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ABSTRACT
Motivation: Gene expression profile analyses have been used
in numerous studies covering a broad range of areas in biology.
When unreliable measurements are excluded, missing values
are introduced in gene expression profiles. Although existing
multivariate analysis methods have difficulty with the treatment
of missing values, this problem has received little attention.
There are many options for dealing with missing values, each
of which reaches drastically different results. Ignoring missing
values is the simplest method and is frequently applied. This
approach, however, has its flaws. In this article, we propose
an estimation method for missing values, which is based on
Bayesian principal component analysis (BPCA). Although the
methodology that a probabilistic model and latent variables
are estimated simultaneously within the framework of Bayes
inference is not new in principle, actual BPCA implementation
that makes it possible to estimate arbitrary missing variables is
new in terms of statistical methodology.
Results: When applied to DNA microarray data from various
experimental conditions, the BPCA method exhibited markedly
better estimation ability than other recently proposed methods,
such as singular value decomposition and K -nearest neigh-
bors. While the estimation performance of existing methods
depends on model parameters whose determination is difficult,
our BPCA method is free from this difficulty. Accordingly, the
BPCA method provides accurate and convenient estimation
for missing values.
Availability: The software is available at http://hawaii.aist-
nara.ac.jp/~shige-o/tools/
Contact: ishii@is.aist-nara.ac.jp

1 INTRODUCTION
Gene expression profiling, using DNA microarrays, provides
high throughput investigation of gene expressions by
simultaneously measuring the expression of thousands of

∗To whom correspondence should be addressed.

genes under a certain experimental condition. Gene expres-
sion profiling has been used in numerous studies over a
broad range of biological disciplines. In clinical studies on
cancer classification, e.g. Golub et al. (1999) distinguished
between two leukemia subtypes, acute myeloid leukemia and
acute lymphoblastic leukemia, by comparing the expression
of ‘predictor genes’. Their methodologies on class discovery
and class prediction have been applied in a number of stud-
ies examining expression changes underlying various clinical
phenomena. Unknown effects of a specific therapy were
estimated by comparing gene expression profiles before and
after the therapy (Perou et al., 2000). Gene expression profile
analyses were also effective in cancer prognosis prediction,
even when morphological or immunohistological study was
difficult (Alizadeh et al., 2000; Kihara et al., 2001; Pomeroy
et al., 2002; Shipp et al., 2002; van’t Veer et al., 2002). In addi-
tion, expression profile analyses successfully identified genes
relevant to a certain diagnosis or therapy (Takemasa et al.,
2001; Muro et al., 2003). In these studies, various multivari-
ate analysis methods have played crucial roles. Clustering,
e.g. hierarchical clustering, is a popular unsupervised clas-
sification analysis, which has mainly been applied to class
discovery problems (Eisen et al., 1998).

In order to extract underlying biological reality based on
gene expression profile analyses, it is necessary to discard
various artifacts, such as noise and fluctuations that occur
through the acquisition and normalization of data. Suspi-
cious values are usually regarded as missing values, because
they may be detrimental to analyses further. Existing multi-
variate analyses for expression profile data, however, often
have difficulty with the treatment of missing values. Differ-
ent methods of treating missing values may lead to different
results. Although the handling of missing values is thus very
important, researchers have often been unaware of this issue.

As an example, hierarchical clustering (Eisen et al., 1998)
constructs gene clusters or sample clusters based on the
distance between two gene expression profiles (vectors) or
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two sample expression vectors, respectively. The distance
measurement on missing values, however, is problematic.
Existing hierarchical clustering software, such as ‘Cluster’
(Eisen et al., 1998), defines the distance between vectors
with missing values, by just ignoring the missing dimen-
sions. Since ignoring dimensions is identical to assuming that
expression levels are the same in two vectors, the distance
between vectors with missing values tends to be smaller than
that between vectors without missing values. Therefore, a
cluster of genes with a lot of missing values is often obtained
as a result. Support vector machine (SVM) classifier (Brown
et al., 2000), a popular multivariate supervised classification
method, also encounters a similar problem in defining dis-
tance. Moreover, many multivariate statistical analyses, like
principal component analysis (PCA) (Raychaudhuri et al.,
2000) and singular value decomposition (SVD) (Alter et al.,
2000), cannot be applied to data with missing values. Thus,
in order to avoid improper analyses, missing value estimation
is an important preprocess.

There are several simple ways to deal with missing values
such as deleting an expression vector with missing values from
further analysis, imputing missing values to zero, or imput-
ing missing values of a certain gene (sample) to the sample
(gene) average (Alizadeh et al., 2000). On the other hand,
Troyanskaya et al. (2001) proposed two advanced estima-
tion methods for missing values in expression profiles. One
method is based on K-nearest neighbor (KNNimpute), and the
other is based on SVD (SVDimpute). Troyanskaya et al. eval-
uated their performance using various microarray data sets and
reported that the two advanced methods performed better than
the above-mentioned simple methods. The estimation ability
of these advanced methods depends on important model para-
meters, such as the K-value in KNNimpute and the number
of eigenvectors in SVDimpute. There is no theoretical way,
however, to determine these parameters appropriately.

In this paper, we propose a new missing value estimation
method based on Bayesian PCA (BPCA) (Bishop, 1999).
Although the methodology that a probabilistic model and lat-
ent variables are estimated simultaneously within the frame-
work of Bayes inference is not new in principle, actual BPCA
implementation that makes it possible to estimate arbitrary
missing variables is new in terms of statistical methodology.
We evaluated the method by comparing it to KNNimpute
and SVDimpute (Troyanskaya et al., 2001), using various
microarray data sets, and showed marked improvement in
estimation performance. In addition, the model parameter
is automatically determined in this BPCA method. There-
fore, our BPCA method can be easily used by medical and
biological scientists to analyze gene expression data.

2 SYSTEM AND METHODS
A whole data set of gene expression profiles is represented by a
numerical (D×N) matrix Y , where N is the number of genes

and D is the number of samples. Y is called an expression
matrix. The (i, j) component of the matrix, yij , denotes the
expression level of the j -th gene in the i-th sample, which is
typically a logarithm of the expression ratio between the con-
trol and the objective samples, in the case of cDNA microarray
data. The i-th row vector and the j -th column vector of the
matrix are called the expression vector of the i-th sample and
the expression vector of the j -th gene, respectively.

2.1 BPCA
The missing value estimation method based on BPCA consists
of three elementary processes. They are (1) principal com-
ponent (PC) regression, (2) Bayesian estimation, and (3) an
expectation–maximization (EM)-like repetitive algorithm.
Below, we describe each of these processes.

2.2 PC regression
For the time being, we consider a situation where there is no
missing value. PCA represents the variation of D-dimensional
gene expression vectors y as a linear combination of principal
axis vectors wl (1 ≤ l ≤ K) whose number is relatively small
(K < D):

y =
K∑

l=1

xlwl + ε. (1)

The linear coefficients xl(1 ≤ l ≤ K) are called factor scores.
ε denotes the residual error. Using a specifically determined
number K , PCA obtains xl and wl such that the sum of squared
error ‖ε‖2 over the whole data set Y is minimized.

When there is no missing value, xl and wl are calculated
as follows. A covariance matrix S for the expression vectors
yi (1 ≤ i ≤ N) is given by

S = 1

N

N∑
i=1

(yi − µ)(yi − µ)T,

where µ is the mean vector of y: µ
def= (1/N)

∑N
i=1 yi .

T denotes the transpose of a vector or a matrix. For description
convenience, Y is assumed to be row-wisely normalized by a
preprocess, so that µ = 0 holds. With this normalization, the
result by PCA is identical to that by SVD.

Let λ1 ≥ λ2 ≥ · · · ≥ λD and u1, u2, . . . , uD denote
the eigenvalues and the corresponding eigenvectors, respect-
ively, of S. We also define the l-th principal axis vector by
wl = √

λlul . With these notations, the l-th factor score for an
expression vector y is given by xl = (wl/λl)

Ty.
Now we assume the existence of missing values. In PC

regression, the missing part ymiss in the expression vector y

is estimated from the observed part yobs by using the PCA
result. Let wobs

l and wmiss
l be parts of each principal axis wl ,

corresponding to the observed and missing parts, respectively,
in y. Similarly, let W = (W obs, Wmiss) where W obs or Wmiss

denotes a matrix whose column vectors are wobs
1 , . . . , wobs

K or
wmiss

1 , . . . , wmiss
K , respectively.
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Factor scores x = (x1, . . . , xK) for the expression vector y

are obtained by minimization of the residual error:

err =
∥∥∥yobs − W obsx

∥∥∥2
.

This is a well-known regression problem, and the least square
solution is given by

x = (W obsTW obs)−1W obsTyobs.

Using x, the missing part is estimated as

ymiss = Wmissx. (2)

In the PC regression above, W should be known beforehand.
Later, we will discuss the way to determine the parameter.

2.3 Bayesian estimation
A parametric probabilistic model, which is called probab-
ilistic PCA (PPCA), has been proposed recently (Tipping
and Bishop, 1999). The probabilistic model is based on the
assumption that the residual error ε and the factor scores
xl (1 ≤ l ≤ K) in Equation (1) obey normal distributions:

p(x) = NK(x|0, IK),

p(ε) = ND(ε|0, (1/τ)ID),

where NK(x|µ, �) denotes a K-dimensional normal distri-
bution for x, whose mean and covariance are µ and �,
respectively. IK is a (K × K) identity matrix and τ is a
scalar inverse variance of ε. In this PPCA model, a complete
log-likelihood function is written as:

ln p(y, x|θ) ≡ ln p(y, x|W , µ, τ)

= −τ

2
‖y − Wx − µ‖2 − 1

2
‖x‖2 + D

2
ln τ

− K + D

2
ln 2π ,

where θ ≡ {W , µ, τ } is the parameter set. Since the maximum
likelihood (ML) estimation of the PPCA is identical to PCA,
PPCA is a natural extension of PCA to a probabilistic model.

We introduce here a Bayesian estimation method for PPCA,
which was originally proposed by Bishop (1999). Bayesian
estimation obtains the posterior distribution of θ and X,
according to the Bayes theorem:

p(θ , X|Y ) ∝ p(Y , X|θ)p(θ). (3)

p(θ) is called a prior distribution, which denotes a priori pref-
erence for parameter θ . The prior distribution is a part of the
model and must be defined before estimation.

We assume conjugate priors for τ and µ, and a hierarch-
ical prior for W , namely, the prior for W , p(W |τ , α), is

parameterized by a hyperparameter α ∈ R
K .

p(θ |α) ≡ p(µ, W , τ |α) = p(µ|τ)p(τ)

K∏
j=1

p(wj |τ , αj ),

p(µ|τ) = N (µ|µ0, (γµ0τ)−1Im),

p(wj |τ , αj ) = N (wj |0, (αj τ )−1Im),

p(τ) = G(τ |τ̄0, γτ 0).

G(τ |τ̄ , γτ ) denotes a Gamma distribution with hyperparamet-
ers τ̄ and γτ :

G(τ |τ̄ , γτ ) ≡ (γτ τ̄
−1)γτ

�(γτ )
exp

[−γτ τ̄
−1τ + (γτ − 1) ln τ ],

where �(·) is a Gamma function.
The variables used in the above priors, γµ0, µ0, γτ 0 and τ̄0

are deterministic hyperparameters that define the prior. Their
actual values should be given before the estimation. We set
γµ0 = γτ 0 = 10−10, µ0 = 0 and τ̄0 = 1, which corresponds
to an almost non-informative prior.

Assuming the priors and given a whole data set Y = {y}, the
type-II ML hyperparameter αML−II and the posterior distribu-
tion of the parameter, q(θ) = p(θ |Y , αML−II), are obtained
by Bayesian estimation.

The hierarchical prior p(W |α, τ), which is called an auto-
matic relevance determination (ARD) prior, has an important
role in BPCA. The j -th principal axis wj has a Gaussian prior,
and its variance 1/(αj τ ) is controled by a hyperparameter αj

which is determined by type-II ML estimation from the data.
When the Euclidian norm of the principal axis, ‖wj‖, is small
relatively to the noise variance 1/τ , the hyperparameter αj

gets large and the principal axis wj shrinks nearly to be 0.
Thus, redundant principal axes are automatically supressed.

2.4 EM-like repetitive algorithm
If we know the true parameter θ true, the posterior of the
missing values is given by

q(Y miss) = p(Y miss|Y obs, θ true),

which produces equivalent estimation to the PC regression.
Here, p(Y miss|Y obs, θ true) is obtained by marginalizing the
likelihood (3) with respect to the observed variables Y obs.
If we have the parameter posterior q(θ) instead of the true
parameter, the posterior of the missing values is given by

q(Y miss) =
∫

dθq(θ)p(Y miss|Y obs, θ),

which corresponds to the Bayesian PC regression. Since we do
not know the true parameter naturally, we conduct the BPCA.
Although the parameter posterior q(θ) can be easily obtained
by the Bayesian estimation when a complete data set Y is
available, we assume that only a part of Y , Y obs, is observed
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and the rest Y miss is missing. In that situation, it is required to
obtain q(θ) and q(Y miss) simultaneously.

We use a variational Bayes (VB) algorithm (Attias, 1999),
in order to execute Bayesian estimation for both model para-
meter θ and missing values Y miss. Although the VB algorithm
resembles the EM algorithm that obtains ML estimators for
θ and Y miss, it obtains the posterior distributions for θ and
Y miss, q(θ) and q(Y miss), by a repetitive algorithm.

The VB algorithm is implemented as follows: (a) the pos-
terior distribution of missing values, q(Y miss), is initialized
by imputing each of the missing values to gene-wise average;
(b) the posterior distribution of the parameter θ , q(θ), is estim-
ated using the observed data Y obs and the current posterior
distribution of missing values, q(Y miss); (c) the posterior dis-
tribution of the missing values, q(Y miss), is estimated using
the current q(θ); (d) the hyperparameter α is updated using
both of the current q(θ) and the current q(Y miss); (e) repeat
(b)–(d) until convergence.

The VB algorithm has been proved to converge to a locally
optimal solution (Sato, 2001). Although the convergence to
the global optimum is not guaranteed, the VB algorithm for
BPCA almost always converges to a single solution pract-
ically. This is probably because the objective function of
BPCA has a simple landscape. As a consequence of the
VB algorithm, therefore, q(θ) and q(Y miss) are expected to
approach the global optimal posteriors.

Then, the missing values in the expression matrix are
imputed to the expectation with respect to the estimated
posterior distribution:

Ŷ
miss =

∫
Y missq(Y miss) dY miss. (4)

2.5 SVDimpute
With respect to the above three elementary processes, SVDim-
pute (Troyanskaya et al., 2001) is a method incorporating
the first process and the ML estimation based on the EM
algorithm, because SVD is identical to standard PCA when
applied to a matrix normalized so that the row-wise mean is
zero. Therefore, the most important advance of BPCA, in
comparison to SVDimpute, is the existence of the second
process, i.e. the Bayesian estimation using the ARD prior.
An SVD-based imputation method was also proposed and
described in detail (Hastie et al., 1999).

2.6 KNNimpute
In order to estimate a missing value yih in the i-th gene expres-
sion vector yi by KNNimpute (Troyanskaya et al., 2001), we
first select K genes whose expression vectors are similar to
yi . Next, the missing value is estimated as the average of the
corresponding entries in the selected K expression vectors.

The similarity measure si(yj ) between two expression vec-
tors yi and yj is defined by the reciprocal of the Euclidian
distance calculated over observed components in yi . When

there are other missing values in yi and/or yj , their treat-
ment requires some heuristics. Following (Troyanskaya et al.,
2001), we define the measure as follows:

1/si(yj ) =
∑

h∈Oi∩Oj

(yih − yjh)
2, (5)

Oi = {h | the h-th component of yi is observed}.
The missing entry yih is estimated as average weighted by the
similarity measure:

ˆyih =
∑

j∈IKih
si(yj )yjh∑

j∈IKih
si(yj )

, (6)

where IKih is the index set of K-nearest neighbor genes of
the i-th gene, and if yjh is missing the j -th gene is excluded
from IKih. Note that KNNimpute has no theoretical criteria
for selecting the best K-value and the K-value has to be
determined empirically.

3 RESULTS AND DISCUSSION
3.1 Data sets
Spellman et al. (1998) placed a cDNA microarray data set
relevant to the yeast cell-cycle at the URL http://genome-
www.stanford.edu/cellcycle/data/rawdata/ as a complement.
This data set consists of three parts, which are relevant to
alpha factor (A-part), elutriation (E-part), cdc15, and cdc28
(C-part). We first used samples in the A-part (18 samples)
and the E-part (14 samples) to prepare test data sets. Each
sample represents relative expression levels of 6178 genes,
and 4304 genes have no missing value in the A- and E-parts.
Therefore, the complete expression matrix is composed of
4304 genes. We prepared three test data sets: (data A), (data
E) and (data A + E), from the complete expression matrix.
The C-part samples were used for examining the effects of
additional samples (see Section 3.4).

We also prepared a test data set (data A + E + C) by adding
the C-part samples to (data A + E).

Takemasa et al. (2001) obtained original cDNA micro-
array data relevant to human colorectal cancer (CRC). Clinical
materials of the data consist of 205 primary CRCs that include
127 non-metastatic primary CRCs, 54 metastatic primary
CRCs to the liver and 24 metastatic primary CRCs to dis-
tant organs exclusive of the liver, and 12 normal colonic
epithelia that were histopathologically confirmed to be free of
cancer. Each sample expression vector represents logarithm-
transformed ratios between the expression levels in the object-
ive sample and that in the control reference using cDNA
microarrays specialized for CRC, by selecting genes that
were preferentially expressed in colorectal carcinoma tissue.
As members of the complete expression matrix, we selected
758 genes in 4608 genes, and a test data set (data I) was
prepared.
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Using these four data sets, (data A), (data E), (data A + E)
and (data I), we examined the estimation ability for missing
values.

In order to evaluate the performance of missing value
estimation methods, we introduced artificial missing entries
to a complete (i.e. without missing values) expression matrix.
The artificial missing entries were introduced in two differ-
ent ways:

Rate-based way Randomly select a specific percentage of
the entries in the complete expression matrix, and remove
them.

Histogram-based way Obtain a histogram of column-wise
numbers of missing entries in the original expression
matrix. Then, remove entries from the complete expres-
sion matrix so that the histogram of the artificial missing
entries is similar to the histogram of the original missing
entries.

When 5% artificial missing entries are introduced to (data I)
in the rate-based way, the test data set is denoted by
(data I, 5%).

The performance of the missing value estimation is evalu-
ated by normalized root mean squared error (NRMSE):

NRMSE =
√

mean[(yguess − yanswer)2]
variance[yanswer] , (7)

where the mean and the variance are calculated over missing
entries in the whole matrix. We know yanswer because the
missing entries are artificial. When the estimation is accurate,
NRMSE approaches its minimum value 0.0. When the estima-
tion is equivalent to a random guess, which occurs either when
the estimation is too poor or when the noise involved is too
large, NRMSE approaches a value of 1.0.

3.2 K-value selection
Both BPCA and SVDimpute depend on the number of prin-
cipal axes (eigenvectors), K , and KNNimpute depends on
the number of neighbors, K (see Section 2.6). Since these
K-values describe similar parameters, we use the same sym-
bol. In order to measure how the estimation ability depends on
the value of K , we applied BPCA, SVDimpute and KNNim-
pute to the test data sets, (data A + E) and (data I), and
calculated NRMSE with various K-values.

Figure 1 shows the results for (data A + E, 5%) and
(data I, 5%). BPCA produces better results than KNNimpute
or SVDimpute at the optimal K-value for each method.
BPCA exhibits its best results with K = D − 1, where
D is the number of samples. SVDimpute and BPCA show
similar results when K is small, because they employ the
same PC regression process. When K is larger, however,
BPCA exhibits much better results than SVDimpute. This
is due to the ARD prior, because the main difference of
BPCA from SVDimpute is its existence. When K = 0,
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Fig. 1. Estimation ability (NRMSE) by BPCA, SVD and KNN with
various K-values. (top panel): Application to (data A + E, 5%).
(bottom panel): Application to (data I, 5%).

the imputation by BPCA or SVDimpute is identical to
that based on gene-wise average, and therefore the results
are poor.

In Figure 1, we see that BPCA exhibits different NRMSE
curves in the (data A + E) case and the (data I) case, with
respect to the optimal K-value. For (data I), the NRMSE curve
becomes almost flat between K = 100 and K = 204, because
the principal axes corresponding to the eigenvalues exceeding
K = 100 degenerated so that their lengths became almost
zero. For (data A + E), on the other hand, almost none of
the axes degenerated, except for the 31st one. From K =
1 to K = 30, therefore, each additional axis improved the
estimation ability. Although, the improvement by adding the
30th axis was apparently large, we consider this is a special
phenomenon for this data set. This phenomenon implies the
importance of setting K = D − 1 if we do not have a priori
knowledge on the data set.

Accordingly, we can safely use K = D−1 for every data set
in BPCA. If the effective dimension of the data set is smaller
than the K-value, the ARD prior automatically reduces the
redundant principal axes. Therefore, in our BPCA method,
there is no need to tune the K-value in advance.
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Fig. 2. Estimation ability (NRMSE) by BPCA, SVD and KNN
for various percentages of missing entries. For KNNimpute and
SVDimpute, the best results by tuning the parameter K are shown.
(Upper): Application to (data A + E). (Lower): Application to
(data I). For (data A + E), the histogram-based way introduced
2.96% missing entries (‘hist’) and the same percentage of missing
entries were introduced in the rate-based way (‘rate’). Similarly, the
histogram- and the rate-based way introduced 3.04% missing entries
to (data I). In addition, the rate-based way by introducing 1, 2, 5, 10
or 20% is evaluated. In each case, we repeated 10 times by varying
the set of missing entries, and the figure shows those 10 results.

3.3 Type and percentage of missing entries
Figure 2 shows the results for various percentages of missing
entries. The comparison of two types of missing entry intro-
duction is also included. For SVDimpute, the K-value was
set at K = 10 in (data A + E) and K = 30 in (data I), which
exhibited the best results. For BPCA, we set K = D − 1,
where D = 32 in (data A + E) and D = 206 in (data I). For
KNNimpute, the K-value was set at the best value between 1
and 50 in each data condition.

By comparing ‘hist’ and ‘rate’ in Figure 2, we find that
the missing value estimation accuracy does not much depend
on the two types of the introduction way, if the percentage
of missing entries is the same. By comparing the results for
various percentages of missing entries, however, we find that

the percentage of missing entries affects the estimation accur-
acy especially for (data A + E). For (data I), large amount of
missing entries do not degrade the estimation performance,
probably because there are a lot of samples in the data set.
The performance advantage of the BPCA to the KNNimpute
for (data I) was not so larger than for (data A + E), probably
because there is difference in the levels of backgound noise
between the both data sets.

The variance of NRMSE within 10 times repetition is smal-
ler when the number of missing entries is large than when the
number is small. This is attributed to the law of large numbers.
SVDimpute, however, sometimes produced very poor results
and then the variance is large.

3.4 Effect of additional information
Figure 3 shows the estimation performance for (data A,
5%) and (data E, 5%) when additional samples were avail-
able. From this figure, we find that SVDimpute and BPCA
improved the estimation ability when utilizing the additional
information, while KNNimpute degraded the performance in
this case. It should be noted that the C-part data used in condi-
tions ‘A-AEC’ and ‘E-AEC’ contains a lot of missing entries,
and such ‘dirty’ data may be harmful for the selection process
of K-nearest neighbors in KNNimpute.

Figure 4 shows the missing value estimation ability for vari-
ous sample numbers: 10, 20, . . . , 200. The data sets were made
by clipping certain numbers of samples from (data I, 5%). As
the number of samples increased the information useful for the
imputation increased, which is the reason for the improvement
by SVDimpute and BPCA. The performance by KNNimpute,
however, did not improve much, possibly because the similar-
ity measure used in the method was not very suitable for cases
with a large number of missing values. When the number of
samples was small, KNNimpute exhibited better performance
than the others.

Figure 5 shows the estimation ability when gene expression
vectors with a lot of missing values were used as additional
information. A fixed set of missing entries in (data A + E),
5%) or (data I, 5%) were estimated by KNNimpute, SVD
impute and BPCA. Additional sets of gene expression vectors,
‘A’ including many (20%) missing values and ‘B’ including
extremely many (40%) missing values, were prepared for
(data A + E), 5%) and (data I, 5%) from the correspond-
ing original expression matrices. By adding such ‘dirty’ gene
expression vectors, the missing value estimation accuracy by
BPCA improved or did not degrade. Although the estima-
tion accuracy by SVDimpute did not degrade by additional
gene expression vectors, the algorithm often diverged when
K and/or the number of missing values was large. KNNimpute
sometimes degraded by adding the extremely ‘dirty’ data set,
possibly due to the similarity measure for determining KNN.
If there is a gene whose expression levels are missing for all
samples, for example, the similarity measure [Equation (5)]
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Fig. 3. Estimation ability (NRMSE) by BPCA, SVDimpute and
KNNimpute for (data A, 5%) and (data E, 5%). The other data sets
were used as additional information (samples). For example, in the
condition ‘A-AE’, the missing values in (data A, 5%) were estimated
by using (data E, 5%) as additional information. For KNNimpute and
SVDimpute, the best results by tuning the parameter K are shown.
In BPCA, K = D − 1 was used for every condition.
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Fig. 4. Estimation ability (NRMSE) by BPCA, SVDimpute and
KNNimpute. For SVDimpute and KNNimpute, the best results by
tuning the parameter K are shown.

says that this gene is the nearest from every gene even though
there is no information available for the imputation.

4 CONCLUSION
We found that BPCA performs much better than the exist-
ing methods for missing value estimation. This advantage is
prominent especially when the number of samples is large
(see Fig. 4). We assumed a PPCA model for expression pro-
file data. The model assumption, however, may introduce a
bias in the estimation as mentioned by (Troyanskaya et al.,
2001), because the assumed model may not account well
for the actual data generation process. Since BPCA assumes
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Fig. 5. Estimation ability (NRMSE) by BPCA, SVD and KNN with
various numbers of additional ‘dirty’ genes expression vectors. Solid
and dash lines denote that the additional genes have many (20%) or
extremely many (40%) missing values, respectively.

only a global covariance structure, the estimation with BPCA
may not be accurate if genes have dominant local similar-
ity structures. In such a case, KNNimpute will be suitable.
We consider, however, that any method, parametric or non-
parametric, assumes a model explicitly or implicitly and thus
cannot be completely free from introducing biases. Since
the estimation error is small in BPCA, we suggest that the
bias introduced by BPCA is small in comparison with those
introduced by the existing methods.

Our study assumes that missing values in an expression
matrix occur randomly and independently of other features in
the matrix (Hastie et al., 2001). This assumption may not be
valid in gene expression profile data. When control, objective,
or both types of expression levels are too small, the corres-
ponding data are treated as missing. In this case, the reason
for calling data missing is dependent on the character of the
gene. Due to this dependence, the estimation performance
might be either little or much worse for real missing values
than for artificial missing values. Missing values can be classi-
fied according to the reasons why they are treated as missing.
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In addition, there are cases where the existence of missing
values is in itself meaningful. In clinical fields, the data may
become missing by the dropout of a patient from a study (Shih,
2002). There are some characteristic types of flaws on DNA
microarrays (Troyanskaya et al., 2001). Since such missing
data have a certain reason to be missing, the estimated miss-
ing value should correlate to the reason. Within a Bayesian
framework, such reasons may be incorporated into a model as
a prior distribution, enabling a more accurate estimation.

We recommend using the BPCA missing value estima-
tion prior to further gene expression profile analyses. We
also recommend the following considerations when using the
BPCA estimation method:

• Do not neglect samples or genes with many missing val-
ues, before the missing value estimation. The BPCA
method uses the entire information in a given data set,
even though the information on a sample or a gene with
many missing values is relatively small. The estima-
tion ability is improved by including these samples or
genes (see Figs 3, 4 and 5). After the missing value
estimation, however, it might be prudent to omit unreli-
able samples and/or genes that originally contained many
missing values.

• Do not normalize the expression matrix before the miss-
ing value estimation process. According to our study
(data not shown), row-wise or column-wise normal-
ization always degrades the missing value estimation
ability.

Although our BPCA method was examined using cDNA
microarray data, applications to oligonucleotide array data,
reverse transcription–polymerase chain reaction data, and oth-
ers are straightforward. Moreover, our method can be applied
to various bioinformatics data.
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