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Abstract

In this paper, we study multidimensional integrals. We introduce a generalized fuzzy integral and we present a Fubini-like theorem
for this generalized fuzzy integral. As this research was partly motivated by the definition of citation indices, we also describe how
such multidimensional integrals can be used to define such indices.
© 2008 Elsevier B.V. All rights reserved.

Keywords: Fuzzy measure; Fuzzy integral; Choquet integral; Sugeno integral; Multidimensional integrals

1. Introduction

Citation indices are a topic of practical interest due to the fact that they are used to evaluate the impact of researchers’
activities. Our interest for such indices, permitted us to prove that two of the most used indices for authors of papers
can be represented as fuzzy integrals. In particular, in [13,9,8] we proved that the Hirsch index [4] and the number
of citations correspond, respectively, to the Sugeno integral [11] and the Choquet integral [2] of the same function.
The function corresponds to the number of citations for a given paper. Another interesting result from [13] is that both
integrals are calculated with respect to the same fuzzy measure: the measure defined as the cardinality of the set.

These results have turned our attention, again, into the field of multidimensional integrals. The Hirsch index and
the number of citations correspond to the integral of the function f, where f (x) corresponds to the number of citations
of paper x at the time of study. Nevertheless, we can consider the number of citations of x in a particular year y. If
gy(x) represents this value, f (x) = ∑

y�� gy(x), and it is meaningful to compute the integral of f. In this paper we
consider generalized fuzzy (GF) integrals for this purpose. Besides, as this integral is a multidimensional integral, it is
meaningful to study whether Fubini-like theorems apply. Indeed, in this paper we present a Fubini-like theorem.

Another relevant issue when dealing with multidimensional integrals is the set where they are measurable. In [9],
we considered measurable functions on the set:

X × Y := {A × B|A ∈ X, B ∈ Y}.
Note that for X := 2X and Y := 2Y , X × Y � 2X×Y , the set of X × Y-measurable functions is not equivalent to the
set of 2X×Y -measurable functions. This is a problem when directly computing the integral in the product space. Due
to this, we considered the extension of fuzzy measures from X × Y into 2X×Y .
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In this paper we consider another extension, based on pseudo-addition, that permits us to construct a measure in the
extended measure space 2X×Y that corresponds to the cardinality of a set. So, with this new extension we can define a
measure that corresponds to the one used for both Sugeno and Choquet integrals when used to define the Hirsch index
and the number of citations. Besides of that, we also consider here the case where the universal set X is infinite.

The structure of this paper is as follows. First, we review in Section 2 some concepts that are needed later on in this
paper. In Section 3, we define GF integrals. Then, in Section 4 we will consider the multidimensional integrals. Section
6 describes how the results presented here can be applied in the problem of defining citation indices. The paper finishes
with some conclusions.

2. Preliminaries

This section reviews some basic definitions on fuzzy measures that are used in the rest of this paper. In particular,
we present the definition of a fuzzy measure and the one of Choquet and Sugeno integrals.

Definition 1. Let X be a universal set andX be a subset of 2X with ∅ ∈ X and X ∈ X. Then, (X,X) is called a fuzzy
measurable space. We say that a function f : X → R+ is X-measurable if {x | f (x)�a} ∈ X for all a.

Definition 2 (Dellacherie [3]). Let f and g beX-measurable functions on X; then, we say that f and g are comonotonic
if

f (x) < f (y) ⇒ g(x)�g(y)

for x, y ∈ X .

Definition 3 (Sugeno [11]). Let (X,X) be a fuzzymeasurable space; then, a fuzzymeasure � on (X,X) is a real valued
set function, � : X −→ R+ with the following properties.

(1) �(∅) = 0, �(X ) = k where k ∈ (0, ∞).
(2) �(A)��(B) whenever A ⊂ B, A, B ∈ X.
(3) An ↑ A implies �(An) ↑ �(A) if An ∈ X and A ∈ X.

A triplet (X,X, �) is said to be a fuzzy measure space.

Definition 4 (Choquet [2], Murofushi and Sugeno [7]). Let (X,X, �) be a fuzzy measure space and let f be a X-
measurable function; then, the Choquet integral of f with respect to � is defined by

(C)
∫

f d� :=
∫ ∞

0
� f (r ) dr,

where � f (r ) = �({x | f (x)�r}).

Definition 5 (Benvenuti et al. [1]). For any r > 0 and A ∈ X, the basic simple function b(r, A) is defined by
b(r, A)(x) = r if x ∈ A and b(r, A)(x) = 0 if x /∈ A.

A function f is a simple function if it can be expressed as f := ∑n
i=1 b(ai , Ai ) for ai > 0 and f := ∨n

i=1 b(a′
i , Ai )

for a′
1 > · · · > a′

n > 0, where A1�A2� · · ·�An , Ai ∈ X.
Then, when an X-measurable function f is a simple function, we have

(C)
∫

f d� =
n∑

i=1

ai�(Ai ).

Definition 6 (Ralescu and Adams [10], Sugeno [11]). Let (X,X, �) be a fuzzymeasure space and let f : X → [0, ∞)
be an X-measurable function; then, the Sugeno integral of f with respect to � is defined by

(S)
∫

f d� := sup
r∈[0,∞)

[r ∧ � f (r )].



804 Y. Narukawa, V. Torra / Fuzzy Sets and Systems 160 (2009) 802–815

When f is a simple function, the Sugeno integral is written as

(S)
∫

f d� =
n∨

i=1

(a′
i ∧ �(Ai )).

3. GF integral

In this section, we define a GF integral in terms of a pseudo-addition ⊕ and a pseudo-multiplication �. Formally, ⊕
and � are binary operators that generalize addition and multiplication, and also max and min. We want to recall that
GF integrals have been investigated by Benvenuti et al. [1].

Note that we will use k ∈ (0, ∞) in the rest of this paper.

Definition 7. A pseudo-addition ⊕ is a binary operation on [0, k] or [0, ∞) fulfilling the following conditions:

(A1) x ⊕ 0 = 0 ⊕ x = x .
(A2) x ⊕ y�u ⊕ v whenever x�u and y�v.
(A3) x ⊕ y = y ⊕ x .
(A4) (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z).
(A5) xn → x, yn → y implies xn ⊕ yn → x ⊕ y.

A pseudo-addition ⊕ is said to be strict if and only if x ⊕ y < x ⊕ z whenever x > 0 and y < z, for x, y, z ∈ (0, k);
and it is said to be Archimedean if and only if x ⊕ x > x for all x ∈ (0, k).

Definition 8. A pseudo-multiplication � is a binary operation on [0, k] or [0, ∞) fulfilling the conditions:

(M1) There exists a unit element e ∈ (0, k] such that x�e = e�x = x .
(M2) x�y�u�v whenever x�u and y�v.
(M3) x�y = y�x .
(M4) (x�y)�z = x�(y�z).
(M5) xn ↑ x, yn ↑ y implies xn�yn ↑ x�y.

Example 9.

(1) The maximum operator x ∨ y is a non-Archimedean pseudo-addition on [0, k].
(2) The sum x + y is an Archimedean pseudo-addition on [0, ∞).
(3) The Sugeno operator x +� y := 1 ∧ (x + y + �xy) (−1 < � < ∞) is an Archimedean pseudo-addition on [0, 1].

Proposition 10 (Ling [5]). If a pseudo-addition⊕ isArchimedean, then there exists a continuousand strictly increasing
function g : [0, k] → [0, ∞] such that x ⊕ y = g(−1)(g(x) + g(y)), where g(−1) is the pseudo-inverse of g defined by

g(−1)(u) :=
{
g(−1)(u) if u�g(k),
k if u > g(k).

The function g is called an additive generator of ⊕.

Definition 11. Let � be a fuzzy measure on a fuzzy measurable space (X,X); then, we say that � is a ⊕-measure or a
⊕-decomposable fuzzy measure if �(A ∪ B) = �(A) ⊕ �(B) whenever A ∩ B = ∅ for A, B ∈ X.

A ⊕-measure � is called normal when either ⊕ = ∨ or ⊕ is Archimedean and g ◦ � is an additive measure. Here, g
corresponds to an additive generator of ⊕.

Definition 12. Let k ∈ (0, ∞), let ⊕ be a pseudo-addition on [0, k] or [0, ∞) and let � be a pseudo-multiplication on
[0, k] or [0, ∞); then, we say that � is ⊕-fitting if

(F1) a�x = 0 implies a = 0 or x = 0,
(F2) a�(x ⊕ y) = (a�x) ⊕ (a�y).

Under these conditions, we say that (⊕, �) is a pseudo-fitting system.
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Let ⊕ be a pseudo-addition; then, we define its pseudo-inverse −⊕ as

a −⊕ b := inf{c|b ⊕ c�a}
for all (a, b) ∈ [0, k]2.

Definition 13 (Sugeno and Murofushi [12]). Let � be a fuzzy measure on a fuzzy measurable space (X,X), and let
(⊕, �) be a pseudo-fitting system. Then, when � is a normal ⊕-measure, we define the pseudo-decomposable integral
of a measurable simple function f on X such that f = ⊕

1
n
i=1 b(ri , Di ) where Di ∩ Dj�∅ for i� j , as follows:

(D)
∫

f d� :=
n⊕

i=1

ri��(Di ).

For a measurable function f, there exists a sequence fn such that fn ↑ f . Then, its pseudo-decomposable integral is
defined as follows:

(D)
∫

f d� := sup
n
(D)

∫
fn d�.

Since � is a ⊕-measure, it is obvious that the integral is well defined.

Definition 14. Let � be a fuzzymeasure on ameasurable space (X,X), and let (⊕, �) be a pseudo-fitting system. Then,
the GF-integral of a measurable simple function f := ⊕n

i=1 b(ai , Ai ), with ai > 0 and A1�A2� · · · An , Ai ∈ X, is
defined as follows:

(GF)
∫

f d� :=
n⊕

i=1

ai��(Ai ).

The GF-integral of a simple function is well defined [1].
The following proposition can be proven. It will permit us to define the GF-integral of a measurable function.

Proposition 15. Let f be a measurable function, { fn} be a sequence of simple functions such that fn ↑ f and g be a
simple function such that g� f . Then we have

(GF)
∫

g d�� sup
n
(GF)

∫
fn d�.

Proof. Let g := ⊕m
i=1 b(bi , Bi ), A := {x |g(x) > 0} and An := {x |0 < g(x) < fn(x) ⊕ b(�, X )} for an arbitrary �.

since we assume �(X ) = k < ∞, we have

(GF)
∫
( fn ⊕ �1X ) d� = (GF)

∫
fn d� ⊕ ���(X )

� (GF)
∫
( fn ⊕ b(�, X ))�b(e, A ∩ An) d�

� (GF)
∫

g�b(e, A ∩ An) d�

= (GF)
∫ m⊕

i=1

b(bi , Bi ∩ A ∩ An) d�

=
m⊕
i=1

bi��(Bi ∩ A ∩ An) =
m⊕
i=1

bi��(Bi ∩ An).

Since fn ↑ f as n → ∞, we have An ↑ A. Therefore we have

sup
n
(GF)

∫
fn d� ⊕ ���(X )�

m⊕
i=1

bi��(Bi ) = (GF)
∫

g d�.
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Since � is arbitrary and �(X ) < ∞, we have

sup
n
(GF)

∫
fn d��(GF)

∫
g d�. �

From this proposition, it follows that the GF-integral of a measurable function f is well defined.

Definition 16. When f is not a simple function, we define the integral as follows:

(GF)
∫

f d� := sup
n
(GF)

∫
fn d�,

where { fn} is a non-decreasing sequence of simple functions with pointwise convergence to f.

It is obvious from the definition above that a GF-integral is monotone, that is,

f �g ⇒ (GF)
∫

f d�� (GF)
∫

g d�.

The next proposition follows from the definition of the pseudo-inverse −⊕, the generalized t-conorm integral (Def-
inition 14), and the t-conorm integral (Definition 13).

Proposition 17. Let � be a fuzzy measure on a fuzzy measurable space (X,X), and let (⊕, �) be a pseudo-fitting
system. Then, if � is a normal ⊕-measure, the GF integral coincides with the pseudo-decomposable integral.

Example 18.

(1) When ⊕ = + and � = ·, the GF integral is a Choquet integral.
(2) When ⊕ = ∨ and � = ∧, the GF integral is a Sugeno integral.

Since we assume the continuity from below for fuzzy measures, we can prove the next monotone convergence
theorem.

Theorem 19 (Monotone convergence theorem). Let (X,X, �) be a fuzzy measure space and let (⊕, �) be a pseudo-
fitting system. If a non-decreasing sequence { fn} of the measurable functions converges to a measurable function f,
that is, fn ↑ f , then we have

(GF)
∫

f d� = lim
n→∞(GF)

∫
fn d�.

Proof. Let fn and f be measurable functions such that fn ↑ f . Let { fn,k} be a non-decreasing sequence of simple
functions such that fn,k ↑ fn as k → ∞. Define gk := sup{ fn,k |n�k}. Then {gk} is a non-decreasing sequence of
simple functions. Let g := limn→∞ gk . Then, fn,k �gk � fk � f if n�k. Then we have fn �g� f as k → ∞. Let
n → ∞, we have f �g� f . Therefore f = g. We have

lim
k→∞

(GF)
∫

gk d� = (GF)
∫

f d�.

Since gk � fk , we have

(GF)
∫

gk d��(GF)
∫

fk d�.

Then we have

(GF)
∫

f d�� lim
k→∞

(GF)
∫

fk d�.
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On the other hand, since fn � f for all n, we have

lim
n→∞(GF)

∫
fn d�� (GF)

∫
f d�. �

Let f, g be comonotonic measurable functions. Then, since for all a, b > 0 either {x | f (x)�a} ⊂ {x |g(x)�b} or
{x | f (x)�a} ⊃ {x |g(x)�b}, the following theorem can be proved.

Theorem 20. Let (X,X, �) be a fuzzy measure space and let (⊕, �) be a pseudo-fitting system. Then, for comonotonic
measurable functions f, and g, we have

(GF)
∫
( f ⊕ g) d� = (GF)

∫
f d� ⊕ (GF)

∫
g d�.

Proof. Suppose f and g are comonotonic. Let f, g be measurable simple functions. Since we have

( f ⊕ g)(x)= (a + b)�b(e, A)(x)

= a�b(e, A)(x) ⊕ b�b(e, A)(x)

if f = a�b(e, A) and g = b�b(e, A). Since {x | f (x)�a} ⊂ {x |g(x)�b} or {x | f (x)�a} ⊃ {x |g(x)�b} for every
a, b > 0, we have

( f ⊕ g)(x) :=
n⊕

i=1

ai�b(e, Ai )(x),

where ai > 0, and A1�A2� · · · An , Ai ∈ X. Therefore we have

(GF)
∫
( f ⊕ g) d� = (GF)

∫
f d� ⊕ (GF)

∫
g d�.

If f and g are not simple functions, there exists a sequence of simple functions { fn} and {gn} such that fn ↑ f , and
gn ↑ g, and where fn and gn are comonotonic. Therefore we have

(GF)
∫
( f ⊕ g) d� = lim

n→∞(GF)
∫
( fn ⊕ gn) d�

= lim
n→∞

(
(GF)

∫
fn d� ⊕ (GF)

∫
gn d�

)

= lim
n→∞(GF)

∫
fn d� ⊕ lim

n→∞(GF)
∫

gn d�

= (GF)
∫

f d� ⊕ (GF)
∫

g d�. �

We call this property the ⊕-additivity of a GF integral.

4. Multidimensional integrals

In this section we consider the case of multidimensional integrals, extending the GF integral discussed in the previous
section to the multidimensional case. We start considering the concept of measurable function.

We consider first the case of the product of two fuzzy measurable spaces. Let X and Y be two universal sets and
X × Y be the direct product of X and Y, let (X,X) and (Y,Y) be two fuzzy measurable spaces; then, we define the
following class of sets:

X × Y := {A × B|A ∈ X, B ∈ Y}.
Now, let us consider themeasurable space (X×Y,X×Y). Suppose thatX := 2X andY := 2Y . Note thatX×Y�2X×Y

if |X | > 1 and |Y | > 1.
Therefore, the class of X × Y-measurable functions is smaller than the class of 2X×Y -measurable functions.
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Example 21. Let X := {x1, x2} and Y := {y1, y2}; then, we have
2X × 2Y := { ∅, {(x1, y1)}, {(x1, y2)}, {(x2, y1)}, {(x2, y2)}, {(x1, y1), (x2, y1)}, {(x1, y2), (x2, y2)},

{(x1, y1), (x1, y2)}, {(x2, y1), (x2, y2)}, {(x1, y1), (x1, y2), (x2, y2), (x2, y2)}}.
Hence, {(x1, y1), (x2, y2)} /∈ 2X × 2Y .

The next proposition follows from the definition of a X × Y-measurable function.

Proposition 22. Let f : X × Y → [0, k] be a X × Y-measurable function; then,

(1) for fixed y ∈ Y , f (·, y) is X-measurable, and
(2) for fixed x ∈ X , f (x, ·) is Y-measurable.

Proof. Let f : X × Y → [0, k] be a X × Y-measurable function. Then, for every a�0,

{(x, y)| f (x, y)�a} ∈ {A × B|A ∈ X, B ∈ Y}.
That is, there exist A ∈ X and B ∈ Y such that A × B = {(x, y)| f (x, y)�a}.

To prove (1), we consider a fixed y ∈ Y . Then, A × {y} = {(x, y)| f (x, y)�a} = {x | f (x, y)�a} × {y}. Therefore
f (·, y) is X-measurable.
As the proof of (2) is similar but considering a fixed x ∈ X , the proposition is proven. �

Example 23. Let X := {x1, x2} and Y := {y1, y2}. Let (X,X) and (Y,Y) be the two measurable spaces defined
with X = 2X and Y = 2Y . Under these conditions, we consider the two functions below and study whether they are
X × Y-measurable functions.

(1) Let us define f : X × Y → [0, 1] by

f (x1, y1)= f (x1, y2) = 0.2,

f (x2, y1)= 0.6,

f (x2, y2)= 1.

Then, we have

{(x, y)| f (x, y)�1} = {(x2, y2)}
= {x2} × {y2},

{(x, y)| f (x, y)�0.6} = {(x2, y1), (x2, y2)}
= {x2} × {x1, y2},

{(x, y)| f (x, y)�0.2} = {(x1, y1), (x1, y2), (x2, y1), (x2, y2)}
= {x1, x2} × {y1, y2}.

Therefore, f is X × Y-measurable.
(2) Let us define g : X × Y → [0, 1] by

g(x1, y1)= 0.2,

g(x1, y2)= 0.4,

g(x2, y1)= 0.6,

g(x2, y2)= 1.

Then, we have

{(x, y)|g(x, y)�0.4} = {(x1, x2), (x2, y1), (x2, y2)} /∈X × Y.

Therefore, g is not a X × Y-measurable function.

In fact, if A ∈ X × Y, we have |A| = 0, 1, 2, or 4.
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Next we will consider the multidimensional GF integral. The next theorem is the main result of this paper.

Theorem 24. Let (X,X, �) and (Y,Y, �) be two fuzzy measure spaces, (⊕, �) be a pseudo-fitting system and let
f : X × Y → [0, k] be an X × Y-measurable function. Then, there exists a fuzzy measure m on X × Y such that

(GF)
∫ (

(GF)
∫

f d�

)
d� = (GF)

∫
f dm

= (GF)
∫ (

(GF)
∫

f d�

)
d�.

Proof. If f is a simple function, it can be represented as

f (x) :=
n⊕

i=1

b(ai , Ai × Bi ),

where ai > 0, A1 ⊃ A2 ⊃ · · · An , Ai ∈ X, and B1 ⊃ B2 ⊃ · · · Bn , Bi ∈ Y.
Now, on the one hand, as b(e, A×B) = b(e, A)�b(e, B), we have f (x) := ⊕n

i=1 ai�b(e, Ai )��(e, Bi ). Therefore,
we have

(GF)
∫

f d� =
n⊕

i=1

ai�b(e, Ai )��(Bi )

=
n⊕

i=1

ai��(Bi )�b(e, Ai ).

Since each b(e, Ai ) is comonotonic for all i, it follows from comonotonic ⊕-additivity that

(GF)
∫ (

(GF)
∫

f d�

)
d� = (GF)

∫ (
n⊕

i=1

ai��(Bi )�b(e, Ai )

)
d�

=
n⊕

i=1

(GF)
∫
(ai��(Bi )�b(e, Ai )) d�

=
n⊕

i=1

ai��(Bi )��(Ai )

=
n⊕

i=1

ai��(Ai )��(Bi ).

On the other hand, since f (x) := ∑n
i=1 ai�b(e, �b(e, Bi )�b(e, Ai ), we have

(GF)
∫

f d� =
n⊕

i=1

ai�b(e, Bi )��(Ai )

=
n⊕

i=1

ai��(Ai )�b(e, Bi ).

Since each 1Bi is comonotonic for all i, it follows from comonotonic ⊕-additivity that

(GF)
∫ (

(GF)
∫

f d�

)
d� = (GF)

∫ (
n⊕

i=1

ai��(Ai )�b(e, Bi )

)
d�

=
n⊕

i=1

(GF)
∫
(ai��(Ai )�b(e, Bi )) d�

=
n⊕

i=1

ai��(Ai )��(Bi ).



810 Y. Narukawa, V. Torra / Fuzzy Sets and Systems 160 (2009) 802–815

Let us define a fuzzy measure m on X × Y by

m(A × B) := �(A)��(B) for A × B ∈ X × Y.

Then we have

(GF)
∫ (

(GF)
∫

f d�

)
d� = (GF)

∫
f dm = (GF)

∫ (
(GF)

∫
f d�

)
d�.

Let f be an arbitrary measurable function. Then, there exists a sequence of simple functions fn such that fn ↑ f .
Therefore, from the monotone convergence theorem (Theorem 19) of the GF-integral, we have

(GF)
∫

fn d� ↑ (GF)
∫

f d�

and

(GF)
∫

fn d� ↑ (GF)
∫

f d�. �

Since both Choquet and Sugeno integrals are generalizations of the GF-integral, and considering ⊕ = + and � = ·,
we have the next equality, which was proven by Machida [6]:

(C)
∫ (

(C)
∫

f (x, y) d�

)
d� = (C)

∫ (
(C)

∫
f (x, y) d�

)
d�

= (C)
∫

f (x, y) dm.

Considering the characteristic function of A × B ∈ X × Y, we have m = ��.
In the case of the Sugeno integral, let ⊕ = ∨ and � = ∧; then, we have a similar equality:

(S)
∫ (

(S)
∫

f (x, y) d�

)
d� = (S)

∫ (
(S)

∫
f (x, y) d�

)
d�

= (S)
∫

f (x, y) dm.

Considering the characteristic function of A × B ∈ X × Y, we have m = � ∧ �.

5. Extension of the domain

Let (X,X) and (Y,Y) be two fuzzy measurable spaces. In this section we assume that X and Y are algebras. Even
if |X |, |Y | are finite and such that X := 2X and Y := 2Y , the class of X × Y is smaller than the class of 2X×Y , as we
have shown in Example 21. In general, the class ofX×Y-measurable functions is too small as shown in Example 23.

In this section we consider an extension of the domain of the measure. In general, unless there are additional
constraints or conditions on the fuzzy measures, it is impossible to extend the domain. However, in our case, we assume
that � on (X,X) and � on (Y,Y) are normal ⊕-measures. In this case, an extension is possible. We define the extension
below.

Definition 25. Let us define the class X × Y of sets A ∈ 2X×Y by

X × Y :=
{
A ∈ 2X×Y |A =

⋃
i∈I

Ai , Ai ∈ X × Y, I : finite

}
.

We say that (X × Y,X × Y) is an extended fuzzy measurable space.

The next proposition follows immediately from this definition.
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Proposition 26. Let (X,X) and (Y,Y) be two fuzzy measurable spaces. Let (X × Y,X × Y) be an extended fuzzy
measurable space.

(1) X × Y is an algebra.
(2) Let f on X × Y be X × Y-measurable

(a) f (x, ·) is X-measurable.
(b) f (·, y) is Y-measurable.

We consider now a special class of fuzzy measures.

Definition 27. Let (X,X) be a measurable space. We call a fuzzy measure � on X ⊕-submodular if

�(A ∩ B) ⊕ �(A ∪ B)��(A) ⊕ �(B)

for A, B ∈ X, and ⊕-supermodular if

�(A ∩ B) ⊕ �(A ∪ B)��(A) ⊕ �(B)

for A, B ∈ X, ⊕-subadditive if

�(A ∪ B)��(A) ⊕ �(B)

for A, B ∈ X and A ∩ B = ∅, and ⊕-superadditive if

�(A ∪ B)��(A) ⊕ �(B)

for A, B ∈ X and A ∩ B = ∅.

It is obvious from this definition that a belief function is + superadditive, a plausibility measure is + subadditive, a
possibility measure is ∨ superadditive, and a necessity measure is subadditive.

Let us suppose that |X |, |Y | are finite. Since {(x, y)} = {x} × {y} ∈ X×Y for every x ∈ X and y ∈ Y , we have the
next corollary.

Corollary 28. Let (X × Y,X × Y) be an extended fuzzy measurable space. Let us suppose that |X |, |Y | are finite. If
X = 2X and Y = 2Y , then X × Y = 2X×Y .

It follows from Corollary 28 that every function f : X × Y → [0, k] is X × Y-measurable, if |X |, |Y | are finite.

Definition 29. Let (X,X, �) and (Y,Y, �) be two fuzzy measure spaces, and (X × Y,X × Y) be an extended fuzzy
measurable space. We define the fuzzy measures m and m on X × Y induced by � and � by

m(C) := sup

{⊕
i∈I

�(Ai )��(Bi )|C =
⋃
i∈I

(Ai × Bi ), Ai × Bi ∈ X × Y, I : finite

}

and

m(C) := inf

{⊕
i∈I

�(Ai )��(Bi )|C =
⋃
i∈I

(Ai × Bi ), Ai × Bi ∈ X × Y, I : finite

}
,

where each Ai × Bi and A j × Bj are disjoint. We call m(C) the upper ⊕-fuzzy measure induced by � and �, and m(C)
the lower ⊕-fuzzy measure induced by � and �.

Consider a simple function f = b(c1,C1) ⊕ b(c2,C2), with C1 ⊃ C2 and Ci ∈ X × Y, defined in such a way that
C1 :=

⋃
i∈I (A1i × B1i ) for disjoint pairs (A1i × B1i ) with A1i ∈ X, B1i ∈ Y, and C2 :=

⋃
i∈I (A2i × B2i ) for disjoint

pairs (A2i × B2i ) with A2i ∈ X, B2i ∈ Y, and satisfying A1i ⊃ A2i , B1i ⊃ B2i .
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Then, in relation to the integral of f with respect to m, we have

c1�m(C1) ⊕ c2�m(C2)�

(
c1�

(⊕
i∈I

�(A1i )��(B1i )

))
⊕
(
c2�

(⊕
i∈I

�(A1i )��(B2i )

))
.

The next proposition is the generalization of this inequality.

Proposition 30. Let (X,X, �) and (Y,Y, �) be two fuzzy measure spaces, (X × Y,X × Y) be an extended fuzzy
measurable space, m the upper ⊕-fuzzy measure induced by � and �, and m the lower ⊕-fuzzy measure induced
by � and �. Let f on X × Y be an X × Y-measurable function. Then, there exists a partition of X × Y , that is,
X × Y := ⋃

i∈I (Ai × Bi ), Ai ∈ X, Bi ∈ Y, such that

(1) ⊕
i∈I

(GF)
∫
Bi

(
(GF)

∫
Ai

f d�

)
d� =

⊕
i∈I

(GF)
∫
Ai

(
(GF)

∫
Bi

f d�

)
d�.

(2)

(GF)
∫

f dm�
⊕
i∈I

(GF)
∫
Bi

(
(GF)

∫
Ai

f d�

)
d�.

(3) ⊕
i∈I

(GF)
∫
Bi

(
(GF)

∫
Ai

f d�

)
d�� (GF)

∫
f dm.

In the following we suppose that |X |, |Y | are finite. Let A ∈ X × Y; then, A can be represented as

A =
⋃

(i, j)∈I
{xi } × {y j }

for a finite set I. Let � on (X,X) and � on (Y,Y) be both ⊕-subadditive measures. Then we have

m(A) :=
⊕

(i, j)∈I
�({xi })��({y j }).

Therefore we have the next proposition.

Proposition 31. Let (X,X, �) and (Y,Y, �) be two fuzzy measure spaces, (X × Y,X × Y) be an extended fuzzy
measurable space, m the upper ⊕-fuzzy measure induced by � and �, and m the lower ⊕-fuzzy measure induced by �
and �. Then, let us define the normal decomposable measures � and � by �(A1) = ⊕

i �({xi }); xi ∈ A1, A1 ∈ X and
�(A2) = ⊕

i �({xi }); xi ∈ A2, A2 ∈ Y.
Finally, let f on X × Y be an X × Y-measurable function.

(1) If � and � are ⊕-submodular, then we have

(GF)
∫

f dm = (GF)
∫ (

(GF)
∫

f d�

)
d�

= (GF)
∫ (

(GF)
∫

f d�

)
d�.

(2) If � and � are ⊕-supermodular, then we have

(GF)
∫

f dm = (GF)
∫ (

(GF)
∫

f d�

)
d�

= (GF)
∫ (

(GF)
∫

f d�

)
d�.
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If � and � are both ⊕-measures, then � and � are both ⊕-sub- and ⊕-superadditive. Therefore we have � = � and
� = �. It follows from this latter proposition (Proposition 31) that we can define a fuzzy measure m on X × Y, as
shown above.

Definition 32. Let A ∈ X × Y; then, A can be represented as

A =
⋃

(i, j)∈I
{xi } × {y j }

for a finite set I. Let � on (X,X) and � on (Y,Y) be ⊕-measures.
Then, we define a fuzzy measure m on X × Y generated by � and � by

m(A) :=
⊕

(i, j)∈I
�({xi })��({y j }).

This definition permits the measure m(A) to be the cardinality of A. The next proposition follows immediately from
these definitions.

Proposition 33. Let � on (X,X) and � on (Y,Y) be normal ⊕-measures. The fuzzy measure m generated by � and �
on X × Y is a normal ⊕-measure.

The next theorem follows from the definition of the pseudo-decomposable integral (Definition 13).

Theorem 34. Let � on (X,X) and � on (Y,Y) be normal ⊕-measures and let f on X × Y be an X × Y-measurable
function. Then, there exists a fuzzy measure m on X × Y such that

(D)
∫ (

(D)
∫

f d�

)
d� = (D)

∫
f dm

= (D)
∫ (

(D)
∫

f d�

)
d�.

Considering ⊕ = + and � = ·, this integral corresponds to the standard Lebesgue integral. Then, Theorem 34 is a
part of the standard Fubini’s Theorem.

In contrast, considering ⊕ = ∨ and � = ∧, we have the next corollary.

Corollary 35. Let (X,X, �) and (Y,Y, �) be two fuzzy measure spaces and let f be an X × Y-measurable function.
Then, there exists a fuzzy measure m on X × Y such that

(S)
∫ (

(S)
∫

f (x, y) d�

)
d� = (S)

∫ (
(S)

∫
f (x, y) d�

)
d�

= (S)
∫

f (x, y) dm.

Considering the characteristic function of A × B ∈ X × Y, we have m(A) = �(A) ∧ �(B) and m is a possibility
measure.

6. On the use of multidimensional integrals for citation analysis

The definition of multidimensional integrals was partly motivated by our interest on citation indices. We consider
here, again, the functions f and g already introduced in Section 1. That is, f (x) corresponds to the number of citations
of a paper x at the time of study and g�(x) the number of citations obtained by the paper x in year �. Then, naturally,
for a fixed year �, f (x) = ∑

y�� gy(x).
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Table 1
Set of functions corresponding to the new number of citations for each year in the period 2002–2006 and for the papers X = {p1, p2, p3, p4, p5}

p1 p2 p3 p4 p5 p6

g2006 60 30 5 4 2 1
g2005 30 0 2 1 0 0
g2004 8 20 0 0 0 0
g2003 2 0 0 0 0 0
g2002 0 0 0 0 0 0

Example 36. Let X = {p1, p2, p3, p4, p5} and Y = {2002, 2003, 2004, 2005, 2006}. Then, we define the functions
gy for 2002� y�2006 from Table 1. From these functions gy , we define the function f : X × Y → [0, 100] as
f (x) = ∑

y�2006 gy(x).

Now, we consider the multidimensional integral of g in Example 36. First note that the function g is not X × Y-
measurable but it is X × Y-measurable. For example {(p1, 2006), (p2, 2006), (p3, 2005)} is not in X × Y but it is in
X × Y = 2X×Y . Therefore, we cannot apply Theorem 24 in this case. In contrast, Theorem 34 is applicable.

Note that the direct integration of the function gy(x) needs the measure m defined on {(p1, 2006), (p2, 2006),
(p1, 2005), (p2, 2004)}. While this is well defined using the extension used in Theorem 34, this is not the case in
Theorem 24.

The application of these theorems requires measures � and �. Let us consider �(A) = |A| for A ⊆ X and �(B) = |B|
for B ⊆ Y . Let us also consider ⊕ = + and � = ·. It is clear that both � and � are ⊕-measures. Therefore, Theorem
34 can be applied. This theorem states that the order in which we integrate the function g is not relevant. Moreover, if
we consider Definition 32 and we define

m(A) :=
⊕

(i, j)∈I
�({xi })��({y j }) =

⊕
(i, j)∈I

1�1,

the results of the integrals are also equivalent to the integral of g with respect to m. As we have that ⊕ = + and � = ·,
m(A) corresponds to the cardinality of the set A. I.e., m(A) = |A|.

In the particular case of the set {(p1, 2006), (p2, 2006), (p1, 2005), (p2, 2004)}, the measure is, of course, 4.
So, taking all this into account, we have that the three equivalent expressions in Theorem 34 correspond in our

case to the number of citations (i.e.,
∑

y
∑

x gy(x)). This also corresponds to the Choquet integral of the function
f (x) = ∑

y gy(x) with respect to a measure equal to the cardinality of the sets [13].
In contrast, note that for these measures � and � we cannot apply Theorem 34 with ⊕ = ∨ because in this case �

and � are not ⊕-measures.
In general, the definition of the different measures � and � will result into different indices. In the particular case

where the measures are ⊕-measures, Theorem 34 can be applied and, thus, the result of the integral is independent of
the order in which the variables are considered. In the particular case of ⊕ = ∨ and � = ∧, other fuzzy measures than
the cardinality should be considered because, as shown above, this measure is not a ∨-measure.

7. Conclusions and future work

We have introduced in this paper an extension of fuzzy measures in 2X×Y using pseudo-additions, which permits
us to construct fuzzy measures that go beyond the [0, 1] interval. Such measures are analogous to the ones in [13] that
permitted us to show that some indices correspond to fuzzy integrals. We plan to work further on this direction defining
new indices using multidimensional integrals.
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