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SEG-SSC: A Framework Based on Synthetic
Examples Generation for Self-Labeled

Semi-Supervised Classification
Isaac Triguero, Salvador García, and Francisco Herrera

Abstract—Self-labeled techniques are semi-supervised classifi-
cation methods that address the shortage of labeled examples
via a self-learning process based on supervised models. They
progressively classify unlabeled data and use them to modify
the hypothesis learned from labeled samples. Most relevant pro-
posals are currently inspired by boosting schemes to iteratively
enlarge the labeled set. Despite their effectiveness, these methods
are constrained by the number of labeled examples and their dis-
tribution, which in many cases is sparse and scattered. The aim
of this paper is to design a framework, named synthetic exam-
ples generation for self-labeled semi-supervised classification, to
improve the classification performance of any given self-labeled
method by using synthetic labeled data. These are generated
via an oversampling technique and a positioning adjustment
model that use both labeled and unlabeled examples as refer-
ence. Next, these examples are incorporated in the main stages
of the self-labeling process. The principal aspects of the proposed
framework are: 1) introducing diversity to the multiple classifiers
used by using more (new) labeled data; 2) fulfilling labeled data
distribution with the aid of unlabeled data; and 3) being applica-
ble to any kind of self-labeled method. In our empirical studies,
we have applied this scheme to four recent self-labeled methods,
testing their capabilities with a large number of data sets. We
show that this framework significantly improves the classification
capabilities of self-labeled techniques.

Index Terms—Co-training, self-labeled methods, semi-
supervised classification, synthetic examples.

I. INTRODUCTION

HAVING a multitude of unlabeled data and few labeled
ones occurs quite often in many practical applications

such as medical diagnosis, spam filtering, bioinformatics, etc.
In this scenario, learning appropriate hypotheses with tradi-
tional supervised classification methods [1] is not straightfor-
ward because they only can exploit labeled data. Nevertheless,
semi-supervised classification (SSC) [2]–[4] approaches also
utilize unlabeled data to improve the predictive performance,
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modifying the learned hypothesis obtained from labeled exam-
ples alone.

With SSC we may pursue two different objectives: trans-
ductive and inductive classification [5]. The former is devoted
to predicting the correct labels of a set of unlabeled examples
that is also used during the training phase. The latter refers
to the problem of predicting unseen data by learning from
labeled and unlabeled data as training examples. In this paper,
we will analyze both settings.

Existing SSC algorithms are usually classified depending
on the conjectures they make about the relation of labeled
and unlabeled data distributions. Broadly speaking, they are
based on the manifold and/or cluster assumption. The man-
ifold assumption is satisfied if data lie approximately on a
manifold of lower dimensionality than the input space [6]. The
cluster assumption states that similar examples should have
the same label. Graph-based models [7] are the most common
approaches to implementing the manifold assumption [8]. As
regards examples of models based on the cluster assumption,
we can find generative models [9] or semi-supervised support
vector machines [10]. Recent studies have addressed multiple
assumptions in one model [5], [11], [12].

Self-labeled techniques are SSC methods that do not make
any specific suppositions about the input data [13]. These mod-
els use unlabeled data within a supervised framework via a
self-training process. First attempts correspond to the self-
training algorithm [14] that iteratively enlarges the labeled
training set by adding the most confident predictions of
the supervised classifier used. The standard co-training [15]
methodology splits the feature space into two different con-
ditionally independent views. Then, it trains one classifier in
each specific view, and the classifiers teach each other the most
confidently predicted examples. Advanced approaches do not
require explicit feature splits or the iterative mutual-teaching
procedure imposed by co-training, as they are commonly
based on disagreement-based classifiers [16]–[18]. These mod-
els have been successfully applied to many real applications
such as image classification [19], shadow detection [20],
computer-aided diagnosis [21], etc.

Self-labeled techniques are limited by the number of labeled
points and their distribution to identifying reliable unlabeled
examples. This problem is more pronounced when the labeled
ratio is greatly reduced and labeled examples do not minimally
represent the domain. Moreover, most of the advanced models
use some diversity mechanisms, such as bootstrapping [22], to
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provide differences between the hypotheses learned with the
multiple classifiers. However, these mechanisms may provide
a similar performance to classical self-training or co-training
approaches if the number of labeled data is insufficient to
achieve different learned hypotheses.

The aim of this paper is to alleviate these weaknesses by
using new synthetic labeled examples to introduce diversity
to multiple classifier approaches and fulfill the labeled data
distribution. A complete motivation for the use of synthetic
labeled examples is discussed in Section III-A.

We propose a framework applicable to any self-labeled
method that incorporates synthetic examples in the self-
learning process. We will denote this framework synthetic
examples generation for self-labeled SSC (SEG-SSC). It is
composed of two main parts: generation and incorporation.

1) The generation process consists of an oversampling tech-
nique and a later adjustment of the positioning of the
examples. It is initially inspired by the SMOTE algo-
rithm [23] to generate new synthetic examples, for all
the classes, based on both the small labeled set and the
unlabeled data. Then, this process is refined using a posi-
tioning adjustment of prototypes model [24] based on a
differential evolution algorithm [25].

2) New labeled points are then included in two of the main
steps of a self-labeling method: the initialization phase
and the update of the labeled training set, so that it intro-
duces new examples in a progressive manner during the
self-labeling process.

An extensive experimental analysis is carried out to check
the performance of the proposed framework. We apply the
SEG-SSC scheme to four recent self-labeled techniques that
have different characteristics, comparing the performance
obtained with the original proposals. We conduct experiments
over 55 standard classification data sets extracted from the
KEEL and UCI repositories [26], [27] and 11 high dimensional
data sets from the book by Chapelle et al. [2]. The results will
be contrasted with nonparametric statistical tests [28], [29].

The remainder of this paper is organized as follows.
Section II defines the SSC problem and sums up the clas-
sical and current self-labeled approaches. Then, Section III
presents the proposed framework, explaining its motivation
and the details of its implementation. Section IV describes the
experimental setup and discusses the results obtained. Finally,
Section V summarizes the conclusions drawn in this paper.

II. SELF-LABELED SEMI-SUPERVISED CLASSIFICATION

This section provides the definition of the SSC problem
(Section II-A) and briefly describes the most relevant self-
labeled approaches proposed in the literature (Section II-B).

A. Semi-Supervised Classification

A formal description of the SSC problem is as follows: Let
xp be an example where xp = (xp1, xp2, . . . , xpD, ω), with xp

belonging to a class ω and a D-dimensional space in which
xpi is the value of the ith feature of the pth sample. Then,
let us assume that there is a labeled set L which consists of
n instances xp with ω known and an unlabeled set U which

consists of m instances xq with ω unknown, let m > n. The
L ∪ U set forms the training set TR. Moreover, there is a test
set TS composed of t unseen instances xr with ω unknown,
which has not been used at the training stage.

The aim of SSC is to obtain a robust learned hypothesis
using TR instead of L alone. It can be applied in two slightly
different settings. On the one hand, transductive learning is
devoted to classify all the m instances xq of U with their
correct class. The class assignation should represent the distri-
bution of the classes efficiently, based on the input distribution
of L and U. On the other hand, the inductive learning phase
consists of correctly classifying the instances of TS based on
the previously learned hypothesis.

B. Self-Labeled Techniques: Previous Work

Self-labeled techniques form an important family of meth-
ods in SSC [3]. They are not intrinsically geared to learning in
the presence of both labeled and unlabeled data, but they use
unlabeled points within a supervised learning paradigm. These
techniques aim to obtain one (or several) enlarged labeled
set/s, based on the most reliable predictions. Thus, these mod-
els do not make any specific assumptions about the input data,
but the models accept that their own predictions tend to be cor-
rect. Some authors state that self-labeling is likely to be the
case when the classes form well-separated clusters [3] (cluster
assumption).

The major benefits of this family of methods are: simplic-
ity and being a wrapper methodology. The former is related
to the facility of implementation and applicability. The lat-
ter means that any kind of classifier can be used regardless
of its complexity, which is very important depending on the
problem tackled. As caveats, the addition of wrongly labeled
examples during the self-labeling process can lead to an even
worse performance. Several mechanisms have been proposed
to reduce this problem [30].

A preeminent work with this philosophy is the self-training
paradigm designed by Yarowsky [14]. In self-training, a super-
vised classifier is initially trained with the L set. Then it is
retrained with its own most confident predictions, enlarging its
labeled training set. Thus, it is defined as a wrapper method for
SSC. This idea was later extended by Blum and Mitchell [15]
with the method known as co-training. This consists of two
classifiers that are trained on two sufficient and redundant sets
of attributes. This requirement implies that each subset of fea-
tures should be able to perfectly define the frontiers between
classes. Then, the method follows a mutual teaching procedure
that works as follows: each classifier labels the most confi-
dently predicted examples from its point of view and they are
added to the L set of the other classifier. It is also known that
usefulness is constrained by the imposed requirement [31],
which is not satisfied in many real applications. Nevertheless,
this method has become an example for recent models thanks
to the idea of using the agreement (or disagreement) of multi-
ple classifiers and the mutual teaching approach. A good study
of when co-training works can be found in [32].

Due to the success of co-training and its relatively limited
application, many works have proposed the improvement of
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Fig. 1. 2-D projections of appendicitis. Red circles, class 0. Blue squares, class 1. White triangles, unlabeled. (a) Appendicitis problem. (b) Appendicitis
problem: 10% labeled points (Democratic—0.7590 accuracy).

standard co-training by eliminating the established conditions.
Goldman and Zhou [33] proposed a multilearning approach,
so that two different supervised learning algorithms were used
without splitting the feature space. They showed that this
mechanism divides the instance space into a set of equiv-
alence classes. Later, the same authors proposed a faster
and more precise alternative, named Democractic co-learning
(Democratic-Co) [34], which is also based on multilearn-
ing. As an alternative, which requires neither sufficient and
redundant views nor several supervised learning algorithms,
Zhou and Li [35] presented the Tri-Training algorithm, which
attempts to determine the most reliable unlabeled data as
the agreement of three classifiers (same learning algorithm).
Then, they proposed the Co-Forest algorithm [21] as a simi-
lar approach that uses Random Forest [36]. A further similar
approach is Co-Bagging [37], [38] where confidence is esti-
mated from the local accuracy of committee members. Other
recent self-labeled approaches are [39]–[43].

In summary, all of these recent schemes work on the
hypothesis that several weak classifiers, learned with a small
number of instances, can produce better generalizations than
only one weak classifier. These methods are also known
as disagreement-based models that are motivated, in part,
by the empirical success of ensemble learning. The term
disagreement-based was recently coined by Zhou and Li [17].

III. SYNTHETIC EXAMPLES GENERATION FOR

SELF-LABELED METHODS

In this section we present the SEG-SSC framework. Firstly,
Section III-A enumerates the arguments that justify our pro-
posal. Secondly, Section III-B explains how to generate useful
synthetic examples in a semi-supervised scenario. Finally,

Section III-C describes the SEG-SSC framework, emphasizing
when synthetic data should be used.

A. Motivation: Why Add Synthetic Examples?

The most important weakness of self-labeling models can
occur when erroneous labeled examples are added to the
labeled training set. This will incorrectly modify the learned
model, which may lead to the addition of wrong examples in
successive iterations. Why does this situation occur?

1) There may be outliers in the original unlabeled set.
This problem can be avoided if they are detected and
not included in the labeled training set. For this prob-
lem, there are several solutions in the literature such as
edition schemes [30], [44], [45] or some other mech-
anisms [33]. Recent models, such as Tri-Training [35]
or Co-Forest [21], establish some criteria to compensate
for the negative influence of noise by augmenting the
labeled training set with sufficient new labeled data.

2) Independently of the number of unlabeled examples,
they can be limited by the distribution of labeled input
data. If the available labeled instances do not represent
a reliable domain of the problem, it may complicate the
estimation of confidence predictions because the super-
vised classifiers used do not have enough information
to establish coherent hypotheses. Furthermore, it is even
more difficult if these labeled points are very close to the
decision boundaries. Fig. 1 shows an example with the
appendicitis problem [27]. This picture presents a 2-D
projection (obtained with PCA [46]) of the problem and
a partition with 10 % of labeled examples. As we can
observe, not only is the problem not well represented
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by labeled points, it also shows that some of the nearest
unlabeled points to the two labeled examples of class 1
(blue circles) belong to class 0 (red crosses). This fact
can affect confidence of a self-labeled method estimated
with the base classifier.

3) A greatly reduced labeled ratio may produce a lack of
diversity among self-labeling methods with more than
one classifier. As we have established above, multiple
classifier approaches work as a combination of several
weak classifiers. However, if there are only a few labeled
data it is very difficult to obtain different hypotheses,
and therefore, the classifiers are identical. For example,
the Tri-Training algorithm is based on a bootstrapping
approach [22]. This resampling technique creates new
labeled sets for each classifier by modifying the origi-
nal L. In general, this operation yields different labeled
sets to the original, but it is not significant in the case of
small labeled data sets and the existence of outliers in the
sample. As a consequence, it could lead to biased exam-
ples which will not accurately represent the domain of
the problem. Although multilearning approaches attempt
to achieve diversity by using different kinds of learning
models, a reduced number of instances usually damages
their performance because the models are too weak.

The first limitation has already been addressed in the liter-
ature with different mechanisms [47]. However, the last two
issues are currently open problems.

In order to ease both situations, mainly induced by the short-
age of labeled points, we introduce new labeled data into the
self-labeling process. To do this, we rely on the success of
oversampling approaches in imbalanced domains [48]–[51],
but with the difference that we deal with all the classes of the
problem.

Nevertheless, the use of synthetic data for self-labeling
methods is not straightforward and must be carefully per-
formed. The aim of using an oversampling method is to
effectively reinforce the decision regions between classes. To
do so, we will be aided by the distribution of unlabeled data in
conjunction with the labeled ones, because if we focus only on
labeled examples, it may lead to generate noisy instances when
the second issue explained above happens. The effectiveness
of this idea will be empirically checked in Section IV.

B. Generation of Synthetic Examples

To generate new labeled data in an SSC context we perform
certain operations on the available data, so that we use both
labeled and unlabeled sets. Algorithm 1 outlines the pseudo-
code of the oversampling technique proposed. This method
is initially based on the SMOTE algorithm proposed in [23]
which was designed for imbalanced domains [52] and is lim-
ited to oversampling the minority class. In our proposal, we
use the underlying idea of SMOTE as an initialization proce-
dure, to generate new examples of all the classes. Furthermore,
the resulting synthetic set of prototypes is then readjusted with
a positioning adjustment of prototypes scheme [24]. Therefore,
this mechanism is divided into two phases: initialization and
adjustment of prototypes.

Algorithm 1 Generation of Synthetic Examples
1: Input: Labeled set L, Unlabeled set U, Oversampling factor f ,

Number of Neighbors k.
2: Output: OverSampled set.
3: OverSampled = ∅
4: TR = L ∪ U

5: ratio =
f · #TR

#L
6: Randomize TR
7: for i = 1 to NumberOfClasses do
8: PerClass[i] = getFromClass (L, i)
9: for j = 1 to #PerClass[i] do

10: Generated = 0
11: repeat
12: neighbors[1..k] = Compute k nearest neighbors

for PerClass[i][j] in TR
13: nn = Random number between 1 and k
14: Sample = PerClass[j]
15: Nearest = TR[neighbors[nn]]
16: for m = 1 to NumberOfAttributes do
17: dif = Nearest[m] − Sample[m]
18: gap = Random number between 0 and 1.
19: Synthetic[m] = Sample[m] + gap ∗ dif
20: end for
21: OverSampled = OverSampled ∪ Synthetic
22: Generated + +
23: until Generated < ratio
24: end for
25: end for
26: OverSampled = DE_adjustment(OverSampled, L)
27: return OverSampled

1) Initialization: We start from the L and U sets as well as
an user-defined oversampling factor f and a number k of near-
est neighbors. We will generate a set of synthetic prototypes
OverSampled that is initialized as empty (Instruction 3).

The ratio of synthetic examples to be generated is computed
according to f and the proportion of labeled examples in the
training set TR (see Instructions 4 and 5). Furthermore, to
prevent the influence of the order of labeled and unlabeled
instances when computing distances, the TR set is randomized
(Instruction 6).

Next, the algorithm enters a loop (Instructions 7–25) to
proportionally oversample each class, using its own labeled
samples as the base. Thus, we extract from L a set of exam-
ples PerClass that belong to the current class (Instruction 8).
Each one will serve as the base prototype and will be oversam-
pled as many times as the previous computed ratio indicates
(Instructions 11–23).

New synthetic examples are located along the line segments
joining any of the k nearest neighbors (randomly chosen).
To face the SSC scenario, the nearest neighbors are not
only being looked for in the L set, but are searched for in
the TR set (Instruction 12). In this way, we try to avoid
the negative effects of the second weakness of self-labeled
techniques explained before. Following the idea of SMOTE,
synthetic examples are initially generated as the difference
between an existing sample and one of its nearest neighbors
(Instruction 17). Then, this difference is scaled by a random
number in the range [0, 1], and is added to the base exam-
ple (Instructions 18 and 19). It is noteworthy that the class
value of the generated example is the same as the considered
base sample. The generated prototypes are iteratively stored
in OverSampled until the stopping condition is satisfied.
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2) Adjustment of Prototypes: Can we use this process to
improve the distribution of labeled input data? The answer
depends on the specific problem and partition used. Although
the generation algorithm provides more labeled examples that
may be very useful in many domains, they are not totally
confident. It may suffer from the same problem as the self-
labeling approaches and their confidence predictions. It is
well-known that SMOTE can generate noisy data [53] which
are usually eliminated with edition schemes. Because we
are not interested in removing synthetic data, we will apply
an evolutionary adjustment process to the OverSampled set
(Instruction 26) based on the differential evolution algorithm
used in [54].

Differential evolution [25] follows the general procedure
of an evolutionary algorithm [55]. It starts with a set of
candidate solutions, the so-called individuals, which evolve
during a determined number of generations through differ-
ent operators: mutation, crossover, and selection; aiming to
minimize/maximize a fitness function. For our purposes, this
algorithm is adapted in the following way.

1) Each individual encodes a single prototype. The process
consists of the optimization of the location of all the
individuals of the population.

2) Mutation and crossover operators guide the optimiza-
tion of the positioning of the prototypes. These operators
only produce modifications to the attributes of the pro-
totypes of the OverSampled set, keeping the class value
unchangeable throughout the evolutionary cycle. We will
focus on the DE/CurrentToRand/1 strategy to generate
new prototypes [56].

3) Then, we obtain a new set of synthetic prototypes that
should be evaluated to decide whether it is better or not
than the current set. To make this decision, we use the
most reliable data we have, that is, the labeled data L.
The generated data should be able to correctly classify L.
To check this, the nearest neighbor rule is used as the
base classifier to obtain the corresponding fitness value.
We try to maximize this value.

The stopping criteria is achieved when the generated data
perfectly classify L, or a given number of iterations have been
performed. More details are in [54, Sec. III-B].

It is worth mentioning that this optimization process is only
applied to cases in which the former oversampling approach
generates synthetic data that is not able to classify L. We
thereby endow our model with greater robustness. Fig. 2 shows
an example of a resulting set of over-sampled prototypes in
the appendicitis problem. We can observe that in comparison
with Fig. 1, the available labeled data points better represent
the domain of the problem.

C. Self-Labeling With Synthetic Data

In this subsection, we describe the SEG-SSC framework in
depth. With the generation method presented, we obtain new
labeled data that can be directly used to improve the gener-
alization capabilities of self-labeled approaches. Nevertheless,
the aim of this framework is to be as flexible as possible,
so that it can be applied to different self-labeled algorithms.

Fig. 2. Example of data generation in the appendicitis problem. 2-D pro-
jections of appendicitis. Red circles, class 0. Blue squares, class 1. White
triangles, unlabeled. Red stars, synthetic class 0. Blue pentagons, synthetic
class 1 (SEG-SSC+Democratic—0.8072 accuracy).

Although each method proceeds in a different way, they either
share some operations or are very similar. Therefore, we
explain how to incorporate synthetic examples in the self-
learning process in order to address the limitations on the
distribution of labeled data and the lack of diversity in multiple
classifier methods.

In general, self-labeled methods use a set of N classifiers Ci,
where i ε [1, N], to predict the class of unlabeled instances.
Each Ci has an associated labeled set Li that is iteratively
enlarged. In what follows, we describe the three main oper-
ations that support our proposal. For clarity, Fig. 3 depicts a
flowchart of the proposed scheme, outlining its more general
operations and way of working.

1) Initialization of Classifiers: In current approaches, Li is
initially formed from the available data in L. Depending
on the particular method, they may use the same labeled
data for each Li or apply a bootstrapping to introduce
diversity. As we showed before, both alternatives can
lead to a lack of diversity when more than one classifier
is used. To solve this, we promote the generation of dif-
ferent synthetic examples for each classifier Ci. In this
way, the generation mechanism is applied a total of N
times. Because L data are the most confident examples,
we ensure that they belong to each Li in conjunction with
synthetic examples. Note that the generation method has
some randomness, so different executions generate dis-
tinct synthetic points. This ensures the diversity between
Li sets.

2) Self-Labeling Stage: After the initialization phase, each
classifier is trained with its respective Li. Then, the
learned hypotheses are used to classify unlabeled points,
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Fig. 3. SEG-SSC flowchart.

determining the most reliable examples. There are
several ways to perform this operation. Single classi-
fier approaches extract their confidence from the base
classifier and multiple classifiers calculate confidence
predictions in terms of the agreement or combination
of hypotheses. Independently of the procedure followed,
each classifier obtains a set L′

i that will be used to enlarge
Li. At this point, there are two possibilities: self or
mutual teaching. The former uses its own predictions
to augment its Li. With a mutual teaching approach,
a classifier Cj teaches its confidence predictions to the
rest of the classifiers, that is, it increases Li, ∀ i �= j.
When all the Li are increased, a new oversampling stage
is performed for each Li, using its prototypes and the
remaining unlabeled examples. The resulting Li sets are
ready to be used in the next iteration.

3) Final Classification: The stopping criteria depends on
the specific self-labeled method used, which is usually
defined by a given number of iterations or by the con-
dition of the learned hypotheses of the classifiers used,
which does not change. When it is satisfied, not all the
unlabeled instances have had to be added to one of the
Li sets. For this reason, the resulting Li sets have to be
used to classify the remaining instances of U and the TS
set.

As such, this scheme is applicable to any self-labeling
method and should provide better generalization capabili-
ties to all of them. To test the proposed framework, we
have applied these ideas to four self-labeling approaches:

TABLE I
MAIN CHARACTERISTICS OF SELECTED SELF-LABELED METHODS

Democratic-Co [34], Tri-Training [35], Co-Forest [21] and
Co-Bagging [37], [38]. These models have different charac-
teristics, such as distinct mechanisms to determine confident
examples (agreement or combination), teaching schemes, uses
of different learning algorithms or having a different initial-
ization scheme. Table I summarizes the main properties of
these models. We modify these models by adding synthetic
examples, as explained above, to have an idea of how flexible
our framework is. The modified versions of these algorithms
will be denoted: SEG-SSC+Democratic-Co, SEG-SSC+Tri-
Training, SEG-SSC+Co-Forest and SEG-SS+Co-Bagging.

As an additional comment of the proposed model, we
can note that the generation of synthetic data is based on
meta-heuristics that may lack of solid theoretical insights.
In the specialized literature, these kinds of techniques, such
as in [23] and [50], do not provide any theoretical analyses
because of the stochastic nature of the models. However, their
applicability and effectiveness has been proved in many real
world applications [52], [53]. This fact motivates the large
experimental study that we will perform in the following
section to support the usefulness and soundness of our model.
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TABLE II
SUMMARY DESCRIPTION OF STANDARD CLASSIFICATION DATA SETS

IV. EXPERIMENT SETUP AND ANALYSIS OF RESULTS

This section presents all of the issues related to the exper-
imental framework used in this paper and the analysis of
results. Section IV-A describes the main properties of the
data sets used and the parameters of the selected algorithms.
Section IV-B presents and analyzes the results obtained with
standard classification data sets. Finally, Section IV-C studies
the behavior of the proposed framework when dealing with
high dimensional problems.

A. Data Sets and Parameters

The experimentation is based on 55 standard classification
data sets taken from the UCI repository [27] and the KEEL-
dataset repository1 [26] and 11 high dimensional problems
extracted from the book by Chapelle et al. [2] and the BBC
News web page [57]. Tables II and III summarize the proper-
ties of the selected data sets. They show, for each data set, the
number of examples (#Ex.), the number of attributes (#D.), and
the number of classes (#ω.). The standard classification data
sets considered contain between 100 and 19 000 instances, the
number of attributes ranges from 2 to 90 and the number of
classes varies between 2 and 28. However, the 11 high dimen-
sional data sets contain between 400 and 83 679 instances and
the number of features oscillates from 117 to 11 960.

All the data sets have been partitioned using the tenfold
cross-validation procedure, that is, the data set has been split
into tenfolds, each one containing 10% of the examples of the
data set. For each fold, an algorithm is trained with the exam-
ples contained in the rest of the folds (training partition) and

1http://sci2s.ugr.es/keel/datasets

TABLE III
SUMMARY DESCRIPTION OF HIGH DIMENSIONAL DATA SETS

TABLE IV
PARAMETER SPECIFICATION FOR THE BASE LEARNERS AND THE

SELF-LABELED METHODS USED IN THE EXPERIMENTATION

then tested with the current fold. Note that test partitions are
kept aside to assess the performance of the learned hypothesis.

Each training partition is then divided into two parts: labeled
and unlabeled examples. Using the recommendation estab-
lished in [41], in the division process we do not maintain the
class proportion in the labeled and unlabeled sets since the
main aim of SSC is to exploit unlabeled data for better classi-
fication results. Hence, we use a random selection of examples
that will be marked as labeled instances, and the class label of
the rest of the instances will be removed. We ensure that every
class has at least one representative instance. In standard clas-
sification data sets we have taken a labeled ratio of 10%. For
high dimensional data sets, we will use two splits for training
partitions with 10 and 100 labeled examples, respectively. In
both cases, the remaining instances are marked as unlabeled
points.

Regarding the parameters of the algorithms, the selected
values are fixed for all problems, and they have been chosen
according to the recommendation of the corresponding authors
of each algorithm. From our point of view, the approaches
analyzed should be as general and as flexible as possible. It is
known that a good choice of parameters boosts their better per-
formance over different data sources, but their way of working
should offer good enough results in spite of the fact that the
parameters are not optimized for a specific data set. This is
the main purpose of this experimental setup, to show how the
proposed framework can improve the efficacy of self-labeled
techniques. Table IV specifies the configuration parameters of
all the methods. Because these algorithms carry out some ran-
dom operations during the labeling process, they have been
run three times per partition.

In this table, we also present the parameters involved
in our framework: the oversampling factor, the number of
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neighbors, and the parameters needed for the differential
evolution optimization. They can also be adjusted for each
problem, however, with the same aim of being as flexible as
possible. We have fixed these values empirically in previous
experiments. The parameters used for the differential evolu-
tion optimization are the same as those established in [54],
except for the number of iterations that have been reduced.
We decrease this value because, under this framework, the
reference set used by differential evolution contains a smaller
number of instances than in the case of supervised learning.

The Co-Forest and Democractic-Co algorithms were
designed and tested with determined base classifiers. In this
paper, these algorithms maintain their classifiers. However,
the interchange of the base classifiers is allowed in the Tri-
Training and Co-Bagging approaches. In these cases, we will
test two base classifiers, the K-Nearest Neighbor [58], and the
C4.5 algorithms [59]. A brief description of these base clas-
sifiers and their associated confidence prediction computation
are given as follows.

1) K-Nearest Neighbor (KNN): This is an instance-based
learning algorithm that belongs to the lazy learning fam-
ily of methods [60]. As such, it does not build a model
during the learning process and is based on dissimilar-
ities among a set of instances. For those self-labeled
methods that need to estimate confidence predictions
from this classifier, they can approximate it in terms
of distance from the currently labeled set.

2) C4.5: This is a decision tree algorithm [59] that induces
classification rules for a given training set. The decision
tree is built with a top-down scheme, using the nor-
malized information gain (difference in entropy) that is
obtained from choosing an attribute for splitting the data.
The attribute with the highest normalized information
gain is the one used to make the decision. Confidence
predictions can be obtained from the accuracy of the
leaf that makes the prediction. The accuracy of a leaf
is the percentage of correctly classified train examples
from the total number of covered train instances.

B. Experiments on Standard Classification Data Sets

In this subsection we compare the modified versions of
the selected self-labeled methods (within SEG-SSC) with the
original ones, focusing on the results obtained on the 55 stan-
dard classification data sets and a labeled ratio of 10%. We
analyze the transductive and inductive accuracy capabilities
of these methods. Both results are presented in Tables V
and VI, respectively. In these tables, we have specified the base
classifier between brackets for Tri-Training and Co-Bagging
algorithms. The best result of each row has been highlighted
in bold face.

Aside from these tables, Fig. 4 depicts two box plot
representations of the results obtained in transductive and
inductive settings, respectively. With these box plots we show
a graphical comparison of the performance of the algorithms,
indicating their most important characteristics such as the
median, extreme values and spread of values about the median
in the form of quartiles (Q1 and Q3).

Fig. 4. Box plot of transductive and inductive accuracy rates. The boxes con-
tain 50% of the data (Q1–Q3), blue points are the median values and the lines
extend to the most extreme values. (a) Transductive accuracy. (b) Inductive
accuracy.

Observing these tables and the figure we can appreciate
differences between each of the original proposals and the
improvement achieved by the addition of synthetic examples.
Nevertheless, the use of hypothesis testing methods is manda-
tory in order to contrast the results of a new proposal with
several comparison methods. The aim of these techniques is to
identify the most relevant differences found between methods,
which is highly recommended in the data mining field [29].
To do this, we focus on the Wilcoxon signed-ranks test [61]
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TABLE V
TRANSDUCTIVE ACCURACY RESULTS OVER STANDARD CLASSIFICATION DATA SETS

because it establishes a pairwise comparison between meth-
ods. In this way, we can see if there are significant differences
between the original and modified versions. More information
about this test and other statistical procedures can be found at
http://sci2s.ugr.es/sicidm/.

Table VII collects the results of the application of the
Wilcoxon signed-ranks test to the transductive and inductive
accuracy rates. It shows the rankings R+ and R− values
achieved and its associate p-value. Adopting a level of sig-
nificance of α = 0.1, we emphasize in bold face those
comparisons in which SEG-SSC significantly outperforms the
original algorithm.

With these results we can make the following analysis.
1) In Tables V and VI we can see that our framework

provides a great improvement in accuracy to the self-
labeled techniques used in most of the data sets and
rarely does it significantly reduce its performance level.
On average, the versions that use synthetic examples
always outperform the algorithms upon which they are
based in both the transductive and inductive phases.
In general, the average improvement achieved for one

algorithm in the transductive setting is more or less
maintained in the inductive test, which shows the robust-
ness of the models. Co-Bagging (KNN) seems to be
the algorithm that benefits most when it uses syn-
thetic instances, by contrast, SEG-SSC does not signifi-
cantly increase the average performance of Co-Forest.
Comparing all the algorithms, the best performing
approach is SEG-SSC+Democratic-co.

2) It is known that the performance of self-labeled algo-
rithms depends firstly on the general abilities of their
base classifiers [62]. We notice that C4.5 is a better
base classifier than KNN for the Tri-Training philoso-
phy. However, the Co-Bagging algorithm performs in a
similar way with both classifiers. As expected, the results
obtained with our framework are also affected by the
base classifier. At this point, we can see that those algo-
rithms that are based on KNN offer a greater average
improvement.

3) In Fig. 4, the size of the boxes are related to the robustness
of the algorithms. Thus, we observe that, in many cases,
SEG-SSC finds more compact boxes than the original
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TABLE VI
INDUCTIVE ACCURACY RESULTS OVER STANDARD CLASSIFICATION DATA SETS

algorithms. In the cases in which the boxes have more or
less the same size, we can see that they are higher in the
plot. Median results also help us to identify algorithms that
perform well in many domains. Thus, we observe again
that most of the median values of modified versions are
higher than the original proposals. Taking into account
median values, SEG-SSC+Tri-Training (C4.5) may be
considered the best model.

4) According to the Wilcoxon signed-ranks test, SEG-SSC
achieves that all the methods significantly overcome
their original proposals in terms of transductive learn-
ing, supporting previous conclusions. However, in the
inductive phase, we find that Co-Forest and Co-Bagging
(C4.5) have not been significantly improved. Even so,
they report higher R+ rankings than the original models,
which means that they perform slightly better.

C. Experiments on High Dimensional Problems
With Small Labeled Ratio

This subsection is devoted to studying the behavior of the
proposed framework when it is applied to high dimensional data

TABLE VII
RESULTS OF THE WILCOXON SIGNED-RANKS TEST ON TRANSDUCTIVE

AND INDUCTIVE PHASES

and a very reduced labeled ratio. Most of the considered data
sets (9 of 11) were provided in the book by Chapelle et al. [2],
in which the studies were performed using only 10 and 100
labeled instances. We attempt to perform a similar study with
the difference that we also investigate the inductive abilities of
the models. Furthermore, BBC and BBCsport data sets have
been also analyzed in a semi-supervised context with a few
number of labeled instances [63].

In the scatterplots of Fig. 5 we depict transductive and
inductive accuracy results obtained with 10 and 100 labeled
data. In these plots, the x-axis position of the point is the
accuracy of the original self-labeled method on a single data
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Fig. 5. High dimensional data sets: transductive and inductive accuracy results. (a) Ten labeled points: transductive accuracy. (b) Ten labeled points: inductive
accuracy. (c) Hundred labeled points: transductive accuracy. (d) Hundred labeled points: inductive accuracy.

TABLE VIII
HIGH DIMENSIONAL DATA SETS: AVERAGE RESULTS OBTAINED IN

TRANSDUCTIVE (TRS) AND INDUCTIVE (TST) PHASES

set, and the y-axis position is the accuracy of the modified
algorithm. Therefore, points above the y = x line correspond
to data sets for which new proposals perform better than the
original algorithm.

Table VIII tabulates the average results obtained in the
11 data sets considered, including transductive and inductive
phases for both 10 and 100 splits.

Given Fig. 5 and Table VIII, we can make the following
comments.

1) In all the plots of Fig. 5, most of the points are above the
y = x line, which means that, with the proposed frame-
work, the self-labeled techniques perform better than
the original algorithms. Differentiating between 10 and
100 available labeled points, we can see that when we
have 100 labeled examples, there are more points above
this line in both the transductive and inductive phases.
We do not discern great differences between the per-
formance obtained in both learning phases which shows
that the hypotheses learned with the available labeled
and unlabeled data were appropriate.

2) Table VIII shows that, on average, the proposed scheme
obtains a better performance level than the original ones
in most cases, independently of the learning phase and
the number of labeled data considered. Attending to the
difference between transductive and inductive results,
we observe that, in general, SEG-SSC increments both
proportionally. Nevertheless, there are significant differ-
ences between the results obtained with 10 and 100
labeled points.

3) With these results in mind, we can see the good synergy
between synthetic examples and self-labeled techniques
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in these domains, but, what are the main differences
with the results obtained in the previous subsection? We
observe great differences between those algorithms that
use KNN as a base classifier and those that use C4.5.
With standard classification data sets, we ascertained that
C4.5 was the best base classifier for Tri-Training and
performs similarly to KNN for Co-Bagging. These state-
ments are maintained in these domains, where C4.5 per-
forms better. In this paper, SEG-SSC+Democratic may
be highlighted as the best performing model, obtaining
the highest transductive and inductive accuracy results
with 10 and 100 labeled examples.

V. CONCLUSION

In this paper we have developed a novel framework called
SEG-SSC to improve the performance of any self-labeled SSC
method. It is focused on the idea of using synthetic examples
in order to diminish the drawbacks occasioned by the absence
of labeled examples, which deteriorates the efficiency of this
family of methods.

The proposed self-labeled scheme with synthetic examples
has been incorporated in four well-known self-labeled tech-
niques that have been modified by introducing the necessary
elements to follow the designed framework. These models
are able to overcome the original self-labeled methods due
to the fact that the addition of new labeled data implies a bet-
ter diversity of multiple classifier approaches and fulfills the
distribution of labeled data.

The wide experimental study carried out has allowed us to
investigate the behavior of the proposed scheme with a high
number of data sets with a varied number of instances and fea-
tures. The results have been statistically compared, supporting
the assertion that our proposal is a suitable tool for enhancing
self-labeled methods.

Among the used data sets, we have tackled problems related
to diverse applications with a high practical interest. For
instance, our model can be used to address practical prob-
lems such as computer-aided diagnosis, image-classification,
spam filtering, etc., [21], [47].

There are many possible variations of our proposed semi-
supervised scheme that could be interesting to explore as
future work. In our opinion, the use of oversampling tech-
niques with self-labeled techniques is not only a new way
to improve the capabilities of this family of techniques, but
could also be useful for most of the existing semi-supervised
learning algorithms.
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