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AMPSO: A New Particle Swarm Method for Nearest
Neighborhood Classification

Alejandro Cervantes, Inés María Galván, and Pedro Isasi

Abstract—Nearest prototype methods can be quite successful
on many pattern classification problems. In these methods, a
collection of prototypes has to be found that accurately represents
the input patterns. The classifier then assigns classes based on the
nearest prototype in this collection. In this paper, we first use the
standard particle swarm optimizer (PSO) algorithm to find those
prototypes. Second, we present a new algorithm, called adaptive
Michigan PSO (AMPSO) in order to reduce the dimension of the
search space and provide more flexibility than the former in this
application. AMPSO is based on a different approach to particle
swarms as each particle in the swarm represents a single prototype
in the solution. The swarm does not converge to a single solution;
instead, each particle is a local classifier, and the whole swarm
is taken as the solution to the problem. It uses modified PSO
equations with both particle competition and cooperation and a
dynamic neighborhood. As an additional feature, in AMPSO, the
number of prototypes represented in the swarm is able to adapt to
the problem, increasing as needed the number of prototypes and
classes of the prototypes that make the solution to the problem. We
compared the results of the standard PSO and AMPSO in several
benchmark problems from the University of California, Irvine,
data sets and find that AMPSO always found a better solution than
the standard PSO. We also found that it was able to improve the
results of the Nearest Neighbor classifiers, and it is also competitive
with some of the algorithms most commonly used for classification.

Index Terms—Data mining, Nearest Neighbor (NN), particle
swarm, pattern classification, swarm intelligence.

I. INTRODUCTION

THE PARTICLE swarm optimizer (PSO) [1] is a biolog-
ically inspired algorithm motivated by a social analogy.

The algorithm is based on a set of potential solutions which
evolves to find the global optimum of a real-valued function
(fitness function) defined in a given space (search space). Par-
ticles represent the complete solution to the problem and move
in the search space using both local information (the particle
memory) and neighbor information (the knowledge of neighbor
particles).

In this paper, we shall apply both the standard PSO and
a novel PSO-based approach in classification problems. A
classifier is any system that is able to predict the class to be
assigned to a set of data (or patterns); in particular, when the
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system can use a example set of data (training data) to “learn”
how to perform its task, we talk about supervised learning. The
classifier must be able to “generalize” from the regularities ex-
tracted from data already known and assign the correct classes
to new data introduced in the system in the future.

A more specific field in classification is nearest neighbor
(NN or 1-NN) classification. NN is a “lazy” learning method
because training data is not preprocessed in any way. The class
assigned to a pattern is the class of the nearest pattern known
to the system, measured in terms of a distance defined on the
feature (attribute) space. On this space, each pattern defines
a region (called its Voronoi region). When distance is the
classical Euclidean distance, Voronoi regions are delimited by
linear borders. To improve over 1-NN classification, more than
one neighbor may be used to determine the class of a pattern
(K-NN) or distances other than the Euclidean may be used.

A further refinement in NN classification is replacing the
original training data by a set of prototypes that correctly
“represent” it. Once this is done, the resulting classifier assigns
classes by calculating distances to the prototypes, not to the
original training data, which is discarded. This means that
classification of new patterns is performed much faster, as the
number of prototypes is much less than the total number of
patterns. Besides reducing the complexity of the solution (mea-
sured by the number of prototypes), these “Nearest Prototype”
algorithms are able to improve the accuracy of the solution of
the basic NN classifiers. Note that there are other methods for
instance reduction that do not use prototypes but simply choose
part of the training set for this task [2], [3]. An evolutionary
algorithm approach to the prototype selection problem can be
found in [4].

Some work has already been done concerning PSO in classi-
fication problems. Most of it concerns rule-based classifiers; for
instance, in [5], PSO is used to extract induction rules to classify
data; the standard PSO algorithm is run several times, extracting
a single rule each time and using only unclassified patterns for
subsequent iterations; in [6] and [7], the standard PSO is used
for rule extraction in discrete classification problems. There is
also some work in fuzzy rule extraction using PSO [8].

Moreover, in [9], a complex hybrid of PSO and Ant Colony
Optimization (ACO) is proposed. In this paper, PSO is used
both to search for numeric attributes (defining rule clauses
based on intervals) and to optimize the pheromone matrix of
the ACO algorithm used for nominal attributes.

Finally, in previous work, we used a binary version of PSO
to encode induction rules; in [10], sets of induction rules are
extracted using an iterated version of the binary version of the
PSO algorithm.
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TABLE I
ENCODING OF A SET OF PROTOTYPES IN A PARTICLE FOR THE PITTSBURGH PSO

In the context of NN classification with PSO, in [11], the
swarm is used to determine the optimum position for the cen-
troids of data clusters that are then assigned the centroid class.

This paper presents two approaches to solve the problem of
prototype placement for nearest prototype classifiers.

1) In a standard approach of PSO, a potential solution is
encoded in each particle. The information that has to
be encoded is the set of prototypes and the prototypes’
classes. This approach is tested in this paper and used as
reference for the new method proposed later.

2) The second method, called Michigan PSO (MPSO), is
still related to the PSO paradigm but uses a Michigan
approach; this term is borrowed from the area of genetic
classifier systems [12], [13]. To be consistent with the de-
nominations used in that area, the standard PSO is called
“Pittsburgh PSO.” In the Michigan approach, a member
of the population does not encode the whole solution to
the problem, but only part of it. The whole swarm is
the potential solution to the problem. To implement this
behavior, movement and neighborhood rules of the stan-
dard PSO are changed. In previous work [14], the authors
compared both approaches (Pittsburgh and Michigan)
applied to the rule-discovery binary PSO algorithm. The
adaptive MPSO (AMPSO) method proposed in this paper
is based on the ideas found in [15]. This paper deals with
some problems found in the previous work, including a
new version of the algorithm with population adaptation,
and compares the results with the Pittsburgh approach.

The advantages of the Michigan approach versus the conven-
tional PSO approach are the following: 1) reduced dimension
of the search space, as particles encode a single prototype and
2) flexible number of prototypes in the solution.

Moreover, a refinement of MPSO, called AMPSO, is pro-
posed. This version does not use a fixed population of particles;
given certain conditions, we allow particles to reproduce to
adapt to a situation where a particle of a single class “detects”
training patterns of different classes in its Voronoi region.

The way MPSO/AMPSO performs classification may be re-
lated to some standard clustering algorithms like Learning Vec-
tor Quantization (LVQ) [16] which also search for prototypes
that represent known data. However, the way these prototypes
are found in MPSO/AMPSO is different in the following ways.

1) Particles use both information from the training patterns
and information from the neighbor particles to affect their
movement. In LVQ and other methods, prototypes are
moved depending only on the position of patterns.

2) Particles use attraction and repulsion rules that include
inertia, i.e., velocity retained from previous iterations.

3) We use particle memory (local best position). Even in
the absence of outside influence, particles perform a local
search around their previous best positions.

In this paper, we were interested in testing MPSO/AMPSO
against algorithms of the same family; that is, prototype-based
algorithms. Among these algorithms, we have selected 1-NN
and 3-NN, LVQ, and Evolutionary Nearest Prototype Classifier
(ENPC) [4] for comparison.

For further reference on MPSO/AMPSO properties, we com-
pare MPSO/AMPSO with classification algorithms of different
approaches: J48 (tree algorithm, implementation of C4.5, based
in trees), PART (rule-based), Naive Bayes, Support Vector
Machine (SVM), and Radial Basis Function Neural Network
(RBFNN) [17] classifiers, which are successfully applied to
several classification problems in [18].

Finally, we also include some algorithms that use an evolu-
tionary approach to extract classification rules, such as GAssist
[19] and Fuzzy Rule Learning Algorithm [20].

This paper is organized as follows: Section II shows how the
problem is stated in terms of a Pittsburgh PSO; Section III de-
scribes the MPSO and AMPSO, including encoding of particles
and equations; Section IV describes the experimental setting
and results of experimentation; finally, Section V discusses our
conclusions and future work related to this paper.

II. PITTSBURGH APPROACH FOR THE NEAREST

PROTOTYPE CLASSIFIER

A. Solution Encoding

The PSO algorithm uses a population of particles whose
positions encode a complete solution to an optimization prob-
lem. The position of each particle in the search space changes
depending on the particle’s fitness and the fitness of its
neighbors.

Data to be classified are a set of patterns, defined by con-
tinuous attributes, and the corresponding class, defined by a
scalar value. Depending on the problem, attributes may take
values in different ranges; however, before classification, we
shall scale all the attributes to the [0, 1] range. We are aware
that this process may have an effect on the classifier accuracy,
so the scaled data sets are the ones used to perform all the
experiments.

A prototype is analogous to a pattern, so it is defined by a set
of continuous values for the attributes, and a class. As a particle
encodes a full solution to the problem, we encode a set of
prototypes in each particle. Prototypes are encoded sequentially
in the particle, and a separate array determines the class of each
prototype. This second array does not evolve, so the class for
each prototype is defined by its position inside the particle.

Table I describes the structure of a single particle that can
hold N prototypes per class, with D attributes and K classes.
For each prototype, classes are encoded as numbers from 0 to
K − 1, and the sequence is repeated until prototype N · K. The
total dimension of the particle is N · D · K.
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B. Fitness Function

The Fitness function used to evaluate a particle is simply the
classification success rate (1).

To calculate it, first, each pattern in the training data set is
assigned the class of the nearest prototype from the prototypes
encoded in the particle. If the assigned class matches the
expected class of the pattern, we count it as a “Good Classi-
fication.” The ratio of “Good classifications” to the number of
patterns in the data set is the particle’s fitness

Pittsburgh Fitness =
Good Classifications
Number of patterns

· 100. (1)

Equation (1) is also used to obtain the overall success rate of
the swarm. Once the execution of the algorithm is finished, the
prototypes in the best particle obtained are used to classify the
validation (test) set. Then, the success rate calculated using (1)
over this data set is the result of the algorithm.

C. Algorithm Equations

We shall use the “standard PSO” described in [21], where
the authors detail what should be considered a standard version
of the algorithm and provide indications about selection of
parameters and neighborhood structures.

In brief, PSO uses a real-valued multidimensional space as
search space, defines a set of particles located in that space, and
evolves the position of each particle using

vt+1
id = χ

(
vt

id+c1 · ψ1 ·
(
pt

id−xt
id

)
+c2 · ψ2 ·

(
pt

gd−xt
id

))
(2)

xt+1
id = xt

id+vt+1
id (3)

where the meanings of symbols are
vt

id component in dimension d of the ith particle veloc-
ity in iteration t;

xt
id same for the particle position;

c1, c2 constant weight factors;
pi best position achieved so far by particle i;
pg best position found by the neighbors of particle i;
ψ1, ψ2 random factors in the [0, 1] interval;
χ constriction factor.
The neighborhood of the particle may either be composed

of the whole swarm (global best, or “gbest” topology) or
only a subset of the swarm (local best, or “lbest” topologies).
Moreover, some versions of PSO use dynamic neighborhoods,
where the relationship between particles changes over time.

III. MPSO ALGORITHM FOR THE NEAREST

PROTOTYPE CLASSIFIER

In the MPSO we propose, each particle represents a potential
prototype to be used to classify the patterns using the NN rule.
The particle position is interpreted as the position of a single
prototype. Movement rules are modified, so instead of finding
a best position common to each particle, different particles try
to optimize a “local fitness” function that takes into account the
performance of the particle in its local environment.

TABLE II
ENCODING OF A SET OF PROTOTYPES IN A WHOLE SWARM IN THE MPSO

Each particle has also a class; this class does not evolve
following the PSO rules, but remains fixed for each particle
since its creation. As classes take part in particle interaction,
the swarm is no longer homogeneous, and particles may be
considered divided in several types or species.

In the sections that follow, we describe this encoding and
the pseudocode for MPSO. Some concepts that differ over
the standard PSO are introduced in the pseudocode and are
explained in detail in the referenced sections.

The basic variations in equations are the introduction of a
repulsion force and the use of a dynamic definition of the
neighborhood of a particle. When moving, each particle selects
another one from what we call a “noncompeting” set as a leader
for attraction, and a second one from a “competing” set as a
leader for repulsion. Both neighborhoods are defined dynam-
ically on each iteration and take into account the particles’
classes.

As an improvement of the basic algorithm, we finally intro-
duce the possibility of particle creation. We call this version
AMPSO. Such mechanism permits the swarm population to
adapt to the problem: It is able to grow the number of possible
prototypes to use and to modify the class distribution of the
prototypes. Whenever a particle detects that it is the closest to
patterns of different classes, it has a chance to spawn particles
of the required classes. New particles start in the same posi-
tion as the original particle but move independently from that
point on.

A. Solution Encoding

As previously stated, each particle encodes a single proto-
type, and as such, the dimension of the particles is equal to
the number of attributes of the problem. A particle classifies
a pattern when it is the closest particle (in terms of Euclidean
distance) to that pattern.

Besides its position, each particle is assigned a class. Class
is an attribute of the particle and does not change during the
iteration of the algorithms. In MPSO, the swarm has to be
initialized with enough particles of each class to represent
the problem; while in the adaptive version (AMPSO), besides
initialization, new particles may appear, and their classes are
determined by the patterns they must classify.

Table II represents the structure of a swarm with N · K
particles in a problem with D attributes and K classes. Each
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particle corresponds to a single prototype, so the swarm
contains N prototypes per class in the problem. Classes are
assigned from 0 to K − 1 to particles, and the sequence is
repeated until the last prototype (N · K). The dimension of
each particle is D.

If Tables I and II are compared, we see that the structure
of a single particle in the Pittsburgh PSO is analogous to the
structure of a whole MPSO swarm.

B. Algorithm Pseudocode and Movement

Our algorithm is based on the PSO algorithm but performs
some extra calculations and has an extra cleaning phase. Our
additions are explained in the following sections. The overall
procedure follows.

1) Load training patterns.
2) Initialize swarm; dimension of particles equals number of

attributes.
3) Insert N particles of each class in the training patterns.
4) Until maximum number of iterations reached or success

rate is 100%:
a) Check for particle reproduction (AMPSO only), (see

Section III-G).
b) Calculate which particles are in the competing and

noncompeting sets of particles for every class (see
Section III-E).

c) For each particle,
i) Calculate Local Fitness, (see Section III-D).

ii) Calculate Social Adaptability Factor, (see
Section III-F).

iii) Find the closest particle in the noncompeting
set for the particle class (attraction center), (see
Section III-E).

iv) Find the closest particle in the competing set
for the particle class (repulsion center), (see
Section III-E).

v) Calculate the particle’s next position using (4) and
(5) in Section III-C.

d) Move the particles.
e) Assign classes to the patterns in the training set using

the nearest particle.
f) Evaluate the swarm classification success using (1).
g) If the swarm gives the best success so far, record the

particles’ current positions as “current best swarm.”
5) Delete, from the best swarm found so far, the particles

that can be removed without a reduction in the classifica-
tion success value.

6) Evaluate the swarm classification success over the valida-
tion set and report result using (1).

In step 5) of the previous procedure, a reduction algorithm
is applied after the swarm reaches its maximum number of
iterations. Its purpose is to delete unused particles from the
solution. Particles are removed one at a time, starting with
the one with the worst local fitness value, only if this action
does not reduce the swarm classification success rating over the
training set. The “clean” solution is then evaluated using the
validation set.

C. Movement Equations

In MPSO, the equation that determines the velocity at each
iteration becomes

vt+1
id = χ

(
w · vt

id + c1 · ψ1 ·
(
pt

id − xt
id

)

+ c2 · ψ2 · sign
(
at

id − xt
id

)
· Sfi

+ c3 · ψ3 · sign
(
xt

id − rt
id

)
· Sfi

)
(4)

where the meanings of symbols are
vt

id component d of the ith particle velocity in
iteration t;

xt
id same for the particle position;

c1,c2, c3 constant weight factors;
pi best position achieved by particle i;
ψ1, ψ2, ψ3 random factors in the [0, 1] interval;
w inertia weight;
χ constriction factor;
ai attraction center for particle i;
ri repulsion center for particle i;
Sfi social adaptability factor;
sign() sign function, determines “direction” of

influence.
This expression allows the particle velocity to be updated

depending on four different influences.

1) The current velocity of the particle, which is retained
from iteration to iteration, called “inertia term,” same as
in the standard PSO: w · vt

id.
2) The particle’s memory of its previous best position, called

“individual term,” same as in the standard PSO: c1 · ψ1 ·
(pt

id − xt
id).

3) The current position of a particle that collaborates by
exerting an attraction force, called “attraction term”: c2 ·
ψ2 · sign(at

id − xt
id) · Sfi.

This term is different from the standard PSO attraction
term. The sign() function is used because the magnitude
of the attraction does not depend on the distance between
the two positions at

id and xt
id. If the position of the

attraction center at
id is greater than the position of the

particle xt
id (to its right), then the velocity component is

positive (to the right).
4) The current position of a particle that competes by ex-

erting a repulsion force, called “repulsion term”: c3 · ψ3 ·
sign(xt

id − rt
id) · Sfi.

This term has no analog in the standard PSO. The
sign() function is again used to determine the direction
of the velocity change. If the position of the repulsion
center rt

id is greater than the position of the particle xt
id

(to its right), then the velocity component is negative (to
the left).

In the particular case that particle ai or ri does not exist, the
respective term (attraction term or repulsion term) is ignored.

After velocity update, the particle position is calculated using
(5), which is the same equation used in the standard PSO.

xt+1
id = xt

id + vt+1
id . (5)
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D. Local Fitness Function

In the Michigan approach, each particle has a Local Fitness
value that measures its performance as a local classifier. This is
the fitness value that is used during the evolution of the swarm
to record the best position of the particle.

For this purpose, the algorithm determines the set of patterns
to which the particle is the closest in the swarm. We assign the
class of the particle to those patterns and determine whether
the class matches the expected class for the pattern (“good
classification”) or not (“bad classification”). Then, we calculate
two factors using

Gf =
∑

j∈{g}

1
dij + 1.0

(6)

Bf =
∑

j∈{b}

1
dij + 1.0

(7)

where
{g} patterns correctly classified by particle i;
{b} patterns incorrectly classified by the particle i;
dij distance between particle i and pattern j.
In both (6) and (7), we include the distance to the prototypes,

so closer patterns have greater influence in the calculation of
those factors.

Then, we use (8) to obtain the Local Fitness value for the
particle. In this formula, Total is the number of patterns in the
training set

Local Fitness =






Gf

Total + 2.0, if {g} #= ∅
and {b} = ∅

Gf−Bf

Gf+Bf
+ 1.0, if {b} #= ∅

0, if {g} = {b} = ∅.

(8)

This fitness function gives higher values (greater than +2.0)
to the particles that have only “good classifications,” and as-
signs values in the range [0.0, +2.0] to particles that classify
any pattern of a wrong class.

In the lowest range, the particles only take into account
local information (the proportion of good to bad classifications
made by itself). In the highest range, the particle fitness uses
some global information (the total number of patterns to be
classified), to be able to rank the fitness of particles with a 100%
accuracy (particles for which {b} = ∅).

Note that this function is not used to evaluate the whole
swarm; instead, whenever a Michigan swarm has to be eval-
uated, we calculate the success rate (1), like in the Pittsburgh
PSO, but using each particle as a prototype. There are more
sophisticated functions in the literature that may be used to
evaluate local fitness, to take into account the actual distribu-
tion of classes. Experimentation with other fitness functions is
desirable and will be subject for future work.

E. Neighborhood for the MPSO

One of the basic features of the Michigan swarm is that
particles do not converge to a single point in the search space.
To ensure this behavior, interaction among particles is local,
i.e., only particles that are close in the search space are able to

interact. This means that neighborhood is calculated dynami-
cally using the positions of the particles at each iteration.

Two different neighborhoods are defined for each particle at
each iteration of the algorithm.

1) For each particle of class Ci, noncompeting particles are
all the particles of classes Cj #= Ci that currently classify
at least one pattern of class Ci.

2) For each particle of class Ci, competing particles are all
the particles of class Ci that currently classify at least one
pattern of that class (Ci).

When the movement for each particle is calculated, that
particle is both:

1) Attracted by the closest (in terms of Euclidean distance)
noncompeting particle in the swarm, which becomes the
“attraction center” (ai) for the movement. In this way,
noncompeting particles guide the search for patterns of a
different class.

2) Repelled by the closest competing particle in the swarm,
which becomes the “repulsion center” (ri) for the move-
ment. In this way, competing particles retain diversity
and push each other to find new patterns of their class
in different areas of the search space.

Other authors have already used the idea of repulsion in
PSO in different ways. For instance, in [22], repulsion is used
to avoid a complete convergence of the swarm, and, in [23],
increase population diversity in the standard PSO. This allows
the swarm to dynamically adapt to changes in the objective
function.

F. Social Adaptability Factor

The social part of the algorithm (influence from neighbors)
determines that particles are constantly moving toward their
noncompeting neighbor and far from their competing neighbor.
However, particles that are already located in the proximity of a
good position for a prototype should rather try to improve their
position and should possibly avoid the influence of neighbors.

To implement this effect, we have generalized the influence
of fitness in the sociality terms by introducing a new term in the
MPSO equations, called “Social Adaptability Factor” (Sf ), that
depends inversely on the “Best Local Fitness” of the particle. In
particular, we have chosen plainly the expression in

Sfi = 1/(Best Local Fitnessi + 1.0). (9)

G. Adaptive Population

With a fixed population of particles, the MPSO is limited
in terms of representation of solutions. It can only find a
solution with a maximum number of prototypes. To prevent
this limitation, an improved version of MPSO is developed,
called AMPSO. AMPSO adjusts the number of particles and
their classes to fit the particular problem.

In AMPSO, each particle that classifies a set of patterns of
several classes has a probability to give birth to one particle for
each of classes in that set. This feature must be used with cau-
tion; there is a risk of a population explosion if the reproduction
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TABLE III
PROBLEMS USED IN THE EXPERIMENTS

rate is too high and that would worsen the computational cost
of the algorithm.

For each particle, we calculate a probability of “reproduc-
tion” (Prep) using (12). We decided to give a higher reproduc-
tion rate to particles that have a high local fitness value but
still classify some patterns of different classes. Therefore, we
introduced the best local fitness of the particle in the equation,
scaled to the interval [0, 1].

We also introduced a parameter (pr) in order to tune the
probability of reproduction. Finally, we make Prep maximum
at the start of the swarm iteration (to improve exploration), and
we decrease it lineally until its minimum when the maximum
iteration is reached.

New particles are placed in the best position of the “parent”
particle, and their velocities are randomized

Fnorm =
Best Local Fitness − Minfit

Maxfit − Minfit
(10)

Itnorm = 1.0 − Current Iteration
Maximum Iterations

(11)

Prep =Fnorm × Itnorm × pr (12)

where
Minfit minimum value for the local fitness function;
Maxfit maximum value for the local fitness function.

IV. EXPERIMENTATION

A. Problem’s Description

We perform experimentation on the problems summarized
in Table III. They are well-known real problems taken from the
University of California, Irvine, collection, used for comparison
with other classification algorithms. All the problems have real-
valued attributes, so no transformation was done on data besides
scaling to the [0, 1] interval.

We have selected problems with different number of classes
and attributes. We also include both balanced and unbalanced
problems in terms of class frequency. These problems include
some that can be efficiently solved by NN classifiers and
others in which the performance of NN classifiers may still be
improved.

For each problem and algorithm, we performed ten runs
with tenfold cross validation, which gives a total of 100 runs
over each.

TABLE IV
PARAMETERS USED IN THE EXPERIMENTS

B. Parameter Selection

In all the Pittsburgh experiments, we used ten prototypes per
class per particle, and 20 particles as population. We used the
parameters suggested in [21]. Neighborhood was “lbest” with
three neighbors. With these parameters, particle dimension be-
comes quite high for some of the problems; in this approach, di-
mension is equal to the number of attributes times the number of
classes times ten (from 120 to 540 depending on the problem).

In Michigan experiments, we used ten particles per class for
the initial swarm. Particle dimension is equal to the number of
attributes (from four to nine depending on the problem), while
the swarm initial population ranges from 20 to 60 particles.

The number of iterations was set to 300 both for the
Pittsburgh and Michigan experiments, after checking that num-
ber was roughly equal to double the average iteration in which
the best result was achieved.

In order to compare computational costs, note that, for the
given parameters, each iteration in the Pittsburgh approach
requires 20 times (the Pittsburgh population size) the number of
distance evaluations than an iteration in the Michigan approach.

The values of the swarm parameters for MPSO and AMPSO
were selected after some preliminary experimentation. This
showed that is was better to use a small value for the inertia
coefficient (w = 0.1). In all cases, velocity was clamped to the
interval [−1.0,+1.0].

Table IV summarizes the values for the rest of the
parameters.

C. Experimental Results

In this section, we describe the results of the experiments
and perform comparisons between the Pittsburgh PSO and
both versions of the MPSO: MPSO, with fixed population, and
AMPSO, with adaptive population.

We always use two tailed t-tests with α = 0.05 to determine
the significance of the comparisons. When we present the
results with significance tests, all the algorithms were compared
with the algorithm placed in the first column.

In all tables in this section, we use the following notation:
a “(+)” tag next to the result of an algorithm means that the
average result was significantly better than the result in the first
column; “(=)” indicates that the difference was not significant;
and “(−)” means that the result was significantly worse when
compared to the algorithm in the first column. We also use
boldface style to highlight the best result. When differences are
not significant, several algorithms may be marked as providing
the best result.

In Table V, we compare the average success rate of the
Pittsburgh PSO and MPSO. The results show that MPSO
achieves a better success rate than the Pittsburgh version except

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 11,2010 at 06:26:46 EST from IEEE Xplore.  Restrictions apply. 



1088 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 5, OCTOBER 2009

TABLE V
AVERAGE SUCCESS RATE (IN PERCENT), COMPARISON BETWEEN

PITTSBURGH PSO AND MPSO

TABLE VI
AVERAGE SUCCESS RATE (IN PERCENT), COMPARISON BETWEEN

MPSO AND AMPSO

TABLE VII
AVERAGE NUMBER OF PROTOTYPES IN THE SOLUTION

FOR THE THREE ALGORITHMS

for the Diabetes and Bupa data sets, where the differences are
not significant. Except for those two problems, performance of
the Pittsburgh approach was indeed poor, as shown later when
comparing Pittsburgh with other algorithms.

In Table VI, we compare the average success rate of MPSO
with the success rate of AMPSO, which includes particle
creation. It shows that AMPSO is better than MPSO in the
Diabetes problem but difference is much more significant in
the Balance Scale problem. As we can see in Table VII, the
increase in performance is directly related to AMPSO using a
much larger number of prototypes in the solution. It seems that
the original configuration in Pittsburgh PSO and MPSO (ten
particles per class) is unable to represent an accurate solution
to that problem. For the other problems, the original choice on
initialization seems enough for plain MPSO to provide a good
result, as the average success rate of AMPSO is not significantly
greater than MPSO.

In Table VII, we show the number of prototypes used in
the solution for each problem and algorithm. Even with a
fixed population, in this value we only take into account pro-
totypes that are actually used in the solution to classify at

TABLE VIII
AVERAGE NUMBER OF EVALUATIONS REQUIRED

TO REACH THE SOLUTION

least one pattern. The rest are not considered in the solution,
so the average number of prototypes in the table is less than
the maximum possible (ten prototypes per class in current
experiments).

On the other hand, AMPSO allows the swarm population to
adapt to the problem so on average it provides solutions with a
larger number of prototypes.

The increase in number of prototypes in the solution in
AMPSO is larger for the Balance Scale problem (up to 63
prototypes) and the Diabetes problem. In both cases, AMPSO
obtained better results than MPSO.

However, this was not the case in the Wisconsin problem,
where an important increase in the number of prototypes did
not lead to better results. As the result for this problem is
already better than the result of basic NN, it may happen that
NN classification cannot be improved much beyond that limit
without the application of other techniques.

In Table VIII, we show the average number of prototype
evaluations needed to reach the solution of each experiment for
each of the algorithms. The purpose of this comparison is only
to show that MPSO/AMPSO achieve their result with a lower
computational cost that the equivalent Pittsburgh approach,
when the number of distance evaluations is considered. This
factor is calculated by adding to a counter, each iteration, the
number of prototypes in the whole swarm on that iteration.
When the best solution is recorded for a experiment, we also
record the value of this counter.

For MPSO and AMPSO, the number of evaluations is similar
in order of magnitude. The AMPSO needed more evaluations
due to the dynamic creation of particles. However, both versions
of the MPSO use less evaluations than the Pittsburgh PSO for
each of the problems, except for the Iris problem. In the Iris
data set, it seems that the Pittsburgh PSO is stuck in a local
minimum, as the result in terms of accuracy is poor.

In other problems, values for the Pittsburgh PSO experiments
are significantly greater because each of the particles in the
Pittsburgh swarm encodes the same number of prototypes than
the whole equivalent Michigan swarm. That is, if the Pittsburgh
swarm has a population of N particles, then on each iteration, it
performs N times the number of distance evaluations than the
Michigan swarm.

In Table IX, the results of AMPSO are compared to the
results of NN and prototype-based algorithms. For this compar-
ison, AMPSO is used as the reference algorithm for significance
tests.
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TABLE IX
SUCCESS RATE ON VALIDATION DATA, COMPARISON OF AMPSO VERSUS NN AND PROTOTYPE-BASED ALGORITHMS

TABLE X
SUCCESS RATE ON VALIDATION DATA, COMPARISON OF AMPSO VERSUS OTHER CLASSIFICATION ALGORITHMS

For comparison, we have used our own experimentation
because published studies are not always usable to perform a
proper comparison. This can be due to differences in the data
sets, normalization procedure and/or validation strategy (leave-
one-out, N -fold cross validation, etc.). The WEKA [24] tool
was used with this purpose as it is widely used, and the included
algorithm implementations are well tested.

Regarding the ENPC algorithm [4], it is an Evolutionary
Algorithm with specific operators that allow for prototype
reproduction, competition, and extinction. For experimentation,
we have used the original implementation from the authors.

Results show that AMPSO performs at least as well as the
basic NN classifiers (both 1-NN and 3-NN) on these problems.
AMPSO is significantly better than these algorithms in five out
of seven cases. The algorithm is able to improve the result
because of the placement of the prototypes and probably also
due to the elimination of the effect of noise in training patterns.
However, this latter point should be tested explicitly in further
experiments.

Compared to LVQ and ENPC, AMPSO is also shown to be
very competitive, as only ENPC gives a better result for one of
the problems.

However, Pittsburgh PSO approach is not so competitive,
only being able to produce good results in the Bupa and Balance
Scale problems.

The results of AMPSO are compared to the results of
commonly used classification algorithms in Table X. For this
comparison, AMPSO is used as the reference algorithm for
significance tests.

The algorithms in Table X are of two classes. The first five
are nonevolutionary algorithms that are based in quite different
learning paradigms:

1) J48, an implementation of the C.45 tree-based algorithm;
2) PART, a rule-based classifier;

3) SMO is an SVM method;
4) RBFNN, an implementation of RBFNNs, that have suc-

cessfully been applied to these problems [18].
The other two algorithms obtain classification rules using an

underlying evolutionary algorithm. Experiments with these two
algorithms were performed using the Keel [25] tool.

1) GAssist-ADI [19] searches for classification rules en-
coded using adaptive discrete intervals.

2) Fuzzy Rule Learning Algorithm [20], that extracts fuzzy
rules also using a GA.

Results suggest that, for these problems, AMPSO outper-
forms J48 and PART algorithms, and also both of the GA-based
algorithms (GAssist and Fuzzy Rule Extraction). However,
Naive Bayes, SMO, and RBFNN are much harder to improve.
Overall, AMPSO is the best or equal to the best algorithm in
five of the problems.

In the Glass problem, AMPSO is significantly better than
any other algorithm. Moreover, ENPC improves all the rest
significantly. This suggests that, for this problem, evolutionary
placement of prototypes is a good solution. To our knowledge,
for this problem, AMPSO has the best success rate in literature.

V. CONCLUSION

The purpose of this paper is to study different versions of
PSO applied to continuous classification problems. With this
goal, we develop three different versions of Nearest Prototype
Classifiers. These algorithms are used to locate a small set of
prototypes that represent the data sets used for experimentation
without losing classification accuracy.

The first version is an application of the standard PSO, that
we call Pittsburgh PSO. In this case, we encode of a full set
of prototypes in each particle. However, this produces a search
space of high dimension that prevents the algorithm achieving
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good results. As a first alternative, we propose MPSO, in which
each particle represents a single prototype, and the solution is
a subset of the particles in the swarm, thus reducing the search
space in an effort to obtain better performance.

In both algorithms, a maximum number of prototypes has to
be specified for each class in the data set; this is a parameter for
the algorithm and its value becomes a limit in the complexity of
the solution that may be encoded. To reduce this limitation, we
propose a version of MPSO, called AMPSO, which adaptively
changes both the number of particles in the swarm and the class
distribution of these particles. In this algorithm, only the initial
population has to be specified, and the total number of particles
of each class may increase during the run of the algorithm.

The MPSO algorithms (both MPSO and AMPSO) introduce
a local fitness function to guide the particles’ movement and
dynamic neighborhoods that are calculated on each iteration.
These mechanisms ensure particles do not converge to a single
point in the search space. Particles are grouped in neighbor-
hoods that depend on their class; each particle competes and
cooperates with the closest neighbors to perform classification
of the patterns in its proximity.

We have tested the algorithm in seven well-known bench-
mark problems that use continuous attributes. We have found
that the results of AMPSO and MPSO are always equal to
or better than the standard NN classifiers. In most cases, the
number of prototypes that compose the solutions found by
both MPSO algorithms is quite reduced. This proves that an
MPSO can be used to produce a small but representative set
of prototypes for a data set. The adaptive version (AMPSO)
always produces equal or better solutions than MPSO; it is able
to increase accuracy by increasing the number of prototypes in
the solution in some of the problems. As for the Pittsburgh PSO,
its results never improve the results of the Michigan versions
and have higher computational costs.

When the results are compared to other classifiers, AMPSO
can produce competitive results in all the problems, specially
when used in data sets where the 1-NN classifier does not
perform very well. Finally, AMPSO outperforms significantly
all the algorithms on the Glass Identification data set, where
it achieves more that 10% improvement on average, being the
best result found in literature up to this moment on this data set.

It is clear that further work could improve the algorithm
performance if it makes AMPSO able to adaptively tune im-
portant parameters (such as the reproduction and deletion rate)
to the problem. Moreover, any technique that may improve
NN classifiers’ performance could be applied to AMPSO, such
as using a different distance measure or using more than one
neighbor for classification.

In summary, our proposed MPSO is able to obtain Nearest
Prototype classifiers which provide better or equal results than
the most used classification algorithms in problems of different
characteristics. Compared to the standard Pittsburgh approach,
the Michigan versions provide the following advantages.

1) They attain better results than the Pittsburgh PSO ap-
proach due to the reduction in the dimensionality of
search space. This means they can also reduce the com-
putational cost.

2) This approach provides the possibility to adjust the com-
plexity of the solution in an adaptive manner. When used
(in AMPSO), the resulting algorithm may compete with
most of the mainly used classification algorithms.

3) It provides an easy way of implementing competitive and
cooperative subsets of the population, as opposed to the
Pittsburgh approach in which all the particles interact
equally with all their neighbors.

As a result, we think that a Michigan approach for PSO
is worth generalization and further investigation in other
applications.
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