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Abstract In this paper, a hybrid genetic approach is

proposed to solve the problem of designing a subdatabase

of the original one with the highest classification perfor-

mances, the lowest number of features and the highest

number of patterns. The method can simultaneously treat

the double problem of editing instance patterns and

selecting features as a single optimization problem, and

therefore aims at providing a better level of information.

The search is optimized by dividing the algorithm into self-

controlled phases managed by a combination of pure

genetic process and dedicated local approaches. Different

heuristics such as an adapted chromosome structure and

evolutionary memory are introduced to promote diversity

and elitism in the genetic population. They particularly

facilitate the resolution of real applications in the chemo-

metric field presenting databases with large feature sizes

and medium cardinalities. The study focuses on the double

objective of enhancing the reliability of results while

reducing the time consumed by combining genetic explo-

ration and a local approach in such a way that excessive

computational CPU costs are avoided. The usefulness of

the method is demonstrated with artificial and real data and

its performance is compared to other approaches.

Keywords Feature selection � Genetic algorithm �
Heuristics � Classification � k-nearest neighbor method

1 Introduction

Automated database exploitation remains a challenge for

pharmaceutical companies. It requires the selection of new

compounds with potent specific biological properties in the

search for new active leads [1, 2]. These strategies involve

the use of large compound libraries which are both costly

and time-consuming, and require the development of

mathematical models to manage chemical properties. It is

now well established that despite technological progress,

exploiting and mining large quantities of data requires the

help of powerful algorithms. This entails incorporating pre-

processing stages to avoid blind numerical search and to

promote data interpretability. The relevance of pattern

recognition systems is basically linked to the method of

classification but is highly dependent on measured features

representing the pattern. A feature selection stage can

significantly reduce the size and complexity of data, and

may provide an efficient preprocessing element to reduce

the time or space required in practice by the algorithms.

For many applications where comprehensibility and visu-

alization are crucial issues, it would be well worth running

a data reduction technique before any further algorithm in

order to obtain such a size reduction. The basic challenge

for pharmaceutical companies is to have a single system to

estimate the classification potential of a given database in a

reasonable time while having an understandable view of its

internal structure. A database is presented as a series of

sample patterns described by a set of features and one of

the possible categories of the class label. By designing a

sub database with the highest classification performances,
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the lowest number of features and the highest number of

patterns, crucial information can be obtained. It is worth

noting that the presence of too many ‘‘bad’’ patterns and

irrelevant features is likely to make the traditional classi-

fication process applied on the whole database inefficient.

In this case, the classification performances are very low

and do not constitute a source of information even if more

than 50% of patterns can be perfectly discriminated by the

classes present. This removing process can first simplify

the determination of the global behavior and second may

provide guidance in discovering the causes of the abnormal

behavior of the underlying applications, indirectly

improving the interpretability.

In fact, the need consists in simultaneously selecting

relevant features, and in ‘‘cleaning’’ the database by

reducing the number of patterns, two basically divergent

objectives. The first objective addresses feature selection

[3, 4], i.e., a problematic and challenging issue extensively

studied in the literature. It can be done by complete, heu-

ristic and random methods and aims at making the model

performance estimation more reliable while improving the

discrimination accuracy. The second objective is related to

edition approaches [5] having the role of removing ‘‘bad

patterns (examples)’’ or outliers coupled generally with

condensing techniques [6] to select only ‘‘critical patterns’’.

Outliers are defined as data points which are very different

from the rest of the data based on some measurement. The

real difficulty is to find tradeoffs between removing too

many correct patterns and leaving some small overlap

among classes. Many algorithms have been proposed in

recent years for outlier detection [7] and this field of

research seems to be of great interest in areas such as fraud

(Credit card, Computer intrusion, Telecommunication

Fraud, voting irregularity, public health...). Although many

studies have been devoted to feature and pattern selection

separately [8], very few algorithms have been presented

that could cope with the particular double feature selection

problem [9, 10] studied in this paper. It can however, be

viewed as a search problem where the challenge is to

obtain the optimal global solution with a minimum number

of experiments. Many search algorithms such as simulated

annealing [11], random recursive search [12], tabu search

[13], hill climbing [14] and GAs [15] (genetic algorithms)

can be good candidates to solve this type of problem. GAs

are one of the best-known techniques for solving optimi-

zation problems. Promising results have been reported in

many areas and their reputation for selection problems is

certain. In the dual selection problem, the data to be han-

dled are often numerous and represented in high

dimensional spaces. Although new technologies reduce the

problem of excessive processing time, it is a fact that

standard GAs may fail [16], particularly when applied to

chemometric problems involving many features

(sometimes several hundreds) and patterns. Furthermore,

the precise role [17–19] of the genetic parameters can

seriously obstruct obtaining global convergence, as the

most appropriate parameters are dependent on the problem

to be solved, the population model and the genetic algo-

rithm performance used. Concretely, the main challenge in

GAs is to maintain both an effective search and a good

selection pressure. This challenge has attracted the atten-

tion of many researchers, and GA weaknesses are subject

to various promising developments [20–22] to make them

more applicable.

In this paper, a hybrid genetic approach is proposed to

solve the problem of designing a subdatabase of the ori-

ginal one with the highest classification performances, the

lowest number of features and the highest number of pat-

terns. The GA will converge to a solution based on these

three objectives. While the result may not be optimal with

reference to the Bayes theory, it will nevertheless provide a

more comprehensive view of the database internal structure

than the initial set. The aim of this proposal is to provide all

the elements to implement an operational system satisfying

the double demands of efficiency and speed, from the

definition of a valid chromosome to a method for intelli-

gently combining genetic and local approaches to

compensate for their respective weaknesses.

In order to do this, the paper is set out as follows.

Section 2 summarizes the existing related work in different

research areas and presents our contribution. In Sect. 3, we

introduce our hybrid genetic approach and explain the

different heuristics implemented in order to satisfy the

double demands of efficiency and speed. In Sect. 4, we

present the different data sets for the experiments and deal

with the results and analysis. Section 5 concludes the

paper.

2 Related work and contribution

2.1 Related work

2.1.1 Feature selection

There exists a vast amount of literature (See Dash [23] for a

survey and Piramuthu [24] for recent comparisons) on

feature selection as central in many areas involving clas-

sification problems. Feature selection methods are often

classified into two categories [3, 25]: filtering approaches

which aim at selecting features independently of the

learning algorithm, and the wrapper approach which uses a

criterion dependent on the performances of the learning

algorithm. The wrapper approaches considered here are

globally better but only at great computational expense.

Feature selection can be performed by complete, heuristic
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and random methods [26], and aims at making the model

performance estimation more reliable while improving the

discrimination accuracy. Complete approaches are not

computationally feasible in practice and heuristic approa-

ches are the most widely used. Among these heuristic

methods one can mention the well-known relief method

[27] and its variants, the focus method [28], which selects a

pool of features on the basis of their individual power of

discrimination. The relief assigns weights to features using

the randomly sampled instances. The weights are calcu-

lated from the relative relevance of that feature to making

class discrimination. Then, the algorithm consists in

choosing all the features with a weight greater than or equal

to a threshold. Despite good reported results, there appear

to be some limitations to considering that the best feature

space among all the possible combinations is the one which

comprises only the best individual features, without taking

into account their possible synergy. Various statistical

approaches [29, 30] have also been proposed. Unlike the

first approaches, they are rather considered as multiselec-

tive since they aim to select a pool of features from a multi-

dimensional space. The most popular sequential search

algorithms for feature selection are forward sequential and

backward sequential selection [31]. These algorithms begin

with a feature subset and sequentially add or remove fea-

tures until some termination criterion is met. Despite their

inherent simplicity and the fact that they are not optimal

they continue to be widely used for different applications.

They are however, often very slow and very dependent on

the initial directions, which limits the exploration of the

feature space. For instance, a relevant feature is unlikely to

be selected during the ascendant step as its contribution is

masked by the current feature distribution. For the same

reason, a relevant feature can be rejected during the

descendant procedure. Random approaches are fairly

recent [32], but have reported interesting results despite

their simplicity. For example, Skalak [33] selects proto-

types and features simultaneously (RMHC-PF1) by random

mutation hill climbing. By using a simple characteristic

function bit vector representation, and allowing only one

bit to be mutated at each iteration, he obtains respectable

classification results on four known databases. In a similar

category, a number of feature selection techniques based on

evolutionary approaches [34] have also been proposed (See

Jain and Zongher [35, 36] for some evaluations). The

classical way is to consider a representation in which

individual chromosomes are bit-strings and the fitness

function is related to the classification performances of the

training algorithm. Random and evolutionary techniques

appear promising and can lead to better spaces than sys-

tematic heuristic approaches. While they constitute a better

exploration tool, they are however intrinsically less stable.

As a result, convergence towards the optima is not always

guaranteed. Zhang [37] has recently proposed a feature

selection technique using the tabu search method that leads

to interesting results compared to other approaches,

including GAs.

It is a fact that feature selection is still a challenging

issue despite a great amount of progress in this field.

Hybrid techniques combining random and heuristic tech-

niques are very complementary and hence likely to produce

better results despite a more complex implementation.

2.1.2 Editing techniques and outlier detection

The main objective of edition methods is to reduce a native

database in order to obtain a subset of relevant patterns

leading to more accurate classifiers. It is important to dis-

tinguish between different editing techniques. Some aim at

removing bad instances to eliminate outliers and possible

overlap among classes from a given set of prototypes.

Others aim at preserving classification competence as

defined in [38] by discarding the cases which are super-

fluous or harmful to the classification process, thereby

conserving only the critical instances. As editing methods

are closely related to the nearest neighbors (NN) [39], they

are often coupled with condensing methods or include data

condensation to some extent in their processes. In this case,

the ultimate objective is to find the smallest set of instances

which enables the classifier to achieve a nearly similar (or

better) classification accuracy to that of the original set. In

any cases, this smallest set of instances enables to deduce

training sets without irrelevant examples on the basis of

well-classified patterns. Many methods have been proposed

by different scientific communities, the first one being the

‘‘condensed nearest neighbor rule’’ presented by Hart [40].

The idea of CNNR is to find incrementally a consistent

subset S of the original database such that every member of

the database is correctly classified when a 1NN rule is

applied to S. By considering S as reference points for the

1NN rule, this instance selection scheme defines a very

simple classifier requiring limited storage and gives a

classification accuracy close to that obtained when the

entire set is considered. See for example on the same

principle the ‘‘reduced nearest neighbor rule’’ by Gates

[41] or the ‘‘iterative condensation algorithm’’ by Swonger

[42]. A series of instance-based learning methods (IB) is

presented in [43]. The basic idea of these methods is that

they seek to discard superfluous instances which can be

correctly classified by the KNN scheme with the remaining

instances. The DROP family methods [44] are among the

most popular in the pattern recognition community. Based

on new heuristics, they aim at discarding the non-critical

instances by starting with the original set and reduce each

instance in an ordered way if at least as many of its
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associates can be correctly classified without it. More

recently we can find several approaches using evolutionary

algorithms which give promising results [45, 46]. Gener-

ally surveys [47–49] on the subject show that there appears

to be no clear scheme that is superior to all the others. In

this paper, we are rather interested in editing techniques,

which aim at removing only ‘‘bad’’ instances or outliers. It

is worth mentioning that different communities (roughly

the ‘‘pattern recognition’’ and the ‘‘data mining’’ commu-

nity) have proposed editing methods independently, and

more surprisingly, there has been to our knowledge no

comparison reported in the literature between them. This is

probably because the research area and the context

(supervised/unsupervised, feature space dimensionalities,

dataset sizes...) from which they originate are different.

The difficulties, however, are the same. Outliers are basi-

cally defined as data points, which are very different from

the rest of the data based on some measure and therefore

considered as atypical data. The reasons for the presence of

outliers are diverse: these data can be completely incon-

sistent as resulting from noise, exception or simply so far

from the other data to explain the underlying mechanism

generated by the selected features. We describe the work of

the data mining community (for a complete review see

[50]), and give more details concerning the methods pro-

posed by the pattern recognition community.

2.1.2.1 Data mining area Some methods model data sets

as a collection of points in a multi-dimensional space, and

provide tests based on concepts such as distance, density,

and convex-hull depth (see [51] for a review of these

methods). Distance based outlier approaches are the most

well known and probably the simplest, as they do not

require any knowledge about the pattern distribution. They

are generally based on the study of the k nearest examples

calculated from a given metric. Different techniques are

known: they use different heuristics and manipulate

appropriate metrics, the basic idea being to consider a point

as normal when it is relatively close to its neighbors and

abnormal in the opposite case.

Other methods assume an underlying probability model

representing the data and find outliers based on the rela-

tionship with this model. Recent work by Shekhar et al.

[52] introduced a method for detecting spatial outliers in

graph data sets. The method is based on the distribution

property of the difference between an attribute value and

the average attribute value of its neighbors. Chang-Tien

Lun et al. [53] propose three spatial outlier detection

algorithms to analyze spatial data in order to reduce the

risk of falsely claiming regular spatial points as outliers.

The idea is to compare the attribute of each point with the

attribute values of its neighbors by means of a comparison

function. The first two algorithms (r and z algorithms) are

iterative and differ by their comparison functions. Once an

outlier has been detected, its attribute value is modified so

that it will not impact the subsequent iterations negatively.

Then, by replacing the attribute value of the outlier by the

average attribute value of its neighbors it avoids normal

points close to the true outliers being claimed as possible

outliers. The median algorithm defines the neighborhood

function differently. The attribute value is chosen to be the

median of the attribute values of its k nearest neighbors, the

motivation being that the median is a robust estimator of

the center of the sample. The ‘‘editing by ordered projec-

tion’’ EOP proposed by Jesus S. Aguilar et al. [54] is based

on the projection of the examples in each dimension. It

presents some interesting characteristics such as a consid-

erable reduction in the number of examples from the

database, lower computational cost due to the absence of

distance calculations, and conservation of the decision

boundaries. Despite its simplicity, the results reported used

as a preprocessing method for the C4.5 classifier tree [55]

are very interesting. As mentioned in [56], most of the

proposed methods are more applicable to low dimensional

versions and lose their algorithmic effectiveness for the

high dimensional case due to the sparseness of the data.

2.1.2.2 Pattern recognition area Wilson editing [57]

consists in removing any examples misclassified by its k

nearest neighbors. It assumes that these examples are noisy

and then acts as a noise-filtering pass. It leads to smoother

boundaries between classes, and as mentioned in [58],

Wilson reported improved classification accuracy over a

large class of problems when using the edited set rather

than the original, unfiltered set. Repeating Wilson editing is

identical to Wilson’s approach. It consists in repeating the

Wilson editing method until there is no change in the ref-

erence set. Multi-edit [59] is also a derived version of

Wilson’s approach. It consists in repeating Wilson editing

to N random subsets of the original dataset until no more

examples are removed. Citation-editing [60] is derived

from Wilson editing. Instead of considering only the k

nearest neighbors of each example yi for the removal, the

method also considers the c nearest cities having among

their k nearest neighbors yi. If the class of the majority

among the (k + c) examples is different from the class of yi

then yi is removed from the dataset.

The Depuration algorithm [61] is based on a different

philosophy. It consists in removing some ‘‘bad’’ examples

while changing the class labels of some other examples.

Two parameters k and k0 have to be set according to

(k + 1)/2 \ = k0\ = k. The idea is to consider the k

nearest neighbors of each yi example of the database. If a

class label c is held by at least k0 nearest neighbors, yi is set
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to c otherwise it is removed from the database. Two new

editing approaches have been derived for the Depuration

algorithm. The RelabelOnly algorithm is a version of the

Depuration algorithm without the removing step. The Re-

moveOnly algorithm is a version of the Depuration

algorithm without the ‘‘relabel’’ step.

The Neural Network Ensemble Editing algorithm [62]

follows the same scheme as the RelabelOnly algorithm using

the neural networks generalization capability even in the

presence of noise. By combining the classification results of

a set of neural networks trained on the dataset, it is possible to

change the label of a given example if needed.

2.1.3 Main trends in genetic algorithms

The particular double feature selection problem studied in

this paper can be viewed as a search problem where the

challenge is to obtain the optimal global solution with a

minimum number of experiments. The reputation of GAs

for solving multi-optimization problems makes them good

candidates. Diversity of individuals and a selecting pres-

sure within a genetic population are two key elements in

GAs. Although they aim at opposite goals, they need to

cohabit to encourage the best algorithm convergence. The

first element promotes the presence of chromosomes at

different parts of the search space to enable an efficient

exploration. Without an active diversity in the search, the

search is likely to be trapped in a local optimum as chro-

mosomes are too ‘‘alike’’, and make the genetic

transformations inefficient. The second element encourages

the survival of the best chromosomes, and therefore the

creation of similar chromosomes in a very small subset of

the space. Without a minimum of pressure, the search is

similar to a random walk search, and has little chance of

converging towards one optimum. While one of the most

interesting features in GAs is the flexibility of the tech-

nique, choosing the right genetic parameters to control

population evolution is time consuming and sometimes

impractical. Parameters are not independent, are applica-

tion dependent and should vary to match the evolution

process. The issue of controlling the values of various

parameters of an evolutionary algorithm is one of the most

important and promising areas of research in evolutionary

computation (see [63] for a review). Most of the work in

parameter adaptation [64–66] has focused on adaptating

mutation, crossover rates and population sizes and despite

encouraging results it seems difficult to extract general

rules for a given problem.

Niching methods (See [67] for a complete introduction)

have been developed to counteract the convergence of the

population to a single solution by maintaining a diverse

population of members throughout its search. By analogy

with nature, a niche can be viewed as a subspace in the

environment that can support different types of life [68].

The two most popular niche methods are sharing and

crowding. Fitness sharing was introduced by Goldberg and

Richardson [69] and applied successfully to a number of

difficult and real-world problems [70]. Fitness sharing

modifies the search landscape by adapting chromosome

fitness values so that the regions with a dense population

are penalized, and the others rewarded. Typically, the

shared fitness of an individual i is defined as fsh;i ¼ fi/mi

where mi is the niche count, given by mi ¼
Pn

j¼1

shðdijÞ;
where n is the number of chromosomes in the population,

dij represents a distance between the ith and jth chromo-

some based on genotype or phenotype, and sh() defines a

decreasing function (from 1 to 0) measuring the amount of

sharing or similarity between two chromosomes. The most

widely used sharing function is defined by sh(x) = 1 – x/d

if x \ d otherwise sh(x) = 0, d representing a threshold

distance expected to delineate the niche regions.

It should ideally produce high values inside the same

niche (‘‘intra’’) and low values ‘‘inter’’ niches in order to

develop the potential of each niche independently without

overlapping. This remains an open problem, even if dif-

ferent ways [71, 72] of improving the sharing functions

have been proposed. Fitness sharing can also be accom-

plished via intelligent crossover (IC). For example, Youang

[73] proposes a new crossover operation where the cross-

over points may be different in two parents in order to

create offspring on different parts of the two parents. His

idea is to force the exploration of other regions of a search

space even when most of the individuals are located in the

same region. For example, two identical parents can pro-

duce one different offspring using an asymmetric two-point

crossover, which is impossible in standard two-point

crossover. Although the efficiency of the method seems to

be application-dependent, the paper nevertheless shows

through different simulations that the approach can out-

perform standard two-point crossover.

One of the most widely implemented crowding tech-

niques is tournament selection [74]. In tournament

selection, a set of individuals is randomly chosen from the

current population and the best of this subset is placed in the

next population without undergoing other genetic opera-

tions, the size of the tournament controlling the amount of

selection pressure and hence convergence speed. The basic

idea of crowding methods is then to encourage the insertion

of new chromosomes in the population by replacing the

most similar ones. The initial work of De Jong [75] con-

sisted in replacing the most similar chromosome of a

random subset of the entire population. Given the difficulty

of maintaining more than two local optima in the population

due to the stochastic errors in the replacement of population

members, Mahfoud [76] proposed deterministic crowding
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(DC) which introduces a notion of competition between

children and parents. Each child ci (i = 1, 2), resulting from

the crossover between two parents p1 and p2 and optionally

from mutation operations, replaces the nearest parent if it

has a higher fitness. DC results in two sets of tournaments:

p1 against c1 and p2 against c2 or p1 against c2 and p2 against

c1. The set of tournaments that yields the closest competi-

tions is held. DC is reputed to be better than sharing

approaches but can however, suffer from crossover inter-

actions between different niches. Restricted Tournament

Selection [77] initially selects two chromosomes A and B

from the population, and forms two new chromosomes A0

and B0 through crossover and mutation operations. A0 and

B0 are then placed into the population as in a steady state

GA (only two offspring are produced at each generation).

For each of A0 and B0, w (windowsize) more members of the

population are scanned, and the closest among the group to

A0 and B0 is saved for further processing (say A00 and B00).
A00 competes against A0 and B00 competes against B0 and the

winners are inserted in the new population. Several methods

including variants of DC such as elitist recombination [78],

keep-best reproduction [79] and correlation family-based

selection [80] are presented and compared in [81] through

six test functions and three-world problems. In this paper,

the author proposes a new replacement strategy for steady-

state genetic algorithms based on a measure for the con-

tribution of diversity and the fitness function, which

outperforms other replacement strategies presented in the

literature. Despite the progress in the GA field and its

promising results, it is now well ‘‘established’’ (chiefly by

practioners) that pure GA are not well suited to fine tuning

search in complex search spaces, and particularly that the

amount of parameterization can lead to extremely high

computation costs to obtain good efficiencies. This entails

incorporating additional techniques to obtain reliable results

in the context of real applications. Even if experimental

researchers and theoreticians are particularly divided on the

issue of hybridization [82], several techniques have been

reported in the GA literature. These include Genetic Local

Search, often called memetic/hybrid algorithms [83], Ran-

dom Multi-Start and others. Random multi-start local

search has been one of the most commonly used techniques.

In this technique, a number of solutions are generated ran-

domly at each step, local search is repeated on these

solutions, and the best solution found during the entire

optimization is kept. Complete and introductory studies

related to hybrid approaches can be found in [84–86],

applications in the field of chemometrics in [87, 88] and

more recent advances in [89]. Although a huge number of

papers dealing with memetic algorithms architectures and

design principles have appeared in the last 10 years, the

diversity of algorithmic design space explored is relatively

small [90]. Many of them are too time-consuming as they

require considerable tuning of the local search and evolu-

tionary parts of the algorithm. Although the philosophy of

memetic algorithms is always the same, it appears that each

particular application requires its own memetic algorithm.

In [91] for example memetic algorithms are presented for

the traveling salesman problem (TSP), quadratic assign-

ment problem (QAP), minimum graph coloring problem

(MSG) and for protein structure prediction (PSP).

2.1.4 Dual selection

The particular double feature selection problem studied in

this paper can be viewed as a search problem where the

challenge is to obtain the highest classification perfomance

with the best datasubset. It can be then seen as a specific

multi-objective problem. While traditional mathematical

approaches offer a variety of solutions, evolutionary

algorithms seem particularly suitable to solve multi-

objective optimization problems because they deal simul-

taneously with a set of possible solutions in a single run of

the algorithm. A number of multi-objective evolutionary

algorithms have been successfully reported in the literature

for several years. The techniques can be classified in Non-

Pareto and Pareto Techniques [92]. Non-Pareto techniques

do not directly incorporate the concept of Pareto Optimum

and are generally efficient but better adapted to managing

only a few objectives. The most well-known are the

weighting approaches which aim at combining all the

objectives into a single objective by aggregation. The

VEGA method [93] proposed by Schaffer consists in

stratifying the population in several sub-populations, each

having different objectives to manage. As mentioned in

[94], this method is a criterion-based approach where each

time a chromosome is chosen for reproduction, potentially

a different objective will decide which member of the

population will be copied into the new population. Tech-

niques which directly incorporate the concept of Pareto

Optimum were first proposed by Goldberg [95]. Some

approaches use for example the dominance rank, i.e., the

number of chromosomes by which a chromosome is

dominated, to determine the fitness value. Diversity and

elitism preservation are central in multi-objective prob-

lems, and the most recent and widely-used approaches [96]

integrate these aspects. As the problem of selecting

simultaneous features and instance patterns are essentially

handled by the aggregating approach, we limit this review

to the most closely related methods and leave the reader

interested in this global area to read dedicated papers (See

[97–99] for tutorials/surveys and [100] for a more specific

paper). Papers related to the simultaneous selection of

features and instances are very few in number, and

unquestionably the most famous are those by Skalak [101]
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and Kuncheva [102]. All of them aim to design optimal

nearest classifiers. It is worth mentioning that our objective

is different as we aim at finding the largest pattern set

which will predict the ability of the database to discrimi-

nate the classes, and not the smallest pattern set containing

critical instances for a 1NN classification. They do how-

ever, address a similar double selection problem in terms of

problem complexity and are therefore considered as the

closest references for this paper. We have already men-

tioned the work of Skalak in 2.1 as his idea of performing

selection by random mutation hill climbing can serve for

selecting prototypes (RMHC) and features separately or

simultaneously (RMHC-PF1). Even if this solution appears

incomplete as there is no mechanism to drive the final size

of the different sets, the results obtained are impressive

related to its simplicity. Kuncheva [102] has proposed

initial work for the simultaneous editing of patterns and

selecting of features by aggregating objectives. Based on a

similar philosophy, her work has lead to other studies such

as those by Ho [103] and very recently Cano [104] and

Chen [105] which incorporates an intelligent crossover to

improve the population diversity and apply another multi-

objective approach. In Kuncheva [102], the goal was to

design optimal nearest neighbor classification by mini-

mizing the sizes of both prototype and feature sets. She

applied a standard GA well designed to perform edition

and selection in a single step and showed that it could

achieve a good compromise with both high discrimination

and a moderate number of features. The results presented

were better by far than all the other combinations of tested

approaches where selection and edition were applied in

different steps. According to the literature results, various

promising approaches based on GAs seem to be helpful in

managing simultaneous feature and instance patterns. The

drawback of GAs remains the difficulty of setting up and

driving the algorithm to obtain good solutions in a rea-

sonable time, especially with a large database. Although

these aspects are crucial for practitioners, there is no clear

guide or any mention in the literature about how to set the

genetic parameters, nor about the time required for the

algorithms to converge toward good solutions.

2.2 Contribution of the paper

In this paper, we propose to treat the twofold problem of

editing instance patterns and selecting features as a single

optimization problem by the use of a specific hybridized

genetic algorithm. Selecting optimal features is absolutely

necessary for classification purposes.

In fact, the presence of irrelevant or redundant features

may confuse the learning algorithm and lead to bad clas-

sification performances. Moreover, there is no ambiguity to

say that reducing the original training by removing ‘‘bad

instances’’ is likely to increase the classification perfor-

mances. As the problems of instance reduction and feature

selection are not always independent, we propose a way to

handle this double problematic as a single problem for-

malized as follows:

2.2.1 Problem formulation

Let X = {X1,...,Xf}be the set of features describing objects

as n-dimensional vectors and Z = {z1,...,zp}, zj [ Rf, be the

data set. Associated with each item zj, j = 1,...,p is a class

label from the set L = {1,...,l}. Given a classifier C, the

objectives of data reduction and feature selection are to find

subsets S2 � Z and S2 � Z such that the classification

accuracy of S2 is maximal and at the same time optimize

the sizes of the reduced sets to have |S1| minimal and |S2|

maximal, where |�| denotes cardinality. The formulation is

then the following:

Find S1 and S2 in the combined space to manage three

different objectives in the same algorithm such that:

C S2ð Þ is maximal

S2j j is maximal

S1j j is minimal

8
><

>:
ð1Þ

To solve this problem, we propose a hybrid GA having

the double objective of reducing (examples) and selecting

(features) while reaching the highest classification score.

By adapting the chromosome structure, GAs can integrate a

feature scheme able to select a pool of features from a

multi-dimensional space, and at the same time a pattern

selection scheme. The GA presented in this paper

integrates dedicated heuristics and mechanisms for the

dual selection problem. To the best of our knowledge, there

appears to be no reported method which simultaneously

treats this double problem of instances reduction and

features selection to achieve this particular objective. The

reader should observe that the approach is technically close

to that of methods devoted to designing nearest neighbor

classifiers but the heuristics and mechanisms introduced to

make the method efficient and practical are different. In

Sect. 3, we then present the hybrid GA and specifically the

different heuristics implemented to solve the dual selection

problem.

3 The hybrid algorithm

The whole procedure is made up of two distinct steps. It is

summarized in the diagram of Fig. 1. The first one, which

can be called a preliminary phase, is a pure GA. The goal is
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to promote diversity within the chromosome population S

in order to remove the unused features and to prepare the

second step, called the convergence phase. Then, the

objective is to find a set of possible solutions. Instead of

diversity, internal mechanisms are introduced to favour

elitism and some local tuning is combined with the GA

during the convergence phase. In this phase, computing

resources dedicated to local tuning are progressively

increased.

It should be noted that the transition between the pre-

liminary and the convergence phase is automatic.

Preserving both elitism and diversity constitutes the

main challenge for a GA.

The aim of our partitioning phase is firstly to encourage

diversity and secondly elitism through the choice of known

genetic algorithms. The management of diversity and

elitism is also managed inside each phase. We have

incorporated two mechanisms, i.e.: an archive population

and a breaking mechanism in order to auto balance diver-

sity and elitism.

The archive population is used as a repository of solu-

tions, provides an extra source of results and favours more

elitism.

Each time a sign of premature convergence is detected

in the current population, the breaking mechanism inte-

grated with the main objective of preventing premature

convergence encourages diversification by re-seeding

selected chromosomes.

The time feature is an essential factor for the use of

GAs.

Hybridation with local approaches can quickly become

unpractical. Most of the known memetic applications deal

with relatively small systems. Unused and worse features

are removed at the end of the first phase in order to avoid

Initialization 

Premature
convergence

Reseed
Popc

Yes  

Phase 1 end?

Feature removal 

Apply RTS  
genetic scheme 

Update popa

No

PHASE 1 

No

Popc analysis & 
recording

Calculate diversity  
Indexes. 

Apply an 
elistism scheme

Yes  

Alternative mechanisms to manage diversity and elitism 

Alternative  mechanisms  to  manage 
elitism and diversity

For each element of S” select 
a local tuning operation 

Local tuning: pure GA?

Yes  

Select a chromosome 
subset (S“  S) with high 
potential for local tuning  

Update popc

Phase 2 end?
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Optimize S” by 
local tuning 

Determine feature (S“1  X)  
and prototype (S“2  Z) 
subsets for local tuning

PHASE 2 

Yes  

end

⊆
⊆ ⊆

Fig. 1 General schematic of the hybrid GA
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needlessly heavy calculations. Furthermore, local approa-

ches are incorporated in such a way that computational

CPU costs are avoided, and the reliability of the results

enhanced. As shown in the diagram, several ‘‘tricks’’ are

incorporated to reduce both the number of solutions to

which local search is applied and the number of inspected

chromosome components.

The first subsection goes into the GA details while the

second is dedicated to the hybrid component.

3.1 The genetic algorithm

3.1.1 Chromosome

As the optimization procedure deals with two distinct

spaces, the feature space and the pattern space, both are

managed by the GA. A chromosome represents the whole

solution. It is encoded as a string of bits, whose length is

f + p, f being the number of available features and p the

number of patterns in the training set. In a chromosome a 1

for the ith feature or pattern stands for its selection, while a

0 means it is not taken into account.

As the number of features is likely to be smaller than the

number of patterns, in order to speed up the procedure and

to improve the exploration power of the algorithm, the two

spaces are managed independently at each iteration by the

genetic operators such as crossover and mutation. This

means the whole chromosome is the union of two distinct

subchromosomes, the first one to encode the feature space

and the second one the pattern space. In each subchro-

mosome a classical one-point crossover is applied. It

processes inside comparable fields. This way doing is

likely to yield better exploration and results.

We superimpose some restrictions for a chromosome to

represent a valid solution. The first one is obvious: the

number of selected features is not zero, |S1| ‡ 1. Otherwise,

no input space would be defined. The other condition aims

at ensuring that all the classes are managed by the system,

whatever their cardinality. The number of prototypes of a

given class has to be greater than a defined proportion

freqrep. Without this kind of constraint, bad results with

small classes could be compensated by good results with

larger ones.

In the case of large vector sizes such as those found in

the chemometric field, the random solution is not very

appropriate as not only the time taken by the process

increases, but the performance of designed classifiers will

not be guaranteed. Then, the initial chromosomes are not

generated in a completely random way: the number of

active bits is limited for both spaces. The intervals are [a1p,

a2p] and [1, min(a3,f)] (typical values are a1 = 0.2,

a2 = 0.9 and a3 = 30).

3.1.2 Fitness function

The choice of the fitness function is of prime importance in

a GA design. The one we propose takes into account the

three contradictory objectives: maximize the classification

results, maximise the number of prototypes and minimize

the number of features. It is, of course, defined for valid

chromosomes only. C being the selected classifier, its

analytical expression, to maximize, is as follows:

F ¼
CðS2Þ � kf � kp if the chromosome is valid

0

(

ð2Þ

(kf,kp) compensate each other and they can be seen as

penalty terms for C(S2). They are respectively maximal for

a minimum of features and a maximum of patterns

introduced in the chromosome. They are designed in a

similar way. kp (see Fig. 2) depends on two parameters lp

and Dp between 0 and 1, lp defines the lowest value for kp

and Dp is a threshold:

kp ¼
lp ( l p\1) if

pa

p

� �

� dp

ap*
pa

p

� �

þ bp else

8
>>><

>>>:

ð3Þ

where pa is the number of patterns in the current chro-

mosome. ap and bp are calculated so that (kp) is 1 when pa/

p = 1 and (kp) is lp when pa/p is Dp. The values of lp and

Dp have to be chosen carefully as they are representative of

the importance dedicated to the pattern set. Typical values

are Dp = 0.5, and lp = 0.95.

In the same way, kf (see Fig. 3) depends on three

parameters lf, Df1, Df2. lf defines the lowest value for kf,

Df1 and Df2 (Df1 \ Df2) are two thresholds:

kf ¼

1 if fa� df 1

lf if fa� df 2

af *
fa
f

� �

þ bf else

8
>>><

>>>:

ð4Þ

pλ

pµ

1

pa/p
p∆ 1

Fig. 2 Variation of kp with lp and Dp
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where fa is the number of features in the current chromo-

some. af and bf are calculated so that (kf) is 1 when fa = Df1,

and (kf) is lf when the number of features is Df2. Typical

values are Df1 = 2, Df2 = 15 and lf = 0 expressing that kf

decreases linearly according to af and bf.

3.1.3 Population evolution

Most methods such as determinist crowding (DC), restric-

ted tournament selection (RTS) and others are continuously

looking for a balance between elitism and diversity in the

current population. We propose to use two distinct popu-

lations with different evolution rules and no direct

interaction. The first one is called the current population,

popc, its evolution is managed using classical genetic

schemes (elitism, DC, RTS). The second one is called the

archive population, popa, it acts as an evolutionary memory.

It is a repository of good chromosome solutions found

during the evolution. At each generation, popa is updated

and may be used to partially regenerate popc if needed. The

final popa constitutes the output of the GA.

The current population needs to be reseeded when a

diversity index drops below a given threshold. The break-

ing mechanism is then used to produce major changes in

the current population by including chromosomes from the

archive population or applying a high mutation rate to

refresh the chromosome.

The diversity index is based on the chromosomes simi-

larities. Two chromosomes are said to be similar if their

hamming distance is less than a predefined threshold. As a

chromosome is the union of two subchromosomes, the

hamming distances are computed in the two different

spaces. The similarity between the ith and jth chromosomes

is:

s(i,j) ¼ 1 if df
h(i,j)\nf and dp

h(i,j)\np

0 else

(

ð5Þ

where df
hði; jÞ (resp. dp

hði; jÞ) stands for the hamming dis-

tance in the feature (resp. pattern) space, and nf (resp. np) is

a predefined threshold.

The proportion of chromosomes similar to the ith one is

given by:

Ps(i) ¼
1

(s� 1)

Xs

j¼1;j6¼i

s(i; j) ð6Þ

where s is the population size.

The breaking mechanism is active when there are a lot

of similar chromosomes within the population. The Ps(i)

are thresholded to compute the diversity index:

DI ¼ 1

s
*
Xs

i¼1

S(i) where S(i) ¼ 1 if Ps(i) [ thmin

and 0 else

ð7Þ

When the diversity index, DI, is too low, some of the

chromosomes which have a lot of similar ones in the

population, some of the ith ones for which S(i) = 1, are

either replaced by ones randomly chosen in the archive

population or re-generated with a high mutation

probability.

The update of the archive population takes into account

both elitism and diversity. The decision to include a given

chromosome in popa is based on two criteria, the first one is

the fitness score. If there exists a chromosome in the

archive population with a much lower score than the can-

didate, it is replaced by the candidate. This is the elitist side

of the process. If the candidate score is slightly better than

others, the candidate replaces the chromosome with the

most comparable structure, the one with the closest ham-

ming distance. Even if the candidate score is a little worse

than that of the archive population, it can be used to replace

one of a set of similar chromosomes, in order to increase

the diversity level. Balance between elitism and diversity

can be adapted during the genetic life.

As previously stated the whole procedure is made up of

two steps. For the preliminary phase, whose main objective

is to promote diversity, we have selected the RTS genetic

scheme for popc evolution, the diversity level being con-

trolled by the breaking mechanism. There is no

hybridization with local approaches within this preliminary

phase.

This genetic phase is driven by pc and pm, respectively

the probability of crossover and mutation. Details of the

native algorithm can be found in [76].

This stage automatically ends when there is a large

enough number of ‘‘competent’’ and diverse chromosomes

in the population. This condition can be formulated as

follows. Let S0 be the set of chromosomes whose fitness

score is greater than a threshold, and Fdiv (resp. Pdiv) a

diversity measure in the feature (resp. pattern) space.

The fulfilment of the condition states that the three

indexes, s0 = |S0|, Fdiv and Pdiv have to be sufficiently high.

fλ

1

fa

fµ

1f
∆

2f∆ f

Fig. 3 Variation of kf with lf and (Df1, Df2)
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The first condition expresses the level of ‘‘competence’’ of

the whole population and the others the level of diversity. It

should be noted that the three conditions have to be inde-

pendently satisfied, that is to say the measures have to be

all above specific thresholds.

The diversity measure we use is:

Fdiv ¼
1

s0

Xs0

i¼1

Xs0

j¼1;j 6¼i

df
h(i,j) ð8Þ

An analog definition stands for Pdiv.

A cautious implementation also controls the end of the

first phase by the number of iterations.

At the end of this step, the worst features, i.e., those

which are selected with a low frequency (below minfreq),

are discarded from the candidate set. This selection is

based on a feature histogram of f dimensionality cumulat-

ing the feature vector of each explored chromosome

presenting a fitness score greater than a predefined

threshold (minfitness). This filter contributes to making the

GA selection easier and particularly faster.

In the next step, the convergence phase, an elitist

approach is preferred to select an accurate solution,

diversity remaining controlled by the archive population,

and the GA is combined by local search procedures.

An elitism approach has therefore been preferred to

promote convergence, the diversity among the population

remaining controled by popa and encouraged by the

breaking process. More computing resources are progres-

sively allocated in the use of local approaches.

The elitism scheme we have selected is driven by pc and

pm but also ps and pr, respectively, the probability of

selection and rejection. In this scheme, the (ps · s) best

chromosomes from generation n are copied in the popu-

lation n + 1, (pr · s) are discarded and replaced in a

random way in the population n + 1.

Then, pc · (1 – pr) · s parent chromosomes are sub-

mitted to the crossover and operator providing pc · (1 –

pr) · s children. The children and the remaining chromo-

somes (1 – pc) · (1 – pr) · s are updated via the mutation

operator according to pm. Parents and children are put

together and the best (1 – pr) · s chromosomes are placed

in the population n + 1 with the remaining chromosomes.

This scheme is illustrated in Fig. 4.

3.2 Local tuning

As previously stated, recent literature reports that GAs are

not easy to tune when dealing with large systems. The

objective of a GA is twofold: space exploration and solution

tuning. Reaching both of these objectives may prove diffi-

cult. The hybrid part of the algorithm is devoted to helping

the GA in the tuning phase. Thus, the GA is in charge of the

space exploration, it is likely to find a set of acceptable

solutions, and the local procedures aim at improving these

solutions by an exhaustive search in their neighborhood.

Of course, extensive search is time consuming, and local

tuning has to be applied carefully, only when the expected

gain is higher than the cost.

The local tuning includes two different phases: an

ascending and a descending procedure.

The ascending phase aims at aggregating new elements,

features or prototypes, in a given chromosome while the

goal of the descending phase is, on the contrary, to remove

features or prototypes from the chromosome description.

Both procedures are random free. They are based on the

population yielded by the GA.

Let us first consider the ascending step. It can be applied

to the feature or the prototype space. Let S’ be the set of

chromosomes in the current population whose fitness score

is higher than a given threshold (minlocal), S00 a subset of S0

randomly selected,S01 � X be the set of features included

in at least one chromosome (from S0) description and

S02 � Z be the set of prototypes corresponding to at least

one chomosome found out in the genetic history whose

fitness score is higher than a given threshold.

The ascending procedure consists, for each chromosome

in S00, in aggregating each of the features in S01 (resp. each

of the prototypes in S02) to the chromosome and selecting

the ones that improve the classification results. The process

is repeated until no improvement is possible or a maximal

number of ascending iterations is reached.

It should be mentioned that the number of features and

prototypes to be tested is reasonably small as some features

have been discarded by the first phase of the GA, and

among the others, only those which are currently part of

one of the best chromosomes are used. This remark high-

lights the complementary roles played by the GA and the

local approach.

copy 
Ps*s

1 -Ps*s-Pr*s 1 - Pr*s

Pc* (1 - Pr*s)

(1-Pc)* (1 - Pr*s)

cross over 

mutation 

replacement 
Pr*s

Pop n Pop n+1 

Fig. 4 Elitism approach

implemented
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However, depending on the evolution stage, the cardi-

nalities of S01 and S02 may be important. In this case, in order

to control the ascending procedure computational cost, the

number of features or prototypes tested by the procedure is

limited. The selected ones are randomly chosen in S01 or S02
to form S001 and S002.

The descending phase is only applied to S00. For each

chromosome each of the selected features is removed if its

removal does not affect the classification results while

improving the fitness function.

In order to save time, ascending and descending pro-

cedures are carried out periodically within the so called

‘‘convergence phase’’.

Different strategies are likely to yield comparable

results. In our implementation, the convergence phase is

organized as a sequence of the following operations:

1. A tuning phase including an ascending procedure

followed by a descending one: the preferred options

aggregate new prototypes and remove features as the

lower the feature dimension space the better the

interpretability. This complete mode is quite expen-

sive, it is run with a large period.

2. A tuning phase with a descending procedure in only

one space: the feature and prototype spaces are

alternatively managed.

3. A pure GA.

At each genetic operation, the sequence can be indiffer-

ently applied to each chromosome independently or to S00.
We introduce pall, pdes and ppure as the probabilities of

applying one of the three operations.

It should be noted that during the ascending procedure

which aims at increasing the number of active bits in the

chromosome, priority is given to increasing |S2| and then to

increasing |S1|. If there is a competition between two can-

didate chromosomes A (related to |S2|) and B (related to

|S1|) giving similar fitness scores, A wins the competition.

On the contrary in the descending procedure, the priority is

given to decreasing |S1| to favour this criterion and after-

wards to decreasing |S2|.

Finally, when local approaches are applied, in addition

to the weights of each operation, four processes to reduce

the time are investigated:

1. Only chromosomes (of S0) close to solution are

concerned by local approaches.

2. Only a fraction of the selected chromosomes is

considered at a given step: this acts as a population

reduction driven by psol, the probability to decrease the

number of solutions to which local search is applied.

|S@| = min(psol*|S|,|S0|)
3. Only a variable subset of chromosomes components is

evaluated: this acts as a chromosome reduction. We

introduce (pf – search, pp – search) to decrease the number

of chromosome components inspected. S001 = min(pf –

search · |S1|, S01
�
�
�
�) and S002 = min(pp – search · |S2|, S02

�
�
�
�).

4. For each stepwise sequence, the number of chromo-

some modifications is limited (maxope). Space

exploration is let to GA mechanisms.

During phase 2, the different levels of probability can be

progressively increased (linearly or by steps) to allocate

more resources to the local tuning.

4 Results and discussion

The proposed hybrid GA is now applied to various

benchmarks and real world data sets. The results are

compared with other approaches. The objective of this

section is multiple:

• Comparing the GA performances with common edit-

ing/selecting and known genetic approaches.

• Analysing its performance to produce competent train-

ing sets.

• Analysing the effect of different mechanisms that have

been introduced.

4.1 Data sets used

To test the proposed method, trials were conducted based

on seven data sets. The following UCI repository datasets

[106] were used in tests: Iris (150 patterns, 4 features, 2

classes), Wisconsin breast cancer (699 patterns, 9 features

and 2 classes), wine (178 patterns, 13 features, 3 classes),

Pima indians diabetes (768 patterns, 8 features, 2 classes),

Ionosphere (351 patterns, 34 features, 2 classes), Gls (214

patterns, 9 features, 6 classes). It is needless to introduce

them as widely used by many machine learning algorithms.

In addition, a data set called Chem (568 patterns, 166

features, 4 classes) coming from the chemometric field has

been selected. 568 compounds was derived from analyses

of the chemicals in the fathead minnow acute toxicity

database. A detailed description of the biological and

chemical test protocols used in the study has been pub-

lished [107]. Several chemical classes such as

organophosphates, alkanes, ethers, alcohols, aldehydes,

ketones, esters, amines and other nitrogen compounds,

aromatic and sulfur compounds, and several modes of

action, such as narcosis, oxidative phosphorylation

uncoupling, respiratory inhibition, electrophile/proelectro-

phile reactivity, acetylcholines-terase (AChe) inhibition,

and mechanisms of central nervous system (CNS) exposure

are represented in this data set. A 96 h lethal concentration
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killing 50% of the fathead minnow population (96 h-LC50)

was used to characterize toxicity. Four toxicity classes

were generated according to the intervals established by the

European Community legislation [108].

Finally, the datasets are composed of various dimen-

sional spaces from 3 to 166 and various degrees of

complexity regarding classes overlapping. Incomplete

fields are replaced by the average of remaining one.

4.2 Presentation of algorithms and genetic parameters

The most natural way to reach the multi-objective dis-

cussed in this paper is to manage the objectives

separatively by applying feature selection and editing

approaches. Selection approaches aim to reduce the feature

number without losing classification and editing approa-

ches enable to discard bad examples. Their combination

called SE is likely to produce a reduced set. Different

famous edition approaches are implemented: Wilson,

Repeated Wilson and City edition. They are combined with

three selection schemes: Forward, Backward and random

mutation hill climbing. Concerning the mutation hill

climbing, the strategy is the one described by Skalak [101].

Four basic and very known genetic strategies are also

implemented: a classic elitism scheme, determinist crowd-

ing, the restricted tournament selection and the multi-hill

climbing algorithm. All are combined with the proposed

fitness function. Concerning the elitism strategy imple-

mented, the subset of children created after genetic

operations compete with their parents. The best of the whole

set, parents and children, survive in the next generation.

There is no restriction concerning the choice of the

classifier C. However, we have restricted the tests to only

one classifier to focus on the genetic part. The 1NN

(nearest neighbor) algorithm has been selected for its

recurrent attractivity, simplicity and because no assumption

on class shape is needed.

Finally, the different approaches either genetic or not are:

1. FW: Forward Selection combined with Wilson

Edition

2. FRW: Forward Selection combined with Repeated

Wilson Edition

3. FC: Forward Selection combined with City Edition

4. BW: Forward Selection combined with Wilson

Edition

5. BRW: Backward Selection combined with Repeated

Wilson Edition

6. BC: Backward Selection combined with City Edition

7. MHCW: Multi Hill Climbing Algorithm combined

with Wilson Edition

8. MHCRW: Multi Hill Climbing Algorithm combined

with Repeated Wilson Edition

9. MHCC: Multi Hill Climbing Algorithm combined

with City Edition

10. EA: Elitist approach

11. DC: Determinist Crowding

12. RTS: Restricted Tournament Selection

13. MHCM: Multi Hill Climbing Algorithm for Multi-

objective

14. HG: Our hybrid approach.

The same and very common genetic parameters have been

chosen whatever the database. the main genetic features are

listed below:

• Number of chromosomes: 100

• Initial population: random bit generation with

prob(0) = 0.5 and prob(1) = 0.5

• Crossover, mutation, selection and rejection probabil-

ities: pc = 0.5, pm = 0.05, ps = 0.3, pr = 0.05.

• Terminal number of generations: 500

• Fitness function (penalty terms and validity): Dp = 0.4,

lp = 0.95, Df1 = 1, Df2 = 15, lf = 0.2, freqrep = 0.1.

For the hybrid GA, these specific parameters are used

• Initial population: a1 = 0.1, a2 = 0.9, a3 = 20

• Diversity index: nf = 1, np = 0.1 · p, thmin = 0.65 · s

• Genetic life: terminal number of generations = 200 and

local tuning starts not after 100

• Features removal: feature histogram is generated with

chromosomes having fitness score more than

minfitness = 0.3. Threshold frequency to remove:

minfreq = 1%.

• Fitness score threshold to apply local optimization:

minlocal = 0.7 for two classes and 0.5 for three classes

and more.

• Maximum number of chromosomes selected for the

stepwise procedures: psol = 0.25

• Distribution of local procedures: one scheme with

ascending/descending (pall = 20%), descending (pdes =

50%) and pure GA (ppure = 30%).

• Maximum number of ascending/descending iterations

for one sequence: maxope = 10

• Other local parameters: pp – search = 0.3, pf – search = 0.5.

4.3 Comparison with editing/selecting approaches

This section aims to analyse the performance of (HG) with

a combination of selection and editing approaches applied

separately.

We restrict the experiments to the following scheme:
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• Random generation of ten tests. Each test is composed

of training and test files approximately with 80 and

20%, respectively. The ten training files are centered

and normalized and the corresponding test files are

obtained by applying the respective transformation.

• For each SE, apply a selection scheme followed by an

edition one to reduce both spaces separatively.

• Application of the hybrid GA to manage the multi-

objective directly.

By averaging the results obtained for the 10 databases, we

have a single triplet representing, respectively C(S2), |S2|

and |S1| for each database, each SE and HG. The results

obtained are summarized in Table 1. They show the plus of

the simultaneous dual selection in the case of a database

containing a great amount of noise. If we consider the

results obtained for databases Iris, Breast and Wine where

there is a very little noise, the triplets provided by the

hybrid approach are roughly comparable to those obtained

by selection/edition. However, for all the cases the hybrid

approach is competitive, which is not the case for each SE

which varies with the experiments.

Differences between the results are much more signifi-

cant with the databases containing noise. The case of the

chemometric database is very clear in this respect: first, the

multi hill climbing and backward selection are unable to

provide interesting feature space in terms of

dimensionality. Whatever the SE configuration, the results

obtained are far from those of HG (C(S2) = 0.97

|S2| = 277.7 |S1| = 2.3). The Forward selection approach

provides a small feature number (|S1| = 2.4) but whatever

the editing scheme |S2| \ 160 which is very low compared

to |S2| = 277.7 obtained via the genetic approach. Tuning

the progressive coefficient for the backward approach and

changing the initial setting for the hill climbing one did not

improve the triplet relevance. This means that in the event

of noise and probably irrelevant data, a single optimisation

is better.

4.3.1 Competence analysis to provide training sets

The double reduction applied on the feature and instances

patterns aims to discard irrelevant features and select

‘‘good’’ instance patterns. Therefore, even if it is beyond the

scope of this paper, this process is likely to produce reduced

sets which are ‘‘competent’’ to form a training set for a

classification learning algorithm, especially in the presence

of noise. We therefore carried out an experiment to

empirically measure the quality of the so-called ‘‘filtering’’

for classification compared to other well-known schemes.

We have analysed the classification errors obtained with

the test files for the different SE configurations and the

Table 1 Comparison with selection/edition approaches

FW FRW FC BW BRW BC MHCW MHCRW MHCC HG

Iris 1.8 1.4 1.7 1.5

0.95 1 1 0.95 1 0.99 0.96 1 0.99 0.99

112.1 111.8 92.2 111.8 110.7 92.2 114.8 114.2 95.4 118

Breast 1.5 6.1 5 3.3

0.94 1 1 0.96 1 1 0.96 1 0.99 0.99

507.5 507.3 408.3 533.2 532.2 444.3 534.2 533.2 427.3 553

Wine 3.2 12 9 3.7

0.92 1 0.99 0.98 1 0.97 0.99 0.97 1 0.99

129 127.8 85.9 135.8 135.3 110 137.3 136.9 120.8 136.4

Pim 1.3 6.5 3 2.7

0.71 1 0.99 0.69 1 0.98 0.7 1 0.98 0.94

354.8 352.8 236.3 358.9 342.7 227.1 353.7 342.7 231.2 465.2

Ionosphere 2.4 23.2 15 3.2

0.88 1 0.99 0.91 1 0.99 0.91 1 0.99 0.99

219.8 218 185.3 205.6 201.2 189.2 229.8 223.6 196.4 260.2

Gls 4.5 6.5 6 3.4

0.79 1 0.99 0.79 1 0.99 0.79 1 0.98 0.98

109.8 106 65.7 107.5 104 68.5 112.7 109.1 71 132.5

Chem 2.8 68 78 2.3

0.6 1 0.99 0.59 1 0.97 0.6 1 0.96 0.97

154.5 146.9 86.6 156.2 137.0 81.8 163.1 145.1 85 277.7

For each base, the first row is the number of selected feature, the second C(S2) and the third |S2|. All the results are the average of ten tests

192 Pattern Anal Applic (2008) 11:179–198

123



hybrid approach (Fig. 5). In the genetic algorithm, each

chromosome of the final population defines a classifier. The

chromosome selected to design the reference set was the

one presenting the best classification score among the set of

chromosomes. On this basis, test results are satisfactory but

not optimal.

However, there is always one chromosome among the

final popa of the hybrid approach which outperforms all the

SEs. This underlines the potential of the hybrid approach to

provide good and especially diverse chromosomes. We did

not find general rules linking the chromosome perfor-

mances and its generalization ability for classification.

Noisy and irrelevant patterns are sometimes difficult to

distinguish. Only a cross validation approach demonstrates

stability and consistence: divide the training set in two

subsets, one dedicated to the search of potential solutions

and the another one for testing and selecting the best

chromosome regarding the classification score.

4.4 Comparison with other genetic approaches

This section aims to analyse the performance of HG with

the four GAs.

Different experiments involving the same number of

chromosomes and genetic iterations have been carried out.

We tested various genetic algorithm versions and four

different sets of penalty terms have been considered to

assess performances. Let recall that Dp and lp stand for kp

as Df1, Df2 and lf stand for kf.

As the result of the GA procedure is a chromosome

population, comparing genetic approaches comes to com-

pare the corresponding populations. Unfortunately, no

metric is available to achieve this goal within a multi-

objective framework.

The three considered objectives are the classification

rate, which ranges into the unit interval, the proportion of

selected patterns, |S2|/p, and the number of selected fea-

tures, f. A given pair of chromosomes are considered of

comparable performance with respect to one of these

objectives if the difference between their scores is less than

a predefined threshold. The reported tests use the following

values: ec = 0.01 for classification, ep = 0.02 · p for pat-

tern selection, ef = min(0.1 · f, 2) for feature selection.

Chromosome comparison yields a single value, v:

• v = 1, if one of the chromosomes gives a better result

for at least one of the objectives, and comparable

results for the others;

• v = 0, if each of the chromosomes gives better results

than the other in at least one objective;

• v = 0.5, if the performances are comparable for all the

objectives.

Population comparison is done in a similar way. A

population X is considered better than a population Y if

there exists a chromosome in X whose comparison with all

the elements of Y yields 1. In this case, the comparison

assigns a 1 to X and a 0 to Y. Otherwise, the populations are

said comparable, and both are assigned a 0.5 value.

The results of the ten experiments and the four config-

uration weighs are then averaged. Table 2 shows this final

index for all the studied data sets and the comparison of our

hybrid algorithm with other genetic approaches.

Let us underline none of the reported values is less than

0.5, meaning the proposed algorithm never gives poorer

results than any of the compared GA. Moreover, the more

difficult the data set to manage, the higher the index. This

is especially true for the chemometrics data.

We have voluntarily restricted the comparisons to very

simple criteria in order to demonstrate the efficiency of our

hybrid approach. The problem of multiple optimisation and
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Fig. 5 Competent analysis of the training set generated. HG/Bestp-

opa represents the best chromosome on the popa population, HG/

BestClass the one providing the best classification score and HG/

Cross the one obtained by dividing the training set into subsets.

Table 2 Comparison results with other genetic approaches to gen-

erate editing bases

EA DC RTS MHCM

Iris 0.5 0.55 0.5 0.8

Breast 0.55 0.525 0.512 0.65

Wine 0.613 0.537 0.537 0.9

Pim 0.587 0.587 0.575 0.75

Ionosphere 1 0.962 0.987 1

Gls 0.787 0.612 0.587 0.5

Chem 0.962 1 0.987 1

Each coefficient presents the average of ten comparisons, each

comparison giving 1, 0.5 or 0
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criteria aggregation are entire topics [109, 110] that are

continually being tackled in the literature. Even if further

considerations are beyond the scope of this paper, they are

worth considering in depth in other specific studies.

4.5 Discussion about efficiency and time reduction

The role of hybridization with local approaches in genetic

development is obvious, but getting a dual procedure of

power is more problematic. In term of efficiency, local

approaches are really relevant if used in appropriate con-

texts. To be practical, the hybridization needs to be

monitored. A balance between a complete use (likely

generating a better efficiency while being unpractical) and

a pure GA (producing limited performances) is necessary.

The different heuristics have been implemented to make

the hybridized method practical. As the approach is mod-

ular, different versions can be derived.

Mechanisms to find preservation of both elitism and

diversity, at different levels, help getting the appropriate

context. Hybridization mechanisms help to optimize the

local searchs and incorporate parameters of probability in

order to control resources. So, according to the space

dimensionnalities, there are the necessary elements to

estimate the processing time and therefore to make the

method practical.

The iris database presents no interest in terms of per-

formance analysis but is useful to test different

configurations. We have evaluated the following versions:

• V0: Basic and pure elitism GA without any mechanism

• V1:V0 [ chromosomes initialisation [ archive

population

• V2:V1 [ breaking process

• V3:V1 [ RTS in phase 1

• V4:V2 [ optimized local approaches

• V5:V3 [ optimized local approaches

• V6:V4 [ V5

• V7:V6 [ full local approaches

All give good results and the differences stem for the

diversity. The V1, V2 and V3 versions present more

diversity than the V0 version which produces only one

solution (Fig. 6). V1 expresses the presence of the archive

population. (V2, V3), respectively, denote the plus of

diversity via the breaking process and the RTS scheme:

Fig. 7 illustrates that the cost of using full local approaches

is higher than the gain. For similar performances, spent

time for V7 is 20 times higher than for V6. Figures 8 and 9

show the effects of the different mechanisms when

applying V6: The presence of the breaking process is

visible in the popc evolution and local tuning is particularly

effective (around generation 35) on |S2| evolution.

5 Conclusion

Automated database exploitation remains a challenge for

pharmaceutical companies and particularly for the selec-

tion of new compounds with potent specific biological

properties. The solutions that systematically exploit large

and complete compound libraries are powerful but costly

and highly time-consuming. In contrast, many data reduc-

tion techniques, such as unsupervised projective

approaches (for example factorial analysis [111] or

Kohonen map [112]) are comfortable but intrinsically

limited in their exploitation. The method proposed here is

an intermediate reduction tool. It can provide sub databases

where the patterns are projected in a reduced feature space:

this twofold reduction (feature/pattern) makes interpret-

ability easier (Fig. 10). The approach is supervised and has

the potential to create competent training sets.

Our solution is genetic based, modular and hybrid. We

believe, in keeping with many other scientists interested in

applying genetic algorithms to real contexts, that pure

genetic approaches are still difficult to apply. It is parti-

cularly difficult to maintain qualities of a genetic

population namely both diversity and elitism.

Our whole process is then optimized by dividing the

algorithm into two self-controlled phases with dedicated
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objectives in which several mechanisms are incorporated.

These mechanisms act in different and compensating ways

to reach the same objective.

Setting the parameters to ensure a trade-off between

these two tasks within a reasonable time is difficult.

Exploratory strategies require a lot of resources to give a

good solution in high dimensional problems, while elitism

based strategy may ignore interesting parts of the space.

Our modular approach integrates these constraints.

As proved by the results and comparison with other

approaches, this algorithm is likely to give satisfactory

results within a reasonable time when dealing with medium

size data sets. Although the method has been developed for

chemometric applications, involving many features (sev-

eral hundreds) and patterns (several thousands are

possible), applications on other databases are possible.

Coupling the approach with clustering or stratification

techniques will make the method better for managing very

large databases (more than ten thousand patterns) that can

be found in the field of data mining.

This hybrid approach can be applied to other problems.

For instance, it seems rather appropriate for designing

optimal nearest classifiers in the presence of noise and

irrelevant features. The majority of the methods available

in the literature disregard the feature selection phase and

are based on heuristics that work well provided the amount

of noise is small. Therefore, in a context of many features

and noise, it constitutes an interesting alternative.
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