Jointly published by Akadémiai Kiadó, Budapest and Springer, Dordrecht Scientometrics, Vol. 69, No. 1 (2006) 169-173

Short communication

A Hirsch-type index for journals^{*}

TIBOR BRAUN, ^{a,b} WOLFGANG GLÄNZEL, ^{a,c} ANDRÁS SCHUBERT^a

 ^a Information Science and Scientometrics Research Unit (ISSRU), Institute for Research Policy Studies, Hungarian Academy of Sciences, Budapest (Hungary)
^b Institute of Inorganic and Analytical Chemistry, Loránd Eötvös University, Budapest (Hungary)
^c Steunpunt O&O Statistieken, K. U. Leuven, Leuven (Belgium)

We suggest that a *h*-type index – equal to *h* if you have published *h* papers, each of which has at least *h* citations – would be a useful supplement to journal impact factors.

Recently, Hirsch² proposed what he called the "*h*-index" (a scientist has index *h* if *h* of his/her *N* papers have at least *h* citations each, and the other (*N*–*h*) papers have fewer than *h* citations each) to quantify an individual's scientific output. The idea was effectively publicized by Ball's news item in *Nature*,³ and it has got positive reception in the physics community^{4,5} and also in the scientometrics literature.⁶ Yet, its widespread use will presumably be severely hindered by a series of technical shortcomings (e. g., the lack of common consent on disciplinary and sub-disciplinary standards, on the proper weighting of co-authorship, etc.) and, most of all, by the natural and justifiable resistance of the scientific community to use however igenious numerical indices to assess individual research performances.

TIBOR BRAUN

0138–9130/US \$ 20.00 Copyright © 2006 Akadémiai Kiadó, Budapest All rights reserved

^{*} An extended version of a paper published in *The Scientist*.¹

Received May 2, 2006

Address for correspondence:

Information Science and Scientometrics Research Unit (ISSRU) Institute for Research Policy Studies Hungarian Academy of Sciences, P. O. Box 123, H–1443 Budapest 70, Hungary E-mail: braun@mail.iif.hu

There are, however, other areas of bibliometrics, where citation-based indicators have a much wider acceptance, and more positive experience has been accumulated. One of these areas is the citation analysis of journals. Journal impact factors (whose first mention in the literature is just 50 years old⁷) became a shaping factor of scientific communication; in the words of the Wikipedia⁸: they "have a huge, but controversial, influence on the way published scientific research is perceived and evaluated". We suggest that a *h*-type index would be a useful supplement to journal impact factors. First, it is robust, i. e., insensitive to an accidental excess of uncited papers and also to one or several outstandingly highly cited papers. Second, it combines the effect of "quantity" (number of publications) and "quality" (citation rate) in a rather specific, balanced way that should reduce the apparent "overrating" of some small review journals. The journal *h*-index would not be calculated for a "life-time contribution", as suggested by Hirsch for individual scientists, but for a definite period – in the simplest case for a single year.

Fortunately, the Web of Science database offers a very simple way to determine the annual *h*-index of a journal without the need for any off-line data processing. Retrieving all source items of a given journal from a given year and sorting them by the number of "Times Cited", it is easy to find the highest rank number which is still lower than the corresponding "Times Cited" value. This is exactly the *h*-index of the journal for the given year.

We chose 2001 as source year, and looked for citations until the time of accessing the database: 16 September 2005. We used the *Journal Citation Reports* 2001 for comparative impact factor data. The list of journals with the highest *h*-index for their 2001 papers is given in Table 1. Conspicuously, the first and second ranked journals of the 2001 impact factor list – the *Annual Review of Immunology* and the *Annual Review of Biochemistry* – are missing from the table. Since they published 24 and 23 papers, respectively, in 2001, they had no chance to compete with the chart toppers (obviously, the *h*-index cannot be larger than the number of papers it is based on). This in no way meant to belittle the significance of these journals, but does stress the different dimensions emphasized by the two indicators.

Not surprisingly, the majority of the journals in Table 1 are from the biomedical field, a fact that underlines the necessity of discipline-specific evaluation of this indicator, as well. Nevertheless, beyond the two multidisciplinary journals leading the list, there are two physics journals (*Physical Review Letters* and *Astrophysical Journal*) and one from chemistry (*Journal of the American Chemical Society*) in the top 20 list. These three journals, although the most prestigeous in their fields, ranked outside the top 100 by impact factor. This demonstrates a slightly more balanced character of this indicator. On the other hand, the highest journal *h*-index in mathematics is 12 for the *Journal of Functional Analysis*, which, with a multiple tie somewhere around the 1500th position is certainly meaningless if the real "impact" of the journal is sought.

Rank by	Journal title	Journal	Rank by 2001 impact
h-index		h-index	factor
1	Nature	157	10
2	Science	155	13
3–4	New England Journal of Medicine	113	5
3–4	Proceedings of the National Academy of Sciences of the USA	113	59
5	Cell	109	3
6	Journal of Biological Chemistry	100	104
7	Physical Review Letters	96	130
8	Lancet	89	65
9	Circulation	86	58
10	Nature Genetics	85	4
11	JAMA – Journal of the American Medical Association	80	27
12	Cancer Research	79	91
13-14	Nature Medicine	78	6
13-14	Journal of Immunology	78	118
15-16	Journal of Cell Biology	77	37
15-16	Neuron	77	30
17–19	Astrophysical Journal	76	574
17–19	Journal of Clinical Investigation	76	50
17–19	Blood	76	82
20-21	Nature Neuroscience	75	46
20-21	Journal of the American Chemical Society	75	149
22	Embo Journal	74	36
23-24	Nature Cell Biology	73	51
23-24	Genes & Development	73	19
25-26	Molecular Cell	72	24
25-26	Nature Immunology	72	0
27–28	Journal of Experimental Medicine	71	28
27–28	Journal of Neuroscience	71	88
29	Journal of Clinical Oncology	70	84
30	Molecular and Cellular Biology	68	69
31	Oncogene	66	127
32	Applied Physics Letters	63	314
33	Immunity	62	16
34	American Journal of Human Genetics	58	64

Table 1. Journals with the highest *h*-index for their 2001 papers

Scientometrics 69 (2006)

Rank by	Journal title	Journal	Rank by 2001 impact
h-index		<i>h</i> -index	factor
35-38	Nature Reviews Molecular Cell Biology	57	0
35-38	Angewandte Chemie-International Edition	57	87
35-38	Circulation Research	57	79
35-38	Journal of Virology	57	160
39	Chemical Reviews	56	18
40-42	Physics Letters B	55	279
40-42	Gastroenterology	55	48
40-42	Current Biology	55	92
43-49	Nucleic Acids Research	54	187
43–49	Nature Reviews Neuroscience	54	0
43–49	Annals of Internal Medicine	54	68
43-49	Neurology	54	231
43-49	Journal of Clinical Endocrinology and Metabolism	54	181
43-49	Analytical Chemistry	54	245
43-49	Journal of Physical Chemistry B	54	419
50-52	Plant Cell	53	56
50-52	Diabetes	53	100
50-52	Development	53	72
53-57	Journal of Cell Science	52	154
53-57	Hepatology	52	106
53-57	Nature Biotechnology	52	54
53–57	American Journal of Respiratory and Critical Care Medicine	52	183
53-57	Advanced Materials	52	180
58	Human Molecular Genetics	51	80
59–63	Journal of the National Cancer Institute	50	34
59–63	American Journal of Pathology	50	114
59–63	Journal of Molecular Biology	50	189
59–63	Clinical Cancer Research	50	243
59–63	Chemistry of Materials	50	369

Table 1 (continued)

Source: Web of Science accessed on 16 September 2005; Journal Citaton Reports, 2001

Hirsch's h-type indices will certainly challenge scientometrists and other number crunchers for a while, and their use in the citation assessment of journals seems to have promising perspectives with a lot of systematic analysis and statistical background work to be done.

References

- 1. T. BRAUN, W. GLÄNZEL, A. SCHUBERT, A Hirsch-type index for journals, *The Scientist*, 19 (22) (2005) 8.
- J. E. HIRSCH, An index to quantify an individual's scientific output, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005) 16569–16572, http://arxiv.org/abs/physics/0508025
- 3. P. BALL, Index aims for fair ranking of scientists, *Nature*, 436 (18 Aug 2005) 900.
- 4. S. B. POPOV, A parameter to quantify dynamics of a researcher's scientific activity,
- http://arxiv.org/abs/physics/0508113
- P. DINIZ BATISTA, M. GUIMARAES CAMPITELI, O. KINOUCHI, A. SOUTO MARTINEZ, A complementary index to quantify an individual's scientific research output, *Scientometrics*, 68 (1) (2006) 179–189, http://arxiv.org/pdf/physics/0509048
- 6. L. BORNMANN, H.-D. DANIEL, Does the *h*-index for ranking of scientists really work? *Scientometrics*, 65 (3) (2005) 391–392.
- 7. E. GARFIELD, Citation indexes to science: a new dimension in documentation through association of ideas. *Science*, 122 (1955) 108–111.
- 8. http://en.wikipedia.org/wiki/Impact_Factor