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Abstract

General results on transformations on information production processes (IPPs), involving transformations of the h-index and
related indices, are applied in concrete, simple cases: doubling the production per source, doubling the number of sources, doubling
the number of sources but halving their production, halving the number of sources but doubling their production (fusion of sources)
and, finally, special cases of general power law transformations. In each case we calculate concrete transformation formulae for the
h-index h (transformed into h*) and we discuss when we have h* < h, h* = h or h* > h.

These results are then extended to some other h-type indices such as the g-index, the R-index and the weighted h-index.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A general information production process (IPP) where sources produce items is characterized by a size-frequency
function f : [a, ρm] → R

+ or, equivalently, by a rank-frequency function g : [0, T ] → R
+. Here ρm denotes the

maximum item density (a is the minimum item density) and T denotes the total number of sources. For each j ∈ [a,ρm],
f(j) denotes the density of sources with item density j and for each r ∈ [0,T], g(r) denotes the item density in the source
at rank density r (see Egghe, 2005 and many papers in the bibliography of Egghe, 2005, e.g. Egghe, 2004).

In Egghe (2007) one studies general transformations of such an IPP: a transformation ψ on the sources:

ψ : [0, T ] → [0, T ∗] (1)

and a transformation ϕ on the items:

ϕ : [a, ρm] → [a∗, ρ∗
m] (2)

such that ϕ, ψ are increasing, ψ(0) = 0, ψ(T) = T*, ϕ(a) = a* and ϕ(ρm) = ρ∗
m, acting on g as follows: the transformed

rank-frequency function g* satisfies:

g∗(r∗) = g∗(ψ(r)) = ϕ(g(r)) (3)
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In Egghe (2007) one proves that a Lotkaian size-frequency function:

f (j) = C

jα
(4)

C > 0, α> 1, j ∈ [1,+∞[, is transformed into another Lotkaian size-frequency function:

f ∗(j∗) = G

j∗δ
(5)

where

δ = 1 + b(α− 1)

c
(6)

and j* ≥ϕ(a) = Bac, in case ϕ and ψ are increasing power functions:

r∗ = ψ(r) = Arb (7)

j∗ = ϕ(j) = Bjc (8)

A, B, b and c > 0.The power functions (7) and (8) are natural functions to describe evolution of an IPP: they comprise
convex and concave growth of sources and items (if the exponents are >1 of <1, respectively). They are also logical to
use in connection with the Lotkaian function (4) which is also a power law. Finally, from a pragmatic point of view:
only for functions (7) and (8) a simple and exact result as (5), (6) can be proved.

The h-index was defined in Hirsch (2005) in the connection of papers and their citations. In the general IPP context
the h-index can be defined as follows (cf. Egghe & Rousseau, 2006a): if we order the sources in decreasing order of
their number of items then the h-index of this IPP is the largest rank h such that all the sources on ranks ≤h have at
least h items.

The h-index for a general Lotkaian IPP for which (4) is valid, is proved in Egghe and Rousseau (2006a) to be equal
to

h = T 1/α (9)

We refer to Ball (2005), Bornmann and Daniel (2005), Braun, Glänzel, and Schubert (2005, 2006), Glänzel (2006),
Popov (2005), van Raan (2006) and, of course, to the introductory paper Hirsch (2005) for some background on the
advantages and disadvantages of the h-index.Under the above described transformations (7) and (8), we proved in
Egghe (in press-a) that the transformed h-index h* equals:

h∗ = B(δ−1)/δT ∗(1/δ) (10)

where B is as in (8) and δ as in (6) (here T* =ψ(T) is the transformed total number of sources).
It is clear that (10) can be further developed as follows. Since

T ∗ = ψ(T ) = ATb (11)

by definition of ψ and by (7), we can put (11) in (10) yielding:

h∗ = B(δ−1)/δA1/δT b/δ (12)

which is the general equation for h* in Lotkaian systems and where we have power functions (7) and (8) as transfor-
mations.

It is proved in Egghe (2007) (but it also follows from (6)) that δ=α⇔ b = c. In this case we have

h∗ = B(α−1)/αA1/αT b/α (13)

h∗ = B(α−1)/αA1/αhb (14)

by (9). Finally, if b = c = 1 we have by (14):

h∗ = B(α−1)/αA1/αh (15)
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Table 1
Starting table

r #

1 y1

2 y2

3 y3

...
...

In this case we have the simple linear transformations:

ϕ(j) = Bj (16)

ψ(r) = Ar (17)

but these cases will give us quantitative and qualitative insight in the relation between h* and h (e.g. when is h* > h,
h* = h, h* < h?). This will be done in the next section.

Section 3 studies the general relation (12) if b = c = 1 is not valid. We, e.g. prove that b, c, >1 implies h* > h and that
0 < b, c < 1 implies h* < h. Other cases are also studied.

Section 4 then studies transformation properties of indices that are derived from h such as the g-index (Egghe, 2006a,
2006b, 2006c), the hw-index (weighted h-index) (Egghe & Rousseau, 2008) and the R-index (Jin, Liang, Rousseau, &
Egghe, 2007) whose definitions will be repeated there.

2. h* versus h in case b = c = 1

Of course, all transformations ϕ and ψ are continuous but, in each case studied below, we will also indicate what
the transformation means on practical tables. Say we start (before the transformation) with the standard Table 1.

Here sources are ranked (r = 1, 2, 3, . . .) decreasingly according to the number y1, y2, y3, . . . of items they have. For
each transformation studied below we will also give the transformed table, in order to make clear what is happening
in practice.

2.1. ψ(r) = r and ϕ(j) = 2j

This is the case where sources remain the same but each source doubles its number of items, hence Table 2.
It is clear that h* should be larger than h but here we can give the exact formula. By (15) we have

h∗ = 2(α−1)/αh (18)

Since α> 1 we have h* > h, indeed. But since (α− 1)/α< 1 we also have h* < 2h which is logical: doubling the items
should not double the h-index. Conclusion:

h < h∗ < 2h (19)

in this case. The reader can generalise this to the more general case ϕ(j) = Bj (h < h* = B(α−1)/αh < Bh).

Table 2
Transformed Table 1 in case ψ(r) = r, ϕ(j) = 2j

r* #*

1 2y1

2 2y2

3 2y3

...
...
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Table 3
Transformed Table 1 in case ψ(r) = 2r, ϕ(j) = j

r* #*

1 y1

2 y1

3 y2

4 y2

5 y3

6 y3

...
...

2.2. ψ(r) = 2r and ϕ(j) = j

This is the case where all the sources are used twice with the same number of items. This is illustrated by Table 3.
Since also the sources with the highest number of items are “copied” we also expect h* to be larger than h. We

indeed have, by (15):

h∗ = 21/αh (20)

We immediately see that, since α> 1:

h < h∗ < 2h (21)

as in the case (18) but it is interesting to see that the transformed h-index is different in these cases. We only have that
(18) and (20) are the same if and only if

α− 1

α
= 1

α

iff

α = 2

the famous “turning point” in Lotkaian informetrics (cf. mentioning of other applications where we see this turning
point in Egghe, 2005).

For α< 2 we have that h* in this subsection is larger than the one in the previous subsection; for α> 2, we have the
opposite relation.

For general ψ(r) = Ar it is clear that h < h* = A1/αh < Ah.

2.3. ψ(r) = 2r and ϕ(j) = 2j

Here we double the sources and we double the items in each source. This is depicted in Table 4.

Table 4
Transformed Table 1 in case ψ(r) = 2r, ϕ(j) = 2j

r* #*

1 2y1

2 2y1

3 2y2

4 2y2

5 2y3

6 2y3

...
...
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Table 5
Transformed Table 1 in case ψ(r) = 2r, ϕ(j) = j/2

r* #*

1 y1/2
2 y1/2
3 y2/2
4 y2/2
5 y3/2
6 y3/2
...

...

Intuitively one should expect that the transformed h* is twice the original value h. This is indeed so: by (15) we see

h∗ = 2(α−1)/α21/αh = 2h (22)

This result can be generalized for ψ(r) = Ar, ϕ(j) = Bj = Aj, where we then have, by (15): h* = Ah.
An interesting case, suggested by Rousseau (2007), is the following.

2.4. ψ(r) = 2r and ϕ(j) = j/2

This case describes the situation that an author writes more papers (double here) but he/she pays a price for these
“shorter” (or less important) papers: these receive less citations (here halved). This is depicted in Table 5.

From (15) it now follows that

h∗ =
(

1

2

)(α−1)/α

21/αh

h∗ = 22/α−1h (23)

The question now is: if an author is doing this, will his/her h-index improve or not? The answer depends on Lotka’s α
and again α= 2 is a turning point: we have

h∗ > h

iff

α < 2

and h* = h iff α= 2 and h* < h iff α> 2.
So “publicitis” or breaking down scientific results to their “least publishable unit” only pays (in this model) iff α< 2.

Note that (23) is a composition of the transformations in the first subsection (for ϕ(j) = j/2) and the ones in the second
subsection (for ψ(r) = 2r).

The next case is similar to the one above but is more realistic.

2.5. ψ(r) = 2r and ϕ(j) = 2j/3

This means that we double our articles, that they are less cited then but still keep more than 50% of the citations
than before the doubling, which we think is more likely to be the case. This situation is depicted in Table 6.

From (15) it now follows that

h∗ =
(

2

3

)(α−1)/α

21/αh
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Table 6
Transformed Table 1 in case ψ(r) = 2r, ϕ(j) = 2j/3

r* #*

1 2y1/3
2 2y1/3
3 2y2/3
4 2y2/3
5 2y3/3
6 2y3/3
...

...

so

h∗ = 2h

3(α−1)/α (24)

Now

h∗ > h

iff

α <
1

1 − ln 2/ln 3
= 2.7095113 (25)

which is true in most cases (usually 1 <α< 3, see Egghe, 2005). So, in most cases, “publicitis” pays, in this model.
Replacing 2/3 by 3/4 in ϕ even yields for h* > h the condition α< 3.409421 which is almost always the case.

Finally we simulate “fusion” of sources.

2.6. ψ(r) = r/2 and ϕ(j) = 2j

Here we fuse sources (halving the number of sources) and add (double) the number of items in each source before
the fusion. This is depicted in Table 7.

Now (15) yields:

h∗ = 2(α−1)/α
(

1

2

)α
h

h∗ = 21−(2/α)h (26)

Again the value α= 2 is a turning point:

h∗ > h

iff

α > 2

and h* = h iff α= 2 and h* < h iff α< 2.

Table 7
Transformed Table 1 in case ψ(r) = r/2, ϕ(j) = 2j

r* #*

1/2 2y1

2/2 2y2

3/2 2y3

...
...
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In Egghe and Rousseau (2006b) we showed that under a fusion operation as above we are expecting lower values of
α. Hence we expect that this operation will lower the h-index: h* < h. An application of this can be seen in the fusion
of villages into larger villages or cities (or the consideration of this: looking at several city-areas separately or together
as agglomerations): see Egghe and Rousseau (2006b).

This concludes the (simple) part b = c = 1 (linear transformations). Now we go back to the general case (12) but
where we study another special case.

3. h* versus h for general power transformations ϕ and ψ

In this section we return to the general case where (7) and (8) are valid, hence for A, B, b and c > 0. Note that
0 < b, c < 1 imply a concavely increasing transformation for ψ, ϕ and that b and c > 1 imply a convexly increasing
transformation ψ, ϕ. In this section, we hence use the general formula (12):

h∗ = B(δ−1)/δA1/δT b/δ

In order to limit this full generality (for reasons of simplicity) we will only investigate the case:

B(δ−1)/δA1/δ = 1 (27)

Hence, now (12) reduces to

h∗ = T b/δ (28)

h∗ = (T 1/α)
bα/δ

h∗ = hbα/δ (29)

because of (9). So the relation between h* and h is determined by the relation between bα/δ and 1. But, by (6):

bα

δ
= αbc

c + b(α− 1)
(30)

So

h∗ > h

iff

αb(c − 1) > c − b (31)

since α> 1.

(i) Let c ≥ b ≥ 1 (but at least one inequality is strict). Then (31) is equivalent with

α >
c − b

b(c − 1)
(32)

But α> 1 and

c − b

b(c − 1)
≤ 1

in this case so that (32) is valid.
(ii) Let b ≥ c ≥ 1 (but at least one inequality is strict). Then c − 1 ≥ 0 and c − b ≤ 0 and at least one inequality is strict,

hence (31) is satisfied.
We conclude:

h∗ > h
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in case b and c ≥ 1 where we do not have b = c = 1 (this case is covered in the previous section in general and in
the special case of (27) we have, since α= δ that, by (29), h* = h).

As above, we have

h∗ < h

iff

αb(c − 1) < c − b (33)

(iii) Let b ≤ c ≤ 1 (but at least one inequality is strict). Then c − 1 ≤ 0 and c − b ≥ 0 (and at least one inequality is
strict) so that (33) is satisfied.

(iv) Let c ≤ b ≤ 1 (but at least one inequality is strict). Then (33) is equivalent with (since c − 1 < 0):

α >
c − b

b(c − 1)
(34)

But α> 1 and

c − b

b(c − 1)
≤ 1

so that (34) is valid.

We conclude:

h∗ < h

in case 0 < b, c ≤ 1 where we do not have b = c = 1 (same remark as above).
In case b < 1 < c or c < 1 < b we can have h* > h or h* < h. Indeed, by (31), we must relate α with

c − b

b(c − 1)
(35)

But this value is >1 in both cases b < 1 < c and c < 1 < b. So a value of α> 1 can be below or above (35). Concrete
examples:

b = 1

2
< 1 < c = 2 ( I )

Then

c − b

b(c − 1)
= 3

For α= 2 we have (by (6)):

δ = c + b(α− 1)

c
= 5

4

hence, by (29) we have

h∗ = h4/5 < h

since h > 1 by (9). For α= 5 we have

δ = c + b(α− 1)

c
= 2
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Hence, by (29):

h∗ = h5/4 > h

since h > 1.

c = 1

2
< 1 < b = 2 ( II )

Then

c − b

b(c − 1)
= 3

2

For α= 5/4 we have by (6):

δ = c + b(α− 1)

c
= 2

and by (29):

h∗ = h5/4 > h

For α= 2 we have, by (6):

δ = c + b(α− 1)

c
= 5

and hence, by (29):

h∗ = h4/5 < h

From the above we also see that h* = h is possible in these cases.
We can conclude with the following Proposition.

Proposition 3.1. For the general transformations ϕ and ψas in (7), (8) but for

B(δ−1)/δA1/δ = 1

we have that

(i) If b and c ≥ 1 (but not b = c = 1) we have h* > h.
(ii) If b and c ≤ 1 (but not b = c = 1) we have h* < h.

(iii) If b < 1 < c or c < 1 < b we can have h* > h or h* < h or h* = h.
(iv) If b = c = 1 we have h* = h in case (27). From the previous section we see that, even in this special case b = c = 1

(but where (27) is not valid), we can have h* < h, h* > h or h* = h.

This concludes all cases.

Note: In case b = c = 1 we have (15) in general:

h∗ = B(α−1)/αA1/αh

Hence h* is h, multiplied with B(α−1)/αA1/α, the generalized geometric mean of A and B. This result was also found,
implicitly, in Egghe (in press-b) where we also used linear (but time-dependent) transformations of the item and source
densities, so that (15) is in accordance with these results.
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4. Transformation properties of other h-type indices

We do not go into the pros and cons of the h-index and of their alternatives g, R and hw (to be defined below). For
this we refer to their introductory papers.

In Egghe (2006a, 2006b, 2006c) we introduced the g-index as the unique number g such that

G(g) = g2 (36)

where

G(r) =
∫ r

0
g(r′) dr′. (37)

Do not confuse between the g-index and the rank-frequency function g(r). General transformation formulae (for general
ϕ, ψ) where presented in Egghe (in press-a).

In Jin et al. (2007), we presented the R-index, defined as follows:

R =
√∫ h

0
g(r) dr (38)

where h is the h-index and g(r) is the rank-frequency function. General transformation formulae for R are presented in
Appendix A.

In Egghe and Rousseau (2008), we presented the weighted h-index hw, defined as follows:

hw =
√∫ i

0
g(r) dr (39)

for this (unique) i such that∫ i
0 g(r) dr

h
= g(i) (40)

where again, g(·) denotes the rank-frequency function. General transformation formulae for hw are also presented in
Appendix A.

In the above-mentioned articles we proved the following formulae for g, R and hw, in case of Lotkaian systems (4),
for α> 2:

g =
(
α− 1

α− 2

)(α−1)/α

h (41)

R =
(
α− 1

α− 2

)1/2

h (42)

hw =
(
α− 1

α− 2

)1/2(α−1)

h (43)

Hence, using (5), we can apply (41)–(43) to the transformed Lotka function (5) with δ as in (6) (provided that δ> 2):

g∗ =
(
δ− 1

δ− 2

)(δ−1)/δ

h∗ (44)

R∗ =
(
δ− 1

δ− 2

)1/2

h∗ (45)

h∗
w =

(
δ− 1

δ− 2

)1/2(δ−1)

h∗ (46)

so that the properties of g*, R* and h∗
w follow from those of h* (compared to h).
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The condition δ> 2 boils down to, by (6):

(α− 1)b > c (47)

is, e.g. satisfied for b > c since α> 2.
Note that (44)–(46) indicate that the transformations ϕ and ψ have their impact on h (via h*) as well as on the factor

before h* since α is transformed into δ. If δ=α (iff b = c) we clearly have

g∗ =
(
α− 1

α− 2

)(α−1)/α

h∗ (48)

R∗ =
(
α− 1

α− 2

)1/2

h∗ (49)

h∗
w =

(
α− 1

α− 2

)1/2(α−1)

h∗ (50)

so that here, the transformations ϕ and ψ have no impact on the factor before h* but only in h*. In this case, all the
properties of h* versus h, proved above (for b = c), are also valid for g* versus g, R* versus R and h∗

w versus hw.
From (48)–(50), (41)–(43) and (15), in case b = c = 1 we even have

g∗ = B(α−1)/αA1/αg (51)

R∗ = B(α−1)/αA1/αR (52)

and

h∗
w = B(α−1)/αA1/αhw (53)

so that we have here the result:

h∗

h
= g∗

g
= R∗

R
= h∗

w

hw
= B1−(1/α)A1/α (54)

the generalized geometric mean of A and B (note that, if α= 2, (54) equals
√
AB, the geometric mean of A and B).

5. Conclusions

In this paper we gave simple mathematical examples of transformations on an IPP and studied their influence on the
h-index. We showed that doubling the items per source or doubling the sources lead to higher h-indices h* such that
h < h* < 2h. “Publicitis” pays off when a double number of articles attract more than 50% of citations. We also showed
that the fusion of sources in general leads to lower h* values, when compared with h. In all these cases we found (once
more) that α= 2 (α= Lotka exponent) is a turning point, as is the case in many other informetric topics.

General power transformations are also studied where we limit our study to the case (27), comprising the cases
ψ(r) = rb and ϕ(j) = jc (general b and c > 0). Here we proved that h* > h if b and c > 1 (convexly increasing functions ϕ,
ψ) and that h* < h if b and c < 1 (concavely increasing functions ϕ, ψ, hence not so fastly increasing as in the convex
case). The other cases are inconclusive.

We finally studied properties of the alternative indices g, R and hw and showed, essentially, that they inherit the
same transformation properties from the ones of h* versus h.
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Appendix A

A.1. General transformation formula for R

By (38) we have that the transformed index, denoted R* equals:

R∗ =
√∫ h∗

0
g∗(r∗) dr∗ (A1)

where h* is the h-index of the transformed IPP and where g*(r*) is given by (3). Since r* =ψ(r) andψ(0) = 0 we hence
have

R∗ =
√∫ ψ−1(h∗)

0
ϕ(g(r))ψ′(r) dr (A2)

where h* is given by the general transformation formula for h as presented in Egghe (in press-a).

A.2. General transformation formula for hw

By (39) and (40), we have that the transformed index, denoted h∗
w equals:

h∗
w =

√∫ i∗

0
g∗(r∗) dr∗ (A3)

with i* defined as∫ i∗

0
g∗(r∗) dr∗ = h∗g∗(i∗) (A4)

Hence we also have

h∗
w =

√
h∗g∗(i∗) (A5)

h∗
w =

√
h∗ϕ(g(ψ−1(i∗))) (A6)

with i* following from (by (3), (A4) and since r* =ψ(r)):∫ ψ−1(i∗)

0
ϕ(g(r))ψ′(r) dr = h∗ϕ(g(ψ−1(i∗))) (A7)

where again h* is given by the general transformation formula for h as given in Egghe (in press-a).
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