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a b s t r a c t

Each information production process has a unique h-index. This paper studies the problem:
what are possible h-index values if we merge two or more IPPs?

First the paper gives examples of IPP mergings. There are at least two types: one where
common sources add their number of items and one where common sources get the max-
imum of their number of items in the two IPPs.

In each case we show that

max(h1, h2) ≤ h ≤ h1 + h2

for both types of mergings (hi, i = 1, 2 the h-index in the two IPPs; h is the h-index in the
merged one).

We show that the above inequalities cannot be improved (in both merging types). We
also show that the same inequalities are true for the g-index and the R-index but that they
are false for the weighted h-index. For the R-index we can even refine the above inequality

R ≤
√

R2
1 + R2

2 < R1 + R2

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Merging is an important topic in informetrics. Virtually any information production process (IPP) is the result of the
merging of several other ones, although it is not always clear to determine (or define) the components. The simplest example
is a bibliography, spreading out over several years and were we consider this bibliography as the merged result of the
components of the bibliography belonging to (published in) the same year. The bibliography can be anything consisting of
sources and items (cf. Egghe, 2005): authors (or journals) and their publications (here the components consist of publications
of the same publication year) or papers (of an author or a group of authors) and the citations these papers receive (here the
components consist of citations to these papers in a fixed year).

An example of merging not involving time in the merging is the case of an IPP of an author consisting of articles and
their received citations. Several author IPPs can be merged that way leading to a paper-citation IPP of the meta-author of
the merged IPP. But also one author’s IPP (paper-citations) can be considered as the merged one where the component IPPs
are on different specific topics. If we merge bibliographies on different topics (regardless of the author) we have another
example.
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Table 1
Two IPPs

r1 #1 r2 #2

1 x1 1 y1

2 x2 2 y2

3 x3 3 y3

4 x4 4 y4

· · · ·
· · · ·
· · · ·
N xN N yN

Searches in different databases (e.g. Web of Science (WoS), Scopus, Google Scholar, etc.) leading to papers and citations
received, can be merged into one bibliography. Articles from an author or a group of authors can be considered to be merged
where the components consist of papers in a fixed journal. Many other examples, even outside informetrics, can be given:
mergings of texts in the sense of word-types(=sources) and tokens(=items) in linguistics, a country consisting of villages
and cities (demography), employees of different companies or universities where one considers their productivity or their
salaries, and so on.

An obvious but important example is the web (or part of it) which can be considered as the merging of different
components. The same goes for any other social network (intranets, citation or collaboration networks, etc.).

So far, we have discussed the merging of the sources but we did not explain what we should do with their number of
items. First of all, we can assume that the sources in the two (or more) IPPs are the same. If this is not the case we add sources
with zero items until we reach that all IPPs (to be merged) have the same sources. We now have a situation as in Table 1 (for
two IPPs).

The ris (i = 1, 2) denote the source ranks and, as explained above, in both tables the same sources occur (but, of course,
possibly on a different ranking). The #is (i = 1, 2) denote the number of items in the two IPPs of the corresponding source.
Based on the above examples we can define two merging types: suppose xi and yj are number of items of the same source.
One merging type is to give the value xi + yj to this source in the merged IPP. Another merging type is to define max(xi, yj) as
the number of items of this source in the merged IPP. If we merge different citing periods of articles of authors we clearly
use the sum. If we merge citation scores of the same paper(s) in two different databases (e.g. WoS and Scopus) anything
between the maximum and the sum can be the citation score in the merged IPP: consider the set A as the citing paper set of
a paper in the first database and set B as the citing paper set of the same paper in the second database—see Fig. 1.

If A ⊂ B or B ⊂ A it is clear that we use the maximum in the merged IPP. If A ∩ B = ∅ it is clear we use the sum. In general,
however, we will use a value between the maximum and the sum, namely #A + #B − #(A ∩ B) (# denotes the cardinality of
the set). Note that indeed

max(#A, #B) ≤ #A + #B − #(A ∩ B) ≤ #A + #B
since #(A ∩ B) ≤ min(#A,#B). In Vanclay (2007) two citation IPPs are merged using the max device. It concerns citation

scores of the author retrieved via Google Scholar and via WoS. Here a device between max and sum would have been more
appropriate but it is not so easy to determine the best values. An indication could have been obtained by sampling some
papers and check the citations in each database, one-by-one.

In the sequel we will study the maximum and sum merging devices and from the results we will derive the results for
the intermediate scoring devices.

Merging has already been studied in an old paper of Egghe and Rousseau (1988) and in another old one by Rousseau
(1989). In Egghe and Rousseau (1988) one demonstrated that the merging of IPPs without a Groos droop (Groos, 1967) can
lead to an IPP with a Groos droop. This time our interests are different: we want to know the influence of merging on the
values of h-type indices, i.e. given, e.g. the h-index of two IPPs, what different possibilities are there for the h-index of the
merged IPP. The same will be done for the g-index, R-index and the weighted h-index hw. Let us briefly repeat their definitions

Fig. 1. Citation sets of a paper in two databases.
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(see Hirsch, 2005; Egghe and Rousseau, 2006, 2007; Egghe, 2006 and Jin, Liang, Rousseau, & Egghe, 2007). Let us have an
IPP where the source on rank i has xi items and where we suppose that the sources are ranked in decreasing order of their
number of items, i.e. the xi are decreasing.

The h-index is the unique (Egghe and Rousseau, 2006) rank h such that i = h is the largest rank for which xi ≥ i. Since h
does not take the full value of the x1, . . ., xh into account, Egghe (2006) introduced the g-index: an IPP has g-index g if i = g is
the largest rank for which

∑i
j=1xj ≥ i2, equivalently, g is the largest rank for which the average number of items per source

is larger than or equal to g: (see Schreiber, 2007)

x̄ = 1
g

g∑
i=1

xi ≥ g (1)

Aiming at the same type of improvement of the h-index, Jin et al. (2007) defined the R-index as

R =

√√√√ h∑
i=1

xi (2)

where h is the h-index of the IPP.
Finally, the weighted h-index also takes into account the xi-values by weighting the ranks with it: an IPP has weighted

h-index hw if

hw =

√√√√ i∑
j=1

xj (3)

for i being the largest rank such that∑i
j=1xj

h
≤ xi (4)

The paper is organised as follows. The next section studies the h-index in the framework of merging of two IPPs. We will
show that, if h1, h2 are the h-indices of the two IPPs that will be merged, and if, in the merging, the sum of the item scores
per source is applied, the h-index of the merged IPP, denoted h, satisfies

max(h1, h2) ≤ h ≤ h1 + h2 (5)

We will show that this inequality cannot be improved by giving examples where max(h1, h2) and h1 + h2 are actually reached.
Section 3 proves the same inequalities (5) for the g-index and Section 4 does the same for the R-index. In Section 5 we

show that (5) is not valid for the hw-index.
Section 6 then studies merging where the maximum of the item scores per source is applied. It is quite trivial from (5) that

also in this case (5) is valid for h, g and R. Although this is a weaker result we show that (5) for h and g cannot be improved:
we show that h = max(h1, h2) and h = h1 + h2 can be reached and the same for g. For R, however we are able to improve (5) to

max(R1, R2) ≤ R ≤
√

R2
1 + R2

2 < R1 + R2 (6)

and show that (6) cannot be improved: R = max(R1, R2) and R =
√

R2
1 + R2

2 can be reached.
Section 7 is a concluding section, giving also some advice for further research on this topic.

2. Merging (sum device) and its influence on the h-index

In this section (and the Sections 3–5) we apply merging using the sum device. We have the following result.

Theorem. In all cases of source matchings we have

max(h1, h2) ≤ h ≤ h1 + h2 (7)

where h1 and h2 are the h-indices of the two IPPs and h is the h-index of the merged one.

Proof. That h ≥ max(h1, h2) is trivial since the merged IPP has, on every rank, higher (or equal-zeros are allowed) values
than on the corresponding ranks in the two IPPs. To prove the right hand side (RHS) of inequality (7) we note that all sums
xi + yj with i ≥ h1 + 1 and j ≥ h2 + 1 yield values that are smaller than or equal to h1 + h2 (since each xi ≤ h1 and each yj ≤ h2
by definition of the h-index, applied to h1 and h2). So, maximally, there are h1 + h2 sums xi + yj that can be larger than
or equal to h1 + h2 (the sums involving x1, . . . , xh1

(+an y-value) and the sums involving y1, . . . , yh2
(+an x-value)). Hence

h ≤ h1 + h2. �
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Example that h = max(h1, h2) is possible.

Source matching: permutation of {1,2,3,4} � = Id (meaning: source i in the first table is the same source as source i in the
second table, i = 1, 2, 3, 4). Here h1 = 2, h2 = 1, h = 2 = max(h1, h2).

Example that h = h1 + h2 is possible.

Source matching: �(1) = 4, �(2) = 3, �(3) = 2 and �(4) = 1. Here h1 = 1, h2 = 2 and h = 3 = h1 + h2.
These two examples show that inequalities (7) cannot be improved. Of course, both inequalities in (7) can be strict as the

next example shows.

Both IPPs are the same and source matching is � = Id. Now h1 = h2 = 2 and h = 3, hence max(h1, h2) < h < h1 + h2.
One might think that, adding the highest values of the two IPPs yields extreme high or low values for h. This is not so: the

above example shows h = 3 which is smaller than when we add via the device �(1) = 4, �(2) = 3, �(3) = 2 and �(4) = 1: now
all elements in the table have values 5, hence h′ = 4 showing that h is not the largest possible value. The next example shows
that, adding the highest values of the two IPPs does not yield the smallest possible value for h.

Both IPPs are equal and � = Id. Here h1 = h2 = 2 and h = 4 (even the highest possible value here). If we use �(1) = 6, �(2) = 5,
. . ., �(6) = 1 then we have h′ = 3< h = 4 which is readily seen. Of course, adding the highest values of the two IPPs can lead to
the extreme values: example above: h = h1 + h2. Now follows an example that h = max(h1, h2).

Here both IPPs are the same, � = Id, h1 = h2 = 2 and h = 2.

3. Merging (sum device) and its influence on the g-index

We again use the sum device for the merging. We have the following result.

Theorem. In all cases of source matchings we have

max(g1, g2) ≤ g ≤ g1 + g2 (8)

where g1 and g2 are the g-indices of the two IPPs and g is the g-index of the merged one.

Proof. Again g ≥ max(g1, g2) is trivial since the merged IPP has, on every rank, higher (or equal-zeros are allowed and
sometimes needed in the calculation of the g-index—see Egghe, 2006) values than on the corresponding ranks in the two
IPPs.

Independent of the source identification in both IPPs, we obtain the highest possible g-index for the merged IPP if we add
the highest values in both IPPs, i.e. if we apply � = Id. Hence it suffices to prove the RHS of inequality (8) for this merging.
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This will be proved if we can show that
g1+g2+1∑

i=1

(xi + yi) < (g1 + g2 + 1)2 (9)

By definition of g1 and g2 we have
g1+1∑
i=1

xi < (g1 + 1)2 (10)

g2+1∑
i=1

yi < (g2 + 1)2 (11)

But in (10) and (11) we have, since all numbers are natural numbers, that the difference between the LHS and the RHS is
at least 1. So if we add (10) and (11), the difference is at least 2. So we can subtract 1 and still have a strict inequality:

g1+1∑
i=1

xi +
g2+1∑
i=1

yi < (g1 + 1)2 + (g2 + 1)2 − 1 (12)

Further
g1+g2+1∑
i=g1+2

xi ≤ g1g2 (13)

since this sum has g2 numbers all smaller than or equal to g1 since i ≥ g1 + 2 > h1 (see Egghe, 2006) hence xi ≤ h1 ≤ g1 (see
Egghe, 2006).

Similarly
g1+g2+1∑
i=g2+2

yi ≤ g1g2 (14)

since this sum has g1 numbers all smaller than or equal to g2 since i ≥ g2 + 2 > h2, hence yi ≤ h2 ≤ g2 (see Egghe, 2006).
Adding (12), (13) and (14) yields

g1+g2+1∑
i=1

(xi + yi) =
g1+1∑
i=1

xi +
g2+1∑
i=1

yi +
g1+g2+1∑
i=g1+2

xi +
g1+g2+1∑
i=g2+2

yi < (g1 + 1)2 + (g2 + 1)2 − 1 + 2g1g2 = (g1 + g2 + 1)2,

proving (9), hence the theorem. �
Note: This highest possible value of g (see the proof above) does not always yield g1 + g2 as the next example shows.

Both IPPs are the same and � = Id. Here g1 = g2 = 2 and g = 3 < g1 + g2.
Example that g = max(g1, g2) is possible

� = Id. Here g1 = 3, g2 = 1, g = 3 = max(g1, g2).
Example that g = g1 + g2 is possible.

Both IPPs are equal, � = Id. Here g1 = g2 = 2, g = 4 = g1 + g2.
Hence, the inequalities (8) cannot be improved.
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Note: Unlike the case of the h-index, we now have that, adding the highest values of the two IPPs yields the highest
possible value for g (but, as seen above, not always equal to g1 + g2). This is trivially seen since; at each rank of the merged
IPP we have the highest possible values.

4. Merging (sum device) and its influence on the R-index

We again use the sum device for the merging. We have the following result.

Theorem. In all cases of source matchings we have

max(R1, R2) ≤ R ≤ R1 + R2 (15)

where R1 and R2 are the R-indices of the two IPPs and R is the R-index of the merged one.

Proof. Since h ≥ max(h1, h2), by the theorem in Section 2 and since the merged IPP has, on every rank, higher values (or
equal if zeros are allowed) than on the corresponding ranks in the two IPPs, we have that

R ≥ max(R1, R2)

If we add the highest values in both IPPs we do not necessarily generate the highest possible R (as was true for g). This is
so because h is not necessarily the highest possible value (see Section 2) (see an example after this proof). But by the theorem
in Section 2 we know that h ≤ h1 + h2. So if we add the highest values in both IPPs and if we use h1 + h2 for h in the formula
(2) of R, we have an upper bound for R of the merged IPP. Hence

R2 ≤
h1+h2∑

i=1

(xi + yi) =
h1+h2∑

i=1

xi +
h1+h2∑

i=1

yi =
h1∑
i=1

xi +
h1+h2∑
i=h1+1

xi +
h2∑
i=1

yi +
h1+h2∑
i=h2+1

yi (16)

Now

R2
1 =

h1∑
i=1

xi (17)

R2
2 =

h2∑
i=1

yi (18)

h1+h2∑
i=h1+1

xi ≤ h1h2 (19)

since this sum contains h2 numbers each smaller than or equal to h1 since i ≥ h1 + 1 and by definition of h1. Similarly, using
the definition of h2:

h1+h2∑
i=h2+1

yi ≤ h1h2 (20)

Putting (17), (18), (19) and (20) in (16) we have

R2 ≤ R2
1 + R2

2 + 2h1h2 (21)

But

h1 ≤

√√√√ h1∑
i=1

xi = R1 (22)

since xi ≥ h1 for all i = 1, . . ., h1, by definition of h1. Similarly, using the definition of h2 we have

h2 ≤

√√√√ h2∑
i=1

yi = R2 (23)

Now (22) and (23) in (21) yields

R2 ≤ R2
1 + R2

2 + 2R1R2 = (R1 + R2)2

hence the proof of the RHS of (15). �
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If no zeros are allowed then R > max(R1, R2). Indeed denote by �1, �2 the permutions of {1, . . ., N} such that the merged
table has values on rank i: x�1(i) + y�2(i) then we have:

R2 =
h∑

i=1

(x�1(i) + y�2(i)) ≥
max(h1,h2)∑

i=1

(x�1(i) + y�2(i)) > max

(
h1∑
i=1

xi,

h2∑
i=1

yi

)
= max(R1, R2)

since h ≥ max(h1, h2) and by definition of merging using sums and since no xi of yi is zero: for each i: x�1(i) + y�2(i) > xi

and x�1(i) + y�2(i) > yi.
If zeros are allowed then R can be max(R1, R2) as the next example shows

Here we use the source match: �(1) = 3, �(2) = 2 and �(3) = 1. Note that h1 = 2, R1 = √
5, h2 = 1 = R2 and h = 2, R = √

5 =
max(R1, R2).

Example showing that R = R1 + R2 is possible.

Both IPPs are equal, � = Id. Here h1 = h2 = 2, R1 = R2 =
√

4 = 2, h = 4, R = √
4 + 4 + 4 + 4 = 4 = R1 + R2.

The example in Section 3 showing that we do not always get g1 + g2 as highest possible value, is also useable here: R1 = R2 = 2
and R =

√
12 < R1 + R2.

In the proof of the above Theorem we mentioned that, adding the highest values in both IPPs does not always generate
the highest possible R (as was the case for g). We can give an example of this:

Here both IPPs are the same and � = Id. We have h = 3 and hence R =
√

18. But if we apply �(1) = 4, �(2) = 3, �(3) = 2, �(4) = 1
to the IPPs we get that all sources have 5 items, so h = 4 and hence R =

√
20 >

√
18. This shows that the precaution in the

proof of the above Theorem was in order.

5. Merging (sum device) and its influence on hw

We show by example that merging (sum device) does not even guarantee that hw increases.

Here � = Id. We have h1 = 3, hw,1 =
√

12, h2 = 1, hw,2 = 1, h = 3, hw =
√

9 = 3 <
√

12 = hw,1. Hence hw ≥ max(hw,1, hw,2) is
not always valid. In Egghe and Rousseau (2007) this bad property is explained as a discrete aberration. We will not consider
hw further on.

6. Merging (maximum device) and its influence on the h-index, the g-index and the R-index

As said in the Section 1 we will now study merging where we use the maximum device for the item values: if we have
two IPPs with the same sources (if not we add enough sources with 0 items) and if source i in the first IPP is the same as
source j in the second IPP, then this source will have the item score max(xi, yj), where xi and yj are the item scores of this
source in the first and second IPP respectively.

Theorem. In all cases of source matchings we have

max(h1, h2) ≤ h ≤ h1 + h2 (24)

max(g1, g2) ≤ g ≤ g1 + g2 (25)

max(R1, R2) ≤ R ≤ R1 + R2 (26)
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Proof. Also in this merging device we have that the merged IPP has, on every rank, higher values than on the corresponding
ranks in the two IPPs, hence h ≥ max(h1, h2) and g ≥ max(g1, g2). The same argument, together with h ≥ max(h1, h2) yield
that also R ≥ max(R1, R2).

Since all values of the merged IPP using the max device are smaller than or equal to all values of the merged IPP using
the sum device we trivially have that the h- and g-index of the merged IPP (max device) are smaller than or equal to the
h- and g-index of the merged IPP (sum device). Hence (24) and (25) follow from this and the RHSs of (7) and (8). The same
argument and using that the h-index of the merged IPP (max device) is smaller than or equal to the h-index of the merged
IPP (sum device) proves the RHS of (26), now using (15). �

For R, a considerable improvement of the RHS of (26) is possible as is seen in the next Theorem.

Theorem. In all cases of source matchings we have

R ≤
√

R2
1 + R2

2 < R1 + R2 (27)

Proof. Let �1, �2 be the two permutations of {1, . . ., N} such that the source �1(i) in the first IPP is the same source as �2(i)
in the second IPP and such that this source is on rank i in the merged (max device) IPP. By definition of R, the R-index of the
merged IPP, we have

R2 =
h∑

i=1

max(x�1(i), y�2(i)) (28)

where h is the h-index of the merged IPP.
We consider three cases

I. Let h1 = h2 = max(h1, h2) = h.
Then

R2 =
h1=h2∑

i=1

max(x�1(i), y�2(i)) ≤
h1∑
i=1

xi +
h2∑
j=1

yj = R2
1 + R2

2 (29)

since x1, . . . , xh1
, y1, . . . , yh2

are the largest values that can occur in (29) and since the maximum is smaller than the
sum.

II. Let h = max(h1, h2).
We can suppose h1 > h2 (otherwise reverse the order of the two IPPs). If j > h2 + 1 then, by definition of h2: yj ≤ h2 < h1 = h.

By definition of h, these yjs are not used in the calculation of R. Hence

R2 =
h1∑
i=1

max(x�1(i), y�2(i)) ≤
h1∑
i=1

xi +
h2∑
j=1

yj = R2
1 + R2

2

since the values yh2+1, . . . , yN are not used in the calculation of R2.
III. Let now h > max(h1, h2).

If i ≥ h1 + 1 then, by definition of h1: xi ≤ h1 ≤ max(h1, h2) < h. Hence, in (28), these xis are not used, by definition of h.
Similarly, if j ≥ h2 + 1 then, by definition of h2: yj ≤ h2 ≤ max(h1, h2) < h. Hence, in (28), these yjs are not used, by definition
of h. Further, in (28): h ≤ h1 + h2 (by (24)) and, by the above, only (part) of the values x1, . . . , xh1

, y1, . . . , yh2
can be used.

Hence

R2 ≤
h1∑
i=1

xi +
h2∑
j=1

yj = R2
1 + R2

2

Hence

R2 ≤ R2
1 + R2

2 (30)

proving (27): indeed (strict inequality)√
R2

1 + R2
2 < R1 + R2

since R1R2 	= 0. �
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This also shows that R = R1 + R2 in (26) cannot be reached. We will now show that all other inequalities (24–26) (LHS) and
(27) cannot be improved by showing that the LHSs and RHSs can be reached. For the LHSs of (24–26) this follows from the
corresponding examples given in the previous sections since merging using the max device gives h, g and R values that are
smaller than or equal to their corresponding values in the merging case using the sum device.

Another set of examples showing that the LHSs of (24–26) can actually be reached is by presenting any two identical IPPs!
It is surprising that, in this merging case using the max device, the RHSs of (24) and (25) cannot be improved. Indeed:

take the example

Here both IPPs are the same and the source matching is �(1) = 2, �(2) = 1, �(3) = 3. Here h1 = h2 = 1 and h = 2 = h1 + h2! Also,
g1 = g2 = 1 and g = 2 = g1 + g2.

The same example also shows that R2
1 = R2

2 = 2 and that R2 = 4 = R2
1 + R2

2. This shows that (27) cannot be improved and
hence that (27) is optimal.

General Corollary. If, by merging, we adopt a device between the sum and the max then it follows from (7), (8), (15) and
(24–26) that these inequalities are also true in this general “intermediate” case. As remarked in the introductory Section 1, this
case is applied when one merges citation scores of the same paper(s) in different databases.

We close this section on merging with the max device with a result that is valid when � = Id, i.e. when, for each
i = 1, . . ., N, the source on rank i in the first IPP is the same as the source on rank i in the second IPP.

Proposition. When � = Id and in case we apply merging with the max device, then

h = max(h1, h2) (31)

using the same notation as above.

Proof. We can suppose h1 ≥ h2 (otherwise change the order of the IPPs). Let us first assume h1 > h2. Then

max
i=h2+1,...,h1

(xi, yi) = xi (32)

since yi ≤ h2 < h1 and xi ≥ h1 since i ≤ h1. Also

max
i≥h1+1

(xi, yi) ≤ h1 (33)

since h1 > h2. From (32) and (33) it follows that h = h1 = max(h1, h2), since � = Id.
If h1 = h2, we have that xi ≤ h1 = h2 for all i ≥ h1 + 1 and yi ≤ h1 = h2 for all i ≥ h2 + 1 = h1 + 1.
Hence

max
i≥h1+1

(xi, yi) ≤ h1 = h2

Consequently, since � = Id,

h ≤ h1 = max(h1, h2) (34)

By (24) and (34), we have

h = max(h1, h2) �

Corollary. If we maximize the highest scores then we have the minimal h-index value.

Note that we proved in Section 2 that this is not true in case we add the highest scores.
Let us illustrate the above Proposition, thereby also yielding a counterexample to (31) for the g-index and the R-index.

Here, according to the proposition, � = Id. We have h1 = 3, h2 = 2 while h = 3 = max(h1, h2), according to the above proposi-
tion. But g1 = 3, g2 = 3 and g = 4 > max(g1, g2). Also R1 =

√
12, R2 =

√
11 and R =

√
14 > max(R1, R2).

Final note: The above inequalities apply to the merging (in different devices) of two IPPs. These inequalities can be extended
to the merging of, say n, IPPs, n ∈N. Let us illustrate this on the inequalities of the type (k stands for h, g or R)

max(k1, k2) ≤ k ≤ k1 + k2 (35)
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For the merging of n of these IPPs and denoting by ki(i = 1, . . ., n) the h-type index of IPP i and denoting by k the h-type
index of the merged IPP (and device described above), we have:

max
i=1,...,n

ki ≤ k ≤
n∑

i=1

ki (36)

Proof. From (35), the result is true for n = 2. Now we proceed by complete induction. Suppose (36) is true for n ∈N. Merging
this IPP with an (n + 1)th IPP, yielding the h-type index k* gives, by (35)

max(k, kn+1) ≤ k∗ ≤ k + kn+1

By (36) we have

max

(
max

i=1,...,n
ki, kn+1

)
≤ k∗ ≤

n∑
i=1

ki + kn+1

Hence

max
i=1, ..., n+1

ki ≤ k∗ ≤
n+1∑
i=1

ki

This finishes the complete induction argument and hence the proof of this result. The same argument can be used for
other inequalities, e.g. the inequality (27). �

7. Conclusions and suggestions for further research

In this paper we studied mergings of two types (and all their intermediate values): corresponding sources receive the
sum of their scores (=item values) or corresponding sources receive the maximum of their scores. For the sum device we
show that

max(k1, k2) ≤ k ≤ k1 + k2 (37)

where k is any of the h-type indices h, g or R. We also show by example that the extreme values max(k1, k2) and k1 + k2 can
be realized so that (37) cannot be improved. We show that (37) is false for hw.

Merging with the max device also yields (37) for h, g and R, but we show that the RHS of (37) can be improved for R:

R ≤
√

R2
1 + R2

2 < R1 + R2 (38)

We show that, also in this max device case (37), cannot be improved for h, g and that the LHS of (37) cannot be improved
for R as well as (38), by giving examples that the extreme values can be reached.

Finally, when the source rankings in the first IPP are the same as the source rankings in the second IPP, we show that, in
case of merging with the max device:

h = max(h1, h2) (39)

and we prove by example that this equality is false for g and R.
As said in the introduction, all merging devices between the maximum and the sum have applications. Of course, since

(37) and (38) are inequalities, no exact values of the merged h, g or R-indices can be given here. For this, concrete IPPs must
be available.

We leave some open problems.

1. Any two IPPs with the same N sources can be merged in N! ways (regarding source matching �, being a permutation of {1,
. . ., N}). Describe the distribution of h-, g- and R-values. Preliminary calculations of this problem indicated that h-values
occur in an even quantity, for which we do not have an explanation.

2. Characterise the mergings (any type), yielding for h, g and R, the minimal and maximal values, i.e. characterize the
permutations � of {1, . . ., N} yielding these extreme values.

3. Characterise the two IPPs (with the same number (N)sources) yielding, in any type of merging, the same h-, g- or R-values.
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