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Current surveillance and control systems still require human supervision and intervention. This work 

presents a novel automatic handgun detection system in videos appropriate for both, surveillance and 

control purposes. We reformulate this detection problem into the problem of minimizing false positives 

and solve it by i) building the key training data-set guided by the results of a deep Convolutional Neural 

Networks (CNN) classifier and ii) assessing the best classification model under two approaches, the sliding 

window approach and region proposal approach. The most promising results are obtained by Faster R- 

CNN based model trained on our new database. The best detector shows a high potential even in low 

quality youtube videos and provides satisfactory results as automatic alarm system. Among 30 scenes, it 

successfully activates the alarm after five successive true positives in a time interval smaller than 0.2 s, 

in 27 scenes. We also define a new metric, Alarm Activation Time per Interval (AATpI), to assess the 

performance of a detection model as an automatic detection system in videos. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

The crime rates caused by guns are very concerning in many

places in the world, especially in countries where the possession

of guns is legal or was legal for a period of time. The last statis-

tics reported by the United Nations Office on Drugs and Crime

(UNODC) reveals that the number of crimes involving guns per

10 0,0 0 0 habitants is very high in many countries, e.g., 21.5 in Mex-

ico, 4.7 in United States and 1.6 in Belgium [19] . In addition, several

psychological studies demonstrated that the simple fact of having

access to a gun increases drastically the probability of committing

a violent behavior [25] . 

One way to reducing this kind of violence is prevention via

early detection so that the security agents or policemen can act.

In particular, one innovative solution to this problem is to equip

surveillance or control cameras with an accurate automatic hand-

gun detection alert system. Related studies address the detection of

guns but only on X-ray or millimetric wave images and only using

traditional machine learning methods [6,7,26,27,29] . 

In the last five years, deep learning in general and Convolu-

tional Neural Networks (CNNs) in particular have achieved supe-

rior results to all the classical machine learning methods in image

classification, detection and segmentation in several applica-
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ions [8,13,18,22,23,30] . Classical methods require manual interven-

ion, whereas deep CNNs models automatically discover increas-

ngly higher level features from data [11,17] . We aim at developing

 good gun detector in videos using CNNs. 

A proper training of deep CNNs, which contain millions of

arameters, requires very large datasets, in the order of mil-

ions of samples, as well as High Performance Computing (HPC)

esources, e.g., multi-processor systems accelerated with GPUs.

ransfer learning through fine-tuning is becoming a widely ac-

epted alternative to overcome these constraints. It consists of re-

tilizing the knowledge learnt from one problem to another related

ne [20] . Applying transfer learning to deep CNNs depends on the

imilarities between the original and new problem and also on the

ize of the new training set. 

In general, fine-tuning the entire network, i.e., updating all the

eights, is only used when the new dataset is large enough, else

he model could suffer overfitting especially among the first layers

f the network. Since these layers extract low-level features, e.g.,

dges and color, they do not change significantly and can be re-

tilized for several visual recognition tasks. The last layers of the

NN are gradually adjusted to the particularities of the problem to

xtract high level features. In this work we used a VGG-16 based

lassification model pre-trained on the ImageNet dataset (around

.28 million images over 10 0 0 generic object classes) [24] and fine-

uned on our own dataset of 30 0 0 images of guns taken in a vari-

ty of contexts. 

http://dx.doi.org/10.1016/j.neucom.2017.05.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.05.012&domain=pdf
mailto:siham@ugr.es
mailto:siham.tabik@gmail.com
mailto:herrera@decsai.ugr.es
http://dx.doi.org/10.1016/j.neucom.2017.05.012


R. Olmos et al. / Neurocomputing 275 (2018) 66–72 67 

 

e

 

 

 

 

 

 

 

 

 

d  

e  

p  

t  

s  

t

 

 

 

 

 

o  

o  

t

 

t  

o  

s  

m  

s

 

 

 

 

 

 

s  

n  

e  

s  

a  

i

 

y  

o  

c  

p  

f  

a  

m  

S

2

 

i  

d  

c  

C

2

 

d  

T  

t  

u  

t  

t  

c  

m  

s  

t  

u  

s  

a

 

i  

m  

(  

t  

F  

w  

i  

t  

t  

t  

t  

s  

h  

i  

a  

t  

(

 

s  

n

2

 

i  

d  

t  

r  

s

 

 

 

 

 

 

 

 

 

 

 

Using CNNs to automatically detect pistols in videos faces sev-

ral challenges: 

• Pistols can be handled with one or two hands in different ways

and thus a large part of the pistol can be occluded. 

• The process of designing a new dataset is manual and time con-

suming. 

• The labeled dataset cannot be re-utilized by different detection

approaches since they require different preprocessing, different

labeling operations and cannot learn from the same labeled

databases. 

• Automatic pistol detection alarm requires the activation of the

alarm in real time and only when the system is confident about

the existence of a pistol in the scene. 

• Automatic detection alarm systems require an accurate location

of the pistol in the monitored scene. 

As far as we know, this work presents the first automatic gun

etection alarm system that uses deep CNNs based detection mod-

ls. We focus on the most used type of handguns in crimes [31] ,

istol, which includes, revolver, automatic and semi-automatic pis-

ols, six-gun shooters, horse pistol and derringers. To guide the de-

ign of the new dataset and to find the best detector we consider

he following steps: 

• we reformulate the problem of automatic pistol detection alarm

in videos into the problem of minimizing the number of false

positives where pistol represents the true class and 

• we evaluate and compare the VGG-16 based classifier using two

different detection approaches, the sliding window and region

proposals approaches. 

Due to the particularities of each approach, we applied different

ptimizations in each case. We evaluated increasing the number

f classes in the sliding window approach and designing a richer

raining dataset for the region proposals approach. 

As this work focuses on near real time solutions, we selected

he most accurate and fastest detector and assess its performance

n seven videos of different characteristics. Then, we evaluated its

uitability as automatic pistol detection alarm system using a new

etric, the Alarm Activation Time per Interval (AATpI), that mea-

ures the activation time for each scene with guns. 

The main contributions of this work are: 

• Designing a new labeled database that makes the learning

model achieve high detection qualities. Our experience in build-

ing the new dataset and detector can be useful to guide devel-

oping the solution of other different problems. 

• Finding the most appropriate CNN-based detector that achieves

real-time pistol detection in videos. 

• Introducing a new metric, AATpI, to assess the suitability of the

proposed detector as automatic detection alarm system. 

From the experiments we found that the most promising re-

ults are obtained by Faster R-CNN based model trained on our

ew database. The best performing model shows a high potential

ven in low quality youtube videos and provides satisfactory re-

ults as automatic alarm system. Among 30 scenes, it successfully

ctivates the alarm, after five successi ve true positives, within an

nterval of time smaller than 0.2 s, in 27 scenes. 

This paper is organized as follows. Section 2 gives a brief anal-

sis of the most related papers. Section 3 provides an overview

f the CNN model used in this work. Section 4 describes the pro-

edure we have used to find the best detector that reaches good

recisions and low false positives rate. Section 5 analyzes the per-

ormance of the built detector using seven videos and introduces

 new metric to assess the performance of the detector as auto-

atic detection system. Finally the conclusions are summarized in

ection 6 . 
. Related works 

The problem of handgun detection in videos using deep learn-

ng is related in part to two broad research areas. The first ad-

resses gun detection using classical methods and the second fo-

uses on improving the performance of object detection using deep

NNs. 

.1. Gun detection 

The first and traditional sub-area in gun detection focuses on

etecting concealed handguns in X-ray or millimetric wave images.

he most representative application in this context is luggage con-

rol in airports. The existent methods achieve high accuracies by

sing different combinations of feature extractors and detectors, ei-

her using simple density descriptors [6] , border detection and pat-

ern matching [7] or using more complex methods such as cascade

lassifiers with boosting [29] . The effectiveness of these methods

ade them essential in some specific places. However, they have

everal limitations. As these systems are based on metal detection,

hey cannot detect non metallic guns. They are expensive to be

sed in many places as they require to be combined with X-ray

canners and Conveyor belts. They are not precise because they re-

ct to all metallic objects. 

The second sub-area addresses gun detection in RGB images us-

ng classical methods. The few existent papers essentially apply

ethods such as SIFT (Scale-Invariant Feature Transform) y RIFT

Rotation-Invariant Feature Transform), combined with Harris in-

erest point detector or FREAK (Fast Retina Keypoint) [12,26,27] .

or example, the authors in [26,27] developed an accurate soft-

are for pistol detection in RGB images. However, their method

s unable to detect multiple pistols in the same scene. The used

echnique consists of first, eliminating non related objects to a pis-

ol from the segmented image using K-mean clustering algorithm

hen, applying SURF (Speeded Up Robust Features) method for de-

ecting points of interest. Similarly, the authors in [12] demon-

trated that BoWSS (Bag of Words Surveillance System) algorithm

as a high potential to detect guns. They first extract features us-

ng SIFT, cluster the obtained functions using K-Means clustering

nd use SVM (Support Vector Machine) for the training. The au-

hors in [14] addresses riffle detection in RGB images using SVM

Support Vector Machine). 

All the above cited systems are slow, cannot be used for con-

tant monitoring, require the supervision of an operator and can-

ot be used in open areas. 

.2. Detection models 

Object detection consists of recognizing the object and finding

ts location in the input image. The existing methods address the

etection problem by reformulating it into a classification problem,

hey first train the classifier then during the detection process they

un it on a number of areas of the input image using either the

liding window approach or region proposals approach. 

• Sliding window approach: It is an exhaustive method that con-

siders a large number of candidate windows, in the order of

10 4 , from the input image. It scans the input image, at all loca-

tions and multiple scales, with a window and runs the classifier

at each one of the windows. The most relevant works in this

context improve the performance of the detection by building

more sophisticated classifiers. The Histogram of Oriented Gra-

dients (HOG) based model [3] uses HOG descriptor for feature

extraction to predict the object class in each window. The De-

formable Parts Models (DPM) [4] , which is an extension of HOG

based model, uses (1) HOG descriptor to calculate low-level
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Fig. 1. Architecture of VGG-16. 

Table 1 

Characteristics of the new training- and test-sets. The training sets are la- 

beled as Database-1, 2, 3 , 4 and 5. 

Database- # classes total img # img of pistols # rest of img 

1 2 9100 3990 (guns) 5110 

2 2 1857 751 1056 

3 28 5470 751 4716 

4 102 9261 200 9061 

5 2 30 0 0 30 0 0 –

Test set 2 608 304 304 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

The results obtained on the testset by the classification model. 

Database- #TP #FN #TN #FP Prec.(%) Rec.(%) F1 meas. (%) 

1 32 272 109 191 22.70 14.35 10.53 

2 98 206 293 11 89.91 32.24 47.46 

3 85 219 299 5 94.44 27.96 43.15 

4 97 207 298 6 94.17 31.91 47.67 

Table 3 

The results obtained by the classification model under the region proposals ap- 

proach on the testset. 

Database- #TP #FN #TN #FP Prec. Rec. F1 meas. 

5 304 0 247 57 84.21% 10 0.0 0% 91.43% 
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features, (2) a matching algorithm for deformable part-based

models that uses the pictorial structures [5] and (3) a discrim-

inative learning with latent variables (latent SVM). This model

provides very good accuracies for pedestrian detection with a

speed of around 0.07fps and 14s/image. 

The obtained accuracies using good classifiers under the sliding

window approach are satisfactory but the detection process can

be too slow to be used in real time. 

• Region proposals approach: Instead of considering all the pos-

sible windows of the input image as candidates, this approach

selects actual candidate regions using detection proposal meth-

ods [15] . The first detection model that introduced CNNs under

this approach was Region-based CNNs (R-CNN) [10] . It gener-

ates around 20 0 0 potential bounding boxes using the selective

search method [28] , warps the obtained regions into images of

the same size then, feeds them to a powerful CNN-based clas-

sifier to extract their features, scores the boxes using SVM, ad-

justs the bounding boxes using a linear model, and eliminates

duplicate detections via a non-max suppression. R-CNN pro-

vides good performance on the well know PASCAL-VOC with

a speed of 40s/image. Fast R-CNN [9] and subsequently Faster

R-CNN [21] further improve computation, data access and disk

use of R-CNN. Fast R-CNN has a speed of 0.5 f/s and 2s/image

and Faster R-CNN around 7f/s and 140 ms/image. 

This work addresses a new solution to the problem of real-time

pistol detection alarm system using deep learning CNN-based de-

tector. We develop, evaluate and compare a CNN based classifier

on different new datasets within the sliding window and region

proposals detection based methods. 

3. Deep learning model 

VGG was the first runner-up in ILSVRC 2014 [24] . It was used

to show that the depth of the network is critical to the perfor-

mance. The largest VGG architecture, VGG-16, involves 144 million

parameters from 16 layers with learnable weights, thirteen convo-

lutional layers and three fully connected layers in addition to five

max-pooling layers and one linear Softmax output layer, see Fig. 1

for illustration. This model also uses dropout regularization in the

fully-connected layer and applies ReLU activation to all the con-

volutional layers. This CNN has a greater number of parameters

compared to AlexNet and GoogLeNet, which makes it more com-

putationally expensive. 

Deep CNNs, such as VGG-16, are generally trained based on the

prediction loss minimization. Let x and y be the input images and
orresponding output class labels, the objective of the training is

o iteratively minimize the average loss defined as 

(w ) = 

1 

N 

N ∑ 

i =1 

L ( f (w ; x i ) , y i ) + λR(w ) (1)

here N is the number of data instances (mini-batch) in every it-

ration, L is the loss function, f is the predicted output of the net-

ork depending on the current weights w , and R is the weight

ecay with the Lagrange multiplier λ. We use the Stochastic Gradi-

nt Descent (SGD) algorithm with back propagation to update the

eights. SGD computes the output of the network for a set of sam-

les, then, computes the output error and its derivatives with re-

pect to the weights to finally update the weights of the learnable

ayers as follows. 

 t+1 = μw t − α�J(w t ) (2)

here μ is the momentum weight for the current weights w t and

is the learning rate. 

The network weights are randomly initialized if the network

s trained from scratch and are initially set to a pre-trained net-

ork weights if fine-tuning the deep model. In this work we have

sed fine-tuning VGG-16 and initialized it with the weights of the

ame architecture VGG-16 pre-trained on Imagenet database. The

re-trained VGG-16 model is available through the deep learning

oftware used in this work, theano with Keras front-end [1,2] and

affe [16] . 

. Database construction: towards an equilibrium between 

alse positives and false negatives 

Automatic pistol detection in videos not only requires mini-

izing the number of false positives but also reaching a near

eal time detection. We analyze the performance of the classifier

n combination with two detection methods, the sliding window

 Section 4.1 ) and the region proposals ( Section 4.2.1 ). 

Due to the differences between these two approaches, differ-

nt optimization model based on databases with different charac-

eristics, size and classes, are applied in each case. In the sliding

indow approach, we address reducing the number of false pos-

tives by increasing the number of classes and thus building four

atabases, Database-1, -2, -3 and -4. The characteristics of all the
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Table 4 

The total number of True Positives #TP, total number of Ground Truth true Positives #GT_P, total 

number of False Positives #FP in the considered seven videos, labeled as video 1 to 7. 

video# #frames #TP #GT_P #FP Precision (%) Recall (%) F1 measure (%) 

1 393 60 162 8 88.24 37.04 52.17 

2 627 467 778 11 98.70 60.03 74.36 

3 441 25 58 15 62.50 43.10 51.02 

4 591 6 54 0 10 0.0 0 11.11 20.22 

5 627 24 105 21 53.33 22.86 32.00 

6 212 141 290 30 82.46 48.62 61.17 

7 501 166 476 6 96.51 34.87 51.23 
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Fig. 2. Examples from Database-2, the top three images represent the pistol class 

and the down three images represent the background class. 
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atabases built in this work are summarized in Table 1 . In the re-

ion proposals approach, the detector is directly trained on region

roposals of a new database, Database-5, with richer contexts. 

To evaluate and compare the performance of the classification

odel trained on the five proposed databases, we have built a test-

et of 608 images distributed into 304 images that contain pistols

nd 304 images that do not contain pistols. We have used three

etrics, precision, recall and F1 measure , which evaluates the bal-

nce between the precision and recall . Where 

precision = 

T rue P ositi v es 

T rue P ositi v es + F alse P ositi v es 
, 

ecall = 

T rue P ositi v es 

T rue P ositi v es + F alse Negati v es 

nd 

 1 measure = 2 × precision × recall 

precision + recall 

For implementing the proposed models we used theano with

eras as front-end [1,2] in the sliding window based approach

hown in Section 4.1 and Caffe [16] in the region proposal ap-

roach shown in Section 4.2.1 . 

.1. Sliding window approach 

This section aims at finding the best combination of classifier

nd training dataset within the sliding window detection approach.

e address the minimization of the number of false positives by

uilding different training datasets and increasing the number of

lasses. 

.1.1. Two classes 

To guide our design, and as a first approximation, we have built

 preliminary database, Database-1, and consider a broader class of

ype gun. Database-1 contains 9100 images extracted from online

un catalogues, gun use tutorials and gun advertisement (see de-

ails in Table 1 ). We distributed it into 3990 images of class gun,

hich includes different types of guns, pistols, machine guns, ri-

e, machine guns, grenade, multiple rocket launcher, tank and 5110

mages of not-gun class, which contains different kind of objects. 

We have evaluated the VGG-16 based classification model con-

idering two classes to indicate either the presence or absence of a

istol in the scene. Table 2 provides the number of true positives,

TP, the number of false positives, #FN, the number of true nega-

ives, #TN, the number of false positives, #FP, precision, recall and

1 measure obtained by the classification model when trained on

atabase-1, 2, 3 and 4 respectively. 

As shown in this Table, the classification model trained on

atabase-1 obtains a high number of false positives, 191, high

umber of false negatives, 272, and consequently low precision and

ecall. This can be explained by the fact that the large variety of

uns makes the learning task very difficult. To make the problem

ffordable, we instead focus our task to pistol detection. 
In a second step, we have built Database-2 using 1857 images,

51 images of class pistol and 1056 of background. We included to

he background class different images of hands holding different

bjects other than pistols, e.g., cell phone and pen as illustrated

n Fig. 2 . On the test set, the binomial classification model trained

n Database-2 obtained 11 false positives, a high number of false

egatives 206, a precision of 89.91%, recall 32.24% and F1 mea-

ure 47.46%, which are still below our expectations. By analyzing

he false positives we found that most of them consider the white

ackground as part of the pistol which is due to the presence of

he white background in most training examples. 

.1.2. Multiple classes 

To further decrease the number of false positives we designed

wo new databases, Database-3 and Database-4, and considered a

igher number of classes. 

Database-3 contains 5470 images set distributed into 28 classes.

51 of training examples contain pistols. As shown in Table 2 ,

he 28-classes based classification model overcomes the binomial

odel by reducing the number of false positives to 5 and improv-

ng the precision to 94.44%, recall to 27.96% and F1 measure to 43,

5%. However, the number of false negatives is still very high. 

We have also explored the performance of the classification

odel using a higher number of classes on Database-4. Database-4

s built using 9261 images distributed into 102 classes, 200 train-

ng examples contain pistols and 9061 contain diverse objects, e.g.,

irplanes, ant, beaver, brain, chair, cell phone, animals and so on.

his classifier produces the best results over the previous ones, a

ower number of false negatives 207, slightly lower number of true

egatives 298 and consequently better recall 31.91% and F1 mea-

ure 47.67%. Next we will evaluate the detection process using the

02-classes based classifier. 

.1.3. Detection process and final analysis 

We selected the best classification model to evaluate it under

he sliding window approach. The classifier is applied automati-

ally, in steps of 60 × 60-pixels, to windows of 160 × 120-pixels

f each input image to determine whether it contains a pistol. The
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2 https://github.com/SihamTabik/Pistol- Detection- in- Videos.git. 
whole detection process takes 1.5 seconds in a 640 × 360-pixels

input image. Which is not acceptable for an automatic system such

as the one considered in this work. 

The detection model that makes use of the sliding window ap-

proach achieves few false positives and high precision, however, it

obtains a low recall 35% and its execution time is not appropriate

for online detection. In next section we will explore another alter-

native to further improve performance and speed of the detection

process. 

4.2. Region proposals approach 

This section analyzes the performance of the detection under

the region proposals approach and suitability for real time analysis.

4.2.1. Learning model based on Regions and labeled pistol bounding 

box 

In this approach, we have used Faster Region based-CNN (Faster

R-CNN) [21] , which combines the selective search method with

VGG-16 based classifier. 

The design of a new training dataset for this approach is also

manual and cannot re-use the databases from the previous ap-

proach. We have built Database-5 using 30 0 0 images that contains

pistols in different contexts and scenarios, downloaded from di-

verse web-sites. Fig. 2 , as complementary material 1 , provides three

examples of Database-5. We considered a two class model and la-

beled the pistols by providing its localization, i.e., bounding box, in

each individual training image. The rest of objects in the image are

considered background. It is worth noting that the training step

takes around 52 minutes on Nvidia GTX 980. 

In general, as it can be seen from Table 3 , Faster R-CNN trained

on Database-5 obtains the highest performance over all the previ-

ously analyzed models. It provides the highest true positives num-

ber and the highest true negative numbers and consequently the

highest recall 100% and F1 score 91.43%. However it produces more

false positives, 57, and consequently lower precision, 84.21%. In

Section 5 , we address this issue in the context of automatic alarm

systems by activating the alarm only when at least five successive

false positives happen in five successive frames. Next we analyze

the speed of this detection model. 

4.2.2. Detection process and final analysis 

We have evaluated the detection process using Faster-RCNN,

which is based on the region proposals approach. We considered

two classes and trained the classification model on Database 5.

The whole detection process in a 10 0 0 × 10 0 0–pixels image takes

0.19 s approximately producing a rate of 5.3 frames/s. Which al-

lows the pistol detection to be performed in videos in near real

time. 

The detection model based on region proposals approach

achieves the maximum recall 100% over the pistol class, zero false

negatives, good precision 85.21%, a reasonable false positives num-

ber and can be used for real time detection. This makes it a good

candidate for detecting pistols in a sequence of frames as shown

in Section 5 . 

5. Analysis of the detection in videos 

In this section we explore the strengths and weaknesses of our

model on seven low quality youtube videos. In particular, we first

assess the quality of the detection and localization ( Section 5.1 )

then analyze the suitability of our model as pistol detection alarm

system using a new metric ( Section 5.2 ). 
1 Fig. 2 is not explicitly shown in this paper because it may contain violent con- 

notations. The reader can visualize it through this public link: https://github.com/ 

SihamTabik/Pistol- Detection- in- Videos/blob/master/ComplementaryMaterial.pdf. 

S

c

p

.1. Analysis of detection and localization 

This section analyzes the performance of our best detection

odel on seven public videos, with low qualities, downloaded

rom youtube. Six of them are pieces of well known films from the

0s, James Bon: The World is Not Enough (video 1), 3 pieces from

ulp Fiction (video 2, 3 and 4), Impossible Mission: Rogue Nation

video 5) and Mister Bean (video 6). The seventh video is a long

istol threatening video (video 7). The videos with the detections

an be found in a public repository in github 2 . 

For the experiments, we analyzed the results of the detection

n the videos frame by frame and consider a detection as true

ositive if the overlapping between the handled pistol and the

redicted bounding box is more than 50%. Recall that the way

istols are handled is also a key to the detection. We consider a

istol as ground truth when it is recognizable by the human eye.

able 4 provides the total number of True Positives #TP, the total

umber of False Positives #FP and total number of Ground Truth

ositives #GT_P, in each one of the seven videos. We consider a

hreshold ∈ [0.7 0.9]. 

In general, although the scenes are dynamic in most videos,

he detector achieves good balance between precision and recall,

specially in videos 2 and 6. Fig. 3, as complementary material 3 ,

hows one example of an accurate detection. In particular, the de-

ector provides very high precisions in videos 1, 2, 3, 4 , 6 and 7,

nd the obtained number of false positives is very low in all the

ideos. Which is essential to avoid activating negative alarms. The

btained false positive detections can be addressed in a realistic

ystem by activating the alarm only when false positives are de-

ected in a number of consecutive frames. 

The low recall can be explained by the false negatives detected

n the frames with very low contrast and luminosity. Fig. 4, as

omplementary material 4 , shows two frames, of a gadget, with low

uality. The false negatives depends on the quality of the frame

nd whether the pistol is clearly visible. In particular, they occur

hen the pistol is moved very fast or when it is placed in the

ackground. Fig. 5, as complementary material, shows an example

f two false negatives in the background. 

In conclusion, the obtained results can be considered as accept-

ble to detect sequences of clearly visible pistols as it will be ana-

yzed in next section. 

.2. Analyzing the model as alarm detection system 

In an automatic pistol detection system the alarm must be acti-

ated when the system is completely confident about the presence

f pistols in the scene. To assess the performance of our detection

odel as an alarm system, we define a new metric, Alarm Acti-

ation Time per Interval (AATpI). AATpI quantifies how fast is the

ystem in detecting pistols in a given scene. 

efinition 1. AATpI is the time the automatic detection alarm sys-

em takes to detect at least k successive frames of true positives. 

In the next analysis we used k = 5 . For the experiments, we se-

ected 30 scenes from the previously used videos with the next re-

uirements. Each scene is made up of at least 5 frames, filmed in

 fixed scenario, i.e., in the same place, and the pistols are clearly
3 Figure 3 can be visualized through this public link: https://github.com/ 

ihamTabik/Pistol- Detection- in- Videos/blob/master/ComplementaryMaterial.pdf. 
4 Figs. 4 and 5 can be visualized them through this public link: https://github. 

om/SihamTabik/Pistol- Detection- in- Videos/blob/master/ComplementaryMaterial. 

df. 

https://github.com/SihamTabik/Pistol-Detection-in-Videos/blob/master/ComplementaryMaterial.pdf
https://github.com/SihamTabik/Pistol-Detection-in-Videos.git
https://github.com/SihamTabik/Pistol-Detection-in-Videos/blob/master/ComplementaryMaterial.pdf
https://github.com/SihamTabik/Pistol-Detection-in-Videos/blob/master/ComplementaryMaterial.pdf
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isible to a human viewer. These scenes can be found in a public

epository in github 5 . 

The model successfully detects the pistol in 27 scenes with an

verage time interval AATpI = 0.2 s, which is good enough for an

larm system. The detector fails to detect pistols only in three

cenes. This is due to the same reasons highlighted previously,

hich are the low contrast and luminosity of the frames, the pistol

s moved very fast or when the pistol is not in the foreground. 

In summary, although we have used low quality videos for

he evaluation, the proposed model has shown good performance

nd demonstrated to be appropriate for automatic pistol detection

larm systems. 

. Conclusions and future work 

This work presented a novel automatic pistol detection system

n videos appropriate for both, surveillance and control purposes.

e reformulate this detection problem into the problem of min-

mizing false positives and solve it by building the key training

ata-set guided by the results of a VGG-16 based classifier, then

ssessing the best classification model under two approaches, the

liding window approach and region proposal approach. The most

romising results have been obtained with Faster R-CNN based

odel, trained on our new database, providing zero false positives,

00% recall, a high number of true negatives and good precision

4,21%. The best detector has shown a high potential even in low

uality youtube videos and provides very satisfactory results as au-

omatic alarm system. Among 30 scenes, it successfully activates

he alarm after five successive true positives within an interval of

ime smaller than 0.2 s, in 27 scenes. 

The proposed detector can be used in several applications, e.g.,

) real time detection of guns in places monitored by cameras and

i) control whether the videos uploaded to social media contain

cenes with guns. 

As present and future work, we are evaluating reducing the

umber of false positives, of Faster R-CNN based detector, by pre-

rocessing the videos, i.e., increasing their contrast and luminos-

ty, and also by enriching the training set with pistols in mo-

ion. We will also evaluate different CNNs-based classifier such as,

oogLenet and consider a higher number of classes. 
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