
82 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 4, NO. 1, FEBRUARY 1996

oftware

Fuzzy Systems Toolbox-PWS Publishing Company and
Fuzzy Logic Toolbox-The Mathworks, Inc. Reviewed by
Lawrence 0. Hall and Richard J. Hathaway

MATLAB@ (derived from m i x moratory) is a technical com-
puting environment whose basic data element is a self-dimensioning
matrix. It combines fast numerical capabilities with excellent graphics
using a command syntax that is quite intuitive. MATLAB@ is useful
for developing and modifying algorithms, particularly those which
are heavy in matrix operations. Many of the MATLAB@ commands
are based on execution of function programs contained in “M-files,”
which contain source code. This yields a highly open and extensible
environment whereby the user can redefine certain existing commands
or create new ones by suitably editing the M-files.

MATLAB@ is a product of The Mathworks, Inc., and numerous
sets of application specific routines, called “toolboxes,” have been
developed and marketed by that company for use with MATLAB@.
Here, we review the two commercially available MATLAB@ taol-
boxes for creating and using fuzzy inference systems. They are the
“Fuzzy Systems Toolbox,” by PWS Publishing Company, and “Fuzzy
Logic Toolbox,” by The Mathworks, Inc.

We examined both the Macintosh and UNIX versions of the two
toolboxes, but all the computational experiments described in the
following were done using the UNIX version, which was executed
on a shared SUN Sparc 20 computer with graphics, transmitted across
a reasonably heavily used local ethernet network.

I. THE FUZZY SYSTEMS TOOLBOX (FST)
This toolbox provides a command line approach to building fuzzy

sets and fuzzy rule-based systems. A continuous fuzzy set can be
represented in either of two ways using FST. The more general option
is to specify n support and membership grades for the fuzzy set
using a pair of 1 x n arrays. Piecewise linear interpolation between
successive (support, grade) points gives the complete membership
function. For example, the support array s = [I 2 3 41 and grade
array g = [0 .2 .6 01 describe a fuzzy set that assigns the grade of
0.4 to the support value 2.5. The less general, but more convenient,
option of specifying a fuzzy set is through the use of parameters.
The six parametric families available allow users to specify singleton
or interval crisp sets and fuzzy sets with membership functions in
the shape of triangles, trapezoids, “bumps,” and “flat bumps.” Fuzzy
sets corresponding to numbers “near” a given number, or “large”
relative to a given support, are easily obtmned. It is possible to plot
the antecedent fuzzy sets when they are all of the same type. It
was unclear how to plot on a single graph a group of fuzzy sets of
different types.

FST has a wide variety of operators that can be applied to the
fuzzy sets. There are hedge operators, such as “very,” “extremely,”

Manuscript received July 25, 1995; revised August 1, 1995.
L. 0. Hall is with the Department of Computer Science and Engineering,

R. J. Hathaway is with the Mathematics and Computer Science Department,

Publisher Item Identifier S 1063-6706(96)00634-0.

University of South Florida, Tampa, FL 33620 USA.

Georgia Southern University, Statesboro, GA 30460 USA.

“exactly,” etc., and others for defuzzification (by maximum or
minimum grade, or centroid), and a- and /3-cuts. The ubiquitous
operators min and m a are available for conjunction and disjunction
of fuzzy sets, as well as Yager’s class of intersectionhion operators
and the algebraic producthum and bounded differencehum operators.
This provides flexibility in building fuzzy systems. Negation is strong
negation. Mamdani [1] style inference is supported with centroid
defuzification available. It was found to be relatively easy to build
a fuzzy rule system with FST, and the results from the system were
always as expected.

A gradient descent approach to learning is provided. It can be used
to tune existing rules. To learn rules from scratch an initial choice of
antecedent and consequent fuzzy sets must be made; these choices
will be crucial. It is unclear exactly how this learning function works,
but it was useful in the single small example done. However, careful
choices of the learning rate and initial rule set up are necessary for
acceptable performance.

The toolbox provides one fuzzy clustering algorithm, the fuzzy c-
means algorithm of Bezdek [2]. We ran fuzzy e-means on several
data sets with which we have experience, and the results were as
expected. It would be nice to have an easy way to view the value of
the functional at each iteration. It would also be nice to have easy
access to the membership matnx of elements in each cluster. On
the several data sets we tried, the clustering algorithm was an order
of magnitude slower than both our C version and the Fuzzy Logic
Toolbox (described in the next section) version of fuzzy e-means.

Other procedures included in the toolbox, allow users to: 1)
include fuzzy controllers in the SIMULINKB environment and 2)
easily apply a fuzzy system to decision problems. Additionally,
effective demonstration applications are included for pattern recog-
nition, controf, model fitting, and decision making. The provided
control example of the inverted pendulum is nice for a classroom
demonstration.

The documentation for the software was good overall, but it
could contain more pointers to some of the missing details for
the serious developer. Chapters 1-3 (62 pp.) give the background
information needed to build and use fuzzy sets and systems; Chapters
46 (68 pp.) cover the major application topics of decision-making,
control, and pattem recognition systems; Chapter 7 (24 pp.) briefly
discusses training, SIMULINK, and other advanced topics such as
OWA operators; Chapter 8 (163 pp.) is a reference for the various
commands. There were only a small number of errors in the manual.
The FST software and documentation were written by M. Beale and
H. Demuth.

In summary, this is a nice and reasonably flexible tool for develop-
ing fuzzy rule-based systems or doing fuzzy clustering. Everything
worked quite robustly.

11. THE FUZZY LOGIC TOOLBOX (FLT)
A major difference between FLT and FST is the user interface.

FST must be used from the command line (i.e., typing in commands),
while FLT can be used from the command line or through a graphical
interface. The graphical interface mode greatly simplifies the building
and manipulation of fuzzy systems. The FLT stores all the information
necessary to represent a fuzzy inference system (fis) in a single matrix
called the “fis matrix” and this information, if desired, can be saved to

1063-6706/96$05.00 0 1996 IEEE

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 4, NO. 1, FEBRUARY 1996 83

Fig. 1. FLT graphical interface: Main Editor.

disk in a “fis file.” Creating new fuzzy systems or changing existing
ones can easily be done by editing a fis matrix using the graphical
interface.

We will use an illustrative example taken from the documentation
to demonstrate the intuitive appearance of the interface of the
Macintosh version. The example has to do with deciding on an
appropriate tip amount, given certain measured levels of food and
service quality. The system is stored in a file called tipper.fis. Entering
the command “fuzzy tipper” opens tipper.fis and invokes the main
editor portion of the interface shown in Fig. 1 (Figs. 1-3 of the
graphical user interface of the Fuzzy Logic Toolbox were obtained as
screen captures on a Macintosh computer. The actual interface uses
color and is much sharper than what is shown below).

Note that at the level of the system editor in Fig. 1, we can
easily select different versions of operators such as “and” (or as it
turns out, even easily define new ones). Menu options (not shown)
allow additional variables to be easily added. Choices about particular
membership functions for particular input or output variables can be
made by double clicking on the variable or using a menu option. For
example, double clicking on the service variable plot in Fig. 1 brings
up the membership function editor shown in Fig. 2.

Using a menu option, additional membership functions can be
added to this variable and they can either be custom made or
selected from the 11 available parametric families (including fam-
ilies of membership functions built from piecewise linear functions,
Gaussian-distribution functions, sigmoid curves, and certain low-
order polynomial curves). In Fig. 2, for example, the “poor” member-
ship function for the variable “service” is Gaussian with p = 0 and
U = 1.5. Last of all, the rules are edited using the rule editor. This
can be invoked from menu options or by suitable double clicking.

For this example, the appearance of the rule editor is given in Fig. 3.
Rules can easily be added, deleted, or modified in the rules editor,

and normal English can be used (actually, menu options even allow
for French or German). Figs. 1-3 should give the reader a clear
indication of how intuitive and powerful the graphical interface is.
There are also menu options for plots of the fuzzy model surfaces
obtained by combinations of any one or two of the input variables,
and an informative graphical display that geometrically depicts the
evaluation of the fuzzy system for a single input.

Although the graphical interface is usually more convenient, FLT
can be used from the command line, although the commands are more
aimed at building and manipulating at the fuzzy-system level rather
than at the fuzzy-set level. FLT works with fuzzy systems of both the
Mamdani and Takagi-Sugeno-Kang types [3], and for the latter, the
“anfis” (adaptive network-based fuzzy inference system [4]) routine
can be used with suitable data to train and test the parameters of
both the antecedent fuzzy sets and the consequent linear models of
an existing model. Another routine, “genfis2,” uses available data
and subclustering techniques to generate, from scratch, a reasonably
good fuzzy inference system. We now describe testing of the UNIX
version of FLT.

Using the graphical interface, we built up a set of fuzzy rules
developed by a prototype of a fuzzy-rule learner. The graphical
interface is really a useful tool for building the fuzzy sets of the
antecedents, consequents, and the rules themselves. The graphics
display might have been faster, but it was coming across the network
from a reasonably loaded machine. Overall, the rules were built
quickly. Since the domain from which our rules came was unusual
we had to resort to a regular editor to get more than nine (maximum
allowed via graphical interface) fuzzy sets in some of the antecedent

84 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 4, NO 1, FEBRUARY 1996

Fig. 2. FLT graphical interface: Membership Function Editor.

fuzzy termdattributes. However, this presented no real difficulty and
all of the sets could be displayed graphically, which was useful in
finding a mistake in entering the sets. The rules worked as expected
and ran through data quickly. The fact that the Takagi-Sugeno-Kang
model of fuzzy inference in addition to the Mamdani model is
available is a plus for this system. It allows quite sophsticated fuzzy
models to be developed.

We also took the data from which the rules were generated and gave
them to genfis2 to attempt to build from scratch a set of fuzzy rules
for comparison. With a (genfis2) radius setting of 0.5, acceptable rules
were not generated, but with a setting of 0.3 they were. There were
six rules generated and they matched our intuition of what “good”
rules should look like. Further, when tested on the training data
(a difficult set) they had a low residual mean square error, which
was impressive. Since you can change the rules after the learning
process to “tweak” them toward better performance, the automatic
rule generation feature, which did quite well in our test, appears
most useful.

There are two clustering algorithms available in the toolbox,
including the fuzzy c-means algorithm, which we discuss first. The 2-
D interface is really very nice, and many real-world problems contain
important projections into 2-D. It is important to be able to access
the objective function value, the cluster centers, and the matrix of
membership assignments to cluster centers, as well as to influence
the fuzziness factor used as an exponent. The builders of the fuzzy
logic toolbox made all of them easily available. It was done right. In
all tests of fuzzy c-means, the cluster centers found were a very close
match to those found by our other implementations. The clustering
algorithm was reasonably fast (for a clustering algorithm). It did 100
iterations of a 65 536 pixels x 3 features magnetic resonance image

slice for 10 classes in just over an hour of CPU time. This is on par
with our nonoptimized C code.

The other included clustering algonthm does subtractive clustering.
Subtractive clustering can be useful in the initialization of other
clustering algorithms and for stand-alone clustering when clusters
are well separated in feature space. Its use is straightforward and it
performed as expected on the well-known Iris data set. There were
four clusters found with default values and a radius of 0.5. One of
the clusters was the linearly separable class; the two overlapping
classes were split among the three remaining clusters. It worked well
in conjunction with thle anfis routme to build fuzzy rules from data

Other procedures included in the toolbox allow users to 1) in-
clude fuzzy controllers in the SIMULINK environment and 2) build
stand-alone code to do fuzzy inference. The set of demonstration
applications, all accessible through menu and button options, contains
examples from controll, time series, signal processing, and clustering.
The clustering demo is actually a nice cluster visualization tool that
can be used on arbitrary data sets.

The documentation is very well written with only a few minor
typos. Chapter 1 (14 pp.) is an interesting, elementary introduction
to fuzzy sets and logic. The second chapter (100 pp.) is an effective
tutorial on using the software, and Chapter 3 (67 pp.) is the reference
for the various commands. The description of the software is done
by means of tutorial examples, and we found this to be a helpful
approach. The on-line help is also very useful. It is usually, but
not always, equal to the manual. For example, the on-line help of
the UNIX version does not show you how to display a fuzzy rule
set in the graphical interface from the command line, a very minor
difference. With the online help one can probably hack their way to
a fuzzy rule set without opening the manual, and this is a feature we

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 4, NO. 1, FEBRUARY 1996 85

Fig. 3. FLT graphical interface: Rules Editor.

like. The FLT software and documentation were written by J.-S. R.
Jang and N. Gulley.

In the process of testing out FLT, we found a couple of bugs
and features that were restrictive. The Mathworks was notified
and promptly replied with fixes and workarounds. They plan to
have a Worldwide Web page for this toolbox up very soon with
downloadable bug fixes. Their attitude was most impressive and they
have solid fixes for anything that was found problematic. The fuzzy
logic toolbox is a very useful and robust addition to MATLABB. If
you want to do development of fuzzy rule-based systems or fuzzy
exploratory analysis, the fuzzy logic toolbox is a great vehicle to
accomplish such tasks. FLT is the first choice of both reviewers.

REFERENCES

[l] E. H. Mamdani, “An experiment in linguistic synthesis with a fuzzy
logic controller,” Int. J. Man-Machine Studies, vol. 7, no. 1, pp. 1-13,
1975.

[2] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algo-
rithms. New York Plenum, 1981.

[3] M. Sugeno, Industrial Applications of Fuzzy Control. Amsterdam:
Elsevier Science, 1985.

[4] J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference sys-
tems,” ZEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685,
1993.

