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Abstract

Instance-based learning methods like the nearest neighbour classi1er generally su2er from the indiscriminate storage of
all training instances, resulting in large memory requirements and slow execution speed. In this paper, new training set size
reduction methods based on prototype generation and space partitioning are proposed. Experimental results show that the new
algorithms achieve a very high reduction rate with still an important classi1cation accuracy.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Many supervised learning algorithms use a collection of
training instances, typically called a training set (TS), to es-
timate the class label of new input vectors. Each example
in the TS has an attribute vector and a class label (i.e., the
output value). After learning from the TS, the algorithm is
presented with additional input vectors and must use some
inductive bias to decide the output value. Methods that em-
ploy this technique are also known as instance-based learn-
ers, lazy learners, case-based learners, and exemplar-based
learners [1].
The nearest neighbour (NN) algorithm [2] is one of

the most widely studied examples of instance-based meth-
ods. During classi1cation, the NN algorithm employs an
appropriate distance metric de1ned on the feature space
to determine how close a new input vector x is to each
instance in the TS, and then uses the nearest case to pre-
dict the class label of x. An improved version of this
algorithm corresponds to the k-NN rule, which consists
of assigning a new input vector to the class most fre-
quently represented among the k closest training instances.
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In general, these learners must decide which instances to
store in the TS in order to avoid excessive storage and time
complexity, and possibly to improve classi1cation accuracy
by avoiding noise and over1tting [3]. For example, the in-
stances employed to train the NN classi1er are stored in-
discriminately. This means that the NN rule has relatively
large memory requirements: it needs to search through all
available instances to classify a new input vector, so it can
become too slow during classi1cation. On the other hand,
since it stores every instance in the TS, noisy cases are also
stored, possibly degrading signi1cantly the classi1cation ac-
curacy.
Among the many proposals to reduce the storage require-

ments and time complexity of the NN algorithm (three ex-
tensive surveys can be found in [2–4]), it is worth mention-
ing those that try to obtain a more eEcient classi1cation
scheme by de1ning a reduced TS. In this context, a pos-
sible taxonomy of TS size reduction techniques considers
two main groups by distinguishing between selection and
abstraction methods. While the former family consists of
picking a subset of the original training instances, the ab-
straction (or generation) group builds new arti1cial proto-
types summarizing a number of similar instances.
One problem with using the original instances is that they

assume that optimal examples can be found in the original
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set but, in fact there may not be any vector located at the
precise points that would make the most accurate learning
algorithm. Thus, prototypes can be arti1cially generated to
exist exactly where they are needed, if such locations can be
accurately determined. This paper focuses on the problem
of reducing the TS size while trying to preserve classi1ca-
tion accuracy by means of new abstraction (or generation)
methods, which are based on three di2erent heuristics for
feature space partitioning.

2. New TS size reduction algorithms

The generation algorithms proposed here are based on
di2erent heuristics for partitioning the feature space, along
with several techniques for de1ning prototypes. They are
initially inspired by the technique proposed by Chen and
J+ozwik [5], but trying to avoid drastic changes in the form
of the decision boundaries associated with the original TS,
which constitutes one of the main drawbacks related to that
algorithm.
These reduction schemes will be called RSP1–RSP3

(RSP, reduction by space partitioning). From now on, the
original TS will be denoted by T , while S will refer to the
resulting reduced set. All these algorithms consist of divid-
ing the TS into a number of subsets by taking into account
its diameter.

De�nition 1. The diameter of a set X , say �X , is de1ned
as the distance between its two farthest points.

As in the case of most generation methods, the RSP ap-
proaches require to preprocess the original TS using an edit-
ing algorithm, in order to eliminate atypical and mislabelled
instances as well as to smooth the decision boundaries.

2.1. RSP1: diameter of a set

One problem associated with the heuristic introduced by
Chen and J+ozwik refers to the fact that in some practical
situations, all instances that belong to one of the classes can
be discarded from the TS because of the way in which the
representatives are determined. Consequently, if one class
is emptied, the learner will fail on all cases that belong to
such an eliminated class.
Taking care of this problem, the 1rst algorithm proposed

here starts by computing the diameter of T (given by its two
farthest points, say p1 and p2) and dividing the TS into two
blocks. One subset contains those instances that are nearer
p1 than p2, while the other block contains the remaining
cases. This process is repeated until obtaining b subsets.
Then, for each block, RSP1 computes one centroid for each
di2erent class existing in the subset. As a result, we will ob-
tain c prototypes per subset, being c the number of di2erent
classes covered by such a partition. Algorithmically, RSP1

can be written as follows:

1. Let bc=1 (bc is the current number of subsets in T ), and
i = 1.

2. Let B = T .
3. Find the two farthest points, p1 and p2, in B.
4. Divide the set B into two subsets B1 and B2, where

B1 = {p∈B :d(p; p1)6d(p; p2)};
B2 = {p∈B :d(p; p2)¡d(p; p1)}:

5. Let bc = bc + 1, C(i) = B1, and C(bc) = B2.
6. Let I1 = {i :C(i) contains instances from two di2erent
classes at least}, and let I2 = {i : i6 bc} − I1.

7. Let I = I1 if I1 �= ∅ else I = I2.
8. Find the two farthest points, q1(i) and q2(i), in each C(i)
for i∈ I .

9. Find the set C(j) with the largest diameter �j .
10. Let B = C(j), p1 = q1(j), and p2 = q2(j).
11. If bc ¡b (b is the number of 1nal subsets) then go to 4.
12. Find the centroids c(l; i) for each class l in subset C(i),

i = 1; 2; : : : ; b.
13. Put all c(l; i) in the resulting set S.

For this 1rst reduction technique, the number of 1nal rep-
resentatives in S cannot be determined in advance. On the
contrary, the number of blocks is given, which results in a
number of prototypes b6 |S|6 bm, where b denotes the
number of subsets to create and m is the number of classes
present in the original TS.
It is important to note that by de1ning the centroid of

instances from each class, it is expected that the decision
boundaries associated with the resulting set of prototypes
will not be displaced as much as in the case of Chen’s
algorithm. On the other hand, even more important, this
heuristic guarantees that no class is empty after applying the
algorithm.

2.2. RSP2: overlapping degree

In the previous algorithm, the partition criterion can be
stated as follows: divide the subset with the largest diameter
(Steps 9 and 10 of RSP1). The idea is that the largest subset
should probably contain more instances than any other block
and therefore, we should also obtain the highest reduction
rate. However, theory dictates that instances from a class
should be as close to each other as possible, while instances
belonging to di2erent classes should be located as far as
possible. Accordingly, from a theoretical point of view, it
could be more appropriate to split the subset with the highest
overlapping degree among instances from distinct classes.

De�nition 2. The overlapping degree of a set X , say �X , is
de1ned as the ratio of the average distance between instances
belonging to di2erent classes, D �=, and the average distance
between instances that are from the same class, D=.
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As in the case of RSP1, one prototype for each di2erent
class present in the resulting subsets is computed. The input
to the algorithm is also the number of partitions to obtain
and therefore, the number of resulting instances will be the
same as that of RSP1.

2.3. RSP3: class homogeneity

The third reduction heuristic consists of performing par-
titions until all subsets are class homogeneous. The ratio-
nale behind this is that each block should represent a cluster
of instances belonging to only one class. In this case, it is
not necessary to provide any tuning parameter (number of
blocks or number of 1nal prototypes) to the algorithm.

De�nition 3. A set X is said to be class homogeneous if
it does not contain a mixture of instances that belong to
di2erent classes.

RSP3 can employ both split criteria de1ned previously:
divide the subset with the largest diameter or that with the
highest overlapping degree. In fact, the partition criterion is
not important here because all heterogeneous subsets have
to be 1nally divided. The number of prototypes generated
by this approach will be generally much higher than that of
any other RSP scheme, especially if mislabelled and atypical
instances have not been previously removed from the TS.

Table 1
Classi1cation accuracy (Acc.) and reduction rate (Size) for each data set

1-NN Wilson’s Hart’s Chen’s RSP1 RSP2 RSP3

Cancer Acc. 94.53 94.89 91.24 95.01 94.53 94.28 94.28
Size — 3.02 96.70 99.01 98.72 98.63 96.89

Clouds Acc. 84.60 88.42 88.08 58.22 65.61 68.35 85.52
Size — 12.20 94.76 99.79 99.73 99.68 74.58

Glass Acc. 72.50 66.25 67.50 37.50 50.83 54.17 63.75
Size — 35.63 87.36 96.93 95.89 95.08 69.83

Heart Acc. 59.26 64.81 66.67 63.27 66.67 64.81 62.04
Size — 36.11 86.11 97.53 96.72 96.29 74.07

Liver Acc. 68.12 70.29 63.77 57.00 61.11 60.63 67.39
Size — 36.23 80.80 97.74 96.68 96.56 64.86

Phoneme Acc. 76.08 72.95 70.14 65.81 65.68 68.07 72.19
Size — 43.55 79.12 99.68 99.66 99.69 82.93

Pima Acc. 63.40 68.96 67.05 65.47 67.87 70.59 69.94
Size — 29.84 84.36 99.13 98.43 98.59 81.14

Satimage Acc. 79.98 79.67 78.24 64.15 75.41 76.01 78.82
Size — 6.06 77.38 99.53 99.55 99.59 75.02

Wine Acc. 73.53 73.54 71.39 65.69 67.16 66.18 73.53
Size — 30.21 83.91 96.20 95.75 95.63 87.15

Average Acc. 74.67 75.53 73.79 63.57 68.32 69.23 74.16
Size — 25.87 85.61 98.39 97.90 97.75 78.49

3. Experimental results and discussion

The reduction techniques just introduced have been em-
pirically compared with Wilson’s, Hart’s, and Chen’s al-
gorithms. The basic 1-NN classi1cation rule with 100% of
training instances has also been included as base line. To
keep the research conveniently focused, we have worked
with nine data sets, taken from the UCI Database Reposi-
tory, where all attributes are continuous. For each data set,
1ve-fold cross-validation has been used to estimate the aver-
age classi1cation accuracy and reduction rate. Experiments
consist of applying the 1-NN rule to each of the test sets,
where the training portion has been preprocessed by means
of some reduction algorithm.
For each database, we have 1rstly applied Wilson’s edit-

ing to the original TS in order to remove mislabelled in-
stances and smooth the decision boundaries. Afterwards,
Hart’s and Chen’s algorithms along with RSP methods have
been used on the Wilson’s edited set to reduce the number
of training examples. In the case of those methods that gen-
erate new prototypes, in order to compare all schemes when
containing approximately the same number of prototypes,
1rstly, RSP1 and RSP2 have been tested for several values
of the parameter b (number of subsets) and then, Chen’s al-
gorithm has been applied according to the average number
of prototypes provided by RSP1 and RSP2.
From the results reported in Table 1, some preliminary

comments can be drawn. As expected, 1-NN and Wilson’s
algorithms present the highest classi1cation accuracy almost
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without exception for all the data sets, but it is mainly due
to retaining all or most of the prototypes (Wilson’s algo-
rithm only removes 25.87% of the original training cases).
However, in general, all RSP methods achieve higher clas-
si1cation accuracy than Chen’s technique, with practically
the same reduction rate.
Hart’s results are quite similar to those of RSP3: a suf-

1ciently high reduction percentage without an important
degradation in accuracy. In fact, for many practical situ-
ations, the RSP3 algorithm along with Hart’s condensing
could be the best reduction schemes in terms of balancing
accuracy with storage reduction. However, if a particular
application needs to obtain the highest reduction rate, then
RSP1, RSP2, and Chen’s schemes provide an appropriate
solution because they show an extremely high reduction per-
centage (about 98.00%), although they yield moderate clas-
si1cation performance.
When comparing the three approaches proposed here,

RSP3 clearly shows the highest classi1cation accuracy and it
still removes many training instances (78.49% in average),
although it runs substantially slower than any other RSP al-
gorithm (it has to iterate until all subsets become class ho-
mogeneous). On the other hand, RSP1 and RSP2 eliminate
close to 98% of the prototypes and the average accuracy is
over 68%.
Finally, it is to be noted that RSP3 achieves a classi-

1cation rate close enough to that of Wilson’s (di2erences

between them are not statistical signi1cant in seven out of
the nine databases), but with a very important di2erence in
the reduction percentage (52.62% higher in average).
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