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storage requirements. Data reduction techniques are suitable to
alleviate these drawbacks. Prototype generation is an appropriate
process for data reduction, which allows the fitting of a dataset
for nearest neighbor (NN) classification. This brief presents a
methodology to learn iteratively the positioning of prototypes
using real parameter optimization procedures. Concretely, we
propose an iterative prototype adjustment technique based on
differential evolution. The results obtained are contrasted with
nonparametric statistical tests and show that our proposal consis-
tently outperforms previously proposed methods, thus becoming
a suitable tool in the task of enhancing the performance of the
NN classifier.

Index Terms— Classification, differential evolution, nearest
neighbor, prototype generation.

I. INTRODUCTION

Classification is one of the most important tasks in machine
learning and data mining [1], [2]. Most machine learning
methods build a model during the learning process, known
as eager learning methods [3], but there are some approaches
where the algorithm does not need a model. These algorithms
are known as lazy learning methods [4].

The nearest neighbor (NN) algorithm [5] and its derivatives
belong to the family of lazy learning. It has proved itself to
perform well for classification problems in many domains [2],
[6] and is considered one of the top ten methods in data mining
[7]. NN is a nonparametric classifier, which requires the stor-
age of the entire training set and the classification of unseen
cases, finding the class labels of the closest instances to them.
In order to determine how close two instances are, several
distances or similarity measures have been proposed [8]-[10].
The effectiveness and simplicity of the NN may be affected
by several weaknesses such as high computational cost, high
storage requirement, and sensitivity to noise. Furthermore, NN
makes predictions over existing data and assumes that input
data perfectly delimits the decision boundaries among classes.

Several approaches have been suggested and studied to
tackle the drawbacks mentioned above, for instance, weighting
schemes [11], [12] have been widely used to improve the
results of the NN classifier.

A successful technique that simultaneously tackles the com-
putational complexity, storage requirements, and sensitivity to
noise of NN is based on data reduction. These techniques
aim to obtain a representative training set with a lower size
compared to the original one and with similar or even higher
classification accuracy for new incoming data. Apart from
feature selection [13], data reduction can be divided into two
different approaches, known as prototype selection [14], [15]
and prototype generation (PG) or abstraction [16], [17]. The
former process consists of choosing a subset of the original
training data, while PG can also build new artificial prototypes
to better adjust the decision boundaries between classes in NN
classification.

In the specialized literature, a great number of PG tech-
niques have been proposed. Since the first approach to PNN
based on merging prototypes [18] and divide-and-conquer-
based schemes [19], many other proposals of PG were consid-
ered, for instance, Mixt_Gauss [20], ICPL [17], and RSP [21].

1045-9227/$26.00 © 2010 IEEE
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Positioning adjustment of prototypes is another perspective
within the PG methodology. It aims to correct the position of a
subset of prototypes from the initial set by using an optimiza-
tion procedure. Many proposals belong to this family, such
as learning vector quantization (LVQ) [22] and its successive
improvements [23], [24], genetic algorithms [25], and particle
swarm optimization (PSO) [26], [27].

Many existing positioning adjustment of prototype tech-
niques start with an initial set of prototypes and try to improve
the classification accuracy by adjusting it. Two schemes of
initialization are commonly used.

1) The number of representative instances for each class is
proportional to their number in the input data.

2) All the classes are represented by the same number of
prototypes.

This initialization process is their main drawback due to the
fact that this parameter can be very dependent on the problem
tackled. Some PG approaches [23], [25] compute the number
of needed prototypes to be retained automatically, but in
complex domains they require to retain many prototypes. We
propose a novel procedure to automatically find the smallest
reduced set that achieves suitable classification accuracy over
different types of problems. This method follows an iterative
prototype adjustment scheme with an incremental approach.
At each step, an optimization procedure is used to adjust the
position of the prototypes, and the method adds new prototypes
if needed. As a second contribution of this brief, we will
adopt the differential evolution (DE) [28], [29] technique as
optimizer. Our proposal will be denoted “iterative prototype
adjustment based on differential evolution” (IPADE).

In experiments on 50 real-world benchmark datasets, the
classification accuracy and reduction rate of our approach are
investigated and its performance is compared with classical
and recent PG models.

The rest of this brief is organized as follows. Section II
describes the background of PG and DE. Section III explains
the proposed algorithm IPADE. Section IV discusses the
experimental framework and presents the analysis of results.
Finally, in Section V we summarize our conclusions.

II. BACKGROUND

This section covers the background information necessary
to define and describe our proposal. Section II-A presents the
background on PG. Section II-B shows the main characteristics
of DE.

A. PG

PG is an important technique in data reduction. It has
been widely applied to instance-based classifiers and can be
defined as the application of instance construction algorithms
over a dataset to improve the classification accuracy of a NN
classifier.

More specifically, PG can be defined as follows. Let x,
be an instance where X, = (Xp1,Xp2, ..., Xpm, Xpw), With
X, belonging to a class w of Q possible classes given by
Xpo and an m-dimensional space in which x,; is the value
of the ith feature of the pth sample. Furthermore, let x;
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be an instance where X; = (X1, X2, ..., Xim, Xry), With X;
belonging to a class y, which is unknown, of Q possible
classes. Then, let us assume that there is a training set TR
which consists of n instances x,, and a test set 7S composed
of s instances x;. The purpose of PG is to obtain a prototype
generated set GS that consists of r, r < n, prototypes p,
where p, = (Py1>Pu2>---»> Pum> Puew)> Which are generated
from the examples of TR. The prototypes of the generated
set are determined to represent efficiently the distributions of
the classes and to discriminate well when used to classify the
training objects. Their cardinality should be sufficiently small
to reduce both the storage and evaluation time spent by an NN
classifier.

The PG approaches can be divided into several families
depending on the main heuristic operation followed. The first
approach that we can find in the literature, called PNN [18],
belongs to the family of methods that carry out a merging
of prototypes of the same class in successive iterations,
generating centroids. Other well-known methods are those
based on a divide-and-conquer scheme, by separating the
m-dimensional space into two or more subspaces with the
purpose of simplifying the problem at each step [19]. Recent
advances that follow a similar operation include Mixt_Gauss
[20], which is an adaptive PG algorithm considered in the
framework of mixture modeling by Gaussian distributions
while assuming a statistical independence of features, and
the RSP3 technique [21] which tries to avoid drastic changes
in the form of decision boundaries associated with TR,
which is the main shortcoming observed in the classical
approach [19].

One of the most important families of methods is based on
adjusting the position of the prototypes that can be viewed
as an optimization process. The main algorithm belonging
to this family is LVQ [22]. LVQ can be understood as an
artificial neural network in which a neuron corresponds to
a prototype and a competition weight based is carried out
in order to locate each neuron in a concrete place of the
m-dimensional space to increase the classification accuracy.
The third version of this algorithm, LVQ3, reported the best
results. Several approaches have been proposed that modify the
basic LVQ, for instance LVQPRU [23] which extends LVQ
by using a pruning step to remove noisy instances, or the
HYB algorithm [24] that constitutes a hybridization of several
prototype reduction techniques. Specifically, HYB combines
support vector machines (SVMs) with LVQ3 and executes
a search in order to find the most promising parameters of
LVQ3.

As a positioning adjustment of prototypes technique, a
genetic algorithm called ENPC was proposed for PG in
[25]. This algorithm executes different operators in order to
find the most suitable position of the prototypes. PSO was
proposed for PG in [26], [27], and they also belong to the
positioning adjustment of prototypes category of methods. The
main difference between them is the type of codification of
the particles. The PSO approach proposed in [26] codifies
a complete solution GS per particle. However, AMPSO [27]
encodes each prototype of GS in a single particle. AMPSO
has been shown to be more effective than PSO [26].
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B. DE

DE follows the general procedure of an evolutionary algo-
rithm. It starts with a population of NP candidate solutions,
the so-called individuals. The generations in DE are denoted
by G =0,1,..., Guax. It is usual to denote each individual
as a D-dimensional vector X;c = {xile, ... ,xif)G}, called a
“target vector”.

After initialization, DE applies the mutation operator to
generate a mutant vector V; g, with respect to each individ-
ual X; G, in the current population. For each target X; g,
at the generation G, its associated mutant vector V;g =
{Vi}G, R Vi’DG}. The method of creating this mutant vector
is that which differentiates one DE scheme from another. We
focus on the DE/Rand/I, which generates the mutant vector
as follows:

Vi,G = Xrl,G +F- (sz,G - Xr3,G)' (1)

After the mutation phase, the crossover operation is applied
to each pair of the target vector X; s and its corresponding
mutant vector V; ¢ to generate a new trial vector which we
denote U; . There are three kinds of crossover operators
known as “binomial,” “exponential,” and “arithmetic.”

Specifically, we will focus on the well-known
DE/CurrentToRand/I strategy [30], which generates the trial
vector U; g by linearly combining the target vector X; ¢ and
the corresponding mutant vector V; g as follows:

Ui =Xic +K - (Vig — Xic). (2)
Now incorporating (1) in (2) and simplifying, we obtain
U=Xic+K -Xn,6—Xicg)+F - (Xr6 —Xr,6). 3)

The indices i, ri, and r} are mutually exclusive integers
randomly generated within the range [1, NP], which are also
different from the base index i. The scaling factor F is a
positive control parameter for scaling the different vectors. K
is a random number from [0, 1].

When the trial vector has been generated, we must decide
which individual between X; ¢ and U; ¢ should survive in the
population of the next generation G + 1. If the new trial vector
yields an equal or better solution than the target vector, it
replaces the corresponding target vector in the next generation,
otherwise the target is retained in the population.

The success of the DE algorithm in solving a specific
problem crucially depends on the appropriately choice of its
associated control parameter values that determine the conver-
gence speed. Hence, a fixed selection of these parameters can
produce a slow and/or premature convergence depending on
the problem. Thus, researchers have investigated the parameter
adaptation mechanisms to improve the performance of the
basic DE algorithm. One of the most successful adaptive DE
algorithms is SFLSDE [31]. It uses two local search algorithms
in the scale factor space to find the appropriate parameters for
a given X, G.

ITII. TIPADE

In this section, we present and describe the IPADE approach
in depth. IPADE follows an iterative scheme in which it deter-
mines the most appropriate number of prototypes per class and
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: GS = Initialization(T'R)

: DE_Optimization(GS, TR)

¢ Accuracy,, = Evaluate(GS, TR)

. registerClass[0..Q2] = optimizable

: while Accuracy,, , <>1.0 or all classes are non —

optimizables do

[ S B

6:  lessAccuracy = 0o

7:  fori=1to Q2 do

8: if registerClass[i] == optimizable then

9: AccuracyClass [i] = Evaluate (GS, Examples
of class i in TR)

10: if AccuracyClass [i] < lessAccuracy then

11: lessAccuracy = AccuracyClass [i]

12: targetClass = i

13: end if

14: end if

15:  end for

16:  GS,_, = GS URandomExampleForClass (TR,
targetClass)

17:  DE_Optimization(GS, ,TR)

test”

18:  accuracy,, = Evaluate(GS, , TR)

19: ifaccuracy,, > Accuracy,,,  then

20: Accuracy, = accuracy,

21: GS=GS,,

22:  else

23: registerClass[targetClass] = non—optimizable
24:  end if

25: end while
26: return GS

Fig. 1. TPADE algorithm—basic structure.

their best positioning. Concretely, IPADE is divided into three
different stages: initialization (Section III-A), optimization
(Section III-B), and addition of prototypes (Section III-C).
Fig. 1 shows the pseudocode of the model proposed. In
the following, we describe the most significant instructions,
enumerated from 1 to 26.

A. Initialization

A random selection (stratified or not) of examples from TR
may not be the most adequate procedure to initialize the GS.
Instead, IPADE iteratively learns prototypes in order to find the
most appropriate structure of G S. Instruction 1 generates the
initial solution G S. In this step, GS must represent each class
with one prototype and should cover the entire search space
as much as possible. For this reason, each class distribution
is represented with its respective centroid. This initialization
was satisfactorily used by the approaches proposed in [16]
and [20]. The centroid of the class does not completely cover
the region of each class and does not avoid misclassifications.
Thus, instruction 2 applies the first optimization stage using
the initial GS composed of centroids for each class. The
optimization stage must modify the prototypes of GS using
the movement idea in the m-dimensional space, adding or
subtracting some quantities to the attribute values of the
prototypes. It is important to point out that we normalize all
attributes of the dataset to the [0, 1] range.
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B. DE Optimization for IPADE

In this section, we explain the proposal to apply the under-
lying idea of the DE algorithm to the PG problem as a position
adjusting of prototypes scheme.

First of all, it is necessary to define the solution codification.
In the proposed DE algorithm, each individual in the popula-
tion encodes a single prototype without the class label and, as
such, the dimension of the individuals is equal to the number
of attributes of the specific problem. An individual classifies
an example of TR when it is the closest particle (in terms of
Euclidean distance) to that example.

The DE algorithm uses each prototype p, of GS, provided
by the IPADE algorithm, as an initial population. Next,
mutation and crossover operators guide the optimization of
the positioning of each p, in the m-dimensional space. It is
important to point out that these operators only produce mod-
ifications in the attributes of the prototypes of G S. Hence, the
class value remains unchangeable throughout the evolutionary
cycle. We will focus on the well-known DE/CurrentToRand/1
strategy [30] to generate the trial prototypes p/, because it has
reportedly the best behavior. It can be viewed as

P, =P, +K- -, —p)+F P, —P) “4)

The examples p, , p,,, and p,, are randomly extracted
from TR and they belong to the same class as p,. In the
hypothetical case that 7R does not contain enough prototypes
of the p, class, i.e., there is not at least three prototypes of
this class in 7R, we artificially generate the necessary number
of new prototypes | 1 < j < 3, with the same class
label as p,, using little random perturbations such as P, =
(p,1 + rand[—0.1,0.1], p,» + rand[—0.1,0.1],...,p,, +
rand[—0.1,0.1], p,)-

After applying this operator, we check if there have been
values out of range [0, 1]. If a computed value is greater than
1, we truncate it to 1, and if it is lower than O, we establish
it at 0.

After the mutation process over all the prototypes of GS,
we obtain a trial solution GS’, which is constituted for each
p,,. The selection operator decides which solution GS” or G S
should survive for the next iteration. The INN rule guides this
operator to obtain the corresponding fitness value. We try to
maximize this value, so the selection operator can be viewed
as follows:

7 4
GS — [GS if accu.racy(GS) >=accuracy(GS) )
GS otherwise.

In order to guarantee a high-quality solution, we use the
ideas established in [31] to obtain a self-adaptive algorithm.
Instruction 3 evaluates the accuracy of the initial solution, mea-
sured by classifying the examples of TR with the prototypes
of GS by using the NN rule.

C. Addition of Prototypes

After the first optimization process, IPADE enters in an iter-
ative loop (instructions 5-25) to determine which classes need
more prototypes to faithfully represent their class distribution.
In order to do this, we need to define two types of classes.
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A class o is said to be optimizable if it allows the addition of
new prototypes to improve its local classification accuracy. The
local accuracy of w is computed by classifying the examples
of TR whose class is w with the prototypes kept in GS (using
the NN rule). The target class will be the optimizable class
with the least accuracy registered. From instructions 7-15, the
algorithm identifies the target class in each iteration. Initially,
all classes start as optimizable (instruction 4)

In order to reduce the classification error of the target
class, IPADE extracts a random example of this class from
TR and adds this to the current GS in a new trial set GS;. ¢
(instruction 16). This addition forces the re-positioning of the
prototypes of GS;.s; by again using the optimization process
(instruction 17) and its corresponding evaluation (instruction
18) of predictive accuracy.

After this process, we have to ensure that the new posi-
tioning of prototypes of G S;.sr, generated with the optimizer,
has reported a successful improvement of the accuracy rate
with respect to the previous GS. If the global accuracy of
the G S;es; is less than the accuracy of G S, IPADE does not
add this prototype to GS and this class is registered as non-
optimizable. Otherwise, GS = G Stes:.

The stopping criterion is satisfied when the accuracy rate is
1.0 or all the classes are registered as non-optimizable. The
algorithm returns G S as the smallest reduced set that is able
to classify the TR appropriately.

IV. EXPERIMENTAL FRAMEWORK AND ANALYSIS OF
RESULTS

This section presents the experimental framework (Sec-
tion IV-A) and the comparative study between our proposal
and other PG techniques (Section IV-B).

A. Experimental Framework

In this section, we show the issues related to the exper-
imental study. In order to compare the performance of the
algorithms, we use four measures, accuracy [1], [32], the
reduction rate measured as

Reduction rate =1 — size(GS)/size(TR) (6)

Acc-Red measured as accuracy-reduction rate, and execution
time.!

We use 50 datasets’> from the KEEL dataset repository>
[33], [34]. These datasets contain between 100 and 20 000
instances, and the number of attributes ranges from 2 to 60.
The datasets considered are partitioned using the 10-fold cross-
validation (10-fcv) procedure.

IReduction rate and execution time information can be found in the
web page.

2Datasets: abalone, appendicitis, australian, balance, banana, bands, breast,
bupa, car, chess, cleveland, coil2000, contraceptive, crx, dermatology, ecoli,
flare-solar, german, glass, haberman, hayes-roth, heart, hepatitis, housevotes,
iris, led7digit, lymphography, magic, mammographic, marketing, monks,
newthyroid, page-blocks, pima, ring, saheart, satimage, segment, sonar, spect-
heart, splice, tae, thyroid, tic-tac-toe, titanic, twonorm, wine, wisconsin,
yeast, z0o0.

3 Available at http://sci2s.ugr.es/keel/datasets.
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TABLE I
PARAMETER SPECIFICATION FOR ALL THE METHODS EMPLOYED IN THE
EXPERIMENTATION

Algorithm Parameters

IPADE Iterations of basic DE = 300/500/1000, iterSFGSS = 8,
iterSFHC = 20, F1 = 0.1, Fu = 0.9

RSP3 Subset choice = diameter

Mixt_Gauss | Reduction rate = 0.95

ENPC Iterations = 300/500/1000

AMPSO Iterations = 300/500/1000, C1 = 1.0, C2 = 1.0, C3 = 0.25,
Vmax = 1, W=0.1, X =0.5, Pr = 0.1, Pd = 0.1

LVQPRU Iterations = 300/500/1000, & = 0.1, WindowWidth = 0.5

HYB Search_Iter = 300/500/1000, Optimal_Iter = 1000
a=0.1,1 =0, Fc =0.5
Initial_Window = 0, Final_Window = 0.5
0 =0.1, 6_Window = 0.1
Initial Selection = SVM

LVQ3 Iterations = 300/500/1000, o = 0.1, WindowWidth = 0.2,
e =0.1

Many different configurations are established by the authors
of each paper for the different techniques. We focus this
experimentation on the recommended parameters proposed
by their respective authors, assuming that the choice of the
values of the parameters was optimally chosen. However, we
have done a previous study for each method, which depends
on the number of iterations performed, with 300, 500, and
1000 iterations in all the datasets. This parameter can be
very sensitive to the problem tackled. An excessive number of
iterations may produce overfitting for some problems, and a
lower number of iterations may not be enough to tackle other
datasets. For this reason, we present the results of the best
performing number of iterations in each method and dataset.
The complete set of results can be found in the associated web
site (http://sci2s.ugr.es/ipade/). The configuration parameters
of IPADE and the methods used in the comparison are shown
in Table I. In this table, the values of the parameters Fj,
F,, iterSFGSS, and iterSFHC of the IPADE algorithm
are the recommended values established in [31]. Furthermore,
Euclidean distance is used as a similarity function, and those
which are stochastic methods have been run three times per
partition.

Implementations of the algorithms can be found in the web
site associated or in the KEEL software tool [33].

B. Analysis of Results

In this section, we analyze the results obtained. Specifically,
we check the performance of the IPADE model and seven
other PG techniques.

In the scatterplot of Fig. 2, each point compares IPADE to
a second algorithm on a single dataset. The x-axis position of
the point is the accuracy of IPADE, and the y-axis position is
the accuracy of the comparison algorithm. Therefore, points
below the y = x line correspond to datasets for which IPADE
performs better than a second algorithm.

In order to test the reduction capabilities of PG methods
in comparison with IPADE, Fig. 3 shows at each point the
Acc-Red obtained on a single dataset.
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Fig. 4. Map of convergence over three different datasets.

Fig. 4 shows a graphical representation of the convergence
of the IPADE model over three different datasets. The graph
shows a line representing the accuracy rate in each step
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TABLE 11
AVERAGE RANKINGS OF THE ALGORITHMS (FA + HAPV) FOR THE
ACCURACY MEASURE

Algorithm Accuracy FA  Accuracy HAPV
IPADE 109.63 —
LVQPRU 199.66 6.4064x 104
LVQ3 203.22 6.4064x 104
RSP3 231.80 7.9160x 106
INN 236.53 4.2657x1070
AMPSO 248.11 5.0703%x10~7
ENPC 259.13 542231078
HYB 268.14 5.6781x 1079
Mixt_Gauss 272.02 3.4239x 1070
TABLE III

AVERAGE RANKINGS OF THE ALGORITHMS (FA + HAPV) FOR THE
Acc-Red MEASURE

Algorithm Acc-Red FA  Acc-Red HAPV
IPADE 53.83 —
LVQ3 125.92 0.0055

Mixt_Gauss 169.18 2.2324x105

LVQPRU 170.38 2.2324x1073

AMPSO 182.54 2.9965x 100
ENPC 267.91 9.3280x 10716
RSP3 275.32 9.9684x10~17
HYB 362.57 1.5321x 10731

INN 421.83 1.5321x 104

and its corresponding reduction rate (in brackets). The x-
axis represents the number of iterations of the main loop of
IPADE, and the y-axis represents the accuracy rate currently
achieved.

Tables II and III present the statistical analysis conducted by
nonparametric multiple comparison procedures for accuracy
and Acc-Red, respectively. More specifically, we have used
the Friedman aligned (FA) procedure [35], [36] to compute
the set of rankings that represent the effectiveness associated
with each algorithm (second column). Both tables are ordered
from the best to the worst ranking. In addition, the third
column shows the adjusted p-value with the Holm’s test
(HAPV) [35]. Note that IPADE is established as the control
algorithm because it has obtained the best FA ranking. By
using a level of significance & = 0.01, IPADE is signifi-
cantly better than the rest of the methods, considering both
accuracy and Acc-Red measures. More information about
these tests and other statistical procedures can be found at
http://sci2s.ugr.es/sicidm/.

For the sake of simplicity, we only include the graphical
and statistical results achieved, whereas the complete results
can be found at the web page associated with this brief.

Looking at Tables II and III and Figs. 2—4, we want to make
some interesting comments.

1) Fig. 2 shows that the proposed IPADE outperforms, on
average, the rest of the PG techniques with the parameter
setting established. The most competitive algorithms for
IPADE, in terms of the accuracy measure, are the LVQ3
and LVQPRU algorithms. In this figure, most of the

1989

LVQ3 and LVQPRU points are close to the y = x
line. However, the statistical test confirms that IPADE
significantly outperforms these methods.

2) The tradeoff between accuracy and reduction rate is
an important factor because the efficiency of the NN
classifier depends on the resulting number of prototypes
of the GS. Fig. 3 shows that achieving this balance
between accuracy and reduction rate is a difficult task.
IPADE is the best performing method considering the
balance between accuracy and reduction rates. In Fig. 3,
there are more points under the y = x line in comparison
with Fig. 2. Furthermore, Table III also supports this
statement, showing smaller p-values when the reduction
rate is considered.

3) Observing the map of convergence of Fig. 4, we can
highlight the DE algorithm as a promising optimizer
because it is able to reach highly accurate results very
fast. This implies that the IPADE scheme needs a small
number of iterations.

V. CONCLUSION

In this brief, we have presented a new data reduction
technique called IPADE which iteratively learns the most
adequate number of prototypes per class and their respective
positioning for the NN algorithm, acting as a PG method. This
technique uses a real parameter optimization procedure based
on DE in order to adjust the positioning of the prototypes at
each step. The large experimental study performed allowed
us to show that IPADE is a suitable method for PG in NN
classification. Furthermore, due to the fact that IPADE is a
heuristic optimization approach, as future work this technique
could be used for building an ensemble of classifiers.
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Linear Discriminant Analysis for Signatures

Seungil Huh and Donghun Lee

Abstract— We propose signature linear discriminant analysis
(signature-LDA) as an extension of LDA that can be applied to
signatures, which are known to be more informative represen-
tations of local image features than vector representations, such
as visual word histograms. Based on earth mover’s distances
between signatures, signature-LDA does not require vectorization
of local image features in contrast to LDA, which is one of
the main limitations of classical LDA. Therefore, signature-
LDA minimizes the loss of intrinsic information of local image
features while selecting more discriminating features using label
information. Empirical evidence on texture databases shows
that signature-LDA improves upon state-of-the-art approaches
for texture image classification and outperforms other feature
selection methods for local image features.

Index Terms— Earth mover’s distance, feature selection, linear
discriminant analysis, signature, texture classification.

I. INTRODUCTION

Linear discriminant analysis (LDA) is one of the most
popular feature selection methods for classification tasks and
has been widely used in machine learning and computer
vision [1]-[3]. Numerous extensions of LDA have been ex-
ploited to improve the original LDA [4]-[11]. One of the main
limitations of classical LDA is that it can be applied to data
only in a vector space. Therefore, the given data, each of which
is not represented as a vector, must be transformed into vectors
before applying LDA.

Recently, local feature approaches have been widely used
for texture image classification, object recognition, and image
matching tasks because these approaches are descriptive as
well as robust to occlusion and background clutter [12]-[14].
After obtaining local features through detection of the region
of interest [12], [15]-[17] and descriptor computation [13],
[18], visual word histograms comprising the frequencies of
each visual word in images are typically employed to represent
a large number of local features [13].

However, visual histograms often suffer from quantiza-
tion or binning problems [19]. To resolve the problems,
signatures [19] (see Section II for the definition) can be
utilized to represent local image features instead of visual
histograms. Previous works [18], [20] have shown empirically
that signature-based methods generally outperform visual his-
tograms on texture classification and object recognition tasks.
Signatures are more informative than visual word histograms
in that a signature is expressed not as a vector but as a collec-
tion of cluster center vectors and their relative weights. How-
ever, in contrast to histograms, signatures are beyond the scope
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