Neurocomputing 132 (2014) 30-41

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

NEUROCOMPUTING

Neurocomputing

NEUROCOMPUTING
LETTERS

On the characterization of noise filters for self-training

@ CrossMark

semi-supervised in nearest neighbor classification

Isaac Triguero **, José A. Sdez?, Julidn Luengo °, Salvador Garcia €, Francisco Herrera

a

2 Department of Computer Science and Artificial Intelligence, CITIC-UGR (Research Center on Information and Communications Technology),

University of Granada, 18071 Granada, Spain

b Department of Civil Engineering, LS, University of Burgos, 09006 Burgos, Spain
€ Department of Computer Science, University of Jaén, 23071 Jaén, Spain

ARTICLE INFO

Article history:

Received 22 October 2012

Received in revised form

18 February 2013

Accepted 30 May 2013

Available online 12 November 2013

Keywords:

Noise filters

Noisy data

Self-training

Semi-supervised learning
Nearest neighbor classification

ABSTRACT

Semi-supervised classification methods have received much attention as suitable tools to tackle training
sets with large amounts of unlabeled data and a small quantity of labeled data. Several semi-supervised
learning models have been proposed with different assumptions about the characteristics of the input
data. Among them, the self-training process has emerged as a simple and effective technique, which does
not require any specific hypotheses about the training data. Despite its effectiveness, the self-training
algorithm usually make erroneous predictions, mainly at the initial stages, if noisy examples are labeled
and incorporated into the training set.

Noise filters are commonly used to remove corrupted data in standard classification. In 2005, Li and
Zhou proposed the addition of a statistical filter to the self-training process. Nevertheless, in this
approach, filtering methods have to deal with a reduced number of labeled instances and the erroneous
predictions it may induce. In this work, we analyze the integration of a wide variety of noise filters into
the self-training process to distinguish the most relevant features of filters. We will focus on the nearest
neighbor rule as a base classifier and ten different noise filters. We provide an extensive analysis of the
performance of these filters considering different ratios of labeled data. The results are contrasted with
nonparametric statistical tests that allow us to identify relevant filters, and their main characteristics, in

the field of semi-supervised learning.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The construction of classifiers can be considered one of the
most important and challenging tasks in machine learning and
data mining [1]. Supervised classification, which has attracted
much attention and research efforts [2], aims to build classifiers
using a set of labeled data. By contrast, in many real-world tasks,
unlabeled data are easier to obtain than labeled ones because they
require less effort, expertise and time-consumption. In this con-
text, semi-supervised learning (SSL) [3] is a learning paradigm
concerned with the design of classifiers in the presence of both
labeled and unlabeled data.

SSL is an extension of unsupervised and supervised learning by
including additional information typical of the other learning para-
digm. Depending on the main objective of the methods, SSL encom-
passes several settings such as semi-supervised classification (SSC) [4]

* Corresponding author. Tel.: +34 958 240598; fax: +34 958 243317.
E-mail addresses: triguero@decsai.ugr.es (I. Triguero),
smja@decsai.ugr.es (J.A. Sdez), jluengo@ubu.es (J. Luengo),
sglopez@ujaen.es (S. Garcia), herrera@decsai.ugr.es (F. Herrera).

0925-2312/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2013.05.055

and semi-supervised clustering [5]. The former focuses on enhancing
supervised classification by minimizing errors in the labeled examples
but it must also be compatible with the input distribution of unlabeled
instances. The latter, also known as constrained clustering [6], aims to
obtain better defined clusters than the ones obtained from unlabeled
data. There are other SSL settings, including regression with labeled
and unlabeled data, or dimensionality reduction [7] to find a faithful
low dimensional mapping, or selection of the high dimensional data in
a SSL context. We focus on SSC.

SSC can be categorized into two slightly different settings [8],
denoted as transductive and inductive learning. On one hand,
transductive learning concerns the problem of predicting the
labels of the unlabeled examples, given in advance, by taking both
labeled and unlabeled data together into account to train a
classifier. On the other hand, inductive learning considers the
given labeled and unlabeled data as the training examples, and its
objective is to predict unseen data. In this paper, we address both
settings to carry out an extensive analysis of the performance of
the studied methods.

Many different approaches have been proposed to classify using
unlabeled data in SSC. They usually make different assumptions

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.05.055
http://dx.doi.org/10.1016/j.neucom.2013.05.055
http://dx.doi.org/10.1016/j.neucom.2013.05.055
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.05.055&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.05.055&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.05.055&domain=pdf
mailto:triguero@decsai.ugr.es
mailto:smja@decsai.ugr.es
mailto:jluengo@ubu.es
mailto:sglopez@ujaen.es
mailto:herrera@decsai.ugr.es
http://dx.doi.org/10.1016/j.neucom.2013.05.055

I Triguero et al. /| Neurocomputing 132 (2014) 30-41 31

related to the link between the distribution of unlabeled and
labeled data. Generative models [9] assume a joint probability
model p(x,y)=py)p(x|y), where p(x|y) is an identifiable mixture
distribution, for example a Gaussian mixture model [10]. The
standard co-training [11] methodology assumes that the feature
space can be split into two different conditionally independent
views and that each view is able to predict the classes perfectly
[12-15]. It trains one classifier in each specific view, and then the
classifiers teach each other the most confident predicted examples.
Multiview learning [16,17] can be viewed as a generalization of co-
training, without requiring explicit feature splits or the iterative
mutual-teaching procedure. Instead, it focuses on the explicitly
hypothetical agreement of several classifiers [18]. There are also
other algorithms such as transductive inference for support vector
machines [19,20] that assume that the classes are well-separated
and do not cut through dense unlabeled data. Alternatively, SSC can
also be viewed as a graph min-cut problem [21]. If two instances
are connected by a strong edge, their labels are likely to be the
same. In this case, the graph construction determines the behavior
of this kind of algorithm [22]. In addition, there are recent studies
which address multiple assumptions in one model [8].

Self-training [23,24] is a simple and effective SSL methodology
which has been successfully applied in many real instances
[25,26]. In the self-training process, a classifier is trained with an
initially small number of labeled examples, aiming to classify
unlabeled points. Then it is retrained with its own most confident
predictions, enlarging its labeled training set. This model does not
make any specific assumptions for the input data, but it accepts
that its own predictions tend to be correct.

However, this idea can lead to erroneous predictions if noisy
examples are classified as the most confident examples and
incorporated into the labeled training set. In [27], the authors
propose the addition of a statistical filter [28] to the self-training
process, naming this algorithm SETRED. Nevertheless, this method
does not perform well in many domains. The use of a particular
filter which has been designed and tested under different condi-
tions is not straightforward. Although the aim of any filter is to
remove potentially noisy examples, both correct examples and
examples containing valuable information may also be removed.
Thus, detecting true noisy examples is a challenging task because
the success of filtering methods depends on several factors [29]
such as the kind and nature of data errors, the quantity of noise
removed or the capabilities of the classifier to deal with the loss of
useful information related to the filtering. In the self-training
approach, the number of available labeled data and the induced
noisy examples are two decisive factors when filtering noise.
Hence, the performance of the combination of filtering techniques
and self-training relies heavily on the filtering method chosen. It is
so much so that the inclusion or the absence of one prototype into
the labeled training set can alter the following stages of the self-
training approach, especially in early steps. For these reasons, the
inclusion and analysis of the most suitable filtering method into
the self-training is mandatory in order to diminish the influence of
noisy data.

Filtering techniques follow different approaches to determine
whether an example could be noisy or not. We distinguish two
types of noise detection mechanism: local and global. We call local
methods to those techniques in which the removal decision is
based on a local neighborhood of instances [30,31]. Global meth-
ods create different models from the training data. Mislabeled
examples can be considered noisy depending on the hypothesis
agreement of the used classifiers [32,33]. It is necessary to
mention that there are other related approaches in which unla-
beled data are used to identify mislabeled training data [34,35].

In this work we deepen in the integration of different noise
filters and we further analyze recent proposals in order to

establish their suitability with respect to the self-training process.
We will adopt the Nearest Neighbor (NN) rule [36] as the base
classifier, which has been highlighted as one of the most influen-
tial techniques in data mining [37]. For each filtering family, the
most representative noise filters will be tested. The analysis of the
behavior of noise filters in self-training motivates the global
purpose of this paper, which pursues three objectives:

® To determine which characteristics of noise filters are more
appropriate to be included in the self-training process.

® To perform an empirical study for analyzing the transductive
and inductive capabilities of the filtered and non-filtered self-
training algorithm.

® To check the behavior of this approach when dealing with data
sets with different ratios of labeled data.

We will conduct experiments involving a total of 60 classifica-
tion data sets with different ratios of labeled data: 10%, 20%, 30%
and 40%. In order to test the behavior of noise filters, the
experimental study will include a statistical analysis based on
nonparametric statistical tests [38]. A web page with all the
complementary material is available at (http://sci2s.ugr.es/SelfTrai
ning + Filters), including this paper's basic information, all the data
sets created and the complete results obtained for each algorithm.

The rest of the paper is organized as follows: Section 2 defines
the SSC problem and the self-training approach. Section 3 explains
how to combine self-training with noise filters. Section 4 intro-
duces the filtering algorithms used. Section 5 presents the experi-
mental framework and Section 6 discusses the analysis of results
obtained. Finally, in Section 7 we summarize our conclusions.

2. Background: semi-supervised learning via the self-training
approach

This section provides the necessary information to understand
the proposed integration of noise filters into the self-training
process. Section 2.1 defines the SSC problem. Then, Section 2.2
presents the self-training approach used to address the SSC
problem.

2.1. Semi-supervised classification

This section presents the definition and notation for the SSC
problem. A specification of this problem follows: Let x, be an
example where X, = (Xp1,Xp2, ..., Xpp, @), With x, belonging to a
class w and a D-dimensional space in which x,; is the value of the
i-th feature of the p-th sample. Then, let us assume that there is a
labeled set L which consists of m instances x,» with @ known.
Furthermore, there is an unlabeled set U which consists of m
instances X, with @ unknown, let m > n. The L U U set forms the
training set TR. The purpose of SSC is to obtain a robust learned
hypothesis using TR instead of L alone, which can be applied in
two slightly different settings: transductive and inductive learning.

Transductive learning is described as the application of an SSC
technique to classify all the m instances Xy of U with their correct
class. The class assignation should represent the distribution of the
classes efficiently, based on the input distribution of unlabeled
instances and the L instances.

Let TS be a test set composed of t unseen instances x,@ with @
unknown, which has not been used at the training stage of the SSC
technique. The inductive learning phase consists of correctly
classifying the instances of TS based on the previously learned
hypothesis.

http://sci2s.ugr.es/SelfTraining+Filters
http://sci2s.ugr.es/SelfTraining+Filters
http://sci2s.ugr.es/SelfTraining+Filters
http://sci2s.ugr.es/SelfTraining+Filters
http://sci2s.ugr.es/SelfTraining+Filters

32 I Triguero et al. / Neurocomputing 132 (2014) 30-41

2.2. Self-training

The self-training approach is a wrapper methodology charac-
terized by the fact that the learning process uses its own predic-
tions to teach itself. This process is also known as bootstrapping or
self-teaching [39]. In general, self-training can be used either as
inductive or transductive learning depending on the nature of the
classifier. Self-training follows an iterative procedure in which a
classifier is trained using labeled data to predict the labels of
unlabeled data in order to obtain an enlarged labeled set L.

Fig. 1 outlines the pseudo-code of the self-training methodol-
ogy. In the following we describe the most significant instructions
enumerated from 1 to 22.

First of all, it is necessary to determine the number of unlabeled
instances which will be added to L in each iteration. Note that this
parameter can be a constant, or it can be chosen as a proportional
value of the number of instances of each class in L, as Blum and
Mitchell suggest in [11]. We apply this idea in our implementa-
tions to determine the amount of prototypes per class which will
be added to L in each iteration (Instructions 1-11).

Then, the algorithm enters into a loop to enlarge the labeled set
L (Instructions 14-20). Instruction 15 calculates the confidence
predictions of all the unlabeled instances, as the probability of
belonging to each class. The way in which the confidence predic-
tions are measured is dependant on the type of classifier used.
Unlike probabilistic models such as Naive Bayes, whose confidence
predictions can be measured as the output probability in predic-
tion, the NN rule has no explicitly measured confidence for an
instance. For the NN rule, the algorithm approximates confidence
in terms of distance, hence, the most confident unlabeled instance
is defined as the closest unlabeled instances to any labeled one (as
defined in [27,3]).

Next, instruction 16 creates a set L’ consisting of the most
confident unlabeled data for each class, keeping the proportion of
instances per class previously computed. L' is labeled with its
predictions and added to L (Instruction 17). Instruction 18 removes
the instances of L’ from U.

In the original description of the self-training approach [23],
this process was repeated until all the instances from U had been
added to L. However, following [11], we have established a limit to
the number of iterations, MAXITER (Instruction 14). Hence, a pool
of unlabeled examples smaller than U is used in our
implementations.

Finally, the obtained L set is used to classify the U set for
transductive learning and the TS for inductive learning.

Require: L, U, TS
: PrototypesPerClass[1..NumberO fClasses| = 1
: Minimum = +oo
: for i =1 to NumberO fClasses do
PrototypesPerClass[i] = |(Prototypes of Class icL)| / | L |
if PrototypesPerClass[i] < Minimum then
Minimum = PrototypesPerClass|i]
end if
: end for
9: for j =1 to NumberO fClasses do
10: PrototypesPerClass|j] = Round (PrototypesPerClass[j] / Minimum)
11: end for
12: L' =10
13: 2=0
14: while z < MAXITER and |U| > 0 do
15: Confidence [1..] U || = ConfidenceClassification(L, U)
16: L’ = PrototypesPerClass|j] most confident unlabeled instances for each class j.
17: L=LuL
18: Removing L’ from U
19: z=z+1
20: end while
21: Transductive Phase < — Classify(L, U)
22: Inductive Phase < — Classify(L, T'S)

0D U W

Fig. 1. Self-training pseudo-code.

3. Combining self-training and filtering methods

In this section we explain the combination of self-training with
noise filters in depth. As mentioned above, the goal of the self-
training process is to find the most adequate class label for
unlabeled data with the aim of enlarging the L set. However, in
SSC, the number of initial labeled examples tends to be too small
to train a classifier with good generalization capabilities. In this
scenario, noisy instances can be harmful if they are added to the
labeled set, as they bias the classification of unlabeled data to
incorrect classes, which could make the enlarged labeled set in the
next iteration even more noisy. This problem may especially occur
in the initial stages of this process.

Two types of noisy instances may appear during the self-
labeling process:

® The first one is caused by the distribution of classes in L. It can
lead to the classifier to label erroneously some instances.

® There may be outliers within the original unlabeled data. This
second kind can be detected, avoiding its labeling and its
inclusion into L.

These ideas motivate the treatment of noisy data during the
self-training process. Filtering methods have been commonly used
to deal with noisy data. Nevertheless, most of the proposed
filtering schemes have been designed into the supervised classi-
fication framework. Hence, the number of labeled data can
determine the way in which one filter decides whether an
example is noisy or not. If incorrect examples are appropriately
detected and removed during the labeling process, the general-
ization capabilities of the classifier are expected to be improved.

The filtering technique should be applied at each iteration, after
L’ is formed, in order to detect both types of noisy instances. The
identification of noisy examples is performed using the set L U L’ as
a training set. If one example of L’ is annotated as a possible noisy
example, it is removed from L', and it will not be added to L.
Nevertheless, this instance should be cleaned from U. Note that this
scheme does not try to relabel suspicious examples and thereby
avoids the introduction of new noise into the training set [27].

Fig. 2 shows a case of study of filtered self-training in a two-
class problem. In this figure, we can observe the first iteration of

Training Data

" a ,0
A b a® Select most confidence o & 4 a
[} a O a
a B8 labeled examples o & a,
o o A‘ &, 5 o a a
o A A A
o o 44 & e 9 9 A A
o a A o
[} [}
o o a o a
o e O g
2 % o0 %2 o e.0 °
[} °
oo b °0°
Removing noisy examples
A o
A A
) oa &
o A a,
o o a A
Repeat o o 44 &
o aa
Process o o
o a
o e =]
o e o °
oo .
Label confident examples u
o Unlabeled data from class 1 2
a at
@ Labeled datafrom class 1 ° A A 4
o A a
a Unlabeled data from class 2 ° o L
A Labeled data from class 2 o © o o & 2 A N
@ Most Confident data o e A
o e °
Most Confident data o e o e,
mislabeled oo

Fig. 2. Example of labeling process with editing.

I Triguero et al. /| Neurocomputing 132 (2014) 30-41 33

the process and how the selection of the most confident examples
can fail due to the distribution of the given labeled instances. One
example of Class 2 has been selected as one of the most confident
instances of Class 1. A filtering technique is needed to remove
incorrectly labeled instances in order to avoid the erroneous future
labeling in subsequent iterations.

4. Filtering methods

This section describes the filters adopted in our study. Filtering
methods are preprocessing mechanisms to detect and eliminate
noisy examples in the training set. The separation of noise
detection and learning has the advantage that noisy examples do
not influence the model building design [40].

As we explained before, each method considers an example to
be harmful depending on its nature. Broadly speaking, we can
categorize filters into two different types: local (Section 4.1) and
global filters (Section 4.2).

In all descriptions, we use TR to refer to the training set, FS to
the filtered set, and ND to refer to the noisy data identified in the
training set (initially, ND = 0)).

4.1. Local filters

These methods create neighborhoods of instances to detect
suspicious examples. Most of them are based on the distance
between prototypes to determine their similarity. The best known
distance measure for these filters is Euclidean distance (Eq. (1)).
We will use it throughout this study, since it is simple, easy to
optimize, and has been widely used in the field of instance based
learning [41]

D
EuclideanDistance(X,Y) =/ Y (Xpi —Xq)° 1)
Vio

here we offer a brief description of the local filtering methods
studied:

e Edited Nearest Neighbor (ENN) [42]: This algorithm starts with
FS=TR. Then each instance in FS is removed if it does not agree
with the majority of its k nearest neighbors.

e All kNN (AILIKNN) [43]: The All kNN technique is an extension of

ENN. Initially, FS=TR. Then the NN rule is applied k times. In

each execution, the NN rule varies the number of neighbors

considered between 1 and k. If one instance is misclassified by
the NN rule, it is registered as removable from the FS. Then all
those that do meet the criteria are removed at once.

Relative Neighborhood Graph Edition (RNGE) [44]: This techni-

que builds a proximity undirected graph G=(V,E), in which

each vertex corresponds to an instance from TR. There is a set of
edges E, so that (x;,x;) € E if and only if x; and x; satisfy some
neighborhood relation (Eq. (2)). In this case, we say that these
instances are graph neighbors. The graph neighbors of a given
point constitute its graph neighborhood. The edition scheme
discards those instances misclassified by their graph neighbors
(by the usual voting criterion)

(%i, X)) € E <= d(x;,X;) < max(d(x;, Xy), d(xj, X)),
VXk € TR, k # l,] (2)

Modified Edited Nearest Neighbor (MENN) [45]: This algorithm
starts with FS=TR. Then each instance X, in FS is removed if it
does not agree with all of its k+I nearest neighbors, where [is
the number of instances in FS which are at the same distance as
the last neighbor of x,.

Furthermore, MENN works with a prefixed number of pairs
(k, k). k is employed as the number of neighbors used to
perform the editing process, and k’ is employed to validate
the edited set FS obtained. The best pair found is employed as
the final reference set. If two or more sets are found to be
optimal, then both are used in the classification of the test
instances. A majority rule is used to decide the output of the
classifier in this case.

e Nearest Centroid Neighbor Edition (NCNEdit) [46]: This algo-
rithm defines the neighborhood, taking into account not only
the proximity of prototypes to a given example, but also their
symmetrical distribution around it. Specifically, it calculates the
k nearest centroid neighbors (k NCNs). These k neighbors can
be searched for through an iterative procedure [47] in the
following way:

1. The first neighbor of'xp is also its nearest neighbor, x}l.

2. The ith neighbor, X;, i>2 is such that the centroid of
this and previously selected neighbors, xl,...,xfl, is the
closest to x;.

The NCN Editing algorithm is a slight modification of ENN,
which consists of discarding from FS every example misclassi-
fied by the k NCN rule.

o Cut edges weight statistic (CEWS) [28]: This method generates a
graph with a set of vertices V=TR, and a set of edges, E,
connecting each vertex to its nearest neighbor. An edge con-
necting two vertices that have different labels is denoted as a
cut edge. If an example is located in a neighborhood with too
many cut edges, it should be considered as noise. Next, a
statistical procedure is applied in order to label cut edges as
noisy examples. This is the filtering method used in the first
self-training approach with edition [27] (SETRED).

e Edited Nearest Neighbor Estimating Class Probabilistic and
Threshold (ENNTh) [48]: This method applies a probabilistic
NN rule, where the class of an instance is decided as a weighted
probability of the class of its nearest neighbors (each neighbor
has the same a priori probability, and its associated weight is
the inverse of its distance). The editing process is performed
starting with FS=TR and deleting from FS every prototype
misclassified by this probabilistic rule.

Furthermore, it defines a threshold in the NN rule, which will
not consider instances with an assigned probability lower than
the established threshold.

e Multiedit (Multiedit) [49,50]: This method starts with FS=
and a new set R defined as R=TR. Then this technique splits R
into nf blocks: Ry, ..., R, (nf > 2). For each instance of the block
nf, it applies a k NN rule with Ry, ; 1)mod » as the training set. All
misclassified instances are discarded. The remaining instances
constitute the new TR. This process is repeated while at least
one instance is discarded.

4.2. Global filters

We denote as global filters those methods which apply a
classifier to several subsets of TR in order to detect problematic
examples. These methods use different methodologies to divide
the TR. Then, these methods create models over the generated
subsets and use different heuristics to determine noisy examples.
From here, nf is the number of folds in which the training data are
partitioned by the filtering method.

o Classification Filter (CF) [32]: The main steps of this filtering
algorithm are the following:
1. Split the current training data set TR using an nf-fold cross
validation scheme.

34 I Triguero et al. / Neurocomputing 132 (2014) 30-41

2. For each of these nf parts, a learning algorithm is trained on
the other n—1 parts, resulting in n different classifiers. Here,
C4.5 is used as the learning algorithm [51].

3. These n resulting classifiers are then used to tag each
instance in the excluded part as either correct or mislabeled,
by comparing the training label with that assigned by the

classifier.

4. The misclassified examples from the previous step are
added to ND.

5. Remove the noisy examples from the training set:
FS«— TR\ND.

e Iterative Partitioning Filter (IPF) [33]: This method removes
noisy instances in multiple iterations until a stopping criterion
is reached. The iterative process stops if, for a number of
consecutive iterations, the number of identified noisy examples
in each of these iterations is less than a percentage of the size
of the original training data set. The basic steps of each
iteration are as follows:

1. Split the current training data set TR into nf equal sized
subsets.

2. Build a model with the C4.5 algorithm over each of these nf
subsets and use them to evaluate the whole current training
data set TR.

3. Add to ND the noisy examples identified in TR using a voting
scheme.

4. Remove the noisy examples from the training set:
FS <« TR\ND.

Two voting schemes can be used to identify noisy examples:
consensus and majority. The former removes an example if it is
misclassified by all the classifiers, whereas the latter removes
an instance if it is misclassified by more than half of the
classifiers. Furthermore, a noisy instance should be misclassi-
fied by the model which was induced in the subset containing
that instance. In our experimentation we consider the majority
scheme in order to detect most of the potentially noisy
examples.

5. Experimental framework

This section describes the experimental study carried out in
this paper. We provide the measures used to determine the
performance of the algorithms (Section 5.1), the characteristics
of the problems used for the experimentation (Section 5.2),
an enumeration of the algorithms used with their respective
parameters (Section 5.3) and finally a description of the nonpara-
metric statistical tests applied to contrast the results obtained
(Section 5.4).

5.1. Performance measures

Two measures are widely used for measuring the effectiveness
of classifiers: accuracy [1,2] and Cohen's kappa rate [52]. They are
briefly explained as follows:

® Accuracy: It is the number of successful hits (correct classifica-
tions) relative to the total number of classifications. It has been
by far the most commonly used metric for assessing the
performance of classifiers for years [1,2].

® (Cohen's kappa (Kappa rate): It evaluates the portion of hits that
can be attributed to the classifier itself, excluding random hits,
relative to all the classifications that cannot be attributed to
chance alone. Cohen's kappa ranges from —1 (total disagree-
ment) through O (random classification) to 1 (perfect agree-
ment). For multi-class problems, kappa is a very useful, yet

Table 1
Summary description of the original data sets.

Data set #EX. #Atts. #Cl. Data set #EX. #Atts. #CL.
abalone 4174 8 28 monks 432 6 2
appendicitis 106 7 2 movement 360 90 15
australian 690 14 2 mushroom 8124 22 2
autos 205 25 6 nursery 12,690 8 5
balance 625 4 3 pageblocks 5472 10 5
banana 5300 2 2 penbased 10,992 16 10
bands 539 19 2 phoneme 5404 5 2
breast 286 9 2 pima 768 8 2
bupa 345 6 2 PostOper 20 8 3
chess 3196 36 2 ring 7400 20 2
coil2000 9822 85 2 saheart 462 9 2
contraceptive 1473 9 3 satimage 6435 36 7
crx 125 15 2 segment 2310 19 7
dermatology 366 33 6 sonar 208 60 2
ecoli 336 7 8 spambase 4597 55 2
flare 1066 9 2 spectheart 267 44 2
german 1000 20 2 splice 3190 60 3
glass 214 9 7 tae 151 5 3
haberman 306 3 2 texture 5500 40 11
heart 270 13 2 thyroid 7200 21 3
hepatitis 155 19 2 tic-tac-toe 958 9 2
ionosphere 351 33 2 titanic 2201 3 2
housevotes 435 16 2 twonorm 7400 20 2
iris 150 4 3 vehicle 846 18 4
led7digit 500 7 10 vowel 990 13 11
letter 20,000 16 10 wdbc 569 30 2
lym 148 18 4 wine 178 13 3
magic 19,020 10 2 wisconsin 683 9 2
mammograph 961 5 2 yeast 1484 8 10
marketing 8993 13 9 Z00 101 16 7

simple, meter for measuring a classifier's accuracy while
compensating for random successes.

5.2. Data sets

The experimentation is based on 60 standard classification data
sets taken from the KEEL-data set repository! [53,54]. Table 1
summarizes the properties of the selected data sets. It shows, for
each data set, the number of examples (#Ex.), the number of
attributes (#Atts.), and the number of classes (#Cl.). The data sets
considered in this study contain between 100 and 20,000
instances, the number of attributes ranges from 2 to 85 and the
number of classes varies between 2 and 28. Their values are
normalized in the interval [0,1] to equalize the influence of
attributes with different range domains when using the NN rule.

These data sets have been partitioned using the ten fold cross-
validation procedure. Each training partition is divided into two
parts: labeled and unlabeled examples. Using the recommenda-
tion established in [24], in the division process, we do not
maintain the class proportion in the labeled and unlabeled sets
since the main aim of SSC is to exploit unlabeled data for better
classification results. Hence, we use a random selection of exam-
ples that will be marked as labeled instances, and the class label of
the rest of instances will be removed. We ensure that every class
has at least one representative instance.

In order to study the influence of the amount of labeled data,
we take different ratios when dividing the training set. In our
experiments, four ratios are used: 10%, 20%, 30% and 40%. For
instance, assuming a data set which contains 1000 examples,
when the labeled rate is 10%, 100 examples are put into L with
their labels while the remaining 900 examples are put into U

1 http://sci2s.ugr.es/keel/datasets.php

http://sci2s.ugr.es/keel/datasets.php

I Triguero et al. /| Neurocomputing 132 (2014) 30-41 35

Table 2
Parameter specification for all the methods employed in the experimentation.

Algorithm Parameters

SelfTraining MAX_ITER=40

ENN Number of neighbors=3
AlIKNN Number of neighbors=3
RNGE Order of the graph=1st order
MENN Number of neighbors=3

NCNEdit Number of neighbors=3
CEWS Threshold=0.1

ENNTh Noise threshold=0.7

Multiedit Number of sub-blocks=3

CF Number of partitions: n=5, Base algorithm: C4.5

IPF Number of partitions: n=5, Filter type: majority,
Iterations for stop criterion: i=3, Examples removed pct.: p=1%,
Base algorithm: C4.5

SNNRCE Threshold=0.5

without their labels. In summary, this experimental study involves
a total of 240 data sets (60 data sets:4 labeled rates). Note that test
partitions are kept aside to evaluate the performance of the
learned hypothesis.

All the data sets created can be found on the web page
associated with this paper.?

5.3. Algorithm used and parameters

Apart from the original self-training proposal, two of the main
variants of this algorithm proposed in the literature are SETRED
[27] and SNNRCE [24]. The former corresponds to the first attempt
to use a particular filter (CEWS) [28] during the self-training
process. Hence, we will consider SETRED as equivalent to self-
training with a CEWS filter. The latter algorithm is a recent
approach which introduces several steps into the original self-
training approach, such as a re-labeling stage and a relative graph-
based neighborhood to determine the confidence level during the
labeling process. We include these proposals in the experimental
study as comparative techniques.

Table 2 shows the configuration parameters, which are com-
mon to all problems, of the comparison techniques and filters used
with self-training. We focus this experimentation on the recom-
mended parameters proposed by their respective authors, assum-
ing that the choice of the values of the parameters was optimally
made. For those filtering methods which are based on the NN rule,
we have established the number of nearest neighbors as k=3. In
filtering algorithms, a value k> 1 may be convenient, when the
interest lies in protecting the classification task against noisy
instances, as Wilson and Martinez suggested in [30]. In all of the
techniques, we use the Euclidean distance. Due to the fact that
CEWS, Multiedit, CF, IPF and SNNRCE are stochastic methods, they
have been run three times per partition.

Implementations of the algorithms can be found on the web
site associated with this paper.

5.4. Statistical tools for analysis

The use of hypothesis testing methods to support the analysis
of results is highly recommended in the field of Machine Learning.
The aim of these techniques is to identify the most relevant
differences found between the methods [55,56]. To this end, the
use of nonparametric tests will be preferred to parametric ones,
since the initial conditions that guarantee the reliability of the

2 http://sci2s.ugr.es/SelfTraining + Filters

latter may not be satisfied, causing the statistical analysis to lose
credibility [57].

Throughout the empirical study, we will focus on the use of the
Friedman Aligned-Ranks (FAR) test [38], as a tool for contrasting
the behavior of each proposal. Its application will allow us to
highlight the existence of significant differences between meth-
ods. The Finner test is applied as a post hoc procedure to find out
which algorithms present significant differences. More informa-
tion about these tests and other statistical procedures can be
found at http://sci2s.ugr.es/sicidm/.

6. Analyzing the integration of noise filters in the self-training
approach

In this section, we analyze the results obtained in our experi-
mental study. In particular, our aims are as follows:

® To compare the transductive capabilities achieved with the
different kinds of filters under different ratios of labeled data
(Section 6.1).

® To study how filtering techniques help the self-training meth-
odology within the generalization process (Section 6.2).

® To analyze the behavior of the best filtering techniques in
several data sets (Section 6.3).

® To present a global analysis of the results obtained in terms of
the properties of the filtering methods (Section 6.4).

Due to the extension of the experimental analysis carried out,
we report the complete experimental results on the web page
associated with this paper. In this section we present summary
figures and the statistical tests conducted. Tables 3-6 tabulate the
information of the statistical analysis performed by nonparametric
multiple comparison procedures over 10%, 20%, 30% and 40% of
labeled data, respectively. In these tables, filtering methods have
been sorted according to their family, starting from classic to more
recent methods. In each table, we carry out a total of four
statistical tests for accuracy and kappa measures, differentiating
between transductive and test phases. The rankings computed,
according to the FAR test [38], represent the effectiveness asso-
ciated with each algorithm. The best (lowest) ranking obtained in
each FAR test is marked with ‘%', which determines the control
algorithm for the post hoc test. Next, together with each FAR
ranking, we present the adjusted p-value with Finner's test (Finner
APV) based on the control algorithm. Those APVs highlighted in
bold show the methods outperformed by the control, at @ =0.1
level of significance.

In these tables, we include as a baseline the NN rule trained
only with labeled data (NN-L), to determine the goodness of the
SSC techniques. Note that this technique corresponds to the initial
stage of all the self-training schemes. However, it is also known
that, depending on the problem, unlabeled data can lead to worse
performance [3], hence, the inclusion of NN-L shows whether the
self-training scheme is an outstanding methodology for SSC.

6.1. Transductive results

As we stated before, the main objective of transductive learning
is to predict the true class label of the unlabeled data used to train.
Hence, a good exploitation of unlabeled data can lead to successful
results.

Observing Tables 3-6 we can make the following analysis:

® Considering 10% of labeled instances, the FAR procedure high-
lights the global filter CF as the best performing in terms of
transductive learning. With this filter, self-training is able to

http://sci2s.ugr.es/sicidm/
http://sci2s.ugr.es/SelfTraining+Filters
http://sci2s.ugr.es/SelfTraining+Filters
http://sci2s.ugr.es/SelfTraining+Filters
http://sci2s.ugr.es/SelfTraining+Filters

36 I Triguero et al. / Neurocomputing 132 (2014) 30-41

Table 3
Average rankings of the algorithms (Friedman aligned-ranks+Finner test) over 10% labeled rate.

of significance @ = 0.1. This fact indicates that SNNRCE benefits
from random hits.

Algorithm Transductive phase Test phase
FAR (Accuracy) Finner APV FAR (Kappa) Finner APV FAR (Accuracy) Finner APV FAR (Kappa) Finner APV
SelfTraining-ENN 416.5580 0.0041 390.2920 0.0154 4213917 0.0006 397.9667 0.0018
SelfTraining-AlIKNN 405.1160 0.0080 395.7580 0.0125 392.8583 0.0060 368.2917 0.0125
SelfTraining-RNGE 321.7920 03526 293.7170 0.7979 374.0583 0.0155 342.4333 0.0532
SelfTraining-MENN 364.0000 0.0762 408.7833 0.0066 371.4833 0.0165 405.9417 0.0013
SelfTraining-NCNEdit 402.9254 0.0080 353.3750 0.1134 424.4250 0.0006 395.1250 0.0020
SelfTraining-CEWS 330.2333 0.2775 294.9000 0.7979 379.4667 0.0120 367.8167 0.0125
SelfTraining-ENNTh 363.2833 0.0762 397.6667 0.0125 354.0833 0.0387 379.2000 0.0063
SelfTraining-Multiedit 377.2250 0.0398 413.2080 0.0061 370.5500 0.0165 403.9167 0.0013
SelfTraining-CF 281.6174* - 282.8255*% - 268.6083* - 261.4167* -
SelfTraining-IPF 3141333 0.4293 297.7164 0.7805 355.075 0.0387 341.5000 0.0532
SelfTraining 432.5500 0.0015 381.6421 0.0243 464.9833 0.0000 452.3417 0.0000
SNNRCE 345.4421 0.1577 445.5000 0.0005 388.3083 0.0072 454.2000 0.0000
NN-L 721.6250 0.0000 721.1176 0.0000 511.2083 0.0000 506.3500 0.0000
Table 4
Average rankings of the algorithms (Friedman aligned-ranks + Finner test) over 20% labeled rate.
Algorithm Transductive phase Test phase
FAR (Accuracy) Finner APV FAR (Kappa) Finner APV FAR (Accuracy) Finner APV FAR (Kappa) Finner APV
SelfTraining-ENN 4141167 0.0012 396.7750 0.0066 434.2333 0.0087 420.5583 0.0235
SelfTraining-AlIKNN 424.6750 0.0006 405.3250 0.0045 431.6667 0.0087 415.0333 0.0235
SelfTraining-RNGE 312.8417 0.3315 306.2333 0.5485 316.0083 0.7926 319.8167 0.7618
SelfTraining-MENN 363.8083 0.0358 412.0750 0.0031 378.9333 0.1075 395.9500 0.0530
SelfTraining-NCNEdit 393.1583 0.0051 353.2250 0.0968 397.6000 0.0419 372.9000 0.1453
SelfTraining-CEWS 358.9417 0.0391 350.5750 0.1006 402.0917 0.0366 383.9083 0.0926
SelfTraining-ENNTh 360.5083 0.0391 398.9083 0.0064 3551500 0.2630 367.0833 01731
SelfTraining-Multiedit 396.5667 0.0045 432.3583 0.0008 376.4000 0.1097 400.1250 0.0476
SelfTraining-CF 270.9667* - 279.6167¢ - 305.1917* - 307.3500% -
SelfTraining-IPF 297.7083 0.5156 287.8333 0.8417 350.3833 0.2927 3431667 0.4105
SelfTraining 485.0083 0.0000 416.2333 0.0027 482.1667 0.0002 439.4583 0.0079
SNNRCE 545.1667 0.0000 599.0000 0.0000 436.1000 0.0087 494.4333 0.0001
NN-L 453,0333 0.0000 438.3417 0.0007 410.5750 0.0248 416.7167 0.0235
Table 5
Average rankings of the algorithms (Friedman aligned-ranks+ Finner test) over 30% labeled rate.
Algorithm Transductive phase Test phase
FAR (Accuracy) Finner APV FAR (Kappa) Finner APV FAR (Accuracy) Finner APV FAR (Kappa) Finner APV
SelfTraining-ENN 394.2000 0.0384 381.1417 0.1484 419.4167 0.0052 405.9500 0.0126
SelfTraining-AlIKNN 381.6917 0.0700 382.6500 0.1484 388.0500 0.0280 378.4333 0.0467
SelfTraining-RNGE 341.9833 0.3260 324.3333 0.6993 327.0500 0.4380 293.5667* -
SelfTraining-MENN 335.3250 0.3541 357.0083 0.2833 393.7167 0.0248 391.3500 0.0232
SelfTraining-NCNEdit 403.8500 0.0247 379.5167 0.1484 425.5667 0.0039 396.8750 0.0205
SelfTraining-CEWS 378.8083 0.0714 364.6333 0.2285 408.9500 0.0098 411.3167 0.0126
SelfTraining-ENNTh 338.2333 0.3440 355.2167 0.2833 393.0417 0.0248 393.1583 0.0231
SelfTraining-Multiedit 373.8500 0.0829 400.2833 0.0670 373.5167 0.0607 411.1667 0.0126
SelfTraining-CF 302.7250 0.8561 314.1583 0.8555 293.1833* - 296.8750 0.9359
SelfTraining-1PF 295.2667¢ - 306.6667" - 320.5833 0.5054 311.7000 0.6911
SelfTraining 437.8167 0.0021 409.8417 0.0477 451.6500 0.0014 429.3500 0.0039
SNNRCE 644.0250 0.0000 653.7667 0.0000 450.2833 0.0014 519.5583 0.0000
NN-L 448.7250 0.0011 4472833 0.0038 431.4917 0.0031 437.2000 0.0029
significantly outperform 8 of the 12 comparison techniques for ® When the number of labeled instances is increased to 20%, we
the accuracy and kappa measures. The IPF filter which also observe a clear improvement in terms of accuracy and kappa
belongs to the global family of filters can be stressed as an rate for all the studied methods. Again, global filters obtain the
excellent filter with this labeled ratio. Furthermore, we can two best rankings and the CF filter is stressed as the best
highlight RNGE and CEWS as the most competitive local filters performing method. The number of techniques outperformed
in comparison with CF. The comparison technique SNNRCE is has also been increased. RNGE is the most relevant local
outperformed in terms of kappa measure. By contrast, con- filtering technique in comparison with CF and IPF.
sidering the accuracy measure, it is not overcome with a level ® When the data set has a relatively higher number of labeled

instances (30% or 40%), either local and global filtering techni-
ques display similar behavior. This is because all the filtering

I Triguero et al. /| Neurocomputing 132 (2014) 30-41 37

Table 6

Average rankings of the algorithms (Friedman aligned-ranks+ Finner test) over 40% labeled rate.

Algorithm Transductive phase Test phase
FAR (Accuracy) Finner APV FAR (Kappa) Finner APV FAR (Accuracy) Finner APV FAR (Kappa) Finner APV
SelfTraining-ENN 375.1500 0.2488 359.7333 0.4135 404.8000 0.0909 394.6000 0.0718
SelfTraining-AlIKNN 359.7917 0.2681 352.1083 0.4401 380.9417 0.2558 378.9333 0.1449
SelfTraining-RNGE 331.3083 0.5635 324.2500 0.8323 322.9083* - 308.5917* -
SelfTraining-MENN 363.6417 0.2559 384.6250 0.2378 350.3083 0.5620 363.1917 0.2380
SelfTraining-NCNEdit 368.7833 0.2488 354.9667 0.4401 426.7917 0.0454 403.9000 0.0485
SelfTraining-CEWS 375.0833 0.2488 379.7667 0.2450 418.6333 0.0548 427.5667 0.0227
SelfTraining-ENNTh 351.8833 0.3315 367.7417 0.3477 352.9083 0.5620 362.3667 0.2380
SelfTraining-Multiedit 340.5667 0.4534 354.6833 0.4401 353.1917 0.5620 377.9667 0.1449
SelfTraining-CF 322.5083 0.6813 323.7500 0.8323 343.9083 0.6097 339.9000 0.4466
SelfTraining-IPF 305.6167* - 314.1167* - 371.1250 0.3389 354.7583 0.2818
SelfTraining 448.5083 0.0021 423.7333 0.0305 453.4750 0.0090 424.6833 0.0227
SNNRCE 676.8667 0.0000 680.7000 0.0000 477.7833 0.0020 523.0667 0.0000
NN-L 456.7917 0.0014 456.3250 0.0033 419.7250 0.0548 416.9750 0.0250
I'O"ﬁff?f?f?f? RIS L L L L L L P L
:“ AIKNN X
Lo R.\:GE *
090 s 9
NCNEdit O
ENNTh []
CEWS A
0.80 - CF A
IPF
SNNRCE ¥
Nofilter= === -
0.70 —
%
[
§ 0.60 B
5
54
< 050 -
0.40 [bbb b b b e L %%‘
v :,
030 b : = R R HE
PP 3 P P 3 "
0.20 b Ll LAl
Pidiii Lidii Ll i |§—
R e I S T e e T
2272 B £9% %ET37F g2 £2 2 °B°7 3 ® "7 g 8g 7 & g g8&F
E= = ° Z2¢ E c@ 8 g 2 2 = s —= ® g EE
3 £ §FF g z 5 5
g = 2z
g
Data sets

Fig. 3. Accuracy test over 10% of labeled data.

techniques are able to detect noisy examples in an easier way
with a representative number of labeled data. Nevertheless, the
IPF filter is outstanding as the best ranking in both kappa and
accuracy measures for high labeled ratios. Note that it is able to
obtain better results than the standard self-training or the
baseline NN-L which shows the usefulness of the filtering
process with a greater number of labeled data.

6.2. Inductive results (test phase)

In contrast to transductive learning, the aim of inductive
learning is to classify unknown examples. In this way, inductive
learning proves the generalization capabilities of the analyzed
methods, checking if the previous learned hypotheses are appro-
priate or not.

Apart from Tables 3-6, we include four figures representing the
accuracy obtained by the methods in the different labeled ratios.
Figs. 3 and 4 illustrate the accuracy test obtained in each data set

over 10% and 40% of labeled instances. For the sake of simplicity,
the figures with a 20% and 30% of labeled instances and their
corresponding accuracy tables can be found on the associated
web page.

The aim of these figures is to determine in which data sets the
original self-training algorithm is outperformed. For this reason, we
take the standard self-training as the baseline method to be over-
come. For a better visualization, on the x-axis the data sets are
ordered from the maximum to the minimum accuracy obtained by
the standard self-training. The y-axis position is the accuracy test of
each algorithm. Self-training without any filter is drawn as a line.
Therefore, points above of this line correspond to data sets for which
the other proposals perform better than the original algorithm.

Finally, Table 7 summarizes the main differences of each
method over the basic self-training algorithm in each labeled
ratio. In this table, we present the number of data sets in which the
obtained accuracy and kappa rates for each technique are strictly
greater (Wins) and greater or equal (Ties+Wins) than the base-
line. Again, the best results in each column are highlighted in bold.

38 L. Triguero et al. / Neurocomputing 132 (2014) 30-41
LOWg g TTTTTTT TTTT TTT LI
"%‘"v RNGE ¥
050 e g
NCNEdit O
ENNTh []
CEWS A
0.80 F & -
IPF v
SNNRCE v
) Nofilter= == ===+
0.70 4
z |
= i
2 0.60 &
g
< 050 | ,‘i B
[
0.40 |i-ioerieodet g B
0.30 |ttt bbb B
020 | bbb NEERN 1
| N v | S I v | Il
O R R I T
2872 1 2% § 278§ Eg° &2 F7 cESz52 8§ 2% g g 5 g EF
22 3 g E 2 %5 R 2 288 & = § L £ E
g 3 = £ 5 E 2 S
N] S O
- g
g
Data sets
Fig. 4. Accuracy test over 40% of labeled data.
Table 7
Comparison of each method over the basic self-training approach.
Algorithm 10% 20% 30% 40%
Accuracy Kappa Accuracy Kappa Accuracy Kappa Accuracy Kappa
SelfTraining-ENN Wins 24 26 29 28 24 23 25 23
Ties+Wins 40 41 49 43 45 42 49 45
SelfTraining-AlIKNN Wins 24 28 28 26 25 24 25 22
Ties+Wins 40 43 45 42 43 41 47 42
SelfTraining-RNGE Wins 27 32 38 33 34 35 29 28
Ties+Wins 42 45 51 47 53 52 52 49
SelfTraining-MENN Wins 26 26 30 30 27 25 26 26
Ties+Wins 40 40 44 44 40 39 46 43
SelfTraining-NCNEdit Wins 20 28 29 27 24 23 23 23
Ties+Wins 38 46 52 47 48 47 52 50
SelfTraining-ENNTh Wins 23 28 32 28 26 23 27 27
Ties+Wins 38 42 48 44 42 38 45 44
SelfTraining-CEWS Wins 26 26 24 22 19 22 20 16
Ties+Wins 49 49 47 45 43 45 44 40
SelfTraining-Multiedit Wins 24 24 31 28 28 24 31 27
Ties+Wins 40 40 45 42 45 42 49 43
SelfTraining-CF Wins 34 35 36 33 29 30 27 27
Ties+Wins 45 47 50 46 49 46 51 49
SelfTraining-IPF Wins 15 28 32 30 30 29 24 24
Ties+Wins 31 44 48 46 50 47 46 45
SNNRCE Wins 29 30 31 26 28 20 24 18
Ties+Wins 29 31 32 28 29 21 24 19

Taking into account these figures, the previous statistical tests
and Table 7, may make some comments to summarize:

® When the inductive learning problem is addressed with 10% of
labeled data, there are significant and interesting differences
between the methods. Concretely, the global CF filter is high-
lighted as the most promising filter. The Finner procedure
signals the differences of this filter to the rest of the compar- °
ison techniques in both accuracy and kappa measures. Fig. 3
also corroborates this statement, because the majority of its
points are above the baseline.

® With 20% of labeled instances, CF is still the most suitable
algorithm in terms of generalization capabilities. Depending on

the used measure, accuracy or kappa, the CF filter is able to
obtain a significant improvement over different filters. Never-
theless, IPF, ENNTh and RNGE are established as the best
performing filters which are not statistically outperformed in
both accuracy and kappa measures. Table 7 shows that these
methods obtain a similar number of victories and ties over the
standard self-training.
Using 30%, two main methods from different families, CF and
RNGE, are the two best algorithms. CF is note-worthy in terms
of accuracy test, however RNGE is established as a control
algorithm in terms of the kappa measure. In both cases, the
global filter IPF is still a robust filter, not clearly outperformed
by the control ones.

I Triguero et al. / Neurocomputing 132 (2014) 30-41 39

® With 40% of labeled examples, RNGE works appropriately but it
does not obtain a distinctive difference from most of the filters.
By contrast, this method has significant differences in compar-
ison with NN-L, standard self-training and SNNRCE.

® The figures reveal that when there is an increment in the
labeled ratio, a notable number of points are closer to the used
baseline. This means that when a considerable number of
known data are available, the basic self-training algorithm is
able to work fine, avoiding misclassification. Table 7 also
confirms this idea, because the number of data sets in which
basic self-training is outperformed, decreases over 30% and 40%
of labeled data.

6.3. Analyzing the behavior of the noisy filters

The noise detection capabilities of filtering techniques deter-
mine the behavior of the self-training filtering scheme. In this
subsection, we want to analyze how many instances are detected
as noisy ones during the self-labeling process.

To perform this analysis, we have selected two data sets with a
10% of labeled data (we choose nursery and yeast as illustrative
data sets in which the filters reach the same number of iterations
in the self-training approach) and the three best filters (CF, IPF and
RNGE). Table 8 collects the total number of removed instances
(#RI) at the end of the self-training filtered process for each
method. Furthermore, the improvement on average test results,
regarding the standard self-training is also shown (Impr).

In addition, Fig. 5 shows a graphical representation of the
number of removed instances in each self-training iteration for
both Nursery and Yeast data sets. The X-axis represents the
number of iterations carried out, and the Y-axis represents the
number of instances removed in this iteration.

As we can observe in Table 8 and Fig. 5, we can establish that
each method works in a different way, annotating different
instances as noisy ones during the self-training process. For

Table 8
Removed instances for each filtering method.

Data set SelfTraining-CF SelfTraining-IPF SelfTraining-RNGE
#RI Impr. #RI Impr. #RI Impr.
Nursery 1313 0.0794 1196 0.0805 1129 0.0781
Yeast 284 0.0411 156 0.0303 201 0.0317
a

Filtering process (Nursery)

instance, the CF filter tends to remove a greater number of
instances than IPF and RNGE. Nevertheless, Table 8 shows that
this fact does not imply that its improvement capabilities are
better.

In both Fig. 5(a) and (b) global filters, CF and IPF, present similar
trends. We can see that this kind of filtering techniques detects
analogous proportions of noisy instances according to the itera-
tions. However, the local filter, RNGE, shows a different behavior
from that of global filters.

6.4. Global analysis

This section provides a global perspective on the obtained
results. As a summary we want to outline several points about the
self-training filtered approach in general and the characteristics of
noise filters that are more appropriate to improve the self-training
process:

® |n all the studies performed, one of the self-training filtered
always obtains the best results. Independent of the labeled rate
and the established baselines, NN-L and self-training without a
filter are clearly outperformed by at least one of these methods.
This fact highlights the good synergy between noise filters and
the self-training process. As we stated before, the inclusion of
one erroneous example in the labeled data can alter the
following stages, and therefore, the latter's generalization
capabilities. Inductive results highlight the generalization abil-
ities and the usefulness of the use self-training in conjunction
with filtering techniques. Nevertheless, there are significant
differences depending on the selected filter.

® Comparing transductive and test phases, we can state that, in
general, the SSC methods used differ widely when tackling the
inductive phase. It shows the necessity of some mechanisms,
like appropriate filtering methodologies, to find robust learned
hypotheses which allow the classifiers to predict unseen cases.

® |n general, an increment in the labeled ratio indicates the lower
benefit of the filtering techniques. It justifies the view that the
use of SSC methods is more appropriate in the presence of a
lower number of labeled examples. However, even in these
cases, the analyzed self-training filtered algorithms can still be
helpful, as has been shown in the reported results.

® The working process of one filter is an important factor in both
transductive and inductive learning. In the conducted experi-
mental study, we have observed that global methods are more
robust in most of the experiments independent of the labeled

Filtering process (Yeast)

180 T T T T T T T

Number of detected noisy instances

30 L L L L L

40 T T T T T T T

Number of detected noisy instances

5 L L L L L

0 1 2 3 4 5 6

Iterations

0 1 2 3 4 5 6 7 8

Iterations

Fig. 5. Filtering process. (a) Nursery data set and (b) yeast data set.

40 I Triguero et al. / Neurocomputing 132 (2014) 30-41

ratio. These methods assumed that the label errors are inde-
pendent of particular classifiers learned from the data, collect-
ing predictions from different classifiers could provide a better
estimation of mislabeled examples than collecting information
from a single classifier only. This idea performs well under the
semi-supervised learning conditions and especially when the
number of labeled data is reduced. Local approaches also help
to improve the self-training process, however, they are more
useful when there are a higher number of labeled data. It
implies that the idea of constructing a local neighborhood to
determine if one instance should be considered as noise is not
the most appropriate way to deal with SSC.

7. Conclusions

In this paper, we have analyzed the characteristics of a wide
variety of noise filters, of a different nature, to improve the self-
training approach in SSC. Most of these filters have been pre-
viously studied from a traditional supervised learning perspective.
However, the filtering process can be more difficult in semi-
supervised learning due to the reduced number of labeled
instances.

The experimental analysis performed, supported from a statis-
tical point of view, has allowed us to distinguish which character-
istics of filtering techniques have reported a better behavior to
address the transductive and inductive problems. We have
checked that global filters (CF and IPF algorithms) highlight as
the best performing family of filters, showing that the hypothesis
agreement of several classifiers is also robust when the ratio of
available labeled data is reduced. Most of the local approaches
need more labeled data to perform better. The use of these filters
has resulted in a better performance than that achieved by the
previously proposed self-training methods, SETRED and SNNRCE.

Thus, the use of global filters is highly recommended in this
field, which can be useful for further work with other SSC
approaches and other base classifiers. As future work, we consider
the design of new global filters for SSC that use fuzzy rough set
models [58,59].

Acknowledgments

Supported by the Research Projects TIN2011-28488 and P11-
TIC-7765. J.A. Saez holds an FPU scholarship from the Spanish
Ministry of Education and Science.

References

[1] E. Alpaydin, Introduction to Machine Learning, 2nd ed., MIT Press, Cambridge,
MA, 2010.

[2] LH. Witten, E. Frank, M.A. Hall, Data Mining: Practical Machine Learning Tools
and Techniques, 3rd ed., Morgan Kaufmann, San Francisco, 2011.

[3] X. Zhu, A.B. Goldberg, Introduction to Semi-Supervised Learning, 1st ed.,
Morgan and Claypool, 2009.

[4] O. Chapelle, B. Schlkopf, A. Zien, Semi-Supervised Learning, 1st ed., The MIT
Press, 2006.

[5] W. Pedrycz, Algorithms of fuzzy clustering with partial supervision, Pattern
Recognition Lett. 3 (1985) 13-20.

[6] N. Seliya, T. Khoshgoftaar, Software quality analysis of unlabeled program
modules with semisupervised clustering, IEEE Trans. Syst. Man Cybern. Part A:
Syst. Humans 37 (2) (2007) 201-211.

[7] L. Faivishevsky, J. Goldberger, Dimensionality reduction based on non-
parametric mutual information, Neurocomputing 80 (2012) 31-37.

[8] K. Chen, S. Wang, Semi-supervised learning via regularized boosting working
on multiple semi-supervised assumptions, IEEE Trans. Pattern Anal. Mach.
Intell. 33 (1) (2011) 129-143.

[9] A. Fujino, N. Ueda, K. Saito, Semisupervised learning for a hybrid generative/
discriminative classifier based on the maximum entropy principle, IEEE Trans.
Pattern Anal. Mach. Intell. 30 (3) (2008) 424-437.

[10] M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: a geometric
framework for learning from labeled and unlabeled examples, J. Mach. Learn.
Res. 7 (2006) 2399-2434.

[11] A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training,
in: Proceedings of the Annual ACM Conference on Computational Learning
Theory, 1998, pp. 92-100.

[12] Z. Yu, L. Su, L. Li, Q. Zhao, C. Mao,]J. Guo, Question classification based on co-
training style semi-supervised learning, Pattern Recognition Lett. 31 (13)
(2010) 1975-1980.

[13] J. Du, CX. Ling, Z.-H. Zhou, When does co-training work in real data? IEEE
Trans. Knowl. Data Eng. 23 (5) (2010) 788-799.

[14] Y. Yaslan, Z. Cataltepe, Co-training with relevant random subspaces, Neuro-
computing 73 (10-12) (2010) 1652-1661.

[15] J. Xu, H. He, H. Man, Dcpe co-training for classification, Neurocomputing 86
(2012) 75-85.

[16] Z.-H. Zhou, M. Li, Tri-training: exploiting unlabeled data using three classifiers,
IEEE Trans. Knowl. Data Eng. 17 (2005) 1529-1541.

[17] M. Li, Z.-H. Zhou, Improve computer-aided diagnosis with machine learning
techniques using undiagnosed samples, IEEE Trans. Syst. Man Cybern., Part A:
Syst. Humans 37 (6) (2007) 1088-1098.

[18] S. Sun,]. Shawe-Taylor, Sparse semi-supervised learning using conjugate
functions, J. Mach. Learn. Res. 11 (2010) 2423-2455.

[19] T. Joachims, Transductive inference for text classification using support vector
machines, in: Proceedings of the 16th International Conference on Machine
Learning, Morgan Kaufmann, 1999, pp. 200-209.

[20] X. Tian, G. Gasso, S. Canu, A multiple kernel framework for inductive semi-
supervised SVM learning, Neurocomputing 90 (2012) 46-58.

[21] A. Blum, S. Chawla, Learning from labeled and unlabeled data using graph
mincuts, in: Proceedings of the 18th International Conference on Machine
Learning, 2001, pp. 19-26.

[22] A. Mantrach, N. Van Zeebroeck, P. Francq, M. Shimbo, H. Bersini, M. Saerens,
Semi-supervised classification and betweenness computation on large, sparse,
directed graphs, Pattern Recognition 44 (6) (2011) 1212-1224.

[23] D. Yarowsky, Unsupervised word sense disambiguation rivaling supervised
methods, in: Proceedings of the 33rd Annual Meeting of the Association for
Computational Linguistics, 1995, pp. 189-196.

[24] Y. Wang, X. Xu, H. Zhao, Z. Hua, Semi-supervised learning based on nearest
neighbor rule and cut edges, Knowl. Based Syst. 23 (6) (2010) 547-554.

[25] Y. Li, H. Li, C. Guan, Z. Chin, A self-training semi-supervised support vector
machine algorithm and its applications in brain computer interface, in:
ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing—Proceedings, 2007, pp. 385-388.

[26] U. Maulik, D. Chakraborty, A self-trained ensemble with semisupervised SVM:
an application to pixel classification of remote sensing imagery, Pattern
Recognition 44 (3) (2011) 615-623.

[27] M. Li, Z.-H. Zhou, SETRED: self-training with editing, in: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2005, pp. 611-621.

[28] F. Muhlenbach, S. Lallich, D. Zighed, Identifying and handling mislabelled
instances, J. Intell. Inf. Syst. 39 (2004) 89-109.

[29] X. Wu, X. Zhu, Mining with noise knowledge: error-aware data mining, IEEE
Trans. Syst. Man Cybern. Part A: Syst. Humans 38 (4) (2008) 917-932.

[30] D.R. Wilson, T.R. Martinez, Reduction techniques for instance-based learning
algorithms, Mach. Learn. 38 (3) (2000) 257-286.

[31] S. Garcia, J. Derrac, J. Cano, F. Herrera, Prototype selection for nearest neighbor
classification: taxonomy and empirical study, IEEE Trans. Pattern Anal. Mach.
Intell. 34 (3) (2012) 417-435.

[32] D. Gamberger, R. Boskovic, N. Lavrac, C. Groselj, Experiments with noise
filtering in a medical domain, in: Proceedings of the 16th International
Conference on Machine Learning, 1999, pp. 143-151.

[33] T.M. Khoshgoftaar, P. Rebours, Improving software quality prediction by noise
filtering techniques, J. Comput. Sci. Technol. 22 (2007) 387-396.

[34] D. Guan, W. Yuan, Y.-K. Lee, S. Lee, Nearest neighbor editing aided by
unlabeled data, Inf. Sci. 179 (13) (2009) 2273-2282.

[35] D. Guan, W. Yuan, Y.-K. Lee, S. Lee, Identifying mislabeled training data with
the aid of unlabeled data, Appl. Intell. 35 (2011) 345-358.

[36] T.M. Cover, PE. Hart, Nearest neighbor pattern classification, IEEE Trans. Inf.
Theory 13 (1) (1967) 21-27.

[37] X. Wu, V. Kumar (Eds.), The Top Ten Algorithms in Data Mining, Chapman &
Hall/CRC Data Mining and Knowledge Discovery, 2009.

[38] S. Garcia, A. Fernandez, J. Luengo, F. Herrera, Advanced nonparametric tests for
multiple comparisons in the design of experiments in computational intelli-
gence and data mining: experimental analysis of power, Inf. Sci. 180 (2010)
2044-2064.

[39] N. Chawla, G. Karakoulas, Learning from labeled and unlabeled data: an
empirical study across techniques and domains, J. Artif. Intell. Res. 23 (2005)
331-366.

[40] D. Gamberger, N. Lavrac, S. Dzeroski, Noise detection and elimination in data
preprocessing: experiments in medical domains, Appl. Artif. Intell. 14 (2000)
205-223.

[41] D.W. Aha, D. Kibler, M.K. Albert, Instance-based learning algorithms, Mach.
Learn. 6 (1) (1991) 37-66.

[42] D.L. Wilson, Asymptotic properties of nearest neighbor rules using edited data,
IEEE Trans. Syst. Man Cybern. 2 (3) (1972) 408-421.

[43] 1. Tomek, An experiment with the edited nearest-neighbor rule, IEEE Trans.
Syst. Man Cybern. 6 (6) (1976) 448-452.

http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref1
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref1
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref2
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref2
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref3
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref3
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref4
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref4
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref5
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref5
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref6
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref6
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref6
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref7
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref7
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref8
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref8
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref8
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref9
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref9
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref9
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref10
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref10
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref10
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref12
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref12
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref12
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref13
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref13
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref14
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref14
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref15
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref15
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref16
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref16
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref17
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref17
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref17
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref18
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref18
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref20
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref20
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref22
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref22
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref22
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref24
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref24
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref26
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref26
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref26
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref28
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref28
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref29
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref29
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref30
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref30
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref31
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref31
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref31
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref33
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref33
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref34
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref34
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref35
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref35
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref36
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref36
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref38
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref38
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref38
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref38
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref39
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref39
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref39
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref40
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref40
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref40
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref41
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref41
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref42
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref42
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref43
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref43

L. Triguero et al. / Neurocomputing 132 (2014) 30-41 41

[44]].S. Sanchez, F. Pla, EJ. Ferri, Prototype selection for the nearest neighbour rule
through proximity graphs, Pattern Recognition Lett. 18 (1997) 507-513.

[45] K. Hattori, M. Takahashi, A new edited k-nearest neighbor rule in the pattern
classification problem, Pattern Recognition 33 (3) (2000) 521-528.

[46]]J. Sanchez, R. Barandela, A. Marques, R. Alejo, J. Badenas, Analysis of new
techniques to obtain quality training sets, Pattern Recognition Lett. 24 (7)
(2003) 1015-1022.

[47] B.B. Chaudhuri, A new definition of neighborhood of a point in multi-
dimensional space, Pattern Recognition Lett. 17 (1) (1996) 11-17.

[48] F. Vazquez,]. Sanchez, F. Pla, A stochastic approach to Wilson's editing
algorithm, in: Proceedings of the 2nd Iberian Conference on Pattern Recogni-
tion and Image Analysis, 2005, pp. 35-42.

[49] P.A. Devijver,]. Kittler, On the edited nearest neighbor rule, in: Proceedings of
the Fifth International Conference on Pattern Recognition, 1980, pp. 72-80.

[50] FJ. Ferri, J.V. Albert, E. Vidal, Consideration about sample-size sensitivity of a
family of edited nearest-neighbor rules, IEEE Trans. Syst. Man Cybern. 29 (4)
(1999) 667-672.

[51] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publish-
ers, San Francisco, CA, USA, 1993.

[52] A.Ben-David, A lot of randomness is hiding in accuracy, Eng. Appl. Artif. Intell.
20 (2007) 875-885.

[53] J. Alcala-Fdez, L. Sanchez, S. Garcia, MJ. del Jesus, S. Ventura,].M. Garrell,
J. Otero, C. Romero, J. Bacardit, V.M. Rivas,].C. Fernandez, F. Herrera, KEEL: a
software tool to assess evolutionary algorithms for data mining problems, Soft
Comput. 13 (3) (2009) 307-318.

[54] J. Alcald-Fdez, A. Fernandez,]. Luengo, J. Derrac, S. Garcia, L. Sanchez,
F. Herrera, KEEL data-mining software tool: data set repository, integration
of algorithms and experimental analysis framework, J. Multiple-Valued Logic
Soft Comput. 17 (2-3) (2010) 255-277.

[55] S. Garcia, A. Fernandez, J. Luengo, F. Herrera, A study of statistical techniques
and performance measures for genetics-based machine learning: accuracy
and interpretability, Soft Comput. 13 (10) (2009) 959-977.

[56] DJ. Sheskin, Handbook of Parametric and Nonparametric Statistical Proce-
dures, 5th ed., Chapman & Hall/CRC, 2011.

[57] S. Garcia, F. Herrera, An extension on “Statistical comparisons of classifiers
over multiple data sets” for all pairwise comparisons, . Mach. Learn. Res. 9
(2008) 2677-2694.

[58] N. Mac Parthalain, R. Jensen, Fuzzy-rough set based semi-supervised learning,
in: 2011 IEEE International Conference on Fuzzy Systems (FUZZ), 2011,
pp. 2465-2472.

[59] J. Derrac, N. Verbiest, S. Garcia, C. Cornelis, F. Herrera, On the use of
evolutionary feature selection for improving fuzzy rough set based prototype
selection, Soft Comput. 17 (2013) 223-238.

Isaac Triguero Velazquez received the M.Sc. degree in
Computer Science from the University of Granada,
Granada, Spain, in 2009. He is currently a Ph.D. student
in the Department of Computer Science and Artificial
Intelligence, University of Granada, Granada, Spain. His
research interests include data mining, data reduction,
evolutionary algorithms and semi-supervised learning.

José Antonio Sdez Muiioz received his M.Sc. in Com-
puter Science from the University of Granada, Granada,
Spain, in 2009. He is currently a Ph.D. student in the
Department of Computer Science and Artificial Intelli-
gence, University of Granada, Granada, Spain. His
research interests include the study of the impact of
noisy data in classification, data preprocessing, fuzzy
rule-based systems and imbalanced learning.

Julian Luengo Martin received his M.Sc. in Computer
Science and Ph.D. from the University of Granada,
Granada, Spain, in 2006 and 2011 respectively. He is
currently an Assistant Professor in the Department of
Civil Engineering, University of Burgos, Burgos, Spain.
His research interests include machine learning and
data mining, data preparation in knowledge discovery
and data mining, missing values, data complexity and
semi-supervised learning.

Salvador Garcia Lépez received his M.Sc. and Ph.D.
degrees in Computer Science from the University of
Granada, Granada, Spain, in 2004 and 2008, respec-
tively. He is currently an Associate Professor in the
Department of Computer Science, University of Jaén,
Jaén, Spain. He has published more than 30 papers in
international journals. As edited activities, he has co-
edited two special issues in international journals on
different Data Mining topics. His research interests
include data mining, data reduction, data complexity,
imbalanced learning, semi-supervised learning, statis-
tical inference and evolutionary algorithms.

Francisco Herrera Triguero received his M.Sc. in
Mathematics in 1988 and Ph.D. in Mathematics in
1991, both from the University of Granada, Spain.

He is currently a Professor in the Department of
Computer Science and Artificial Intelligence at the
University of Granada. He has had more than 200
papers published in international journals. He is a
coauthor of the book Genetic Fuzzy Systems: Evolu-
tionary Tuning and Learning of Fuzzy Knowledge Bases
(World Scientific, 2001).

He currently acts as an Editor in Chief of the inter-
national journal Progress in Artificial Intelligence
(Springer) and serves as an Area Editor of the Journal
Soft Computing (area of evolutionary and bioinspired algorithms) and International
Journal of Computational Intelligence Systems (area of information systems). He
acts as an Associated Editor of the journals: IEEE Transactions on Fuzzy Systems,
Information Sciences, Advances in Fuzzy Systems, and International Journal of
Applied Metaheuristics Computing; and he serves as a Member of several journal
editorial boards, among others: Fuzzy Sets and Systems, Applied Intelligence,
Knowledge and Information Systems, Information Fusion, Evolutionary Intelli-
gence, International Journal of Hybrid Intelligent Systems, Memetic Computation,
Swarm and Evolutionary Computation.

He received the following honors and awards: ECCAI Fellow 2009, 2010 Spanish
National Award on Computer Science ARITMEL to the Spanish Engineer on
Computer Science, and International Cajastur Mamdani Prize for Soft Computing
(Fourth Edition, 2010), the 2011 IEEE Transactions on Fuzzy Systems Outstanding
Paper Award and the 2011 Lotfi A. Zadeh Prize Best paper Award of the Interna-
tional Fuzzy Systems Association.

His current research interests include computing with words and decision
making, data mining, bibliometrics, data preparation, instance selection, fuzzy rule
based systems, genetic fuzzy systems, knowledge extraction based on evolutionary
algorithms, memetic algorithms and genetic algorithms.

http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref44
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref44
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref45
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref45
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref46
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref46
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref46
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref47
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref47
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref50
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref50
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref50
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref51
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref51
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref52
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref52
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref53
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref53
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref53
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref53
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref54
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref54
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref54
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref54
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref55
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref55
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref55
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref56
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref56
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref56
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref57
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref57
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref57
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref59
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref59
http://refhub.elsevier.com/S0925-2312(13)01101-6/sbref59

	On the characterization of noise filters for self-training semi-supervised in nearest neighbor classification
	Introduction
	Background: semi-supervised learning via the self-training approach
	Semi-supervised classification
	Self-training

	Combining self-training and filtering methods
	Filtering methods
	Local filters
	Global filters

	Experimental framework
	Performance measures
	Data sets
	Algorithm used and parameters
	Statistical tools for analysis

	Analyzing the integration of noise filters in the self-training approach
	Transductive results
	Inductive results (test phase)
	Analyzing the behavior of the noisy filters
	Global analysis

	Conclusions
	Acknowledgments
	References

