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a b s t r a c t

The interest in nonparametric statistical analysis has grown recently in the field of computational
intelligence. In many experimental studies, the lack of the required properties for a proper application
of parametric procedures – independence, normality, and homoscedasticity – yields to nonparametric
ones the task of performing a rigorous comparison among algorithms.

In this paper, we will discuss the basics and give a survey of a complete set of nonparametric
procedures developed to perform both pairwise and multiple comparisons, for multi-problem analysis.
The test problems of the CEC’2005 special session on real parameter optimization will help to illustrate
the use of the tests throughout this tutorial, analyzing the results of a set of well-known evolutionary
and swarm intelligence algorithms. This tutorial is concluded with a compilation of considerations and
recommendations, which will guide practitioners when using these tests to contrast their experimental
results.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, the use of statistical tests to improve the eval-
uation process of the performance of a new method has become a
widespread technique in computational intelligence. Usually, they
are employed inside the framework of any experimental analysis
to decide when one algorithm is considered better than another.
This task, which may not be trivial, has become necessary to con-
firmwhether a new proposedmethod offers a significant improve-
ment, or not, over the existing methods for a given problem.

Statistical procedures developed to perform statistical analyses
can be categorized into two classes: parametric and nonpara-
metric, depending on the concrete type of data employed [1].
Parametric tests have been commonly used in the analysis of
experiments in computational intelligence. Unfortunately, they are
based on assumptions which are most probably violated when
analyzing the performance of stochastic algorithms based on
computational intelligence [2,3]. These assumptions are known
as independence, normality, and homoscedasticity. To overcome
this problem, our interest is focused on nonparametric statistical
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procedures, which provide to the researcher a practical tool to use
when the previous assumptions cannot be satisfied, especially in
multi-problem analysis.

In this paper, the use of several nonparametric procedures for
pairwise and multiple comparison procedures is illustrated. Our
objectives are as follows.

• To give a comprehensive and useful tutorial about the use of
nonparametric statistical tests in computational intelligence,
using tests already proposed in several papers of the litera-
ture [2–5]. Through several examples of application, we will
show their properties, and how the use of this complete frame-
work can improve theway inwhich researchers and practition-
ers contrast the results achieved in their experimental studies.

• To analyze the lessons learned through their use, providing a
wide list of guidelines which may guide users of these tests
when selecting procedures for a given case of study.

For each kind of test, a complete case of application is shown.
A contest held in the CEC’2005 special session on real parameter
optimization defined a complete suite of benchmarking functions
(publicly available; see [6]), considering several well-known do-
mains for real parameter optimization. These benchmark functions
will be used to compare several evolutionary and swarm intelli-
gence continuous optimization techniques, whose differences will
be contrasted through the use of nonparametric procedures.
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To do so, this paper is organized as follows. Section 2 shows
the experimental framework considered for the application of
the statistical methods and gives some preliminary background.
Section 3 describes the nonparametric tests for pairwise compar-
isons. Section 4 deals with multiple comparisons by designating
a control method, whereas Section 5 deals with multiple com-
parisons among all methods. Section 6 surveys several recom-
mendations and considerations on the use of nonparametric tests.
Finally, Section 7 concludes this tutorial.

2. Preliminaries

In this section, the benchmark functions (Section 2.1) and the
evolutionary and swarm intelligence algorithms considered for
our case of study (Section 2.2) are presented. Furthermore, some
basic concepts on inferential statistics are introduced (Section 2.3),
providing the necessary background for properly presenting the
statistical procedures included in this tutorial.

2.1. Benchmark functions: CEC’2005 special session on real parameter
optimization

Thorough this paper, the results obtained in a experimental
study regarding 9 well-known algorithms and 25 optimization
functions will be used, illustrating the application of the different
statistical methodologies considered. The nonparametric tests will
be used to show significant statistical differences among the
different algorithms of the study.

As benchmark suite, we have selected the 25 test problems of
dimension 10 that appeared in the CEC’2005 special session on real
parameter optimization [6]. This suite is composed of the following
functions.

• 5 unimodal functions
– F1: Shifted Sphere Function.
– F2: Shifted Schwefel’s Problem 1.2.
– F3: Shifted Rotated High Conditioned Elliptic Function.
– F4: Shifted Schwefel’s Problem 1.2 with Noise in Fitness.
– F5: Schwefel’s Problem 2.6 with Global Optimum on Bounds.

• 20 multimodal functions
– 7 basic functions.

∗ F6: Shifted Rosenbrock’s Function.
∗ F7: Shifted Rotated Griewank Function without Bounds.
∗ F8: Shifted Rotated Ackley’s Function with Global Opti-

mum on Bounds.
∗ F9: Shifted Rastrigin’s Function.
∗ F10: Shifted Rotated Rastrigin’s Function.
∗ F11: Shifted Rotated Weierstrass Function.
∗ F12: Schwefel’s problem 2.13.

– 2 expanded functions.
∗ F13: Expanded Extended Griewank’s plus Rosenbrock’s

Function (F8F2)
∗ F14: Shifted Rotated Expanded Scaffers F6.

– 11 hybrid functions. Each one (F15 to F25) has been defined
through compositions of 10 out of the 14 previous functions
(different in each case).

All functions are displaced in order to ensure that their optima
can never be found in the center of the search space. In two
functions, in addition, the optima cannot be found within the
initialization range, and the domain of search is not limited (the
optimum is out of the range of initialization).

2.2. Evolutionary and swarm intelligence algorithms

Our main case of study consist of the comparison of perfor-
mance between 9 continuous optimization algorithms. Their main
characteristics are described as follows.
• PSO: A classic Particle Swarm Optimization [7] model for
numerical optimization has been considered. The parameters
are c1 = 2.8, c2 = 1.3, and w from 0.9 to 0.4. Population is
composed by 100 individuals.

• IPOP-CMA-ES: IPOP-CMA-ES is a restart Covariant Matrix
Evolutionary Strategy (CMA-ES) with Increasing Population
Size [8]. This CMA-ES variation detects premature convergence
and launches a restart strategy that doubles the population
size on each restart; by increasing the population size, the
search characteristic becomes more global after each restart,
which empowers the operation of the CMA-ES on multi-modal
functions. For this algorithm, we have considered the default
parameters. The initial solution is uniform randomly chosen
from the domain, and the initial distribution size is a third of
the domain size.

• CHC: The key idea of the CHC algorithm [9] concerns the
combination of a selection strategy with a very high selective
pressure and several components inducing a strong diversity.
In [10], the original CHC model was extended to deal with
real-coded chromosomes, maintaining its basis as much as
possible. We have tested it using a real-parameter crossover
operator, BLX-α (with α = 0.5), and a population size of 50
chromosomes.

• SSGA: A real-coded Steady-State Genetic Algorithm specifically
designed to promote high population diversity levels by means
of the combination of the BLX-α crossover operator (with α =

0.5) and the negative assortativemating strategy [11]. Diversity
is favored as well by means of the BGA mutation operator [12].

• SS-arit & SS-BLX: Two instances of the classic Scatter Search
model [13] have been included in the study: the original model
with the arithmetical combination operator, and the same
model using the BLX-α crossover operator (with α = 0.5) [14].

• DE-Exp & DE-Bin: We have considered a classic Differential
Evolution model [15], with no parameter adaptation. Two clas-
sic crossover operators proposed in the literature, Rand/1/exp,
and Rand/1/bin, are applied. The F and CR parameters are fixed
to 0.5 and 0.9, respectively, and the population size to 100 indi-
viduals.

• SaDE: Self-adaptive Differential Evolution [16] is a Differential
Evolution model which can adapt its CR and F parameters for
enhance its results. In this model, the population size has been
fixed to 100 individuals.

All the algorithms have been run 50 times for each test function.
Each run stops either when the error obtained is less than 10−8, or
when the maximal number of evaluations (100000) is achieved.
Table 1 shows the average error obtained for each one over the 25
benchmark functions considered.

2.3. Some basic concepts on inferential statistics

Single-problem and multi-problem analyses can usually be
found contrasting the results of computational intelligence exper-
iments, both in isolation [17] and simultaneously [18]. The first
kind, single-problemanalysis, dealswith results obtained over sev-
eral runs of the algorithms over a given problem, whereas multi-
problem analysis considers a result per algorithm/problem pair.

Inside the field of inferential statistics, hypothesis testing [19]
can be employed to draw inferences about one ormore populations
from given samples (results). In order to do that, two hypotheses,
the null hypothesis H0 and the alternative hypothesis H1, are de-
fined. The null hypothesis is a statement of no effect or no differ-
ence, whereas the alternative hypothesis represents the presence
of an effect or a difference (in our case, significant differences be-
tween algorithms). When applying a statistical procedure to reject
a hypothesis, a level of significance α is used to determine at which
level the hypothesis may be rejected.
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Table 1
Average error obtained in the 25 benchmark functions.

Function PSO IPOP-CMA-ES CHC SSGA SS-BLX SS-Arit DE-Bin DE-Exp SaDE

F1 1.234 · 10−4 0.000 2.464 8.420 · 10−9 3.402 · 10 1.064 7.716 · 10−9 8.260 · 10−9 8.416 · 10−9

F2 2.595 · 10−2 0.000 1.180 · 102 8.719 · 10−5 1.730 5.282 8.342 · 10−9 8.181 · 10−9 8.208 · 10−9

F3 5.174 · 104 0.000 2.699 · 105 7.948 · 104 1.844 · 105 2.535 · 105 4.233 · 10 9.935 · 10 6.560 · 103

F4 2.488 2.932 · 103 9.190 · 10 2.585 · 10−3 6.228 5.755 7.686 · 10−9 8.350 · 10−9 8.087 · 10−9

F5 4.095 · 102 8.104 · 10−10 2.641 · 102 1.343 · 102 2.185 1.443 · 10 8.608 · 10−9 8.514 · 10−9 8.640 · 10−9

F6 7.310 · 102 0.000 1.416 · 106 6.171 1.145 · 102 4.945 · 102 7.956 · 10−9 8.391 · 10−9 1.612 · 10−2

F7 2.678 · 10 1.267 · 103 1.269 · 103 1.271 · 103 1.966 · 103 1.908 · 103 1.266 · 103 1.265 · 103 1.263 · 103

F8 2.043 · 10 2.001 · 10 2.034 · 10 2.037 · 10 2.035 · 10 2.036 · 10 2.033 · 10 2.038 · 10 2.032 · 10
F9 1.438 · 10 2.841 · 10 5.886 7.286 · 10−9 4.195 5.960 4.546 8.151 · 10−9 8.330 · 10−9

F10 1.404 · 10 2.327 · 10 7.123 1.712 · 10 1.239 · 10 2.179 · 10 1.228 · 10 1.118 · 10 1.548 · 10
F11 5.590 1.343 1.599 3.255 2.929 2.858 2.434 2.067 6.796
F12 6.362 · 102 2.127 · 102 7.062 · 102 2.794 · 102 1.506 · 102 2.411 · 102 1.061 · 102 6.309 · 10 5.634 · 10
F13 1.503 1.134 8.297 · 10 6.713 · 10 3.245 · 10 5.479 · 10 1.573 6.403 · 10 7.070 · 10
F14 3.304 3.775 2.073 2.264 2.796 2.970 3.073 3.158 3.415
F15 3.398 · 102 1.934 · 102 2.751 · 102 2.920 · 102 1.136 · 102 1.288 · 102 3.722 · 102 2.940 · 102 8.423 · 10
F16 1.333 · 102 1.170 · 102 9.729 · 10 1.053 · 102 1.041 · 102 1.134 · 102 1.117 · 102 1.125 · 102 1.227 · 102

F17 1.497 · 102 3.389 · 102 1.045 · 102 1.185 · 102 1.183 · 102 1.279 · 102 1.421 · 102 1.312 · 102 1.387 · 102

F18 8.512 · 102 5.570 · 102 8.799 · 102 8.063 · 102 7.668 · 102 6.578 · 102 5.097 · 102 4.482 · 102 5.320 · 102

F19 8.497 · 102 5.292 · 102 8.798 · 102 8.899 · 102 7.555 · 102 7.010 · 102 5.012 · 102 4.341 · 102 5.195 · 102

F20 8.509 · 102 5.264 · 102 8.960 · 102 8.893 · 102 7.463 · 102 6.411 · 102 4.928 · 102 4.188 · 102 4.767 · 102

F21 9.138 · 102 4.420 · 102 8.158 · 102 8.522 · 102 4.851 · 102 5.005 · 102 5.240 · 102 5.420 · 102 5.140 · 102

F22 8.071 · 102 7.647 · 102 7.742 · 102 7.519 · 102 6.828 · 102 6.941 · 102 7.715 · 102 7.720 · 102 7.655 · 102

F23 1.028 · 103 8.539 · 102 1.075 · 103 1.004 · 103 5.740 · 102 5.828 · 102 6.337 · 102 5.824 · 102 6.509 · 102

F24 4.120 · 102 6.101 · 102 2.959 · 102 2.360 · 102 2.513 · 102 2.011 · 102 2.060 · 102 2.020 · 102 2.000 · 102

F25 5.099 · 102 1.818 · 103 1.764 · 103 1.747 · 103 1.794 · 103 1.804 · 103 1.744 · 103 1.742 · 103 1.738 · 103
Instead of stipulating a priori a level of significance α, it is
possible to compute the smallest level of significance that results in
the rejection ofH0. This is the definition of the p-value, which is the
probability of obtaining a result at least as extreme as the one that
was actually observed, assuming that H0 is true. It is a useful and
interesting datum for many consumers of statistical analysis. A p-
value provides information about whether a statistical hypothesis
test is significant or not, and it also indicates something about
how significant the result is: the smaller the p-value, the stronger
the evidence against H0. Most importantly, it does this without
committing to a particular level of significance [20].

Parametric tests have been commonly used in the analysis of
experiments in computational intelligence. For example, a com-
mon way to test whether the difference between the results of
two algorithms is non-random is to compute a paired t-test, which
checks whether the average difference in their performance over
the problems is significantly different from zero. When compar-
ing a set of multiple algorithms, the common statistical method
for testing the differences between more than two related sam-
ple means is the repeated-measures ANOVA (or within-subjects
ANOVA) [21].

Nonparametric tests, besides their original definition for
dealing with nominal or ordinal data, can be also applied to con-
tinuous data by conducting ranking-based transformations, adjust-
ing the input data to the test requirements [20]. They can perform
two classes of analysis: pairwise comparisons and multiple com-
parisons. Pairwise statistical procedures perform individual com-
parisons between two algorithms, obtaining in each application a
p-value independent from another one. Therefore, in order to carry
out a comparisonwhich involvesmore than two algorithms,multi-
ple comparisons tests should be used. In 1×N comparisons, a con-
trolmethod is highlighted (the best performing algorithm) through
the application of the test. Then, all hypotheses of equality between
the control method and the rest can be tested by the application of
a set of post-hoc procedures. N × N comparisons, considering the
hypotheses of equality between all existing pairs of algorithms, are
also possible, with the inclusion of specific post-hoc procedures for
this task.

In this tutorial, we describe the use of several pairwise and
multiple comparison procedures. Tables 2 and 3 enumerates the
Table 2
Nonparametric statistical procedures considered in this tutorial.

Type of comparison Procedures Section

Pairwise comparisons Sign test 3.1
Wilcoxon test 3.2

Multiple comparisons (1 × N)

Multiple sign test 4.1
Friedman test 4.2
Friedman Aligned ranks 4.2
Quade test 4.2
Contrast Estimation 4.4

Multiple comparisons (N × N) Friedman test 5

Table 3
Associated post-hoc procedures.

Type of comparison Procedures Section

Multiple comparisons (1 × N)

Bonferroni 4.3
Holm 4.3
Hochberg 4.3
Hommel 4.3
Holland 4.3
Rom 4.3
Finner 4.3
Li 4.3

Multiple comparisons (N × N)

Nemenyi 5
Holm 5
Shaffer 5
Bergmann 5

statistical tests and the post-hoc procedures considered, respec-
tively. Furthermore, we present here some common notation that
is used.

• n is the number of problems considered. i is its associated index.
• k is the number of algorithms included in the comparison. j is

its associated index.
• d denotes the difference of performance between two algo-

rithms in a given problem.

This notation will be employed throughout the study, unless a
particular case is stated explicitly.
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Table 4
Critical values for the two-tailed sign test at α = 0.05 and α = 0.1. An algorithm is significantly better than another if it performs better on at least the cases presented in
each row.

#Cases 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

α = 0.05 5 6 7 7 8 9 9 10 10 11 12 12 13 13 14 15 15 16 17 18 18
α = 0.1 5 6 6 7 7 8 9 9 10 10 11 12 12 13 13 14 14 15 16 16 17
Table 5
Example of Sign test for pairwise comparisons. SaDE shows a significant improvement over PSO, CHC, and SSGA, with a level of significance α = 0.05, and over SS-Arit, with
a level of significance α = 0.1.

SaDE PSO IPOP-CMA-ES CHC SSGA SS-BLX SS-Arit DE-Bin DE-Exp

Wins (+) 20 15 20 18 16 17 13 9
Loses (−) 5 10 5 7 9 8 12 16

Detected differences α = 0.05 – α = 0.05 α = 0.05 – α = 0.1 – –
3. Pairwise comparisons

Pairwise comparisons are the simplest kind of statistical tests
that a researcher can apply within the framework of an experi-
mental study. Such tests are directed to compare the performance
of two algorithms when applied to a common set of problems. In
multi-problem analysis, a value for each pair algorithm/problem is
required (often an average value from several runs).

In this section, first we focus our attention on a quick and
easy, yet not very powerful, procedure, which can provide a
first snapshot about the comparison: the Sign test (Section 3.1).
Then, we will introduce the use of the Wilcoxon signed ranks
test (Section 3.2), as a example of a simple, yet safe and robust,
nonparametric test for pairwise statistical comparisons. Examples
thorough this section will focus in characterizing the behavior of
SaDE, in 1×1 comparisons with the rest of algorithms considered.

3.1. A simple first-sight procedure: the Sign test

A popular way to compare the overall performances of algo-
rithms is to count the number of cases on which an algorithm is
the overall winner. Some authors also use these counts in inferen-
tial statistics, with a form of two-tailed binomial test that is known
as the Sign test [22]. If both algorithms compared are, as assumed
under the null hypothesis, equivalent, each should win on approx-
imately n/2 out of n problems.

Thenumber ofwins is distributed according to a binomial distri-
bution; for a greater number of cases, the number of wins is under
the null hypothesis distributed according to n


n/2,

√
n/2


, which

allows for the use of the z-test: if the number of wins is at least
n/2+1.96 ·

√
n/2 (or, for a quick rule of a thumb, n/2+

√
n), then

the algorithm is significantly better with p < 0.05.
Table 4 shows the critical number of wins needed to achieve

both α = 0.05 and α = 0.1 levels of significance. Note that,
since tied matches support the null hypothesis, they should not be
discounted when applying this test, but split evenly between the
two algorithms; if there is an odd number of them, one should be
ignored.

Example 1. In our experimental framework, performing a Sign
test to compare the results of SaDE is quite simple. It only requires
counting the number of wins achieved either by SaDE or by
the comparison algorithm. Then, using Table 4, we can highlight
those cases where a significant difference is detected. Table 5
summarizes this process.

3.2. The Wilcoxon signed ranks test

The Wilcoxon signed ranks test is used for answering the
following question: do two samples represent two different
populations? It is a nonparametric procedure employed in hypoth-
esis testing situations, involving a design with two samples. This is
analogous to the paired t-test in nonparametric statistical proce-
dures; therefore, it is a pairwise test that aims to detect significant
differences between two samplemeans, that is, the behavior of two
algorithms.

Wilcoxon’s test is defined as follows. Let di be the difference
between the performance scores of the two algorithms on ith
out of n problems (if these performance scores are known to be
represented in different ranges, they can be normalized to the
interval [0, 1], in order to not prioritize any problem; see [23]).
The differences are ranked according to their absolute values; in
case of ties, the practitioner can apply one of the availablemethods
existing in the literature [24] (ignore ties, assign the highest rank,
compute all the possible assignments and average the results
obtained in every application of the test, and so on), although we
recommend the use of average ranks for dealing with ties (for
example, if two differences are tied in the assignation of ranks 1
and 2, assign rank 1.5 to both differences).

Let R+ be the sum of ranks for the problems in which the first
algorithm outperformed the second, and R− the sum of ranks for
the opposite. Ranks of di = 0 are split evenly among the sums; if
there is an odd number of them, one is ignored:

R+
=

−
di>0

rank(di) +
1
2

−
di=0

rank(di)

R−
=

−
di<0

rank(di) +
1
2

−
di=0

rank(di). (1)

Let T be the smaller of the sums, T = min(R+, R−). If T is
less than or equal to the value of the distribution of Wilcoxon
for n degrees of freedom ([25], Table B.12), the null hypothesis of
equality of means is rejected; this will mean that a given algorithm
outperforms the other one, with the p-value associated. Given
its widespread use, the computation of the p-value for this test
is usually included in well-known statistical software packages
(SPSS, SAS, R, etc.).

TheWilcoxon signed ranks test ismore sensitive than the t-test.
It assumes commensurability of differences, but only qualitatively:
greater differences still count for more, which is probably desired,
but the absolutemagnitudes are ignored. From the statistical point
of view, the test is safer since it does not assume normal distribu-
tions. Also, the outliers (exceptionally good/bad performances of
a few problems) have less effect on the Wilcoxon test than on the
t-test. TheWilcoxon test assumes continuous differences di; there-
fore, they should not be rounded to one or two decimals, since this
would decrease the power of the test in the case of a high number
of ties.
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Table 6
Wilcoxon signed ranks test results. SaDE shows an improvement over PSO, CHC, and SSGA, with a level of significance α = 0.01, over IPOP-CMA-ES and SS-Arit, with
α = 0.05, and over SS-BLX, with α = 0.1.

Comparison R+ R− p-value Comparison R+ R− p-value

SaDE versus PSO 261 64 0.00673 SaDE versus SS-BLX 232 93 0.06262
SaDE versus IPOP-CMA-ES 239 86 0.03934 SaDE versus SS-Arit 243 82 0.02958
SaDE versus CHC 287 38 0.00038 SaDE versus DE-Bin 176 149 >0.2
SaDE versus SSGA 260 65 0.00737 SaDE versus DE-Exp 119 206 >0.2
Example 2. When using Wilcoxon’s test in our experimental
study, the first step is to compute the R+ and R− related to the
comparisons between SaDE and the rest of algorithms. Once they
have been obtained, their associated p-values can be computed.
Note that, for every comparison, the property R+

+ R−
= n · (n +

1)/2 must be true.
Table 6 shows the R+, R−, and p-values computed for all the

pairwise comparisons concerning SaDE (the p-values have been
computed by using SPSS). As the table states, SaDE shows a
significant improvement over PSO, CHC, and SSGA, with a level
of significance α = 0.01, over IPOP-CMA-ES and SS-Arit, with
α = 0.05, and over SS-BLX, with α = 0.1.

4. Multiple comparisons with a control method

One of the most frequent situations where the use of statistical
procedures is requested is in the joint analysis of the results
achieved by various algorithms. The groups of differences between
these methods (also called blocks) are usually associated with the
problemsmet in the experimental study. For example, in amultiple
problem comparison, each block corresponds to the results offered
over a specific problem. When referring to multiple comparisons
tests, a block is composed of three ormore subjects or results, each
one corresponding to the performance evaluation of the algorithm
over the problem.

In pairwise analysis, if we try to extract a conclusion involving
more than one pairwise comparison, we will obtain an accumu-
lated error coming from its combination. In statistical terms,we are
losing the control on the Family-Wise Error Rate (FWER), defined
as the probability of making one or more false discoveries among
all the hypotheses when performing multiple pairwise tests. The
true statistical significance for combining pairwise comparisons is
given by

p = P(RejectH0|H0true)
= 1 − P(AcceptH0|H0true)
= 1 − P(AcceptAk = Ai, i = 1, . . . , k − 1|H0true)

= 1 −

k−1∏
i=1

P(AcceptAk = Ai|H0true)

= 1 −

k−1∏
i=1

[1 − P(RejectAk = Ai|H0true)]

= 1 −

k−1∏
i=1

(1 − pHi).

Therefore, a pairwise comparison test, such as Wilcoxon’s test,
should not be used to conduct various comparisons involving a set
of algorithms, because the FWER is not controlled.

This section is devoted to describing the use of several proce-
dures for multiple comparisons considering a control method. In
this sense, a control method can be defined as the most interest-
ing algorithm for the researcher of the experimental study (usually
its new proposal). Therefore, its performance will be contrasted
against the rest of algorithms of the study.

The contents of this section are summarized as follows.
• First, we will introduce the use of the Sign test for multiple
comparisons. This Multiple Sign test (Section 4.1) is a not very
powerful method for detecting significant differences between
algorithms, but it is still a quick and easy procedure which can
be interesting for a first glance at the results.

• The best-known procedure for testing the differences between
more than two related samples, the Friedman test, will be
introduced in Section 4.2. In that section, we will also include
the use of its extension, the Iman–Davenport test, and two
advanced versions: the Friedman Aligned Ranks test and the
Quade test.

• In Section 4.3, we will illustrate the use of a family of post-hoc
procedures, as a suitable complement for the Friedman-related
tests. Given a control method and the ranks of the Friedman (or
any related) test, these post-hocmethods allow us to determine
which algorithms are significantly better/worse than it.

• Finally, in Section 4.4, we present a procedure to estimate the
differences between several algorithms: the Contrast Estima-
tion of medians. This method is very recommendable if we
assume that the global performance is reflected by the magni-
tudes of the differences among the performances of the algo-
rithms.

4.1. Multiple Sign test

Given a control labeled algorithm, the Sign test for multi-
ple comparisons allows us to highlight those ones whose perfor-
mances are statistically different when compared with the control
algorithm. This procedure, proposed in [26,27], proceeds as fol-
lows.

1. Represent by xi,1 and xij the performances of the control and the
jth algorithm in the ith problem.

2. Compute the signed differences di,j = xi,j−xi,1. That is, pair each
performancewith the control and, in each problem, subtract the
control performance from the performance of the jth algorithm.

3. Let rj equal the number of differences, di,j, that have the less
frequently occurring sign (either positive or negative) within a
pairing of an algorithm with the control.

4. LetM1 be themedian response of a sample of results of the con-
trol algorithm andMj be themedian response of a sample of re-
sults of the jth algorithm. Apply one of the following decision
rules.
• For testing H0: Mj ≥ M1 against H1: Mj < M1, reject H0 if

the number of minus signs is less than or equal to the criti-
cal value of Rj appearing in Table A.21 in Appendix A for k−1
(number of algorithms excluding control), n (number of prob-
lems), and the chosen experimentwise error rate.

• For testing H0: Mj ≤ M1 against H1: Mj > M1, reject H0 if the
number of plus signs is less than or equal to the critical value
of Rj appearing in Table A.21 in Appendix A for k − 1, n, and
the chosen experimentwise error rate.

Example 3. Labeling SaDE as our control algorithm, we may reuse
the results shown in Table 5 for applying the Multiple Sign test.
Suppose we choose a level of significance α = 0.05 and let our
hypotheses be H0: Mj ≥ M1 and H1: Mj < M1; that is, our
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control algorithm SaDE is significantly better than the remaining
algorithms. Reference to Table A.21 for m = 8 (m = k − 1) and
n = 25 reveals that the critical value of Rj is 5. Since the number
of minuses in the pairwise comparison between the control and
PSO and CHC is equal to 5, we may conclude that SaDE has a
significantly better performance than them. However, the null
hypothesis cannot be rejected in the pairwise comparison among
the rest of the comparison algorithms, sowe cannot highlightmore
significant differences using this test.

Note the differences between the results of the single Sign test
(see Example 1) and the Multiple Sign test. Although the former
states that PSO, CHC, SSGA, and SS-Arit are statistically improved
by SaDE, the latter only detects significant differences between
PSO and CHC when compared with SaDE. This result is caused by
the control of the FWER, which prevents the rejection of the null
hypothesis of equality for SSGA and SS-Arit, in contrast with the
single pairwise comparison performed in the Example 1.

In fact, it is possible to argue that, if we reduce the number
of algorithms in the comparison to six (m = 5), excluding three
algorithms from the study, wewould detect significant differences
between SaDE and SSGA (α = 0.1), due to the critical value of the
test being increased to 7. However, this would lead to assuming
that significant differences found are only valid in the presence of
the six algorithms considered, and not in the presence of the full
set of nine algorithms of the comparison. Note that this means that
the rejection of pairwise hypotheses with a control algorithm is
influenced by the rest of methods considered in the comparison, if
the Multiple Sign test is used.

4.2. The Friedman, Friedman Aligned Ranks, and Quade tests

The Friedman test [28,29] (Friedman two-way analysis of
variances by ranks) is a nonparametric analog of the parametric
two-way analysis of variance. It can be used for answering the
following question: in a set of k samples (where k ≥ 2), do at least
two of the samples represent populations with different median
values?. The Friedman test is the analog of the repeated measures
ANOVA in nonparametric statistical procedures; therefore, it
is a multiple comparisons test that aims to detect significant
differences between the behavior of two or more algorithms.

The null hypothesis for Friedman’s test states equality of
medians between the populations. The alternative hypothesis is
defined as the negation of the null hypothesis, so it is non-
directional.

The first step in calculating the test statistic is to convert the
original results to ranks. They are computed using the following
procedure.

1. Gather observed results for each algorithm/problem pair.
2. For each problem i, rank values from 1 (best result) to k (worst

result). Denote these ranks as r ji (1 ≤ j ≤ k).
3. For each algorithm j, average the ranks obtained in all problems

to obtain the final rank Rj =
1
n

∑
i r

j
i .

Thus, it ranks the algorithms for each problem separately; the
best performing algorithm should have the rank of 1, the second
best rank 2, etc. Again, in case of ties, we recommend computing
average ranks. Under the null hypothesis, which states that all the
algorithms behave similarly (therefore their ranks Rj should be
equal) the Friedman statistic Ff can be computed as

Ff =
12n

k(k + 1)

[
ΣjR2

j −
k(k + 1)2

4

]
, (2)

which is distributed according to a χ2 distribution with k − 1
degrees of freedom, when n and k are big enough (as a rule of a
thumb, n > 10 and k > 5). For a smaller number of algorithms
and problems, exact critical values have been computed [22,25].

Iman and Davenport [30] proposed a derivation from the
Friedman statistic given that this last metric often produces a
conservative effect not desired. The proposed statistic is

FID =
(n − 1)χ2

F

n(k − 1) − χ2
F

(3)

which is distributed according to an F distribution with k − 1 and
(k − 1)(N − 1) degrees of freedom. See Table A10 in [22] to find
the critical values.

A drawback of the ranking scheme employed by the Friedman
test is that it allows for intra-set comparisons only. When the
number of algorithms for comparison is small, this may pose a
disadvantage, since inter-set comparisons may not be meaningful.
In such cases, comparability among problems is desirable.

In the method of aligned ranks [31] for the Friedman test, a
value of location is computed as the average performance achieved
by all algorithms in eachproblem. Then, the difference between the
performance obtained by an algorithm and the value of location is
obtained. This step is repeated for each combination of algorithms
and problems.

The resulting differences (aligned observations), which keep
their identities with respect to the problem and the combination
of algorithms to which they belong, are then ranked from 1 to
k · n relative to each other. This ranking scheme is the same as
that employedby amultiple comparisonprocedurewhich employs
independent samples, such as the Kruskal–Wallis test [32]. The
ranks assigned to the aligned observations are called aligned ranks.

The Friedman Aligned Ranks test statistic can be defined as

FAR =

(k − 1)


k∑

j=1
R̂2
j − (kn2/4)(kn + 1)2



{[kn(kn + 1)(2kn + 1)] /6} − (1/k)
n∑

i=1
R̂2
i

, (4)

where R̂i is equal to the rank total of the ith problem and R̂j is the
rank total of the jth algorithm.

The test statistic FAR is compared for significance with a χ2

distribution with k − 1 degrees of freedom. Critical values can be
found in Table A3 in [22].

Finally, we will introduce a last test for performing multiple
comparisons: the Quade test [33]. This test, in contrast to Fried-
man’s, takes into account the fact that some problems are more
difficult or that the differences registered on the run of various
algorithms over them are larger (the Friedman test considers all
problems to be equal in terms of importance). Therefore, the rank-
ings computed on each problem could be scaled depending on the
differences observed in the algorithms’ performances, obtaining,
as a result, a weighted ranking analysis of the sample of results.

The procedure starts by finding the ranks r ji in the same way as
the Friedman test does. The next step requires the original values
of performance of the algorithms xji. Ranks are assigned to the
problems themselves according to the size of the sample range in
each problem. The sample rangewithin problems i is the difference
between the largest and the smallest observations within that
problem:

Range in problem: i = max
j

xji − min
j

xji. (5)

Obviously, there are n sample ranges, one for each problem.
Assign rank 1 to the problem with the smallest range, rank 2 to
the second smallest, and so on to the problem with the largest
range, which gets rank n. Use average ranks in the case of ties.
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Let Q1,Q2, . . . ,QN be the ranks assigned to problems 1, 2, . . . ,N ,
respectively.

Finally, the problem rank Qi is multiplied by the difference
between the rankwithin problem i, r ji , and the average rankwithin
problems, (k + 1)/2, to get the product S ji , where

S ji = Qi

[
r ji −

k + 1
2

]
(6)

is a statistic that represents the relative size of each observation
within the problem, adjusted to reflect the relative significance of
the problem in which it appears. Also, we may define Sj as the sum
for each algorithm, Sj =

∑n
i=1 S

j
i , for j = 1, 2, . . . , k.

For convenience, and to establish a relationship with the
Friedman test, wewill also use rankingswithout average adjusting,

W j
i = Qi


r ji

, (7)

and the average ranking for the jth algorithm, Tj, given as

Tj =
Wj

n(n + 1)/2
, (8)

whereWj =
∑n

i=1 W
j
i , for j = 1, 2, . . . , k.

Some definitions must be made for computing the test statistic,
FQ . Let the terms A and B be

A = n(n + 1)(2n + 1)k(k + 1)(k − 1)/72 (9)

B =
1
n

−
j=1

kS2j . (10)

The test statistic, FQ , is

FQ =
(n − 1)B
A − B

, (11)

which is distributed according to the F-distribution with k−1 and
(k− 1)(n− 1) degrees of freedom (the critical values can be found
in Table A10 in [22]). When computing the statistic, note that, if
A = B, wemust consider the point to be in the critical region of the
statistical distribution.

For each of these tests (Friedman, Iman–Davenport, Friedman
Aligned Ranks, or Quade tests), once the proper statistics have
been computed, it is possible to compute a p-value through normal
approximations [34] (in the Quade test, if A = B, the p-value is
computed as (1/k!)n−1). If the existence of significant differences
is found (that is, the null hypothesis is rejected), we can proceed
with a post-hoc procedure to characterize these differences (see
Section 4.3). A Java package developed to compute the rankings
for these test, the CONTROLTEST package, can be obtained at the
SCI2S thematic public website Statistical Inference in Computational
Intelligence and Data Mining.1

Example 4. To understand the computation of the ranks for the
Friedman, Friedman Aligned and Quade procedures, we firstly
present a toy example, considering the error rates achieved by four
algorithms (labeled from A to D) over four problems (labeled from
P1 to P4). Table 7 shows them.

Table 8 depicts the ranks computed through the Friedman test.
As can be seen in the table, C is the best performing algorithm of
our example, whereas B is the worst.

Table 9 depicts the ranks computed through the Friedman
Aligned test. In that table we may see how aligned observations
modify the way in which ranks are computed, increasing greatly,

1 http://sci2s.ugr.es/sicidm/.
Table 7
Error rates achieved (Example 4).

Error A B C D

P1 2.711 3.147 2.515 2.612
P2 7.832 9.828 7.832 7.921
P3 0.012 0.532 0.122 0.005
P4 3.431 4.111 3.401 3.401

Table 8
Friedman ranks (Example 4).

Friedman A B C D

P1 3 4 1 2
P2 1.5 4 1.5 3
P3 2 4 3 1
P4 3 4 1.5 1.5

Average 2.375 4 1.250 1.875

Table 9
Friedman Aligned ranks (Example 4).

Friedman Aligned A B C D

P1 12 14 4 10
P2 1.5 16 1.5 3
P3 8 13 11 7
P4 9 15 5.5 5.5

Average 7.625 14.5 5.5 6.375

Table 10
Quade ranks (Example 4).

Quade A B C D

P1 1 (6) 3 (8) −3 (2) −1 (4)
P2 −4 (6) 6 (16) −4 (6) 2 (12)
P3 −0.5 (2) 1.5 (4) 0.5 (3) −1.5 (1)
P4 1.5 (9) 4.5 (12) −3 (4.5) −3 (4.5)

Sj −2 15 −9.5 −3.5

Tj 2.3 4 1.55 2.15

for example, the rank of Algorithm B over problem P2, or decreas-
ing the rank of Algorithm C over problem P1.

Finally, Table 10 depicts the ranks computed through the
Quade test, considering both weighted ranks Sij and ranks with-
out weighting Wij (between brackets). From this table, we may
highlight the differences between the importance assigned to each
problem. For example, ranks assigned to P2 are greater than the
rest (in terms of absolute value), whereas ranks assigned to P3 are
significantly less (which can be interpreted as considering problem
P2 as hard, and problem P3 as easy).

Although the order between algorithms given by the three pro-
cedures is the same, it is interesting to see how the different pro-
cedures allow us to distinguish some problems from the rest, fol-
lowing a given criterion.

Example 5. Continuing with our experimental study, the ranks of
the Friedman, Friedman Aligned, and Quade tests can be computed
for all the algorithms considered, following the guidelines exposed
in this section. Table 11 shows them, highlighting DE-Exp as the
best performing algorithm of the comparison, with a rank of 3.5,
84.74, and 3.1123 for the Friedman, Friedman Aligned, and Quade
tests, respectively.

The p-values computed through the statistics of each of the
tests considered (0.000018, 0.006357, and 1.20327·10−07) and the
Iman–Davenport extension (Ff = 5.267817, p-value: 0.000006)
strongly suggest the existence of significant differences among the
algorithms considered.

http://sci2s.ugr.es/sicidm/
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Table 11
Ranks achieved by the Friedman, Friedman Aligned, and Quade tests in the main
case of study. DE-Exp achieves the best rank in the three procedures. The statistics
computed and related p-values are also shown.

Algorithms Friedman Friedman Aligned Quade

PSO 7 138.84 6.5415
IPOP-CMA-ES 4.84 116.12 4.7415
CHC 6.28 157.4 7.1785
SSGA 5.5 129.14 5.8769
SS-BLX 4.64 107.92 5.1108
SS-Arit 5.4 107.8 5.6123
DE-Bin 4 88.28 3.5538
DE-Exp 3.5 84.74 3.1123
SaDE 3.84 86.76 3.2723

Statistic 35.99733 21.31479 6.63067

p-value 0.000018 0.006357 1.20327 · 10−07

4.3. Post-hoc procedures

The main drawback of the Friedman, Iman–Davenport, Fried-
man Aligned, and Quade tests is that they only can detect signifi-
cant differences over thewholemultiple comparison, being unable
to establish proper comparisons between some of the algorithms
considered.When the aim of the application of themultiple tests is
to perform a comparison considering a control method and a set of
algorithms, a family of hypotheses can be defined, all related to the
control method. Then, the application of a post-hoc test can lead to
obtaining a p-value which determines the degree of rejection of
each hypothesis.

A family of hypotheses is a set of logically interrelated
hypotheses of comparisonswhich, in 1×N comparisons, compares
the k − 1 algorithms of the study (excluding the control) with
the control method, whereas in N × N comparisons, it considers
the k(k−1)/2 possible comparisons among algorithms. Therefore,
the family will be composed of k − 1 or k(k − 1)/2 hypotheses,
respectively, which can be ordered by its p-value, from lowest to
highest.

The p-value of every hypothesis in the family can be obtained
through the conversion of the rankings computed by each test
by using a normal approximation. The test statistic for comparing
the ith algorithm and jth algorithm, z, depends on the main
nonparametric procedure used.

• Friedman test:

z = (Ri − Rj)/


k(k + 1)

6n
, (12)

where Ri and Rj are the average rankings by the Friedman test
of the algorithms compared [35].

• Friedman Aligned test:

z = (R̂i − R̂j)/


k(n + 1)

6
, (13)

where R̂i and R̂j are the average rankings by the Friedman
Aligned Ranks test of the algorithms compared [35,32].

• Quade test:

z = (Ti − Tj)/


k(k + 1)(2n + 1)(k − 1)

18n(n + 1)
, (14)

where Ti =
Wi

n(n+1)/2 , Tj =
Wj

n(n+1)/2 and Wi and Wi are the
rankings without average adjusting by the Quade test of the
algorithms compared [22].
Table 12
Ranks obtained in Example 6.

Ranks Friedman Aligned Quade

IPOP-CMA-ES 2.48 51.96 2.3785
CHC 3.12 65.92 3.4185
SS-BLX 2.44 48.52 2.48
SaDE 1.96 35.6 1.7231

Table 13
Friedman z-values and p-values (Example 6).

Friedman z Unadjusted p-value

CHC 3.176791 0.001489
IPOP-CMA-ES 1.424079 0.154424
SS-BLX 1.314534 0.188667

Table 14
Friedman Aligned z-values and p-values (Example 6).

Friedman Aligned z Unadjusted p-value

CHC 3.694997 0.000220
IPOP-CMA-ES 1.993739 0.046181
SS-BLX 1.574517 0.115368

Table 15
Quade z-values and p-values (Example 6).

Quade z Unadjusted p-value

CHC 3.315129 0.000916
SS-BLX 1.480076 0.138853
IPOP-CMA-ES 1.281529 0.200008

Example 6. To better illustrate the practical differences between
the three tests and their respective approximations for obtaining
the p-value of every hypothesis (which are called unadjusted
p-values; see below), wewill consider here a short example, where
ranks (Table 12), z-values, and unadjusted p-values (Tables 13–15)
are computed for four algorithms: IPOP-CMA-ES, CHC, BLX and
SaDE.

Several differences can be highlighted: the Friedman Aligned
test shows a higher power than Friedman test (the unadjusted
p-values obtained by the former are substantially lower, especially
in the SaDE versus IPOP-CMA-ES case). Comparing the Friedman
test with the Quade test, it can be seen that the latter considers
differences between SaDE and SS-BLX significantly greater than
those between SaDE and IPOP-CMA-ES. In this sense, the Quade
test is supporting the fact that IPOP-CMA-ES is achieving better
results in harder problems than SS-BLX, when both are compared
considering SaDE as the control method.

However, these p-values are not suitable for multiple compar-
isons.When a p-value is considered in amultiple test, it reflects the
probability error of a certain comparison, but it does not take into
account the remaining comparisons belonging to the family. If k al-
gorithms are being compared and in each comparison the level of
significance is α, then in a single comparison the probability of not
making a Type I error (rejecting a true null hypothesis) is (1 − α),
and the probability of not making a Type I error in the k − 1 com-
parison is (1− α)(k−1). Therefore, the probability of making one or
more Type I error is 1− (1− α)(k−1). For instance, if α = 0.05 and
k = 9 this is 0.33, which is rather high.

Adjusted p-values (APVs) can deal with this problem. Since
they take into account the family error accumulated, multiple
tests can be conducted without disregarding the FWER. Moreover,
APVs can be compared directly with any chosen significance level
α. Therefore, their use is recommended since they provide more
information in a statistical analysis.



J. Derrac et al. / Swarm and Evolutionary Computation 1 (2011) 3–18 11
The z-value in all cases is used to find the corresponding
probability (p-value) from the table of normal distribution N(0, 1),
which is then comparedwith an appropriate level of significance α
(Table A1 in [22]). The post-hoc tests differ in the way they adjust
the value of α to compensate for multiple comparisons.

Next, we will define a set of post-hoc procedures and we will
explain how to compute the APVs depending on the post-hoc
procedure used in the analysis, following the indications given
in [36]. The notation used for describing the computation of the
APVs has the following differences (compared with the notation
used in the rest of the paper).

• Indexes i and j each correspond to a concrete comparison
or hypothesis in the family of hypotheses, according to an
incremental order of their p-values. Index i always refers to the
hypothesis in questionwhose APV is being computed and index
j refers to another hypothesis in the family.

• pj is the p-value obtained for the jth hypothesis.

The procedures of p-value adjustment can be classified into
several classes.

• one-step:
– The Bonferroni–Dunn procedure (Dunn–Sidak approxima-

tion) [37]: this adjusts the value of α in a single step by di-
viding it by the number of comparisons performed, (k − 1).
This procedure is the simplest but it also has little power.

Bonferroni APVi : min{v, 1}, where v = (k − 1)pi.
• step-down:

– TheHolmprocedure [38]: this adjusts the value ofα in a step-
down manner. Let p1, p2, . . . , pk−1 be the ordered p-values
(smallest to largest), so that p1 ≤ p2 ≤ · · · ≤ pk−1, and
let H1,H2, . . . ,Hk−1 be the corresponding hypotheses. The
Holm procedure rejects H1 to Hi−1 if i is the smallest integer
such that pi > α/(k−1). Holm’s step-down procedure starts
with the most significant p-value. If p1 is below α/(k − 1),
the corresponding hypothesis is rejected and we are allowed
to compare p2 with α/(k − 2). If the second hypothesis
is rejected, the test proceeds with the third, and so on. As
soon as a certain null hypothesis cannot be rejected, all the
remaining hypotheses are retained as well.

Holm APVi : min{v, 1}, where v = max{(k− j)pj : 1 ≤ j ≤ i}.
– The Holland procedure [39]: this also adjusts the value of α in

a step-down manner, as Holm’s method. It rejects H1 to Hi−1
if i is the smallest integer so that pi > 1 − (1 − α)k−i.

Holland APVi : min{v, 1}, where v = max{1 − (1 − pj)(k−j)
:

1 ≤ j ≤ i}.
– The Finner procedure [40]: this also adjusts the value of α

in a step-down manner, as Holm’s and Holland’s methods
do. It rejects H1 to Hi−1 if i is the smallest integer so that
pi > 1 − (1 − α)(k−1)/i.

Finner APVi : min{v, 1}, where v = max{1 − (1 − pj)(k−1)/j
:

1 ≤ j ≤ i}.
• step-up:

– The Hochberg procedure [41] adjusts the value of α in a step-
upway. It works by comparing the largest p-valuewith α, the
next largest with α/2, the next with α/3, and so forth until it
finds a hypothesis it can reject. All hypotheses with smaller
p-values are then rejected as well.

Hochberg APVi : max{(k − j)pj : (k − 1) ≥ j ≥ i}.
– TheHommel procedure [42], which ismore complicated than

the rest, works by finding the largest j for which pn−j+k >
kα/j for all k = 1, . . . , j. If no such j exists, it rejects all
hypotheses; otherwise, it rejects all for which pi ≤ α/j.

Hommel APVi: see Hommel’s APV algorithm (Fig. 1).
Fig. 1. Method for computing Hommel’s test APV.

– The Rom procedure [43]: Rom developed a modification
to Hochberg’s procedure to increase its power. It works in
exactly the sameway as the Hochberg procedure, except that
the α-values are computed through the expression

αk−i =


i−1−
j=1

αj
−

i−2−
j=1


i
k


α

i−j
k−1−j


/i, (15)

where αk−1 = α and αk−2 = α/2.

Rom APVi : max{(rk−j)pj : (k − 1) ≥ j ≥ i}, where
rk−j can be obtained fromEq. (15) (r = {1, 2, 3, 3.814, 4.755,
5.705, 6.655, . . .}).

• two-step:
– The Li procedure [44]: Li proposed a two-step rejection

procedure.
∗ Step 1: Reject all Hi if pk−1 ≤ α. Otherwise, accept the

hypothesis associated to pk−1 and go to Step 2.
∗ Step 2: Reject any remaining Hi with pi ≤ (1− pk−1)/(1−

α)α. Li APVi: pi/(pi + 1 − pk−1).

The CONTROLTEST package, available at the SCI2S thematic
publicwebsite Statistical Inference in Computational Intelligence and
Data Mining, also contains an implementation of all the post-hoc
tests (see footnote 1).

Example 7. By following the indications given for the eight post-
hoc procedures considered, Tables 16–18 show the p-values
obtained, using the ranks computed by the Friedman, Friedman
Aligned, and Quade tests, respectively.

Aswe can see in the tables, the Friedman test shows a significant
improvement of DE-Exp over PSO, CHC, SSGA, and SS-Arit for all the
post-hoc procedures considered, except for the Bonferroni–Dunn
one. The Finner and Li tests exhibit the most powerful behavior,
reaching the lowest p-values in the comparisons.

The Friedman Aligned test only confirms the improvement of
DE-Exp over PSO, CHC, and SSGA for every post-hoc procedure
considered, except Bonferroni–Dunn and Li, which fail to highlight
the differences betweenDE-Exp and SSGAas significant. The Finner
and Rom procedures show the most powerful behavior in this
category.

Finally, the Quade test does not find any significant difference
between DE-Exp and the rest of algorithms. This result support the
conclusion that, although DE-Exp obtains better results than the
weaker algorithms of our experimental study (PSO, CHC, and so
on), these behave similarly or better in themost difficult problems,
and thus performance differences are not detected if the relative
difficulties of the problems are taken into account.
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Table 16
Adjusted p-values for the Friedman test (DE-Exp is the control method).

Friedman Unadjusted Bonferroni Holm Hochberg Hommel Holland Rom Finner Li

PSO 0.000006 0.000050 0.000050 0.000050 0.000050 0.000050 0.000047 0.000050 0.000018
CHC 0.000332 0.002656 0.002324 0.002324 0.002324 0.002322 0.002210 0.001327 0.000978
SSGA 0.009823 0.078586 0.058940 0.058940 0.049116 0.057511 0.056042 0.025981 0.028137
SS-Arit 0.014171 0.113371 0.070857 0.070857 0.070857 0.068877 0.067384 0.028142 0.040093
IPOP-CMA-ES 0.083642 0.669139 0.334569 0.334569 0.282186 0.294885 0.319017 0.130431 0.197766
SS-BLX 0.141093 1.0 0.423278 0.423278 0.423278 0.366366 0.423278 0.183552 0.293707
DE-Bin 0.518605 1.0 1.0 0.660706 0.660706 0.768259 0.660706 0.566345 0.604506
SaDE 0.660706 1.0 1.0 0.660706 0.660706 0.768259 0.660706 0.660706 0.660706
Table 17
Adjusted p-values for the Friedman Aligned test (DE-Exp is the control method).

Friedman Aligned Unadjusted Bonferroni Holm Hochberg Hommel Holland Rom Finner Li

CHC 0.000079 0.000635 0.000635 0.000635 0.000635 0.000635 0.000604 0.000635 0.000907
PSO 0.003300 0.026401 0.023101 0.023101 0.023101 0.022873 0.021963 0.013135 0.036400
SSGA 0.015888 0.127104 0.095328 0.095328 0.095328 0.091621 0.090642 0.041809 0.153880
IPOP-CMA-ES 0.088320 0.706559 0.441599 0.441599 0.353280 0.370186 0.419957 0.168839 0.502727
SS-BLX 0.208043 1.0 0.832172 0.631221 0.624129 0.606625 0.631221 0.311471 0.704264
SS-Arit 0.210407 1.0 0.832172 0.631221 0.631221 0.606625 0.631221 0.311471 0.706612
DE-Bin 0.847534 1.0 1.0 0.912638 0.912638 0.976754 0.912638 0.883457 0.906555
SaDE 0.912638 1.0 1.0 0.912638 0.912638 0.976754 0.912638 0.912638 0.912638
Table 18
Adjusted p-values for the Quade test (DE-Exp is the control method).

Quade Unadjusted Bonferroni Holm Hochberg Hommel Holland Rom Finner Li

CHC 0.021720 0.173762 0.173762 0.173762 0.173762 0.161111 0.165195 0.161111 0.231846
PSO 0.052904 0.423235 0.370330 0.370330 0.369115 0.316471 0.352093 0.195409 0.423683
SSGA 0.118631 0.949049 0.711787 0.711787 0.593156 0.531245 0.676797 0.285908 0.622427
SS-Arit 0.158192 1.0 0.790962 0.790962 0.632769 0.577269 0.752197 0.29136 0.687327
SS-BLX 0.259289 1.0 1.0 0.928037 0.777867 0.69898 0.928037 0.38136 0.782754
IPOP-CMA-ES 0.357754 1.0 1.0 0.928037 0.928037 0.735086 0.928037 0.445882 0.832533
DE-Bin 0.803179 1.0 1.0 0.928037 0.928037 0.961261 0.928037 0.843964 0.917769
SaDE 0.928037 1.0 1.0 0.928037 0.928037 0.961261 0.928037 0.928037 0.928037
4.4. Contrast Estimation

Contrast Estimation based onmedians [45,46] can be used to es-
timate the difference between the performance of two algorithms.
It assumes that the expected differences between performances of
algorithms are the same across problems. Therefore, the perfor-
mance of algorithms is reflected by the magnitudes of the differ-
ences between them in each domain.

The interest of this test lies in estimating the contrast between
medians of samples of results considering all pairwise compar-
isons. The test obtains a quantitative difference computed through
medians between two algorithms over multiple problems, pro-
ceeding as follows.

1. For every pair of k algorithms in the experiment, compute the
difference between the performances of the two algorithms in
each of the n problems. That is, compute the differences

Di(u,v) = xiu − xiv, (16)

where i = 1, . . . , n; u = 1, . . . , k; v = 1, . . . , k. (Consider only
performance pairs where u < v.)

2. Find the median of each set of differences (Zuv , which can be
regarded as the unadjusted estimator of the medians of the
algorithms u and v,Mu−Mv). Since Zuv = Zvu, it is only required
to compute Zuv in those cases where u < v. Also, note that
Zuu = 0.
3. Compute the mean of each set of unadjusted medians having
the same first subscript,mu:

mu =

k∑
j=1

Zuj

k
, u = 1, . . . , k. (17)

4. The estimator ofMu −Mv ismu −mv , where u and v range from
1 through k. For example, the difference between M1 and M2 is
estimated bym1 − m2.

These estimators can be understood as an advanced global per-
formance measure. Although this test cannot provide a probabil-
ity of error associated with the rejection of the null hypothesis of
equality, it is especially useful to estimate by how far an algorithm
outperforms another one.

An implementation of the Contrast Estimation procedure can be
found in the CONTROLTEST package, which can be obtained at the
SCI2S thematic public website Statistical Inference in Computational
Intelligence and Data Mining (see footnote 1).

Example 8. In our experimental analysis, we can compute the set
of estimators of medians directly from the average error results.
Table 19 shows the estimations computed for each algorithm.

Focusing our attention in the rows of the table, we may
highlight the performance of SaDE (all its related estimators are
negative;, that is, it achieves very low error rates considering
median estimators) and the Scatter Search-based approaches; on
the other hand, CHC and PSO achieve higher error rates in our
experimental study.
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Table 19
Contrast estimation results. The estimators highlight SaDE, SS-BLX, and SS-Arit as the best performing algorithms.

Estimation PSO IPOP-CMA-ES CHC SSGA SS-BLX SS-Arit DE-Bin DE-Exp SaDE

PSO 0 11.172 −23.671 10.495 24.010 21.150 15.115 17.631 25.035
IPOP-CMA-ES −11.172 0 −34.843 −0.677 12.838 9.978 3.943 6.459 13.863
CHC 23.671 34.843 0 34.166 47.681 44.821 38.786 41.302 48.706
SSGA −10.495 0.677 −34.166 0 13.514 10.655 4.620 7.136 14.539
SS-BLX −24.010 −12.838 −47.681 −13.514 0 −2.859 −8.895 −6.378 1.025
SS-Arit −21.150 −9.978 −44.821 −10.655 2.859 0 −6.036 −3.519 3.884
DE-Bin −15.115 −3.943 −38.786 −4.620 8.895 6.036 0 2.516 9.920
DE-Exp −17.631 −6.459 −41.302 −7.136 6.378 3.519 −2.516 0 7.403
SaDE −25.035 −13.863 −48.706 −14.539 −1.025 −3.884 −9.920 −7.403 0
5. Multiple comparisons among all methods

Friedman’s test is an omnibus test which can be used to carry
out these types of comparison. It allows us to detect differences
considering the global set of algorithms. Once Friedman’s test
rejects the null hypothesis, we can proceed with a post-hoc test
in order to find the concrete pairwise comparisons which produce
differences. In the previous section, we focused on procedures
that control the FWER when comparing with a control algorithm,
arguing that the objective of a study is to test whether a newly
proposed algorithm is better than the existing ones. For this
reason, we have described and studied procedures such as the
Bonferroni–Dunn, Holm and Hochberg methods.

When our interest lies in carrying out a multiple comparison
in which all possible pairwise comparisons need to be computed
(N × N comparison), two classic procedures that can be used are
the Holm test (the same as was described in Section 4.3) and the
Nemenyi procedure [47]. This procedure adjusts the value of α in a
single step by dividing it by the number of comparisons performed,
m = k(k−1)/2. It is the simplest of this family, but it also has little
power.

The hypotheses being tested belonging to a family of all pair-
wise comparisons are logically interrelated; thus not all combina-
tions of true and false hypotheses are possible. As a simple example
of such a situation, suppose thatwewant to test the three hypothe-
ses of pairwise equality associated with the pairwise comparisons
of three algorithms Mi, i = 1, 2, 3. It is easily seen from the rela-
tions among the hypotheses that, if any one of them is false, at least
one othermust be false. For example, ifM1 is better/worse thanM2,
then it is not possible thatM1 has the same performance asM3 and
M2 has the same performance asM3.M3 must be better/worse than
M1 or M2 or the two algorithms at the same time. Thus, there can-
not be one false and two true hypotheses among these three.

Based on this argument, Shaffer proposed two procedures
which make use of the logical relation among the family of hy-
potheses for adjusting the value of α [48].

• Shaffer’s static procedure: followingHolm’s step-downmethod,
at stage j, instead of rejecting Hi if pi ≤ α/(m − i + 1), reject
Hi if pi ≤ α/ti, where ti is the maximum number of hypotheses
which canbe true given that any (i, . . . , 1)hypotheses are false.
It is a static procedure; that is, t1, . . . , tm are fully determined
for the given hypotheses H1, . . . ,Hm, independent of the ob-
served p-values. The possible numbers of true hypotheses, and
thus the values of t1 can be obtained from the recursive formula

S(k) =

k
j=1


j
2


+ x : x ∈ S(k − j)


, (18)

where S(k) is the set of possible numbers of true hypotheses
with k algorithms being compared, k ≥ 2, and S(0) = S(1) =

{0}.
Fig. 2. obtainExhaustive(C). Algorithm for obtaining all exhaustive sets in
Bergmann’s procedure.

• Shaffer’s dynamic procedure: this increases the power of the
first by substituting α = ti at stage i by the value α = t∗i ,
where t∗i is the maximum number of hypotheses that could be
true, given that the previous hypotheses are false. It is a dynamic
procedure, since t∗i depends not only on the logical structure of
the hypotheses, but also on the hypotheses already rejected at
step i. Obviously, this procedure has more power than the first
one. However, wewill not use this second procedure, given that
it is included in an advanced procedure which we will describe
in the following.

In [49], a procedure was proposed based on the idea of finding
all elementary hypotheses which cannot be rejected. In order to
formulate Bergmann–Hommel’s procedure, we need the following
definition.

Definition 1. An index set of hypotheses I ⊆ {1, . . . ,m} is called
exhaustive if exactly all Hj, j ∈ I , could be true.

Under this definition, the Bergmann–Hommel procedureworks
as follows.

• Bergmann and Hommel procedure: reject all Hj with j ∉ A,
where the acceptance set A, given as

A =


{I : I exhaustive ,min {Pi : i ∈ I} > α/ |I|} , (19)

is the index set of null hypotheses which are retained.

For this procedure, one has to check for each subset I of
{1, . . . ,m} if I is exhaustive, which leads to intensive computation.
Due to this fact, we will obtain a set, named E, which will
contain all the possible exhaustive sets of hypotheses for a certain
comparison. A rapid algorithmwhich was described in [50] allows
a substantial reduction in computing time. Once the E set is
obtained, the hypotheses that do not belong to the A set are
rejected.

Fig. 2 shows a valid algorithm for obtaining all the exhaustive
sets of hypotheses, using as input a list of algorithms C . E is a set
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of families of hypotheses; likewise, a family of hypotheses is a set
of hypotheses. The most important step in the algorithm is step 6.
It performs a division of the algorithms into two subsets, in which
the last algorithm k always is inserted in the second subset and
the first subset cannot be empty. In this way, we ensure that a
subset yielded in a division is never empty and no repetitions are
produced.

Finally, we will explain how to compute the APVs for the three
post-hoc procedures described above, following the indications
given in [51].

• Nemenyi APVi : min{v : 1}, where v = m · pi.
• Holm APVi (using it in all pairwise comparisons): min{v : 1},

where v = max{(m − j + 1)pj : 1 ≤ j ≤ i}.
• Shaffer static APVi : min{v : 1}, where v = max{tjpj : 1 ≤ j ≤

i}.
• Bergmann–Hommel APVi : min{v : 1}, where v = max{‖I‖ ·

min{pj, j ∈ I} : I exhaustive ; i ∈ I}.

where m is the number of possible comparisons in an all
pairwise comparisons design; that is,m =

k·(k−1)
2 .

An implementation of the Friedman Test for multiple compar-
isons, with all its related post-hoc procedures, can be found in the
MULTIPLETEST package, which can be obtained at the SCI2S the-
matic public website Statistical Inference in Computational Intelli-
gence and Data Mining (see footnote 1).

Example 9. Starting from the analysis performed by the Friedman
test over our experimental results (see Example 7),we can raise the
36 hypotheses of equality among the 9 algorithms of our study, and
apply the above-mentioned methods to contrast them. Table 20
lists all the hypotheses and the p-values achieved.

Using a level of significance α = 0.1, only six hypotheses
are rejected by the Nemenyi method. These hypotheses show the
improvement of DE-Exp and SaDE over PSO and CHC, and DE-
Bin and SS-BLX over PSO. The Holm and Shaffer methods reject
an additional hypothesis, thus confirming the improvement of
DE-Bin over CHC. Finally, the Bergmann procedure rejects eight
hypotheses, the last one being the equality between PSO and IPOP-
CMA-ES. None of the remaining 28 hypotheses can be rejected
using these procedures.

6. Considerations and recommendations on the use of non-
parametric tests

This section notes some considerations and recommendations
concerning thenonparametric tests presented in this tutorial. Their
characteristics as well as suggestions on some of their aspects and
details of the multiple comparisons tests are presented. With this
aim, some general considerations and recommendations are given
first (Section 6.1). Then, some advanced guidelines for multiple
comparisons with a control method (Section 6.2) and multiple
comparisons among all methods (Section 6.3) are provided.

6.1. General considerations

• By using nonparametric statistical procedures, it is possible to
analyze any unary performancemeasure (that is, associated to a
single algorithm)with a defined range. This range does not have
to be limited; thus, comparisons considering running times,
memory requirements, and so on, are feasible.

• Being able to be applied in multi-domain comparisons, non-
parametric statistical procedures can compare both determin-
istic and stochastic algorithms simultaneously, providing that
their results are represented as a sample for each pair of algo-
rithm/domain.
• For the application of these methods, only a result for each pair
of algorithm/domain is required. A known and standardized
procedure must be followed to gather them, using average
results from several executions when considering stochastic
algorithms.

• An appropriate number of algorithms in contrast with an ap-
propriate number of case problems are needed to be used in
order to employ each type of test. The number of algorithms
used in multiple comparisons procedures must be lower than
the number of case problems. The previous statement may not
be true for the Wilcoxon test. The influence of the number of
case problems used is more noticeable in multiple comparison
procedures than in Wilcoxon’s test [2,3].

• Although Wilcoxon’s test and the post-hoc tests for multiple
comparisons are nonparametric statistical tests, they operate in
a different way. The main difference lies in the computation of
the ranking. Wilcoxon’s test computes a ranking based on dif-
ferences between case problems independently, whereas the
Friedman test and its derivative procedures compute the rank-
ing between algorithms [2,3].

• In relation to the sample size (number of case problems when
performing Wilcoxon’s or Friedman’s tests in a multi-problem
analysis), there are two main aspects to be determined. First,
the minimum sample size considered acceptable for each test
needs to be stipulated. There is no established agreement about
this specification. Statisticians have studied theminimum sam-
ple size when a certain power of the statistical test is expected.
In our case, the employment of a sample size as large as possible
is preferable because the power of the statistical tests (defined
as the probability that the test will reject a false null hypothe-
sis) will increase. Moreover, in amulti-problem analysis, the in-
crease of the sample size depends on the availability of newcase
problems (which should be well known in computational intel-
ligence or data mining field). Second, we have to study how the
results are expected to vary if there were a larger sample size
available. In all statistical tests used for comparing two or more
samples, an increase of the sample size benefits the power of the
test. In the following items, we will state that Wilcoxon’s test is
less influenced by this factor than Friedman’s test. Finally, as a
rule of thumb, the number of case problems in a study should
be n = a · k, where a ≥ 2 [2,3].

• Although there is not a theoretical maximum number of do-
mains to use in a comparison, it can be derived from the central
limit theorem that, if this number is too high, the results may be
unreliable. If the number of domains grows too much, statisti-
cal tests can lose credibility, as they may start highlighting true
insignificant hypotheses as significant ones. For the Wilcoxon’s
test, a maximum of 30 domains is suggested [4]. For multiple
comparisons, a value of n ≥ 8 · k could be too high, obtaining
no significant comparisons as a result [2,3].

• Taking into account the previous observation and knowing the
operations performed by the nonparametric tests, we can de-
duce that Wilcoxon’s test is influenced by the number of case
problems used. On the other hand, both the number of algo-
rithms and case problems are crucial when we refer to multi-
ple comparisons tests (such as Friedman’s test), given that all
the critical values depend on the value of n (see the expressions
above). However, the increasing/decreasing of the number of
case problems rarely affects the computation of the ranking. In
these procedures, the number of functions used is an important
factor to be consideredwhenwewant to control the FWER [2,3].

• Another interesting procedure considered in this paper is re-
lated to Contrast Estimation based on medians between two
samples of results. Contrast Estimation in nonparametric statis-
tics is used for computing the real differences between two al-
gorithms, considering themedianmeasure themost important.
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Table 20
Adjusted p-values for tests for multiple comparisons among all methods.

i Hypothesis Unadjusted p Nemenyi Holm Shaffer Bergmann

1 PSO versus DE-Exp 0.000006 0.000224 0.000224 0.000224 0.000224
2 PSO versus SaDE 0.000045 0.001624 0.001579 0.001263 0.001263
3 PSO versus DE-Bin 0.000108 0.00387 0.003655 0.00301 0.002365
4 CHC versus DE-Exp 0.000332 0.011952 0.010956 0.009296 0.009296
5 CHC versus SaDE 0.001633 0.058772 0.052242 0.045712 0.034284
6 PSO versus SS-BLX 0.002313 0.08328 0.071713 0.064773 0.04164
7 CHC versus DE-Bin 0.003246 0.116841 0.097367 0.090876 0.051929
8 PSO versus IPOP-CMA-ES 0.005294 0.190602 0.15354 0.148246 0.095301
9 SSGA versus DE-Exp 0.009823 0.353638 0.275052 0.275052 0.216112

10 SS-Arit versus DE-Exp 0.014171 0.51017 0.382627 0.311771 0.255085
11 SSGA versus SaDE 0.032109 1.0 0.834835 0.706398 0.513744
12 CHC versus SS-BLX 0.03424 1.0 0.856006 0.753286 0.513744
13 PSO versus SS-Arit 0.038867 1.0 1.0 0.855076 0.621874
14 SS-Arit versus SaDE 0.044015 1.0 1.0 0.968322 0.621874
15 SSGA versus DE-Bin 0.052808 1.0 1.0 1.0 0.63369
16 PSO versus SSGA 0.052808 1.0 1.0 1.0 0.686498
17 IPOP-CMA-ES versus CHC 0.063023 1.0 1.0 1.0 0.756271
18 SS-Arit versus DE-Bin 0.070701 1.0 1.0 1.0 0.756271
19 IPOP-CMA-ES versus DE-Exp 0.083642 1.0 1.0 1.0 1.0
20 SS-BLX versus DE-Exp 0.141093 1.0 1.0 1.0 1.0
21 IPOP-CMA-ES versus SaDE 0.196706 1.0 1.0 1.0 1.0
22 CHC versus SS-Arit 0.255925 1.0 1.0 1.0 1.0
23 SSGA versus SS-BLX 0.266889 1.0 1.0 1.0 1.0
24 IPOP-CMA-ES versus DE-Bin 0.278172 1.0 1.0 1.0 1.0
25 SS-BLX versus SaDE 0.3017 1.0 1.0 1.0 1.0
26 CHC versus SSGA 0.313946 1.0 1.0 1.0 1.0
27 SS-BLX versus SS-Arit 0.326516 1.0 1.0 1.0 1.0
28 PSO versus CHC 0.352622 1.0 1.0 1.0 1.0
29 IPOP-CMA-ES versus SSGA 0.394183 1.0 1.0 1.0 1.0
30 SS-BLX versus DE-Bin 0.40867 1.0 1.0 1.0 1.0
31 IPOP-CMA-ES versus SS-Arit 0.469706 1.0 1.0 1.0 1.0
32 DE-Bin versus DE-Exp 0.518605 1.0 1.0 1.0 1.0
33 DE-Exp versus SaDE 0.660706 1.0 1.0 1.0 1.0
34 IPOP-CMA-ES versus SS-BLX 0.796253 1.0 1.0 1.0 1.0
35 DE-Bin versus SaDE 0.836354 1.0 1.0 1.0 1.0
36 SSGA versus SS-Arit 0.897279 1.0 1.0 1.0 1.0
Taking into account that the samples of results in computational
intelligence experiments rarely fulfill the needed conditions for
a safe use of parametric tests, the computation of nonparamet-
ric contrast estimation through the use of medians is very use-
ful. For example, one could provide, apart from the average val-
ues of accuracies over various problems reported by the meth-
ods compared, the contrast estimation between themovermul-
tiple problems, which is a safer metric in multi-problem envi-
ronments [46].

• Finally, we want to remark that the choice of any of the statisti-
cal procedures presented in this paper for conducting an exper-
imental analysis should be justified by the researcher. The use
of the most powerful procedures does not imply that the re-
sults obtained by a given proposal will be better. The choice of
a statistical technique is ruled by a trade-off between its power
and its complexity when it comes to being used or explained to
non-expert readers in statistics [46].

6.2. Multiple comparisons with a control method

• A multiple comparison of various algorithms must be carried
out first by using a statistical method for testing the differences
among the related samples means, that is, the results obtained
by each algorithm. Once this test rejects the hypothesis of
equivalence of means, the detection of the concrete differences
among the algorithms can be done with the application of
post-hoc statistical procedures, which are methods used for
comparing a control algorithm with two or more algorithms
[2,3].
• An appropriate number of algorithms in contrast with an
appropriate number of case problems are needed to be used in
order to employ each type of test. The number of algorithms
used in multiple comparisons procedures must be lower than
the number of case problems. In general, p-values are lower
on increasing the number of case problems used in multiple
comparison procedures (so long as this number does not exceed
n ≥ 8 · k); therefore, the differences among the algorithms are
more detectable [2,3].

• As we have suggested, multiple comparisons tests must be
used when we want to establish a statistical comparison of the
results reported among various algorithms. We focus on cases
when amethod is compared against a set of algorithms. It could
be carried out first by using a statistical method for testing
the differences among the related samples means, that is, the
results obtainedby each algorithm. There are three alternatives:
the Friedman test with the Iman–Davenport extension, the
Friedman Aligned Ranks test, and the Quade test. Once one of
these tests rejects the hypothesis of equivalence ofmedians, the
detection of the specific differences among the algorithms can
bemadewith the application of post-hoc statistical procedures,
which are methods used for specifically comparing a control
algorithm with two or more algorithms [46].

• In this kind of test, it is possible to use just the rankings obtained
when establishing a classification between the algorithms, and
even employ them to measure their performance differences.
However, this cannot be used to conclude that a given proposal
outperform the rest, unless the null hypothesis is rejected.

• Although, by definition, post-hoc statistical procedures can be
applied in an independent way from the rejection of the null
hypothesis, it is advisable to check this rejection firstly.
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• Holm’s procedure can always be considered better than Bon-
ferroni–Dunn’s procedure, because it appropriately controls the
FWER and it is more powerful than Bonferroni–Dunn’s proce-
dure. We strongly recommend the use of Holm’s method in a
rigorous comparison. Nevertheless, the results offered by the
Bonferroni–Dunn test are suitable to be visualized in graphical
representations [2,3].

• Hochberg’s procedure ismore powerful thanHolm’s procedure.
The differences between it andHolm’s procedure are in practice
rather small. We recommend the use of this test together with
Holm’s method [2,3].

• An alternative to directly performing a comparison between a
control algorithm and a set of algorithms is the Multiple Sign
test. It has been described in this paper, and an example of
its use has been provided. We have shown that this procedure
is rapid and easy to apply, but it has low power with respect
to more advanced techniques. We recommend its use when
the differences reported by the control method with respect to
the rest of algorithms are very clear for a certain performance
metric [46].

• Apart from the well-known Friedman test, we can use two
alternatives which differ in the ranking computation. Both
the Friedman Aligned Rank test and the Quade test can be
used under the same circumstances as the Friedman test. The
differences in power between Friedman Aligned Ranks test and
the Quade test are unknown, but we encourage the use of
these tests when the number of algorithms to be compared is
low [46].

• As we have described, the Quade test adds to the ranking
computation of Friedman’s test a weight factor computed
through the maximum and minimum differences in a problem.
This implies that those algorithms that obtain further positive
results in diverse problems could benefit from this test. The
use of this test should be regulated, because it is very sensitive
to the choice of problems. If a researcher decided to include
a subgroup of an already studied group of problems where
in most of them the proposal obtained good results, this test
would report excessive significant differences. On the other
hand, for specific problems in which we are interested in
quantifying the real differences obtained between algorithms,
the use of this test can be justified. We recommend the use of
this procedure under justified circumstances and with special
caution [46].

• In relation to the post-hoc procedures shown, the differences
of power between the methods are rather small, with some
exceptions. The Bonferroni–Dunn test should not be used in
spite of its simplicity, because it is a very conservative test and
many differences may not be detected. Five procedures (those
of Holm, Hochberg, Hommel, Holland, and Rom) have a similar
power. Although the Hommel and Rom procedures are the two
most powerful procedures, they also are the most difficult to
be applied and to be understood. A good alternative is to use
the Finner test, which is easy to comprehend and offers better
results than the remaining tests, except the Li test in some
cases [46].

• The Li test is even simpler than the Finner, Holm, or Hochberg
tests. This test needs to check only two steps and to know the
greatest unadjusted p-value in the comparison, which is easy to
obtain. The author declares that the power of his test is highly
influenced by the p-value of the last hypothesis of the family
and, when it is lower than 0.5, the test will be more powerful
than the rest of post-hoc methods. However, we recommend
that it be usedwith care and onlywhen the differences between
the control algorithm and the rest seem to be high in the
performance measure analyzed [46].
6.3. Multiple comparisons among all methods

• When comparing all algorithms among themselves, we do not
recommend the use of Nemenyi’s test, because it is a very
conservative procedure, and many of the obvious differences
may not be detected [5].

• However, conducting the Shaffer static procedure means a not
very significant increase of the difficulty with respect to the
Holm procedure. Moreover, the benefit of using information
about logically related hypothesis is noticeable; thus we
strongly encourage the use of this procedure [5].

• Bergmann–Hommel’s procedure is the best performing one, but
it is also themost difficult to understand and is computationally
expensive. We recommend its use when the situation requires
it (that is, when the differences among the algorithms
compared are not very significant), given that the results it
obtains are as valid as using other testing procedures [5].

7. Conclusions

In this work, we have shown a complete set of nonparametric
statistical procedures and their application to contrast the results
obtained in experimental studies of continuous optimization
algorithms. The wide set of methods considered, ranging from
basic techniques such as the Sign test or Contrast Estimation, to
more advanced approaches such as the Friedman Aligned and
Quade tests, include tools which can help practitioners in many
situations in which the results of an experimental study need to
be contrasted.

For a better understanding, all the procedures described in
this paper have been applied to a comprehensive case of study,
analyzing the results of nine well-known evolutionary and swarm
intelligence algorithms over the set of 25 benchmark functions
considered in the CEC’2005 special session. This study has been
extended with a list of considerations, in which we discuss some
important issues concerning the behavior and applicability of
these tests (and emphasize the use of the most appropriate test
depending on the circumstances and type of comparison).

Finally, we encourage the use of nonparametric tests whenever
there exists a necessity of analyzing results obtained by evolution-
ary or swarm intelligence algorithms for continuous optimization
problems in multi-problem analysis, due to the fact that the ini-
tial conditions that guarantee the reliability of the parametric tests
are not satisfied. The techniques presented here can help to cover
these necessities, providing the research community with reliable
and effective tools for incorporating a statistical analysis into the
experimental methodologies. Furthermore, in the KEEL Software
Tool [52,53], researchers can find a module for nonparametric sta-
tistical analysis, which implements most of the procedures shown
in this survey.
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Appendix. Table for Multiple Comparison Sign test

See Table A.21.



J. Derrac et al. / Swarm and Evolutionary Computation 1 (2011) 3–18 17
Table A.21
Critical values of minimum rj for comparison of m = k − 1 algorithms against one control in n problems. Source: A.L. Rhyne, R.G.D. Steel, Tables for a treatments versus
control multiple comparisons sign test, Technometrics 7 (1965) 293–306.

n Level of significance (α) m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9

5 0.1 0 0 – – – – – –
0.05 – – – – – – – –

6 0.1 0 0 0 0 0 – – –
0.05 0 0 – – – – – –

7 0.1 0 0 0 0 0 0 0 0
0.05 0 0 0 0 – – – –

8 0.1 1 1 0 0 0 0 0 0
0.05 0 0 0 0 0 0 0 0

9 0.1 1 1 1 1 0 0 0 0
0.05 1 0 0 0 0 0 0 0

10 0.1 1 1 1 1 1 1 1 1
0.05 1 1 1 0 0 0 0 0

11 0.1 2 2 1 1 1 1 1 1
0.05 1 1 1 1 1 1 0 0

12 0.1 2 2 2 2 1 1 1 1
0.05 2 1 1 1 1 1 1 1

13 0.1 3 2 2 2 2 2 2 2
0.05 2 2 2 1 1 1 1 1

14 0.1 3 3 2 2 2 2 2 2
0.05 2 2 2 2 2 2 1 1

15 0.1 3 3 3 3 3 2 2 2
0.05 3 3 2 2 2 2 2 2

16 0.1 4 3 3 3 3 3 3 3
0.05 3 3 3 3 2 2 2 2

17 0.1 4 4 4 3 3 3 3 3
0.05 4 3 3 3 3 3 2 2

18 0.1 5 4 4 4 4 4 3 3
0.05 4 4 3 3 3 3 3 3

19 0.1 5 5 4 4 4 4 4 4
0.05 4 4 4 4 3 3 3 3

20 0.1 5 5 5 5 4 4 4 4
0.05 5 4 4 4 4 4 3 3

21 0.1 6 5 5 5 5 5 5 5
0.05 5 5 5 4 4 4 4 4

22 0.1 6 6 6 5 5 5 5 5
0.05 6 5 5 5 4 4 4 4

23 0.1 7 6 6 6 6 5 5 5
0.05 6 6 5 5 5 5 5 5

24 0.1 7 7 6 6 6 6 6 6
0.05 6 6 6 5 5 5 5 5

25 0.1 7 7 7 7 6 6 6 6
0.05 7 6 6 6 6 6 5 5

30 0.1 10 9 9 9 8 8 8 8
0.05 9 8 8 8 8 8 7 7

35 0.1 12 11 11 11 10 10 10 10
0.05 11 10 10 10 10 9 9 9

40 0.1 14 13 13 13 13 12 12 12
0.05 13 12 12 12 12 11 11 11

45 0.1 16 16 15 15 15 14 14 14
0.05 15 14 14 14 14 13 13 13

50 0.1 18 18 17 17 17 17 16 16
0.05 17 17 16 16 16 16 15 15
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