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a b s t r a c t

This paper studies mathematical properties of h-index sequences as developed by Liang
[Liang, L. (2006). h-Index sequence and h-index matrix: Constructions and applications.
Scientometrics, 69(1), 153–159]. For practical reasons, Liming studies such sequences where
the time goes backwards while it is more logical to use the time going forward (real career
periods). Both type of h-index sequences are studied here and their interrelations are
revealed. We show cases where these sequences are convex, linear and concave. We also
show that, when one of the sequences is convex then the other one is concave, showing
that the reverse-time sequence, in general, cannot be used to derive similar properties of
the (difficult to obtain) forward time sequence. We show that both sequences are the same
if and only if the author produces the same number of papers per year. If the author pro-
duces an increasing number of papers per year, then Liang’s h-sequences are above the
‘‘normal” ones. All these results are also valid for g- and R-sequences. The results are con-
firmed by the h-, g- and R-sequences (forward and reverse time) of the author.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In 2005, Hirsch defined his, now famous, Hirsch index or h-index. It was defined in Hirsch (2005) as follows (using our
own formulation): if we order the papers of an author in decreasing order of the number of citations received, then the
h-index of this author equals h if r = h is the highest rank such that the first h papers each have h or more citations. Since
this definition, there has been an ‘‘explosion” of papers on the h-index, applying it not only to authors but also to journals
(Braun, Glänzel, & Schubert, 2005, 2006), to research groups (van Raan, 2006) and even to topics (Banks, 2006; Egghe & Rao,
2008; The STIMULATE6 Group, 2007).

What does the h-index measure? In itself the h-index does not give a value to an informetric unity. This is in contrast with
other informetric indicators such as the impact factor which, essentially, is an average number of citations per paper. The h-
index is not an average, not a percentile, not a fraction: it is a totally new way of measuring performance, impact, visibility,
etc. of the career of a scientist. It is a simple measure without any threshold or discutable limitations (e.g. for the Garfield–
Sher impact factor one limits the citation period to two years, which is not optimal in some fields). This should explain the
popularity of the h-index. As a consequence, less than two years after the introduction of the h-index, Web of Science and
Scopus have decided to present it as an indicator.

Advantages and disadvantages of the h-index have been described in the literature (Glänzel, 2006a, 2006b; Egghe, 2006;
Jin, Liang, Rousseau, & Egghe, 2007) leading to other indices which have better properties (or at least lack some undesirable
properties of the h-index). One obvious disadvantage of the h-index (but also of all other indices) is that it is a fixed num-
ber, giving a moment’s value of a researcher’s career at a certain time. A consequence is also that h-indices of different
. All rights reserved.
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researchers are difficult to compare (even in the same field) if their career lengths are not the same. Solutions for the latter
problem are given in Burrell (2007b) and Jin et al. (2007) but the problem that only one number ‘‘describes” a career remains.

We can refer to Egghe (2007a, 2007b, 2009), Burrell (2007a) for the first theoretical models for time-dependent h-indices,
suggesting concavely increasing h-indices in the papers of Egghe and (approximate) linearly increasing h-indices in function
of time, i.e. in function of career length in the Burrell paper.

The problem remains to construct, from year to year, practical h-index sequences of researchers (in short: h-sequences).
This was defined and studied in Liang (2006) but, in our (and Burrell’s – see Burrell (2007b)) opinion, Liang does not use

the most logical definition of a h-sequence. In our opinion, the most logical definition of a h-sequence of a researcher is as
follows.

Let the career period of a researcher be described by time t = 1,2, ... , tm: here t = 1 denotes the first year of the career (more
exactly, the year of the first publication) and so on, until t = tm, the final year of the career or the last year we want to cover or
the present year (in most cases). Then the h-sequence is constructed as follows. If we only consider the papers of publication
year t = 1 and their citations obtained in the same year, we then can derive the first h-index, denoted h1. Next we consider the
years t = 1 and t = 2 together and their citations obtained in the same period, yielding the next h-index, denoted h2. We con-
tinue this way until we reach the final year tm: we consider all years t = 1, ... , tm and take into account all publications and
citations to these publications in this period. This yields the last h-index htm . The sequence h1; h2; . . . ;htm gives a dynamic
description of the visibility of this researcher’s career and can be compared within the same field, with another researcher’s
h-sequence.

However, in Liang (2006), another h-sequence is defined: there one uses time in the reverse way (in the direction of the
past). Concretely, the first index (which we will denote by h�1) is calculated based on the papers published in the year tm and
citations to these papers in the year tm. The next h-index, denoted h�2 is calculated, based on the papers published in the years
tm and tm � 1 and the citations to these papers in the same period. We continue this way until we reach year 1: only this h-
index (considering all years t = 1, ... , tm for publications as well as citations to these publications), denoted h�tm

is the same as
htm .

We underline that the sequence h1;h2; . . . ;htm is the ‘‘natural” h-sequence of a researcher; the sequence h�1;h
�
2; . . . ;h�tm

(de-
noted without stars in Liang (2006)) was used only for practical reasons: (only) if tm is the present year, one can calculate
h�1; . . . ;h�tm

in an automatic way from the Web of Science (WoS). In the WoS, only citation data, and subsequent h-indices
are given (whatever the set of articles) for the citing period up to the present year. That is why Liang calculated
h�1; . . . ;h�tm

instead of the more natural h1; . . . ;htm for which one has to collect all citation data from the WoS and to restrict
the citing period (t = 1, t = 1 and t = 2, . . .) manually, which is very time-consuming.

We fully understand that Liang wanted to avoid the time-consuming calculation of the sequence h1; . . . ;htm (for eleven
physicists) by replacing it by the sequence h�1; . . . ;h�tm

but, in this case, we need to know that the latter sequence resembles
the former one. The comparison of both sequences, in a logical Lotkaian publication-citation environment, is the topic of this
paper.

The h-sequences will be studied for continuous time t e R+. Also we will suppose that, for each time period (backwards or
forward), we have an information production process (IPP) (cf. Egghe, 2005) of publications and citations to these publica-
tions conforming with Lotka’s law
f ðjÞ ¼ C
ja

ð1Þ
C > 0, a > 1, where f(j) denotes the density of the articles with a density j of citations to these articles (see Egghe, 2005). We
assume that a is constant in each time period considered. It is clear that this simplification does not jeopardise the conclu-
sions of this paper concerning the comparison of both h-sequences. Since we take time as a continuous variable we will de-
note the sequence h1; . . . ;htm by h(t), t e [0, tm] and the sequence h�1; . . . ;h�tm

by h*(t), t e [0, tm].
In the next section, we will study h(t) for a fixed number of publications per time unit (say per year) and for an increasing

number of publications per time unit, where the increase is expressed using a power function or an exponential function.
Necessary and sufficient conditions are given for the h-‘‘sequence” (function) h(t) to be convexly, linearly or concavely
increasing and we indicate that the concave increase is the most natural one.

In the third section, we define the h*-function h*(t) in function of h(t) and prove a necessary and sufficient condition for
h*(t) = h(t) for all t e [0, tm], the ideal situation: indeed, only in this case we can substitute h*(t) (the one that can be calcu-
lated in an automatic way) for h(t) (the one that requires a lot of manual intervention but the natural one). It turns out that
h(t) = h*(t), for all t e [0, tm] and all tm > 0, if and only if the number of publications per time unit (say a year) of the re-
searcher is constant. This is an important case but, as shown by the author’s data, is only a rough approximation of reality.
We also show that h�ðtÞP hðtÞ, for all t e [0, tm] if the number of publications per time unit (year) of the researcher
increases.

In the fourth section, we even prove that, for general publication production schemes, if one of the functions h(t) or h*(t) is
convex (including the linear case), then the other one is concave, showing that, in general, the behavior of the h-‘‘sequences”
h(t) and h*(t) is different. We also note that the converse of the above assertion is false by giving examples of cases where
both h(t) and h*(t) are concave.

The fifth section gives h(t) and h*(t) for this author. It is also remarked that the same results hold for the g-index (Egghe,
2006) and the R-index (Jin et al., 2007) and are illustrated by presenting g(t), g*(t), R(t) and R*(t) for this author.
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We can then conclude that one cannot avoid the time-consuming task of calculating the natural h-sequence h1; . . . ;htm

(and similarly for the g- and R-index) of a researcher except in the case the researcher has a (more or less) constant publi-
cation production per year. We end the paper by proposing open problems and advises.

2. Study of the h-‘‘sequence h(t)

For the natural h-sequence (function) h(t), we consider the career of a researcher from the start (t = 0) up to a time t > 0.
Let us denote by T(t) the total number of publications of this researcher at time t. This set of publications is assumed to have
citations (in the same period [0, t]) according to Lotka’s law (1), with a independent from t (as explained in Section 1). It was
proved in Egghe and Rousseau (2006) that, in this case, the h-index (t-dependent here) equals
Table 1
Numbe

t

1978
1979
1980
1981
1982
1983
hðtÞ ¼ TðtÞ
1
a ð2Þ
for each t e [0, tm] (note that, for t = 0, we have T(0) = 0 and h(0) = 0 naturally).
We will now study the shape of the function h(t) in three simple, natural cases.

2.1. The case of constant production

If a researcher publishes the same number of papers per time unit (e.g. a year), say b, then we have that, for every
t e [0, tm] that T(t) = bt. Then (2) implies
hðtÞ ¼ b
1
at

1
a ð3Þ
which is a concavely increasing function since a > 1. This is the simplest model for h(t) and is a first approximation of reality.
Table 1 shows this author’s yearly production of publications (articles and books) according to publication year. The start-

ing year is 1978, up to 2007, totalling 30 years of publications.
It is clear that a constant production per year is not the case. One can see a moderate increase which can be described by a

power function or an exponential function. These cases will be studied below.

2.2. The case of increasing production per year, using a power function

Here we assume a number (density) of publications per time unit being btb where b, b > 0 (the case b = 0 corresponds to
the previous case). Hence for every t e [0, tm]:
TðtÞ ¼
Z t

0
bt0b dt0 ¼ b

bþ 1
tbþ1 ð4Þ
Now, according to (2) we have
hðtÞ ¼ b
bþ 1

� �1
a

t
bþ1
a ð5Þ
which is concave iff b + 1 < a, linear iff b + 1 = a and convex iff b + 1 > a. One can expect that a researcher’s production does
not increase fastly so that a small b occurs more often in which case we again expect a concavely increasing function h(t).

2.3. The case of increasing production per year, using an exponential function

Here we assume a number (density) of publications per time unit being bct where b > 0, c > 1. One could even take 0 < c < 1
in which we have a decreasing yearly production. The case c = 1 corresponds to the case studied in Section 2.1. Now, for every
t e [0, tm]:
TðtÞ ¼
Z t

0
bct0 dt0 ¼ b

ln c
ðct � 1Þ ð6Þ
r of publications per year of Egghe.

# t # t # t # t #

2 1984 3 1990 8 1996 8 2002 8
0 1985 4 1991 5 1997 11 2003 9
4 1986 3 1992 8 1998 8 2004 9
5 1987 5 1993 4 1999 10 2005 13
5 1988 9 1994 5 2000 11 2006 15
2 1989 0 1995 6 2001 7 2007 14
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Now, according to (2) we have
hðtÞ ¼ b
ln c

� �1
a

ðct � 1Þ
1
a ð7Þ
which is, for c > 1, increasing and where h0 0(t) < 0 iff ct < a. So here, dependent on the values of c, a and t we can have a con-
cave h(t) or an S-shaped h(t) (since a > 1 we have that, for t small enough we always have ct < a so that a completely convex
h(t) is not possible here).

For a moderate increase per year of the production (i.e. c > 1 but close to 1) we hence have, if tm is not very large, that h(t)
is concavely increasing.

We now start the study of the reverse function h*(t). The next section defines this function and presents a necessary and
sufficient condition for h*(t) = h(t) for all t e [0, tm].

3. Liang’s h-sequence h*(t)

Let us denote the career length of a researcher by tm: hence the researcher has publications in the time period [0, tm]. Let
us denote, as in the previous section, by T(t) the total number of publications of this researcher at time t (i.e. t time units since
the start of the career at t = 0). Liang starts at time tm, going back to the past as depicted in Fig. 1: For Liang, time t is the
period (in normal time) between tm � t and tm (for t 6 tm).

Hence, in reverse time, one considers a number of publications, denoted as T*(t), equalling
T�ðtÞ ¼ TðtmÞ � Tðtm � tÞ ð8Þ
In Section 1 we assumed that, for any time t in the direct way or in the reverse way, the number of publications T(t) or T*(t)
have citations according to Lotka’s law (1), where a > 1 is fixed. This yields the following Proposition.

Proposition 3.1. Let h(t) denote the h-sequence of a researcher for normal time and h*(t) denote the h-sequence of this researcher
for the reverse time as described above (e.g. formula (8)). Then we have, supposing Lotka’s law (1),
h�ðtÞ ¼ ðTðtmÞ � hðtm � tÞaÞ
1
a ð9Þ
for all t � [0, tm].

Proof. Using Lotka’s law (1) we have that, for every t e [0, tm]
hðtÞ ¼ TðtÞ
1
a

by (2). If we apply this for tm � t (also belonging to the interval [0, tm]) we have
hðtm � tÞ ¼ Tðtm � tÞ
1
a

or
Tðtm � tÞ ¼ hðtm � tÞa ð10Þ
Further, using again (1) and (2) to the publication set T*(t), we have that
h�ðtÞ ¼ T�ðtÞ
1
a ð11Þ
for all t e [0, tm]. Formulae (8), (10), and (11) prove formula (9), finishing this proof. h

Although the Liang h-‘‘sequence” h*(t) has interest in itself, it can only give information about the natural h-sequence h(t)
if they are (more or less) equal. A characterization of this will be given in the next Theorem.

Theorem 3.2. Both h-sequences h(t) and h*(t) are identical:
hðtÞ ¼ h�ðtÞ ð12Þ
for all t e [0, tm] and all tm 2 Rþ if and only if the researcher has a constant production of publications per time unit. In other
words: (12) is valid iff
tm - t tm

t 0

0

Fig. 1. Time and reverse time.
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TðtÞ ¼ bt ð13Þ
for a certain constant b > 0.

Proof. Formula (9) and (12) yield, for all t e [0, tm]
h�ðtÞ ¼ ðTðtmÞ � hðtm � tÞaÞ
1
a ¼ hðtÞ ¼ TðtÞ

1
a

using also (2). Using again (2) we have
hðtm � tÞa ¼ Tðtm � tÞ
so that we have (necessary and sufficient to have (12))
TðtmÞ � Tðtm � tÞ ¼ TðtÞ ð14Þ
(otherwise, stated: T*(t) = T(t) for all t e [0, tm], by (8)).
Denoting t = x, tm � t = y, hence tm = x + y, (14) requires
Tðxþ yÞ ¼ TðxÞ þ TðyÞ ð15Þ
for all x; y 2 R (since the above is required for all t e [0, tm] and all tm > 0). Relation (15) can be extended to all x; y 2 R by
defining, for x 2 R : TðxÞ ¼ Tð�xÞ so that (15) is valid for all x; y 2 R. Since we, evidently, assume that the function T(�) is con-
tinuous, we have, by a well-known result (cf. Roberts, 1979 – see also Egghe, 2005, Appendix 1, Theorem A.I.1) that the func-
tion T(�) must be linear: there exists a number b 2 R such that
TðtÞ ¼ bt ð16Þ
Of course, since T(t) > 0 for all t > 0, we have b > 0, completing the proof of this Proposition. h

Note that (13) trivially implies (12) since hðtÞ ¼ TðtÞ
1
a ¼ ðbtÞ

1
a and since, by (8): T*(t) = T(tm) � T(tm � t) = btm �

b(tm � t) = bt, hence h�ðtÞ ¼ T�ðtÞ
1
a ¼ ðbtÞ

1
a ¼ hðtÞ, for all t e [0, tm].

The case that a researcher has a constant number of publications per time unit is an important simple case and a first
approximation of reality: we can indeed, roughly, assume that a researcher, in his/her career, produces more or less the same
number of papers per year, certainly in the middle part of the career: in the beginning of the career, the researcher will pro-
duce (most probably) less papers (cf. Table 1) as is probably also the case at the end of a career (luckily I cannot illustrate this
yet!).

But the above Proposition also indicates that, in all cases where paper production is not constant per time unit, we have
that h*(t) – h(t).

Could it then be that the shapes of both functions are the same? Then the (easier) calculation of h*(t) could at least give
some insight in the shape of h(t), which is, as said above, very time-consuming to calculate. The next section shows that, in
general, the shapes of h*(t) and h(t) are very different, jeopardizing, to a large extent, the use of h*(t) as a substitute for h(t).

We close this section with the following Theorem on the comparison of h*(t) and h(t).

Theorem 3.3. If T0(t) (strictly) increases (i.e. T(t) convex) then
h�ðtÞ � ð>ÞhðtÞ
for every t e [0, tm].

Proof. It follows from (2) and (9) that h*(t) > h(t) if and only if
TðtmÞ > Tðtm � tÞ þ TðtÞ ð17Þ
(and similarly for the P sign; we leave this to the reader).

(i) Let t P tm
2

By the mean value theorem on the function T(t) (supposed to be differentiable) we have
TðtmÞ � TðtÞ ¼ T 0ðkÞðtm � tÞ ð18Þ
for a certain k 2 t; tm and
Tðtm � tÞ ¼ Tðtm � tÞ � Tð0Þ ¼ T ’ðnÞðtm � tÞ ð19Þ
for a certain n e [0, tm � t].
Since t > tm

2 we have that �t; tm½� tm
2 ; tm
� �

and �0; tm � t½� 0; tm
2

� �
. Hence, since T0(t) strictly increases, we have T’(n) < T0(k).

Hence (18) and (19) imply
TðtmÞ � TðtÞ > Tðtm � tÞ
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hence (17).

(ii) Let t < tm
2

By the mean value theorem on T(t) we now have
TðtmÞ � Tðtm � tÞ ¼ T 0ðgÞt ð20Þ
for a certain g e ]tm � t, tm[ and
TðtÞ ¼ TðtÞ � Tð0Þ ¼ T 0ðjÞt ð21Þ
for a certain j e ]0, t[. Now, since t < tm
2 we have that �tm � t; tm½� tm

2 ; tm
� �

and �0; t½� 0; tm
2

� �
. Hence, since T’(t) strictly increases,

we have by (20) and (21) T0(j) < T’(g) and hence
TðtmÞ � Tðtm � tÞ > TðtÞ
yielding again (17). This concludes the proof. h

Note that T (t) denotes the number of papers per time unit, say, in the discrete case, the production per year. So Theorem
3.3 deals with an increasing number of papers, say per year. Note that the conclusion of Theorem 3.3 (h*(t) > h(t) for all t)
implies that h*(t) cannot be convex in this case (since h*(0) = h(0) = 0 and h*(tm) = h(tm)).

Of course, if T (t) (strictly) decreases (what we do not expect to be the case, usually) we have h�ðtÞ 6 ð<ÞhðtÞ for every
t e [0, tm]. In this case, h(t) cannot be convex.

Note that h*(0) = h(0) = 0 and h�ðtmÞ ¼ hðtmÞ ¼ TðtmÞ
1
a (by (2) and (9)). The tangent lines in t = 0 have slopes h*0(0) and h0(0).

We have
lim
t!0
>

h�0ðtÞ
h0ðtÞ

¼ lim
t!0
>

h�ðtÞ
hðtÞ ð22Þ
by de l’Hôspital’s rule (and since h*(0) = h(0) = 0 and since h*(t) and h(t) are continuous). By (2) and (9) we have
lim
t!0
>

h�ðtÞ
hðtÞ ¼ lim

t!0
>

TðtmÞ � Tðtm � tÞ
TðtÞ ¼ T 0ðtmÞ

T 0ð0Þ
ð23Þ
again by the l’Hôspital’s rule. In the case of Theorem 3.3 is the highest difference between the values T (t), t e [0, tm] given by
T (0) (smallest value) and T (tm) (largest value), so that (22) and (23) imply that
lim
t!0
>

h�0ðtÞ
h0ðtÞ

> 1
which means that, from t = 0 onwards, h*(t) increases faster than h(t).

4. General relations between h(t) and h*(t)

We can prove the following result which is bad news for the usability of the h*(t) function instead of the function h(t).

Theorem 4.1. In the general situation of Proposition 3.1, we have that, if h(t) is convex (including the linear case), then h*(t) is
strictly concave.

Proof. Based on (9) we have the general formulae, for all t e [0, tm]
h�0ðtÞ ¼ ðTðtmÞ � hðtm � tÞaÞ
1
a�1hðtm � tÞa�1h0ðtm � tÞ
which is strictly positive (assuming, of course, that T(t) strictly increases) since h(tm � t)a = T(tm � t) < T(tm) and since h0 > 0
(by (2) and the fact that T(t) strictly increases). Further
h�00ðtÞ ¼ 1
a
� 1

� �
ðTðtmÞ � hðtm � tÞaÞ

1
a�2ahðtm � tÞ2a�2

:h02ðtm � tÞ þ ðTðtmÞ � hðtm � tÞaÞ
1
a�1ða� 1Þhðtm � tÞa�2h02ðtm � tÞ

� ð�1Þ þ ðTðtmÞ � hðtm � tÞaÞ
1
a�1hðtm � tÞa�1h00ðtm � tÞð�1Þ
Each term in the above formula is negative because a > 1, since h00ðtÞP 0 for all t e [0, tm] and again since h(tm � t)a < T(tm).
This shows the strict concavity of h* (i.e. h*0 0(t) < 0 for all t e [0, tm]) (even in case h(t) is linear). h

If we replace h(t) and h*(t) in the above Theorem, we again have a valid result.
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Theorem 4.2. In the general situation of Proposition 3.1, we have that, if h*(t) is convex (including the linear case), then h(t) is
strictly concave.

Proof. We again invoke Eq. (9):
h�ðtÞ ¼ ðTðtmÞ � hðtm � tÞaÞ
1
a

valid for all t e [0, tm]. A little bit of algebra yields, for all t e [0, tm]
hðtm � tÞ ¼ ðTðtmÞ � h�ðtÞaÞ
1
a

for all t e [0, tm]. Putting x = tm � t we have: for all x e [0, tm]
hðxÞ ¼ ðTðtmÞ � h�ðtm � tÞaÞ
1
a

which is exactly formula (9) but for h(�) and h*(�) reversed. Hence the Theorem follows from Theorem 4.1. h

We next show, by one example, that the converses of Theorems 4.1 and 4.2 are not true. This is done by calculating h*(t) for
the case studied in Sections 2.1 and 2.2.

4.1. Example: h*(t) versus h(t) in case of Section 2.1

Here we assumed a constant number of papers per time unit and we obtained (Section 2.1 and Theorem 3.2) for all
t e [0, tm]:
hðtÞ ¼ b
1
at

1
a ¼ h�ðtÞ;
hence both h(t) and h*(t) are strictly concave.

4.1. Example: h*(t) versus h(t) in case of Section 2.2

Here we assumed (4) yielding formula (5). From these results we have, using formula (9) that
h�ðtÞ ¼ b
bþ 1

� �1
a

tbþ1
m � ðtm � tÞbþ1

� �1
a ð24Þ
A quick calculation shows that h*(t) is always strictly concave since a > 1. Note that we showed in Section 2.2 that h(t) is
concave iff b + 1 < a (yielding the case that both h(t) and h*(t) functions are concave), that h(t) is linear iff b + 1 = a and that
h(t) is convex iff b + 1 > a (the last two cases confirm Theorem 4.1).

5. Verification of these results on the h-sequences of Egghe and extension to the g- and R-sequences

Fig. 2 gives the h-sequence of this author where t = 1 is the year 1978. So h(1) is the h-index for the set publications in
1978 and citations to these papers in 1978. Similarly h(2) is the h-index for the set publications in the 1978–1979 period
and citations in this period to these papers, and so on: h(30) is the h-index for the set publications in the 1978–2007 period
and citations to these papers in this period.
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Fig. 2. h(t) for the career of Egghe. h(t) = h-index of Egghe at forward time t.
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Fig. 3. h*(t) for the career of Egghe. h*(t) = h-index of Egghe at reverse time t.
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Fig. 3 gives the h*-sequence of this author, where now t = 1 is 2007. So h*(1) is the h-index for the set of publications in
2007 and citations to these papers in 2007. Similarly h*(2) is the h-index for the set publications in the period 2006–2007 and
citations in this period to these papers, and so on: h*(30) is the h-index for the set publications in the 1978–2007 period and
citations to these papers in this period. So, only for t = 30 we have h(30) = h*(30).

We clearly see that h(t) is approximately linear (confirming in this case Burrell (2007a)) while h*(t) has a more concave
shape, confirming Theorem 4.1. We also see that h*(t) > h(t) confirming Theorem 3.3 taking into account the ‘‘overall” increase
of the number of papers per year (Table 1). We also see that, for small t, h(t) increases more slowly than h*(t), also confirming
results of Section 3. This is also logical since, in the beginning of a career, the first papers will, normally, be cited in a later
period. Conversely, h*(t) increases more slowly, for larger t, than h(t) which is also logical since high t for h*(t) means: the
beginning period.

As noted in Egghe (2006) and Jin et al. (2007) the indices g and R are fixed (for a fixed) multiples of h. Hence the theo-
retical results, proved in Sections 2, 3 and 4 are also valid for the sequences g(t), R(t) (forward time) and g*(t) and R*(t) (re-
verse time).

For each period, the g-index was defined as the largest rank such that the total number of citations to the papers on ranks
1, ... ,g is larger than or equal to g2. Also, R equals the square root of the sum of the number of citations to the first h papers.
They were introduced to avoid the disadvantage of the h-index that it is insensitive to the number of citations to papers in
the h-core.

That the results on h(t) and h*(t) are also valid for g(t), g*(t), R(t) and R*(t) is illustrated in Figs. 4–7 based on the same data
of Egghe used in Figs. 2 and 3.

6. Remarks and conclusion

This paper studied the sequences (functions) h(t) (forward time) and h*(t) (reverse time, as defined by Liang). Concrete
examples are given based on paper production models per time unit. We showed that h(t) = h*(t) for all t, iff paper production
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Fig. 4. g(t) for the career of Egghe. g(t) = g-index of Egghe at forward time t.
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Fig. 5. g*(t) for the career of Egghe. g*(t) = g-index of Egghe at reverse time t.
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Fig. 6. R(t) for the career of Egghe. R(t) = R-index of Egghe at forward time t.
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Fig. 7. R*(t) for the career of Egghe. R*(t) = R-index of Egghe at reverse time t.
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per time unit is constant and that h*(t) > h(t) for all t if the paper production per time unit strictly increases. We also show
that even the shapes of h(t) and h*(t) can be very different (e.g. one being convex and the other one being concave). Hence, we
can conclude that, apart from constant paper production, h*(t) cannot be used to study h(t) which is a pity since h*(t) can be
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generated from the WoS in an automatic way while h(t) (the sequence which is the more natural one) must be calculated in a
time-consuming manual way.

It is our advise – as also Burrell did (Burrell, 2007b) – that the WoS produces such h-sequences in an automatic way. It
would be very good that researchers and policy makers can have h-sequences at their disposition: it better shows the evo-
lution of a career which a single h-index cannot. Of course, from now on, a researcher can calculate his/her h-index on a
yearly basis, generating a h-sequence after many years, but this, obviously, requires a lot of patience!

We remarked that all theoretical result on h(t) and h*(t) are also true for the g-index and R-index.
We presented h(t), h*(t), g(t), g*(t), R(t) and R*(t) for the career of this author (period 1978–2007) and confirm hereby the

theoretical results.
We obtained a linearly increasing h(t) function for the Egghe data. Yet, the formula (2) shows a concave (since a > 1) rela-

tion of h in function of T. As proved in Section 2, in many models is h(t) a concave function of time t. We can conclude in the
Egghe case that the cumulative production T(t) more or less compensates the exponent 1

a in (2) so that (approximately)
T(t) = cta (c a constant) resulting in
hðtÞ ¼ TðtÞa ¼ ðctaÞ
1
a ¼ c

1
at
a linear function of t. In this case, the function h(t) follows the straight line connecting (0,0) and (tm,h(tm)), which has
equation
y ¼ hðtmÞ
tm

t ð25Þ
The function h(t) is entirely below this line if and only if
hðtÞ ¼ TðtÞ
1
a 	 hðtmÞ

tm
t

which is equivalent with
TðtÞ 	 TðtmÞ
t

tm

� �a

ð26Þ
Note that in this case h(t) cannot be concave (as e.g. is the case for T(t) = bt for all t, which does not satisfy (26) since a > 1).
Similar inequalities can be given for h(t) above (25) and h*(t) below or above (25).
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