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Abstract—The difficuities in analyzing and clustering (synthesizing)
multivariate data of the mixed type (discrete and continuous) are
largely due to: 1) nonuniform scaling in different coordinates, 2) the
lack of order in nominal data, and 3) the lack of a suitable similarity
measure. This pdper presents a new approach which bypasses these
difficulties and can acquire statistical knowledge from incomplete
mixed-mode data. The proposed method adopts an event-covering ap-
proach which covers a subset of statistically relevant outcomes in the
outcome space of variable-pairs. And once the covered event patterns
are acquired, subsequent analysis tasks such as probabilistic inference,
cluster analysis, and detection of event patterns for each cluster based
on the incomplete probability scheme can be performed. There are four
phases in our methed: 1) the discretization of the continuous compo-
nents based on a maximum entropy criterion so that the data can be
treated as n-tuples of discrete-valued features; 2) the estimation of the
missing values using our newly developed inference procedure; 3) the
initial formation of clusters by analyzing the nearest-neighbor distance
on subsets of selected samples; and 4) the reclassification of the n-tu-
ples into more reliable clusters based on the detected interdependence
relationships. For performance evaluation, experiments have been
conducted using both simulated and real life data.

Index Terms—Cluster analysis, event-covering, incomplete proba-
bility scheme, mixed-mode data, probabilistic inference, statistical
knowledge.

I. INTRODUCTION

NEW challenge to computer-based pattern recogni-

tion is to detect probabilistic patterns from a database
which is usually characterized by heterogenous features
of different types, including the mixed discrete and con-
tinuous type [1], [2]. This challenge arises from the need
in the decision-making process when management control
and strategic planning are involved [3]. Such process usu-
ally requires unstructured and semistructured decision-
making using information from a database. Unlike struc-
tured decision-making, which often has well defined ob-
jectives and is usually supported by the database schema
and query language, unstructured and semistructured de-
cision-making may have to select relevant information
that often the decision-makers may not be previously
aware of. Hence, extracted knowledge in the form of sta-
tistical patterns (based on statistical and cluster analysis)
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will be very useful in rendering the informatici
for this kind of decision-making.

However, while pattern analysis techniqu
cluster analysis on multivariate continuous dii;
established [4] and methods to analyze discs
data have been proposed [5]-{7], the problem i/ ¢
clustering patterns in multivariate data of the i
remains mostly unsolved. The problem posed |
istence of continuous and discrete-valued fear
vious. Methods based on similarity measui
ally difficult, if not impossible, to apply to sl
Alternative methodologies based on probubilisi
ing [8] require an extremely large amount of
discrete-valued variables are transformed inti
ued variables [9], this transformation will d
crease the number of variables in the anal
formation that certain outcomes are from th
will be lost in the subsequent analysis. Furfhe
the data contain considerable noise which
for the analysis, and when the parameiric
probability distribution on the data is unkiis
becomes even more difficult. Despite these
practical method to detect clustering and
terns in such data will be very useful and o

What we propose here is a practical ap
cumvent the difficulties. It our method
probability model is approximated by # i
first discretize the continuous compongiil:
mum loss of information criterion. Treati
feature n-tuple as a discrete-valued one, we |
statistical approach for synthesis of knowl
cluster analysis. The advantage of this meil
see later, is that it requires neither scale s
ordering of the discrete features. Hence, i
serious concerns in pattern recognilion,
problem of nonuniform scaling in diffc
dinates, and 2) the lack of order in non

By synthesis of the data into statisticil
refer to the following processes: 1) syiifl
from the data inherent patterns whicly |
interdependency (between certain var
set of their outcomes); 2) group the
ent clusters based on these detected in
3) interpret the underlying patterns for
tified. The method of synthesis is 13
developed event-covering approach |
covering, we mean covering or
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tistically interdependent events in the outcome space
variable-pairs, disregarding whether or not the varia-
s (considering the complete outcome set) are statisti-
ly interdependent. From the detected statistical inter-
pendence patterns of the data, a probabilistic decision
¢ is used to group the data into clusters. Finally, again
ng event-covering, we can detect the interdependence
terns between the feature events and the detected
hgroups.

vince the proposed method is based on a general pattern
ilysis technique on a set of sample observations, it can
plied to a broad spectrum of problem domains where
iple self-learning and automatic information selection
bility is desirable. Then, it can play an important role
tending some of the existing decision-support and
wledge-based systems. It can be used to provide new
/ledge of a problem domain, or to verify important
lependence relationships provided by human ex-
. Information thus obtained can also be used as ad-
1al knowledge to logical information in deductive
ases [10], or to data partitioning in distributed da-
(11, 121, [11].

r performance evaluation, the proposed method is
ed to cluster incomplete data (or data with missing
ymes). The method has the following phases:
discretization of the continuous components based
¢ maximum entropy criterion;

stimation of the missing values in the data set using
¢veloped inference method;

initiation of clusters by analyzing the distance and
enrest-neighbor characteristics of selected samples;
ieclassification of the samples into more reliable
s based on the statistical interdependence pattern of
unples.
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Mixgp-MoDE DATA AND DISCRETIZATION OF THE
ConTiNuOUS COMPONENTS

1 Representation and Definitions

describing in detail the new approach in han-
mixed-mode data by discretizing the continuous
nts, here a few related definitions are introduced.
entation of data is similar to that in the rela-
I model of database where the data are represented

trion 1: Let x = (xq, X3, * " , X, "', Xy
v,) be an n-tuple (1 < p = ¢ =< n) such that the
fxy, x5, , X, are CONtinuous, X, |, X,47,
v, are discrete ordinal and x,  y, X, 42, * * * , X, are
nominal. Then x is called a mixed-mode n-tuple
orresponding random n-tuple is represented as X
Xo, » o, X,) where X;, 1 < k < n, is a contin-
fiscrete valued variable.
iiion 2: Let the interval [a, b] be the range space
ntinuous random variable X; in X. A partition on
ined as a set of L; intervals {[zg, 2,1, [z, 221,
i1 21}, where 2o = a, 7, = b, and, z;_| <
1,2, -+, L.
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Definition 3: In association with the partition, the
boundary set is defined to be the set of ordered end-points
205 215 * * * , zz; which delimit the Z; intervals. {a;, |r =
1,2, -+, Lj} then denotes a set of quanta such that
- < ajy < Z,.

Definition 4: A finite probability scheme Y on the par-
tition is defined to be the set of probability values { p; }
such that

p= | )@y =Fe) - R

i=12,--,L

for j

where f and F are the probability density function and the
cumulative probability function of X; in [a, b] respec-
tively, and z; -, and z; are two consecutive elements in the
ordered boundary set.

With these definitions in mind, discretization is re-
ferred to as the process that produces from the range of
the continuous random variable X; the partition of L; in-
tervals. Thus, there is associated with the intervals a
boundary set and a quanta set. From the probability func-
tion and the partition, a finite probability scheme is ob-
tained.

B. Maximum Marginal Entropy Discretization and
Partitioning

It is clear that the number of ways to discretize the out-
come of a continuous variable is infinite. A common pro-
cedure is to divide the range into equal length intervals.
When the outcomes are not evenly distributed, a large
amount of information may be lost after discretization
using this method (see Section II-C). To minimize the in-
formation loss, we adopt the following partitioning
method based on maximum entropy [12].

Formally, let ¥ be the set of all finite probability
schemes that can be derived by all the discretization pro-
cesses for a fixed probability function. The maximum en-
tropy discretization problem is to find a y* € ¥ such that:

H(y*) = H(y) Vvye¥

where H is the Shannon’s entropy function. This method
will ensure maximum entropy with minimum loss of in-
formation after discretization.

Since high dimension discretization is highly combi-
natoric, an approximation using marginal entropy is pro-
posed [13]. In practice, we are generally given an ensem-
ble of samples with their probability distribution
unknown. The discretization problem thus becomes a par-
tition problem of the observed values for a variable X;
(where some of the outcomes may be repeated). The in-
tervals on the range of a variable X; are chosen so as to
maximize the marginal entropy calculated on the finite
probability scheme. Since the algorithm is still combina-
toric in nature, to furnish a computationally efficient al-
gorithm, local improvement technique is introduced [14].

When selecting the number of intervals L, for a contin-
uous variable X;, it is obvious that in general the more
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intervals there are the less information will be lost. How-
ever, the reliability of the probability estimation based on
L; interval partitioning is affected by the sample size.
Hence a rule of thumb [15] is adopted for determining the
upper bound of L;. Since second-order statistics are re-
quired in the probability estimation, the sample size for
reliable estimation should be greater than A times Lf for
all X;, where A can be taken as 3 for liberal estimation.
Subject to this upper bound, the values of L; in practice
will depend on the size of available memory and compu-
tational resources.

The partitioning algorithm, using maximum marginal
entropy, can be divided into two phases: 1) initial detec-
tion of interval boundaries; and 2) improvement on the
interval boundaries. The first phase is devised to find in-
tervals such that the sample frequency at each interval is
as even as possible. The second phase is introduced to
improve the interval boundaries iteratively by increasing
the entropy value through local perturbation. It iterates
until no improvement can be made. In practice, if the ob-
served continuous data take distinct values, then iteration
is not necessary.

Even though the maximum entropy discretization may
not produce a unique solution for some data set, the heu-
ristic algorithm [14] we adopted can arbitrarily select a
unique set of maximum entropy intervals when more than
one set of such intervals exists [16]. The partitioning al-
gorithm can in principle be applied to ordinal-valued var-
iables 50 as to reduce the number of distinct outcomes in
the analysis. However, when the sample size and com-
putational resources are sufficient, there is no need for
such application. Despite the algorithm’s heuristic nature,
it is simple, computationally acceptable, and gives good
results.

C. Comparison of the Maximum Entropy and the Equal-
Width Discretization Approach

To evaluate the proposed maximum entropy discreti-
zation approach on discrete probability distribution esti-
mation, we compare it with that based on equal-width in-
terval discretization. Given an ensemble of sample
observations with unknown probability density function,
the number of observations falling into each interval is a
maximum likelihood estimation of the probability density
function [17]. This estimation is known as maximum
likelihood estimation irrespective of how the intervals are
chosen, given that the number of intervals is fixed. To
illustrate the difference between these two approaches, we
perform the following experiments.

1) Maximum Entropy Discretization Experiment 1:
Consider a variable X and the following values are ob-
served in 30 samples which are sorted in increasing order
as:

Count
9

6

3

Fig. [. Comparing histograms based on maximum entropy and equal
discretization.

The probability distribution of X can be estimated
the histogram constructed based on these values. 1
arbitrarily select the number of intervals to be 5 an
the range for the outcomes of X be [0.0, 13.0]. The
imum entropy method then assigns 6 samples (o cac
the five intervals whereas the equal width interval n
assigns the interval width to be 2.6. The histogran
probability estimation are plotted in Fig. 1. Compa
the two methods, we observe that the maximum eni
method is more precise as an estimation than the
width interval method. It is expected that the pi
would increase with the increase of discretization i
vals, given that the sample size is large enough,

2) Maximum Entropy Discretization Experimeni
supervised classification task based on Bayes’ de
used in the second experiment to show the effect
of maximum entropy discretization for class discri
tion. Three classes of two-dimensional data of the
= (x1, x,) and with different means are stoch
generated. Data from the first class are generat
on the random combinations of two bivariate n
tributions, whereas data from the second and third
are generated based on a single bivariate norm
bution. The variance matrices are then varied (o s
48 simulated data sets for each of the 7 sets of co
coefficients (Table I). The hold-out method of 10§
is used to evaluate the classification result. The
correlation coeflicients and the average miscl
rate are also tabulated in Table I. The result
the maximum entropy discretization approach ix
ently superior to the equal-width discretization :
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Sample 1 2 3 4 5
X value 0.1 0.9 1.5 2.0 2.8
Sample 11 12 13 14 15
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TABLE I
. EVALUATE PROBABILITY DENSITY ESTIMATION IN CONTINUOUS-VALUED
DaTA

| Ave. Misclassification
| for 48 Simulation Runs
Class 1 | Class 2 | Class 3 |

Correlation Coefficients

12 13 | Max.Entropy|Equal-Width
I R L T TEp PRSP

0 0 0 13,339 13.68%

tization 1/2 -1/2 -1/2 11.87Y 12.84Y

1/2 0 -1/2 12.43Y 12.98Y

0.7 -0.1 -0.7 12.50Y 13,26

1/4 0 0 13.33% 13.88%

1/4 1/4 1/4 13.407 16.80%

-1/4 0 0 12.64) 14.72Y,

I1I. CLUSTER ANALYSIS ON INCOMPLETE MIXED-MODE

12
Data

tion After discretization, we can apply the cluster analysis

d equal v ithm on incomplete mixed-mode data. This method

s not require the specification of an a priori distribu-

1 on the data. Furthermore, when certain values in an

iple are statistically irrelevant for classification, they

| be disregarded by our proposed scheme.

vent-Covering Based on Statistical Interdependency

lirst, we present an event-covering method [5], [6] to
cet statistically irrelevant outcomes from the mixed-
de data. Using our maximum entropy partitioning
thod, we obtain a set of intervals on the range of each
ilinuous-valued variable. Then the continuous values
ved in the ensemble can be replaced by the corre-
nding quantum values. Thus we can treat the contin-
s-valued components as discrete-valued ones. Conse-
tly, the whole ensemble of incomplete mixed-mode
1 can assume a discrete-valued representation.

c following two procedures are used to estimate the
lcpendence relationships in the data for the purpose
1putation and cluster analysis. It should be noted that
procedures are applicable to any variable-pair in the
:-mode n-tuple despite their variable type.
Value-to-Variable Interdependency: To estimate an
vn outcome of a particular component in the n-tu-
.observed values from the other components can be
The information for such process can be derived
the statistical interdependency between the observed
| the unknown value. Conversely, if an observed value
clated to the unknown outcome, it should not be
in the estimation process. To extract this informa-
ihe following method is proposed.

ndjcating the statistical interdependency between an
] value, say gy, and the outcome of another vari-
X;, analysis based on the contingency table is
«. For a variable-pair (X;, X;) in X, a contingency
constructed based on the discretized values.' Let
i u;, be the discrete values (or the discretized quan-
1ues in the continuous case) of X, and X;, respec-

g rain
Comy
m
the ¢
> P!
Lo
1.

meii

iplicity, we use the same notation for the variables in the random
n though a continuous-valued variable here will assume discre-
‘omes rather than continuous ones.
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tively. Let obs (@, a;) represent the observed frequency
of the joint outcomes of (ay,, a;,). Furthermore, let exp
(ays, a;,) represent the expected frequency of (ay,, a;,) cal-
culated from the marginal frequencies of X, and X, or
estimated based on some expert’s judgment. We can es-
timate exp (ay,, a;,) as

obs (ay) X obs (aj,)
M(Xk’ )(j)

where M (X, X;) is the size of the sample set such that
both the outcome of X, and X; are observed; and obs ()
and obs (a;,) are the marginal frequencies of X, = g, and
X; = a; in the sample set, respectively. The following

expression obtained from the contingency table,

Lj

D(akm X}) = Z

t=1

2
(obs (ay. @) — exp (s, a;))
exp (. ;)

can be used for testing statistical interdependence be-
tween a;, and the outcomes of X; at a given significance
level. Notice that D (ay,, X; ) is the summation of L; terms
and each term corresponds to the joint outcome of each
distinct value of X; and gy,. It indicates the deviation of
the observed frequency from the expected frequency on
this subset of joint outcomes.

The following example shows the selection of certain
cells corresponding to g, in the contingency table of (X,
X;). Each cell indicates the observed and expected fre-
quency from an ensemble of totally 400 complete sam-
ples. Assuming that there are four distinct outcomes for
X; (denoted as a;y, a;5, @3, @;4), we describe the sub-
contingency table of X, = q,, as follows:

s

Outcomes of X; Marginal

a; a; a;3  a;4 frequency

Observed frequency 8 8 40 24 80
Expected frequency 16 32 16 16
Marginal frequency 80 160 80 80

The value of D (ay,, X;) is then calculated from the sub-
contin%ency table as: D(a, X;) = (8 — 16)2/16 + (8
—32)°/32 + (40 — 16)?/16 + (24 — 16)*/16 = 62.

D (ay, X; ) possesses an asymptotic chi-square property
with (L; — 1) degree of freedom. To select a subset of
interdependent events, a function A} which maps the
value-variable pair into a binary decision state is defined
as:

A 1 if D(aw X)) > x3_,
h] Qs X)) = { J /j
(o j) 0 otherwise.

where x%j_ | is the tabulated chi-square value. The func-
tion indicates whether or not the event is statistically in-
terdependent with the variable based on the significance
of the chi-square test. The subset of outcome events of X,
having statistical interdependency with X; is defined as:

Ey = {a| ila, X;) = 1},

E, is called the covered event subset of X, with respect to
X;. The subset Ej’-‘ of variable X; (with respect to X;) can
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be identified similarly. E J" represents the subset of the hy-
pothesized values which are interdependent with the out-
comes of X,. It should be noted that Ejk X EY, then repre-
sents an event subspace of the complete outcome space of
the variable-pair selected by this covering process. Statis-
tical information can be analyzed based on the incomplete
probability scheme [18] defined on the event subspace
spanned by Ejk X E}, rather than on the complete set of
outcomes.

2) Interdependency between Restricted Variables:
Based on E]A X E}, the interdependency between the two
restricted variables defined on E j‘ X EY can be calculated.
Let the restriqted variables be represented as X4 and XJ’»‘,
defining on £/, and E f, respectively. An information mea-
sure called interdependence redundancy [7] defined on the
incomplete probability schemes of the subsets is calcu-
lated as:

R(X}, X5) = I(X), X¥)/H(X], X¥)

where I(X, X]’-‘) and H(X, XJ'-( ) are the expected mutual
information and the Shannon’s entropy defined on X4, and
Xf, respectively. The value of R (XY, Xj’f ) will indicate the
degree of statistical interdependency between the two re-
stricted variables. We have chosen the interdependency
redundancy measure because it is normalized and bounded
by 0 and 1. Note that if either | E}| = 1 or [Ef| = 1 then
R(X}, X ]’f) = 0 since there is only redundancy informa-
tion for each of the variables rather than interdependency
information between the variables. If the redundancy in-
formation is also desirable in this situation, we can adopt
a two-phased approach [5] which makes inferences based
on the interdependency information in the first phase (our
proposed method) and then when a rejection occur, make
inferences based on the redundancy information. R (XY,
XJk ) has an asymptotic chi-square property [7]:

2 R(X, X)) M (X, X¥) H(X}, X5 ~ x%

where df is the corresponding degree of freedom having
the value (|E% — 1)(|E} — 1) and M(X}, X}) is the
number of observations in the incomplete scheme of (X]k,
Xj’-‘). The chi-square test is then used to detect statistical
interdependency between the two restricted variables at a
given significance level.

B. Probabilistic Imputation of Missing Values in Mixed-
mode Data

Before performing cluster analysis, the missing values
in the data set are estimated from the other observed val-
ues which are selected based on the detected statistical
interdependency. Since a missing value can occur in any
of the variables in the tuple, statistical interdependency is
calculated between all the variable-pairs. Using the two
statistical tests described in the previous sections, only
values which are statistically significant for the estimation
process are selected. Let the unknown value in an n-tuple
x be x; and its hypothesized value be a;,. The conditions
for a value x; = a;, (kK # j) in x to be selected for esti-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-9, NO. 6, NOVEMBER i

mation are:

1) the value x, is an observed value;

2) R(X}, X}) is statistically significant;

3) ay € E| a;, € E}.

An information measure called the normalized
prisal (NS) is used in the decision rule for estimating
missing values. NS corresponds to the weighted inl
mation of a hypothesized value a;,, and is conditioned
the selected values [denoted here as x’ (a;)]. x"(ay)
{xi, x5, -+, x;,} represents a sub-n-tuple of x whe
(m < n) is the number of values selected. NS (.
a;, | x' (a;,)) is defined as follows:

105 = 0] (a,))

NS(x = a,|x'(a;)) = m<j§, R(XL. ng)>

where ]
1) I(Xj = ajrlxl (ajr)) = Zp=y {R(X% Xf) l(“jr%
2) I( aj,lx,ﬁ) is the conditional information defin
the incomplete probability scheme on EY, X E j‘ whe

— log
Play|x;,
Hjl(éE} (ajll I xk )

](aj,.|x,§) =

and Ly, epp Pay, | x;) > T such that Tis chosen us i
threshold for reliable probability estimation [15].

NS is normalized by the total weights and the i
of selected events after weighting each conditional
mation by R (X%, XJ’-‘), its measure of interdepends
dundancy. In [5], we have discussed more thore
intuitive properties of NS which are as follows:

1) larger the weights, more reliable the estimali

2) larger the conditional information, more rcl
estimation.

In rendering a meaningful calculation, x; i
only if a reasonable sample size is available, o

ajuze)EfP(aj,,|x,(,) > T.

The following decision rule based on the in

measure NS is designed. Given T; = {a;|r
, L; } as the set of all possible values tha

assigned to an unknown x;, then
lf NS(XJ - aj,ix' (aj’))

a;,|x'(a,)).

X

i a

jt
min NS (xj =
ajreTj

*Since the second-order statistics are required in the
mation, the minimum sample size for a reliable estimation is
to be:

T=AX max sz‘
J=082n
where the constant A may be taken as 3 for liberal estimatii
number of possible events for variable X; in X. A size thy
used in the cluster initiation phase, however, we do not tif
the value 7 to be sensitive in affecting the result in our ¢xj
the sample size or the cluster size is small, T can be ch
based on some initial trial of the experiments, and small
be detected while large clusters are not affected.
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Ifx’ is an empty set for all hypothesized values or if there
¢ more than one hypothesized value which yields the
nimum NS values, then the estimation cannot be made,
d the estimated value is still unknown. These samples
ich are incomplete because of unknown estimation are
en out initially for cluster initiation.

The computational complexity of the inference method
relatively low. The number of chi-square test applica-
ns is (Ly + L; + 1) for a variable-pair (X,, X;) where
and L; represent the number of distinct events for X,
d X, respectrvely The tests determine the statistical
kmﬁcance of the events for X, and X; with respect to
ir interdependency. For data represented as an n-tuple,

re are nC, (=n(n — 1) /2) different variable-pairs, and
> total number of statistical test applications is

ted i
itionesd

L+ L+1
:lk;é(k )

O[nz(m]?x L)), k=

Juding the calculation of the probability estimates, the
slexity of the event-covering process is

O[Mr*(max L)], k=1,2, " ,n
k

> M is the number of samples for probability esti-
m. The NS calculation is also linearly proportional
he number of selected events in the estimation.

nbiased Probability Estimator

'n estimating the probability based on an ensemble
unples, zero probability may be encountered if the
ibility estimation is based on direct frequency count.
to have a better probability estimate for these
an unbiased probability estimate proposed by [19],
adopted.

fer a pair of restricted variables (X4, X f) with the
nplete probability scheme involving events in EY, and
inbiased marginal distribution of X]k is defined as

a,) = {M(a;)
+ | Ef1}/{m(xp xE) + |EE)

' M(aj) and M (X4, X’-‘ ) are respectively the fre-
of occurrence of a;, and the sample size for the
cte scheme of X Srmﬂarly, the unbiased joint
on ofX and X/, is defined as

’f’/r’x{( = aks) = {M( Ajy s aks) + 1}/

k k j
{M(xi, x}) + |E| x |E}|}
(., a) is the number of occurrence of the joint
{4}, ags) in the incomplete scheme of the ensem-
> the conditional information /(a;, | a) is cal-

il
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culated as

P( ]r’ aks)/P(aks)
Z P( jn akx)/P(aks)

ajr I aks)

M(ajl’ aks) + 1

{M(a;, a) + 1}

—log S

IIJ/EEk

D. Cluster Analysis on the Data

After the missing values are imputed, cluster analysis
can be performed. First, clusters are initiated based on the
nearest-neighbor characteristics of the ensemble. Then
clusters are regrouped based on the statistical interdepen-
dency detected from the data.

1) Cluster Initiation: The cluster initiation process in-
volves three phases: 1) selecting samples which are not
yet clustered and are more likely to form clusters first; 2)
finding a data-dependent nearest-neighbor criterion which
reflects the cluster characteristic; and 3) merging reliable
samples to form clusters based on this criterion. These
three phases of the process are applied iteratively until all
the samples are considered.

The first phase of cluster initiation estimates the prob-
ability for a sample to occur and then selects a subset of
sample with higher probability estimation. The probabil-
ity of a sample is estimated by a second-order product
approximation on the discretized data [21].> Further, the
process involves the calculation of a mean probability [6] A
With the probability estimates of each sample calculated
and the mean probability on a given set of samples de-
fined, a subensemble of the unclustered samples with rel-
atively higher probability estimate is selected by the fol-
lowing criterion. A sample is selected if its probability is
greater than the mean probability of the remaining un-
clustered samples. We represent these selected samples as
S

The second phase involves the calculation of nearest-

*An estimation of P(x), known as the dependence tree product approx-
imation [21] can be expressed as:

P(x) = H P(x

Xues)s 0= k(j) <j

m,

where 1) the indexes {my, ma, ~+ -, m,} are a permutation of the integer
set {1, 2, +, n}and k is a function of j, 2) the ordered pairs (X5
Xy ;) GTE rdentlﬁed from the branches of a spanning tree (defined on X))
where the branch weights are the expected mutual information between the
variable nodes; and the ordered pairs are chosen such that the summed
expected mutual information of all the branches is maximized, and 3)
P(x,,1%4) = P(x,,). The probability defined above is known to be the
best second-order approximation of the high-order probability distribution
[21].
“Let a set of selected samples be denoted as S. The mean probability for
S is defined as

—ZP Y/ |S]

where | S| is the sample size.
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neighbor distance® for all the samples in S'. Let D(x, ')
be the nearest-neighbor distance value of x considering
all the samples in S’. Among these distances, let D* be
the maximum value.® Using the clustering procedure re-
ported in [6], samples can be merged into a cluster basing
on the analysis of the nearest-neighbor distance. The clus-
ter initiation is outlined as follows:

1) Calculate P(x) for all x in the ensemble.

2) SetK:=0;¢:=0;

3) Let C, be a dummy subgroup representing samples
of unknown cluster. Initially Cy is empty. Initialize the
first cluster C; containing the sample x such that P(x) is
highest.

4) If the number of unclustered samples > T then P’ is
assigned the mean probability of unclustered samples else
P’ is assigned 0; (T is a size threshold indicating the
smallest size of a cluster.)

5) List all the unclustered samples in a table S’ if P(x)
> P/,

6) Calculate D(x, S') forall x in §".

7) D* := max,.s D(x, S") (see footnote 6).

8) For all x in S’ do:

e Get x in S’ such that P(x) is highest.

e If D(x, C;,) < D* for more than 1 cluster (say
Cpfori=1,2, - ,t,1> 1), then:
—Tfk, < K for some i then Co:= Cy U {x};
—else Gy, := {x} U C, forall i
If D(x, C,) = D* for exactly 1 cluster Cy, then Cy
= {x} U Gy
If D(x, C,) > D* for all clusters C;, k = 1, 2,

c ot theni =1+ 1, C 1= {x};

¢ Remove x from §”":

N K:=1

10) Goto 4 until all samples are considered,

11) If | G| < T, the size threshold, then Cp : = Cy )
C, for all k.

Computationally, the proposed cluster initiation pro-
cedure is reasonably fast. It requires the calculation of
nearest-neighbor distance between sample-pairs in a sub-
ensemble only. The probability estimate is calculated only
once for each sample. Also it can apply to any distance
measure and it allows uncertain samples to be temporarily
assigned as belonging to unknown cluster.

SWe use the Hamming distance on the complete discretized n-tuples.
Let x and y be two n-tuples; then the Hamming distance, d(x, y), is defined
as

d(x.y)

0 X = Yk
O =
i otherwise.

oSince outlier has a large nearest-neighbor distance and will affect the
value of D* which is the maximum of such distances, we use a heuristic
method to choose D* as the maximum value of all nearest-neighbor dis-
tance in $' provided there is a sample in §’ having a nearest-neighbor dis-
tance value of D¥ — 1 (with the distance values rounded to the nearest
integer value). In another word, this method screens out the outliers in
affecting the value of D*.

2) Cluster Regrouping: After finding the initial cli
ters along with their membership, the cluster membc:
(or the cluster label) of each sample x can be consid
as an additional value of x. Let the cluster label vaii
be C and its current set of detected outcomes be { ¢,

, ¢, } where g is the current number of cluste
tected. The regrouping process is thus essentially i
ference process for estimating the cluster label of :
ple. During this process, the values which are statistica
interdependent with the cluster label (now treated
variable) are selected. Joint outcomes (second or hi
order outcomes) which are found to be interactive i
sample x can be considered as additional observed |
tures if computational resources and storage spiti
available [6]. Then the decision rule based on the 1
mum NS value (see Section I1I-B) can be applicd 1o ¢
mate the cluster label of a sample. The process ol
mation iterates until stable clusters are found. The ¢l
regrouping algorithm is outlined as follows:

1) Compute the finite probability schemes bascd
current cluster labels.

2) Identify the events in the covered event sul
all variables with respect to the cluster label variah

3) Set number__of _change := 0;

4) For each x in the ensemble do;

o If estimation is uncertain because more |
cluster label satisfies the minimum criterion ¢
cause no value in the n-tuple has been select
assign the label as missing.

Otherwise assign x to cluster label ¢; if?

NS (¢ | (¢;)) = min NS(¢,|x ()}
cueC

if¢; # previous__cluster_ label then:

—number__of _change : = number__of
L

—update cluster label for x;

5) If number_of change > O then goto | ¢l
Because there is no distance measure defined |
mode data, the cluster analysis is performed base

statistical properties rather than distance measu
final phase of the algorithm with all the variablex
as nominal variables, including the ordinal v
However, since the cluster initiation is based on
est-neighbor characteristics, the final clusters
both distance and statistical information of the i
semble.

When the clusters are found, interdependenc
the class and the event values is a piece of &
knowledge which is extracted from the ensemb
as a whole, and could not be acquired from i
sample in isolation.

IV. ExPERIMENT USING SIMULATED 1341

In evaluating this approach to mixed-mode i
sis, an experiment using simulated data is perli
generate a set of simulated data, four clusters ai
based on four n-tuples (Fig. 2). The data arc
as x = (x, Xy, * * * , x7). These n-tuples are
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vitial ol

Class Tuples frequency

embei X Xy X3 X X Xg Xy
~onsidi ' Contin Ord. Nominal
el Virig (1, 6, 3, 6, i, F, 1) 200
e { o (6, 3, 1, 6, 6, C, ©) 150
luste ; (3, 1, 6, 1, 3, 4, B 75

N (6, 3, 6, 3, 1, 4, © 75
ally i T
of a Total 500

tatisti
cafed
or i
Clive
ervesd
Spaci
the i
e f g
§% of

2. Original n-tuples for generating the simulated data involving four
classes.

TABLE 11
RESULT OF EXPERIMENT IN ESTIMATING MISSING VALUES

Variables Xi ;2 X3 Xg _XS Xe _X-,
Continous Ordinal Nominal Total
Incorrect 19 10 9 9 5 1 2 55
Reject 0 ] 0 8 1 0 0 9
Correct 37 46 36 31 36 49 51

45 48 42

mber of times to produce an ensemble of 500 n-tuples.
¢ that the clusters are not determined by a single value
| by the joint information of the n-tuple. To create
xcd-mode data with noise perturbation, 40 percent of
values are randomly replaced by a value with equal
ability from the set { B, D, E'} for nominal variables,
d {2, 4,5} for continuous and ordinal variables. These
placed values have no information about the cluster.
1 noise with normal distribution of zero mean and 0.5
wdard deviation are imposed on all the values in the
'mble. The variables X;, X,, X3 are designed as con-
nous, Xy, X5 as ordinal discrete, and Xg, X; as nominal
rete. The generated values are added to continuous
il ordinal discrete values. Thus, x,, x,, x5 takes up the
value after the addition. For x,, xs, the value is
ed to the nearest integer value bounded by 1 and 6.
Xs and x4, if the Gaussian noise value generated is
fer than 1, then the resulting value is randomly
iped to any arbitrary possible outcome with equal
bility. To create a set of incomplete n-tuples, 10
ent of all values is randomly taken out, so that there
total of 350 missing values.

ic purpose of the experiment is to cluster this set of
iplete n-tuples. First, the maximum entropy discre-
m on the continuous values is applied. Each contin-
5 value will be represented by one of six discrete
ium values indicating six intervals (i.e., L; = 6 for
1, 2, 3). Then the inference method is applied to
¢ any missing value and perform cluster analysis
het data. For continuous variables, the original value
impared to see if it falls in the range of the estimated
val. The 95 percent confidence level is used in all the
nare tests.

- result of the experiment in estimating the missing
; is tabulated (Table II). The number of errors on
ferent types of variables is probably proportional to
wunt of noise imposed. The error rate of the initial
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TABLE 111
RESULT OBTAINED IN CLUSTERING SIMULATED DATA (INITIAL CLUSTERS)

Class Misclass. Unknown Correct Total
1 1 26 173 200
2 3 28 119 150
3 1 15 59 75
4 2 48 48 78
Total 7 117 376 500
Note : There are 8 incomplete n-tuples in class 1 and 1

incomplete n-tuple in class 2 among the n-tuples of the
unknown class.

TABLE IV
RESULT OBTAINED IN CLUSTERING SIMULATED DATA (FINAL CLUSTERS)

Class Misclass. Unknown Correct Total

b 2 0 198 200
2 3 0 147 150
3 4 0 71 75
4 10 0 65 75
Total 19 0 481 500

clustering result is very low even though the unknown rate
is high (Table III). The unknown rate is the highest in
class 4 because, compared to the other classes, the orig-
inal n-tuple that represents it is the most similar to the
others. The final result is given in Table IV. The overall
result indicates that the method achieves high reliability
for this set of data.

V. ExPERIMENT USING HYDROMETRIC NETWORK DATA

The next experiment involves hydrometric network
data. In order to integrate the hydrologic, meteorologic,
and physiographic aspect of hydrometric network in a
quantitative analysis, a set of samples are collected over
131 catchment areas in British Columbia, Canada [22],
for cluster analysis. Seven hydrometric features are cho-
sen for each catchment area 1) mean annual runoff; 2)
mean annual precipitation; 3) mean runoff coefficient; 4)
relief and bathymetry; 5) ground water activities; 6) mois-
ture index; and 7) forest coverage. They are expressed as
x = (xq, X3, * * * , x7) (Fig. 3), where the first three fea-
tures are of the continuous type and the others are of the
discrete type (nominal as well as ordinal). Since the data
are complete n-tuples, the discretization process on the
continuous features can be applied immediately, and then
the event-covering and cluster analysis are performed. The
continuous variables are discretized into four intervals (L;
=4 forj = 1, 2, 3). All the statistical tests are based on
a confidence level of 95 percent. After cluster regrouping,
the final result is shown in Fig. 4.

When examining the two clusters found, feature values
characterizing the clusters are noted. Generally speaking,
samples of cluster 1 are flat river basins such as flatland
and plateau. They have relatively low annual runoft and
low precipitation and with noticeable underground water
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Possible values

continuous 3.0 to 65.0

continyous 11.0 to 71.0

continuous 0to 1.0

nominal {mountain, flatland,valley or plateaU}

nominal {underground water,underground water
in downstream, no underground water}

ordinal {sub-arid, semi-arid,sub-humid,humid}

ordinal {poorly-covered,half-covered,
fully-covered}

Fig. 3. A description of hydrometric network data.

Cluster 1: Size 50

General River Basin Characteristics
relatively low annual runoff

relatively low annual precipitation
relatively high runoff coefficient
majority of flat topography

noticeable underground water activities
low to medium moisture content

less forest coverage

Unique Feature Values

Mean annual runoff below 13.3

Mean annual precipation below 18.5
Mean runoff coefficient above 0.675
flatland and plateau

Underground water activity

Cluster 2: Size 81

General River Basin Characterisiics

Relatively high annual runoff

Relatively high annual precipitation

Relatively low runoff coefficient

Mostly mountainous topography

Relatively scarcity of underground water
activities

Relatively high moisture content

More forest coverage

Unique Feature Value :
none
Fig. 4. A description of clusters on the hydrometric network data.

Restricted
Variables R(X,©,C)

{3.00-6.3, 6.4-13.3,
13.4-24.9, 25.0-65.0%}
{«<18.5, 18.6-23.7,
23.8-36.1, > 36.2}

{< 0.29, 0.30-0.51,
0.52-0.67, > 0.68}
{mountain,flatland,plateau}
{underg. water,

no underg. water}
{semi-arid,sub-humid,
humid}

{poorly covered,
half-covered }

Fig. 5. Measure of interdependent redundancy between cluster and the re-
stricted variables.

activities, whereas cluster 2 are river basins having rela-
tively high annual runoff and precipitation. They are
mostly mountainous with relatively low underground
water activities. The measures of interdependence redun-
dancy between the restricted variables and the cluster la-
bel variable are described in Fig. 5. They indicate that the

Var. events statistical significance

indicate cluster 1
more likely cluster 2

indicate cluster 1
18.50-23.70 more likely cluster 1
23.70-36.10 more likely cluster 2
> 36.10 highly probable cluster 2

0.295 highly probable cluster 2
.295-0.515 not indicative

.515-0.675 highly probable cluster 1
0.675 indicates cluster 1

mountain more likely cluster 2
flatland indicates cluster 1
valley not indicative
plateau indicates cluster 1

underg.vwater indicates cluster 1
underg.vater
in downstream not indicative
no underground
vater highly probable cluster

sub-arid not indicative *

semi-arid highly probable cluster
sub-humid highly probable cluster
humid highly probable cluster

poorly-covered highly probable cluster 1
half-covered more likely cluster 2
fully-covered not indicative

may be due to small sample size

Fig. 6. The significance of the events in indicating the subgrou

ground water activities are the most important fa
determining the subgroups and the forest coverag
least important. Fig. 6 shows the significance of th
ferent events in indicating the subgroups.

V1. CoNCLUSION

In order to acquire more information in tackling
plicated tasks involving high-level skills, there is
creasing need to analyze complex multivariate da
variables from different sources and of different i
description. This paper has proposed a feasible
to detect clustering patterns in mixed-mode data is
tegrated way. The method is mathematically and
tively meaningful [13], [16]. Furthermore, it po
gorithmic simplicity. When a reasonably larg
observations is analyzed by a general inference 4
ter analysis algorithm using the event-covering apj
new knowledge is acquired indicating different
interdependent patterns: subset of interdependent
interdependent patterns between the restricted vi
involving only these events, and clustering patter
on these acquired interdependence relationships.
clusters are formed, further class-value interd:
patterns can be extracted. Information thus obtai
flect synthesized knowledge inherent in the da
whole. Despite the influence of statistically ir
events in the data, experiments using simulated
plete data and real life hydrometric network dat
produced very encouraging results.
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