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Classification datasets often have an unequal class distribution among their examples. This
problem is known as imbalanced classification. The Synthetic Minority Over-sampling Tech-
nique (SMOTE) is one of the most well-know data pre-processing methods to cope with it
and to balance the different number of examples of each class. However, as recent works claim,
class imbalance is not a problem in itself and performance degradation is also associated with
other factors related to the distribution of the data. One of these is the presence of noisy and
borderline examples, the latter lying in the areas surrounding class boundaries. Certain intrin-
sic limitations of SMOTE can aggravate the problem produced by these types of examples and
current generalizations of SMOTE are not correctly adapted to their treatment.

This paper proposes the extension of SMOTE through a new element, an iterative ensemble-
based noise filter called Iterative-Partitioning Filter (IPF), which can overcome the problems
produced by noisy and borderline examples in imbalanced datasets. This extension results
in SMOTE–IPF. The properties of this proposal are discussed in a comprehensive experimental
study. It is compared against a basic SMOTE and its most well-known generalizations. The
experiments are carried out both on a set of synthetic datasets with different levels of noise
and shapes of borderline examples as well as real-world datasets. Furthermore, the impact
of introducing additional different types and levels of noise into these real-world data is stud-
ied. The results show that the new proposal performs better than existing SMOTE generaliza-
tions for all these different scenarios. The analysis of these results also helps to identify the
characteristics of IPF which differentiate it from other filtering approaches.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Several real-world classification problems in fields such as text categorization [49], medicine [52], bankruptcy prediction
[38] and intrusion detection [31], are characterized by a highly imbalanced distribution of examples among the classes. In
these problems, one class (known as the minority or positive class) contains a much smaller number of examples than the
other classes (the majority or negative classes). The minority class is often the most interesting from the application point of
ai.ugr.es

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.08.051&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.08.051
mailto:smja@decsai.ugr.es
mailto:jluengo@ubu.es
mailto:jerzy.stefanowski@cs.put.poznan.pl
mailto:herrera@decsai.ugr.es
http://dx.doi.org/10.1016/j.ins.2014.08.051
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


J.A. Sáez et al. / Information Sciences 291 (2015) 184–203 185
view [11,5]. Class imbalance constitutes a difficulty for most learning algorithms which assume an approximately balanced
class distribution and are biased toward the learning and recognition of the majority class. As a result, minority class exam-
ples usually tend to be misclassified.

The problem of learning from imbalanced data has been intensively researched in the last decade and several methods
have been proposed to address it – for a review see, e.g., [24]. Re-sampling methods [9,8,33,47] are a classifier-independent
type of techniques that modify the data distribution taking into account local characteristics of examples to change the bal-
ance between classes. There are numerous works discussing their advantages [4,10]. Among these methods, the Synthetic
Minority Over-sampling Technique (SMOTE) [9] is one of the most well-known; it generates new artificial minority class
examples by interpolating among several minority class examples that lie together.

However, some researchers have shown that the class imbalance ratio is not a problem itself. Even though the observa-
tion of a low classification performance in some concrete imbalanced problems may be influenced by the validation scheme
used to estimate this performance of the classifiers [35], the classification performance degradation is usually linked to other
factors related to data distributions [28,22,40]. Among them, in [40] the influence of noisy and borderline examples on clas-
sification performance in imbalanced datasets is experimentally studied. Borderline examples are defined as examples
located either very close to the decision boundary between minority and majority classes or located in the area surrounding
class boundaries where classes overlap. The authors of [33,40] refer to noisy examples as those from one class located deep
inside the region of the other class. Furthermore, this paper, considers noisy examples in the wider sense of [57,43], in which
they are treated as examples corrupted either in the attribute values or the class label.

Even though SMOTE achieves a better distribution of the number of examples in each class, when used in isolation it may
obtain results that are not as good as they could be or it may even be counterproductive in many cases. This is because
SMOTE presents several drawbacks related to its blind oversampling, whereby the creation of new positive (minority) exam-
ples only takes into account the closeness among positive examples and the number of examples of each class, whereas other
characteristics of the data are ignored – such as the distribution of examples from the majority classes. These drawbacks,
which can further aggravate the difficulties produced for noisy and borderline examples in the learning process, include:
(i) the creation of too many examples around unnecessary positive examples which do not facilitate the learning of the
minority class, (ii) the introduction of noisy positive examples in areas belonging to the majority class and (iii) the disruption
of the boundaries between the classes and, therefore, an increase in the overlapping between them. In order to overcome
these problems, two different approaches are followed in the literature:

1. Modifications of SMOTE (hereafter called change-direction methods). These guide the creation of positive examples per-
formed by SMOTE towards specific parts of the input space, taking into account specific characteristics of the data. Within
this group, the Safe-Levels-SMOTE (SL-SMOTE) [8], the Borderline-SMOTE (B1-SMOTE and B2-SMOTE) [23] or LN-SMOTE
[37] methods are found, which try to create positive examples close to areas with a high concentration of positive exam-
ples or only inside the boundaries of the positive class.

2. Extensions of SMOTE by integrating it with additional techniques (these extensions will be referred to as filtering-based
methods since SMOTE is integrated with either special cleaning or filtering methods). In the standard classification tasks,
noise filters are often used in order to detect and eliminate noisy examples from training datasets and also to clean up and
to create more regular class boundaries [55,53]. Experimental studies, such as [4], confirm the usefulness of integrating
such filters – e.g., Edited Nearest Neighbor Rule (ENN) or Tomek Links (TL) [53] – as a post-processing step after using
SMOTE.

The ability to deal with imbalanced datasets with noisy and borderline examples of methods belonging to both
approaches will be studied in the experimental section, even though this paper also proposes a new extension of SMOTE.
Existing extensions of SMOTE are very simple because they are based on using a single learning algorithm or simple mea-
sures such as, e.g., k-Nearest Neighbors (k-NN) [39] paradigm inside ENN [55] – used in SMOTE-ENN.

Some works highlight the good behavior of ensembles for classification in noisy environments, showing that the com-
bined use of several classifiers is a good alternative in these scenarios as opposed to the employment of single classifiers
[42,43]. In the same way, some authors also propose the usage of ensembles for filtering [7,17,18,54]. However, all these
works only consider the point of view of the standard classification and the overall classification accuracy. Thus, ensembles
are used for filtering in [7] considering that some examples have been mislabeled and the label errors are independent of
particular classifiers learned from the data. In this scenario, the authors claim that collecting predictions from different clas-
sifiers could provide a better estimation of mislabeled examples rather than collecting information from a single classifier
only. According to our best knowledge, these ensemble-based filters have not yet been used in the context of learning from
imbalanced data. Analyzing such filters focuses our attention on the Iterative-Partitioning Filter (IPF) [32]. Its characteristics
differentiate it from most of the filters, making it particularly suitable to overcome the problems produced by noisy and bor-
derline examples specific to the dataset plus those additional ones that SMOTE may introduce.

The main aim of this paper is to propose and examine a new extension of SMOTE, in which the IPF noise filter is applied in
post-processing resulting in SMOTE–IPF – its implementation can be found in KEEL1 [2]. Its suitability for handling noisy and
1 www.keel.es.

http://www.keel.es
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borderline examples in imbalanced data will be a particular focus of evaluation as these are one of the main sources of difficul-
ties for learning algorithms. Differences between this approach and other re-sampling methods also based on generalizations of
SMOTE will be discussed and studied. One cannot treat this proposal as a simple combination of two methods, as we want to
study more deeply the conditions of its appropriate use in dealing with different types of noise in imbalanced data which have
not been considered yet. We discuss its properties in comparison to other previous, related generalizations of SMOTE.

The other contribution of this paper is to provide a comprehensive experimental comparison of SMOTE–IPF with these
generalizations. Moreover, different data factors will be considered in these parts of this experimental study. A first part will
be carried out with special synthetic datasets containing different shapes of the minority class example boundaries and lev-
els of borderline examples, as considered in related studies [22,28,29,40]. Additionally, a set of real-world datasets which are
also known to be affected by noisy and borderline examples will be considered. All of these were used in [40] and are
available in the KEEL-dataset repository [1]. Yet another contribution of this paper will be to introduce additional class or
attribute noise into these real-world datasets and to study its impact on compared SMOTE generalizations. After preprocess-
ing these datasets, the performances of the classifiers built with C4.5 [41] will be evaluated and they will also be contrasted
using the proper statistical tests as recommended in the specialized literature [14,19,25]. The characteristics of IPF which
differentiate it from other filters and a discussion on the strengths and weaknesses of IPF in dealing with imbalanced data-
sets with noisy and borderline examples will be analyzed in Section 6.

In addition, experiments with many other classification algorithms on the preprocessed datasets will be carried out in
order to show the behavior of the preprocessing techniques with different classifiers. These are k-NN [39], a Support Vector
Machine (SVM) [13,51], Repeated Incremental Pruning to Produce Error Reduction (RIPPER) [12] and PART [16]. Due to length
restrictions, their results are only included on the web-page associated with this paper, available at http://sci2s.ugr.es/
noisebor-imbalanced. This web-page also includes the basic information of this paper, the datasets used and the parameter
setup for all the classification algorithms.

The rest of this paper is organized as follows. Section 2 presents the imbalanced dataset problem. Section 3 is devoted to
the motivations behind our extension of SMOTE. Next, Section 4 describes the experimental framework. Section 5 includes
the analysis of the experimental results, and Section 6 outlines the results and the suitability of IPF for the problem treated.
Finally, in Section 7, some concluding remarks are presented.
2. Classification for imbalanced datasets

In this section, first the problem of imbalanced datasets is introduced in Section 2.1. Some additional problems related to
class imbalance that may harm classifier performance are described in Section 2.2.

2.1. The problem of imbalanced datasets

The main difficulty of imbalanced datasets is that a standard classifier might ignore the importance of the minority class
because its representation inside the dataset is not strong enough and the classifier is biased toward the majority class or, in
other words, it is oriented to achieve a good total classification accuracy. Consequently, the examples that belong to the
minority class are misclassified more often than those belonging to the majority class [27].

This type of data may be categorized depending on its imbalance ratio (IR) [15], which is defined as the relation between
the majority class and minority class examples, by the expression
IR ¼ N�

Nþ
ð1Þ
where N� and Nþ are the number of examples belonging to the majority and minority classes, respectively. Thus, a dataset is
imbalanced when IR > 1.

A large number of approaches have been previously proposed to deal with the class imbalance problem. These approaches
can be mainly categorized in two groups [3]:

1. Algorithmic level approaches. This group of methods tries to change search techniques or the classification decision strat-
egies to impose bias toward the minority class or to improve the prediction performance by adjusting weights for each
class [27].

2. Data level approaches. This group of methods preprocess the dataset modifying the data distribution to change the balance
between classes considering local characteristics of examples [4].

Furthermore, cost-sensitive learning solutions incorporating both the data and algorithmic level approaches assume
higher misclassification costs with samples in the minority class and seek to minimize the high cost errors [50].

There are some data level approaches particularly adapted to the usage of a concrete classifier. For example, the authors
of [36] propose an evolutionary framework that uses an instance generation technique that modifies the original training set
based on the performance of a specific classifier on the minority class. However, this is not the most common scenario and
the great advantage of data level approaches is that they are more versatile, since their use is independent of the classifier

http://sci2s.ugr.es/noisebor-imbalanced
http://sci2s.ugr.es/noisebor-imbalanced
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selected. Furthermore, one may preprocess all datasets beforehand in order to use them to train different classifiers. In this
manner, the computation time needed to prepare the data is only required once. For these reasons, the proposal made in this
paper belongs to this group of methods. In addition, re-sampling approaches can be categorized into two sub-categories:
under-sampling [53,55], which consists of reducing the data by eliminating examples belonging to the majority class with
the objective of balancing the number of examples of each class; and over-sampling [9,8], which aims to replicate or gen-
erate new positive examples in order to gain importance, improving the importance of this class.

In order to estimate the quality of classifiers built from imbalanced data, several measures have been proposed in the lit-
erature [24]. This is because the most widely used empirical measure, total accuracy, does not distinguish between the num-
ber of correct labels of different classes, which in the ambit of imbalanced problems may lead to erroneous conclusions. This
paper considers the usage of the Area Under the ROC Curve (AUC) measure [6], which provides a single-number summary for
the performance of learning algorithms and it is recommended in many other works in the literature [4,15].
2.2. Other factors characterizing imbalanced data

The imbalance ratio between classes is a problem that may hinder the performance of classifiers. However, it is not the
only source of difficulty for classifiers; recent works have indicated other relevant issues related to the degradation of
performance:

� Presence of small disjuncts [28,29] (Fig. 1a). The minority class can be decomposed into many sub-clusters with very few
examples in each one, surrounded by majority class examples. This is a source of difficulty for most learning algorithms in
detecting enough of these sub-concepts.
� Overlapping between classes [22,21] (Fig. 1b). There are often some examples from different classes with very similar char-

acteristics, in particular if they are located in the regions around decision boundaries between classes. These examples
refer to overlapping regions of classes.

Closely related to the overlapping between classes, in [40] another interesting problem in imbalanced domains is pointed
out: the higher or lower presence of examples located in the area surrounding class boundaries, which are called borderline
examples. Researchers have found that misclassification often occurs near class boundaries where overlapping usually
occurs as well and it is hard to find a feasible solution for it [20]. The authors in [40] showed that classifier performance deg-
radation was strongly affected by the quantity of borderline examples and that the presence of other noisy examples located
farther outside the overlapping region also made the task of re-sampling methods very difficult.

This paper focuses on studying the influence of noisy and borderline examples in generalizations of SMOTE, considering
the synthetic datasets and also the real-world ones used in [40] along with new noisy datasets built from the latter. These
datasets will be described in Section 4. To clarify terminology, one must distinguish (inspired by [40,33]) between safe, bor-
derline and noisy examples (see Fig. 2):

� Safe examples are placed in relatively homogeneous areas with respect to the class label.
� Borderline examples are located in the area surrounding class boundaries, where either the minority and majority classes

overlap or these examples are very close to the difficult shape of the boundary – in this case, these examples are also dif-
ficult as a small amount of the attribute noise can move them to the wrong side of the decision boundary [33].
� Noisy examples are individuals from one class occurring in the safe areas of the other class. According to [33] they could be

treated as examples affected by class label noise. Notice that the term noisy examples will be further used in this paper in
the wider sense of [57], in which noisy examples are corrupted either in their attribute values or the class label.

The examples belonging to the last two groups often do not contribute to a correct class prediction [30]. Therefore, one
could ask whether removing them (all or the most difficult misclassification parts) could improve classification performance.
Fig. 1. Examples of the imbalance between classes: (a) small disjuncts and (b) overlapping between classes.



Fig. 2. The three types of examples considered in this paper: safe examples (labeled as s), borderline examples (labeled as b) and noisy examples (labeled as
n). The continuous line shows the decision boundary between the two classes.
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Thus, this paper proposes the use of noise filters to achieve this goal, because they are amply used with good results in clas-
sification. We are particularly interested in ensemble filters as they are the most careful when deciding whether an example
should be viewed as noise and removed.
3. SMOTE along with noise filters to tackle noisy and borderline examples

In this section, first, the main details of the proposed extension of SMOTE are given in Section 3.1. Next, its two implicated
parts are described in depth: the SMOTE algorithm in Section 3.2 and noise filters in Section 3.3.
3.1. Combining re-sampling and noise filters

As has been mentioned previously, SMOTE is one of the most well-known and widely used re-sampling techniques, how-
ever it may still have problems with some distributions of data. Two different generalizations of SMOTE have been proposed
in the literature in order to improve final classification performance: change-direction and filtering-based methods – for the
evaluation and discussion of their limitations see also [37]. The former, however, may present several important drawbacks
when imbalanced datasets are suffering from noisy and borderline examples:

1. Noisy and borderline examples could be removed from the data to improve the final performance [30] but change-direc-
tion methods do not allow this option since their only function is to create new positive examples.

2. The creation of new positive examples, although directed towards specific parts of the input space, may be erroneous
because it is based on data with noisy examples. This fact shows, once again, the need to introduce a cleaning phase after
the creation of examples.

Methods based on extending SMOTE with additional cleaning seem to be more appropriate to deal with imbalanced prob-
lems with noisy and borderline examples. These methods follow two postulates:

1. Class distribution has to be transformed, e.g., balanced in some degree, in order to support the learning of classifiers [4].
2. The most difficult noisy and borderline examples should be removed from the training data since they are often the most

difficult for learning [30,18].

The first task can be coped with by means of using re-sampling techniques. The SMOTE algorithm [9] helps to balance the
class distribution, avoiding the overfitting problem that might be produced by using other techniques such as simple Random
Over-sampling [4]. Furthermore, SMOTE can fill the interior of minority class sub-parts with synthetic minority class exam-
ples. This is a positive fact since in imbalanced datasets with a considerable quantity of borderline examples, minority class
clusters are usually defined by those with an emptier interior. Nevertheless, class clusters may not be well defined in cases
where some majority class examples might be invading the minority class space. The opposite can also be true, since
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interpolating minority class examples can expand the minority class clusters, introducing artificial minority class examples
too deeply into the majority class space. This additional minority noise is also caused by the blind over-generalization of
SMOTE-based techniques of looking for nearest neighbors from the minority class only. Both situations could introduce addi-
tional noise into datasets.

The aforementioned problems are already well known. They have been tackled by combining SMOTE with an additional
step of under-sampling, e.g., with the ENN filtering [55], which aims to remove mislabeled data from the training data after
the usage of SMOTE. However, these methods do not perform this task as well as they should in all cases.

The second task requires specific and more powerful methods designed to eliminate mislabeled examples when datasets
have a considerable number of such examples. A group of methods that address this problem is ensemble-based noise filters
[18,7,54]. This paper proposes the extension of SMOTE with one of these filters: the IPF filter [32], which will be responsible
for removing noisy examples originally present in the dataset and also those created by SMOTE. Besides this, IPF cleans up
class boundaries, making them more regular and facilitating in this way the posterior learning phase [18].

These two techniques (SMOTE and IPF) must be applied to the imbalanced dataset in the correct order in order to obtain
reasonable final results: SMOTE in the first place and then the IPF noise filter. This is due to IPF being designed to deal with
standard classification datasets. Its application over an imbalanced dataset before the usage of SMOTE (which balances the
distribution of classes) may carry the risk of removing all the examples from the minority class, which may be seen as noisy
examples because they are underrepresented in the dataset. In short, as a summary and justification of this approach, it is
claimed that:

1. The SMOTE algorithm fulfills a dual function: it balances the class distribution and it helps to fill in the interior of sub-
parts of the minority class.

2. The IPF filter removes the noisy examples originally present in the dataset and also those created by SMOTE. Besides this,
IPF cleans up the boundaries of the classes, making them more regular.

Note that the scheme proposed (SMOTE–IPF) enables one to replace SMOTE with any of its modifications, in particular,
the change-direction generalizations. However, in this paper we prefer to use the basic version of SMOTE because it is con-
sistent with earlier research on the usage of filtering techniques and facilitates the comparison with them. The usage of IPF
may also disturb the effects of the earlier modifications of examples by the change-direction methods. Moreover, some of
these methods strongly focus on the over-sampling of concrete regions of the original data. For example, Borderline-SMOTE
may over-strength the boundary zone, which will be problematic for studying data with many noisy and borderline
examples.

3.2. The synthetic minority over-sampling technique

SMOTE [9], introduced by Chawla and co-authors, is now one of the most popular over-sampling methods. In this
approach, the positive class is over-sampled by taking each minority class example and introducing synthetic examples
along the line segments joining any/all of the k minority class nearest neighbors. In order to find these neighbors in the space
of numerical and nominal attributes, the HVDM metric is applied [56]. Depending on the amount of oversampling required,
neighbors from the k nearest neighbors are randomly chosen. Analyzing the current literature on the usage of SMOTE, one
can notice that k ¼ 5 neighbors is usually chosen. This procedure of building a local neighborhood is also often applied in
other resampling methods, such as SPIDER. Although one could ask a more general question by tuning a particular k value
depending on the given data characteristics, we decided to use one value k ¼ 5 to be more consistent with other related
works on SMOTE and its generalizations since they were compared using the same data sets as we have chosen for our study.
Taking the same motivations to be consistent with related works, we tune the oversampling amount to balance both classes
to 50%.

Synthetic examples are generated in the following way. Take the difference between the feature vector (sample) under
consideration and its nearest neighbor. Multiply this difference by a random number between 0 and 1, and add it to the fea-
ture vector under consideration. This causes the selection of a random point along the line segment between two specific
features. This approach effectively forces the decision region of the minority class to become more general.

3.3. Noise filters

Noise filters are preprocessing mechanisms designed to detect and eliminate noisy examples in the training set
[55,7,32,44]. The result of noise elimination in preprocessing is a reduced training set which is then used as an input to a
machine learning algorithm.

Some of these filters are based on the computation of different measures over the training data. For instance, the method
proposed in [18] is based on the observation that the elimination of noisy examples reduces the Complexity of the Least Com-
plex Correct Hypothesis value of the training set.

In addition, there are many other noise filters based on the usage of ensembles. In [7], multiple classifiers belonging to
different learning paradigms were built and trained from a possibly corrupted dataset and then used to identify mislabeled
data, which is characterized as the examples that are incorrectly classified by the multiple classifiers. Similar techniques
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have been widely developed considering the building of several classifiers with the same learning algorithm [17,54]. Instead
of using multiple classifiers learned from the same training set, in [17] a Classification Filter (CF) approach is suggested, in
which the training set is partitioned into n subsets, then a set of classifiers is trained from the union of any n� 1 subsets;
those classifiers are used to classify the examples in the excluded subset, eliminating the examples that are incorrectly
classified.

From our knowledge and preliminary, earlier experiments performed with different ensemble-based filters, e.g., the
Ensemble Filter (EF) [7], the Cross-Validated Committees Filter (CVCF) [54], CF and others, the notable good behavior of the Iter-
ative-Partitioning Filter [32] when detecting noisy examples must be pointed out. IPF has characteristics which differentiate it
from most of the noise filters and may provide the reasons why it performs better than them – they will be analyzed and
discussed in Section 6.

IPF removes noisy examples in multiple iterations until a stopping criterion is reached. The iterative process stops when,
for a number of consecutive iterations k, the number of identified noisy examples in each of these iterations is less than a
percentage p of the size of the original training dataset. Initially, the method starts with a set of noisy examples A ¼ ;.
The basic steps of each iteration as follows:

1. Split the current training dataset E into n equal sized subsets.
2. Build a classifier with the C4.5 algorithm over each of these n subsets and use them to evaluate the whole current training

dataset E.
3. Add to A the noisy examples identified in E using a voting scheme (consensus or majority).
4. Remove the noisy examples: E E n A.

Two voting schemes can be used to identify noisy examples: consensus and majority. The former removes an example if it
is misclassified by all the classifiers, whereas the latter removes an example if it is misclassified by more than half of the
classifiers.

The parameter setup for the implementation of IPF used in this work has been determined experimentally in order to
better fit it to the characteristics of imbalanced datasets with noisy and borderline examples once they have been prepro-
cessed with SMOTE. More precisely, the majority scheme is used to identify the noisy examples, n ¼ 9 partitions with ran-
dom examples in each one are created and k ¼ 3 iterations for the stop criterion and p ¼ 1% of removed examples are
considered. This parameter setup is based on a study of the influence of each parameter on the results – the justification
of each parameter value and its influence is given in Section 6.3.

4. Experimental framework

In this section, the details of the experimental study developed in this paper are presented. First, in Section 4.1, we
describe how the synthetic imbalanced datasets with borderline examples were built. Then, the real-world datasets and
the noise introduction processes are presented in Section 4.2. In Section 4.3 the preprocessing techniques considered in this
work are briefly described. Finally, in Section 4.4, the methodology of the analysis carried out is described.

4.1. Synthetic imbalanced datasets with borderline examples

This paper uses the family of synthetic datasets used in prior research on the role of borderline examples [40]. These data
were created following other experimental studies of small disjuncts [28,29] and overlapping between classes [21]. However,
these studies were focused on studying single factors and very simple (lines and rectangles) shapes of decision boundaries.
Thus, the authors of [40] created more complex data affected by many factors, including borderline examples. Many datasets
with different configurations were generated by special software and evaluated; for more details see [46]. In this paper we
consider these configurations of datasets which were the basis for the previous analysis of the role of borderline examples
for different basic classifiers, such as C4.5, and re-sampling methods [40]. These datasets are briefly characterized below:

1. Number of classes and attributes. This work focuses on binary classification problems (the minority versus the majority
class) with examples randomly and uniformly distributed in the two-dimensional real-value space.

2. Number of examples and imbalance ratios. Multiple datasets with two different numbers of examples and imbalance ratios
are considered: datasets with 600 examples and IR ¼ 5 and datasets with 800 examples and IR ¼ 7. The values of the
parameters resulted from the assumption of having at least 20 examples for the subpart of the decomposed minority
class. Smaller cardinalities led to unstable results [46].

3. Shapes of the minority class. Three different shapes of the minority class surrounded uniformly by the majority class are
taken into account:
� Sub-cluster (Fig. 3a): the examples from the minority class are located inside rectangles following related works on

small disjuncts [28].
� Clover (Fig. 3b): represents a more difficult, non-linear setting, in which the minority class resembles a flower with

elliptic petals.



(a) Sub-cluster. (b) Clover. (c) Paw.

Fig. 3. Shapes of the minority class.
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� Paw (Fig. 3c): the minority class is decomposed into 3 elliptic subregions of varying cardinalities, in which two sub-
regions are located close to each other, and the smaller sub-region is separated.

The minority class is decomposed into 5 parts except for paw data with 3 subregions. Paw could better represent real-world
data than clover. Moreover, both clover and paw should be more difficult to learn than the simple circles that were consid-
ered in some related works.
4. Disturbance ratios (DR). The impact of disturbing the borders of sub-regions in the minority class will is studied. This is

carried out by increasing the ratio of borderline examples, i.e., the disturbance ratio, from the minority class subregions.
5 levels of DR are considered: 0%, 30%, 50%, 60% and 70%. The width of the borderline overlapping areas is comparable to
the width of the safe parts of sub-regions. The aforementioned DR values result from earlier studies [46] which showed
that smaller values (less than 20%) did not affect the performance of the considered classifier very much. Moreover,
higher values will better discriminate between the usefulness of different preprocessing methods [40].

In such a way, 30 synthetic datasets with the above mentioned properties have been managed, all of which are available
on the web-page associated with this paper.

4.2. Real-world datasets

The choice of the real-world datasets was based on the work on imbalanced classification with noisy and borderline
examples presented in [40]. These are available at the KEEL-dataset repository2 [1] or have been provided by the authors
of [45] in the case of the acl dataset. Multi-class datasets are modified to obtain two-class imbalanced problems, defining
the joint of one or more classes as positive and the remainder as negative. Table 1 shows the characteristics of these datasets.
For each one, the number of examples (#Exa), attributes (#Att), the name of the minority class (Min), the number of examples of
the minority class (#Min), of the majority class (#Maj) and the imbalance ratio (IR) are shown.

These data are also characterized by a large number of difficult examples, which could be recognized as borderline or
noisy ones. In [37] a simple analysis of a local neighborhood has been made with k-NN classifiers according to rules applied
in Borderline-SMOTE [23]. So, an example was treated as noisy if all its neighbors belong to opposite classes, as a borderline
example if it was misclassified by the majority of the opposite classes and safe if it was correctly classified. Nearly all of these
datasets were difficult with respect to the minority class as they contained much less safe examples than others. In partic-
ular, in the cleveland dataset the minority class contains 35 examples with 22 noisy and 13 borderline ones. A similar situ-
ation occurs for breast cancer. Some other datasets, e.g., haberman or ecoli, contain more borderline examples than noisy ones
(e.g. haberman has 51 and 20 respectively plus 10 safe ones). As the number of noisy examples is quite high compared to the
size of the minority class these data sets are chosen to study their impact. The exception is newthyroid, which seems to con-
tain easier to understand data as its number of safe examples is higher than the others.

Furthermore, we decided that these real-world datasets could be transformed into more complex and even more difficult
versions with an artificially increased noise level. In such a way, two different noise levels will be introduced into them:
x ¼ 20% and x ¼ 40%. The introduction of noise consists of separately corrupting either the class labels or the attribute val-
ues of some examples belonging to each dataset. These corruptions respectively belong to the noise categories formally
known as class noise and attribute noise and were amply used and studied in [57], a reference paper in the framework of
noisy data in classification. The same two noise introduction schemes proposed by the authors of that paper are used in this
work, so that:

� Class noise is introduced into the datasets following a pairwise scheme in which a majority class example has a proba-
bility of x=100 to be incorrectly labeled as belonging to the minority class.
� Attribute noise is introduced into the original datasets corrupting each attribute separately. To corrupt each attribute Ai,

approximately x% of the examples in the dataset are chosen and the value of Ai of each of these examples is assigned a
2 http://www.keel.es/datasets.php.

http://www.keel.es/datasets.php


Table 1
Characteristics of the real-world datasets.

Dataset #Exa #Att Min #Min #Maj IR

acl 140 6 with knee injury 40 100 2.5
breast 286 9 recurrence-events 85 201 2.36
bupa 345 6 sick 145 200 1.38
cleveland 303 13 positive 35 268 7.66
ecoli 336 7 imU 35 301 8.60
haberman 306 3 died 81 225 2.78
hepatitis 155 19 die 32 123 3.84
newthyroid 215 5 hyper 35 180 5.14
pima 768 8 positive 268 500 1.87
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random value between the minimum and maximum of the domain of that attribute following a uniform distribution (if Ai

is numerical), or choosing a random value of the domain (if Ai is nominal).

The performance estimation of each classifier for each of these real-world datasets, and also for the synthetic ones, is
obtained by means of 5 runs of a stratified 5-fold cross-validation and their results are averaged. Dividing the dataset into
5 folds is considered in order to dispose of a sufficient quantity of minority class examples in the test partitions. In this way,
test partition examples are more representative of the underlying knowledge and meaningful performance results can be
obtained.
4.3. Re-sampling techniques for comparison

Different re-sampling techniques to adjust the class distribution in the training data based on generalizations of SMOTE
are studied in this paper. The usefulness of a new SMOTE extension is studied in a comprehensive comparative study with
other, related versions of SMOTE, in particular the best known representations of change-direction and filtering-based meth-
ods. Table 2 shows the SMOTE-based methods considered in this study – a wider description of such methods is found on the
web-page associated with this paper.

Note that SMOTE-TL and SMOTE-ENN are approaches based on extending SMOTE with an additional filtering
(filtering-based methods), whereas SL-SMOTE, B1-SMOTE and B2-SMOTE are approaches based on directing the creation of
the positive examples (change-direction methods).
4.4. Analysis methodology

In order to check the suitability of the proposed extension of SMOTE versus the other re-sampling techniques when deal-
ing with imbalanced datasets with noisy and borderline examples, the experiments are divided into three differentiated
parts depending on the type of datasets considered in each one: synthetic, real-world and noisy modified real-world
datasets.

The effect of the aforementioned preprocessing techniques will be analyzed comparing the AUC for each dataset obtained
with C4.5 [41], which has been used in many other works in imbalanced classification, in particular concerning SMOTE
[47,48]. Furthermore, it is known to be more sensitive to different factors of imbalanced data than, e.g., SVM [13] and is often
used inside the ensembles. The standard parameters along with a post-pruning have been considered for the executions.

For each of the three types of datasets, the AUC results obtained by C4.5 for our approach against (i) not applying
preprocessing and applying SMOTE alone, (ii) the other filtering-based methods (SMOTE-ENN and SMOTE-TL) and (iii) the
change-direction methods (B1-SMOTE, B2-SMOTE and SL-SMOTE) will be separately compared. We have separately studied
the differences between our proposal and the filtering-based and change-direction methods for two main reasons. First, the
separation is motivated by the different nature of the methods of both groups that share common characteristics, which
allow us to independently obtain conclusions with each kind of method. On the other hand, performing a multiple statistical
comparison usually requires a much higher quantity of datasets to detect significant differences when the number of com-
parison methods increases. Multiple statistical comparisons are then limited by the number of datasets, and the comparison
Table 2
Re-sampling techniques considered.

Method Reference Method Reference

SMOTE [9] SL-SMOTE [8]
SMOTE-TL [4] B1-SMOTE [23]
SMOTE-ENN [4] B2-SMOTE [23]
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grouping the two types of methods (filtering-based and change-direction) can only be performed if a much higher quantity
of datasets than the one considered in this paper is available for study.

Additionally, statistical comparisons in each of these cases will be also performed. Wilcoxon’s signed ranks statistical test
[14] will be applied to compare SMOTE–IPF with no preprocessing and the usage of SMOTE alone. This is a nonparametric
pairwise test that aims to detect significant differences between two sample means; that is, the behavior of the two algo-
rithms involved in each comparison. The results of the two methods involved in the comparison over all the datasets will
be compared using Wilcoxon’s test and the p-values associated with these comparisons will be obtained. The p-value
represents the lowest level of significance of a hypothesis that results in a rejection and it allows one to know both whether
two algorithms are significantly different and the degree of their difference.

Regarding the comparison between our approach and the other re-sampling techniques (either filtering-based or change-
direction methods), the aligned Friedman’s procedure [19] will be used. This is an advanced nonparametric test for perform-
ing multiple comparisons, which improves the classic Friedman test. The Friedman test is based on sets of ranks, one set for
each data set; and the performances of the algorithms analyzed are ranked separately for each data set. Such a ranking
scheme allows for intra-set comparisons only, since inter-set comparisons are not meaningful. When the number of algo-
rithms for comparison is small, this may pose a disadvantage. In such cases, comparability among data sets is desirable
and we can employ the method of aligned ranks [26]. Because of this, we will use the aligned Friedman’s test to compute
the set of ranks that represent the effectiveness associated with each algorithm and the p-value related to the significance
of the differences found by this test. In addition, the adjusted p-value with Hochberg’s test [25] will be computed. More
information about these tests and other statistical procedures can be found at http://sci2s.ugr.es/sicidm/.

We will consider a difference to be significant if the p-value obtained is lower than 0.1 [14,19] – even though p-values
slightly higher than 0.1 might be also showing important differences.
5. Evaluation of re-sampling methods with noisy and borderline examples

In this section, the performance of C4.5 using the different preprocessing techniques over the imbalanced datasets with
noisy and borderline examples is analyzed. In Section 5.1, the results considering synthetic datasets are analyzed, whereas
Sections 5.2 and 5.3 are respectively devoted to analyzing the results on the real-world datasets and the noisy modified real-
world ones.
5.1. Results on synthetic datasets

Table 3 presents the AUC results obtained by C4.5 on each synthetic dataset when preprocessing with each re-sampling
approach considered in this paper. The column denoted by None corresponds to the case in which no re-sampling is per-
formed prior to C4.5. The best case for each dataset is highlighted in bold. From these results, the following main points
should be stressed:

� Increasing DR, fixing a shape of the minority class and an IR, strongly deteriorates the performance of C4.5 without
preprocessing.
� Preprocessing improves the performance with respect to the case without preprocessing in nearly all the datasets. The

improvements in the results for each single dataset reflect this fact.
� SMOTE–IPF obtains better results than the rest of the re-sampling methods in 11 of the 30 datasets considered and

obtains results close to the best performances in the rest of the cases.
� Without preprocessing, linear rectangle shapes (sub-cluster datasets) are easier to learn than non-linear ones (clover or

paw), since the former obtain higher performances. However, with most of the preprocessing techniques the non-linear
paw datasets even outperform the linear sub-cluster datasets at the same DR level.
� The highest improvements of SMOTE–IPF are obtained in the learning of non-linear datasets, since 8 of the 11 overall best

performance results are obtained for these types of datasets, which are the most difficult ones.

Table 4 collects the results of applying Wilcoxon’s signed ranks statistical test between SMOTE–IPF versus None and
SMOTE. As the p-values (pWilcoxon) and the sums of ranks (Rþ and R�) reflect, the application of SMOTE–IPF produces an
improvement in the results obtained with respect to not preprocessing or preprocessing only with SMOTE with these syn-
thetic imbalanced datasets with borderline examples.

Regarding the comparison between re-sampling techniques considering the synthetic datasets, Table 5 presents the ranks
of the aligned Friedman’s procedure (Rank column) for each group of techniques (filtering-based methods and change-direc-
tion ones). In the case of the Friedman’s aligned rank test, the method with the best average ranking among all the datasets is
considered to be the best. Please note that SMOTE–IPF is established in all the cases as the control algorithm because it has
obtained the best aligned Friedmans rank, indicating the high performance of the approach.

The p-value related to the significance of the differences found by the aligned Friedman’s test (pAlignedFriedman row) is also
shown. In addition, the pHochberg column shows the adjusted p-value with Hochberg’s test. Post-hoc tests indicate those meth-
ods that the control algorithm outperforms significantly.

http://sci2s.ugr.es/sicidm/


Table 3
AUC results obtained by C4.5 on synthetic datasets with borderline examples.

Dataset None SMOTE SMOTE-ENN SMOTE-TL SL-SMOTE B1-SMOTE B2-SMOTE SMOTE–IPF

sub� clusterIR¼5;DR¼0 94.10 93.00 90.00 91.30 91.50 94.20 93.50 92.70
sub� clusterIR¼5;DR¼30 64.80 81.90 81.80 81.30 82.20 79.20 80.00 83.40
sub� clusterIR¼5;DR¼50 51.30 80.80 77.80 81.00 80.40 77.30 77.50 77.80
sub� clusterIR¼5;DR¼60 52.00 78.60 77.00 77.80 78.10 77.00 73.10 79.70
sub� clusterIR¼5;DR¼70 50.00 77.50 77.00 79.20 82.30 78.50 78.00 80.10
sub� clusterIR¼7;DR¼0 87.50 94.79 93.07 92.29 90.79 95.42 95.64 95.21
sub� clusterIR¼7;DR¼30 76.86 81.57 79.64 77.64 81.71 80.29 79.71 83.00
sub� clusterIR¼7;DR¼50 53.86 78.29 75.29 78.50 81.29 75.79 74.79 78.57
sub� clusterIR¼7;DR¼60 50.00 80.21 75.71 78.57 81.36 73.93 73.86 79.79
sub� clusterIR¼7;DR¼70 50.00 82.50 78.21 81.07 81.21 76.43 73.14 80.93
cloverIR¼5;DR¼0 70.50 83.50 86.80 87.30 85.70 86.40 86.80 85.50
cloverIR¼5;DR¼30 54.30 83.80 83.40 84.20 81.10 81.20 81.90 85.30
cloverIR¼5;DR¼50 51.60 83.40 81.00 84.40 83.00 79.90 83.10 82.40
cloverIR¼5;DR¼60 56.50 80.80 80.50 81.50 78.70 76.90 78.70 82.20
cloverIR¼5;DR¼70 50.00 77.20 76.10 79.40 77.10 74.10 78.70 79.00
cloverIR¼7;DR¼0 70.71 87.93 87.79 89.36 88.21 87.14 88.93 91.64
cloverIR¼7;DR¼30 53.21 83.64 83.14 81.00 84.36 79.29 81.29 85.71
cloverIR¼7;DR¼50 50.00 81.21 82.86 82.00 78.71 78.93 73.36 81.93
cloverIR¼7;DR¼60 50.00 78.79 77.71 82.21 77.21 77.79 71.71 82.14
cloverIR¼7;DR¼70 51.57 78.29 76.07 78.86 78.29 75.57 72.79 80.21
pawIR¼5;DR¼0 91.00 96.30 94.90 94.90 92.80 93.10 93.30 94.50
pawIR¼5;DR¼30 70.00 84.40 86.40 84.20 84.50 84.80 87.30 84.90
pawIR¼5;DR¼50 67.90 84.60 83.30 83.90 85.00 81.70 82.80 84.90
pawIR¼5;DR¼60 54.10 81.00 81.30 81.90 82.30 76.30 78.90 83.30
pawIR¼5;DR¼70 57.70 82.80 83.50 84.40 82.70 80.60 80.40 83.40
pawIR¼7;DR¼0 68.29 93.43 93.93 93.43 92.93 95.21 93.79 94.29
pawIR¼7;DR¼30 56.71 84.29 84.93 84.21 83.50 84.36 85.43 85.29
pawIR¼7;DR¼50 50.00 85.00 84.79 84.86 84.29 78.14 79.71 85.79
pawIR¼7;DR¼60 53.00 83.36 80.71 82.57 83.00 72.71 75.14 82.14
pawIR¼7;DR¼70 50.00 82.57 80.57 79.93 84.14 78.64 77.71 85.71

The best case for each dataset is highlighted in bold.

Table 4
Wilcoxon’s test results for the comparison of SMOTE–IPF (Rþ) versus None and SMOTE (R�) on synthetic
datasets considering the AUC results obtained by C4.5.

Methods Rþ R� pWilcoxon

SMOTE–IPF vs. None 464.0 1.0 <0.0001
SMOTE–IPF vs. SMOTE 366.0 99.0 0.0050

Table 5
Multiple statistical comparison with synthetic datasets.

Algorithm Rank pHochberg

Filtering SMOTE–IPF 26.73 –
SMOTE-ENN 64.93 < 0.000001
SMOTE-TL 44.83 0.007289
pAlignedFriedman 0.000014363186

Change-Dir. SMOTE–IPF 30.30 –
SL-SMOTE 47.85 0.050698
B1-SMOTE 83.15 <0.000001
B2-SMOTE 80.70 <0.000001
pAlignedFriedman 0.00002425464
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Looking at Table 5, one can make some observations:

� The average rank for SMOTE–IPF obtained by the aligned Friedman’s test is the best, i.e. the lowest, in all the considered
cases and it is notably differentiated from the ranks of the rest of the methods. This occurs with both filtering-based and
change-direction methods.
� Comparing ranks for filtering-based methods, SMOTE–IPF is followed by SMOTE-TL. SMOTE-ENN obtains the highest rank

notably differentiated from the rest.
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� Among the change-direction methods, SL-SMOTE outperforms the ranks of B1-SMOTE and B2-SMOTE, which are quite
similar.
� The p-values of the aligned Friedman’s test are very low in all the scenarios, which shows a great significance in the dif-

ferences found.
� The adjusted p-values by Hochberg’s test are very low in all comparisons.

From the results of Tables 3–5, one can conclude that SMOTE–IPF performs better than other SMOTE versions when dealing
with the synthetic imbalanced datasets built with borderline examples, particularly in those with non-linear shapes of the
minority class. All the statistical tests also clearly show the statistical significance of this better performance of SMOTE–IPF.

5.2. Results on real-world datasets

Table 6 presents the AUC results obtained by C4.5 on each real-world dataset with noisy and borderline examples when
preprocessing with each re-sampling approach. With these types of datasets, the application of preprocessing techniques
does not always obtain the expected results. For instance, some of the selected preprocessing methods, such as SMOTE-
ENN, SMOTE-TL and B2-SMOTE, do not outperform the performance of None on acl and bupa datasets. acl could be considered
as an easier dataset for basic methods (this has also been observed in [40]) while bupa could be characterized by other com-
plex data factors apart from the presence of noisy and borderline examples.

Wilcoxon’s test between SMOTE–IPF and None and the aligned Friedman’s and Hochberg’s multiple comparison tests
comparing SMOTE–IPF along with the rest of re-sampling techniques are respectively found in Tables 7 and 8.

From the AUC results of Table 6 and the statistical comparisons performed in Tables 7 and 8, one should note that:

� The Wilcoxon’s test between SMOTE–IPF and None, and between SMOTE–IPF and SMOTE again clearly shows an improve-
ment in the results obtained with respect to not preprocessing or applying SMOTE alone.
Table 6
AUC results obtained by C4.5 on real-world datasets with noisy and borderline examples.

Dataset None SMOTE SMOTE-ENN SMOTE-TL SL-SMOTE B1-SMOTE B2-SMOTE SMOTE–IPF

acl 88.75 86.75 86.75 88.00 85.25 89.00 88.00 88.50
breast 61.73 60.56 63.70 62.01 64.72 63.31 63.58 64.40
bupa 64.40 66.88 61.46 60.18 66.84 68.60 63.61 67.53
cleveland 52.58 54.85 57.22 64.33 60.07 54.75 56.66 62.82
ecoli 72.46 82.16 89.97 82.33 84.52 79.55 79.37 86.55
haberman 57.57 65.41 64.68 62.03 67.07 61.40 60.23 66.76
hepatitis 67.66 71.38 71.90 71.15 68.53 66.39 62.70 72.25
newthyroid 90.87 96.35 94.64 94.37 90.95 93.45 97.18 96.63
pima 70.12 71.29 71.40 69.48 73.97 70.94 73.77 73.58

The best case for each dataset is highlighted in bold.

Table 7
Wilcoxon’s test results for the comparison of SMOTE–IPF (Rþ) versus None and SMOTE (R�) on real-world datasets
considering the AUC results obtained by C4.5.

Methods Rþ R� pWilcoxon

SMOTE–IPF vs. None 44.0 1.0 0.0078
SMOTE–IPF vs. SMOTE 45.0 0.0 0.0039

Table 8
Multiple statistical comparison with real-world datasets.

Algorithm Rank pHochberg

Filtering SMOTE–IPF 6.89 –
SMOTE-ENN 16.00 0.014890
SMOTE-TL 19.11 0.002178
pAlignedFriedman 0.037679463832

Change-Dir. SMOTE–IPF 9.33 –
SL-SMOTE 16.11 0.172352
B1-SMOTE 23.67 0.007804
B2-SMOTE 24.89 0.005208
pAlignedFriedman 0.064566807525
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� SMOTE–IPF only obtains the best results on one single dataset (hepatitis) considering all the preprocessing methods.
However, the Friedman’s rank of SMOTE–IPF is clearly the best result compared with the rest of re-sampling techniques
if the performance of all the datasets is summarized. This shows the great robustness of SMOTE–IPF when applied to the
real-world datasets.
� The p-values of the aligned Friedman’s test are very low in all the scenarios, which shows a great significance in the

differences found.
� The adjusted p-values by Hochberg’s test are also very low in all comparisons, particularly with the filtering-based meth-

ods, even though with SL-SMOTE the p-value obtained is a little higher. Therefore, the suitability of SMOTE–IPF to address
imbalanced real-world datasets with noisy and borderline examples is statistically shown.

Comparing the results of the synthetic datasets in Table 5 with respect to those of the real-world ones in Table 8, one
observes that some of the methods that obtain the better Friedman’s ranks on synthetic datasets, such as SMOTE-TL among
the filtering-based methods, obtain less notable results on real-world ones. The latter data are perhaps more complex than
the former and they may require more elaborate techniques. SMOTE–IPF remains the best method considering its aligned
Friedman’s rank and the Hochberg’s test p-values with both synthetic and real-world datasets.

5.3. Results on noisy modified real-world datasets

This section is devoted to the analysis of the AUC results obtained by C4.5 on the noisy modified real-world datasets (see
Table 9). From this table, one can observe that:

� Outperforming the results of None by the re-sampling methods is often more difficult when dealing with more noisy real-
world datasets than with real-world datasets without additional noise. For instance, the performance of None on the
Table 9
AUC results obtained by C4.5 on noisy modified real-world datasets with both class noise and attribute noise.

Dataset None SMOTE SMOTE-ENN SMOTE-TL SL-SMOTE B1-SMOTE B2-SMOTE SMOTE–IPF

Class Noise aclx¼20% 86.50 87.25 81.75 82.00 85.50 83.75 81.75 88.25
breastx¼20% 63.32 63.44 62.96 59.78 64.44 61.31 67.12 64.15
bupax¼20% 60.75 63.35 56.05 63.47 62.89 61.94 64.81 61.46
clevelandx¼20% 66.07 61.47 50.00 70.93 60.33 59.79 58.83 63.51
ecolix¼20% 73.58 75.86 83.55 75.45 78.38 75.64 79.37 78.42
habermanx¼20% 62.18 62.61 60.95 53.97 62.65 59.82 61.03 62.25
hepatitisx¼20% 70.37 62.09 66.90 71.68 69.87 62.10 60.89 77.58
newthyroidx¼20% 92.06 87.98 90.44 79.40 89.92 84.17 89.72 88.21
pimax¼20% 68.99 72.70 71.63 66.09 67.28 69.69 70.09 73.08
aclx¼40% 68.50 71.00 74.00 62.50 66.75 66.75 73.50 74.75
breastx¼40% 56.41 57.26 61.87 53.65 55.54 57.28 59.52 55.86
bupax¼40% 55.03 52.10 55.29 50.68 53.42 55.53 56.59 56.02
clevelandx¼40% 57.02 58.97 61.41 59.57 52.65 59.19 59.94 62.98
ecolix¼40% 60.76 55.65 69.61 53.36 56.48 61.10 61.89 71.12
habermanx¼40% 50.00 50.00 53.16 51.19 50.00 50.00 50.00 61.92
hepatitisx¼40% 50.00 53.60 56.49 58.57 61.79 56.67 50.00 65.54
newthyroidx¼40% 50.00 51.03 57.58 53.53 51.03 56.59 51.03 53.29
pimax¼40% 62.63 60.75 54.19 53.40 61.72 61.56 62.16 61.85

Attribute noise aclx¼20% 73.25 68.25 73.00 68.25 70.75 72.75 74.00 70.00
breastx¼20% 54.56 64.03 63.40 55.47 60.77 61.01 59.46 62.81
bupax¼20% 53.10 51.47 56.23 51.31 55.35 52.36 55.23 58.41
clevelandx¼20% 53.33 57.30 56.54 58.62 57.34 54.28 54.66 63.89
ecolix¼20% 59.93 71.70 64.81 62.65 74.03 65.61 67.48 72.89
habermanx¼20% 55.68 59.09 63.25 57.42 58.07 60.42 59.41 62.81
hepatitisx¼20% 78.26 65.10 72.69 70.99 75.58 74.52 85.23 78.74
newthyroidx¼20% 80.60 87.26 83.61 83.02 85.32 86.90 84.05 87.58
pimax¼20% 66.71 65.85 67.64 63.72 63.99 63.17 64.80 69.99
aclx¼40% 83.25 79.50 79.75 80.75 84.00 82.50 79.50 86.25
breastx¼40% 52.00 55.52 60.14 50.99 56.51 57.28 53.08 56.53
bupax¼40% 57.40 61.28 58.98 54.97 59.88 61.66 57.54 57.93
clevelandx¼40% 59.99 50.00 58.74 62.73 64.61 50.94 61.52 65.69
ecolix¼40% 65.81 70.78 74.13 74.56 72.14 70.46 67.61 73.02
habermanx¼40% 50.18 62.88 63.23 61.21 61.30 62.33 58.60 66.22
hepatitisx¼40% 76.61 63.34 65.08 61.39 70.78 69.29 70.06 77.34
newthyroidx¼40% 83.77 89.52 88.13 90.16 87.58 88.93 90.04 91.55
pimax¼40% 62.87 63.84 65.48 65.42 68.47 64.26 63.99 66.91

The best case for each dataset is highlighted in bold.
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newthyroidx¼20% and pimax¼40% datasets with class noise are the best results with respect to considering the use of
preprocessing.
� The observation of the best results in each single dataset show that SMOTE–IPF is the best method in 8 of 18 class noise

datasets, whereas it is the best in 9 of 18 attribute noise datasets. SMOTE-ENN and B2-SMOTE are also notable, with each
obtaining 3 of 18 of the best results in class noise datasets and 2 of 18 in attribute noise datasets.

Table 10 shows the results of comparing the application of Wilcoxon’s test to SMOTE–IPF with None and SMOTE, whereas
Table 11 shows the aligned Friedman’s test and the Hochberg’s test results comparing SMOTE–IPF with respect to the rest of
re-sampling techniques.

From these tables, one can make some observations:

� The need to apply advanced preprocessing techniques is shown by the low p-values obtained in Table 10, even though a
slightly higher p-value (0.1551) is obtained comparing SMOTE–IPF and None with 20% of class noise.
� SMOTE–IPF is established with both types of noise (class and attribute noise), both noise levels (20% and 40%) and with

both types of techniques (filtering-based and change-direction methods) as the control algorithm because it obtains the
best aligned Friedman’s rank.
� The p-values of the aligned Friedman’s test are low with both class and attribute noise. However, the most significant dif-

ferences are found when comparing against the filtering-based techniques rather than against the change-direction ones.
� The adjusted p-values by Hochberg’s test are generally low in all comparisons, with the exception of 20% of class noise in

the change-direction group of methods, in which the highest p-values are obtained. The p-values are lower in the case of
the attribute noise datasets than in the class noise datasets for a noise level of 20%. However, increasing the noise level up
to 40% makes the differences found more significant independently of the type of noise.

Therefore, SMOTE–IPF also performs well in this scenario with these datasets, with additional noise induced as the AUC
results and statistical comparisons show. The better performance and statistical significance of the results of SMOTE–IPF
with the attribute noise datasets must be pointed out. This property seems to be important due to the fact that attribute
noise is much more common than class noise in real-world datasets, as indicated in [57].
5.4. Analysis of the noise filters in imbalanced datasets preprocessed with SMOTE

Since the only difference among all the existing filtering-based methods is the type of noise filter used, in this section the
results of the filtering process are analyzed. Four additional criteria will be studied based on the percentage of examples
removed by the noise filters after preprocessing with SMOTE. We analyze the percentage of examples filtered with respect
to the set of: (i) all the examples (%Total), (ii) the synthetic positive examples created by SMOTE (%Synt), (iii) the original
positive examples (%Pos) and (iv) the original negative examples (%Neg). For the sake of simplicity, only ENN and IPF will
be compared and also only the noise level (20%) will be studied, even though the results of the other filtering method
(TL) and the other noise level (40%) are found in the web-page associated with this paper.
Table 10
Wilcoxon’s test results for the comparison of SMOTE–IPF ðRþÞ versus None and SMOTE ðR�Þ on real-world datasets with both class noise and attribute noise
considering the AUC results obtained by C4.5.

Methods Class noise – 20% Class noise – 40% Attribute noise – 20% Attribute noise – 40%

Rþ R� pWilcoxon Rþ R� pWilcoxon Rþ R� pWilcoxon Rþ R� pWilcoxon

SMOTE–IPF vs. None 34.0 11.0 0.1551 42.0 3.0 0.0195 43.0 2.0 0.0117 45.0 0.0 0.0039
SMOTE–IPF vs. SMOTE 37.0 8.0 0.0977 43.0 2.0 0.0117 42.0 3.0 0.0195 39.0 6.0 0.0546

Table 11
Multiple statistical comparison with real-world datasets with both class noise and attribute noise.

Algorithm Class noise – 20% Class noise – 40% Attribute noise – 20% Attribute noise – 40%

Rank pHochberg Rank pHochberg Rank pHochberg Rank pHochberg

SMOTE–IPF 9.22 – 7.56 – 6.11 – 7.44 –
SMOTE-ENN 15.56 0.090521 12.89 0.154044 13.67 0.043455 16.00 0.022221
SMOTE-TL 17.22 0.065019 21.56 0.000366 22.22 0.000033 18.56 0.005964
pAlignedFriedman 0.03280041552 0.040217689132 0.043181723863 0.037237166607

SMOTE–IPF 11.00 – 9.11 – 9.11 – 8.89 –
SL-SMOTE 15.56 0.359013 26.11 0.001859 20.33 0.025274 16.00 0.152201
B1-SMOTE 28.44 0.001332 20.39 0.046325 24.33 0.006531 21.33 0.024445
B2-SMOTE 19.00 0.214458 18.39 0.061755 20.22 0.025274 27.78 0.000428
pAlignedFriedman 0.065317774636 0.067460983239 0.06469719834 0.069232529882
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Table 12 shows the percentage of examples removed in synthetic datasets with borderline examples. The analysis of
these results leads to the following observations:

� ENN usually removes more examples (%Total) in sub-cluster and paw datasets, whereas IPF removes more examples only
in clover datasets. One must note that clover datasets have more non-linear shapes of the minority class than the rest of
the types of datasets.
� The %Synt results show similar conclusions to those of %Total results. It is important to point out that ENN does not

remove any examples in clover datasets.
� ENN usually removes large quantities of examples of the original positive examples (%Pos), whereas IPF removes very low

quantities independently of the type of dataset.
� IPF usually removes more examples of the negative class (%Neg) in sub-cluster and paw datasets, whereas it removes less

examples in clover datasets.

Table 13 shows the percentage of examples removed in real-world datasets with noisy and borderline examples. These
results show the following points:

1. Real-world datasets. IPF removes more synthetic positive examples (%Synt) and more original negative examples (%Neg)
in almost all the datasets, where as it always removes less original positive examples (%Pos).

2. Noisy modified real-world datasets. IPF removes more synthetic examples (%Synt) in almost all the datasets and it
removes less original positive examples (%Pos) with both types of noise. However, there is an important difference in
the percentage of negative examples removed %Neg in both types of noise: IPF generally removes less negative examples
than ENN with class noise datasets and more examples with attribute noise datasets.

The percentages of the total number of examples removed %Total do not provide significant results in any of the afore-
mentioned cases. Furthermore, it is important to remark that, in many datasets, ENN does not remove any synthetic
examples.

From the results shown in this section, it can be observed that an important characteristic of the filtering performed by
IPF is that it usually removes less original positive examples than ENN. One must not forget that, although noisy examples
Table 12
Percentages of examples removed by ENN and IPF after preprocessing the synthetic datasets with SMOTE.

Dataset ENN IPF ENN IPF ENN IPF ENN IPF
%Total %Synt %Pos %Neg

sub� clusterIR¼5;DR¼0 14.30 7.65 9.00 6.25 19.00 0.00 17.60 10.30
sub� clusterIR¼5;DR¼30 17.83 14.65 10.19 9.44 41.50 3.00 19.20 21.15
sub� clusterIR¼5;DR¼50 20.88 17.00 11.44 6.69 50.00 1.75 22.60 28.30
sub� clusterIR¼5;DR¼60 18.23 16.72 9.31 8.63 49.50 1.50 19.10 26.25
sub� clusterIR¼5;DR¼70 19.90 17.93 10.69 7.50 49.00 1.25 21.45 29.60
sub� clusterIR¼7;DR¼0 12.73 4.64 6.96 7.08 22.75 0.00 16.25 3.21
sub� clusterIR¼7;DR¼30 15.68 14.23 8.67 5.42 45.50 2.00 17.43 23.54
sub� clusterIR¼7;DR¼50 17.27 15.52 9.08 6.83 54.50 2.50 18.96 24.82
sub� clusterIR¼7;DR¼60 16.11 17.45 9.25 5.42 54.50 0.25 16.50 30.21
sub� clusterIR¼7;DR¼70 16.89 18.29 7.92 5.42 57.75 0.25 18.75 31.89
cloverIR¼5;DR¼0 3.05 8.80 0.00 2.19 13.00 1.25 3.50 15.60
cloverIR¼5;DR¼30 6.75 11.83 0.00 3.94 37.25 0.50 6.05 20.40
cloverIR¼5;DR¼50 9.05 13.75 0.00 3.81 53.00 1.50 7.50 24.15
cloverIR¼5;DR¼60 10.18 13.10 0.00 2.88 60.50 0.25 8.25 23.85
cloverIR¼5;DR¼70 10.87 14.93 0.00 3.69 65.50 0.75 8.65 26.75
cloverIR¼7;DR¼0 2.64 6.05 0.00 1.54 19.75 1.00 2.46 10.64
cloverIR¼7;DR¼30 4.77 10.84 0.00 3.04 44.25 0.00 3.21 19.07
cloverIR¼7;DR¼50 6.98 11.75 0.00 2.75 63.50 1.50 4.89 20.93
cloverIR¼7;DR¼60 8.13 12.00 0.00 2.62 71.25 0.50 6.07 21.68
cloverIR¼7;DR¼70 8.09 12.70 0.00 2.88 75.25 0.50 5.43 22.86
pawIR¼5;DR¼0 7.75 4.08 2.06 1.25 7.50 0.25 12.35 7.10
pawIR¼5;DR¼30 14.48 9.25 7.50 1.94 20.75 1.25 18.80 16.70
pawIR¼5;DR¼50 17.20 9.58 9.00 2.75 23.50 0.25 22.50 16.90
pawIR¼5;DR¼60 16.25 10.85 5.06 2.31 28.00 1.25 22.85 19.60
pawIR¼5;DR¼70 17.38 10.47 7.56 1.69 30.75 1.00 22.55 19.40
pawIR¼7;DR¼0 7.45 4.02 2.75 1.50 7.75 0.25 11.43 6.71
pawIR¼7;DR¼30 13.21 8.34 5.71 2.54 22.25 0.50 18.36 14.43
pawIR¼7;DR¼50 14.98 8.98 6.38 2.92 26.00 0.75 20.79 15.36
pawIR¼7;DR¼60 14.46 10.93 4.63 2.42 32.25 1.00 20.36 19.64
pawIR¼7;DR¼70 15.50 10.68 5.79 2.17 36.50 0.50 20.82 19.43

The best case for each dataset and criteria is highlighted in bold.



Table 13
Percentages of examples removed by ENN and IPF after preprocessing the real-world and noisy modified real-world datasets with SMOTE.

Dataset ENN IPF ENN IPF ENN IPF ENN IPF
%Total %Synt %Pos %Neg

Real-world acl 7.50 15.00 0.42 22.50 26.88 7.50 4.00 13.50
breast 37.06 29.97 38.50 30.72 40.42 31.48 34.82 28.91
bupa 33.81 23.50 0.00 22.73 46.55 27.07 33.88 21.13
cleveland 8.92 9.26 0.00 3.42 87.86 29.29 6.11 11.65
ecoli 5.73 7.85 0.00 4.51 48.57 2.14 5.82 11.46
haberman 20.44 27.17 13.02 24.98 52.46 21.32 13.67 30.67
hepatitis 10.19 17.18 0.00 18.01 49.67 1.67 10.73 19.51
newthyroid 1.46 4.44 0.00 8.28 9.29 1.43 1.11 1.94
pima 21.10 20.67 0.65 17.89 42.82 19.31 18.95 22.70

Class Noise aclx¼20% 22.58 20.88 4.22 32.05 38.82 30.63 16.50 10.70
breastx¼20% 42.62 35.42 34.52 38.25 47.09 46.70 40.98 25.88
bupax¼20% 41.74 33.69 0.00 24.17 48.10 39.56 38.96 28.64
clevelandx¼20% 24.54 22.04 0.00 12.45 75.96 51.47 19.14 16.24
ecolix¼20% 19.09 25.37 0.00 26.48 60.74 29.16 15.88 23.22
habermanx¼20% 35.39 31.90 14.22 28.94 50.20 33.52 32.03 31.70
hepatitisx¼20% 19.77 31.22 0.00 34.18 51.80 30.74 15.91 30.01
newthyroidx¼20% 16.69 21.93 0.00 34.52 49.28 36.22 10.10 8.57
pimax¼20% 33.83 26.77 2.52 25.85 40.32 26.40 31.97 27.21

Attribute Noise aclx¼20% 18.00 19.88 2.50 23.75 54.37 13.75 12.75 20.00
breastx¼20% 35.59 31.09 37.81 34.75 31.16 34.88 36.10 27.37
bupax¼20% 40.44 32.25 0.00 23.64 58.79 26.38 38.25 38.88
clevelandx¼20% 8.25 10.49 0.00 4.73 85.71 32.14 5.06 12.59
ecolix¼20% 8.72 11.09 0.94 4.98 52.14 3.57 10.55 17.36
habermanx¼20% 21.56 26.94 10.77 25.52 52.77 18.83 17.22 30.78
hepatitisx¼20% 11.05 21.48 0.00 24.21 60.67 4.00 10.20 22.71
newthyroidx¼20% 5.00 9.58 0.00 14.66 40.00 5.00 2.22 6.39
pimax¼20% 29.23 25.95 6.25 23.06 52.42 23.32 27.45 28.70

The best case for each dataset and criteria is highlighted in bold.

J.A. Sáez et al. / Information Sciences 291 (2015) 184–203 199
exist in the original dataset, the minority class is usually under-represented and the classifier should mainly reflect the prop-
erties of these original examples. Thus, being more conservative with regard to removing too many examples from the
minority class seems to be an advantage.

IPF removes more synthetic positive examples created by SMOTE than ENN in real-world and noisy modified real-world
datasets, along with the more complex non-linear synthetic datasets (clover). These types of datasets are the most complex
considered in this paper and it is therefore more likely that the synthetic examples introduced by SMOTE will be noisy.

With noisy real-world datasets – which are more likely to suffer from attribute noise than from class noise [57] – and
noisy modified real-world datasets with attribute noise, the number of original negative examples removed by IPF is larger
than with other noise filters, whereas with class noise datasets the quantity of negative examples removed by IPF is generally
fewer. This is due to real-world and attribute noise datasets having larger quantities of negative examples suffering from
noise than class noise datasets. It seems to be logical to delete more negative examples in these types of datasets than in
class noise datasets and this is indeed the behavior of IPF. Therefore, this fact leads one to think that IPF performs a more
accurate filtering than other noise filters in these scenarios.
6. SMOTE–IPF: suitability of the approach, strengths and weaknesses

This section summarizes the main conclusions obtained in the experimental section. Section 6.1 outlines the results
obtained with the different types of datasets. Then, Section 6.2 describes the characteristics of IPF that make it suitable
for this type of problem when preprocessed with SMOTE. Section 6.3 analyzes the main drawback of SMOTE–IPF, its param-
etrization. Finally, Section 6.4 establishes a hypothesis in order to explain its good behavior in the different scenarios
considered.
6.1. Results obtained with the different types of datasets

The experimental results shows that SMOTE–IPF statistically outperforms the rest of the methods with all the types of
datasets considered: synthetic datasets with borderline examples, real-world datasets with noisy and borderline examples
and noisy modified real-world datasets. It is particularly suitable for the most complex types of problems: the non-linear
synthetic datasets and the noisy modified real-world problems. Within the latter group, it particularly stands out with attri-
bute noise datasets, which is the most common type of noise [57] and, in this case, it is also the most disruptive one due it
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affecting both classes, whereas class noise only affects the majority class. The increase in the noise level makes the differ-
ences in favor of SMOTE–IPF still more remarkable.

6.2. Characteristics of IPF and suitability for problems preprocessed with SMOTE

One important fact that makes IPF suitable for imbalanced datasets with noisy and borderline examples preprocessed
with SMOTE is its iterative elimination of noisy examples. This fact implies that the examples removed in one iteration do
not influence detection in subsequent ones, resulting in a more accurate noise filtering.

Furthermore, the ensemble nature of IPF enables it to collect predictions from different classifiers which may provide a
better estimation of difficult noisy examples, as apposed to collecting information from a single classifier only [7]. IPF also
enables the creation of more different classifiers – using random partitions, for example – than other ensemble-based filters
due to it providing more freedom when creating the partitions from which these classifiers are built. Creating diversity
among the classifiers built is a key factor when ensembles of classifiers are used [34]. Finally, unlike other ensemble-based
filters such as EF, which uses different classification algorithms to build the classifiers, IPF only requires one classification
algorithm and is thus simpler.

6.3. On the parametrization of IPF

The choice of the different parameters of IPF can be seen as its main drawback, since there are numerous parameters and
the behavior of the filter is quite dependent on their values. From our many experiments we can draw several conclusions
regarding the influence of the different parameters on the performance results.

We have confirmed that using the majority scheme leads to better results than the consensus scheme since the number of
noisy and borderline examples is large enough in comparison with the quantity of safe examples. The consensus scheme is
very strict in removing examples and does not enable one to remove enough examples to change the performance
significantly.

Regarding the number of partitions, a larger number usually implies better noise detection (and also a higher preprocess-
ing time) since the voting scheme depends on more information. It is recommended that this number be odd, in order to
avoid ties in the votes of the classifiers. Considering n ¼ 9 partitions leads to a good balance between computational cost
and performance.

The way to build the partitions enables one to control the diversity among classifiers. We have tested different strategies
to create the partitions, such as stratified cross-validation – e.g. EF or CVCF – or random partitions. Random partitions were
considered because they lead to better performance results since, as was expected, the partitions and, therefore the
classifiers built, are more different.

The rest of the parameters allow a wider range of possibilities obtaining similar performances. Standard parameters
recommended by the authors of IPF also work well with our SMOTE-preprocessed imbalanced datasets, so they are fixed
to k ¼ 3 iterations for the stop criterion and p ¼ 1% for the percentage of removed examples.

6.4. Hypothesis to explain the good behavior of IPF with respect to other filters

The properties of IPF seem to be well adapted to the removal of noisy and borderline examples, implying an advantage
over other noise filters. Most of the noise filters combined with SMOTE, such as ENN or TL, have a noise identification based
on distances among examples to their nearest neighbors, taking into account their classes. This issue, although overlooked in
the literature, may be an important drawback: since SMOTE is based on the distance to the nearest neighbors to create a new
positive example, such synthetic examples introduced by SMOTE, although noisy, are highly likely to not be identified by
filters based on distances to the nearest neighbors. Using a noise identification method based on more complex rules, such
as IPF, enables one to group larger quantities of examples with similar characteristics, although exceptions exist that will be
considered to be noise, avoiding the aforementioned problem and detecting noisy examples easily.
7. Concluding remarks

This paper has focused on the presence of noisy and borderline examples, which is an important and contemporary
research issue for learning classifiers from imbalanced data. It has been proposed to extend SMOTE with a new element,
the IPF noise filter, to control the noise introduced by the balancing between classes produced by SMOTE and to make
the class boundaries more regular. The suitability of the approach in this scenario has been analyzed.

Synthetic imbalanced datasets with different shapes of the minority class, imbalance ratios and levels of borderline exam-
ples have been considered. A set of real-world imbalanced datasets with different quantities of noisy and borderline exam-
ples and other factors have been also considered. Additional noise has been introduced into the latter considering two noise
schemes: a class noise scheme and an attribute noise scheme. All these datasets have been preprocessed with our proposal
and several re-sampling techniques that can be found in the literature. Finally, the C4.5 algorithm has been tested over these
preprocessed datasets.
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The values of the AUC measure have shown that our proposal has a notably better performance when dealing with imbal-
anced datasets with noisy and borderline examples with both synthetic and real-world datasets. SMOTE–IPF also outper-
forms the rest of the methods with the real-world datasets with additional noise. Our proposal especially outperforms
the rest of the methods with the more complex to learn datasets in each group of datasets: the non-linear synthetic datasets
and the attribute noise real-world datasets. These observations are supported by statistical tests.

The experiments performed with others classifiers (k-NN, SVM, RIPPER and PART) have provided similar results and con-
clusions on the superiority of SMOTE–IPF to those shown for C4.5. Although statistical differences are less significant using
SVM and RIPPER with attribute noise datasets, SMOTE–IPF obtains the better performances and the aligned Friedman’s
ranks. The especially good results of SMOTE–IPF on the synthetic datasets using RIPPER and on the class noise datasets using
k-NN must also be pointed out. These results have been better than those of C4.5 shown here.

One must consider that the ensemble-nature of IPF, which constitutes a robust and accurate way of detecting mislabeled
examples, the iterative noise detection and elimination processes carried out and the possibility of controlling the diversity
between classifiers are the key points of IPF which finally produce a more accurate filtering process. All these factors help
SMOTE–IPF to obtain better performances than other re-sampling techniques in the scenarios considered.
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