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Abstract 

A genetic algorithm is applied for selecting a reference set for the k-Nearest Neighbors rule. The performance has been 
evaluated on a medical data set by the rotation method. The results are commented together with those obtained with the 
standard k-NN, random selection, Wilson's technique, and the MULTIEDIT algorithm. 
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1. Introduction 

Due to its robustness, theoretical elegance, and 
feasibility of realization, the k-Nearest Neighbors 
(k-NN) rule continues to be one of the most widely 
used classification techniques. The efforts to select 
an optimal reference subset (called also a design set 
of prototypes) from an initial data set have stemmed 
from the need to reduce the immense storage re- 
quirements and computational loads connected with 
the rule. The second perspective on this subject, as 
pointed out by Dasarathy (1990), is, by editing out 
some objects from the sample, to achieve a classifi- 
cation result that is hopefully more accurate and 
reliable. The two perspectives are not dearly distin- 
guishable, and in fact are largely merged in many 
studies. The emphasis in this paper is on the classifi- 
cation accuracy. 
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Numerous editing techniques are summarized by 
Dasarathy (1990, 1994) and Devijver and Kittler 
(1982). Three general classes can be formulated (a 
technique may be attributed to more than one class): 

Condensed Nearest Neighbor rule (CNN). The 
numerous studies on CNN commenced with Hart 's 
paper (1968) that surprisingly ends up with a nega- 
tive experimental conclusion. Nevertheless it has 
given rise to many other editing strategies and tech- 
niques. Under this name we will assume all editing 
techniques the result of which is a subset of the 
original reference set: neither are new prototypes 
generated, nor are any data items modified, 

Generated or modified prototypes. This group 
comprises techniques that either establish new proto- 
types (see Marin and Mira, 1991) or adjust a limited 
number of points from the initial data set: A large 
group of such techniques are implemented by neural 
networks, e.g. feature-map classifiers, learning vec- 
tor quantiziers, hypersphere classifiers, etc. (see 
Lippmann, 1989; Moed and Lee, 1993; Reilly et al., 
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1987; Yau and Manry, 1991; Decaestecker, 1993; 
Holmstrom and Hamalainen, 1993; Katz and Thrift, 
1993). 

Two-level classifiers (Combination of multiple 
classifiers). This group contains several heuristic 
solutions to the editing problem employing a two- 
level classification strategy. One of these is to use 
the k-NN rule only in a limited subspace of the 
initial feature space where this technique appears 
most appropriate, while another classification rule is 
responsible for the rest of the feature space 
(Dasarathy, 1990). This automatically leads to a 
smaller number of reference points to be stored and 
hopefully yields a more accurate classification deci- 
sion (Kuncheva, 1993). Alpaydin (1993) proposes a 
two-level scheme consisting of several neural net- 
works (decision makers), each one performing the 
1-NN rule on a reference set selected by the original 
Hart's procedure with different arrangements of the 
initial set. 

In this paper a genetic algorithm (GA) has been 
chosen as an editing technique. The scheme belongs 
to the first group, since it is designed to select a 
subset of the original set of reference objects. Unlike 
in the work of Kelly and Davis (1991) where a GA 
has been applied to adjust the distance function for a 
k-NN rule, here the chromosome is directly mapped 
onto the reference set. The rationale for choosing a 
GA as an editing technique is the following. It has 
been proven (see Devijver and Kittler, 1982) that an 
optimal editing strategy would ultimately retain the 
objects belonging to the Bayesian decision regions of 
their own class. In a finite-sample case it is not a 
priori clear which of the objects satisfy the above 
condition. We base our choice on the intuition that a 
reference subset of objects which provides the high- 
est classification accuracy (assessed on the available 
set) will outperform the initial set in its capacity of 
the reference set. 

Experiments with real medical data have been 
carried out in order to investigate the classification 
accuracy of the edited reference set. The rotation 
(w-method) has been used to assess the classification 
performance. The results with the GA compare fa- 
vorably to those with the unedited reference set and 
with random selection, although the differences are 
not statistically significant. A comparison with Wil- 
son's (1972) editing technique and with the MUL- 

TIEDIT algorithm (Devijver and Kittler, 1980, 1982) 
is also reported. 

2. Competing editing strategies 

First of all we require that our edited reference set 
yields a better result than using the whole reference 
set. Second, the GA selection must be better than the 
random selection of subsets. 

Furthermore, as a benchmark, we chose Wilson's 
(1972) editing technique since it is easily imple- 
mentable, and does not depend on the order of the 
objects in the initial set. The technique consists in: 
first designating for deletion the objects that have 
been misclassified by a k-NN rule and then remov- 
ing them from the sample. The rest is used as a 
reference set and the 1-NN rule is applied for further 
classification. Indeed, Wilson's estimate has been 
shown to be biased. This may lead to overestimation 
of the classification accuracy on the training sample 
and, consequently, to a lower generalization ability. 
In order to avoid this, the MULTIEDIT algorithm 
has been proposed by Devijver and Kittler (1980, 
1982). The repeated editing strategy has been proven 
to be asymptotically Bayes-optimal with respect to 
the original classification problem. The algorithm 
follows directly the idea of editing out the objects 
being misclassified. In contrast to Wilson's tech- 
nique, this one uses an independent reference sam- 
ple to attach a class label to an object and thus to 
decide its fate. The algorithm consists in the follow- 
ing steps. 

Step 1: Diffusion. Let Z = { Z 1 , . . .  ,Zn} be the set 
of reference objects with known class labels. Make a 
random partition on Z into q subsets, Z x . . . . .  Z q 
(q >~ 3). 

Step 2: Classification. Classify the samples in Z i 
using the 1-NN rule with Z (i+l)m°dq a s  a reference 
set. 

Step 3: Editing. Discard all the samples that were 
misclassified at Step 2. 

Step 4: Confusion. Pool all the remaining data to 
constitute a new set Z. 

Step 5: Termination. If the last I iterations pro- 
duced no editing, exit with the final set Z, else go to 
Step 1. 
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3. GA as an editing procedure 

Genetic algorithms are a powerful tool to search 
in a high-dimensional space. Imitating the process of 
natural reproduction they are a kind of guided ran- 
dom search. The procedure operates on several can- 
didate points simultaneously. One of their most ap- 
pealing advantages is that they do not require the 
derivative of the search criterion, nor its continuity. 

Let ~ ( Z )  be the power set of Z. The problem of 
selecting the best reference set is formally stated 
here as: Find Z* ~ ~ ( Z )  such that 

J ( Z * )  = m a x { J ( Y )  [ Y~  ~ ( Z ) } .  

In order to do the search with a GA, we map the 
set Y, a subset of Z, onto a chromosome structure in 
the following way. The chromosome consists of n 
genes, each one with two possible states: 0 and 1. A 
set Y is presented straightforwardly by assigning the 
ith gene the value 1 if Z i is included in Y and 0, 
otherwise. 

The first criterion (fitness function) tried in this 
investigation was the apparent error rate measured 
by a pseudo-leave-one-out application of the k-NN 
rule. Like in Wilson's technique, the leave-one-out 
procedure is not implemented in its pure form be- 
cause the objects, whose classification is to be as- 
sessed, may have participated in the formulation of 
the reference set. 

In more detail, let Y_c Z be the current subset- 
candidate. The value of J ( Y )  is measured as n ( Y ) / n  
where n(Y)  denotes the number of correctly classi- 
fied objects from Z using only Y to find the k 
nearest neighbors. For each object Zi in Y the k 
nearest neighbors are searched among those in the 
set Y \  {Zi}. 

Let Zc(Y)_cZ denote the set of the correctly 
classified objects from Z under the current Y, and 
let kj, j = 1 . . . . .  n(Y)  be the number of neighbors 
leading to the correct classification of the object 
Zj ~ Zc(Y). We choose the second criterion function 
which underlies a second session of experiments 
J ( Y )  to be 

1 n(Y) 
J ( Y )  = - Y'~ kj. 

n j=l 

The correctly classified patterns with low classifi- 
cation score for their own class will contribute in a 

lower degree to the value of the criterion. According 
to this criterion, the GA is expected to converge to a 
chromosome corresponding to a reference set which 
assures the highest possible "certainty" of the clas- 
sification decision. The algorithm does not necessar- 
ily retain only points lying deep inside the Bayes 
decision regions, nor is it purposefully instructed to 
select boundary points. The decision about: the bal- 
ance is left to the searching procedure. If the first 
criterion can be viewed as a pseudo-leave-one-out 
counting estimator, the second one is a kind of 
smoothing modification. 

In brief, the genetic algorithm used here  consists 
of the following steps. 

1. Generate an initial population set H =  
{YI . . . . .  Yps} consisting of ps chromosomes, where 
ps is a preliminary determined population size (for 
the current experiments ps = 50). Calculate the fit- 
ness values of the chromosomes. 

2. Set the current number of genera t ions /= 1. 
3. Form a mating set M from all the chromo- 

somes with fitness function above the average. 
4. Select randomly couples of parents. Choose a 

random crossover point and exchange the right parts 
of the parents' chromosomes, thus producing two 
offspring chromosomes. Put the offsprings in the set 
O. The crossover probability was 1.0 in the current 
experiments, which means that every selected couple 
of parents will result in two new chromosomes. 

5. Mutate each gene of each offspring in O with 
a preliminary defined probability (in our setting the 
mutation rate was 0.05). Calculate the offsprings 
fitness function. 

6. Combine /7 and O selecting the best ps chro- 
mosomes from their union (elitist strategy). Consider 
the result as a new population set /7. 

7. If i is less than the preliminary selected termi- 
nal number of generations then increase i and GO 
TO 3. 

As a result we obtain a population set H * that 
contains ps subsets of Z with the highest values 
of the criterion function. Since we have not put 
any restriction trying to keep a diversity in the pop- 
ulation, the final chromosomes might appear "rela- 
tives", i.e., highly overlapping. Theoretically they 
can even be ps copies of one unique solution. It is 
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expected that the GA will find a sufficiently good 
solution, i.e., it could select reference subsets with 
sufficiently high classification accuracy. The point of 
interest is how robust this selection is with respect to 
generalization. In order to investigate this, the rota- 
tion testing method has been used as described in 
Section 4. 

It is worth mentioning that the proposed editing 
technique is not limited to two-class problems, nor is 
it confined to a certain number of k. Although it has 
been proven that 1-NN repeated editing with ensuing 
1-NN classification is asymptotically Bayes-optimal 
(Devijver and Kittler, 1982), there is no guarantee 
that this optimality is valid for the finite-sample case. 
Therefore, we used in the experiments the 1-NN, 
3-NN, and 9-NN techniques. 

4. Statement of the experiments 

A data set from aviation medicine has been used 
to test the proposed editing technique. The task is to 
predict if a pilot will exhibit cardiac rhythm disor- 
ders during a centrifuge training. The examination is 
carried out in a centrifuge cabin under a profile of 
high + G z  radial accelerations simulating aerial 
combat maneuvering. There is some evidence that 
this kind of training may provoke serious ectopy in 
asymptomatic healthy people. Such a disorder may 
also occur in a real flight and cause a fatal accident. 
An issue that has been investigated for more than a 
year is the possibility to predict the occurrence of 
this event on the basis of some anthropometric and 
physiologic parameters of the pilot measured imme- 
diately before the examination. The classification 
accuracies obtained so far are quite discouraging (see 
Kuncheva and Zlatev, 1994). It appeared that the two 

classes (pilots with and without extrasystoles) are 
hardly distinguishable and almost all classification 
techniques yield results quite close to the a priori 
probabilities. The reason to choose this particular 
data set was that highly overlapping classes may be 
better material to study the merits of editing proce- 
dures than data sets with well separable classes. 

Five parameters are used: 
• Age of the pilot, 
• Height of the pilot, 
• Systolic blood pressure immediately before the 

examination, 
• Diastolic blood pressure immediately before the 

examination, 
• Heart rate immediately before the examination. 

The two aforementioned classes are considered. 
The available set contains 485 preclassified records. 
This set was randomly divided into five nonoverlap- 
ping subsets, each one containing 97 objects, used as 
the training sets and the rest 388 cases used as the 
independent test sets. The results have been averaged 
over the five samples. The same procedure was also 
performed with the MULTIEDIT algorithm in order 
to avoid an eventual bias of the estimate caused by 
the random partition of the set at each iteration. We 
selected q = 3 because of the small training-sample 
size. 

5. Results and discussion 

As in some previous studies, the results show that 
the two classes of pilots are not easily distinguish- 
able in the considered feature space. Since we do not 
favor the decision for the second class, it may turn 
out that the best overall classification accuracy is 
achieved by classifying all the objects in the first 

Table 1 
Averaged results with the five test sets [% correct] 

Method for reference set design Classification accuracy 95% confidence intervals 

Whole sample (1-NN test) 
Whole sample (3-NN test) 
Whole sample (9-NN test) 
Random selection (3-NN) 
Random selection (9-NN) 
Wilson's technique (3-NN training, 1-NN test) 
MULTIEDIT (multiple 1-NN training, 1-NN test) 

63.00 58.20, 67.80 
67.74 63.09, 73.39 
72.30 67.85, 76.75 
66.21 61.50, 70.92 
72.59 68.15, 77.03 
72.26 67.80, 76.71 
74.44 70.10, 78.78 
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(more probable) class. The estimated a priori proba- 
bilities for class "pilots without rhythm disorders" 
and "pilots with rhythm disorders" are 0.7444 and 
0.2556, respectively. 

The results from the k-NN rule with the whole 
sample (unedited) are shown in Table 1 with k = 1, 
3, and 9. Averaged results with randomly selected 
reference sets (10 per each division into training and 
test sets) along with the results from Wilson's and 
MULTIEDIT techniques are also reported in Table 
1. The 95% confidence intervals of the provided 
estimates are also presented. 

The results from the GA selection of a reference 
set with 9-NN are presented in Fig. 1. Only the test 
sample is considered for estimating the classification 
accuracy, as in the above experiments. The averaged 
classification accuracy is depicted versus the genera- 
tion number. The top picture shows the accuracy 
averaged over the whole population, and the one 
below, the accuracy with the best chromosome, as 
ordered by the fitness function (on the training set). 

Contrary to the expectations, the test performance 
with the first criterion deteriorates with increasing 

generation number. This means that the first crite- 
rion, although the most natural one, bears a high risk 
of leading to high memorization versus low general- 
ization ability of the classifier. The second criterion 
yielded better results. Since the other (competing) 
strategies do not depend on the number of genera- 
tion, they are presented as straight lines in the figure. 
After 3 -7  iterations, the MULTIEDIT algorithm 
ruled out all objects from the second class, thus 
leading to the classification with the a priori proba- 
bility. This means that the algorithm did not find any 
"compact"  clusters from the second class, worth to 
be retained. The final sets obtained with the GA, 
although with nearly the same classification accu- 
racy, contained objects from both classes. 

It is clear that the GA converged to coherent final 
solutions because the maximal and the average popu- 
lation rates are practically the same. Therefore, any 
of the chromosomes in the final population may 
serve as the reference set (if there are different 
individuals at all). 

The results with the GA editing technique ap- 
peared quite comparable with those from Wilson's 

Average classification accuracy of the population 

0.74 / . .  

073  - 

0.72 i 

50 100 

Generation 

0.74 

0.73 

Classification accuracy with the best chromosome 

0.72 

V- 
I r 

50 

Fig. 1. 

b I 

10o 

Generation 

Criterion 1 
- -  Criterion2. 

k=9 
. . . . . . . .  Wilson's technique 



814 L.L Kuncheva / Pattern Recognition Letters 16 (1995) 809-814 

technique, and better than those of  the classical 
settings. It was not possible to properly evaluate the 
power  of  the MULTIEDIT algorithm with the cur- 
rent data set, and therefore it cannot be contrasted 
with the proposed technique. It should be kept in 
mind that, since the differences are not statistically 
significant, the above comparison is only illustrative 
and is not meant to state a definitive priority of  one 
technique over the others. 

6. Conclusions 

A genetic algorithm is proposed as an editing 
technique for the k-NN rule. Two criteria have been 
used as the fitness function: the apparent error rate, 
and a criterion based on the certainty of  the classifi- 
cation. In result, it appeared that the second criterion 
selected a population with chromosomes correspond- 
ing to subsets of  the initial set that provide higher 
classification accuracy in comparison with the whole 
initial set, with random selection and with Wi l son ' s  
technique. 
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