
Pattern Recognition 39 (2006) 1827–1838
www.elsevier.com/locate/patcog

Experimental study on prototype optimisation algorithms for
prototype-based classification in vector spaces

M. Lozanoa,∗, J.M. Sotocaa, J.S. Sáncheza, F. Plaa, E. PeRkalskab,c, R.P.W. Duinb

aDept. Lenguajes y Sistemas Informáticos, Universitat Jaume I, Campus Riu Sec, 12071 Castellón, Spain
bFaculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

cSchool of Computer Science, The University of Manchester, Manchester M13 9PL, UK

Received 13 February 2006; accepted 6 April 2006

Abstract

Prototype-based classification relies on the distances between the examples to be classified and carefully chosen prototypes. A small
set of prototypes is of interest to keep the computational complexity low, while maintaining high classification accuracy. An experimental
study of some old and new prototype optimisation techniques is presented, in which the prototypes are either selected or generated from
the given data. These condensing techniques are evaluated on real data, represented in vector spaces, by comparing their resulting reduction
rates and classification performance.

Usually the determination of prototypes is studied in relation with the nearest neighbour rule. We will show that the use of more
general dissimilarity-based classifiers can be more beneficial. An important point in our study is that the adaptive condensing schemes
here discussed allow the user to choose the number of prototypes freely according to the needs. If such techniques are combined with
linear dissimilarity-based classifiers, they provide the best trade-off of small condensed sets and high classification accuracy.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Dissimilarity representation; Prototype selection; Adaptive condensing; EM algorithm; Normal density based classifier; Nearest neighbour rule

1. Introduction

An intuitive way of determining the class of an unknown
object is by analysing its similarity to a set of prototypes
either selected or generated from a given training set (TS) of
objects with known class labels. In general, similarities or
dissimilarities can be computed either from the raw object
observations or based on an intermediate feature represen-
tation. A small set of prototypes has the advantage of a low
computational cost and small storage requirements, while
leading to similar, or even improved, classification perfor-
mance. Various ways of designing a prototype set can be
studied in Euclidean vector spaces. Two families of such
optimisation procedures are editing and condensing.

∗ Corresponding author. Tel.: +34 9767 62109; fax: +34 9767 61914.
E-mail addresses: lozano@uji.es (M. Lozano), sotoca@uji.es

(J.M. Sotoca), sanchez@uji.es (J.S. Sánchez), pla@uji.es (F. Pla),
e.m.pekalska@tudelft.nl (E. PeRkalska), r.p.w.duin@ieee.org (R.P.W. Duin).

0031-3203/$30.00 � 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2006.04.005

Editing is the step in a learning process in charge of
increasing the accuracy of predictions, when there is sub-
stantial noise in the training data. A basic editing algorithm
removes noisy instances, as well as close border cases, elim-
inating a possible overlap between the regions from different
classes and leaving smoother decision boundaries. Wilson
introduced the first editing method [1]. Briefly, the k-nearest
neighbour (k-NN) rule is used to estimate the class of each
prototype in the TS and to remove those whose class labels
do not agree with the ones judged by the k-NN rule. This
algorithm tries to eliminate mislabelled objects from the TS
as well as those near to the decision boundaries. Many re-
searchers have addressed the problem of editing by propos-
ing alternative schemes [2–5].

The condensing step aims at selecting a small sub-
set of prototypes without a significant degradation in the
classification accuracy. Two main groups of condensing
techniques can be distinguished. These are the selective

http://www.elsevier.com/locate/patcog
mailto:lozano@uji.es
mailto:sotoca@uji.es
mailto:sanchez@uji.es
mailto:pla@uji.es
mailto:e.m.pekalska@tudelft.nl
mailto:r.p.w.duin@ieee.org

1828 M. Lozano et al. / Pattern Recognition 39 (2006) 1827–1838

schemes, which merely select a subset of the original training
objects [2,6–9] and the adaptive schemes which modify them
[10–15].

This paper discusses prototype optimisation methods,
such as editing and condensing, for feature-based rep-
resentations of classes in the context of prototype-based
classification. Traditionally, the 1-NN rule is used for this
purpose. It classifies objects based on the minimum distance
to the given prototypes. Here, we show that the prototype
sets, optimised to guarantee good performance of the 1-NN
rule, lead to a higher classification accuracy, when more
general dissimilarity-based classifiers are considered, as
recently proposed [16,17]. These are weighted linear or
quadratic combinations of the (Euclidean) distances com-
puted between the test objects and the prototype sets found
by dedicated condensing algorithms. Linear classifiers are
especially of interest, since their computational complexity
is comparable to that of the 1-NN rule.

Although the algorithms are run in vector spaces, the dis-
tances are by no means restricted to the Euclidean metric.
Other distances, such as the lp-distances, d(x, y)=(

∑
i |xi −

yi |p)1/p, p > 0 (metric for p�1), or inner-product based
distances, d(x, y) = 1 − xTy/‖x‖‖y‖, can be used. More-
over, the selective techniques can easily be applied to non-
vectorial data (such as strings, graphs or shapes) provided
that the pairwise dissimilarities are derived. This aspect has
already been confirmed in earlier studies, in which numer-
ous embeddings of metric and non-metric dissimilarity data
(usually derived from non-vectorial representations) were
analysed in Euclidean and pseudo-Euclidean spaces [16–18].
There, the prototypes were often chosen at random [18–21].
Other object selection techniques based on feature selection
or clustering approaches were studied and appeared to be
good for small prototype sets [16,17]. The conclusion of that
work is that more general dissimilarity-based classifiers de-
fined by the dissimilarities to a set of selected prototypes are
competitive to the NN rule in the context of non-vectorial
dissimilarity data.

In this paper we will confirm and extend this conclusion
to vectorial representations, where (additionally to selection
approaches) adaptive schemes can naturally be applied to
create prototypes. These aspects have not been investigated
so far. The reason behind our contribution is that the 1-NN
(or k-NN) rule is often applied in vector spaces1 for which
editing-and-condensing techniques have been widely stud-
ied in order to reduce the computational burden while main-
taining high accuracy. Consequently, our paper focusses on
vectorial representations and the aspects related to the NN
and condensed techniques. It is not our goal to present a
general investigation into prototype selection techniques for
dissimilarity data resulting from non-vectorial representa-
tions; in this case, the reader is referred to Refs. [16,17].
Instead, our goal is to study the applicability of condens-

1 This holds since the k-NN rule is known to be a simple and good
classifier for large sample sizes thanks to its theoretical properties [22].

ing techniques, used in vector spaces to optimise the 1-NN
rule, as prototype optimisation techniques for building more
general dissimilarity-based classifiers.

We will show that linear or quadratic dissimilarity-based
classifiers may successfully replace the 1-NN rule, espe-
cially when small sets of prototypes are needed. We will
focus on Euclidean distances to maintain the connection
with the traditionally used distances for selective condens-
ing schemes in vector spaces. We will also compare these
with adaptive reduction algorithms. Consequently, we fo-
cus on Euclidean distances in vector spaces and the use of
condensing schemes determined in favour of the 1-NN rule.
Adaptive schemes are especially of interest, as they can only
be used when vectorial representations are available. Conse-
quently, as they offer more flexibility, they should be more
beneficial in vector spaces than the selective approaches.

Four condensing techniques are studied. Experiments are
conducted to compare their ability to reduce the training
size, while maintaining the discriminative power of the opti-
mised prototypes. The classification performance is judged
by the 1-NN rule and two more general dissimilarity-based
classifiers.

The paper is organised as follows: Section 2 briefly re-
views a number of condensing techniques which are used
in our study. These are MaxNCN [14,23], Reconsistent [14],
LVQ [24] and MixtGauss [15]. Section 3 briefly describes
the framework of the prototype-based classification meth-
ods used for the evaluation of the derived condensed sets. In
Section 4, the data sets are presented and the experiments
are described, providing quantitative results and a further
discussion. Finally, the main conclusions are summarised in
Section 5.

2. Condensing methods to compare

Assume a TS of N instances, X = {x1, x2, . . . , xN }, rep-
resenting J classes, C = {c1, . . . , cJ }. Each instance xi is
a point (a vector) in an n-dimensional feature space Rn.
A condensed set consists of r, r>n, prototypes, which are
either selected or generated from the examples of X. They
are determined to represent efficiently the distributions of
the classes and be well discriminative, when used to classify
the training objects. Their cardinality should be sufficiently
small to reduce both the storage and evaluation time.

A condensed set is said to be consistent with respect
to a TS if the classification error, estimated by assign-
ing all objects from the TS to the classes of their nearest
neighbours in the condensed set, is small; see Refs. [3,7].
Therefore, given a set of prototypes representing the class
distribution, the classification rate of the TS can be used to
measure the consistency of this set. As the consistent con-
dition is maintained, the smaller the number of prototypes
in the condensed set, the better the final result is.

Four condensing algorithms are presented below. These
are two selective schemes, MaxNCN and Reconsistent, and
two adaptive schemes, LVQ and MixtGauss.

M. Lozano et al. / Pattern Recognition 39 (2006) 1827–1838 1829

2.1. MaxNCN

The geometrical distribution of objects in a vector space
may be more informative than the distances between them.
The so-called surrounding neighbourhood-based rules [23]
try to improve the traditional nearest neighbour approach by
making use of such information, especially in relation to the
training objects which are nearby the decision boundaries.
This can be achieved by taking into account not only the
proximity of objects to a given input sample but also their
symmetrical distribution around it. As a result, the surround-
ing neighbours of an object p should satisfy two comple-
mentary conditions:

(1) Distance criterion: the neighbours should be as close as
possible to p.

(2) Symmetry criterion: the neighbours should be dis-
tributed as homogeneously as possible around p.

Chaudhuri [25] proposed the concept of a nearest cen-
troid neighbourhood (NCN), which can be viewed as a par-
ticular realisation of the surrounding neighbourhood. Let p
be a given object whose k-NCNs (k nearest centroid neigh-
bours) should be found in a TS. These k neighbours can be
determined by the following iterative procedure:

(1) Find the nearest neighbour of p. Choose it as the first
NCN, q1.

(2) Select the ith NCN, qi , i�2, from X such that the cen-
troid defined by qi and the previously selected NCNs,
q1, . . . , qi−1 is the closest to p.

As designed, the NCN search method is incremental
and the objects around a given sample have a geometrical
distribution that tends to surround it. Moreover, the region
of influence of the NCN is larger than that of the NN, in
general. This is illustrated in Fig. 1, where the regions de-
fined by the 4-NCN and the 4-NN are shown for the given
point p.

Algorithm 1 MaxNCN

for i = each_prototype(TS) do
neighbours_number[i] = 0
neighbour = next_neighbour(i)
while neighbour.class = =i.class do

neighbours_vector[i] = Id(neighbour)
neighbours_number[i] + +
neighbour = next_neighbour(i)

end while
end for
while Max_neighbours() > 0 do

Eliminate Neighbours(id_Max_neighbours)
end while

The MaxNCN technique is based on the concept of NCN
and relies on the NCN search algorithm, as presented above.

3

2

4

4-NCN

d

c

b

4-NN

p

Fig. 1. Illustration of the NCN concept.

A set of prototypes is selected from the TS to guarantee their
optimal geometrical distribution with respect to their NCNs.
The use of the NCN of a given sample can provide local in-
formation about the shape of the probability class distribu-
tion, which depends on the nature and class of its NCNs, that
is, on the nature of the prototypes in its surrounding area.

The rationale behind this approach is that the prototypes
belonging to the same class are located in a neighbouring
area and can be replaced by a single representative without
significantly affecting the original boundaries. The main rea-
son to employ the NCN instead of the NN is to benefit from
its properties, i.e. that the NCN covers a bigger region than
the NN, and that these neighbours are located in the area of
influence around a given sample which is compensated in
terms of their geometrical distribution.

Initially, all training objects are considered as prototypes.
The algorithm attempts to replace a group of neighbouring
prototypes of the same class by a representative. In order to
decide which group of prototypes should be replaced, the
NCN of each prototype p in the TS is computed until reach-
ing a neighbour of a class different than the class of p. The
prototype with the largest number of NCNs is defined as a
representative of its corresponding group. Since this group
lies in the area of influence defined by the NCN distribu-
tion, consequently, all its members can now be removed
from the TS. Next, given the remaining prototypes, the al-
gorithm updates the number of their neighbours (if some
were previously eliminated) as belonging to the group of an
already existing representative. This is repeated until there
is no group of prototypes to be replaced by a representative.
This basic scheme is called MaxNCN, and is presented in
Algorithm 1.

1830 M. Lozano et al. / Pattern Recognition 39 (2006) 1827–1838

Algorithm 2 Reconsistent

for i = each_prototype(TS) do
neighbours_number[i] = 0
neighbour = next_neighbour(i)
while neighbour.class = =i.class do

neighbours_vector[i] = Id(neighbour)
neighbours_number[i] + +
neighbour = next_neighbour(i)

end while
end for
while Max_neighbours() > 0 do

EliminateNeighbours(id_Max_neighbours)
end while
count = 0
for i = each_prototype(TS) do

if Classify(i)! = i.class then
incorrect_class[count + +] = i

end if
end for
for i = each_prototype(incorrect_class[]) do

neighbours_number_inc[i] = 0
neighbour_inc = next_neighbour_inc(i)
while neighbour_inc.class = =i.class do

neighbours_vector_inc[i] = Id(neighbour_inc)
neighbours_number_inc[i] + +
neighbour_inc = next_neighbour_inc(i)

end while
end for
while Max_neighbours_inc() > 0 do

EliminateNeighbours_inc(id_Max_neighbours_inc)
end while

AddCondensedIncToCondensedTS()

2.2. Reconsistent

The Reconsistent algorithm is an important modification
of the MaxNCN algorithm towards obtaining a consistent
condensed set [14]. The primary idea is that the consistency
of a subset with respect to the TS should lead to a better
classification. By using the MaxNCN algorithm some proto-
types close to the decision boundaries are removed because
of the order in which the instances are taken during the con-
densing process. The Reconsistent approach, proposed by
us, tries to address this issue.

The procedure starts by applying the MaxNCN technique
to a TS, yielding a reduced set, RS. Then, each object in the
TS is tested by the 1-NN rule with respect to the current pro-
totype set, RS. All misclassified objects form a new group,
which is condensed using the RS set as the reference. In the
end, this new condensed set is added to the RS, resulting in
the final condensed set. The Reconsistent procedure is pre-
sented in Algorithm 2.

2.3. LVQ

In statistical pattern recognition, learning vector quantisa-
tion (LVQ) is a popular competitive learning algorithm, used
in many applications. Its goal is to approximate the distribu-
tion of classes by using a reduced set of prototypes, while
minimising the classification error [13]. It is, therefore, an
adaptive condensing technique. In general, the classes can
be described by a relatively small number of prototypes pi ,
placed within each class region of the decision boundary by
means of measures of neighbourhood.

In the initialisation step, the prototypes are placed in the
TS, maintaining the same number of prototypes in each
class. The class borders are represented in a piecewise linear
way by segments of midplanes between the prototypes of
neighbouring classes (the borders of the so-called Voronoi
tessellations). This may seem to be a good strategy for ap-
proximating the class borders, using the fact that the aver-
age distances between the neighbouring prototypes should
be the same on both sides of the borders.

Nevertheless, the optimal placement of the prototypes is
not known. Therefore, their distances and their optimal car-
dinality, k, cannot be determined beforehand. To fix the value
of k for each case, the number of prototypes has to be chosen
first. A combination of editing and condensing is used for
this purpose. Therefore, first the Wilson’s editing (k of the
k-NN used in the editing scheme, as explained in Section
4.1) is used, and then followed by the Hart’s condensing al-
gorithm [7]. The resulting size of the prototype set is close to
ideal [4]. Using this number of prototypes, different values
of k were tested, and the one leading to the highest classifi-
cation accuracy was finally chosen. Different set sizes were
used for each data set, in order to compare the results for
different cases.

In the experiments, a variant of the original LVQ algo-
rithm is used, namely the optimised-learning-rate, OLVQ1,
[24]. The basis of this algorithm is the LVQ1 [24] such that
an individual learning rate �i (t) is selected for each proto-
type pi . Several prototypes are assigned to each class such
that the layout of the prototypes minimise approximately
the misclassification errors in the 1-NN classification. The
following equations define this process:

pc(t + 1) = pc(t) + �c(t)[x(t) − pc(t)]
if x and pc are in the same class,

pc(t + 1) = pc(t) − �c(t)[x(t) − pc(t)]
if x and pc are in different classes,

pi (t + 1) = pi (t) if i �= c, (1)

where x(t) is an input sample and pc is the nearest pi to x.
In Ref. [24], the “optimal” values of �i (t) are determined
by recursion as

�c(t) = �c

1 + s(t)�c(t − 1)
, (2)

M. Lozano et al. / Pattern Recognition 39 (2006) 1827–1838 1831

where s(t) = +1 if the classification of the prototype pc is
correct and s(t) = −1 if the classification is wrong. There-
fore, it is necessary to stop the learning process after some
“optimal” number of steps. Typically, the OLVQ1 may be
stopped after 200 iterations.

2.4. MixtGauss

MixtGauss is an adaptive condensing algorithm proposed
by some of us in Ref. [15]. It is considered in the frame-
work of mixture modelling by Gaussian distributions, while
assuming a statistical independence of features. The proto-
types are chosen as the mean vectors of the optimised Gaus-
sians, whose mixtures are fit to model each of the classes.
The details are given below.

In general, given a TS, we assume that each class follows
a spatial distribution according to its class-conditional prob-
ability density function (pdf) P(x|cj) and the respective a
priori probability P(cj), cj ∈ C. These class-conditional
pdfs do not need to have a specific structure, in general.
In practice, however, it is necessary to obtain their density
estimations.

A natural way to deal with a density estimator is to con-
sider a mixture density of modes. One approach to retain the
capacity of P(x|cj) is by reflecting the local structure of the
distribution by means of mixture modes Pm(x|cj), where
each mode is estimated by the product of probabilities in
each feature as [26]:

P(x|cj) =
M∑

m=1

�m|jPm(x|cj)

=
M∑

m=1

�m|j
n∏

k=1

N(xk; �m|kj , �m|kj), (3)

where M is the number of modes and �m|j is a priori prob-
ability of the mth mode in the class cj .

In our condensing algorithm, each class in the TS is mod-
elled by a probability distribution. A general shape of classes
as well as the decision boundaries is maintained, when each
class is described by a mixture of multivariate Gaussian dis-
tributions. By our additional assumption of the statistical
independence of features, the mth component in a mixture
modelling the class cj is a multivariate Gaussian distribution
expressed by a product of univariate normal distributions,
N(�m|kj , �m|kj). Note that this is equivalent to a multivari-
ate elliptic Gaussian distribution N(�m|j , diag(�m|j)). The
standard method used to fit finite mixture models to the ob-
served data, hence to estimate the parameters of the class
distributions, is the well-known EM algorithm [27,28]. This
is a general maximum likelihood optimisation procedure for
problems with hidden variables or missing data [29]. The
final prototypes of the sought condensed set are the mean
vectors of the Gaussian distributions determined by the EM
algorithm.

Note that, although the EM algorithm is widely used, one
needs to be aware of its drawbacks [30]. As a method work-
ing in local neighbourhoods, it is sensitive to initialisation,
as the likelihood function of a mixture model is not uni-
modal. Another important problem in mixture modelling is
the selection of the number of components. With too many
components, the mixture may overfit the data, while a mix-
ture with too few components may not be flexible enough
to approximate the true underlying model.

Algorithm 3 MixtGauss

(* initialisation *)
for c = 1..number_of_classes do

mean[c] = Calculate_Mean(c, T S)

for g = 1..number_of_Gaussians_per_class do
Gaussians[c, g] = mean[c] + Random_Disturbance()

end for
end for
(* optimisation *)
repeat

previous_Gaussians[c, g] = Gaussians[c, g]
Gaussians[c, g] = EMstep()

previous_accuracy = current_accuracy
current_accuracy = Calculate_Accuracy()
classes_improve = 0
for c = 1..number_of_classes do

if current_accuracy[c] > previous_accuracy[c] then
classes_improve = classes_improve + 1

else
if current_accuracy[c]! = previous_accuracy[c] then

for g = 1..number_of_Gaussians_per_class do
Gaussians[c, g] = previous_Gaussians[c, g]

end for
end if

end if
end for

until classes_improve = =0

2.4.1. Algorithm details
The more Gaussian components are included in a mixture,

the more accurate the representation of the classes and the
decision boundaries is. Taking this into account, M Gaus-
sians have to be specified to represent each class distribution.
This number corresponds to the number of prototypes gener-
ated in each class for the final condensed set. Initially, each
class is represented by M Gaussians located at the mean of
that class. By adding random disturbances, different mean
vectors are created and the Gaussians are shifted away. So,
a mixture of Gaussians can be obtained per class. For each
Gaussian, the initial variance is set up to 1

10 of the range in
each dimension.

After the initialisation stage, the EM algorithm is used
to determine an optimal location of the mixture of Gaus-
sians. This iterative optimisation procedure converges to a

1832 M. Lozano et al. / Pattern Recognition 39 (2006) 1827–1838

maximum likelihood estimate of the mixture parameters. Ac-
cordingly, to fit a mixture of Gaussians to each class, we
iterate between the following two steps:

E-step: Compute the contributions of the prototypes xt in
the class cj , belonging to the set {x1, . . . , xNj }, where Nj

is the cardinality of the class cj . The conditional pdf for the
mth mode is

Pm(xt |cj) = �m|j
∏n

k=1N(xt
k; �m|kj , �m|kj)

∑M
l=1�l|j

∏n
k=1N(xt

k; �l|kj , �l|kj)
(4)

and it is normalised such that
∑M

m=1�m|j = 1. The multi-
variate Gaussians are represented as a product of univariate
normal distributions, with the means �m|kj and the standard
deviations �m|kj .

M-step: Compute the parameters of the mth mode for each
value xt that exists in the class cj :

�m|j = 1

Nj

Nj∑

t=1

Pm(xt |cj),

�m|kj =
∑Nj

t=1Pm(xt |cj)x
t
k

∑Nj

t=1Pm(xt |cj)
, (5)

�m|kj =
∑Nj

t=1Pm(xt |cj)(x
t
k − �m|kj)2

∑Nj

t=1Pm(xt |cj)
. (6)

The EM iterative optimisation can cause an overlap be-
tween the Gaussian components from different classes,
which will deteriorate the final classification accuracy.
Therefore, this process should stop when no class yields
an increase in performance with respect to the previous
iteration. To address this problem, the consistency criterion
is applied. After each iteration, the consistency criterion
is estimated by calculating the 1-NN error over the TS by
using the estimated means of the Gaussians as the current
condensed set. The movement of the Gaussians is carried
out while any class improves the classification rate with
respect to the previous step. The complete technique is
summarised in Algorithm 3.

3. Prototype-based classification methods to compare

The usefulness of condensed sets, optimised by the ap-
proaches discussed above, will be evaluated in a classifica-
tion task. Traditionally, the 1-NN rule, assigning an unknown
object to the class of its nearest neighbour in the condensed
set, is used for this purpose. The 1-NN rule is employed,
as it is often used in condensing schemes for the design of
the condensed set. If the classes are represented as compact
Gaussian-like clouds of similar spreads, then the 1-NN is
expected to generalise well for a small condensed set. Oth-
erwise, a large condensed set might be needed to represent
the variability in the data. Alternatively, classifiers in the so-
called dissimilarity spaces can be considered.

3.1. Dissimilarity spaces

Remember that a TS X consist of N objects in a fea-
ture vector space. Let R = {p1, p2, . . . , pr} be a condensed
set, called also representation set, of r optimised prototypes.
Given a dissimilarity measure2 d, one may consider a new
representation based on the proximities to the set R. Every
object x ∈ X is then described by a vector of dissimilar-
ities computed between x and the prototypes from R, i.e.
as D(x, R)=[d(x, p1), d(x, p2), . . . , d(x, pr)]. Hence, for a
set X, it extends to an N × r dissimilarity matrix D(X, R).

The dissimilarity matrix D(X, R) is interpreted as a data-
dependent mapping D(·, R) : X → Rr from the represen-
tation X to a dissimilarity space, defined by the set R. This
is a vector space, in which each dimension corresponds to
a dissimilarity to a prototype from R, D(·, pi). The advan-
tage of this representation is that any traditional classifier
operating in vector spaces can now be used [20,16,17].

A vector D(·, pi) of dissimilarities to the prototype pi can
be interpreted as a feature. This follows since the dissimi-
larities to pi will differ depending on the class membership.
If the measure is metric and the dissimilarity d(pi , pj) is
small, then d(x, pi) ≈ d(x, pj) for other object x, as it is
guaranteed by the backward triangle inequality [17]. As a
result, only one of them can be chosen as a prototype. How-
ever, a small number of prototypes might be insufficient to
represent the data variability if the classes have different
spreads (in terms of the dissimilarities). This occurs when,
in a feature space one class is represented by a compact
cloud of points, while the other class is elongated. It can be,
therefore, more beneficial to inspect the vectors of dissimi-
larities to the entire set R, instead of looking at the nearest
neighbour only. If the objects x and y are similar, then their
dissimilarity vectors D(x, R) and D(y, R) are expected to
be correlated. Hence they should lie close in a dissimilar-
ity space (as measured e.g. by an Euclidean distance in this
space). A linear or quadratic classifier in this dissimilarity
space might be of interest.

3.2. Normal-density based classifiers in dissimilarity spaces

In the case of small condensed sets or non-representative
TS, a better generalisation can be achieved by a classifier
built in a dissimilarity space than by the 1-NN rule. Many
traditional classifiers can be applied there [19–21,17]. Lin-
ear and quadratic functions are weighted linear (quadratic)
combinations of the dissimilarities d(x, pi) between a given
object x and the prototypes pi . Although the classifiers are
trained on D(·, R), the weights are still optimised on the
complete TS.

2 In general, a non-negative dissimilarity measure should express a
degree of commonality between pairs of objects. It should be zero for two
identical objects, take small values for similar objects and large values
for objects that differ. It does not need to be metric.

M. Lozano et al. / Pattern Recognition 39 (2006) 1827–1838 1833

Bayesian classifiers, i.e. linear and quadratic normal den-
sity based classifiers, tend to perform well in dissimilar-
ity spaces [19,18,20,21,31]. This is especially true, for a
summation-based dissimilarity measure, summing over a
number of components with similar variances. The reason
is that such dissimilarities will be approximately normally
distributed thanks to the central limit theorem (if one or few
variances are dominant, then they will approximate the �2

distribution) [17]. In our case, the vectorial data will be nor-
malised to unit variances, hence the resulting Euclidean dis-
tances tend to be approximately normally distributed. One
may, therefore, expect a good performance of such deci-
sion rules, if the problem is linearly or quadratically separa-
ble. Since in our case the Euclidean distance is a non-linear
transformation normalised features, a linear classifier in a
dissimilarity space is a non-linear classifier in the underly-
ing (original) space [17], similarly to the reasoning for sup-
port vector machines [32]. So, if the Euclidean distance is
informative for the classification problem in a feature vector
space, the local and non-linear 1-NN rule in this space may
be replaced by a linear classifier in the Euclidean-distance
dissimilarity space.

For a two-class problem, a linear normal density based
classifier (NLC), defined by the condensed set R, is given by

f (D(x, R)) = [D(x, R) − 1
2 (m(1) + m(2))]T

× S−1(m(1) − m(2)) + log
p(1)

p(2)

, (7)

and the quadratic function (NQC) becomes

f (D(x, R)) =
2∑

i=1

(−1)i

2
(D(x, R) − m(i))

T

× S−1
(i) (D(x, R) − m(i))

+ log
p(1)

p(2)

+ 1

2
log

|S(1)|
|S(2)| , (8)

where m(1) and m(2) are the mean vectors, S is the sample
covariance matrix (average of the class covariance matrices)
and S(1) and S(2) are the estimated class covariance matrices,
all computed in the dissimilarity space D(X, R). p(1) and
p(2) are the class prior probabilities. When the covariance
matrices become singular, they can be regularised. In the
implementation of these classifiers for multi-class problems,
the normal-density functions are estimated per each class
and the final decision is based on the maximum a posteriori
probability [33].

Given equal class priors, the NLC is equivalent to the
Fisher linear discriminant (FLD) obtained by maximising
the Fisher criterion, i.e. maxw (wTSBw)/(wTSWw), where
SB is the between-class scatter and SW = S is the within-
class scatter; see Ref. [34] for details. For a representation
D(T , R), the FLD is found as

f (D(x, R)) = (m1 − m2)
TS−1

W D(x, R)

− 1
2 (m1 + m2)

TS−1
W (m1 − m2). (9)

Table 1
Data sets used in the experiments

Data set No. classes No. features TS size Test set size

Cancer 2 9 546 137
Diabetes 2 8 614 154
Glass 6 9 171 43
Heart 2 13 216 54
Liver 2 6 276 69
Vehicle 4 18 677 169
Vowel 11 10 422 106
Wine 3 13 142 36
Phoneme 2 5 4323 1080
Satimage 6 36 5148 1287
Texture 11 40 4400 1100

A multi-class FLD is derived in the one-against-all strategy
[33].

4. Experimental results and discussion

We will compare some methods of determining a con-
densed set R in combination with three prototype-based
classification strategies. These is done on Euclidean dis-
tance representations D(X, R) derived in feature spaces. The
four condensing algorithms are the ones described before:
MaxNCN, Reconsistent, LVQ and MixtGauss. The first clas-
sification method is the 1-NN rule based on the set R. The
other two methods are the FLD and NQC trained in dissim-
ilarity spaces D(X, R).

4.1. Data description and experimental setup

Eleven real data sets (see Table 1) are taken from the UCI
Repository [35] to assess the behaviour of the algorithms
presented here. All data sets are first normalised by a unit
variance, and then the Euclidean distances are computed.
The results are compared in terms of both accuracy and
reduction of the TS size.

The MaxNCN, Reconsistent and MixtGauss algorithms
need to be applied to overlap-free (no overlap between dif-
ferent class regions) data sets. Therefore, as a general rule,
and according to the previously published results [10,5], the
Wilson’s editing is considered to properly remove a pos-
sible overlap between the classes. In our experiments, the
parameter k involved (of the k-NN rule) is obtained by per-
forming a five-fold cross-validation experiment using only
the TS and computing the average classification accuracies
for different values of k. The best edited set (including the
non-edited TS) is thus selected as the input for the different
condensing schemes.

4.2. Quantitative results

Tables 2–4 report the classification accuracy of the
1-NN, the FLD and the NQC, respectively, obtained by

1834 M. Lozano et al. / Pattern Recognition 39 (2006) 1827–1838

Table 2
Classification accuracy of the 1-NN (in %)

Original MaxNCN Reconsistent LVQ MixtGauss

Cancer 95.2 92.0 [95.2 ≡ 26] 93.4 [93.8 ≡ 34] 96.9 [99.3 ≡ 4] 96.5 [99.3 ≡ 4]
Diabetes 70.1 67.7 [87.0 ≡ 80] 71.8 [81.8 ≡ 112] 76.6 [98.1 ≡ 12] 75.0 [91.9 ≡ 50]
Glass 69.7 64.1 [59.1 ≡ 70] 69.4 [46.8 ≡ 91] 72.6 [71.9 ≡ 48] 64.5 [75.4 ≡ 42]
Heart 76.3 69.3 [83.8 ≡ 35] 74.8 [77.8 ≡ 48] 84.1 [89.8 ≡ 22] 81.9 [93.5 ≡ 14]
Liver 62.6 58.9 [76.8 ≡ 64] 61.0 [68.5 ≡ 87] 65.6 [93.5 ≡ 18] 63.7 [97.1 ≡ 8]
Vehicle 69.4 64.4 [60.3 ≡ 269] 66.0 [49.2 ≡ 344] 72.2 [61.6 ≡ 260] 69.6 [70.5 ≡ 200]
Vowel 98.1 90.8 [74.4 ≡ 108] 95.5 [71.8 ≡ 119] 80.8 [76.5 ≡ 99] 90.7 [76.5 ≡ 99]
Wine 94.4 91.6 [93.0 ≡ 10] 92.1 [90.9 ≡ 13] 95.5 [95.8 ≡ 6] 96.0 [97.9 ≡ 3]
Phoneme 71.0 69.1 [91.6 ≡ 365] 70.2 [88.9 ≡ 480] 77.3 [93.1 ≡ 300] 73.3 [93.1 ≡ 300]
Satimage 83.0 79.2 [86.5 ≡ 693] 80.3 [82.7 ≡ 890] 82.2 [88.3 ≡ 600] 81.3[94.8 ≡ 270]
Texture 98.9 95.3 [89.3 ≡ 470] 97.3 [87.8 ≡ 535] 85.9 [99.5 ≡ 22] 97.2 [90.0 ≡ 440]
Average 80.8 76.6 [81.5] 79.2 [76.4] 80.9 [87.9] 80.9 [89.1]

The corresponding reduction rates of the TS size (in %) and the equivalent number of prototypes are given in brackets.

Table 3
Classification accuracy of the FLD in dissimilarity spaces (in %)

Original MaxNCN Reconsistent LVQ MixtGauss

1 Cancer 85.50 96.48 [95.2] 96.48 [93.8] 97.22 [98.2] 96.92 [96.3]
2 Diabetes 74.23 76.05 [87.0] 77.09 [81.8] 77.08 [98.7] 76.70 [87.0]
3 Glass 53.88 66.53 [59.1] 67.49 [46.8] 77.17 [61.4] 69.77 [93.0]
4 Heart 60.75 80.72 [83.8] 78.49 [77.8] 84.79 [98.1] 82.60 [98.2]
5 Liver 68.35 68.96 [76.8] 67.83 [68.5] 70.70 [92.8] 68.67 [93.5]
6 Vehicle 77.19 79.31 [60.3] 79.79 [49.2] 80.96 [67.5] 80.02 [76.4]
7 Vowel 41.03 95.76 [74.4] 96.67 [71.8] 91.42 [76.5] 94.28 [76.5]
8 Wine 33.15 98.28 [93.0] 98.30 [90.9] 98.87 [95.8] 98.90 [95.8]
9 Phoneme 70.62 69.75 [91.6] 70.52 [88.9] 77.11 [98.2] 73.94 [99.8]
10 Satimage **** 24.49 [86.5] 23.90 [82.7] 82.11 [95.3] 82.20 [95.9]
11 Texture **** 37.33 [89.3] 27.56 [87.8] 99.00 [92.5] 99.13 [93.8]

Average (1–11) **** 72.2 [81.5] 71.3 [76.4] 85.1 [88.6] 83.9 [91.5]
Average (1–9) 62.7 81.3 81.4 83.9 82.4

The corresponding reduction rates of the TS size (in %) are given in brackets. Averages over all data sets (1–11) and data sets excluding Satimage and
Texture (1–9), are also given.

Table 4
Classification accuracy of the NQC in dissimilarity spaces (in %)

Original MaxNCN Reconsistent LVQ MixtGauss

1 Cancer 80.23 96.19 [95.2] 96.48 [93.8] 97.22 [96.3] 96.34 [96.3]
2 Diabetes 65.62 75.39 [87.0] 74.74 [81.8] 77.09 [97.1] 76.70 [98.7]
3 Glass 40.15 53.81 [59.1] 54.40 [46.8] 65.10 [89.5] 64.11 [82.5]
4 Heart 55.56 82.97 [83.8] 80.00 [77.8] 82.95 [97.2] 82.21 [88.9]
5 Liver 46.67 62.63 [76.8] 60.00 [68.5] 67.79 [85.5] 65.20 [89.1]
6 Vehicle 27.78 60.27 [60.3] 54.37 [49.2] 74.81 [76.4] 74.58 [91.1]
7 Vowel 10.20 31.96 [74.4] 29.41 [71.8] 94.59 [92.2] 94.10 [92.2]
8 Wine 33.15 97.73 [93.0] 96.05 [90.9] 97.76 [97.9] 99.43 [95.8]
9 Phoneme 73.26 73.08 [91.6] 73.22 [88.9] 76.11 [95.4] 73.33 [95.4]
10 Satimage **** 79.40 [86.5] 79.17 [82.7] 81.93 [98.3] 81.62 [97.1]
11 Texture **** 96.31 [89.3] 96.51 [87.8] 97.58 [95.0] 97.53 [96.3]

Average (1–11) **** 73.6 [81.5] 72.2 [76.4] 83.0 [92.8] 82.3 [93.0]
Average (1–9) 48.1 70.5 68.7 81.5 80.7

The corresponding reduction rates of the TS size (in %) are given in brackets. Averages over all data sets (1–11) and data sets excluding Satimage and
Texture (1–9), are also given.

using different condensed sets. For each condensing method,
the average performance values, computed over the 11 data
sets are also included. There are no results of the FLD and

the NQC for the Satimage and Texture sets (for the original
TS), because of their high memory requirements during
training [33]. The average performances excluding these

M. Lozano et al. / Pattern Recognition 39 (2006) 1827–1838 1835

0 10 20 30 40 50 60
35

40

45

50

55

60

65

70

75

80
NVehicle (TS size:677, NºFeat.:18, NºClass.:4)

Condensed Set Size

A
cc

ur
ac

y
P

er
ce

nt
ag

e

MixtGauss–NN
MixtGauss–FLD
MixtGauss–NQC
LVQ–NN
LVQ–FLD
LVQ–NQC

0 20 40 60 80 100 120
20

30

40

50

60

70

80

90

100
NVowel (TS size:422, NºFeat.:10, NºClass.:11)

Condensed Set Size

A
cc

ur
ac

y
P

er
ce

nt
ag

e

MixtGauss–NN
MixtGauss–FLD
MixtGauss–NQC
LVQ–NN
LVQ–FLD
LVQ–NQC

(a) (b)

0 10 20 30 40 50 60 70 80 90
70

75

80

85
NSatimage (TS size:5148, NºFeat.:36, NºClass.:6)

Condensed Set Size

A
cc

ur
ac

y
P

er
ce

nt
ag

e

MixtGauss–NN
MixtGauss–FLD
MixtGauss–NQC
LVQ–NN
LVQ–FLD
LVQ–NQC

0 10 20 30 40 50 60
70

75

80

85

90

95

100
NTexture (TS size:4400, NºFeat.:40, NºClass.:11)

Condensed Set Size

A
cc

ur
ac

y
P

er
ce

nt
ag

e

MixtGauss–NN
MixtGauss–FLD
MixtGauss–NQC
LVQ–NN
LVQ–FLD
LVQ–NQC

(c) (d)

Fig. 2. Trade-off between the resulting condensed set sizes and classification accuracy for different algorithms. The following data sets are shown: Vehicle
(a); Vowel (b); Satimage (c) and Texture (d).

data sets are also presented. Since the adaptive techniques,
the MixtGauss and the LVQ, allow one to determine a con-
densed set of any size, only a few results are shown in the
tables. These correspond to the best accuracy values, found
in the sets between one prototype per class and the size
determined by the MaxNCN algorithm (as the MaxNCN
condensed set is always smaller than the Reconsistent con-
densed set).

The first observation is that the LVQ and the MixtGauss
increase the average accuracy in comparison to the original
TS accuracy. The increase is larger by using the FLD and
the NQC than by using the 1-NN rule (where the increase is
quite small). Anyway, it is significant that in all these cases,
the performance is increased despite the high reduction of
the TS (see Tables 2–4). Remember that although the FLD
and the NQC are based on the distances to the prototypes,
they still make use of the entire TS in training. This is the
reason why the classification accuracy increases so much
when using any condensed set, in comparison to the results
by using the original TS.

By using the FLD, the classification accuracy obtained
for the MaxNCN and Reconsistent procedures is very simi-
lar. The MixtGauss leads to a higher accuracy than both of
them. The best performance of the FLD relies on the LVQ.
A similar pattern can be observed for the NQC. This differs,
however, for the 1-NN rule, especially in the case of the Re-
consistent algorithm. The smallest classification accuracy is
reached for the MaxNCN. The Reconsistent gives better re-
sults, and the best values are obtained for the LVQ and the
MixtGauss.

The training reduction rates, being the percentage by
which the original training size is reduced, are provided in
square brackets in Tables 2–4. Since the MaxNCN and the
Reconsistent techniques determine the optimal number of
prototypes directly, their reduction rates are identical for
the three classification methods used. Additionally, for each
condensing method, the average reduction values computed
over the 11 data sets are also included.

In relation to the training reduction rates, the average is
higher for the MaxNCN than for the Reconsistent. This is

1836 M. Lozano et al. / Pattern Recognition 39 (2006) 1827–1838

to be expected as in the second algorithm, some instances
are added to the MaxNCN condensed set to improve the
classification accuracy. It can also be observed that the aver-
age TS reduction rates are higher for the adaptive LVQ and
MixtGauss techniques than for the selective MaxNCN and
Reconsistent procedures. The highest reduction rate is the
one of MixtGauss. This holds for the three prototype-based
classification strategies used here.

In relation to the classification methods considered, in
general, we can observe that the FLD and the NQC perform
better than the 1-NN rule, when they rely on the condensed
sets determined by the adaptive schemes. Comparing both
algorithms, the one with the best performance corresponds
to the FLD On the other hand, the MaxNCN and the Re-
consistent procedures have their best classification accuracy
with the 1-NN rule. As designed, the Reconsistent leads to
a higher nearest neighbour performance than the MaxNCN.

These results can be better analysed by studying the
graphs for each data set (see an example for four data sets in
Fig. 2). The best trade-off results (between the accuracy and
the reduced TS size) are the ones for the FLD. The results
for the NQC are similar, and the ones for the 1-NN rule are
significantly worse. In relation to the condensing algorithms,
the LVQ and the MixtGauss lead to very similar results.
In general, the points corresponding to the MaxNCN-FLD
and the Reconsistent-FLD results are near the functions
representing the MixtGauss-FLD and the LVQ-FLD results,
similarly as the points representing the MaxNCN-NQC and
the Reconsistent-NQC results are close to the points de-
scribing the MixtGauss-NQC and the LVQ-NQC results.
This observation does not hold for the MaxNCN-NN and
the Reconsistent-NN, neither the MixtGauss-NN and the
LVQ-NN, as there exists a big difference in favour of the
MixtGauss and the LVQ for some data sets.

In Fig. 2, the behaviour of the algorithms investigated here
is shown for four data sets. Only the results for the smallest
reduced sets for each data are plotted, in order to distinguish
the plots. The first graph, Fig. 2(a), refers to the Vehicle
data set. It can be observed there that the best classification
accuracy is reached by the MixtGauss-NQC for the smallest
condensed sets. For sets with more than three instances per
class, the best accuracy is reached by the LVQ-FLD. It is to
note that the performance of the MixtGauss-FLD is always
close to the best case.

In Fig. 2(b) the results for the Vowel data set are shown.
The three smallest condensed sets represented (1, 2 and 3
instances per class) lead to the best performance for the
combination of the LVQ-NQC and the MixtGauss-NQC al-
gorithms. However, for larger sizes, the classification ac-
curacy suddenly decreases. It is due to a large number of
classes in relation to the number of prototypes, which ef-
fectively translates into the dimension of the dissimilarity
space. As a result, the number of instances per class is too
small, and as the size of the condensed set increases, class
covariance matrices are badly estimated. Hence, the classi-
fication accuracy is diminished. The next best results belong

to the MixtGauss-FLD, the LVQ-FLD and the MixtGauss-
NN, in that order.

In Fig. 2(c), the results for the Satimage data set are
shown. The most reduced sets lead to a better perfor-
mance by using the MixtGauss-NQC, the LVQ-NQC, the
MixtGauss-FLD and the LVQ-FLD methods. The results for
the data set Texture are shown in Fig. 2(d). The best ones
are obtained by the following combinations: the LVQ-NQC,
the MixtGauss-NQC, the LVQ-FLD and the MixtGauss-
FLD. As it is not plotted in this paper, in order to save
space, it could be important to know the next point. The
larger graphs for Satimage and Texture data sets show that
the classification accuracy also decreases around the size of
300 instances for the MixtGauss-FLD and the LVQ-FLD. It
is due to similar reasons as mentioned for the Vowel data.

5. Conclusions

This paper compares several prototype reduction tech-
niques, including both selecting and generating schemes, in
connection with performance of classifiers defined on the
corresponding sets of prototypes. We use the following clas-
sifiers: the 1-NN rule, and linear and quadratic prototype-
based classifiers defined in Euclidean-distance dissimilarity
spaces. The purpose of this experimental study is to discuss
a number of prototype optimisation methods with respect
to their ability of maintaining small prototype sets and high
classification performance.

From our investigations it can be concluded that there is no
significant difference between the LVQ and the MixtGauss
prototype generation techniques. However, when comparing
them to the MaxNCN and Reconsistent methods, the first
two algorithms tend to give both larger reduction of the TS
(i.e. smaller condensed sets) and lead to higher classifica-
tion accuracy. This means that the LVQ and the MixtGauss
are good as condensing algorithms since they yield a good
performance and allow one to control the number of proto-
types. Additionally, they represent a good trade-off between
the classification accuracy and the reduction rates.

In relation to the prototype-based decision rules, in gen-
eral, the classification accuracy obtained by the FLD tends
to be higher than that of the NQC, both higher than the ac-
curacy of the 1-NN rule, independently of the considered
condensing algorithms. This is striking as the prototype sets
are often optimised to guarantee that the 1-NN rule per-
forms well. Our explanation is that the FLD and the NQC,
although based on the condensed sets, still make use of the
entire TS for determining the decision boundary. The 1-NN
rule, when applied as a nearest prototype rule, discards other
training objects.

What is important, is the fact that for the evaluation of
new objects the computational complexity of the FLD is
O(Jr). This is similar to the computational complexity of the
1-NN rule, O(r), provided that J, the number of classes,
is small. For a large number of classes, the computational
cost of the FLD increases. The FLD may, therefore, be an

M. Lozano et al. / Pattern Recognition 39 (2006) 1827–1838 1837

alternative to the 1-NN rule for the prototype-based classifi-
cation in normalised feature vector spaces. The NQC is much
more computationally heavy, so it can only be advantageous
for small condensed sets and a small number of classes. In
fact, the NQC was used here, to show that a more complex
classifier than a linear one is not necessarily yielding a bet-
ter performance in dissimilarity spaces resulting from nor-
malised vectorial data. The effect of feature normalisation
plays a role as otherwise the NQC might have been pre-
ferred to the FLD. In general, the good performance of the
FLD in dissimilarity spaces can be explained by the use of
Euclidean distance relying on standardised features (hence
approximate normal distributions for the resulting distances)
and non-complicated class structures for which this distance
measure is discriminative. The later means that the classes
do not differ much in the range of their average within-class
distances.

Our final conclusion is that the adaptive techniques, the
LVQ and the MixtGauss, combined with the FLD, offer
the best trade-off between the reduction rate, computational
cost and the classification performance in normalised vector
spaces for the considered problems.

In perspective, our study opens a new possibility for using
linear (or more complex) classifiers in dissimilarity spaces
derived from normalised feature vector spaces instead of the
1-NN rule, both defined by the same optimised prototype
sets. Since a linear function in such a dissimilarity space is a
non-linear function in the original vector space, the distance
measure or its non-linear (sigmoidal, logarithmic) transfor-
mation can be a way to incorporate the non-linearity aspects
of the data. To our knowledge, these aspects have not been
considered among the researchers studying the condensing
techniques, yet. Although the FLD was chosen here, other
linear functions can be studied, such as a logistic classifier
or a hyperplane defined by a linear, sparse or non-sparse,
programming procedure. Additionally, a linear (or polyno-
mial) support vector machine (SVM) [32] can be trained in
dissimilarity spaces. Note, however, that in such a case the
SVM will rely on support vectors which are objects found
in a complete dissimilarity space, hence they rely on the dis-
tances to all original objects. So, the SVM will not work
as a prototype selection. If however, good prototypes are
found by other techniques, the linear SVM will determine
the optimal large-margin hyperplane in the corresponding
dissimilarity space. Future research may focus on compar-
ing a (non-)linear SVM built in the original feature vector
space and the SVM in a dissimilarity space defined by a
small set of optimised prototypes.

Acknowledgments

This work has been partially supported by grants
DPI2001-2956-C02-02 and TIC2003-08496 from the Span-
ish CICYT and project IST-2001-37306 from the European
Union, as well as by the Dutch Organisation for Scientific
Research (NWO).

References

[1] D.L. Wilson, Asymptotic properties of nearest neighbor rules using
edited data sets, IEEE Trans. Syst. Man Cybern. 2 (1972) 408–421.

[2] D.W. Aha, D. Kibler, M.K. Albert, Instance-based learning
algorithms, Mach. Learn. 6 (1) (1991) 37–66.

[3] B.V. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern
Classification Techniques, IEEE Computer Society Press, Los
Alamitos, CA, 1990.

[4] P.A. Devijver, J. Kittler, Pattern Recognition: A Statistical Approach,
Prentice-Hall, Englewood Cliffs, NJ, 1982.

[5] D.R. Wilson, T.R. Martinez, Reduction techniques for instance-based
learning algorithms, Mach. Learn. 38 (3) (2000) 257–286.

[6] B.V. Dasarathy, Minimal consistent subset (MCS) identification for
optimal nearest neighbor decision systems design, IEEE Trans. Syst.
Man Cybern. 24 (1994) 511–517.

[7] P.E. Hart, The condensed nearest neighbor rule, IEEE Trans. Inform.
Theory 14 (5) (1968) 505–516.

[8] I. Tomek, Two modifications of CNN, IEEE Trans. Syst. Man Cybern.
6 (1976) 769–772.

[9] G.T. Toussaint, B.K. Bhattacharya, R.S. Poulsen, The application of
voronoi diagrams to nonparametric decision rules, in: L. Billard (Ed.),
Computer Science and Statistics: The Interface, Elsevier Science,
Amsterdam, 1985.

[10] M.C. Ainslie, J.S. Sánchez, Space partitioning for instance reduction
in lazy learning algorithms, Second Workshop on Integration and
Collaboration Aspects of Data Mining, Decision Support and Meta-
Learning, 2002, pp. 13–18.

[11] C.L. Chang, Finding prototypes for nearest neighbor classifiers, IEEE
Trans. Comput. 23 (1974) 1179–1184.

[12] C.H. Chen, A. Józwik, A sample set condensation algorithm for the
class sensitive artificial neural network, Pattern Recognition Lett. 17
(1996) 819–823.

[13] T. Kohonen, Self-Organizing Maps, Springer, Berlin, 1995.
[14] M. Lozano, J.S., Sánchez, F. Pla, Using the geometrical distribution

of prototypes for training set condensing, in: R. Conejo, M.
Urretavizcaya, J.L. Pérez de la Cruz (Eds.), Current Topics in
Artificial Intelligence, Lecture Notes in Artificial Intelligence, vol.
3040, Springer, Berlin, 2004, 618-627.

[15] M. Lozano, J.M. Sotoca, J.S. Sánchez, F. Pla, An adaptive condensing
algorithm based on mixtures of Gaussians, in: J. Vitrià et al. (Eds.),
Setè Congrés Català d’Intel.ligencia Artificial, Barcelona (Spain),
Frontiers in Artificial Intelligence and Applications, vol. 113, IOS
Press, Amsterdam, 2004, pp. 225–232.

[16] E. PeRkalska, R.P.W. Duin, P. Paclík, Prototype selection for
dissimilarity-based classifiers, Pattern Recognition 39 (2) (2006)
189–208.

[17] E. PeRkalska, R.P.W. Duin, The Dissimilarity Representation for
Pattern Recognition. Foundations and Applications, World Scientific,
Singapore, 2005.

[18] P. Paclík, R.P.W. Duin, Classifying spectral data using relational
representation, Spectral Imaging Workshop, Graz, Austria, 2003.

[19] P. Paclík, R.P.W. Duin, Dissimilarity-based classification of spectra:
computational issues, Real Time Imaging 9 (4) (2003) 237–244.

[20] E. PeRkalska, R.P.W. Duin, Dissimilarity representations allow for
building good classifiers, Pattern Recognition Lett. 23 (8) (2002)
943–956.

[21] E. PeRkalska, P. Paclík, R.P.W. Duin, A generalized kernel approach to
dissimilarity based classification, J. Mach. Learn. Res. 2 (2) (2002)
175–211.

[22] T.M. Cover, P.E. Hart, Nearest neighbor pattern classification, IEEE
Trans. Inform. Theory 13 (1) (1967) 21–27.

[23] J.S. Sánchez, F. Pla, F.J. Ferri, On the use of neighbourhood-
based non-parametric classifiers, Pattern Recognition Lett. 18 (1997)
1179–1186.

[24] T. Kohonen, J. Hynninen, J. Kangas, J. Laarksonen, K. Torkkola,
LVQ_PAK: the learning vector quantization program package,

1838 M. Lozano et al. / Pattern Recognition 39 (2006) 1827–1838

Helsinki University of Technology, 1996 〈http://www.cis.hut.fi/
research/som-research/nnrc-programs.shtml〉.

[25] B.B. Chaudhuri, A new definition of neighbourhood of a point in
multi-dimensional space, Pattern Recognition Lett. 17 (1996) 11–17.

[26] J. Novovičová, P. Pudil, J. Kittler, Divergence based feature selection
for multimodal class densities, IEEE Trans. Pattern Anal. Mach.
Intell. 18 (1996) 218–223.

[27] G. McLachlan, K. Basford, Mixture Models: Inference and
Application to Clustering, Marcel Dekker, New York, 1988.

[28] G. McLachlan, T. Krishnan, The EM Algorithm and Extensions,
Wiley, New York, 1997.

[29] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from
incomplete data via the EM algorithm, J. R. Statist. Soc. B 39 (1977)
1–38.

[30] M.A.T. Figueiredo, A.K. Jain, Unsupervised learning of finite mixture
models, IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002) 381–396.

[31] E. PeRkalska, R.P.W. Duin, S. Günter, H. Bunke, On not making
dissimilarities euclidean, Structural Syntactic and Statistical Pattern
Recognition, Lecture Notes in Computer Science, vol. 3138, Springer,
Berlin, 2004, pp. 1145–1154.

[32] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector
Machines, Cambridge University Press, Cambridge, 2000.

[33] R.P.W. Duin, P. Juszczak, D. de Ridder, P. Paclík, E. PeRkalska,
D.M.J. Tax, PR-tools, a Matlab toolbox for pattern recognition, 2004
〈http://www.prtools.org〉.

[34] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, second ed.,
Wiley, New York, 2001.

[35] C.J. Merz, P.M. Murphy, UCI Repository of Machine Learning DB,
Department of Information and Computer Science, University of
California, 1998 〈http://www.ics.uci.edu/∼mlearn〉.

About the Author—M. LOZANO is a Lecturer at the Computer Science and Systems Engineering Department at the University of Zaragoza (Spain). She
received a degree in Computing Engineering from the University Jaume I (Castellón, Spain) in 2000. Her Ph.D. dissertation is focused on the selection
and generation of prototypes in learning processes.

About the Author—J.M. SOTOCA is an Assistant Lecturer at the Department of Programming Languages and Computer Systems of the Jaume I
University. He received a degree and a Ph.D. in Physics in 1996 and 2001, respectively. His main research interests lie in the area of pattern recognition
and computer vision. He has published more than 30 scientific papers in conferences, books and journals.

About the Author—J.S. SÁNCHEZ is an Associate Professor in the Department of Programming Languages and Information Systems at Universitat
Jaume I (Castelló de la Plana, Spain) since 1992, and is currently the head of the Pattern Recognition Section in the Computer Vision Lab. He received a
B.Sc. in Computer Science from the Universidad Politécnica de Valencia in 1990 and a Ph.D. in Computer Science Engineering from Universitat Jaume
I in 1998. He is a member of IEEE, IAPR, and ECCAI. He is author or co-author of more than 80 scientific publications, co-editor of two books and
guest editor of three special issues in international journals. His current research interests lie in the areas of pattern recognition and machine learning,
including non-parametric classification, data reduction, data complexity analysis, and ensembles of classifiers.

About the Author—F. PLA is a Full Professor at the Department of Programming Languages and Information Systems of University Jaume I (Castellón,
Spain), and is currently the group coordinator in the Computer Vision Lab. He received a degree and a Ph.D. in Physics from the University of Valencia in
1989 and 1993, respectively. He has authored more than 90 scientific papers in the fields of Computer Vision and Pattern Recognition. He has also been
co-editor of two books and acted as reviewer for several International Journals in the field of Computer Vision an Pattern Recognition. He has been visiting
scientist at Silsoe Research Institute, the University of Surrey and the University of Bristol in UK, CEMAGREF in France, the University of Genoa in
Italy, and the Instituto Superior Técnico of Lisbon in Portugal. His current research interests are colour and spectral image analysis, visual motion analysis,
active vision and pattern recognition techniques applied to image processing. He is member of the International Association for Pattern Recognition.

About the Author—E. PERKALSKA received an M.Sc. degree in computer science from the University of Wrocław, Poland. In 1998, she became a
research fellow working on an applied project at Delft University of Technology, The Netherlands, where in 1999 she started her research on dissimilarity-
based learning methods. She obtained a cum-laude Ph.D. degree in January 2005. Currently, she is a postdoc at the same university and a honorary
visiting research associate at the University of Manchester, UK.

About the Author—R.P.W. DUIN studied applied physics at Delft University of Technology in the Netherlands. In 1978 he received the Ph.D. degree
for a thesis on the accuracy of statistical classifiers. In his research he focuses on the foundation of pattern recognition systems aiming at representations
suitable for automatic learning.

http://www.cis.hut.fi/research/som-research/nnrc-programs.shtml
http://www.cis.hut.fi/research/som-research/nnrc-programs.shtml
http://www.prtools.org
http://www.ics.uci.edu/mlearn

	Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces
	Introduction
	Condensing methods to compare
	MaxNCN
	Reconsistent
	LVQ
	MixtGauss
	Algorithm details

	Prototype-based classification methods to compare
	Dissimilarity spaces
	Normal-density based classifiers in dissimilarity spaces

	Experimental results and discussion
	Data description and experimental setup
	Quantitative results

	Conclusions
	Acknowledgments
	References

