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a b s t r a c t

The presence of Missing Values in a data set can affect the performance of a classifier constructed using
that data set as a training sample. Several methods have been proposed to treat missing data and the one
used more frequently is the imputation of the Missing Values of an instance.
In this paper, we analyze the improvement of performance on Radial Basis Function Networks by

means of the use of several imputation methods in the classification task with missing values. The study
has been conducted using data sets with real Missing Values, and data sets with artificial Missing Values.
The results obtained show that EventCovering offers a very good synergy with Radial Basis Function
Networks. It allows us to overcome the negative impact of the presence of Missing Values to a certain
degree.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Real data are not usually perfect – they contain wrong data,
incomplete or vague (Pyle, 1999). Hence, it is usual to find missing
data in most of the information sources used. There are two main
reasonswhy an attribute value ismissing: either the valuewas lost
(e.g. it was erased) or the valuewas not important. The detection of
incomplete data is easy in most cases: we can look for null values
in the data set. However, this is not always true, since Missing
Values (MV) can appear with the form of outliers or even wrong
data (i.e. out of boundaries) (Pearson, 2005).
Missing data is a common problem in statistical analysis (Little

& Rubin, 1987). Rates of missing data less than 1% are generally
considered trivial, 1%–5% manageable. However, a rate of 5%–15%
requires sophisticatedmethods to handle, andmore than 15%may
have severe impact on any kind of interpretation and harm the
model’s results.
Missing data treatment should be carefully thought through,

otherwise bias might be introduced into the knowledge induced.
Depending on thewayMVs have been produced, our approachwill
be different. Several methods have been proposed in the literature
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to treat missing data (Acuna & Rodriguez, 2004; Batista & Monard,
2003). Missing data can be treated in three different ways (Li,
Deogun, Spaulding, & Shuart, 2004):

• The first approach is to discard the examples with missing data
in their attributes. Moreover, the case of deleting attributes
with elevated levels of missing data is included in this category
too.
• Other approach is the use of maximum likelihood procedures,
where the parameters of a model for the complete data are
estimated, and used later for impute by means of sampling.
• Finally, the imputation of MVs is a class of procedures that aims
to fill in the MVs with estimated ones. In most cases, data sets
attributes are not independent from each other. Thus, through
the identification of relationships among attributes, MVs can be
determined. This is the most commonly used approach.

Missing data has a similar impact on neural networks as it
does on other types of classification algorithms, such as K-Nearest
Neighbour. These similarities include variance underestimation,
distribution distortion, and correlation depression. As Kros, Lin,
and Brown (2006) states: ‘‘By training the network with cases
containing complete data only, the internal weights developed
with this type of training set cannot be accurately applied to a test
set containing missing values later’’, and has been deeper studied
in Markey, Tourassi, Margolis, and DeLong (2006). So we must
impute both training and test data with the same method.
We assume that the MVs are well specified, and that we know

where they appear. The study has been conducted using data sets
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with real MVs and data sets with artificial MVs. There is a wide
family of imputation methods, from mean imputation to those
which analyze the relationships between attributes. We analyze
the use of different imputation strategies versus deletion case and
the total lack of missing data treatment.
We will focus our attention on Radial Basis Function Networks

(RBFNs), in the task of classification with MVs and the use of
imputation methods for them. To this end, we present a snapshot
of the state-of-the-art in the literature about MVs and Artificial
Neural Networks. Moreover, a specific analysis of imputation
methods for the RBFN models is the main contribution, where the
EventCovering method stands out. From the results obtained we
can observe that:

• Imputation methods produce significant improvements in the
RBFNs results.
• A statistical analysis confirms a good synergy of RBFNs with the
EventCovering method (Wong & Chiu, 1987).

The rest of the paper is organised as follows. In Section 2,
we describe the imputation methods that we have used in the
study and the RBFN models. Section 3 describes the experimental
framework, along with the results and their analysis. Finally, in
Section 4 we discuss our conclusions.

2. Preliminaries:Missing values, imputationmethods and their
use in Neural Networks

In this section we briefly introduce the missing data random-
ness, describe the imputation methods used in the study, their
parameters, and present a short review on the use of imputation
methods for Neural Networks. We also describe the RBFN models
used in this paper.

2.1. Randomness of missing data

Depending on the reason why MVs have been produced,
our approach to handle them will be different. Missing data
randomness can be divided into three classes, as proposed by Little
and Rubin (1987):

• Missing completely at random (MCAR). This is the highest level
of randomness. It occurs when the probability of an instance
(case) having a missing value for an attribute depends neither
on the known values nor on the missing data.
• Missing at random (MAR). When the probability of an instance
having a missing value for an attribute may depend on the
known values, but not on the value of the missing data itself.
• Not missing at random (NMAR). When the probability of an
instance having a missing value for an attribute could depend
on the value of that attribute.

It is important to state the randomness of the MVs, since it
will allow the use of imputation methods. In particular, we only
consider MCAR and MAR situations (see Section 3.1), which are
consistent with imputation techniques.

2.2. Description of imputation methods

In this subsection, we briefly describe the imputation methods
that we have used. Imputation methods replace MVs with
estimated values based on information available in the data set.
There are many options varying from simplistic methods such
as the mean imputation, to more robust methods based on
relationships among attributes.
A short description of some widely used imputation methods

which we have employed follows.
• Do Not Impute (DNI). As its name indicates, all the missing data
remain un-replaced, so the networks must use their default
MVs strategies.Wewant to verifywhether imputationmethods
allow the Neural Networksto perform better than using the
original data sets. As a guideline,we find inGrzymala-Busse and
Hu (2000) a previous study of imputation methods. However,
no Machine Learning method is used after the imputation
process.
• Case deletion or Ignore Missing (IM). Using this method, all
instances with at least one MV are discarded from the data set.
• Global Most Common Attribute Value for Symbolic Attributes,
and Global Average Value for Numerical Attributes (MC)
(Grzymala-Busse & Goodwin, 2005). This method is very
simple: for nominal attributes, theMV is replacedwith themost
common attribute value; numerical values are replaced with
the average of all values of the corresponding attribute.
• Concept Most Common Attribute Value for Symbolic At-
tributes, and Concept Average Value for Numerical Attributes
(CMC) (Grzymala-Busse & Goodwin, 2005). As stated inMC, we
replace theMVby themost repeated one if nominal or themean
value if numerical, but considering only the instanceswith same
class as the reference instance.
• Imputationwith K-Nearest Neighbor (KNNI) (Batista &Monard,
2003). Using this instance-based algorithm, every time we find
aMV in a current instance, we compute the k nearest neighbors
and impute a value from them. For nominal values, the most
common value among all neighbors is taken, and for numerical
values we will use the average value. Indeed, we need to
define a proximitymeasure between instances.Wehave chosen
Euclidean distance (it is a case of a Lp norm distance), which is
usually used.
• Weighted imputationwith K-Nearest Neighbor (WKNNI) (Troy-
anskaya et al., 2001). TheWeightedK-NearestNeighbormethod
selects the instances with similar values (in terms of distance)
to a considered one, so it can impute asKNNI does. However, the
estimated value now takes into account the different distances
to the neighbors, using a weighted mean or the most repeated
value according to the distance.
• K-means Clustering Imputation (KMI) (Li et al., 2004). Given
a set of objects, the overall objective of clustering is to divide
the data set into groups based on similarity of objects, and to
minimize the intra-cluster dissimilarity. In K-means clustering,
the intra-cluster dissimilarity is measured by the addition of
distances among the objects and the centroid of the cluster
which they are assigned to. A cluster centroid represents the
mean value of the objects in the cluster. Once the clusters have
converged, the last process is to fill in all the non-reference
attributes for each incomplete object based on the cluster
information. Data objects that belong to the same cluster are
taken as nearest neighbors of each other, andwe apply a nearest
neighbor algorithm to replace missing data, in a way similar to
that of K-Nearest Neighbor Imputation.
• Imputation with Fuzzy K-means Clustering (FKMI) (Acuna &
Rodriguez, 2004; Li et al., 2004). In fuzzy clustering, each data
object xi has amembership functionwhich describes the degree
which this data object belongs to a certain cluster vk. In the
process of updating membership functions and centroids, we
take into account only complete attributes. In this process, we
cannot assign the data object to a concrete cluster represented
by a cluster centroid (as done in the basic K-mean clustering
algorithm), because each data object belongs to all K clusters
with different membership degrees. We replace non-reference
attributes for each incomplete data object xi based on the
information about membership degrees and the values of
cluster centroids.
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• Support Vector Machines Imputation (SVMI) (Feng, Chen, Yin,
Yang, & Chen, 2005) is a SVM regression based algorithm to fill
inmissing data, i.e. set the decision attributes (output or classes)
as the condition attributes (input attributes) and the condition
attributes as the decision attributes, so we can use SVM
regression to predict the missing condition attribute values. In
order to do that, first we select the examples in which there
are no missing attribute values. In the next step we set one of
the condition attributes (input attribute), some of those values
are missing, as the decision attribute (output attribute), and
the decision attributes as the condition attributes by contraries.
Finally, we use SVM regression to predict the decision attribute
values.
• EventCovering (EC) (Wong & Chiu, 1987). Based on the work of
Wong et al., a mixed-mode probability model is approximated
by a discrete one. First, they discretize the continuous compo-
nents using a minimum loss of information criterion. Treating
a mixed-mode feature n-tuple as a discrete-valued one, the au-
thors propose a new statistical approach for synthesis of knowl-
edge based on cluster analysis. This method has the advantage
of requiring neither scale normalization nor ordering of dis-
crete values. By synthesis of the data into statistical knowledge,
they refer to the following processes: (1) synthesize and detect
from data inherent patterns which indicate statistical interde-
pendency; (2) group the given data into inherent clusters based
on these detected interdependency; and 3) interpret the under-
lying patterns for each clusters identified. The method of syn-
thesis is based on author’s event–covering approach. With the
developed inference method, we are able to estimate the MVs
in the data.
• Regularized Expectation-Maximization (EM) (Schneider, 2001).
Missing values are imputed with a regularized expectation
maximization (EM) algorithm. In an iteration of the EM
algorithm, given estimates of the mean and of the covariance
matrix are revised in three steps. First, for each record with
missing values, the regression parameters of the variables
with missing values on the variables with available values are
computed from the estimates of themean and of the covariance
matrix. Second, the missing values in a record are filled in
with their conditional expectation values given the available
values and the estimates of the mean and of the covariance
matrix, the conditional expectation values being the product of
the available values and the estimated regression coefficients.
Third, themean and the covariancematrix are re-estimated, the
mean as the sample mean of the completed data set and the
covariance matrix as the sum of the sample covariance matrix
of the completed data set and an estimate of the conditional
covariance matrix of the imputation error. The EM algorithm
starts with initial estimates of the mean and of the covariance
matrix and cycles through these steps until the imputed values
and the estimates of themean and of the covariancematrix stop
changing appreciably from one iteration to the next.
• Singular Value Decomposition Imputation (SVDI) (Troyanskaya
et al., 2001). In this method, we employ singular value decom-
position to obtain a set of mutually orthogonal expression pat-
terns that can be linearly combined to approximate the values
of all attributes in the data set. In order to do that, first we es-
timate the MVs with the EM algorithm, and then we compute
the Singular Value Decomposition and obtain the eigenvalues.
Now we can use the eigenvalues to apply a regression over the
complete attributes of the instance, to obtain an estimation of
the MV itself.
• Bayesian Principal Component Analysis (BPCA) (Oba et al.,
2003). This method is an estimationmethod for missing values,
which is based on Bayesian principal component analysis.
Although themethodology that a probabilisticmodel and latent
Table 1
Methods parameters.

Method Parameter

SVMI Kernel= RBF
C = 1.0
Epsilon= 0.001
Shrinking= No

KNNI, WKNNI K = 10

KMI K = 10
Iterations= 100
Error= 100

FKMI K = 3
Iterations= 100
Error= 100
m = 1.5

EC T = 0.05

EM Iterations= 30
Stagnation tolerance= 0.0001
Inflation factor= 1
Regression type=multiple ridge regression

SVDI Iterations= 30
Stagnation tolerance= 0.005
Inflation factor= 1
Regression type=multiple ridge regression
Singular vectors= 10

variables are estimated simultaneously within the framework
of Bayes inference is not new in principle, the actual BPCA
implementation that makes it possible to estimate arbitrary
missing variables is new in terms of statistical methodology.
Themissing value estimationmethod based on BPCA consists of
three elementary processes. They are (1) principal component
(PC) regression, (2) Bayesian estimation, and (3) an expectation
maximization (EM)-like repetitive algorithm.

A more extensive and detailed description of this method can
be found in the web page http://sci2s.ugr.es/MVDM, and a PDF file
with the original source paper descriptions is present in the web
page formerly named ‘‘Imputation of Missing Values. Methods’
Description’’.
There are more specialized methods, some derived from

Bioinformatics. In the reviews of Farhangfar, Kurgan, and Pedrycz
(2004); Grzymala-Busse and Hu (2000); Schafer and Graham
(2002) we can find a good compilation of imputationmethods that
are not considered in this study due to their specialization.

2.3. Parameters used

In Table 1 we show the parameters used by each imputation
method which has been used in this work (in the case of the
method would use them). The values chosen are recommended by
their respective authors.

2.4. A short review on the use of imputation methods for Neural
Networks

We can find a study of the influence of MVs on Neural
Networks in Ennett, Frize, and Walker (2001), where the MVs
were replaced with ‘‘normal’’ values (i.e. replaced by zero) as well.
In Yoon and Lee (1999) a specific method for training Neural
Networkswith incomplete data was proposed, called Training-
Estimation-Training (train with complete instances, impute the
MV with the network, and train with the whole data set).
Besides, it is possible to find some work in areas related to

Neural Networks. In Lim, Leong, and Kuan (2005) the authors
propose a hybrid Neural Networks, in which the missing values
are replaced with four Fuzzy C-Means technique based strategies.

http://sci2s.ugr.es/MVDM
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After data set completion, the FAM module is applied. Self
Organizing Maps (SOMs) are not capable of handling MV as Wang
(2003) states. He proposes a SOM-based fuzzy map model for
data mining with incomplete data. This model has two key
components: translation of observations with missing data into
fuzzy observations, and histogram-style fuzzy maps. This is not
an imputation scheme, but a method which is capable of handling
MVs for itself. With SVMs, Pelckmans, De Brabanterb, Suykensa,
and De Moor (2005) contemplates an alternative approach where
no attempt is made to reconstruct the values which are missing,
but only the impact of the missingness on the outcome and the
expected risk of the SVM ismodeled explicitly. This is possible only
when MVs are MCAR.
Artificial Neural Networks have been used as imputation

methods as well in some specific applications. In Sun and Kardia
(2008), the authors employ an Artificial Neural Networks based
method for imputing the MVs artificially generated over genotype
data. Pisoni, Pastor, and Volta (2008) also use Artificial Neural
Networks for interpolating missing satellite data. A comparison
betweenAuto-associativeNeural Networkswith genetic algorithm
combination, and a variant of the Expectation-Maximization
algorithm can be found in Nelwamondo, Mohamed, and Marwala
(2007). Mileva-Boshkoska and Stankovski (2007) employ Radial
Basis Function Networks for imputing ozone concentrations and
SVMs as well.

2.5. Radial Basis Function Networks: Short outlook and description

The RBF architecture (Musavi, Ahmed, Chan, Faris, & Hummels,
1992) consists of a simple two layered network (a hidden layer and
an output layer), each layer is fully connected to the one following.
As we have mentioned, the hidden layer is composed of a

number of nodes, RBF nodes, with radial activation functions,
which shall be taken, in this analysis, as Gaussian functions. Two
parameters are associated with each RBF node, the ‘‘centre’’ and
‘‘width’’. Both of these quantities refer to properties of theGaussian
function. Associated with the hidden to output connections, are
conventional signal multipliers: the weights. The final output
processing unit merely yields a weighted sum of its inputs.
Their use in the literature is extensive, and its application varies

from face recognition (Er, Wu, Lu, & Hock-Lye, 2002) to time series
prediction (Harpham & Dawson, 2006). The RBFNs are under con-
tinuously research, sowe can find abundant literature about exten-
sions and improvements of RBFNs learning andmodeling (Billings,
Wei, & Balikhin, 2007; Ghodsi & Schuurmans, 2003; Lázaro, San-
tamaría, & Pantaleón, 2003; Wallace, Tsapatsoulis, & Kollias, 2005;
Wei & Amari, 2008). Recently, we can find some work analyzing
the behavior of RBFNs (Eickhoff & Ruckert, 2007; Liao, Fang, & Nut-
tle, 2003; Yeung, Ng, Wang, Tsang, & Wang, 2007) and improving
their efficiency (Arenas-Garcia, Gomez-Verdejo, & Figueiras-Vidal,
2007; Schwenker, Kestler, & Palm, 2001). As we can see from the
recent and past literature, we can conclude that RBFNs are awidely
employed and well-known model which is actually used. Regard-
ing MVs treatment in RBFNs there are some contributions, using
the RBFNs to predict the MVs (Uysal, 2007) or obtaining the Ra-
dial Basis Function from a Vector Quantization of the data set with
MVs (Lendasse, Francois, Wertz, & Verleysen, 2005). Also, the im-
pact of MVs in the RBFNs has been considered in Morris, Boddy,
and Wilkins (2001), but only in a case study.
The experimentation in this paper is conducted by using the

following models of RBFNs:

• Radial Basis Function Network (RBFN) (Broomhead & Lowe,
1988; Buhmann, 2003). It is well suited for function approx-
imation and pattern recognition due to its simple topological
structure and its ability to reveal how learning proceeds in an
explicit manner. A RBF is a function which has been built into
a distance criterion with respect to a centre. Different basis
functions like thin-plate spline functions, multiquadratic func-
tions, inverse multiquadratic functions and Gaussian functions
have been proposed for the hidden-layer neurons, but nor-
mally the selected one is the Gaussian function. Compared with
other types of Artificial Neural Networks (ANNs), such as feed-
forward networks, the RBFN requires less computation time for
learning and also has amore compact topology. RBFs have been
applied in the area of ANNs where they may be used as a re-
placement for the sigmoidal hidden layer transfer character-
istic in multi-layer perceptrons. The original RBF method has
been traditionally used for strict multivariate function interpo-
lation (Powell, 1987) and for this fact, it requires as many RBF
neurons as data points. Broomhead and Lowe (1988) removed
this strict interpolation restriction and provided a neural net-
work architecture where the number of RBF neurons can be far
less than the data points. A RBFN mainly consists of two layers,
one hidden-layer and one output layer.
Each input example x is applied to all hidden neurons. The

neuron i computes the function

hi(x) = exp
[
(x− ui)2

2σ 2i

]
(1)

where ui is the center of the neuron i, and hi the output of such
neuron. The RBFN has only one output (i.e. j has only one value),
and it is defined by

z(x) =

k∑
i
hi(x)wi

k∑
i
hi(x)

. (2)

The termwi refers to the neuron weight, and k is the number of
neurons in the hidden layer. In order to initialize the neurons in
the network, we use a K-means clustering algorithm. The centre
of the neuron is set equal to the centroid of the cluster, and
its radius equal to the mean of the distance between the given
center and the N = 2 nearest neurons:

σi =

N∑
j=1

d(ui, uj)
N

. (3)

The network is initialized with a K-means clustering algorithm.
In a similar fashion to the imputation method KMI, we set
the number of clusters equal to the number of neurons. The
initial centroids are set to random chosen examples, which are
all different. By successive iterations, the neurons are adjusted
using the Euclidean distance until the centroids (i.e. the
neurons) do not change.
Once the centers and radius of the neurons has been

initialized, the output’s weight matrix can be optimized by
means of supervised training. For each train example xi and
expected output ti, we compute the output of the hidden layer’s
neurons, the vector h. Next, we compute the output of the
network y and compare it with the expected output t , and
adjust each weight inw to reduce the Mean Square Error (MSE)
with the Least Mean Squares algorithm (LMS). This method
implies the use of gradient descent (delta rule) and adjusting
the weights:

wij(n+ 1) = wij(n)+ η(tj − yj)hi (4)

where η is the learning rate (η � 1.0). This process is repeated
for each train example, until the max iteration limit is reached.
The center and radius of the neurons is adjusted as well to
minimize the output error. We use the error derivative with
respect to these parameters, in a fashion similar to that of
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backpropagation. With i = 1, . . . ,m hidden neurons, j =
1, . . . , p inputs and k = 1 output, we update both parameters
simultaneously from iteration n to n+ 1 with:

uij(n+ 1) = uij(n)+ ηc

[∑
k
(tk − yk)wik

]
hi(xj − uij(n))

(σi(n))2
(5)

σi(n+ 1) = σi(n)+ ησ

[∑
k
(tk − yk)wik

]
hi ‖ x− ui(n) ‖2

(σi(n))3
. (6)

The number of hidden-layer neurons is defined by the user a
priori. In our study, we have fixed the number of neurons at
50. The η is set to 0.3. Both ηc and ησ are set to 1

maxIterations .
The parameter maxIterations denote the maximum number of
iterations of the network training algorithm, and is established
to 10.
• RBFN Decremental (RBFND) (Yingwei, Sundararajan, &
Saratchandran, 1997). In the classical approach described
above, the number of hidden units is fixed a priori based
on the properties of input data. A significant contribution
that overcomes these drawbacks was made through the
development of an algorithm that adds hidden units to the
network based on the novelty of the new data. One drawback
of this approach is that once a hidden unit is created, it can
never be removed. The authors have proposed an algorithm
that adopts the basic idea of a pruning strategy. The pruning
strategy removes those hidden neurons which consistently
make little contribution to the network output. Pruning
becomes imperative for the identification of nonlinear systems
with changing dynamics, because failing to prune the network
in such cases will result in numerous inactive hidden neurons,
being present as the dynamics which cause their creation
initially, become nonexistent. If inactive hidden units can be
detected and removed while learning proceeds, a more well-
suited network topology can be constructed. Also, when the
neural networks are employed for control, the problem of over-
parametrization should be avoided.
The network initialization is the same that the simple RBFN

model described previously:We use a K-means algorithm to set
the initial position of the neurons in the problem space. Next,
we apply an initial adjust with the LMS algorithm explained in
the RBFN model with 10 iterations. This procedure allow us to
obtain a set of initial weights. We compute the mean wj of the
weights from all neurons for the output j as

wj =
1
N

N∑
i=1

wij. (7)

Since we are using the RBFN network for classification
problems, only one output is considered.
The pruning will be applied over the neurons with a low

weight compared to the computed mean. For every neuron, if
its weight wij is lower than the threshold ρ × wj, the neuron
is removed from the network. The threshold ρ should be a low
value. A high valuewill delete almost all neurons of the net, and
prevent the algorithm from finish.
Now we apply gradient descendent on the remaining

neurons over uij and wij. This will re-adjust the neurons
positions and their weights, trying to fill up the gaps produced
by the pruning strategy.
These combined pruning–adjusting steps are repeated over

the data set and the network. When the network stays with the
same neurons for λ iterations, the network training finishes.
In our study, we provide this model with 50 initial neurons,

a ρ percentage of 0.1 under the average of the weights used to
decide whether a neuron must be removed or not, and a learn-
ing factor α = 0.3 of the Least Mean Square (LMS) algorithm
for adjusting the neurons. The limit iteration λ to achieve con-
vergence has been empirically set to 15.
• RBFN Incremental (RBFNI) (Plat, 1991). This approach builds a
RBFN composed of one hidden layer and one output layer. This
topography is similar to non-incremental RBFN’s one, butwe do
not know the number of neurons of the hidden layer. This idea
is similar to RBFN Decremental, but in this model we will not
set any limit to the hidden layer’s neurons number. We use the
Resource-Allocating Network (RAN) algorithm, which consists
of a network, a strategy for allocating new units, and a learning
rule for refining the network. The units on the first layer store
a particular region in the input space. When the input moves
away from the stored region the response of the unit decreases.
As we mentioned in the RBFN model, we employ a Gaussian
function to achieve this behaviour. The Eq. (1) is used to obtain
the response of a single neuron, and (2) describes how to
compute the network output. In Plat (1991) the author employs
a default output γ parameter, which is added to the result of
Eq. (1), but we do not apply it to the classification problem.
The network starts with a blank slate: no patterns are yet

stored. As patterns are presented to it, the network chooses to
store some of them. At any given point the network has a cur-
rent state,which reflects the patterns that have been storedpre-
viously. The allocator identifies a pattern that is not currently
well represented by the network and allocates a new unit that
memorizes the pattern. The output of the new unit extends to
the second layer. After the new unit is allocated, the network
output is equal to the desired output y. Let the index of this new
unit be n.
The peak (center) of the response of the newly allocated unit

is set to the novel input example xi:

un = xi. (8)

Theweight associated to this neuron to the output layer is set to
the difference between the output of the network and the novel
output,

wn = y− z(xi). (9)

The width of response (the neuron’s radius) of the new unit is
proportional to the distance from the nearest stored neuron to
the novel input vector,

σn = κ ‖ xj − unearest ‖ (10)

where κ is an overlap factor. As κ grows larger, the responses of
the units overlapmore andmore. The RAN uses a two-part nov-
elty condition. An input–output pair (xj, yj) is considered novel
if the input is far away from existing centers,

‖ xj − unearest ‖> δ(t) (11)

and if the difference between the desired output and the output
of the network is large

‖ yj − z(xj) ‖> ε. (12)

Typically ε is a desired accuracy of output of the network. Er-
rors larger than ε are immediately corrected by the allocation
of a new unit, while errors smaller than ε gradually minimized
using gradient descent. The distance δ(t) is the scale of reso-
lution that the network is fitting at the tth input presentation.
The learning starts with δ(t) = δmax; which is the largest length
scale of interest, typically the size of the entire input space of
non-zero probability density. The distance δ(t) shrinks until the
it reaches δmin, which is the smallest length scale of interest. The
network will average over features that are smaller than δmin.
We used a function:

δ(t) = max(δmax exp(−t/τ), δmin) (13)
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Table 2
Data sets used for experimentation.

Data set Abbreviation # Ex. # Atts. # Classes % MV % Ex. with MV

Horse-colic HOC 368 24 2 21.82 98.10
Bands BAN 540 40 2 4.63 48.70
Hepatitis HEP 155 20 2 5.39 48.39
House-Votes-84 HOV 434 17 2 5.30 46.54
Mammographic MAM 961 6 2 2.81 13.63
Mushroom MUS 8124 23 2 1.33 30.53
Autos AUT 205 26 6 1.11 22.44
Crx CRX 689 16 2 0.61 5.37
Post-operative POP 90 9 3 0.37 3.33
Breast BRE 286 10 2 0.31 3.15
Wisconsin WIS 699 10 2 0.23 2.29
Cleveland CLE 303 13 5 0.14 1.98
Iris+MV IRI 150 4 3 10.00 32.67
Pima+MV PIM 768 9 2 10.00 50.65
Wine+MV WIN 178 14 3 10.00 70.22
Australian+MV AUS 690 15 2 10.00 70.58
New-thyroid+MV NTH 215 6 3 10.00 35.35
Ecoli+MV ECO 336 8 8 10.00 48.21
Satimage+MV SAT 6435 37 7 10.00 87.80
German+MV GER 1000 21 2 10.00 80.00
Magic+MV MAG 1902 11 2 10.00 58.20
Shuttle+MV SHU 2175 10 7 10.00 55.95
where τ is a decay constant. At first, the system creates a coarse
representation of the function, then refines the representation
by allocating units with smaller and smaller widths. Finally,
when the system has learned the entire function to the desired
accuracy and length scale, it stops allocating new units alto-
gether.
The two-part novelty condition is necessary for creating a

compact network. If only condition (11) is used, then the net-
workwill allocate units instead of using gradient descent to cor-
rect small errors. If only condition (12) is used, then fine-scale
units may be allocated in order to represent coarse-scale fea-
tures, which is wasteful. By allocating new units the RAN even-
tually represents the desired function ever more closely as the
network is trained. Fewer units are needed for a given accuracy
if the hidden-layer outputs hi(xj), the output-level outcome
z(xi), and the thresholds γi are adjusted to decrease the error:

Ξ =‖ yj − z(xj) ‖2 . (14)

We use the Widrow-Hoff LMS algorithm to decrease the error
whenever a new unit is not allocated, as Yingwei states:

∆z(xj) = α(yj − z(xj))xj. (15)

In addition, we adjust the centers of the responses of units to
decrease error:

∆uj = 2
α

σj
(xk − uj)hj(xk)[(yj − z(xk)) · wj]. (16)

Eq. (16) is derived from the gradient descent and Eq. (1). Eq. (16)
also has an intuitive interpretation. Units whose outputs would
cancel the error have their centers pulled towards the input.
Units whose outputs would increase the error have their cen-
ters pushed away from the input.
This method tries to find the correct number of neurons for

a given data set, without an initial limitation such as in the
RBFNmodel (which has its neurons number fixed) and the RBFN
Decremental model (which also has a maximum number of
neurons fixed a priori). However, if δ is too low, we can find that
our network overfits the training data. The model that we have
used is set with α = 0.3, δmax = 0.5, δmin = 0.1 and ε = 0.1. κ
is set to 1.

The parameters of the RBFNmodels have been empirically esti-
mated in order to optimize the performance of RBFN in classifica-
tion problems analyzed, without tuning them individually for each
data set.
3. Experimental study: Imputation methods

In this sectionwe describe the experimentswe have performed.
First, the data sets used and the setup of our experiments are
described. Next, the obtained results are shown with an analysis
of them. Finally, a specific statistical study on the behavior of
EventCoveringmethod is done.We include a graphical study of this
EventCovering analysis.

3.1. Experimentation framework

We have selected a group of 22 data sets taken from the UCI
repository (Asuncion & Newman, 2007). In Table 2, we summarize
their properties. The column labeled as ‘‘% MV’’ indicates the
percentage of all values of the data set which are missing. The
column labeled as ‘‘% Ex. with MV’’ refers to the percentage of
examples in the data set which have at least one MV.
Their origin is described as follows:

• We have selected 12 data sets which have MVs in a ‘‘natural’’
way. The percentage range of MVs varies from 20% to 0.1%. We
cannot know anything about the randomness ofMVs in the first
12 data sets, so we assume they are distributed in aMARway.
• We have used 10 classical data sets with induced MVs (last ten
rows in the Table 2). We have generated a 10% of the data set
values as MVs in the training partition ‘‘artificially’’ in a MCAR
way. The reason for inducing MVs only in the training partition
is thatwe onlywant to discard information in the training stage,
and affect the test task the least. With this configuration we can
see how effective is the imputation to the unaffected instances
of test.

For the experiments, we have used 10-fold cross validation.
Since the training of the RBFNs is not deterministic, we have
repeated each experiment 5 times per partition, each time with
different seed, also randomly generated too. At the end, we have
50 executions of the model with each data set and imputation
method. The imputationmethod uses the training partition to infer
the required knowledge and relations between attributes. Then it
is applied in both training and test partitions. Therefore, the test
partition in each case is not used to impute the MVs.
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Table 3
RBFN test accuracy

AUT BRE CLE CRX WIS BAN

IM 32.78± 10.03 71.92 ± 7.84 34.14± 10.59 66.09± 7.15 97.12± 2.50 69.41± 7.21
EC 41.20± 8.33 71.34± 6.45 46.92 ± 13.01 84.54 ± 4.54 97.43 ± 2.65 68.11± 4.92
KNNI 29.42± 8.09 70.72± 7.21 33.68± 10.68 67.18± 7.34 96.97± 2.76 71.93± 5.14
WKNNI 29.06± 7.09 69.74± 7.96 33.84± 9.63 66.11± 6.19 96.91± 2.83 71.78± 5.00
KMI 29.96± 8.87 70.76± 6.55 34.07± 9.84 65.81± 5.89 96.85± 2.86 72.26± 5.77
FKMI 28.46± 7.06 71.12± 7.53 33.82± 9.55 66.61± 6.43 96.97± 2.85 73.00± 4.16
SVMI 30.11± 6.99 71.49± 6.95 33.09± 10.06 67.30± 7.21 96.91± 2.80 73.41 ± 5.70
EM 43.32 ± 8.90 71.39± 5.91 34.01± 10.13 64.22± 6.01 96.82± 2.87 70.11± 4.64
SVDI 42.07± 9.74 71.58± 6.87 34.65± 10.22 62.10± 6.97 97.00± 2.70 70.63± 5.21
BPCA 40.41± 7.29 69.63± 4.65 26.32± 6.52 51.97± 6.33 45.38± 3.50 56.96± 3.79
MC 30.32± 7.67 70.39± 6.96 35.64± 10.54 66.90± 6.68 97.03± 2.78 72.41± 4.29
CMC 29.29± 7.37 71.63± 7.24 36.23± 10.60 66.71± 6.02 96.94± 2.83 71.89± 4.98
DNI 27.73± 7.72 71.06± 7.88 34.17± 10.51 66.81± 6.48 96.85± 2.89 71.70± 5.57

HOC HOV MAM POP HEP MUS

IM 40.00± 48.99 95.45± 4.40 79.62± 5.53 68.81± 11.22 81.71 ± 8.99 99.63 ± 0.39
EC 79.59 ± 7.64 95.15± 3.93 82.42 ± 4.98 70.00± 9.75 78.03± 7.57 99.59± 0.26
KNNI 59.50± 6.10 94.88± 3.63 79.36± 5.19 70.22± 11.43 75.24± 7.97 99.54± 0.27
WKNNI 59.55± 5.69 95.07± 3.67 78.88± 4.53 69.33± 9.57 76.03± 7.91 99.45± 0.49
KMI 59.13± 6.54 95.06± 4.04 79.15± 4.94 69.78± 10.43 77.25± 5.22 99.56± 0.30
FKMI 59.33± 6.10 94.97± 3.54 79.76± 4.80 68.89± 10.66 77.67± 4.52 99.57± 0.28
SVMI 59.06± 6.72 96.12 ± 3.48 80.98± 4.96 70.44 ± 9.06 79.89± 6.85 99.53± 0.29
EM 60.22± 6.90 91.86± 5.81 79.76± 5.59 68.67± 12.11 75.71± 5.55 99.44± 0.36
SVDI 59.84± 5.58 91.77± 5.49 79.34± 4.78 69.78± 10.90 75.13± 6.79 99.43± 0.34
BPCA 57.71± 6.27 49.51± 6.01 50.59± 5.39 56.44± 17.05 79.37± 2.25 50.84± 0.68
MC 60.17± 5.49 95.20± 3.72 79.07± 4.57 69.11± 9.76 77.35± 5.49 99.57± 0.26
CMC 59.66± 6.12 96.02± 4.17 81.13± 4.77 67.56± 11.51 77.08± 7.82 99.59± 0.21
DNI 59.07± 6.05 95.20± 3.76 79.92± 4.32 68.44± 11.19 74.78± 6.52 99.44± 0.33

IRI PIM WIN AUS NTH ECO

IM 90.27± 10.35 71.57± 3.69 65.29± 10.26 65.88± 5.39 87.65± 5.36 19.94± 3.87
EC 94.40 ± 6.16 71.89± 4.76 96.52 ± 4.01 85.71 ± 4.39 92.13 ± 4.26 51.43 ± 13.24
KNNI 93.87± 7.04 72.49 ± 5.40 66.69± 10.49 66.75± 5.66 90.45± 5.96 21.73± 3.11
WKNNI 92.40± 7.54 72.38± 4.83 65.65± 9.13 66.75± 4.85 88.40± 7.10 20.78± 3.67
KMI 91.73± 8.39 71.51± 5.39 67.82± 8.83 65.91± 4.77 89.48± 6.48 22.87± 2.33
FKMI 86.13± 10.65 71.80± 4.97 65.13± 10.77 66.29± 4.41 88.48± 6.55 22.02± 3.56
SVMI 94.40± 5.23 71.57± 4.67 69.79± 9.19 67.13± 4.85 90.82± 5.36 22.40± 3.38
EM 89.73± 8.45 71.24± 5.29 65.41± 9.33 63.36± 4.45 89.68± 6.38 25.43± 8.58
SVDI 88.53± 10.59 71.68± 4.43 62.88± 8.86 61.19± 4.42 89.02± 6.45 23.49± 5.62
BPCA 33.47± 1.63 65.04± 4.67 28.10± 2.57 51.10± 5.54 65.15± 3.18 22.15± 2.58
MC 94.27± 5.81 71.94± 5.44 68.12± 5.94 66.41± 5.29 88.69± 5.93 22.23± 2.71
CMC 94.40± 5.87 71.62± 4.68 67.25± 7.98 66.55± 4.67 90.93± 5.74 21.91± 2.89
DNI 91.47± 7.66 71.85± 4.53 67.55± 10.20 66.29± 5.72 89.52± 6.10 20.68± 3.80

SAT GER MAG SHU

IM 59.97± 4.77 62.54± 5.62 75.68± 3.37 88.81± 2.83
EC 62.67± 4.69 72.26 ± 3.39 77.13 ± 3.53 97.26 ± 3.00
KNNI 67.34± 2.73 67.52± 4.31 76.35± 2.85 90.26± 3.83
WKNNI 67.00± 3.01 68.26± 3.75 76.10± 2.55 90.14± 3.62
KMI 68.29± 2.95 67.96± 3.55 75.86± 3.37 89.77± 2.03
FKMI 69.68 ± 2.16 68.24± 3.42 75.84± 3.02 89.30± 4.45
SVMI 69.38± 2.74 67.44± 4.03 76.37± 2.74 89.45± 4.31
EM 17.28± 8.76 68.52± 3.45 74.11± 3.31 82.54± 5.13
SVDI 19.02± 8.15 68.12± 3.53 73.97± 3.01 82.06± 3.42
BPCA 16.53± 0.79 64.12± 5.19 61.96± 1.54 62.90± 3.61
MC 69.41± 2.83 67.92± 3.89 75.76± 2.58 87.81± 3.70
CMC 69.46± 2.30 66.60± 3.54 76.39± 2.97 88.95± 4.33
DNI 45.54± 5.22 67.36± 4.03 76.51± 2.97 86.50± 4.47
3.2. Experiments and analysis

In this sectionwe present the experimental results, and analyze
them. We have summarized the percentage of well-classified
instances in test. We have 50 runs of each problem (5 times
per partition), the mean of these 50 experiments is shown as
a representative value, and the standard deviations have been
computed. We present the obtained results in Tables 3–5, a table
per each RBFNmodel. The highest accuracy value is represented in
bold, emphasizing the best method of a given data set.
From our study, we can point out the following:
• DNI (Do Not Impute) method is almost never the best method.
This method informs us about the relevance of MV in the
attributes.
• IM (Ignore instances with MVs) method has a very poor
performance aswell. Sometimes, the deletion of instances leads
the RBFN method not to adjust itself to certain classes, since
the information that describes them has been erased from the
data set. In these situations, the results of the test accuracy are
even poorer than the DNI method. However, data sets with a
low percentage ofMVs show a low disadvantage of this method
from the rest.
• Simple methods as MC and CMC are competitive and can
surpass more sophisticatedmethods. However, the use of these
methods introduces bias in the data, thus the RBFN model can
be penalized.
• The clustering methods based on K-Means and K-NN have
an average performance, not always better than DNI or
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Table 4
RBFN decremental test accuracy.

AUT BRE CLE CRX WIS BAN

IM 29.09± 12.13 62.01± 10.92 34.99± 13.70 59.32± 8.15 88.15± 11.11 56.03± 10.32
EC 46.82 ± 13.71 62.16± 10.42 43.78 ± 15.53 76.39 ± 7.57 92.73 ± 6.03 58.74± 8.94
KNNI 25.41± 11.22 62.89± 11.00 34.00± 11.47 59.72± 6.40 86.41± 12.50 60.41± 9.42
WKNNI 25.02± 9.51 64.50± 8.40 31.52± 11.34 59.16± 7.59 85.00± 16.21 60.70± 9.03
KMI 25.08± 10.49 62.53± 7.85 34.87± 12.51 59.29± 8.02 87.58± 11.75 62.81± 5.92
FKMI 25.18± 9.91 62.92± 9.49 33.61± 11.61 59.56± 7.86 88.27± 10.18 60.52± 8.45
SVMI 25.07± 9.77 64.54± 9.06 35.02± 12.41 60.79± 7.06 91.71± 5.46 62.67± 6.38
EM 33.87± 12.08 64.76± 8.90 34.90± 12.63 58.18± 7.29 91.13± 5.45 60.67± 7.06
SVDI 33.73± 12.35 62.95± 9.64 33.98± 11.91 59.81± 7.68 86.84± 10.99 63.00± 8.66
BPCA 29.87± 11.00 70.99 ± 8.52 33.08± 9.61 49.61± 6.23 46.33± 5.69 50.67± 6.97
MC 26.91± 11.38 62.84± 10.30 35.05± 11.31 57.11± 8.86 87.23± 10.15 60.44± 9.01
CMC 29.19± 9.42 65.19± 8.01 35.83± 11.44 59.46± 8.65 88.42± 11.98 63.00 ± 8.41
DNI 23.44± 11.43 62.86± 10.61 38.40± 12.30 60.42± 7.80 90.79± 8.53 59.30± 8.51

HOC HOV MAM POP HEP MUS

IM 40.00± 48.99 87.98± 10.74 78.15± 5.49 59.89± 16.53 81.20 ± 10.05 84.26± 15.62
EC 66.80 ± 11.15 88.07± 11.54 78.94± 5.29 58.00± 15.76 74.45± 11.95 86.59± 15.00
KNNI 60.98± 5.66 88.92± 9.33 76.49± 4.75 52.00± 17.84 62.01± 16.16 86.71± 13.28
WKNNI 59.46± 5.30 87.40± 13.08 76.34± 6.25 59.33± 16.72 65.09± 15.24 85.93± 13.89
KMI 58.58± 6.24 86.69± 10.86 76.49± 5.84 60.89 ± 13.74 63.74± 15.60 86.31± 10.61
FKMI 60.87± 6.01 90.21 ± 9.65 77.44± 5.22 56.67± 16.37 66.19± 12.51 84.14± 14.29
SVMI 58.55± 6.69 88.14± 12.66 77.55± 5.34 53.78± 17.69 71.37± 15.76 88.40 ± 11.39
EM 61.20± 4.73 83.37± 12.07 77.38± 5.46 58.44± 14.37 60.93± 18.23 85.56± 11.71
SVDI 60.75± 7.12 84.43± 12.08 77.61± 5.94 56.00± 14.22 62.68± 15.89 86.63± 12.34
BPCA 55.11± 7.50 50.99± 6.38 51.03± 4.71 46.67± 17.36 70.33± 12.54 50.81± 1.17
MC 60.72± 6.22 83.09± 16.46 76.55± 5.00 54.44± 18.36 64.97± 13.58 86.64± 12.25
CMC 59.41± 6.23 85.75± 14.19 79.25 ± 4.74 57.11± 16.48 69.64± 17.33 86.85± 13.80
DNI 58.86± 6.04 86.33± 11.81 76.82± 4.89 60.44± 15.74 66.67± 13.93 86.39± 13.15

IRI PIM WIN AUS NTH ECO

IM 92.93± 6.02 63.44± 9.37 66.84± 11.65 57.48± 6.02 77.30± 12.25 38.94± 11.65
EC 94.40 ± 5.05 68.74 ± 5.31 89.75 ± 9.91 78.35 ± 10.44 82.77± 16.19 43.38± 13.38
KNNI 93.73± 5.40 67.92± 6.36 66.89± 12.66 57.83± 7.57 80.01± 12.33 41.53± 7.54
WKNNI 92.27± 6.02 65.79± 6.77 66.01± 11.90 58.29± 7.28 79.52± 12.01 38.37± 11.02
KMI 91.47± 7.55 67.51± 7.36 68.90± 11.56 57.80± 6.95 79.60± 11.16 37.85± 12.02
FKMI 92.93± 6.72 66.04± 6.93 64.65± 12.31 56.06± 6.76 78.95± 10.81 39.04± 11.13
SVMI 94.27± 5.50 63.98± 8.21 69.20± 10.80 58.78± 6.09 81.76± 10.67 41.06± 10.42
EM 90.27± 9.35 66.19± 9.48 52.78± 13.09 54.46± 8.13 78.12± 15.60 40.02± 9.17
SVDI 91.07± 7.61 67.11± 5.93 57.88± 12.85 55.97± 6.86 77.61± 13.88 44.46 ± 9.24
BPCA 33.33± 0.00 66.59± 8.31 28.78± 3.51 49.65± 5.55 64.86± 8.15 38.44± 7.69
MC 94.27± 6.11 65.24± 5.55 64.04± 12.96 58.64± 7.72 83.31 ± 13.40 39.07± 11.14
CMC 93.73± 5.56 66.12± 7.74 67.85± 10.30 59.25± 7.22 81.03± 9.78 42.29± 8.22
DNI 92.40± 8.11 63.93± 9.11 63.63± 10.17 56.49± 7.41 78.46± 12.87 36.42± 14.05

SAT GER MAG SHU

IM 33.25± 8.05 60.26± 5.12 64.56± 9.94 75.42± 17.14
EC 35.55± 12.40 63.32± 7.26 69.09 ± 10.17 87.45 ± 11.38
KNNI 38.47± 9.37 68.68 ± 2.49 63.74± 10.47 76.42± 16.53
WKNNI 36.84± 9.26 68.04± 3.19 62.75± 10.38 74.02± 16.85
KMI 37.93± 10.11 67.54± 4.15 63.95± 9.63 69.13± 18.36
FKMI 33.50± 9.02 66.92± 5.44 64.90± 8.77 73.45± 15.11
SVMI 38.82 ± 10.82 67.10± 3.67 64.46± 8.64 73.73± 12.91
EM 23.63± 10.36 67.10± 3.40 64.13± 8.11 66.84± 16.96
SVDI 24.36± 10.27 66.50± 6.01 64.59± 9.26 61.22± 21.72
BPCA 15.63± 3.04 64.40± 8.63 57.78± 7.18 50.98± 12.03
MC 36.86± 10.08 66.80± 5.39 62.58± 9.75 70.51± 14.42
CMC 37.35± 8.98 67.86± 3.14 64.74± 8.36 78.16± 12.78
DNI 30.43± 9.83 67.98± 6.73 62.66± 11.28 65.05± 19.37
IM, and sometimes surpassed by simple methods like mean
substitution.
• SVMI method does not perform very well, despite of the
RBF Kernel we have chosen. This method appears to be very
dependent on the data set.
• EM method does not perform as well as the best method, but
it also never leads to the worse accuracy. Compared to SVDI, it
obtains better results, although SVDI is based on EM imputation
method.
• BPCA has a very poor performance sometimes. Except for RBFN
Incremental in certain cases, their results are below the average.
• Finally, EC is the best method in many data sets. It is the best
13 times for RBFN, 11 times for RBFND and 13 times for RBFNI.
It offers good stability in each data set, and can surpass the
accuracy in more than 10% in some data sets respect to other
imputation methods.

As a summary from the previous analysis we can observe
that DNI is not the best option, since it can be improved by
many methods, which are capable of capture the relationships
between values of the instance. The use of case deletion (i.e. IM)
is discouraged too, since it rarely outperforms the results of the
imputation methods, and can seriously harm the test accuracy.
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Table 5
RBFN incremental test accuracy.

AUT BRE CLE CRX WIS BAN

IM 36.69± 10.01 66.45± 8.48 35.33± 10.74 62.94± 5.38 96.02± 3.31 74.02± 7.61
EC 67.65± 9.77 61.75± 7.87 54.00 ± 8.05 81.49 ± 4.08 96.23 ± 2.71 75.96 ± 5.97
KNNI 34.52± 8.59 63.76± 7.13 35.89± 8.07 63.38± 5.18 95.66± 2.75 74.93± 6.43
WKNNI 34.56± 12.16 65.83± 8.87 35.46± 9.40 62.28± 5.95 95.77± 2.80 75.59± 5.96
KMI 34.23± 12.90 65.05± 6.19 34.61± 9.00 63.90± 4.93 96.20± 2.52 75.59± 6.30
FKMI 35.27± 11.66 65.63± 7.37 34.59± 9.96 63.69± 5.17 95.54± 4.02 74.70± 5.18
SVMI 36.60± 11.01 64.72± 7.88 35.74± 7.78 63.56± 6.29 96.20± 2.61 75.22± 6.05
EM 46.58± 10.17 64.33± 7.10 35.57± 9.61 63.15± 5.72 96.03± 2.46 75.41± 5.34
SVDI 46.56± 12.12 64.16± 8.27 35.75± 9.78 61.23± 5.42 95.88± 3.13 75.74± 6.57
BPCA 76.96 ± 9.51 94.39 ± 3.85 37.48± 8.95 51.97± 3.42 45.21± 3.25 57.41± 5.98
MC 34.45± 10.05 63.42± 8.13 36.10± 8.89 63.75± 5.44 95.83± 2.92 75.15± 5.12
CMC 36.72± 10.80 63.62± 7.37 36.60± 8.22 64.42± 5.74 95.85± 2.46 75.67± 6.73
DNI 32.52± 10.81 65.86± 7.36 35.36± 9.46 63.41± 5.64 96.00± 3.04 75.78± 4.88

HOC HOV MAM POP HEP MUS

IM 40.00± 48.99 95.42± 3.90 76.19± 4.49 59.44± 17.51 77.70 ± 13.04 100.00 ± 0.00
EC 75.71 ± 6.13 94.78± 4.04 79.46 ± 6.15 60.00± 15.56 75.33± 11.08 100.00 ± 0.02
KNNI 57.41± 5.70 94.23± 4.06 75.40± 4.20 59.11± 16.40 58.65± 13.77 100.00 ± 0.00
WKNNI 56.40± 8.25 94.50± 4.37 75.65± 4.41 62.67 ± 16.14 61.15± 14.23 100.00 ± 0.02
KMI 60.84± 8.31 94.64± 3.73 75.19± 4.85 60.89± 13.74 61.41± 13.15 99.99± 0.03
FKMI 58.02± 8.21 94.46± 3.65 75.73± 4.83 60.00± 16.33 58.11± 13.04 100.00 ± 0.02
SVMI 55.94± 7.59 94.73± 4.07 76.41± 4.57 60.89± 16.52 74.87± 13.53 100.00 ± 0.00
EM 60.12± 7.37 90.76± 6.33 75.40± 5.09 60.00± 17.07 63.25± 13.89 100.00 ± 0.00
SVDI 57.90± 6.99 90.66± 5.89 76.20± 4.53 58.89± 15.60 67.30± 12.19 99.99± 0.04
BPCA 54.59± 5.09 50.20± 7.36 50.11± 4.39 43.78± 17.41 73.67± 3.25 50.84± 0.68
MC 57.90± 6.82 94.64± 4.16 74.97± 4.09 60.22± 17.08 62.88± 13.56 100.00 ± 0.02
CMC 60.10± 8.51 95.66 ± 3.76 76.92± 5.13 58.44± 16.60 73.21± 10.39 99.99± 0.03
DNI 57.96± 8.16 94.18± 3.67 76.05± 4.36 62.00± 16.04 62.19± 13.19 100.00 ± 0.00

IRI PIM WIN AUS NTH ECO

IM 94.67± 5.66 65.98± 6.38 64.87± 11.53 59.68± 5.55 87.10± 7.87 50.34± 12.45
EC 94.13± 4.92 70.26 ± 4.73 87.06 ± 17.67 82.43 ± 4.79 90.91± 5.09 67.70 ± 7.18
KNNI 94.67± 4.42 67.44± 6.70 71.40± 8.20 59.83± 6.72 87.80± 8.28 54.26± 10.69
WKNNI 94.53± 4.36 65.08± 7.59 70.65± 8.89 60.72± 5.89 87.67± 6.69 54.40± 10.10
KMI 95.20± 5.17 65.94± 6.37 68.90± 9.18 58.81± 6.77 87.36± 7.65 54.16± 12.20
FKMI 95.20± 5.34 65.83± 5.57 69.92± 10.18 59.57± 6.14 88.02± 7.03 49.53± 11.89
SVMI 94.67± 6.11 64.72± 5.87 72.65± 8.85 59.25± 5.91 88.84± 6.05 57.06± 10.95
EM 94.67± 5.96 67.31± 5.13 56.69± 13.34 59.97± 5.38 86.32± 7.70 52.04± 10.02
SVDI 94.00± 7.45 64.56± 6.03 58.42± 14.04 60.00± 5.55 86.08± 8.08 51.65± 10.10
BPCA 33.33± 0.00 99.19± 0.82 33.06± 2.10 47.80± 6.56 69.62± 1.86 35.48± 5.83
MC 95.60± 4.54 63.93± 6.10 72.66± 9.29 59.74± 5.73 86.37± 7.72 50.87± 12.55
CMC 94.67± 5.33 67.30± 5.23 72.83± 9.31 61.10± 5.78 90.93 ± 5.89 56.11± 9.75
DNI 95.73 ± 4.57 66.73± 6.69 68.51± 10.59 60.17± 5.24 88.19± 6.47 53.55± 13.18

SAT GER MAG SHU

IM 60.94± 3.16 53.98± 5.00 71.42± 3.63 93.23± 3.47
EC 76.82± 1.51 66.74 ± 5.18 76.20 ± 3.97 97.57 ± 5.32
KNNI 76.46± 2.74 55.64± 5.42 71.03± 3.25 95.42± 2.50
WKNNI 76.86± 2.50 57.30± 4.79 72.84± 3.20 95.58± 1.54
KMI 77.03± 2.82 56.06± 6.03 71.22± 3.39 95.17± 2.05
FKMI 77.44± 3.49 56.98± 4.14 71.58± 3.54 95.71± 1.78
SVMI 79.35± 2.17 57.02± 5.75 72.87± 3.32 95.68± 1.54
EM 57.45± 6.68 55.64± 7.36 69.48± 3.60 92.35± 3.72
SVDI 57.54± 7.01 56.94± 5.11 70.82± 3.84 93.82± 2.93
BPCA 18.38± 0.88 59.74± 4.30 64.85± 0.32 65.37± 1.96
MC 77.19± 2.19 56.74± 5.79 71.62± 3.15 95.31± 1.72
CMC 79.62 ± 1.74 57.12± 5.41 71.82± 4.10 95.73± 1.53
DNI 64.04± 3.00 56.90± 5.47 72.60± 3.92 95.11± 1.87
EC has been capable of offering an outstanding performance in
comparison with the other imputation models.

3.3. Statistical and graphical analysis of the EventCovering method

We have proceeded to a statistical analysis in order to establish
the significance degree of differences in performance between the
EC method and the other imputation methods. We have applied
a non-parametric statistical test (Děmsar, 2006; García & Herrera,
2008), theWilcoxon Signed Rank Test.We distinguish between the
results obtained by the data sets with natural MVs and the data
setswith inducedMVs. The obtained results for EC versus the other
methods can be found in Table 6 for the data setswith naturalMVs,
and Table 7 for the data sets with induced MVs.
As we can see from Tables 6 and 7, EC is the best method in
almost all comparisons with statistical significance of α = 0.05.
There exist some exceptions:

• IM has no significant differencewith EC for the RBFN and RBFNI
models in the data sets with natural MVs.
• SVMI has no significant difference with EC for RBFN in the data
sets with natural MVs. It also has a statistical significance with
α = 0.1 in RBFNDmethod in both natural and artificialMV data
sets.
• MC presents no significant difference with EC in the RBFN
method for the data setswith naturalMVs. For the artificial data
sets,MC has statistical significance with α = 0.1 in the RBFND
method.
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Table 6
Wilcoxon signed rank test results for EC (natural MVs).

RBFN RBFN decremental RBFN incremental
R− R+ p-value R− R+ p-value R− R+ p-value

IM 57 21 0.158 66 12 0.034 59.5 18.5 0.110
KNNI 68 10 0.023 68 10 0.023 71.5 6.5 0.013
WKNNI 70 8 0.015 66 12 0.034 65.5 12.5 0.041
KMI 70 8 0.015 65 13 0.041 67 11 0.028
FKMI 70 8 0.015 68 10 0.023 69.5 8.5 0.022
SVMI 53 25 0.272 61 17 0.084 64.5 13.5 0.050
EM 66 12 0.034 66 12 0.034 67.5 10.5 0.013
SVDI 64 14 0.050 69 9 0.019 71.5 6.5 0.008
BPCA 76 2 0.004 75 3 0.005 67 11 0.028
MC 68 10 0.230 72 6 0.010 68.5 9.5 0.021
CMC 63.5 14.5 0.050 64 14 0.050 68 10. 0.023
DNI 69 9 0.019 66 12 0.034 63.5 12.5 0.041
Table 7
Wilcoxon signed rank test results for EC (artificial MVs).

RBFN RBFN decremental RBFN incremental
R− R+ p-value R− R+ p-value R− R+ p-value

IM 55 0 0.005 55 0 0.005 54 1 0.007
KNNI 48 7 0.037 43 12 0.114 53 2 0.009
WKNNI 48 7 0.037 49 6 0.028 52 3 0.013
KMI 49 6 0.028 48 7 0.037 52 3 0.013
FKMI 50 5 0.022 51 4 0.017 52 3 0.013
SVMI 48.5 6.5 0.038 46 9 0.059 50 5 0.022
EM 55 0 0.005 52 3 0.013 54 1 0.007
SVDI 55 0 0.005 51 4 0.017 55 0 0.005
BPCA 55 0 0.005 54 1 0.007 51 4 0.017
MC 48 7 0.037 46 9 0.059 52 3 0.013
CMC 48.5 6.5 0.038 44 11 0.093 48 7 0.037
DNI 55 0 0.005 52 3 0.013 54 1 0.007
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Fig. 1. EC vs. IM.

• Finally, CMC has a statistical significance with α = 0.1 for the
artificial data sets in the RBFND method.

These results confirm the previous analysis obtained from the
result tables and figures, ECmethod is the best among all presented
imputationmethods inmost cases for theRBFNmodels considered.

Finally we show graphically that EC method has got an
outstanding performance with RBFNs. In Figs. 1–12 we use the
test set accuracy as a performance measure, and the vertical bars
represent the difference in accuracy between EC and the other
methods for each data set.
• The positive values (bars above the baseline) represent the
advantage of EC method. That is, the larger the bar, the higher
the difference between EC method and the indicated one.
• Anegative bar under the baseline indicates that the RBFNmodel
for EC method has lower accuracy than the other imputation
method.
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Fig. 2. EC vs. KNNI.
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Fig. 3. EC vs. WKKNI.
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Fig. 4. EC vs. KMI.
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Fig. 5. EC vs. FKMI.
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Fig. 6. EC vs. SVMI.

The best behavior of EC over all methods is present for almost
every data set, since there aremore ‘‘positive’’ bars, andwithhigher
positive value. We can distinguish three different situations:

• The data sets AUT, CLE, CRX, HOC, HEP,WIN, AUS, ECO, AUS, GER
and SHUpresent positive differences over the 5% for at least two
models of the RBFNs.
• The data sets WIS, HAM, POP, MUS, IRI, PIM, NTH and MAG
present little positive difference for EC, under the 5%, for at least
two RBFN methods.
• Only the data sets BRE, BAN and SAT show a lower accuracy for
the RBFN models in the case of EC method respect to the rest
with a negative bar.
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Fig. 7. EC vs. EM.
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Fig. 8. EC vs. SVDI.
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Fig. 9. EC vs. BPCA.

The behavior of the RBFN models in the different data sets is
homogeneous, and we can find that the EC method outperforms
the rest in the same data sets for all the three RBFN models.
Therefore, from the figures we can observe that only for the 14% of
the data sets, the EC imputation method is performing worse than
the rest. From the remaining 86%, on the 36% of the data sets the
EC method behaves better than the rest with little difference, and
in the remaining 50% the improvements of accuracy are notorious.

4. Concluding remarks

We have studied the use of imputation techniques for the anal-
ysis of RBFN in classification problems, presenting a comparison
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Fig. 10. EC vs. MC.
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Fig. 11. EC vs. CMC.
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Fig. 12. EC vs. DNI.

between: (1)imputation, (2)do not impute, and (3)ignore cases
with MVs.
When comparing the results of these three options, the need

for using imputation methods is clear when analyzing RBFN for
classification, since improvements in performance of the results
are often achieved.
We must point out that the EC method is the best choice for

carrying out an imputation of MVs when working with RBFNs in
three considered variants of this model. Therefore, we can confirm
the good synergy between RBFN models and the EventCovering
method.
References

Acuna, E., & Rodriguez, C. (2004). The treatment of missing values and its effect in
the classifier accuracy. In D. Banks, L. House, F. R. McMorris, P. Arabie, &
W. Gaul (Eds.), Classification, clustering and data mining applications
(pp. 639–648). Berlin, Germany: Springer-Verlag Berlin-Heidelberg.

Arenas-Garcia, J., Gomez-Verdejo, V., & Figueiras-Vidal, A. R. (2007). Fast evaluation
of neural networks via confidence rating. Neurocomputing , 70, 2775–2782.

Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository [WWW
Page]. Irvine, CA: University of California, School of Information and Computer
Science. URL http://www.ics.uci.edu/~mlearn/MLRepository.html.

Batista, G. E. A. P. A., & Monard, M. C. (2003). An analysis of four missing data
treatment methods for supervised learning. Applied Artificial Intelligence, 17,
519–533.

Billings, S. A.,Wei, H.-L., & Balikhin, M. A. (2007). Generalizedmultiscale radial basis
function networks. Neural Networks, 20(10), 1081–1094.

Broomhead, D. S., & Lowe, D. (1988). Multivariable functional interpolation and
adaptive networks. Complex Systems, 2, 321–355.

Buhmann, M. D. (2003). Cambridge monographs on applied and computational
mathematics. Radial basis functions: Theory and implementations.

Děmsar, J. (2006). Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7, 1–30.

Eickhoff, R., & Ruckert, U. (2007). Robustness of radial basis functions. Neurocom-
puting , 70, 2758–2767.

Ennett, C.M., Frize,M., &Walker, C. R. (2001). Influence ofmissing values on artificial
neural network performance.Medinfo, 10, 449–453.

Er, M. J., Wu, S., Lu, J., & Hock-Lye, T. (2002). Face recognition with radial basis
function (RBF) neural networks. IEEE Transactions on Neural Networks, 13,
697–710.

Farhangfar, A., Kurgan, L., & Pedrycz, W. (2004). Experimental analysis of methods
for imputation ofmissing values in databases. In K. L. Priddy (Ed.). SPIE.Vol. 5421.
Intelligent computing: Theory and applications II. Michigan (pp. 172–182).

Feng, H. A. B., Chen, G. C., Yin, C. D., Yang, B. B., & Chen, Y. E. (2005). A SVM
regression based approach to filling inmissing values. In R. Khosla, R. J. Howlett,
& L. C. Jain (Eds.), Lecture notes in artificial intelligence: Vol. 3683. Knowledge-
based intelligent information and engineering systems (KES 2005) (pp. 581–587).
Springer.

García, S., &Herrera, F. (2008). An extension on ‘‘Statistical comparisons of classifiers
over multiple data sets’’ for all pairwise comparisons. Journal of Machine
Learning Research, 9, 2677–2694.

Ghodsi, A., & Schuurmans, D. (2003). Automatic basis selection techniques for RBF
networks. Neural Networks, 16(5–6), 809–816.

Grzymala-Busse, J. W., & Hu, M. (2000). A comparison of several approaches to
missing attribute values in data mining. In W. Ziarko, & Y. Y. Yao (Eds.), Lecture
notes in computer science: Vol. 2005. Rough sets and current trends in computing :
Second international conference (RSCTC 2000) (pp. 378–385). Canada: Springer.

Grzymala-Busse, J. W., & Goodwin, L. K. (2005). Handlingmissing attribute values in
preterm birth data sets. In D. Slezak, J. Yao, J. F. Peters, W. Ziarko, & X. Hu (Eds.),
Lecture notes in computer science: Vol. 3642. Rough sets, fuzzy sets, data mining,
and granular computing (RSFDGrC 2005) (pp. 342–351). Canada: Springer.

Harpham, C., & Dawson, C. W. (2006). The effect of different basis functions on a
radial basis function network for time series prediction: A comparative study.
Neurocomputing , 69, 2161–2170.

Kros, J. F., Lin, M., & Brown, M. L. (2006). Effects of the neural network s-Sigmoid
function on KDD in the presence of imprecise data. Computers and Operations
Research, 33, 3136–3149.

Lázaro, M., Santamaría, I., & Pantaleón, C. (2003). A new EM-based training
algorithm for RBF networks. Neural Networks, 16(1), 69–77.

Lendasse, A., Francois, D., Wertz, V., & Verleysen, M. (2005). Vector quantization:
A weighted version for time-series forecasting. Future Generation Computer
Systems, 21, 1056–1067.

Li, D., Deogun, J., Spaulding, W., & Shuart, B. (2004). Towards missing data
imputation: A study of fuzzy K-means clustering method. In S Tsumoto,
R. Slowinski, J. Komorowski, & J. W. Grzymala-Busse (Eds.), Lecture notes in
computer science: Vol. 3066. Rough sets and current trends in computing (RSCTC
2004) (pp. 573–579). Sweden: Springer-Verlag.

Liao, Y., Fang, S.-C., & Nuttle, H. L. W. (2003). Relaxed conditions for radial-
basis function networks to be universal approximators. Neural Networks, 16(7),
1019–1028.

Lim, C. P., Leong, J. H., & Kuan, M. M. (2005). A hybrid neural network system for
pattern classification tasks with missing features. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27, 648–653.

Little, R. J., & Rubin, D. B. (1987). Statistical analysis with missing data. New York:
John Wiley and Sons.

Markey, M. K., Tourassi, G. D., Margolis, M., & DeLong, D. M. (2006). Impact of
missing data in evaluating artificial neural networks trained on complete data.
Computers in Biology and Medicine, 36, 516–525.

Mileva-Boshkoska, B., & Stankovski, M. (2007). Prediction of missing data for ozone
concentrations using support vectormachines and radial basis neural networks.
Informatica (Ljubljana), 31, 425–430.

Morris, C.W., Boddy, L., &Wilkins,M. F. (2001). Effects ofmissing data on RBF neural
network identification of biological taxa: Discrimination of microalgae from
flow cytometry data. International Journal of Smart Engineering System Design,
3, 195–202.

Musavi, M. T., Ahmed, W., Chan, K. H., Faris, K. B., & Hummels, D. M. (1992). On the
training of radial basis function classifiers. Neural Networks, 5, 595–603.

http://www.ics.uci.edu/~mlearn/MLRepository.html


418 J. Luengo et al. / Neural Networks 23 (2010) 406–418
Nelwamondo, F. V., Mohamed, S., &Marwala, T. (2007). Missing data: A comparison
of neural network and expectation maximization techniques. Current Science,
93, 1514–1521.

Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K., & Ishii, S. (2003). A
Bayesian missing value estimation method for gene expression profile data.
Bioinformatics, 19, 2088–2096.

Pearson, R. K. (2005).Mining imperfect data. SIAM.
Pelckmans, K., De Brabanterb, J., Suykensa, J. A. K., & De Moor, B. (2005). Handling
missing values in support vector machine classifiers. Neural Networks, 18,
684–692.

Pisoni, E., Pastor, F., & Volta, M. (2008). Artificial neural networks to reconstruct
incomplete satellite data: Application to the mediterranean sea surface
temperature. Nonlinear Processes in Geophysics, 15, 61–70.

Plat, J. (1991). A resource allocating network for function interpolation. Neural
Computation, 3, 213–225.

Powell,M. J. D. (1987). Radial basis function formultivariate interpolation: A review.
In J. C. Mason, & M. G. Cox (Eds.), Algorithm for approximation (pp. 143–168).
Oxford, England: Clarendon Press.

Pyle, D. (1999). Data preparation for data mining. Morgan Kaufmann Publishers.
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art.
Psychol Methods, 7, 147–177.

Schneider, T. (2001). Analysis of incomplete climate data: Estimation ofmean values
and covariancematrices and imputation ofmissing values. Journal of Climate, 14,
853–871.

Schwenker, F., Kestler, H. A., & Palm, G. (2001). Three learning phases for radial-
basis-function networks. Neural Networks, 14(4–5), 439–458.
Sun, Y. V., & Kardia, S. L. R. (2008). Imputing missing genotypic data of single-
nucleotide polymorphisms using neural networks. European Journal of Human
Genetics, 16, 487–495.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R.,
Botstein, D., & Altman, R. B. (2001). Missing value estimation methods for DNA
microarrays. Bioinformatics, 17, 520–525.

Uysal, M. (2007). Reconstruction of time series data with missing values. Journal of
Applied Sciences, 7, 922–925.

Wallace,M., Tsapatsoulis, N., &Kollias, S. (2005). Intelligent initialization of resource
allocating RBF networks. Neural Networks, 18(2), 117–122.

Wang, S. (2003). Application of self-organising maps for data mining with
incomplete data sets. Neural Computation & Applications, 12, 42–48.

Wei, H., & Amari, S.-i. (2008). Dynamics of learning near singularities in radial basis
function networks. Neural Networks, 21(7), 989–1005.

Wong, A. K. C., & Chiu, D. K. Y. (1987). Synthesizing statistical knowledge from
incompletemixed-mode data. IEEE Transactions on Pattern Analysis andMachine
Intelligence, 9, 796–805.

Yeung, D. S., Ng, W. W. Y., Wang, D., Tsang, E. C. C., & Wang, X.-Z. (2007). Localized
generalization error model and its application to architecture selection for
radial basis function neural network. IEEE Transactions on Neural Networks, 18,
1294–1305.

Yingwei, L., Sundararajan, N., & Saratchandran, P. (1997). A sequential learning
scheme for function approximation using minimal radial basis function neural
networks. Neural Computation, 9, 361–478.

Yoon, S. Y., & Lee, S. Y. (1999). Training algorithm with incomplete data for feed-
forward neural networks. Neural Processing Letters, 10, 171–179.


	A study on the use of imputation methods for experimentation with Radial Basis Function Network classifiers handling missing attribute values: The good synergy between RBFNs and EventCovering method
	Introduction
	Preliminaries: Missing values, imputation methods and their use in Neural Networks
	Randomness of missing data
	Description of imputation methods
	Parameters used
	A short review on the use of imputation methods for Neural Networks
	Radial Basis Function Networks: Short outlook and description

	Experimental study: Imputation methods
	Experimentation framework
	Experiments and analysis
	Statistical and graphical analysis of the EventCovering method

	Concluding remarks
	References


