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ABSTRACT
Motivation: Gene expression data often contain missing
expression values. Effective missing value estimation meth-
ods are needed since many algorithms for gene expression
data analysis require a complete matrix of gene array values.
In this paper, imputation methods based on the least squares
formulation are proposed to estimate missing values in the
gene expression data, which exploit local similarity structures
in the data as well as least squares optimization process.
Results: The proposed local least squares imputation method
(LLSimpute) represents a target gene that has missing values
as a linear combination of similar genes. The similar genes are
chosen by k -nearest neighbors or k coherent genes that have
large absolute values of Pearson correlation coefficients. Non-
parametric missing values estimation method of LLSimpute
are designed by introducing an automatic k -value estim-
ator. In our experiments, the proposed LLSimpute method
shows competitive results when compared with other imputa-
tion methods for missing value estimation on various datasets
and percentages of missing values in the data.
Availability: The software is available at http://www.cs.umn.
edu/˜hskim/tools.html
Contact: hpark@cs.umn.edu

1 INTRODUCTION
Microarray data analysis has been successfully applied in a
number of studies over a broad range of biological discip-
lines including cancer classification by class discovery and
prediction (Golub et al., 1999), identification of the unknown
effects of a specific therapy (Perou et al., 2000), identifica-
tion of genes relevant to a certain diagnosis or therapy (Cho
et al., 2003) and cancer prognosis (Shipp et al., 2002; van’t
Veer et al., 2002). Since multivariate supervised classification
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methods such as support vector machines (SVMs) (Vapnik,
1995), and multivariate statistical analysis methods such as
principal component analysis (PCA), singular value decom-
position (SVD) (Golub and van Loan, 1996; Alter et al., 2000)
and generalized SVD (GSVD) (Golub and van Loan, 1996;
Alter et al., 2003) cannot be applied to data with missing
values, the missing value estimation is an important prepro-
cessing step. Gene expression data sets often contain missing
values due to various reasons, e.g. insufficient resolution,
image corruption, dust or scratches on the slides or experi-
mental error during the laboratory process. Since it is often
very costly or time consuming to repeat the experiment, many
algorithms have been developed to recover the missing val-
ues (Troyanskaya et al., 2001; Oba et al., 2003; Friedland
et al., 2003). Moreover, estimating unknown elements in the
given matrix has many potential applications in the other
fields. There are several approaches for estimating the missing
values. Recently, for missing value estimation, the SVD-
based method (SVDimpute) and weighted k-nearest neighbors
imputation (KNNimpute) have been introduced (Troyanskaya
et al., 2001). It has been shown that KNNimpute performs
better on non-time series data or noisy time series data,
while SVDimpute works well on time series data with low
noise levels. Overall, the weighted k-nearest neighbor based
imputation provides a more robust method for missing value
estimation than the SVD-based method (Troyanskaya et al.,
2001).

Throughout the paper, we will use G ∈ R
m×n to denote a

gene expression data matrix with m genes and n experiments,
and assume m � n. In the matrix G, a row gT

i ∈ R
1×n

represents expressions of the i-th gene in n experiments:

G =



gT
1
...

gT
m


 ∈ R

m×n.
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A missing value in the l-th location of the i-th gene is denoted
as α, i.e.

G(i, l) = gi (l) = α.

For simplicity of algorithm description, all missing value
estimation algorithms mentioned in this paper are described
first assuming there is a missing value in the first position of
the first gene, i.e.

G(1, 1) = g1(1) = α,

then the general algorithms for our proposed missing value
estimation methods for DNA microarray expression data are
introduced.

The KNNimpute method (Troyanskaya et al., 2001) finds
k (k < m) other genes with expressions most similar to that
of g1 and with the values in their first positions not missing.
The missing value of g1 is estimated by the weighted aver-
age of values in the first positions of these k closest genes.
For the weighted average, the contribution of each gene is
weighted by the similarity of its expression to that of g1. In
the SVDimpute method (Troyanskaya et al., 2001), the SVD
of the matrix G′, which is obtained after all missing values
of the G are substituted by zero or row averages, is com-
puted. Then, using the t most significant eigengenes (Alter
et al., 2000) of G′, where the specific value of t is either
predetermined or determined based on datasets, a missing
value α in g1 is estimated by regressing this gene against the
t most significant eigengenes. Using the coefficients of the
regression, the missing value is estimated as a linear com-
bination of the values in the first position of t eigengenes.
When determining these regression coefficients, the missing
value g1(1) of g1 and the first values of the t eigengenes
are not used. The above procedure is repeated until the total
change of the matrix becomes insignificant. The computa-
tional complexity of SVDimpute is O(n2mj), where j is the
number of iterations performed before the threshold value is
reached. SVDimpute is useful for time series data with low
noise level. Recently, Bayesian PCA (BPCA), which simul-
taneously estimates a probabilistic model and latent variables
within the framework of Bayesian inference, has been suc-
cessfully applied to missing value estimation problems (Oba
et al., 2003). Also, a fixed rank approximation algorithm
(FRAA) (Friedland et al., 2003) using the SVD has been pro-
posed. However, FRAA could not outperform KNNimpute
even though it is more accurate than replacing missing values
with 0’s or with row means. More recently, Bø et al. (2004)
has introduced a missing value estimation method based on
the least squares principle, which utilizes correlations between
both genes and arrays, referred to as LSimpute.

In this paper, we introduce novel least squares based imputa-
tion methods, where a target gene that has missing values is
represented as a linear combination of similar genes. Rather
than using all available genes in the data, since only similar

genes based on a similarity measure are used, our method is
referred to as local least squares imputation (LLSimpute). As
similarity measures, both L2-norm and Pearson correlation
coefficients are investigated for comparison. We evaluate all
proposed imputation methods on the five datasets and com-
pare them with KNNimpute and an estimation method based
on BPCA for various percentages of missing values.

2 METHODS
There are two steps in the local least squares imputation. The
first step is to select k genes by the L2-norm or by Pearson
correlation coefficients. The second step is regression and
estimation, regardless of how the k genes are selected. A heur-
istic k parameter selection method is described in the Results
and discussion section.

2.1 Selecting genes
To recover a missing value α in the first location g1(1) of g1

in G ∈ R
m×n, the k-nearest neighbor gene vectors for g1,

gT
si

∈ R
1×n, 1 ≤ i ≤ k,

are found for LLSimpute based on the L2-norm (LLSim-
pute/L2). In this process of finding the similar genes, the first
component of each gene is ignored following the fact that
g1(1) is missing.

The LLSimpute based on the Pearson correlation coeffi-
cient (Pearson, 1894), referred to as LLSimpute/PC, takes
advantage of the coherent genes. When there is a missing
value in the first location of g1, the Pearson correlation coef-
ficient r1j between two vectors g′

1 = (g12, . . . , g1n)
T and

g′
j = (gj2, . . . , gjn)

T is defined as

r1j = 1

(n − 1)

n∑
k=2

(
g1k − ḡ1

σ1

) (
gjk − ḡj

σj

)
, (1)

where ḡj is the average of values in g′
j and σj is the SD of

these values. The components of g1 that correspond to missing
values are not considered in computing the coefficients. We
used the absolute values of the Pearson correlation coefficients
since the highly correlated but opposite signed components of
the genes, i.e r � −1.0, are also helpful in estimating miss-
ing values. In LLSimpute/PC, missing values in the target
genes are estimated by local least squares where highly cor-
related genes in the microarray data are selected based on the
Pearson correlation coefficients. First, all Pearson correlation
coefficients between g1 and the other genes are computed.
Then, to recover a missing value in the first location of g1,
G(1, 1) = g1(1) = α, the k genes with the largest Pearson
correlation coefficients in magnitude,

gT
si

∈ R
1×n, 1 ≤ i ≤ k,

are found for LLSimpute/PC.
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2.2 Gene-wise formulation of local least squares
imputation

As imputation can be performed regardless of how the k-genes
are selected, we present only the imputation based on L2-norm
for simplicity. Based on these k-neighboring gene vectors,
the matrix A ∈ R

k×(n−1) and the two vectors b ∈ R
k×1 and

w ∈ R
(n−1)×1 are formed. The k rows of the matrix A consist

of the k-nearest neighbor genes gT
si

∈ R
1×n, 1 ≤ i ≤ k, with

their first values deleted, the elements of the vector b consists
of the first components of the k vectors gT

si
, and the elements

of the vector w are the n − 1 elements of the gene vector g1

whose missing first item is deleted. After the matrix A, and
the vectors b and w are formed, the least squares problem is
formulated as

min
x

‖ATx − w‖2. (2)

Then, the missing value α is estimated as a linear combination
of first values of genes

α = bTx = bT(AT)†w, (3)

where (AT)† is the pseudoinverse of AT.
For example, assume that the target gene g1 has a missing

value in the first position among the total of six experiments.
If the missing value is to be estimated by the k similar genes,
the matrix A, and vectors b and w are constructed as




gT
1

gT
s1

...
gT

sk


 =

(
α wT

b A

)

=




α w1 w2 w3 w4 w5

b1 A1,1 A1,2 A1,3 A1,4 A1,5
...

...
...

...
...

...
bk Ak,1 Ak,2 Ak,3 Ak,4 Ak,5


 ,

where α is the missing value and gT
s1

, . . . , gT
sk

are genes similar
to gT

1 . From the second to the last components of the neighbor
genes, aT

i , 1 ≤ i ≤ k, form the i-th row vector of the matrix
A. The vector w of the known elements of target gene g1 can
be represented as a linear combination

w � x1a1 + x2a2 + · · · + xkak ,

where xi are the coefficients of the linear combination, found
from the least squares formulation (2). Accordingly, the
missing value α in g1 can be estimated by

α = bTx = b1x1 + b2x2 + · · · + bkxk .

Now, we deal with the case in which there are more than
one missing values in a gene vector. In this case, to recover

the total of q missing values in any locations of the gene g1,
first, the k-nearest neighbor gene vectors for g1,

gT
si

∈ R
1×n, 1 ≤ i ≤ k,

are found. In this process of finding the similar genes, the q

components of each gene at the q locations of missing values
in g1 are ignored. Then, based on these k neighboring gene
vectors, a matrix A ∈ R

k×(n−q) a matrix B ∈ R
k×q and a

vector w ∈ R
(n−q)×1 are formed. The i-th row vector aT

i of
the matrix A consists of the i-th nearest neighbor genes gT

si
∈

R
1×n, 1 ≤ i ≤ k, with its elements at the q missing locations

of missing values of g1 excluded. Each column vector of the
matrix B consists of the values of the j -th location of the
missing values (1 ≤ j ≤ q) of the k vectors gT

si
. The elements

of the vector w are the n − q elements of the gene vector g
whose missing items are deleted. After the matrices A and
B and a vector w are formed, the least squares problem is
formulated as

min
x

‖ATx − w‖2. (4)

Then, the vector u = (α1, α2, · · · , αq)
T of q missing values

can be estimated as

u =



α1
...

αq


 = BTx = BT(AT)†w, (5)

where (AT)† is the pseudoinverse of AT.
For example, assume that the target gene g1 has two missing

values in the 1st and the 6th positions among the total six
experiments. If the missing value is to be estimated by the
k similar genes, each element of the matrix A and B, and a
vector w are constructed as


gT
1

gT
s1

...
gT

sk


 =




α1 w1 w2 w3 w4 α2

B1,1 A1,1 A1,2 A1,3 A1,4 B1,2
...

...
...

...
...

...
Bk,1 Ak,1 Ak,2 Ak,3 Ak,4 Bk,2


 ,

where α1 and α2 are the missing values and gT
s1

, . . . , gT
sk

are
the k genes that are most similar to g1. The known elements
of w can be represented by

w � x1a1 + x2a2 + · · · + xkak ,

where xi are the coefficients of the linear combination, found
from the least squares formulation (4). And, the missing
values in g1 can be estimated by

α1 = B1,1x1 + B2,1x2 + · · · + Bk,1xk ,

α2 = B1,2x1 + B2,2x2 + · · · + Bk,2xk ,

where α1 and α2 are the first and second missing values in the
target gene.
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2.3 Experiment-wise formulation of local least
squares imputation

In this subsection, we introduce another possible least squares
formulation and illustrate relationship between these two least
squares formulations. Based on the matrix A and the vector
b presented in the previous subsection, the following least
squares problem for missing value estimation can also be
formulated:

min
y

‖Ay − b‖2. (6)

Then, the vector b of the known elements of the experi-
ment that has the missing value α as its first component
can be represented as a linear combination of other experi-
ments. Accordingly, the missing value α can be estimated as
a linear combination of values of the first components of the
experiments by

α = wTy = wTA†b, (7)

where A† is the pseudoinverse of A. The pseudoinverse A† of
A can be computed by

A† = [V1V2]
[

�−1
1 0
0 0

]
[U1U2]T

= V1�
−1
1 UT

1

from the SVD of A,

A = [U1U2]
[

�1 0
0 0

]
[V1V2]T = U1�1V

T
1 ,

where U1 ∈ R
k×r , �1 ∈ R

r×r , V1 ∈ R
n−1×r and r =

rank(�1) = rank(A).
Although the gene-wise formulation and the experiment-

wise formulation may seem to represent the missing value in
two different ways, the solutions are in fact the same due to
the following relations:

bTx = bT(AT)†w = (wTA†b)T = wTy. (8)

Therefore, we choose an imputation formulation of Equa-
tion (2) which represents a gene by a linear combination of
the other similar genes.

For the case in which there are more than one missing values
in a gene vector, the formulation for multiple missing value
estimation analogous to Equation (6) would be

min
Y

‖AY − B‖F , (9)

where F denotes the Frobenius norm. Then, the missing
values u = (α1, α2, · · · , αq)

T can be estimated as a linear
combination of values of w, i.e.

uT = wTY = wTA†B, (10)

where A† is the pseudoinverse of A. This vector u is identical
to that in Equation (5) which is obtained based on gene-wise

formulation since

BTx = BT(AT)†w = (wTA†B)T = Y Tw. (11)

Therefore, we chose an imputation formulation of Equa-
tion (4) which represents a gene by a linear combination of
the similar genes.

For estimating each missing value, we need to build the
matrices A and B and a vector w, and solve the least squares
problem of Equation (4). To take advantage of non-missing
entries of neighbor genes which have missing values, each
missing value is initially estimated by the gene-wise average.
If number of missing entries is much smaller than the number
of genes, the neighbor genes that contain missing value are
excluded when building the least squares systems. In this case,
the matrices A and B do not contain any estimated entries.
This process is helpful in achieving more accurate estima-
tion result since it circumvents possible errors generated from
pre-estimation by the row-averages.

3 RESULTS AND DISCUSSION

3.1 Datasets
Five microarray datasets have been used in our experiments.
The first dataset was obtained from α-factor block release that
was studied for the identification of cell-cycle regulated genes
in yeast Saccharomyces cerevisiae (Spellman et al., 1998).
We built a complete data matrix of 4304 genes and 18 exper-
iments (SP.ALPHA) that does not have any missing value to
assess missing value estimation methods. The second data-
set of a complete matrix of 4304 genes and 14 experiments
(SP.ELU) is based on an elutriation dataset (Spellman et al.,
1998). The 4304 genes originally had no missing values in
the α-factor block release set and the elutriation dataset. The
third dataset was from 784 cell-cycle-regulated genes, which
were classified by Spellman et al. (1998) into five classes, for
the same 14 experiments as the second data set. After remov-
ing all gene rows that have missing values, we built the third
data set of 474 genes and 14 experiments (SP.CYCLE). The
fourth dataset is from a study of response to environmental
changes in yeast (Gasch et al., 2001). It contains 6361 genes
and 156 experiments that have time-series of specific treat-
ments. A complete matrix of 2641 genes and 44 experiments
was formed after removing experimental columns that have
>8% missing values and then selecting gene rows that do
not have any missing value (GA.ENV). The fifth dataset is
the cDNA microarray data relevant to human colorectal can-
cer (CRC) (Takemasa et al., 2001). This dataset contains 758
genes and 205 primary CRCs that include 127 non-metastatic
primary CRCs, 54 metastatic primary CRCs to the liver and
24 metastatic primary CRCs to distant organs exclusive of
the liver, and 12 normal colonic epithelia (TA.CRC) (Oba
et al., 2003). This is a challenging dataset with multiple exper-
iments with no time course relationships. The SP.ALPHA,
SP.ELU and TA.CRC are the same datasets that were used in
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the study of BPCA (Oba et al., 2003). The SP.CYCLE dataset
was designed to test how much an imputing method can take
advantage of strongly correlated genes in estimating missing
values.

Given an original expression data matrix Go with mo-
genes × n-experiments from the Stanford Microarray
Database (SMD) (Sherlock et al., 2001), we prepared the
initial full matrixGi ∈ R

mi×n wheremi genes have no missing
values (mi ≤ mo). If there is no missing value in the original
matrix, then the initial matrix Gi is set to Go. Given an initial
expression data matrix Gi , certain percentage of the data ele-
ments of Gi are randomly selected and regarded as missing
values. The performance of the missing value estimation is
evaluated by normalized root mean squared error (NRMSE):

NRMSE =
√

mean[(yguess − yans)2] / std[yans] (12)

where yguess and yans are vectors whose elements are the
estimated values and the known answer values, respectively,
for all missing entries. The mean and the SD are calculated
over missing entries in the entire matrix. In KNNimpute, a
weighted average of the k-nearest neighbors is used as an
estimate for each missing value in the target gene. The sim-
ilarity between two genes is defined by the reciprocal of the
Euclidian distance calculated for non-missing components.
Then, the missing entry is estimated as an average weighted
by the similarity values.

3.2 A method for selection of the model
parameter k

The value for k in KNNimpute and the reduced rank in
SVDimpute are important model parameters to choose for
obtaining high performance. However, there is no theoretical
result for determining these parameters optimally. Similarly,
we need to determine the number of nearest neighbors for
LLSimpute/L2 and the number of coherent genes for LLSim-
pute/PC. In our experiments, the following heuristic algorithm
for estimating parameter k is used.

Assuming that there are q missing values in the target gene
g, all the gene vectors are sorted according to their similarity
to g,

g̃T
si

∈ R
1×n, 1 ≤ i ≤ m − 1,

where the gene g̃s1 is the most similar gene to g. Then
we estimate an artificial missing value in g using different
k-values. The vector w is defined based on the n−q elements
of the target gene vector g whose missing items are deleted
and the matrix B is formed by the values of j -th location of the
missing values (1 ≤ j ≤ q) of k similar genes g̃si

, 1 ≤ i ≤ k.
Now, assume that the first position of w has a missing value
and it needs to be estimated by various numbers of similar
genes. Let αtrue denote w1 which is in fact known. For the
least squares formulation, the rows of the matrix A consist

of ãi (2 : n − q)T for 1 ≤ i ≤ k and a vector w is set to be
w(2 : n − q).

For example, assume that the target gene g has two miss-
ing values in the 1st and 6th positions among the total six
experiments. Considering w1 as a missing value which is in
fact known, the matrix A and vectors w = (w2 w3 w4)

T and
b = (b1 . . . bk)

T are constructed from



gT
1

gT
s1

...
gT

sk


 =




miss α w2 w3 w4 miss
B1,1 b1 A1,2 A1,3 A1,4 B1,2

...
...

...
...

...
...

Bk,1 bk Ak,2 Ak,3 Ak,4 Bk,2


 ,

(13)

where gT
s1

, . . . , gT
sk

are the k genes similar to g1. Then, aT
i is

the i-th row vector of the matrix A, for 1 ≤ i ≤ k, and the
known elements of w can be represented by

w � x1a1 + x2a2 + · · · + xkak ,

where xi are the coefficients, found from the least squares
formulation

min
x

‖ATx − w‖2.

Finally, the value w1 = α in g1 can be estimated by

α = bTx = b1x1 + b2x2 + · · · + bkxk ,

and compared to the actual value w1. In the above, the k most
similar genes are used for estimating entire missing values in
the given matrix. Repeating these estimations using several
k-values, a k-value that produces the best estimation ability
for the artificial missing values can be found. If there are
many missing entries per each row, the above process can be
performed considering more than one non-missing positions
as missing values in order to obtain more reliable k-value.

This procedure decides a number of similar genes that show
good performance for estimating missing values using non-
missing elements. The k-value depends on the characteristic
of the given data matrix. The motivation of this procedures is
that the k-value that shows the best performance using known
elements of the matrix can be near an optimal k-value. The
gene that has missing values is represented as a linear combin-
ation of the k similar genes in the least squares formulations.
Hence, an optimal k-value is predicted by using the known
values in the same gene that has missing values.

We introduce two extended missing value estimation meth-
ods, LLSk/L2 and LLSk/PC, which perform LLSimpute/L2
and LLSimpute/PC, respectively, after predicting k-value
using the proposed model selection algorithm. Since LLSk/L2
and LLSk/PC automatically determine the only necessary
parameter k, they can be classified as non-parametric missing
value estimation methods like BPCA.
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Fig. 1. Comparison of the NRMSEs of various methods and effect of the number of genes for estimating missing values on SP.ALPHA dataset
of 4304 genes and 18 experiments and SP.ELU dataset of 4304 genes and 14 experiments. The 5% entries of each dataset were missing. The
results of the methods that do not depend on the number of genes are shown on the y-axis.

3.3 Experimental results
In Figure 1, we compared NRMSE of Equation (12) of
the missing value estimation methods discussed in this paper.
The SP.ALPHA and SP.ELU sets are the same datasets used in
the study of BPCA (Oba et al., 2003) and we obtained the same

NRMSE values for KNNimpute and BPCA as those presented
by Oba et al. (2003). The missing value estimation based
on BPCA showed good performance on the SP.ELU dataset.
However, LLSimpute/L2 and LLSimpute/PC outperformed
BPCA as well as KNNimpute when k is large.
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Fig. 2. Comparison of the NRMSEs of various methods and effect of the number of genes for estimating missing values on SP.CYCLE dataset
of 474 genes and 14 experiments and GA.ENV dataset of 2641 genes and 44 experiments. The 5% entries of each dataset were missing. The
results of the methods that do not depend on the number of genes are shown on the y-axis.

In Figure 2, overall, LLSimpute shows better performance
as the number of genes increases for estimating missing values
on the SP.CYCLE dataset. The NRMSE values of LLSimpute/
L2 and BPCA were 0.594 and 0.771, respectively. The
SP.CYCLE dataset has significant cluster structures. In this

case, LLSimpute showed the best performance among all
methods compared, while BPCA showed less accurate res-
ults than KNNimpute. The NRMSE values of LLSimpute and
BPCA on the GA.ENV dataset were 0.534 and 0.603, respect-
ively. From Figures 1 and 2, we confirmed that the k-value
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Fig. 3. Comparison of the NRMSEs against number of samples for four methods (KNNimpute, BPCA, LLSk/L2 and LLSk/PC) on TA.CRC
dataset.

estimation algorithm is producing appropriate k-values. In
Figures 1 and 2, as k increase, the NRMSE of LLSimpute/LS
first drops, then rise (but the top portions of the plots are trun-
cated), then drops again and stabilizes. The first drop and rise
can be explained by Equation (2). Getting more information
from a larger number of genes is responsible for the first drop.
As k increase, the matrix A of Equation (2) is getting to be
square, i.e. the number of rows of A is the same as the number
of columns. Then, the effect of the genes less similar to the
target gene become involved in the solution and the perform-
ance may become worse. As k keeps increasing, the square
structure of A is getting changed to the least squares struc-
ture, i.e. the number of rows of A is larger than the number of
columns. Then, the minimum norm solution of Equation (2)
is the same as the least squares solution of Equation (6) [see
Equation (8)]. The second big drop and stabilization can be
more easily explained by Equation (6). It shows that consider-
ing a sufficient number of genes is helpful in the least squares
problem.

To show the dependency of the performance with respect to
the number of experiments, the smaller datasets were prepared
by clipping a certain number of experiments from TA.CRC
dataset. Figure 3 shows the missing value estimation ability
for various experiment sizes: 20, 50, 100, 150 and 200. For
these experiments, the 5% missing entries were randomly gen-
erated from the smaller datasets of TA.CRC. As the number
of samples increased the information useful for the imputa-
tion increased. The results of KNNimpute were obtained
by choosing a k-value that provided the best performance

of KNNimpute in each test. The results for LLSk/L2 and
LLSk/PC were obtained from k-value estimation algorithm.
As reported in the study of BPCA (Oba et al., 2003), the per-
formance of KNNimpute did not improve much as the number
of samples increased. When the number of samples was small,
KNNimpute exhibited better performance than BPCA. The
advantage of KNNimpute for smaller numbers of samples is
in using local similarity. The advantage of BPCA for larger
numbers of samples is its ability to capture useful information
by a Bayesian optimization process. LLSimpute showed the
best performance even when the number of sample was small
since it uses the local similarity structures and optimization
process by the least squares.

Figure 4 shows the results for various percentage (1, 5, 10,
15 and 20%) of missing entries on SP.CYCLE and GA.ENV
datasets. For KNNimpute, the number of genes (k) was chosen
to be the one that exhibited the best performance in each
test. For various percentages of missing entries, LLSimpute
showed the best performance consistently. In KNNimpute,
the Euclidean distance seems to be an accurate norm since the
log-transformation of the data reduces the effect of outliers
on gene similarity determination (Troyanskaya et al., 2001).
In Figures 3 and 4, we observed the similar result that the
Euclidean distance norm is slightly better than the Pearson
correlation coefficient for computing gene similarity in the
local least squares imputation methods.

To show how the methods respond to higher noise levels, six
noisy datasets were prepared based on SP.CYCLE by adding
random noise of various levels, with normal distribution.
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Fig. 4. Comparison of the NRMSEs against percentage of missing entries for four methods (KNNimpute, BPCA, LLSk/L2 and LLSk/PC)
on SP.CYCLE and GA.ENV datasets.

After building matrices of random numbers with the normal
distribution of mean µ = 0 and various SD (σ = 0.01,
0.05, 0.1, 0.15, 0.2 and 0.25), each noise matrix was added
to the data matrix of SP.CYCLE with the 5% of missing

values in order to build the six noisy datasets. Figure 5
shows that the performance of BPCA varies relatively largely
dependent on the noise level. The performance results of
LLSk/L2 and LLSk/PC were less sensitive to the noise level.
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Fig. 5. Comparison of the NRMSEs with respect to noise levels. We added artificial noise with normal distribution of a mean µ = 0 and
various SD (σ = 0.01, 0.05, 0.1, 0.15, 0.2 and 0.25) to SP.CYCLE dataset.

KNNimpute showed robustness against the noise when the
SD was less <0.15.

3.4 Comparison to other methods
In KNNimpute (Troyanskaya et al., 2001), after obtaining the
k genes gsi

which are most similar to the target gene g, it
estimates the gene vector g∗ by

g∗ = ω1gs1 + ω2gs2 + · · · + ωkgsk

ω1 + · · · + ωk

,

where ωi is the similarity between g and gsi
. In implementing

of KNNimpute, we used

ωi = 1/‖w − ai‖2, (14)

where w and ai are the sub-vectors of g and gsi
, respect-

ively, where the missing components of g are deleted. If
w = ai , then a missing value in the target gene g is estim-
ated in KNNimpute as the value in the corresponding location
of the vector gsi

. In LLSimpute, the coefficients of the lin-
ear combination of non-missing part of the similar genes ai ,
1 ≤ i ≤ k, are optimized by the least squares solution instead
of using the similarity measure of Equation (14).

It should be noted that LLSimpute and LSimpute (Bø et al.,
2004) use different approaches for imputation, even though
both use least squares. According to Figures 1 and 5, the
Pearson correlation based method is no better than the L2-
norm based method. The LSimpute (Bø et al., 2004) uses
only the Pearson correlation in selecting genes and arrays.
Moreover, Bø et al. focused on testing only small k values

(k = 5, 10, 15, 20 and 25) without k-value estimator in order to
compare with KNNimpute by using the fact that Troyanskaya
et al. (2001) reported the best results for k between 10 and 20.
However, our experiments indicate that the optimal k-value
can be larger than 25 in our least squares formulation.

The BPCA method (Oba et al., 2003) consists of three
components: (1) principal component (PC) regression, (2)
Bayesian estimation and (3) iterations based on expectation-
maximization (EM). In PC regression, the missing part u in a
gene expression vector g is estimated from the observed part
w by using the principal axis vectors. Let s denote the number
of the principal axis vectors. Then, the known elements can
be represented by

w � ς1pobs
1 + ς2pobs

2 + · · · + ςspobs
s ,

where ςi are the coefficients of the linear combination and
pobs

i are the observed parts of principal axis vectors. After
obtaining the coefficients by the least squares, the missing
part is estimated as

u = ς1pmiss
1 + ς2pmiss

2 + · · · + ςspmiss
s ,

where pmiss
i are the missing parts of principal axis vectors.

This is the conceptual process of BPCA even though it takes
advantage of the sophisticated Bayesian estimation and EM-
line repetitive algorithm. The SVDimpute and BPCA showed
similar results when s is small, since they employ the same PC
regression process, while BPCA showed better performance
than SVDimpute when s is larger since BPCA automatically
reduces the redundant principal axes (Oba et al., 2003).
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The major difference between BPCA and LLSimpute is that
LLSimpute is an optimization process based on local sim-
ilar structure while BPCA is an optimization method based
on PCs. The BPCA achieves an improvement over SVDim-
pute by incorporating Bayesian optimization and LLSimpute
achieves an improvement over KNNimpute by incorporating
the least squares. In the study of Troyanskaya et al. (2001), it
was shown that KNNimpute is more robust and accurate than
SVDimpute. The SVDimpute has several weaknesses. The
SVDimpute solution relies on entire genes and experiments
in the dataset and does not consider local structure. In addition,
for non-time series data, a clear expression pattern may not
exist. For noisy data, expression patterns for smaller groups
of genes may not be represented well by the dominant eigen-
genes. Based on these observations, it is possible to expect
that LLSimpute can exhibit highly competitive performance,
which is corroborated in our experiments.

4 CONCLUSION
We have successfully developed local least squares imputation
methods for the missing value estimation of DNA microarray
gene expression data. Once the genes similar to the target
gene with missing values are identified based on Euclidean
distance or Pearson correlation coefficient, missing values
can be estimated by representing the target gene as a lin-
ear combination of the similar genes or by representing the
target experiment that has missing values as a linear combin-
ation of related experiments. Non-parametric missing values
estimation methods of LLSk/L2 and LLSk/PC are designed
by introducing automatic k-value estimator. The proposed
missing value estimation methods can be applied to various
biological and chemical experiment data.

Even though BPCA showed better performances than
KNNimpute for all datasets tested in the study of BPCA
(Oba et al., 2003), when genes have dominant local similar-
ity structures, BPCA may be less accurate than KNNimpute
(Oba et al., 2003). However, our local least squares imputa-
tion methods take advantage of the local similarity structures
in addition to the optimization process by the least squares,
which is one of the most important advance of LLSimpute.
Although we cannot guarantee that LLSimpute will always
show better performance than BPCA and KNNimpute, our
experiments suggest that the LLSimpute is a robust and
accurate missing value estimation method.
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