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Evolutionary prototype selection has shown its effectiveness in the past in the prototype
selection domain. It improves in most of the cases the results offered by classical pro-
totype selection algorithms but its computational cost is expensive. In this paper, we

analyze the behavior of the evolutionary prototype selection strategy, considering a com-
plexity measure for classification problems based on overlapping. In addition, we have
analyzed different k values for the nearest neighbour classifier in this domain of study to
see its influence on the results of PS methods. The objective consists of predicting when
the evolutionary prototype selection is effective for a particular problem, based on this
overlapping measure.
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1. Introduction

Prototype Selection (PS) is a classical supervised learning problem where the objec-
tive consists in, using an input data set, finding those prototypes which improve
the accuracy of the nearest neighbour classifier.28 More formally, let us assume
that there is a training set T which consists of pairs (xi, yi), i = 1, . . . , n, where xi

defines an input vector of attributes and yi defines the corresponding class label.
T contains n samples, which have m input attributes each, and they should belong
to one of the C classes. Let S ⊆ T be the subset of selected samples resulting
from the execution of a prototype selection algorithm. The small size of the subset
selected decreases the requirements of computational resources of the classification
algorithm while keeping the classification performance.1

In the literature, another process used for reducing the number of instances
can be found. This is the prototype generation, which consists of building new
examples.20,21 Many of the examples generated may not coincide with the examples
belonging to the original data set, due to the fact that they are artificially generated.
In some applications, this behavior is not desired, as it could be the case in some
data set from the UCI Repository, such as Adult or KDD Cup’99, where information
appears about real people or real connections, respectively and if new instances were
generated, it could be possible that they do not correspond to valid real values. In
this paper, we focus our attention on the prototype selection domain, keeping the
initial characteristics of the instances unchanged.

There are many proposals of prototype selection algorithms.16,35 These methods
follow different strategies for the prototype selection problem, and offer different
behaviors depending on the input data set. Evolutionary algorithms are one of the
most promising heuristics.

Evolutionary Algorithms (EAs)9,15 are general-purpose search algorithms that
use principles inspired by natural genetic populations to evolve solutions to prob-
lems. The basic idea is to evolve a population of chromosomes, which represents
plausible solutions to the problem, by means of a competition process. EAs have
been used to solve the PS problem in Refs. 5, 22 and 33 with promising results.

The EAs offer optimal results but at the expense of high computational cost.
Thus, it would be interesting to characterize their effective use in large-scale clas-
sification problems beforehand.36 We consider their work as effective when they
improve the classification capabilities of the nearest neighbors classifier. To reach
this objective, we analyze the data sets characteristics prior to the prototype selec-
tion process.

In the literature, several studies have addressed the characterization of the
data set by means of a set of complexity measures.2,19 Mollineda et al. in Ref. 25
presented a previous work where they analyzed complexity measures like over-
lapping and non-parametric separability considering the Wilson’s Edited Nearest
Neighbor34 and the Hart’s Condensed Nearest Neighbor17 as prototype selection
algorithms.
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In this study, we are interested in diagnozing when the evolutionary proto-
type selection is effective for a particular problem, using the overlapping measure
suggested in Ref. 25. To address this, we have analyzed its behavior by means
of statistical comparisons with classical prototype selection algorithms considering
data sets from the UCI Repository26 and different values of k neighbors for the
prototype selection problem.

In order to do that, the paper is set out as follows. Section 2 is devoted to
describe the evolutionary prototype selection strategy and the algorithm used in
this study which belongs to this family. In Sec. 3, we present the complexity measure
considered. Section 4 explains the experimental study and Sec. 5 deals with the
results and their statistical analysis. Finally, in Sec. 6, we point out our conclusions.

2. Evolutionary Prototype Selection

EAs have been extensively used in the past both in learning and preprocess-
ing.5,6,11,27 EAs may be applied to the PS problem5 because it can be considered
as a search problem.

The application of EAs to PS is accomplished by tackling two important issues:
the specification of the representation of the solutions and the definition of the
fitness function.

• Representation: Let us assume a training data set denoted T with n instances.
The search space associated with the instance selection is constituted by all the
subsets of T . A chromosome consists of the sequence of n genes (one for each
instance in T ) with two possible states: 1 and 0, meaning that the instance is or
not included in the subset selected respectively (see Fig. 1).
• Fitness function: Let S be a subset of instances coded in a chromosome that

needs to be evaluated. We define the fitness function that combines two values:
the classification performance (clasper) associated with S and the percentage of
reduction (percred) of instances of S with respect to T :

Fitness(S) = α · clasper + (1− α) · percred. (1)

where 0 ≤ α ≤ 1 is the relative weight of these objectives. The k-Nearest Neighbor
(k-NN) classifier is used for measuring the classification rate, clasper, associated
with S. It denotes the percentage of objects from T correctly classified using only

1

0 1 1 0 0001

3 6

2 3 71 5 84 6
T

S

Fig. 1. Chromosome binary representation of a solution.
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S to find the nearest neighbors. For each object y in T, the nearest neighbors are
searched among those in the set S\{y}, whereas, percred is defined as:

percred = 100 · | T | − | S || T | . (2)

The objective of the EAs is to maximize the fitness function defined, i.e.
maximize the classification rate and minimize the number of instances obtained.
We have used the value α = 0.5 considering the suggestion of the authors.5

As EA, we have selected the CHC10 model. This decision is based on its best
competitive behaviour showed in Ref. 5. Figure 2 describes the evolutionary proto-
type selection process.

During each generation, Evolutionary Instance Selection CHC (EIS-CHC)
method develops the following steps:

(1) It uses a parent population to generate an intermediate population of individ-
uals, which are randomly paired and used to generate potential offspring.

(2) Then, a survival competition is held where the best chromosomes from the
parent and offspring populations are selected to form the next generation.

EIS-CHC also implements a form of heterogeneous recombination using HUX, a
special recombination operator. HUX exchanges half of the bits that differ between
parents, where the bit position to be exchanged is randomly determined. EIS-CHC
also employs a method of incest prevention. Before applying HUX to two parents,
the Hamming distance between them is measured. Only those parents who differ
from each other by some number of bits (mating threshold) are mated. The initial
threshold is set at L/4, where L is the length of the chromosomes. If no offspring
are inserted into the new population then the threshold is reduced by one.

No mutation is applied during the recombination phase. Instead, when the pop-
ulation converges or the search stops making progress (i.e. the difference threshold
has dropped to zero and no new offspring are being generated which are better than

Test Set (TS)Training Set (T)

Evolutionary Prototype
Selection Algorithm

Input Data Set (D)

Output Prototype Subset
Selected  (S) Classifier

k−Nearest Neighbour

Fig. 2. Evolutionary prototype selection process.
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any members of the parent population) the population is reinitialized to introduce
new diversity to the search. The chromosome representing the best solution found
along the search is used as a template to reseed the population. Reseeding of the
population is accomplished by randomly changing 35% of the bits in the template
chromosome to form each of the other N − 1 new chromosomes in the population.
The search is then resumed.

The fitness function (see expression 1) combines two values: the classification
rate (using k-NN) associated with S and the percentage of reduction of instances
of S with respect to T .

The pseudocode of CHC appears in Algorithm 1.

3. Data Set Characterization Measure

Classification problems can be difficult for three reasons:19

• Certain problems are known to have nonzero Bayes error.18 This is because some
classes can be intrinsically ambiguous or due to inadequate feature measurements.
• Some problems may present complex decision boundaries so it is not possible to

offer a compact description of them.30

input : A population of chromosomes Pa

output: An optimized population of chromosomes Pa

t ← 0;1

Initialize(Pa,ConvergenceCount);2

while not EndingCondition(t,Pa) do3

Parents ← SelectionParents(Pa);4

Offspring ← HUX(Parents);5

Evaluate(Offspring);6

Pn ← ElitistSelection(Offspring,Pa);7

if not modified(Pa,Pn) then8

ConvergenceCount ← ConvergenceCount −1;9

if ConvergenceCount = 0 then10

Pn ← Restart(Pa);11

Initialize(ConvergenceCount);12

end13

end14

t ← t +1;15

Pa ← Pn ;16

end17

Algorithm 1: Pseudocode of CHC algorithm
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• Sparsity induced by small sample size and high dimensionality affect the gener-
alization of the rules.24,29

Real life problems are often affected by a mixture of the three previously men-
tioned situations.

The prediction capabilities of classifiers are strongly dependent on data com-
plexity. This is the reason why various recent papers have introduced the use of
measures to characterize the data and to relate these characteristics to the classi-
fier performance.30

In Ref. 19, Ho and Basu define some complexity measures for classification
problems of two classes. Singh in Ref. 32 offers a review of data complexity mea-
sures and proposes two new ones. Dong and Kothari in Ref. 8 propose a fea-
ture selection algorithm based on a complexity measure defined by Ho and Basu.
Bernadó and Ho in Ref. 4 investigate the domain of competence of XCS by means of
a methodology that characterizes the complexity of a classification problem by a set
of geometrical descriptors. In Ref. 23, Li et al. analyze some omnivariate decision
trees using the measure of complexity based in data density proposed by Ho and
Basu. Baumgartner and Somorjai in Ref. 3 define specific measures for regularized
linear classifiers, using Ho and Basu’s measures as reference. Mollineda et al. in
Ref. 25 extend some Ho and Basu’s measure definitions for problems with two or
more classes. They analyze these generalized measures in two classic PS algorithms
and remark that Fisher’s discriminant ratio is the most effective for PS. Sánchez
et al. in Ref. 30 analyze the effect of the data complexity in the nearest neighbors
classifier.

In this case, according to the conclusions of Mollineda et al.,25 we have con-
sidered Fisher’s discriminant ratio, which is a geometrical measure of overlapping,
for studying the behavior of evolutionary prototype selection. Fisher’s discriminant
ratio is presented in this section.

The plain version of Fisher’s discriminant ratio offered by Ho and Basu19 com-
putes the degree of separability of two classes according to a specific feature. It
compares the difference between the class means with respect to the sum of class
variances. Fisher’s discriminant ratio is defined as follows:

f =
(µ1 − µ2)2

σ2
1 + σ2

2

(3)

where µ1, µ2, σ2
1 , σ2

2 are the means and the variances of the two classes, respectively.
A possible generalization for C classes is proposed by Mollineda et al.,25 and

considers all feature dimensions. Its expression is the following:

F1 =
∑C

i=1 ni · δ(m, mi)∑C
i=1

∑ni

j=1 δ(xi
j , mi)

(4)

where ni denotes the number of samples in class i, δ is the metric, m is the overall
mean, mi is the mean of class i, and xj

i represents the sample j belonging to class
i. Small values of this measure indicate that classes present strong overlapping.
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4. Experimental Framework

To analyze the behavior of EIS-CHC we include in the study two classical proto-
type selection algorithms and three advanced methods, which will be described in
Sec. 4.1. In Sec. 4.2 we present the algorithms’ parameters and data sets considered.

4.1. Prototype selection algorithms

The classical PS algorithms used in this study are: an edition algorithm (Edited
Nearest Neighbor34) and a boundary conservative or condensation algorithm (Con-
densed Nearest Neighbor17). The advanced methods used in the comparison are:
an edition method (Edition by Normalized Radial Basis Function16), a condensa-
tion method (Modified Selective Subset1) and a hybrid method, which combines
edition and condensation (Decremental Reduction Optimization Procedure35). The
use of edition schemes is motivated by the relevance of the analysis of data sets
with low overlapping, where there are noisy instances inside the classes, not just in
the boundaries. This is a situation where the filter PS algorithms could present an
interesting behavior. The use of condensation methods is the objective of the study
of the effect introduced by PS algorithms which keeps the instances situated in the
boundaries, where the overlapping appears.

Their description is the following:

• Edited Nearest Neighbor (ENN).34 The algorithm starts with S = T and then
each instance in S is removed if it does not agree with the majority of its k

nearest neighbors. ENN filter is considered the standard noise filter and it is
usually employed at the beginning of many algorithms. The pseudocode of ENN
appears in Algorithm 2.
• Condensed Nearest Neighbor (CNN).17 It begins by randomly selecting one

instance belonging to each output class from T and putting them in S. Then,
each instance in T is classified using only the instances in S. If an instance is mis-
classified, it is added to S, thus ensuring that it will be classified correctly. This

input : Training set of examples T

output: Subset of training examples S

S ← T ;1

foreach example xi in S do2

if xi is misclassified by its k nearest neighbours in S then3

S ← S −{xi};4

end5

end6

return S ;7

Algorithm 2: Pseudocode of ENN algorithm
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input : Training set of examples T

output: Subset of training examples S

S ← ∅ ;1

fail ← true;2

S ← S
⋃{xc1 , xc2 , ..., xcC}, where xci is any example that belongs to class i;3

while fail = true do4

fail ← false;5

foreach example xi in T do6

if xi is misclassified by using S then7

S ← S
⋃{xi};8

fail ← true;9

end10

end11

end12

return S ;13

Algorithm 3: Pseudocode of CNN algorithm

process is repeated until there are no misclassified instances in T . The pseudocode
of CNN appears in Algorithm 3.
• Modified Selective Algorithm (MSS).1 Let Ri be the set of all xi in T such that xj

is of the same class of xi and is closer to xi than the nearest neighbor of xi in T of
a different class than xi. Then, MSS is defined as that subset of T containing, for
every xi in T , that element of its Ri that is the nearest to a different class than
that of xi. An efficient algorithmic representation of MSS method is depicted in
Algorithm 4.
• Edition by Normalized Radial Basis Function (ENRBF).16 It is an Edition algo-

rithm based on the principles of Normalized Radial Basis Functions (NRBF).
NRBF estimates the probability of cth class given a vector x and training set T :

P (c|x, T ) =
∑

i∈Ic

Ḡi(x; xi), (5)

where Ic = {i : (xi, yi) ∈ T ∧ yi = c}, and Ḡi(x; xi) is defined by

Ḡi(x; xi) =
G(x; xi, σ)∑n

j=1 G(x; xj , σ)
, (6)

and G(x; xi, σ) (σ is fixed) is defined by G(x; xi, σ) = e−
||x−xi||2

σ .
ENRBF eliminates all vectors if only:

∃c �=yi P (yi|x, T i) < αP (c|x, T i). (7)

• Decremental Reduction Optimization Procedure 3 (DROP3).35 Its removal cri-
terion can be restated as: Remove xi if at least as many of its associates in T

would be classified correctly without xi. Each instance xi in T continues keeping
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input : Training set of examples T

output: Subset of training examples S

Q ← T;1

Sort the examples {xj}nj=1 according to increasing values of enemy distance2

Dj ;
foreach example xi in T do3

add ← false;4

foreach example xj in T do5

if xj ∈ Q and d(xi, xj) < Dj then6

Q ← Q −{xj};7

add ← true;8

end9

end10

if add then S ← S
⋃{xi};11

if Q = ∅ then return S;12

end13

Algorithm 4: Pseudocode of MSS algorithm

a list of its k + 1 nearest neighbors in S, even after xi is removed from S. This
means that instances in S have associates that are both in and out of S, while
instances that have been removed from S have no associates. DROP3 changes the
order of removal of instances. It initially sorts the instances in S by the distance
to their nearest enemy. Instances are then checked for removal beginning at the
furthest instance from its nearest enemy. Additionally, DROP3 employs a noise
filter based on ENN at the beginning of this process.

4.2. Data sets and parameters

The experimental study is defined in two aspects: data sets and algorithms’ param-
eters. They are as follows:

• Data Sets: The data sets used have been collected from the UCI Repository26

and their characteristics appear in Table 1. We consider using a ten-fold cross-
validation in all data sets.
• Parameters: The parameters are chosen considering the authors’ suggestions in

the literature. For each one of the algorithms there are:

(a) CNN: It has not any parameter to be fixed.
(b) ENN: Minimum number of neighbours (k) = 3.
(c) MSS: It has not any parameter to be fixed.
(d) ENRBF: σ = 1.0 and α = 1.0.
(e) DROP3: It has not any parameter to be fixed.
(f) EIS-CHC: evaluations = 10000, population = 50 and α = 0.5.
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Table 1. Data sets.

Instances Features Classes

Australian 689 14 2
Balanced 625 4 3
Bupa 345 7 2
Car 1727 6 4
Cleveland 297 13 5
Contraceptive 1472 9 3
Crx 689 15 2
Dermatology 366 34 6
Ecoli 336 7 2
Glass 214 9 7
Haberman 305 3 2
Iris 150 4 3
Led7digit 500 7 10
Lymphography 148 18 4
Monks 432 6 2
New-Thyroid 215 5 3
Penbased 10992 16 10
Pima 768 8 2
Vehicle 846 18 4
Wine 178 13 3
Wisconsin 683 9 2
Satimage 6435 36 7
Thyroid 7200 21 3
Zoo 100 16 7

The algorithms were run three times for each partition in the ten-fold cross-
validation. The measure F1 is calculated by averaging the F1 obtained in each
training set of the ten-fold cross-validation.

5. Results and Analysis

This section contains the results and their statistical analysis, considering different
values of k for the k -NN classifier to study the effect of the data complexity and
the prototype selection.

We present the results obtained after the evaluation of the data sets by the
prototype selection algorithms. The results for 1-NN, 3-NN and 5-NN are presented
in Tables 3, 5 and 7, respectively, whose structure is the following:

• In the first column we offer the name of the data sets, ordered increasingly con-
sidering measure F1.
• The second column contains measure F1 computed for the data set in increasing

order.
• The third column shows the mean test accuracy rate offered by the k -NN classifier

in each data set.
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• The following columns present the mean test accuracy rate and the mean
reduction rate offered by CNN, ENN, MSS, ENRBF, DROP3 and EIS-CHC
respectively.

In Tables 3, 5 and 7, the values in bold indicate that the test accuracy rates are
equal to or higher than the ones offered by the k -NN (1-NN, 3-NN or 5-NN) using
the whole data set (that is, without a previous PS process). The separation line in
the tables, fixed in F1 = 0.410, is based on the previous works of Mollineda et al.25

used as reference.
Associated to each table, we have included a statistical study based on

Wilcoxon’s test (see Appendix A to find its description) to analyze the behav-
ior of the algorithms. This test allows us to establish a comparison over multiple
data sets,7,13,14 considering those delimited by the F1 measure. Tables 2, 4 and 6
show the statistical results corresponding to 1-NN, 3-NN and 5-NN, respectively.
The structure of these tables is the following:

• The first column indicates the result of the test considering a level of significance
α = 0.10. With the symbol > we represent that the first algorithm outperforms
the second one. The symbol = denotes that both algorithms behave equally and
finally in the < case, the first algorithm is worse than the second one.
• The second column is the sum of the rankings associated to the first algorithm

(see Appendix A for more details).
• The third column is the sum of the rankings related to the second algorithm.
• The fourth column shows the p-value.

In the following subsections we present the results for the case of 1-NN (Sec. 5.1),
3-NN (Sec. 5.2) and finally 5-NN (Sec. 5.3).

5.1. Results and analysis for the 1-nearest neighbor classifier

Tables 2 and 3 present the results of the 1-NN case.

Table 2. Wilcoxon test over 1-NN.

1-NN with F1 < 0.410. 1-NN with F1 > 0.410.

WILCOXON R+ R- p-value WILCOXON R+ R- p-value

1-NN > CNN 46 9 0.059 1-NN > CNN 98 7 0.004
1-NN < ENN 5 50 0.022 1-NN = ENN 45.5 59.5 0.6
1-NN > MSS 53 2 0.009 1-NN > MSS 89.5 15.5 0.023
1-NN = ENRBF 12 33 0.214 1-NN > ENRBF 82.5 22.5 0.046
1-NN = DROP3 36 9 0.11 1-NN > DROP3 97 8 0.005
1-NN < EIS-CHC 1 54 0.007 1-NN = EIS-CHC 57 48 0.778
EIS-CHC > CNN 55 0 0.005 EIS-CHC = CNN 75 30 0.158
EIS-CHC > ENN 55 0 0.005 EIS-CHC = ENN 48 57 0.778
EIS-CHC > MSS 55 0 0.005 EIS-CHC = MSS 61 44 0.594
EIS-CHC > ENRBF 47 8 0.047 EIS-CHC > ENRBF 99 6 0.004
EIS-CHC > DROP3 55 0 0.005 EIS-CHC > DROP3 95 10 0.008
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The analysis of Tables 2 and 3 is the following:

• F1 low [0,0.410] which represents strong overlapping: The evolutionary algorithm
(EIS-CHC) outperforms 1-NN when F1 is low. EIS-CHC presents the best accu-
racy rates among all the PS algorithms in most of the data sets with the strongest
overlapping. Wilcoxon’s test supports this observation (Table 2).
• F1 high [0.410,. . . ], being small overlapping: There is not any improvement of

PS algorithms with respect to Without PS, as statistical results indicate. The
benefit of the use of the PS algorithms in these kind of data sets using the 1-NN
is the reduction of the size of the data set. Only ENN and EIS-CHC obtain the
same performance as not using PS. The comparison between EIS-CHC and the
rest of the models indicates that the accuracy of EIS-CHC is always better than
or equal to that of the method compared (Table 2).

Considering the results that CNN and MSS present in Table 3 we must point
out that the PS algorithms which keep boundary instances (condensation methods)
notably affect the classification capabilities of the 1-NN classifier, independently of
the overlapping of the data set. DROP3 obtains a performance similar to that of
not using PS, due to the fact that it integrates a noise filter in its definition.

Paying attention to the relation between F1 and the behavior of EIS-CHC, we
can point out that the use of this measure can help us to decide when the use
of EIS-CHC improves the accuracy rates of 1-NN classifier in a concrete data set,
previously to its execution.

5.2. Results and analysis for the 3-nearest neighbor classifier

Tables 4 and 5 present the results of the PS methods with the 3-NN classifier.
The analysis of Tables 4 and 5 is the following:

• F1 low [0,0.410] (strong overlapping): Similarly to the case with the 1-NN, EIS-
CHC outperforms the Without PS when F1 is low. EIS-CHC presents the best
accuracy rates among all the PS algorithms in all data sets with the strongest
overlapping. Wilcoxon’s test in Table 4 confirms this affirmation.
• F1 high [0.410,. . . ] (small overlapping): The situation is similar to the previous

case. There is no improvement of PS algorithms with respect to 3-NN, as the
statistical results indicate (see Table 4). Only ENN and EIS-CHC obtain the
same performance as not using PS. The comparison between EIS-CHC and the
rest of the models indicates that the accuracy of EIS-CHC is always better than
or equal to that of the method compared.

Note that when k = 3, the nearest neighbor classifier is more robust in the
presence of noise than the 1-NN classifier. Due to this fact, the ENN and ENRBF
filters behave similarly to the 3-NN when F1 is lower than 0.410, according to
Wilcoxon’s test. The same effect occurs in DROP3. However, a PS process by
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Table 4. Wilcoxon test over 3-NN.

3-NN with F1 < 0.410. 3-NN with F1 > 0.410.

WILCOXON R+ R- p-value WILCOXON R+ R- p-value

3-NN > CNN 53 2 0.009 3-NN > CNN 104.5 0.5 0.001

3-NN = ENN 15.5 39.5 0.26 3-NN = ENN 63.5 41.5 0.507
3-NN = MSS 43 12 0.114 3-NN > MSS 82.5 22.5 0.064
3-NN = ENRBF 31.5 23.3 0.594 3-NN > ENRBF 91 14 0.016
3-NN > DROP3 51 4 0.017 3-NN > DROP3 99 6 0.004
3-NN < EIS-CHC 6 49 0.028 3-NN = EIS-CHC 75 30 0.158
EIS-CHC > CNN 55 0 0.005 EIS-CHC = CNN 54 51 0.925
EIS-CHC > ENN 50.5 4.5 0.021 EIS-CHC = ENN 30 75 0.158
EIS-CHC > MSS 51 4 0.017 EIS-CHC = MSS 46 59 0.683
EIS-CHC > ENRBF 47 8 0.047 EIS-CHC > ENRBF 90 15 0.019
EIS-CHC > DROP3 55 0 0.005 EIS-CHC > DROP3 104 1 0.001

EIS-CHC prior to the 3-NN classifier improves the accuracy of the classifier without
using PS and also achieves a high reduction of the subset selected.

5.3. Results and analysis for the 5-nearest neighbor classifier

Tables 6 and 7 present the results of the PS methods with the 5-NN classifier.
The analysis of Tables 6 and 7 is the following:

• F1 low [0,0.410] (strong overlapping): EIS-CHC outperforms the Without PS
when F1 is low. EIS-CHC presents the best accuracy rates among all the PS
algorithms in most of the data sets with the strongest overlapping (Table 7).
Considering Wilcoxon’s test in Table 6, only EIS-CHC improves the classification
capabilities of 5-NN which reflects the proper election of the most representative
instances in the presence of overlapping.
• F1 high [0.410,. . . ] (small overlapping): The situation is similar to the previous

case. There is no improvement of PS algorithms with respect to 5-NN, as the
statistical results indicate (see Table 6). Only ENN and EIS-CHC obtain the same
performance as not using PS. The comparison between EIS-CHC and the rest
of models indicates that the accuracy of EIS-CHC is always better than or equal
to that of the method compared.

In this case, ENN and ENRBF obtain a result similar to the previous subsection
(3-NN case), where F1 is low, but again EIS-CHC offers a significant improvement in
accuracy with respect to the use of the nearest neighbors classifier without using PS.

5.4. Summary of the analysis

Considering the previous results and analysis we can present as summary the fol-
lowing comments:

• Independently of the k value selected for the nearest neighbors classifier, when
the overlapping of the initial data set is strong (it presents low values of F1)
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Table 6. Wilcoxon test over 5-NN.

5-NN with F1 < 0.410. 5-NN with F1 > 0.410.

WILCOXON R+ R- p-value WILCOXON R+ R- p-value

5-NN > CNN 55 0 0.005 5-NN > CNN 102.5 2.5 0.002

5-NN = ENN 25 30 0.799 5-NN = ENN 76.5 28.5 0.158
5-NN > MSS 40 5 0.038 5-NN > MSS 87 18 0.03
5-NN = ENRBF 41 14 0.169 5-NN > ENRBF 93 12 0.011
5-NN > DROP3 40 5 0.038 5-NN > DROP3 100 5 0.003
5-NN < EIS-CHC 9 46 0.059 5-NN = EIS-CHC 75.5 29.5 0.136
EIS-CHC > CNN 55 0 0.005 EIS-CHC = CNN 50.5 54.5 0.9
EIS-CHC > ENN 52.5 2.5 0.011 EIS-CHC = ENN 26.5 78.5 0.116
EIS-CHC > MSS 49 6 0.028 EIS-CHC = MSS 56 49 0.826
EIS-CHC > ENRBF 52.5 2.5 0.011 EIS-CHC > ENRBF 86 19 0.035
EIS-CHC > DROP3 55 0 0.005 EIS-CHC > DROP3 104 1 0.001

EIS-CHC is a very effective PS algorithm to improve the accuracy rates of the
nearest neighbors classifier.
• When the overlapping of the data set is low, the statistical test has shown that

the PS algorithms are not capable of improving the accuracy of the k-NN without
using PS. The benefits of their use is that they keep the accuracy capabilities of
the nearest neighbors classifier, reducing the initial data set size.
• Considering the results that CNN and MSS present, we must point out that the

PS algorithms which keep boundary instances (condensation methods) notably
affect the classification capabilities of the k -NN classifier, independently of the
overlapping of the data set and the value of k.
• In the classical algorithms, the best behavior corresponds to ENN. The filter

process that ENN introduces outperforms in some cases the classification capa-
bilities of the k -NN, but the election of the most representative prototypes that
EIS-CHC develops seems to be the most effective strategy. Nevertheless, ENN in
combination with k-NN obtains similar results to k-NN when k ≥ 3, given that
the nearest neighbors classifier is more robust in the presence of noise.
• In the most advanced algorithms, the behavior coincides in most of the cases

with the equivalent in the classic algorithms; MSS behaves very similarly to
CNN and ENRBF to ENN. DROP3, as a hybrid model alike EIS-CHC, obtains
an intermediate behavior between condensation and edition methods, because
it performs adequately when strong overlapping is presented when considering
1-NN. Nevertheless, EIS-CHC always outperforms DROP3 in any case.

Paying attention to the relation between F1 and the behavior of EIS-CHC, we
can point out that the use of this measure can help us decide when the use of
EIS-CHC improves the accuracy rates of k -NN classifier in a concrete data set,
previously to its execution.

With these results in mind, we could analyze the F1 measure in a new data set
and if it is small (F1 between [0,0.410)), we can use EIS-CHC as PS method to
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improve the accuracy rate of the k -NN classifier. When F1 is greater than 0.410,
EIS-CHC offers interesting behavior, with accuracy equivalent to the obtained with-
out reduction as Wilcoxon’s test indicates, but with reduction rates larger than 90%
in most of the data sets.

6. Concluding Remarks

This paper addresses the analysis of the evolutionary prototype selection consid-
ering a complexity data set measure based on overlapping, with the objective of
predicting when the evolutionary prototype selection is effective for a particular
problem.

An experimental study has been carried out using data sets from different
domains and comparing the results with classical PS algorithms, having the F1
measure as reference. To extend the analysis of the k -NN classifier we have consid-
ered different values of k. The main conclusions reached are the following:

• EIS-CHC presents the best accuracy rate when the input data set has strong
overlapping, even improving condensation algorithms (CNN and MSS), edition
schemes (ENN and ENRBF) and hybrid methods, such as DROP3.
• EIS-CHC improves the classification accuracy of k-NN when the data sets have

strong overlapping, independently of the k value, and obtains a high reduction
rate of the data. However, ENN, ENRBF and DROP3 algorithms are not able
to improve the accuracy rate of k-NN when k ≥ 3.
• In the case of data sets with low overlapping, the results of the PS algorithms

are not conclusive so none of them can be suggested considering accuracy rates.
Therefore, their use is recommended to keep the accuracy capabilities by reducing
the initial data set size.
• Condensation algorithms, which keep the boundaries (CNN and MSS), have nor-

mally shown negative effects on the accuracy of the k -NN classifier.

As we have indicated in the analysis section, the use of this measure can help
us to evaluate a data set previously to the evolutionary PS process and decide if it
is adequate or not to improve the classification capabilities of the k -NN classifier.

The results show that when F1 is low (strong overlapping), the best accuracy
rates appear using EIS-CHC, while when F1 is high (low overlapping), the PS
algorithms do not guarantee an accuracy improvement.

As future works, the analysis of the effect of data complexity on evolutionary
instance selection for training set selection considering other well-known classifica-
tion algorithms will be studied. Another interesting research line is the measure-
ment of data complexity on imbalanced data sets when we can perform evolutionary
under-sampling.12

Appendix A. Wilcoxon Signed Rank Test

Wilcoxon’s test is used for answering this question: do two samples represent two
different populations? It is a nonparametric procedure employed in a hypothesis
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testing situation involving a design with two samples. It is the analogous of the
paired t-test in nonparametrical statistical procedures; therefore, it is a pairwise test
that aims to detect significant differences between the behavior of two algorithms.

The null hypothesis for Wilcoxon’s test is H0 : θD = 0; in the underlying
populations represented by the two samples of results, the median of the difference
scores equals zero. The alternative hypothesis is H1 : θD 	= 0, but H1 : θD > 0 or
H1 : θD < 0 can also be used as directional hypothesis.

In the following, we describe the tests computations. Let di be the difference
between the performance scores of the two algorithms on ith out of N data sets.
The differences are ranked according to their absolute values; average ranks are
assigned in case of ties. Let R+ be the sum of ranks for the data sets on which the
second algorithm outperformed the first, and R− the sum of ranks for the opposite.
Ranks of di = 0 are split evenly among the sums; if there is an odd number of them,
one is ignored:

R+ =
∑

di>0

rank(di) +
1
2

∑

di=0

rank(di)

R− =
∑

di<0

rank(di) +
1
2

∑

di=0

rank(di)

Let T be the smallest of the sums, T = min(R+, R−). If T is less than or equal
to the value of the distribution of Wilcoxon for N degrees of freedom (Table B.12
in Ref. 37), the null hypothesis of equality of means is rejected.

Obtaining the p-value associated to a comparison is performed by means of the
normal approximation for the Wilcoxon T statistic (Sec. VI, Test 18 in Ref. 31).
Furthermore, the computation of the p-value for this test is usually included in
well-known statistical software packages (SPSS, SAS, R, etc.).

References

1. R. Barandela, F. J. Ferri and J. S. Sánchez, Decision boundary preserving prototype
selection for nearest neighbor classification, Int. J. Patt. Recogn. Artif. Intell. 19(6)
(2005) 787–806.

2. M. Basu and T. K. Ho, Data Complexity in Pattern Recognition (Springer, 2006).
3. R. Baumgartner and R. L. Somorjai, Data complexity assessment in undersampled

classification of high-dimensional biomedical data, Patt. Recogn. Lett. 27(12) (2006)
1383–1389.
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