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Abstract

An h-type index is proposed which depends on the obtained citations of articles belonging to the h-core. This weighted
h-index, denoted as hw, is presented in a continuous setting and in a discrete one. It is shown that in a continuous setting
the new index enjoys many good properties. In the discrete setting some small deviations from the ideal may occur.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The h-index, also known as the Hirsch index, was introduced by Hirsch (2005) as an indicator for lifetime
achievement. Considering a scientist’s list of publications, ranked according to the number of citations
received, the h-index is defined as the highest rank such that the first h publications received each at least h

citations. Although this idea can be applied to many source–item relations we will mainly use the terminology
of publications and citations as in Hirsch’ original article.

For advantages and disadvantages of the h-index we refer to Hirsch (2005), Glänzel (2006) and Jin et al.
(2007). In order to overcome some of these disadvantages scientists have proposed several ‘Hirsch-type’ indi-
ces with the intention of either replacing or complementing the original h-index. Among these we mention
Egghe’s g-index (2006a, 2006b), Kosmulski’s H(2)-index Jin’s A and AR-indices (Jin, 2006, 2007) and the
R-index (Jin, Liang, Rousseau, & Egghe, 2007).

We recall the definitions of the most interesting among these proposals. For the g-index as well as for the
H(2)-index one draws the same list as for the h-index. The g-index, on the one hand, is defined as the highest
rank such that the cumulative sum of the number of citations received is larger than or equal to the square of
this rank. Clearly h 6 g. The H(2)-index, on the other hand, is k if k is the highest rank such that the first k
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publications received each at least k2 citations. The H(2)-index will not be discussed further, as we do not think
this is an interesting proposal. Jin’s A-index achieves the same goal as the g-index, namely correcting for the
fact that the original h-index does not take the exact number of citations of articles included in the h-core into
account. This index is simply defined as the average number of citations received by the publications included
in the Hirsch core. Mathematically, this is:
A ¼ 1

h

Xh

j¼1

yj ð1Þ
In formula (1) the numbers of citations (yj) are ranked in decreasing order. Clearly h 6 A. The R-index, a
correction on the A-index (Jin et al., 2007) is defined as:
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiXh

j¼1

yj

vuut ð2Þ
The h-, A- and R-indices are related through the relation R ¼
ffiffiffiffiffiffiffiffiffi
A � h
p

. The AR-index, a refinement of the R-
index which takes the age of the publications (denoted as aj) into account, has been proposed by Jin (2007):
AR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiXh

j¼1

yj

aj

vuut ð3Þ
The formulae shown in Eqs. (1)–(3) are those as defined for the discrete, practical case. They can also be
defined in a general, continuous model. In this approach c(r) denotes the continuous rank-frequency function:
c : ½0; T � ! ½1;þ1� : r! cðrÞ ð4Þ

The function c(r) is by definition a decreasing, but not necessarily strictly decreasing, positive function, with
c(T) = 1 and T > 1. Assuming, as we do from now on, that

R T
0

cðsÞds < þ1 the four previously mentioned
Hirsch-type indices are defined in the continuous case as follows:
h is the unique solution of r ¼ cðrÞ ð5Þ

g is the unique solution of r2 ¼
Z r

0

cðsÞds ð6Þ
(assuming that
R T

0
cðsÞds 6 T 2Þ; the g-index can also be characterized as the largest rank r such that
r2
6

Z r

0

cðsÞds

A ¼ 1

h

Z h

0

cðrÞdr ð7Þ

and R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ h

0

cðrÞdr

s
ð8Þ
In this article we focus on the fact that the h-index lacks sensitivity to performance changes and propose a
citation-weighted h-index. As the construction of this new index is more elegant in the continuous case than in
the discrete one, we first introduce it for the continuous model.

2. Construction of a citation-weighted h-index: continuous case

Theorem 1. Let h be the h-index of c(r) then the equation

R t

0
cðrÞ dr

h ¼ cðtÞ has always a unique solution. This unique

solution, denoted as r0, is called the w-rank of the given rank-frequency distribution.
Proof. Since c(r) is a rank-frequency function it is strictly positive. Define now,
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kðtÞ ¼ cðtÞ �
R t

0
cðrÞdr

h

The function kðtÞ is continuous and strictly decreasing on [0,T]. Indeed: k0ðtÞ ¼ c0ðtÞ � cðtÞ
h < 0. We further see

that kð0Þ > 0 and kðT Þ ¼ cðT Þ �
R T

0
cðrÞ dr

h 6 1� T
h < 0, as h < T . By the intermediate value theorem the function

k takes all values on the interval ½kðT Þ; kð0Þ�. Hence there exists at least one value r0 2 [0,T] such that k(r0) = 0.

Consequently,

R ro

0
cðrÞ dr

h ¼ cðr0Þ. Uniqueness follows from the facts that c(t) is non-increasing and that the func-
tion

R t
0
cðrÞdr is strictly increasing.

Clearly, r0 6 h, as

R t

0
cðrÞ dr

h is increasing in t and takes a value which is at least equal to h in h, while c(t) is
non-increasing and c(h) = h by definition. h

Definition (the continuous citation-weighted h-index). Let h be the h-index of c(r) and let r0 be the unique solu-
tion of the equation
R t

0
cðrÞdr

h
¼ cðtÞ ð9Þ
Then the weighted h-index, denoted as hw is defined as:
hw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ r0

0

cðrÞdr

s
ð10Þ

or; equivalently: hw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h � cðr0Þ

p
ð11Þ
3. Properties of the weighted h-index hw

Theorem 2. If the h-index of the continuous rank-frequency function c(r) is h and if the restriction of c(r) to ½0; h�
is a constant function then hw = h and c(r)j[0,h] = h.

Proof. We know already that r0 6 h. Let now c(r) = C on ½0; h�. Then the defining equation

R ro

0
cðrÞ dr

h ¼ cðr0Þ
becomes:

R r0

0
C dr

h ¼ C, with r0 = h as its unique solution. Then hw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR h

0
C dr

q
¼

ffiffiffiffiffiffiffiffiffiffi
C � h
p

. By definition we know
that h ¼ cðhÞ ¼ C, hence hw ¼

ffiffiffiffiffiffiffiffiffiffi
C � h
p

¼
ffiffiffiffiffiffiffiffiffi
h � h
p

¼ h.
When the number of citations is the same for each r, articles at each (continuous) rank are weighted equally,

hence it is natural that hw = h. This simple relation is not true if the definition of the hw-index does not contain
a square root. Hence, this theorem explains why we introduced the extra mathematical operation of taking a
square root. h

Theorem 3. If the restriction of the continuous rank-frequency function c(r) to ½0; h� is not the constant function

c(r) = h, then the w-rank is strictly smaller than the h-index: r0 < h and h 6 hw.

Proof. Assume that r0 = h. Then

R r0

0
cðrÞ dr

h ¼
R h

0
cðrÞ dr

h > cðhÞ ¼ cðr0Þ, as c is not the constant function c(r) = h on

½0; h�. The inequality

R r0

0
cðrÞ dr

h > cðr0Þ contradicts Eq. (9), hence r0 < h. From Eq. (9) we see that

h2
w ¼ h � cðr0ÞP h � cðhÞ ¼ h2. Hence: h 6 hw. h

Corollary 1. If c(r) is strictly decreasing on ½0; h� then h < hw.

Corollary 2. The w-rank of a continuous rank-frequency function c(r) with h-index equal to h is equal to h if and

only if the restriction of c(r) to ½0; h� is the constant function h.
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We already know that if the restriction of c(r) to ½0; h� is the constant function h then r0 = h and h = hw. If
now r0 = h then, by definition,

R r0

0
cðrÞdr ¼

R h
0

cðrÞdr ¼ h � cðhÞ ¼ h2. The second equality sign follows from
the definition of r0 (= h). Hence the restriction of c(r) to ½0; h� is the constant function h and hw = h.

Corollary 3. If the restriction of the continuous rank-frequency function c(r) to ½0; h� is not the constant function

c(r) = h, then the weighted h-index is always strictly smaller than the R-index: hw < R.

Proof. As hw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR r0

0 cðrÞdr
q

and r0 < h it follows that hw <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR h

0 cðrÞdr
q

¼ R. h

Corollary 4. If the restriction of the continuous rank-frequency function c(r) to ½0; h� is not the constant function

c(r) = h, then the g-index is always strictly larger than the weighted h-index: g > hw.

Proof. We already know that r0 < h 6 hw. Hence we also have:
R hw

0
cðrÞdr >

R r0

0
cðrÞdr ¼ h2

w. Now g is the
largest value such that r2

6

R r
0
cðsÞds. Hence g > hw. h
4. Requirements for an h-type index in the continuous model

If c1(r) and c2(r) are two continuous rank-frequency functions defined on [0,T] and if "r 2 [0,T] :
c1(r) 6 c2(r) then an acceptable h-type measure M must satisfy the relation M(c1(r)) 6M(c2(r)).

If there exists d > 0 such that the relations "r 2 ]0,d] : c1(r) < c2(r) and "r 2 [0,T] : c1(r) 6 c2(r) imply that
M(c1(r)) < M(c2(r)), then M is said to be a strong h-type measure.

Theorem 4. The h-index itself is an acceptable h-type measure, but it is not a strong h-type measure.
Proof. The h-index is the unique solution of the equation r = c(r). As the function f(r) = r is increasing in r

and the function c(r) is decreasing in r, it follows that the larger the values of c(r) the larger the h-index. This
proves that the Hirsch index is an acceptable h-type index.

We next give an example to show that the h-index is not a strong h-type measure. Let c1(r) and c2(r) be
continuous, decreasing functions, such that "r 2 [0,T] : c1(r) 6 c2(r). Moreover c1(r) is equal to 20� 3r on
½0; 5�, and c2(r) is equal to 15� 2r on ½0; 5�. Then h(c1(r)), the h-index of c1(r), is equal to 5, and equal to
h(c2(r)). This shows that the h-index is not a strong h-type measure. h
Theorem 5. The weighted h-index, hw, is an acceptable h-type measure.

Proof. Let c1(r) and c2(r) be two continuous rank-frequency functions defined on ½0; T �, such that
"r 2 [0,T] : c1(r) 6 c2(r). Then we know already that h1, the h-index of c1(r), is smaller than or equal to h2,
the h-index of c2(r). Let rj denote the w-rank of cj(r), j = 1,2.

If r1 6 r2 then we have for h2,w, the weighted h-index of c2(r):
h2;w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ r2

0

c2ðrÞdr

s
ð10Þ

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ r1

0

c2ðrÞdr

s
P ð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ r1

0

c1ðrÞdr

s
¼ h1;w
If r1 > r2 then:
h2;w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � c2ðr2Þ

p
ð11Þ

P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 � c2ðr2Þ

p
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 � c1ðr2Þ

p
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 � c1ðr1Þ

p
¼ h1;w
This proves that the hw-index is always an acceptable h-type measure.
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We investigate now whether the hw-index is a strong h-type measure. If there exists d > 0 such that
"r 2 ]0,d] : c1(r) < c2(r) then the inequality indicated with (*) in the proof above becomes a strict inequality.
This takes care of the case r1 6 r2.

If r1 > r2 and h2 > h1 then
h2;w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � c2ðr2Þ

p
ð11Þ

P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � c2ðr1Þ

p
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � c1ðr1Þ

p
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 � c1ðr1Þ

p
¼ h1;w
If h1 = h2 (= h) and if one of the inequalities below, indicated with (**), is strict, i.e. c1(r1) < c1(r2), or
c2(r1) < c2(r2), or c1(r1) < c2(r1), or c1(r2) < c2(r2) then h2,w > h1,w:
h2;w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h � c2ðr2Þ

p
P ð��Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h � c2ðr1Þ

p
P ð��Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h � c1ðr1Þ

p
¼ h1;w

h2;w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h � c2ðr2Þ

p
P ð��Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h � c1ðr2Þ

p
P ð��Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h � c1ðr1Þ

p
¼ h1;w
This shows that it is only possible that h2,w = h1,w under the condition that there exists d > 0 such that
"r 2 ]0,d] : c1(r) < c2(r), if h1 = h2; c1(r) and c2(r) are constant on an interval situated in ]0,h]; and moreover
equal on this interval. An example of such a case is the following situation:
c1ðrÞ ¼
�2xþ 16 r 2 ½0; 4�
8 r 2�4; 10�
< 8 r > 10

8><
>:

c2ðrÞ ¼
�4xþ 24 r 2 ½0; 4�
8 r > 4

�

Indeed: c1(r) < c2(r) on [0,4[; h1 = h2 = 8; c1(r) = c2(r) on [4, 8], r1 = 6, r2 = 4 and h2,w = h1,w = 8. These func-
tions also illustrate the result obtained in Theorem 3: if the rank-frequency function is not constant then it is
possible that h = hw but then the w-rank must be strictly smaller than h. h

We conclude this investigation by stating the following result.
Theorem 6. The weighted h-index, hw, is a strong h-type measure in the set of strictly decreasing rank-frequency
functions.

Note that this result is not true for the h-index. We repeat that even in the set of all decreasing rank-
frequency functions the required strict inequality h2,w > h1,w is often – but not always! – true.
5. The hw-index in the power law model

We recall the following defining relations for the rank-frequency and size-frequency functions in the power
law (Lotkaian) model (Egghe, 2005).

The size-frequency relation is given by the function U(x):
U : ½1;þ1� ! ½0;C� : x! UðxÞ ¼ C
xa

ð12Þ
In Eq. (12) C is a strictly positive constant, and a > 2. The restriction to the case a > 2 is necessary for the
convergence of the integrals used further on. The corresponding, this means: mathematically equivalent, rank-
frequency relation is given by the function C:
C : ½0; T � ! ½1;þ1� : r! CðrÞ ¼ B
rb

ð13Þ
with B > 0 and 0 < b < 1. In order to define C in 0, as in the previous sections, we put C(0) = +1. We further
note that this function C is strictly decreasing, hence all properties studied for the general continuous rank-
frequency function are valid with strict inequalities. The parameters a and b are related through the equation:
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Metho

Rank

1
2
3
. . .

h� 1
h

hþ 1
. . .
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b ¼ 1

a� 1
ð14Þ
The other variables satisfy the following equalities:
B ¼ C
a� 1

� � 1
a�1

ð15Þ
and
T ¼ C
a� 1

ð16Þ
Theorem 7. If a > 2 then
hw ¼
a� 1

a� 2

� � 1
2ða�1Þ

T
1
a ¼ a� 1

a� 2

� � 1
2ða�1Þ

h ð17Þ
Proof. In this model
R r0

0
CðrÞdr ¼

R r0

0
B
rb dr ¼ B

1�b r1�b
0 (18). By definition (9) and Eq. (14) we find: 1

h �
B�r1�b

0

1�b ¼
Cðr0Þ ¼ B

rb
0

, and hence: r0 = (1 � b)h. Then, by (11): hw ¼
ffiffiffiffiffiffiffiffiffi
h � B

rb
0

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h � B
ð1�bÞbhb

q
. As 1� b ¼ a�2

a�1
and h = T1/a

(Egghe & Rousseau, 2006), we obtain:
hw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

a�2
aða�1Þ � T 1

a�1 � a� 1

a� 2

� � 1
a�1

s
¼ a� 1

a� 2

� � 1
2ða�1Þ

� T 1
a ¼ a� 1

a� 2

� � 1
2ða�1Þ

� h
This proves Theorem 7. h

Theorem 7 confirms the results obtained for the general continuous model. Indeed: as a�1
a�2

> 1, for a > 2, it
follows that hw > h. Moreover, as g ¼ a�1

a�2

� �a�1
a � h (Egghe, 2006c), the relations a�1

a > 1
2ða�1Þ and a�1

a�2
> 1 for a > 2,

imply that g > hw.
In the subsequent sections we will discuss the weighted h-index in the discrete case.

6. Construction of a citation-weighted h-index: discrete case

Table 1 visualizes the construction of the h-index. We will refer to such a table as an h-table. The left-hand
column indicates the rank of a scientist’s articles according to the number of received citations. The right-hand
column shows the actual number of citations received by each of these articles; h denotes the h-index.

Such discrete data points ðj; yjÞj can be connected leading to a polygonal line (a set of connected line seg-
ments). This polygonal line can be considered the graph of a continuous, decreasing function. In most prac-
tical cases this graph is not strictly decreasing. Anyway, the continuous theory explained above may be applied
to this function, leading to a weighted hw-index that has all the properties mentioned above. Yet, this hw-index,
similar to the real-valued h-index (Rousseau, in press) is not easy to calculate. One might prefer an approach
which is more suited to the discrete case. We present such an approach, but unfortunately, we have to pay a
1
d for calculating the h-index

(r) Number of citations

y1 P h

y2 P h

y3 P h

. . .

yh�1 P h

yh P h

yh+1 6 h

. . .



Table 2
Table for the determination of the discrete citation-weighted h-index (hw)

Weighted rank (rw) Number of citations

rwð1Þ ¼
y1

h
P 1 y1 P h

rwð2Þ ¼
y1

h
þ y2

h
P 2 y2 P h

. . . . . .

rwðjÞ ¼
Pj

i¼1yi

h
P j yj P h

. . . . . .

rwðhÞ ¼
Ph

i¼1yi

h
P h yh P h

rwðhþ 1Þ ¼
Phþ1

i¼1 yi

h
yh+1 6 h

. . . . . .
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price for this. Indeed, some nice properties are not always true anymore in this discrete approach. Yet, these
exceptions are just marginal effects, probably never, or extremely rarely happening in real applications.

If yj denotes the number of citations received by article j, then yj ¼
yj

h

� �
h. Hence, if h 6¼ 0 we may say that

yj’s h-weight is
yj

h . This weight is now used to change the ranks of Table 1, leading to Table 2.
A table such as Table 2 will be referred to as an hw-table.

Definition (the discrete citation-weighted h-index: hw). This new index is defined as:
Table
An h-t

Rank

1
2
3
4
5
. . .
hw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXr0

i¼1

yi

s
ð18Þ
where r0 is the largest row index j such that
rwðjÞ 6 yj ð19Þ
If h is zero then also hw is set equal to zero. From Eq. (19) it follows that yr0
> 0.

Note that rw(r0) is not necessarily a natural number. By its definition it is a positive rational number. Of
course, r0 is a natural number. The citations yj, may or may not be natural numbers, depending, for instance,
on the decision of counting citations as whole numbers or as fractions (in case of multi-authorship). The first
r0 rows of the hw-table are referred to as the essential part of the hw-table, as the other rows play no role in the
determination of the hw-index. Of course, we do need the first h (or hþ 1) rows of the h-table otherwise we
could not determine h, which we need in the calculation of the hw-index. The hw-index is built upon the
h-index.

An example

Consider the h-table (Table 3) and its corresponding hw-table (Table 4).
As the h-index is 4 the corresponding hw-table is given by Table 4.
Table 4 shows that rw(3) = 6.25 is the largest weighted rank satisfying inequality (19). Hence, r0 = 3 and

this scientist’s hw-index is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10þ 8þ 7
p

¼ 5. At first, this construction may seem unnecessary compli-
3
able for a scientist with h-index 4

(r) Number of citations

10
8
7
4
3
. . .



Table 4
hw-table corresponding to Table 3

Weighted rank (rw) Number of citations

rwð1Þ ¼
10

4
¼ 2:5 10

rwð2Þ ¼
18

4
¼ 4:5 8

rwð3Þ ¼
25

4
¼ 6:25 7

rwð4Þ ¼
29

4
¼ 7:25 4

rwð5Þ ¼
32

4
¼ 8 3

. . . . . .
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cated, but it will become clear that this is not really the case. Advantages and properties of this particular con-
struction are shown in the following sections.

7. Properties of the hw-index

It will be shown that, with a slight exception, the hw-index is not smaller than the h-index. Equality occurs
when all articles receive the same number of citations equal to h (this follows from Theorem 8).

Theorem 8. If the number of citations of the first h articles is the same, say equal to k P h, then hw ¼
ffiffiffiffiffi
hk
p

.

Proof. With these assumptions we have the hw-table (Table 5).
We see from Table 5 that rwðhÞ ¼ k and rwðhþ 1Þ > k (unless yh+1 = 0). As k P h this shows that

rw(h + 1) > yh+1, hence r0 = h. If yh+1 = 0 then rw(h + 1) = k > 0 = yh+1. So also in this case r0 = h. By Eq. (18)

we find that hw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh

j¼1k
q

¼
ffiffiffiffiffi
hk
p

. This proves Theorem 8. h

Theorem 8 gives an example where the number of rows in the essential hw-table is equal to h. Note further
that if k ¼ h, hw = h. In this case the h-table coincides completely with the corresponding hw-table. This the-
orem also shows that there is no theoretical upper limit to the hw-index.

Theorem 9. The rank r0 is never larger than h:
Table
hw-tab

Weigh

rwð1Þ ¼

rwð2Þ ¼
. . .

rwðhÞ ¼

rwðhþ
. . .
r0 6 h ð20Þ
Proof. Assume that r0 > h. Then we know by the definition of h that h P yr0
. Then:
rwðr0Þ ¼
Pr0

j¼1yj

h
>

Ph
j¼1yj

h
P h P yr0

: ð21Þ
where the first strict inequality is due to the fact that yr0
> 0. By Eq. (19) inequality (21) is impossible. Hence

the assumption that r0> h leads to a contradiction. This proves Theorem 9.
5
le corresponding the case where the citations of the first h articles are the same

ted rank (rw) Number of citations

k
h

k P h

2k
h

k P h
. . .Ph

i¼1k
h
¼ k k P h

1Þ ¼
Phþ1

i¼1 yi

h
¼ k þ yhþ1

h
yh+1 6 h

. . .
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Theorem 9 proves that the essential part of the hw-table associated with a given h-table is never longer than
the h-table. Theorem 8 shows that the tables can, however, coincide. By its construction the hw-index takes the
number of citations into account, which is the main reason for its introduction. Yet its calculation does not
need more rows than the h-index, hence the precision problem (Jin et al., 2007), i.e., the fact that it is rather
difficult to collect all data necessary for the determination of the h-index, is exactly the same for the
determination of the hw-index as for the h-index. Contrary to the construction of the g-index the precision
problem does not worsen.

Consequently, it follows from Theorem 9 that
Table
Examp

Rank

1
2
3
4
. . .
hw 6 R ð22Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

Indeed, as r0 6 h it follows that hw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr0

i¼1yi

p
6

Ph
i¼1yi ¼ R. If all yj, (j = 1, . . . ,h) are equal to h, then

hw = R = h.
Next we will prove an exact lower bound for the discrete hw-index.

Theorem 10
hw >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðh� 1Þ

p
ð23Þ
Proof. We consider two cases.

If r0 = h, then yr0
P rwðr0Þ ¼ rwðhÞ ¼

Ph

j¼1
yj

h P h2

h ¼ h (by Eq. (19)). By Eq. (18) we see that hw ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh
j¼1yj

q
P h. Clearly (23) is then also true.

If r0 6¼ h then r0 < h (by Eq. (20)). Then r0 + 1 6 h and hence yr0þ1 P yh P h (the yj are ranked in
decreasing order). By the definition of r0 we know that

yr0
P
Pr0

j¼1
yj

h and yr0þ1 <

Pr0þ1

j¼1
yj

h : This inequality leads to: yr0þ1 <

Pr0þ1

j¼1
yj

h ¼
Pr0

j¼1
yjþyr0þ1

h .

Hence:

Pr0

j¼1
yj

h > yr0þ1 1� 1
h

� �
P h h�1

h

� �
¼ h� 1. By the definition of the hw-index it follows that hw >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðh� 1Þ
p

.
This proves the theorem. h

Corollary. The ceiling function of hw, i.e. the smallest integer larger than or equal to hw, is at least equal to h:
ceilðhwÞP h ð24Þ
Proof. As ðh� 1Þ2 < ðh� 1Þh < h2, we see that ceil
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðh� 1Þ

p� �
¼ h. Then Eq. (24) follows immediately from

Eq. (23). h

We would have preferred that, also in the discrete case, hw P h (and not the ceiling function of hw). This
inequality is, however, not true in general. Yet, it is always true in the first case considered in the theorem
(r0 = h). The fact that hw >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðh� 1Þ

p
and consequently ceil(hw) P h, and not hw P h should be considered as

a discrete aberration.
We next give an example where hw< h, but, of course hw >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðh� 1Þ

p
and ceil(hw) = h. Consider the

following h-table (Table 6).
The h-index of Table 6 is 3, which happens also to be its g-index. The corresponding hw-table is shown in

Table 7.
6
le: h-table

(r) Number of citations

4
3
3
1
. . .



Table 7
hw-table corresponding to Table 6

Weighted rank (rw) Number of citations

rwð1Þ ¼
4

3
¼ 1:333 4

rwð2Þ ¼
7

3
¼ 2:333 3

rwð3Þ ¼
10

3
¼ 3:333 3

. . . . . .
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From Table 7 we see that r0 = 2, and hw ¼
ffiffiffiffiffiffiffiffiffiffiffi
4þ 3
p

� 2:645 < 3. Yet
ffiffiffi
7
p
� 2:645 >

ffiffiffiffiffiffiffi
3:2
p

ð¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h � ðh� 1Þ

p
Þ ¼ffiffiffi

6
p
� 2:449. We also have that ceilð2:645Þ ¼ 3 ¼ h.

The requirement hw P h is a logical requirement as we want to take the number of citations into account (at
least to some extent). As the first h articles are weighted by the factor

yj

h P 1 it is natural to expect that hw P h.
In the continuous model this is always the case (Theorem 3). In the discrete case exceptions are possible, as
shown above, but these are really exceptional cases which should be considered as discrete aberrations. We are
convinced that the definition of the discrete hw is structurally correct.

The following result shows the relation between the g-index and the discrete hw-index. Recall that the floor
function of a real number r is the largest integer smaller than or equal to r.

Theorem 11. The g-index always satisfies the inequality: g P floor(hw).

Proof. If hw P h then floor(hw) P h. Then
PfloorðhwÞ

j¼1 yj P
Ph

j¼1yj P h2
w P ðfloorðhwÞÞ2 (using Eq. (22)). As g is

the largest natural number such that
Pg

j¼1yj P g2, we see that g P floor(hw). If hw < h, then clearly
floor(hw) < g as h 6 g. In this case it is even true that ceil(hw) 6 g. h
8. A general requirement for discrete h-type indices

In this section we propose a general requirement for discrete h-type indices. This requirement is the discrete
analogue of the first one presented in the continuous case. Under the name discrete h-type indices we mean an
index that uses an h-table for its calculation. Such a general measure will be denoted as HIR.

Requirement. If two rankings Y = (yj)j and Z = (zj)j are given and for each j = 1,2, . . . ,yj 6 zj then
HIR(Y) 6 HIR(Z).

It is clear that the h-index, the g-index, the H2-index and the R-index satisfy this requirement. The A-index
on the other hand does not. Indeed: if Y = (10,1) and Z = (10, 2) then hðY Þ ¼ 1 and AðY Þ ¼ 10; hðZÞ ¼ 2 and
AðZÞ ¼ 6.

Unfortunately, the discrete hw-index does not satisfy this requirement either. Indeed: let Y ¼ ð8; 4; 3Þ and let
Z ¼ ð9; 4; 3Þ. Then hY = hZ = 3; r0(Y) = 2, while r0(Z) = 1, hence hwðY Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
8þ 4
p

� 3:46, while hwðZÞ ¼ffiffiffi
9
p
� 3:00. This shows that, strictly speaking, the discrete hw is not an acceptable h-type measure. Yet, we

consider this as a discrete aberration, due to the fact that the discrete process is only an approximation of
the better, continuous process.
Table 8
h-Type indices for five small European countries (2000 publications)

h hw R A AR max

Iceland 36 49.41 58.08 93.69 22.42 412
Estonia 32 39.34 46.57 67.78 17.98 270
Lithuania 31 37.03 42.52 58.32 16.41 197
Latvia 23 29.02 34.79 52.61 13.43 197
Luxembourg 20 23.45 27.18 36.95 10.49 98
Var. 0.23 0.28 0.28 0.34 0.28 0.50



Table 9
Data related to the calculation of the hw-indices

hw r0 rw(r0) yr0

Iceland 49.41 17 67.81 68
Estonia 39.34 17 48.38 49
Lithuania 37.03 19 44.23 45
Latvia 29.02 9 36.61 37
Luxembourg 23.45 12 27.50 28
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9. Examples

An as illustration of the calculation of the hw-index we calculated the h, hw, R and A index for the publi-
cations in 2000 of five small European countries: Iceland, Estonia, Lithuania, Latvia and Luxembourg. Cita-
tion data were collected on March 15, 2007 from the Web of Science. Table 8 shows the resulting values for
different h-type indices. The last column gives the number of citations of the most cited article. The last line of
Table 7 shows the coefficient of variation of the five values. This is an indication of the spread of correspond-
ing index values. Table 9 gives some specific values for the calculations of the hw-values. As all these articles
have the same age, namely 6.71 year (on average), the value of their AR-index is equal to the R-index divided
by

ffiffiffiffiffiffiffiffiffi
6:71
p

� 2:59.
Clearly, the discrete aberrations that, in theory might have occurred do not happen in these practical cases.

10. Conclusion

A citation-weighted h-index, denoted as hw, is introduced. It is shown that in a continuous setting this new
index satisfies the relations: h 6 hw < g; hw < R, if the rank-frequency function is not constant on ½0; h�. The
continuous weighted h-index is an acceptable h-type measure, and even strongly acceptable on the set of
strictly decreasing rank-frequency functions. The exact relation between h and hw is determined in the power
law model. Generally, the discrete version enjoys similar good properties, but because of its discrete nature
some exceptions may exist.
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