 77.4 87.3
Top-down 209 2 48 99.1 81.3 89.3
Bottom-up 192 0 65 100 74.7 85.5

SSD Single SSD 166 2 91 98.8 64.6 78.1
Top-down 190 0 67 100 73.9 85.0
Bottom-up 156 2 101 98.7 60.7 75.2

EfficientDet Single EfficientDet 209 10 48 95.4 81.3 87.8
Top-down 211 10 46 95.5 82.1 88.3
Bottom-up 197 10 60 95.2 76.7 84.9

CenterNet Single CenterNet 139 7 118 95.2 54.1 69.0
Top-down 171 0 86 100 66.5 79.9
Bottom-up 135 2 122 98.5 52.5 68.5

Table 11: Performance comparison between the bottom-up, top-down and corresponding single
detection model in Video 8.
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Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 163 77 233 67.9 42.2 52.1
Top-down 201 82 185 71.0 52.1 60.1
Bottom-up 163 53 223 75.5 42.2 54.2

SSD Single SSD 261 101 125 72.1 67.6 69.8
Top-down 247 29 139 89.5 64.0 74.6
Bottom-up 261 101 125 72.1 67.6 69.8

EfficientDet Single EfficientDet 264 166 122 61.4 68.4 64.7
Top-down 333 26 53 92.8 86.3 89.4
Bottom-up 264 158 122 62.6 68.4 65.3

CenterNet Single CenterNet 31 146 355 17.5 8.0 11.0
Top-down 134 41 252 76.6 34.7 47.8
Bottom-up 31 58 355 34.8 8.0 13.1

Table 12: Performance comparison between the bottom-up, top-down and corresponding single
detection model in Video 9.

Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 132 12 108 91.7 55.0 68.8
Top-down 110 10 130 91.7 45.8 61.1
Bottom-up 132 12 108 91.7 55.0 68.8

SSD Single SSD 214 12 26 94.7 89.2 91.8
Top-down 156 17 84 90.2 65.0 75.5
Bottom-up 206 7 34 96.7 85.8 90.9

EfficientDet Single EfficientDet 228 26 12 89.8 95.0 92.3
Top-down 221 2 19 99.1 92.1 95.5
Bottom-up 221 26 19 89.5 92.1 90.8

CenterNet Single CenterNet 113 12 127 90.4 47.1 61.9
Top-down 151 0 89 100 62.9 77.2
Bottom-up 108 10 132 91.5 45.0 60.3

Table 13: Performance comparison between the bottom-up, top-down and corresponding single
detection model in Video 10.

Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 77 96 146 44.5 34.5 38.9
Top-down 204 38 19 84.3 91.5 87.7
Bottom-up 77 96 146 44.5 34.5 38.9

SSD Single SSD 58 94 165 38.2 26.0 30.9
Top-down 166 41 57 80.2 74.4 77.2
Bottom-up 58 94 165 38.2 26.0 30.9

EfficientDet Single EfficientDet 115 142 108 44.7 51.6 47.9
Top-down 223 17 0 92.9 100 96.3
Bottom-up 115 139 108 45.3 51.6 48.2

CenterNet Single CenterNet 7 24 216 22.6 3.1 5.5
Top-down 168 29 55 85.3 75.3 80.0
Bottom-up 7 19 216 26.9 3.1 5.6

Table 14: Performance comparison between the bottom-up, top-down and corresponding single
detection model in Video 11.
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Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 355 53 55 87.0 86.6 86.8
Top-down 379 142 31 72.7 92.4 81.4
Bottom-up 355 41 55 89.6 86.6 88.1

SSD Single SSD 259 190 151 57.7 63.2 60.3
Top-down 345 24 65 93.5 84.1 88.6
Bottom-up 259 182 151 58.7 63.2 60.9

EfficientDet Single EfficientDet 319 250 91 56.1 77.8 65.2
Top-down 398 2 12 99.5 97.1 98.3
Bottom-up 319 250 91 56.1 77.8 65.2

CenterNet Single CenterNet 161 89 249 64.4 39.3 48.8
Top-down 326 43 84 88.3 79.5 83.7
Bottom-up 161 89 249 64.4 39.3 48.8

Table 15: Performance comparison between the bottom-up, top-down and corresponding single
detection model in Video 12.

Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 199 48 55 80.6 78.3 79.4
Top-down 225 22 29 91.1 88.6 89.8
Bottom-up 199 48 55 80.6 78.3 79.4

SSD Single SSD 168 204 86 45.2 66.1 53.7
Top-down 170 50 84 77.3 66.9 71.7
Bottom-up 168 204 86 45.2 66.1 53.7

EfficientDet Single EfficientDet 216 96 38 69.2 85.0 76.3
Top-down 221 31 33 87.7 87.0 87.4
Bottom-up 216 96 38 69.2 85.0 76.3

CenterNet Single CenterNet 17 24 237 41.5 6.7 11.5
Top-down 170 17 84 90.9 66.9 77.1
Bottom-up 17 22 237 43.6 6.7 11.6

Table 16: Performance comparison between the bottom-up, top-down and corresponding single
detection model in Video 13.

Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 314 10 53 96.9 85.6 90.9
Top-down 324 55 43 85.5 88.3 86.9
Bottom-up 314 10 53 96.9 85.6 90.9

SSD Single SSD 168 53 199 76.0 45.8 57.1
Top-down 288 17 79 94.4 78.5 85.7
Bottom-up 168 50 199 77.1 45.8 57.4

EfficientDet Single EfficientDet 298 103 69 74.3 81.2 77.6
Top-down 338 7 29 98.0 92.1 94.9
Bottom-up 298 103 69 74.3 81.2 77.6

CenterNet Single CenterNet 53 38 314 58.2 14.4 23.1
Top-down 214 0 153 100 58.3 73.7
Bottom-up 53 26 314 67.1 14.4 23.8

Table 17: Performance comparison between the bottom-up, top-down and corresponding single
detection model in Video 14.
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Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 415 53 60 88.7 87.4 88.0
Top-down 418 50 57 89.3 88.0 88.7
Bottom-up 415 38 60 91.6 87.4 89.4

SSD Single SSD 370 278 105 57.1 77.9 65.9
Top-down 446 14 29 97.0 93.9 95.4
Bottom-up 370 278 105 57.1 77.9 65.9

EfficientDet Single EfficientDet 434 259 41 62.6 91.4 74.3
Top-down 461 24 14 95.1 97.1 96.0
Bottom-up 434 259 41 62.6 91.4 74.3

CenterNet Single CenterNet 43 53 432 44.8 9.1 15.1
Top-down 391 0 84 100 82.3 90.3
Bottom-up 43 48 432 47.3 9.1 15.2

Table 18: Performance comparison between the bottom-up, top-down and corresponding single
detection model in Video 15.

Detector Approach #TP #FP #FN Precision(%) Recall(%) F1(%)

FasterR-CNN Single Faster R-CNN 204 182 60 76.6 52.8 62.5
Top-down 281 74 106 79.1 72.7 75.7
Bottom-up 204 55 182 78.7 52.8 63.2

SSD Single SSD 17 94 370 15.2 4.3 6.8
Top-down 319 14 67 95.7 82.6 88.7
Bottom-up 17 94 370 15.2 4.3 6.8

EfficientDet Single EfficientDet 72 178 314 28.8 18.6 22.6
Top-down 322 60 65 84.3 83.2 83.8
Bottom-up 72 173 314 29.4 18.6 22.8

CenterNet Single CenterNet 7 17 379 30 1.9 3.5
Top-down 286 26 101 91.5 73.9 81.8
Bottom-up 5 5 382 50 1.2 2.4

Table 19: Performance comparison between the bottom-up, top-down and corresponding single
detection model in Video 16.
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Video Approach Precision(%) Recall(%) F1(%)

Video 1 - Building entry door outdoor Single detector 93.3 70.0 80.0
415 frames Top-down 92.0 80.8 86.0

Bottom-up 95.8 69.5 80.6
Video 2 - Building entry door outdoor Single detector 92.6 71.1 80.4

545 frames Top-down 90.9 82.4 86.4
Bottom-up 95.0 71.1 81.3

Video 3 - Building entry door outdoor Single detector 69.6 32.8 44.6
293 frames Top-down 94.1 94.5 94.3

Bottom-up 69.7 32.8 44.7
Video 4 - Building entry door outdoor Single detector 62.7 54.0 58.0

276 frames Top-down 88.0 90.8 89.3
Bottom-up 62.7 54.0 58.0

Video 5 - Back garage door outdoor Single detector 79.8 48.2 60.1
319 frames Top-down 92.2 78.0 84.5

Bottom-up 82.3 45.8 58.9
Video 6 - Back garage door outdoor Single detector 57.6 59.1 58.3

240 frames Top-down 97.0 97.8 97.4
Bottom-up 61.1 59.1 60.1

Video 7 - Back garage door outdoor Single detector 97.8 75.9 85.5
324 frames Top-down 96.8 83.5 89.7

Bottom-up 98.7 73.1 84.0
Video 8 - Back garage door outdoor Single detector 97.4 69.4 81.0

257 frames Top-down 98.6 76.0 85.8
Bottom-up 98.1 66.1 79.0

Video 9 - Service desk indoor Single detector 54.7 46.6 50.3
386 frames Top-down 82.5 59.3 69.0

Bottom-up 61.2 46.6 52.9
Video 10 - Service desk indoor Single detector 91.6 71.6 80.4

240 frames Top-down 95.2 66.5 78.3
Bottom-up 92.3 69.5 79.3

Video 11 - Transit area indoor Single detector 37.5 28.8 32.6
223 frames Top-down 85.7 85.3 85.5

Bottom-up 38.7 28.8 33.0
Video 12 - Transit area indoor Single detector 66.3 66.7 66.5

410 frames Top-down 88.5 88.3 88.4
Bottom-up 67.2 66.7 67.0

Video 13 - Transit area indoor Single detector 59.1 59.1 59.1
254 frames Top-down 86.7 77.4 81.8

Bottom-up 59.6 59.1 59.3
Video 14 - Transit area indoor Single detector 76.4 56.7 65.1

367 frames Top-down 94.5 79.3 86.2
Bottom-up 78.8 56.7 66.0

Video 15 - Transit area indoor Single detector 63.3 66.4 64.8
475 frames Top-down 95.3 90.3 92.8

Bottom-up 64.6 66.4 65.5

Table 20: Performance comparison between the bottom-up, top-down and corresponding single
detection model over the fifteen test videos. The result for each pair (video, approach) is
calculated using the four considered single detection models.
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