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Numerous industrial and research databases include missing values. It is not uncommon to encounter
databases that have up to a half of the entries missing, making it very difficult to mine them using data
analysis methods that can work only with complete data. A common way of dealing with this problem
is to impute (fill-in) the missing values. This paper evaluates how the choice of different imputation
methods affects the performance of classifiers that are subsequently used with the imputed data. The ex-
periments here focus on discrete data. This paper studies the effect of missing data imputation using five
single imputation methods (a mean method, a Hot deck method, a Na�̈ve-Bayes method, and the latter
two methods with a recently proposed imputation framework) and one multiple imputation method (a
polytomous regression based method) on classification accuracy for six popular classifiers (RIPPER, C4.5,
K-nearest-neighbor, support vector machine with polynomial and RBF kernels, and Na�̈ve-Bayes) on 15
datasets. This experimental study shows that imputation with the tested methods on average improves
classification accuracy when compared to classification without imputation. Although the results show
that there is no universally best imputation method, Na�̈ve-Bayes imputation is shown to give the best
results for the RIPPER classifier for datasets with high amount (i.e., 40% and 50%) of missing data, polyto-
mous regression imputation is shown to be the best for support vector machine classifier with polynomial
kernel, and the application of the imputation framework is shown to be superior for the support vector
machine with RBF kernel and K-nearest-neighbor. The analysis of the quality of the imputation with
respect to varying amounts of missing data (i.e., between 5% and 50%) shows that all imputation methods,
except for the mean imputation, improve classification error for data with more than 10% of missing
data. Finally, some classifiers such as C4.5 and Na�̈ve-Bayes were found to be missing data resistant, i.e.,
they can produce accurate classification in the presence of missing data, while other classifiers such as
K-nearest-neighbor, SVMs and RIPPER benefit from the imputation.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Many existing industrial and research datasets contain missing
values. They are introduced due to various reasons, such as manual
data entry procedures, equipment errors, and incorrect measure-
ments. The simplest way of dealing with missing values is to discard
the examples that contain the missing values. However, this method
is practical only when the data contain relatively small number of
examples with missing values and when analysis of the complete
examples will not lead to serious bias during the inference. An-
other approach is to convert the missing values into a new value
(encode them into a new numerical value), but such simplistic

∗ Corresponding author. Tel.: +17804525562; fax: +17804921811.
E-mail addresses: farhang@cs.ualberta.ca (A. Farhangfar),

lkurgan@ece.ualberta.ca (L. Kurgan), jdy@ece.neu.edu (J. Dy).

0031-3203/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2008.05.019

method was shown to lead to serious inference problems [1]. On
the other hand, if a significant number of examples contain missing
values for relatively small number of attributes, it may be beneficial
to perform imputation (filling-in) of the missing values. Imputation
methods are traditionally developed based on statistical algorithms
that can be subdivided into two categories: (1) model based and
(2) quasi-randomization inference based (data driven) [2–4]. Model
based methods assume that the population quantities of interests
are outcomes of random attributes (variables), indexed by unknown
population parameters. Quasi-randomization procedures, on the
other hand, assume that the population values are fixed, i.e., they
are not governed by unknown parameters, and therefore are not the
outcomes of random attributes. Statistical methods range from sim-
ple data driven methods such as mean imputation to complex model
based methods that perform parameter estimation. Two popular
model based imputation algorithms, i.e., regression and likelihood
based, are described in Refs. [3,5]. In regression based imputation,
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the missing values are predicted by a regression of the unobserved
attribute values based on the observed values for a given example.
The likelihood based methods work based on parameter estimation
in the presence of missing data, i.e., the data are described based
on the models and their parameters are estimated by maximum
likelihood or maximum a posteriori procedures that use variants of
the expectation maximization algorithm [3,6].

In recent years, machine learning (ML) algorithms were intro-
duced to develop imputation methods [2,7–12]. In contrast to statis-
tical methods, ML algorithms generate a data model from data that
contain missing values, and next the model is used to perform clas-
sification that imputes the missing values. Several different types
of ML algorithms were used, such as decision trees [2,10], proba-
bilistic [7,9], and rule-based methods [9,11], however the underly-
ing methodology was the same. One of the most recent advance-
ments was a missing data imputation framework that was developed
to improve the quality of imputation methods [8]. This framework
serves as a wrapper that can be applied with most existing imputa-
tion methods (referred to as base methods) to improve their accu-
racy of imputation while preserving the asymptotic computational
complexity of the base method. Section 2.1 provides details about
the imputation methods that are used in this paper.

Once the missing data are imputed, it is crucial to evaluate the
performance of the imputation method through determining the ef-
fect of imputation on subsequently performed classification. Prior
studies on the impact of imputation on classification accuracy did
not provide a comprehensive analysis and conclusions. We note that
numerous databases that include significant, up to 50%, amount of
missing data are in use, e.g., industrial database maintained by Hon-
eywell [2] and a medical cystic fibrosis database [13], and that vari-
ous classification algorithms can be used on these data. Despite these
facts, the prior works failed to perform test with data that includes
high number of missing data and to provide a systematic analy-
sis of the quality of imputation with respect to different classifiers
and amounts of missing data. The goal of this paper is to perform a
comprehensive analysis of the impact of the imputation on classi-
fication accuracy. It performs experiments on 15 datasets, with six
commonly used classification algorithms, six imputation methods,
and six different amounts of missing data between 5% and 50%.

1.1. Related work

Four recent studies that investigated the impact of imputation on
the accuracy of the subsequently performed classification are:

1. Acuna and Rodriquez [14] have investigated the effect of four
methods that deal with missing values. These methods include
case deletion, and three imputation methods: mean imputation,
median imputation, and K-nearest-neighbor (KNN). The classifica-
tion was performed using two methods: linear discriminant anal-
ysis (LDA) and KNN. Their results show that imputation does not
have a significant effect on the accuracy of classification, which
agreewith relatively older results by Dixon [15]. Threemain draw-
backs of their study are: (1) only very basic single imputation
methods were used, (2) relatively small amounts of missing data
(i.e., between 1% and 20%) were considered, and (3) each dataset
had a different amount of missing data, which makes it impos-
sible to assess how the imputation affects classification across a
range of different amounts of missing values.

2. Batista and Monard [16] tested the classification accuracy of two
popular classifiers, i.e., C4.5 decision tree [17] and CN2 rule in-
duction algorithm [18], and three imputation methods, namely,
mean, mode, and KNN. The missing data were introduced only
in a few selected attributes. The results show that KNN imputa-
tion results in good accuracy, but only when the attributes are

not highly correlated to each other. The main drawbacks of their
study are: (1) only very basic single imputation methods were
used, (2) relatively small amounts of missing data, i.e., between
1% and 20%, were considered, (3) each dataset had a different
amount of missing data, which makes it impossible to perform a
comprehensive analysis, and (4) only four relatively small (up to
1500 examples) datasets were used in the tests.

3. Grzymala-Busse and Hu [11] investigated the accuracy of clas-
sification with learning from examples based on rough sets
(LERS) classifier [19] and five imputation methods that include
mode, C4.5 and LERS ML based imputations, and two other non-
traditional methods. The results of classification on 10 datasets
show that on average imputation helps to improve classification
accuracy, and the best imputation was achieved with the C4.5 ML
based method. The main drawbacks are: (1) only one classifier
(in two versions) was used to test the accuracy, (2) low amounts
of missing data, i.e., between 1% and 13%, were considered, and
(3) each dataset included a different amount of missing data,
which makes it difficult to draw comprehensive conclusions.

4. Mundfrom and Whitcomb [20] used two classifiers: linear dis-
criminant function and logistic regression, with just one dataset
to test the impact of three imputation methods (mean, Hot deck,
and regression methods). The classification accuracy on the im-
puted data shows thesuperiority of the mean and Hot deck im-
putations. However, this was by far the smallest study, which
included only one small dataset and considered low, about 11%,
amount of missing data, and thus these results may not general-
ize to other settings.
The above studies are summarized in Table 1. The relevant im-

putation methods are described in Section 2.

1.2. Proposed work

An analysis of Table 1 reveals the lack of a truly comprehensive
study. To this end, this paper provides:

• The largest number of popular and modern classifiers, namely,
RIPPER [21,22], C4.5 [17], KNN, support vectormachine [23,24], and
Na�̈ve-Bayes. In this study we selected representative classifiers
that belong to major families of ML algorithms: C4.5 is a decision
tree, KNN is an instance-based method, RIPPER is a rule-based
classifier, Na�̈ve-Bayes is a probabilistic method, and support vector
machine is a kernel-based classifier.

• The largest number of imputation methods (i.e., six methods that
include both single and multiple imputations) and a newly pro-
posed framework for improving the quality of imputation [8].

• The widest range of consistent amounts of missing data (i.e., miss-
ing data amounts of 5%, 10%, 20%, 30%, 40%, and 50%) for all
datasets. This allows for a wide range of evaluation of the quality
of imputation with respect to the amount of missing data.

• The largest number of test datasets—15 datasets ranging between
47 and 28,000 examples, 7 and 61 attributes, and 2 and 17 classes.

The goal of this paper is to present a comprehensive study of the
impact of imputation of missing values on classification accuracy of
several leading classifiers and for varying amounts of missing data.
We note that although some of these classifiers including C4.5 have
their own internal approaches of handling the missing values, it is
not clear how they would react to external imputation methods.

The paper is organized as follows. Section 2 provides a back-
ground on imputation and describes imputation methods that are
used in this paper. Section 3 explains details of the experimental
study, and presents and analyzes the results. Finally, Section 4 sum-
marizes the paper.
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2. Background

Three different mechanisms, which lead to the introduction of
missing values, can be categorized as [2,3] follows:

1. Missing completely at random (MCAR), when the distribution of
an example having a missing value for an attribute does not de-
pend on either the observed data or the missing data. For ex-
ample, in a dataset that includes student marks, a student's final
grade is missing, and this does not depend on his/her status (for
instance if this is a graduate or undergraduate student) or final
grade of other students (for instance, if the other complete final
marks are low or high).

2. Missing at random (MAR), when the distribution of an example
having a missing value for an attribute depends on the observed
data, but does not depend on the missing data. For example, stu-
dent's final mark is missing, and this does depend on his/her
status, but it does not depend on the final grade. Therefore, the
missing final marks can be filled-in (predicted) using information
about the student's status.

3. Not missing at random (NMAR), when the distribution of an ex-
ample having a missing value for an attribute depends on the
missing values. For instance, student's final grade is missing, and
this does depend on the final grade (i.e., only grades in a special
range, say 80–90%, are missing). This way, the missing value can
be filled-in using the complete final marks of the other students.

In case of the MCAR mode, the assumption is that the distribu-
tions of missing and complete data are the same, while for MAR
mode they are different, and the missing data can be predicted by
using the complete data [3]. MCAR mechanism is assumed by most
of the existing missing data imputation methods [1,2,25–27], and
thus it is also assumed in this paper. Furthermore, considering the
three mechanisms, it is only in the MCAR mechanism case where
the analysis of the remaining complete data could give a valid in-
ference (classification) due to the assumption of equal distributions.
Both of the other mechanisms could potentially lead to information
loss that would lead to the generation of a biased/incorrect classifier
(classifier based on a different distribution). In the case of NMAR and
MAR, if we have prior information about the mechanism that leads
to the introduction of the missing values then we can use this back-
ground knowledge to directly impute the missing data. For instance
in NMAR (following the example above), if we know that only grades
in a special range, say 80–90%, are missing then we would impute all
missing marks as 85%. In the case where the underlying mechanism
is unknown, the user can perform a statistical test by Chen and Little
[28] that can determine whether the missing values were introduced
as MCAR. The NMAR mechanism is rarely applicable in practice.

2.1. Imputation methods used in this paper

This paper investigates representative methods from the three
imputation mainstreams: a statistical model based regression impu-
tation, a statistical data driven (quasi-randomization) Hot deck im-
putation, and an ML based method based on the probabilistic Na�̈ve-
Bayes algorithm. The first method is amultiple imputation algorithm,
while the latter two are single imputation algorithms.

2.1.1. Single imputation algorithms
In single imputation methods, a missing value is imputed by a

single value. The single imputation methods used in this paper are:

I. Hot deck: In Hot deck imputation, for each example that contains
missing values, the most similar example is found, and the miss-
ing values are imputed from that example. If the most similar
example also contains missing values for the same attributes as

the missing information in the original example, then it is dis-
carded and a second closest example is found. This is repeated
until all the missing values are successfully imputed or the entire
database are searched. In case when there is no similar exam-
ple with the required values filled in, the closest example with
the minimum number of missing values is chosen to impute the
missing values. There are several ways of finding the most sim-
ilar example to the example with missing values [3,10,29]. In
this study, the distance function, which is used to measure the
dissimilarity between two examples, assumes distance of 0 be-
tween two attributes if both have the same numerical or nomi-
nal values, otherwise the distance is set to 1, and these distances
are summed over all attributes. A distance of 1 is also assumed
for an attribute, for which any of the two examples has a missing
value [8].

II. Mean: In mean imputation, the missing values are imputed with
the mean for continuous data or the most frequent value (mode)
for discrete data of the corresponding attribute.

III. Na�̈ve-Bayes: Na�̈ve-Bayes is a simple probabilistic classification
technique [30]. The Na�̈ve-Bayes classifier applies the simplistic
assumption that the feature or attribute values are condition-
ally independent given the class, P(a1, a2, . . . , ad|c)= ∏d

i=1P(ai|c),
where ai is the ith attribute, c represents the class, and d the
number of attributes. This assumption does not hold true in
most real datasets (thus, the term na�̈ve), however it has been
shown to work well in practice. Na�̈ve-Bayes requires only one
pass through the training dataset, which makes it computation-
ally efficient. This algorithm is applied to perform imputation in
the following manner. During training, the conditional probabil-
ities P(ai|c) and the prior probabilities P(c) are estimated. We
then classify each new instance by: arg maxcP(c|a1, a2, . . . , ad) =
arg maxcP(c)

∏d
i=1P(ai|c). To perform imputation, we treat each

attribute that contains missing values as the class attribute, then
fill each missing value for the selected class attribute with the
class predicted from the conditional probabilities established
during training.

2.1.2. Multiple imputation algorithms
In multiple imputation methods, several, usually likelihood, or-

dered choices for imputing themissing value are computed [1,31,32].
This way, several complete databases are created by imputing dif-
ferent values to reflect uncertainty about the right values to im-
pute. At the next step, each of the databases is analyzed by stan-
dard procedures specific for handling complete data, and the anal-
yses for each database are combined into a final result [5,33]. Sev-
eral multivariate multiple imputation methods were developed by
different researchers. Li [34] and Rubin and Schafer [35] used prob-
abilistic Bayesian models that compute imputations from the pos-
terior probabilities of the missing data based on the complete data.
The Rubin–Schafer method assumes multivariate normal distribu-
tion of the data and the MAR mechanism. On the other hand, Alzola
and Harrell [36] introduced a function that imputes each incomplete
attribute by cubic spline regression given all the other attributes,
without assuming that the data must be modeled by the multi-
variate distribution. A multiple imputation environment called mul-
tivariate imputation by chained equations (MICE), which provides
a full spectrum of conditional distributions and related regression
based methods, was developed by Buuren and Oudshoorn [33,37].
MICE incorporates logistic regression, polytomous regression, and
linear regression, uses Gibbs sampler [38] to generate multiple im-
putation, and is furnished with a comprehensive, state-of-the-art
missing data imputation software package. For imputation of nu-
merical attributes, MICE offers Bayesian linear regression imputation
with normal errors, predictive mean matching, and unconditional
mean imputation. For categorical attributes, MICE provides logistic
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Fig. 1. Architecture of the applied imputation framework.

Table 2
Summary of the imputation methods used in this paper

Name of the method Algorithm Works with discrete attributes? Works with continuous attributes?

`Na�̈ve-Bayes Bayesian algorithm Yes No
Framework with Na�̈ve-Bayes Bayesian algorithm Yes No
Hot deck Nearest neighbor Yes Yes
Framework with Hot deck Nearest neighbor Yes Yes
Polytomous regression Regression Yes; logistic regression (binary)/polytomous logistic regression (categorical) Yes
Mean Statistical Yes Yes

regression (for binary attributes), polytomous logistic regression, and
LDA. It also provides a simple random imputation, which may be
useful for missing data in the MCAR mode. This paper uses a MICE's
multiple imputation based on regression. We use logistic regression
for imputation of binary attributes and polytomous logistic regres-
sion for the discrete categorical attributes.

Logistic and polytomous logistic regressions: In this case, imputa-
tion is performed by regression of the missing values using the com-
plete values for a given example [39]. Several regression models can
be used, including linear, logistic, polytomous, etc. To define the lo-
gistic regression model we apply the following notation: example x
is described by attributes ai, where i = 1, 2, . . . , d and d is the num-
ber of attributes, class attribute is denoted as cj, where j=1, 2, . . . ,m
and m is the number of classes, such that cj = 1 if x corresponds
to an example that belongs to class j. Using the polytomous logis-
tic regression model (also known as the multinomial logistic regres-
sion model), the probability that x belongs to class j is defined as

P(cj = 1|x,w)= e
wjx

∑m
k=1(e

wkx)
, where wj is a weight vector correspond-

ing to class j. The parameters wj, j = 1, 2, . . . ,m are estimated from
the training data using maximum likelihood estimation. Because of
the normalization condition

∑m
j=1P(cj = 1|x,w) = 1, the weight vec-

tor for one of the classes need not be estimated. For binary class at-
tributes, i.e.,m=2, the above model reduces to the logistic regression
model. Logistic regression is applied by assuming binary attributes
with missing values as the class attributes, and polytomous regres-
sion is used for discrete attributes with missing values.

2.1.3. Imputation framework
In this paper we use a recently proposed imputation framework

[8]. This framework is designed to improve the performance of sin-
gle imputation methods like Hot deck and Na�̈ve-Bayes. As a result
of applying the framework to Hot deck and Na�̈ve-Bayes, two more
single imputation methods called “framework with Hot deck (FHD)”
and “framework with Na�̈ve-Bayes (FNB)” are added to this study.
The framework consists of four modules: mean pre-imputation, base
imputation, confidence intervals, and boosting (see Fig. 1). The ef-
fect of each module on the overall performance of the imputation
performed with the framework is further investigated in Ref. [8].

I. Mean pre-imputation: The first component of the framework is
the mean pre-imputation. In this module, the missing values
are temporarily imputed with the mean of the corresponding
attribute.

II. Base imputation method: Next, each missing pre-imputed value
is imputed using a base imputation method, which in our case is

either Hot deck or Na�̈ve-Bayes method, and the imputed value
is filtered by using the confidence intervals component.

III. Confidence intervals: Confidence intervals are used to select the
most probable imputed values, while rejecting possible outlier
imputations. This filter is based on the premise that imputed val-
ues, which are close to the mean (for numerical attributes) or
mode (for nominal attributes) of an attribute, have the highest
probability of being correct. They are defined as an interval es-
timate for the mean of a corresponding attribute [27]. Based on
Ref. [8], the filter removes imputed values with a frequency lower
than the average for the attribute (the confidence intervals are
computed individually for each of the classes), while the remain-
ing imputed values are kept. The frequency is computed as the
number of times a given value is found in the dataset, which is
normalized by the number of values of the most frequent value.

IV. Boosting: Once all the values are imputed and filtered, each of
them is assigned with a weight that quantifies its quality. This
weight might be expressed as a probability or a similarity mea-
sure. The imputed values are accepted or rejected by the boost-
ing component based on their weight and some threshold. In the
case of the Na�̈ve-Bayes base imputation method, the weights
are defined as the probabilities of the selected class attributes,
i.e., the posterior class probability for the imputed value. We set
the threshold to be the mean value of the selected class proba-
bility for all imputed values. All values with weights above the
threshold are accepted, while the remaining values are rejected.
Similarly, for the Hot deck base imputation method, the weights
are defined as the distance between the example with the cur-
rently imputed value and the example from which the imputed
value was taken. The threshold is set as the average distance be-
tween the examples with missing data and their closest exam-
ples for all the imputed values. The imputed values are accepted
when their weights are less than the threshold and rejected oth-
erwise. As a result, a partially imputed database is created and
fed back to the base imputation algorithm, and the process re-
peats. The boosting component, similar to a boosting algorithm
that inspired its design, aims to improve the accuracy of the im-
putation by accepting only the high quality imputed values and
using them, i.e., the additional and reliable information, to im-
pute the remaining values. After 10 boosting iterations, all re-
maining imputed values are accepted, and the algorithm outputs
the imputed data. More details about the imputation framework
can be found in Ref. [8].

Table 2 summarizes the imputation methods, which are used in this
study. Some of the considered imputation methods work only with
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discrete values. Therefore, to include all these methods and assure
comprehensiveness in terms of the number and types of imputation
and classification algorithms, we focus our study on discrete data.
The study on continuous data constitutes our future work.

3. Experiments and results

The main objective of the experiments is to empirically evaluate
the effect of missing data imputation on the accuracy of subsequent
classification. We start by describing the datasets and experimental
setup, and follow up with experimental results and their analysis.

3.1. Datasets

The experiments were performed using 15 benchmark datasets
selected from the UCIML repository [40] and the KDD repository [41].
Each dataset is described by a set of characteristics such as number of
data samples, attributes and classes. We provide this information in
Table 3. The selected datasets include only discrete data (i.e., discrete
numerical and categorical data) and cover a full spectrum of values
for each of the characteristics.

Missing data were introduced randomly, using the MCAR mecha-
nism, into each of the datasets. The missing values were introduced
into all attributes in all datasets in the following six amounts: 5%,
10%, 20%, 30%, 40%, and 50%.

3.2. Experimental setup

In general, the experiments were performed as follows. Each
dataset was first randomly divided into equal sized training and
test subsets and the six different amounts of missing values were

Table 3
Description of the datasets used in the experiments

Name Abbreviation #Examples #Attributes #Classes

Soybean (small) Soy 47 36 4
Postoperative patient data Pos 87 9 3
Promoters Pro 106 58 2
Monks 1 Mk1 432 7 2
Monks 2 Mk2 432 7 2
Monks 3 Mk3 432 7 2
Balance Bal 625 5 3
Tic-tac-toe Tic 958 10 2
CMC Cmc 1473 10 3
Car Car 1728 7 4
Splice Spl 3190 61 3
Kr-vs-kp Krs 3196 36 2
LED Led 6000 8 10
Nursery Nrs 12960 9 5
Kr-V-K Krv 28056 7 17
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Fig. 2. Experimental procedure that includes classification with imputation (? denotes missing values).

introduced in the training subset. Next, the missing values in the
training set were imputed using the six single and multiple impu-
tation methods and the resulting datasets were used with the six
classifiers: RIPPER, C4.5, SVM with polynomial kernel, SVM with RBF
kernel, Na�̈ve-Bayes, and KNN. Finally, the classification accuracy of
the classifiers was evaluated by applying the corresponding classi-
fication model on the test set, as shown in Fig. 2 (classification with
imputation procedure). The results of the above experiments were
compared with two experimental setups, in which the imputation
was not performed: when the classifiers were trained on data with
missing values, and when the classification was performed on the
complete data. The former experiment, as shown in Fig. 3 (classi-
fication without imputation procedure), establishes a lower limit on
accuracy, which should be improved by imputation, and which was
possible since the selected classifiers can generate models directly
from the data with the missing values. The latter experiment, as
shown in Fig. 4 (classification with complete data procedure), gives
an upper limit on accuracy and was possible since the considered
datasets were originally complete.

The executed experiments, which include 15 datasets, six
amounts of missing values, six imputation methods and one set
of experiments without imputation, and six classifiers, gives us a
total of 15 ∗ 7 ∗ 6 ∗ 6 = 3780 experiments. Additionally, 15 ∗ 6 = 90
experiments were performed with the complete data.

3.3. Experimental results

The experiments report the classification error rate against the
six amounts of missing values, for six different classifiers namely
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RIPPER, C4.5, SVM with polynomial kernel (SVMP), SVM with RBF
kernel (SVMR), Na�̈ve-Bayes (NB) and KNN, and six imputation meth-
ods, Hot deck (HD), imputation framework with Hot deck (FHD),
Na�̈ve-Bayes (NB), imputation framework with Na�̈ve-Bayes (FNB),
multiple imputation Polytomous regression (Poly), and mean impu-
tation (mean). These results are compared against classification on
the missing data that was not processed through imputation (miss-
ing) and on complete data before themissing values were introduced
(complete). We used WEKA's [42] implementation for all classifiers
in this study except for KNN, for which we used an in-house imple-
mentation. All the parameters are set as the WEKA's default, and for
KNN, five neighbors are considered.

In these experiments the classification error is measured based
on a zero–one loss, which is commonly used to evaluate the perfor-
mance of classifiers [43]. Although some datasets may assume differ-
ent costs for their classification decisions, we assume a uniform cost
for all the classes to be able to compare the results across different
datasets. A future extension to this work would consider different
classes to have different associated cost functions.

Table 4 presents the average classification improvement (nega-
tive sign shows deterioration) resulting from the imputation of miss-
ing data. The improvement is defined as a difference between the
classification accuracy on missing data and accuracy on the imputed
data. The best results for imputed data and complete data are high-
lighted in bold. We note that on average, over all amounts of miss-
ing data, the highest improvement is 6.52% for 20% missing data
imputed by the Poly method and classified by RIPPER. In this case,

classification on complete data would have given us 7.8% improve-
ment compared to missing data that is fairly close to 6.52% that was
obtained on imputed data. This shows that imputed data can render
similar classification performance as that of complete data.

A side-by-side comparison between different imputation meth-
ods, irrespective of the classification algorithms, is given in Fig. 5. It
shows the average, over the six classifiers and the 15 datasets, im-
provement in classification error resulting from imputation against
different amounts of missing values. The improvements are provided
for the six imputation methods and data without missing values
(complete).

As expected, the classification error rates with the imputed data
range between the results obtained on the complete data and the
results on data without imputation. Fig. 5 shows that, on average,
classification on imputed data with different classifiers is more ac-
curate than classification on missing data. Therefore, we conclude
that on average, across most considered amounts of missing values
(above 5%) and classifiers, imputation improves the classification.
In few isolated cases, which include the use of mean imputation
method on data with 5%, 10%, 30%, and 40% of missing data, the im-
putation deteriorates the classification accuracy. Polytomous regres-
sion achieves on average the lowest classification error for several
amounts of missing values (10%, 20%, and 50%), while Na�̈ve-Bayes
achieves the best performance for 40% amounts of missing data.

The maximal (depicted by light gray bars) and average (depicted
by dark gray bars) improvements as well as maximum loss (de-
picted by black bars) of the classification error rates obtained by
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Table 4
Average classification improvement (negative sign shows deterioration) resulting from imputation of missing data for the 15 datasets, six classifiers, six imputation methods,
and six amounts of missing data

Imputation
methods

Missing data
amounts (%)

Classifiers

RIPPER C4.5 SVMR SVMP KNN NB

Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev

FHD 5 −0.89 2.15 −2.24 4.55 0.82 2.42 0.28 3.39 −0.04 3.77 0.06 1.14
10 0.79 1.70 −2.03 5.13 2.10 5.43 −1.48 3.84 1.93 6.02 −0.87 2.45
20 5.59 8.38 −0.89 3.57 0.63 2.63 1.71 5.66 2.69 5.24 −0.54 2.69
30 2.20 2.30 −0.49 6.84 1.99 6.47 0.44 5.34 1.69 7.96 −0.77 3.37
40 1.83 10.35 −1.80 6.14 0.52 3.72 0.00 5.30 1.71 6.42 −1.89 4.16
50 3.55 13.30 −0.64 8.68 0.38 4.02 −1.34 8.08 4.98 9.35 −2.31 3.79

HD 5 0.37 2.48 −1.70 6.36 −0.59 2.44 −0.34 5.44 −0.41 3.63 −0.02 0.83
10 0.84 2.23 −2.03 5.01 1.24 5.66 −0.93 5.26 1.93 5.83 0.25 0.84
20 5.48 10.26 −2.63 3.90 1.37 5.63 2.07 5.58 1.57 5.01 0.09 1.75
30 1.31 4.21 −2.41 7.56 1.99 6.02 1.51 6.69 0.80 7.20 −1.45 2.03
40 1.81 11.56 −2.69 6.14 0.63 2.24 −0.47 4.95 1.49 6.30 −2.57 3.65
50 2.75 12.00 −0.18 5.19 1.05 1.55 −0.88 7.83 2.24 7.20 −1.73 4.07

FNB 5 −0.04 1.63 −1.79 4.45 0.42 2.50 −0.04 2.54 0.13 3.56 −0.36 0.96
10 0.70 1.85 −2.09 4.61 1.99 5.45 −0.76 3.93 1.79 6.48 −1.57 2.59
20 4.36 8.47 −1.57 3.38 1.93 6.07 1.42 4.89 2.41 4.82 −0.63 2.48
30 2.53 3.51 −0.91 5.87 2.38 6.46 1.56 5.96 1.91 7.19 −1.00 2.27
40 2.03 11.14 −0.60 6.06 2.49 6.39 −0.12 5.35 1.31 6.97 −1.36 4.57
50 3.24 12.58 −0.50 8.09 2.04 6.44 −0.31 6.65 4.27 9.97 −2.09 4.58

NB 5 −0.48 1.56 −1.91 5.32 −0.12 2.33 0.34 3.15 −0.07 3.32 −0.25 1.75
10 1.56 4.21 −2.62 3.62 1.21 5.40 −1.23 3.25 1.61 6.57 −0.21 1.07
20 4.49 8.36 −1.46 4.01 0.55 3.88 2.63 4.26 3.23 5.02 −0.77 1.72
30 2.35 3.55 −0.96 5.83 1.31 2.22 1.37 5.33 2.06 7.63 −0.18 3.37
40 3.00 11.81 0.77 3.88 1.60 3.02 1.64 3.65 1.10 7.49 −1.50 2.74
50 5.64 11.75 −1.73 9.44 0.96 2.98 0.06 3.83 2.68 4.55 −1.19 2.21

Poly 5 −0.94 2.14 −1.67 5.35 −0.04 2.21 1.13 2.67 0.13 3.89 −0.11 1.81
10 1.80 4.46 −0.94 2.54 −0.20 3.97 2.00 5.16 2.44 6.22 −0.20 1.06
20 6.52 10.14 −0.15 4.58 0.89 2.08 2.98 7.32 2.31 5.59 −0.64 1.41
30 1.60 5.18 −0.37 5.98 0.69 2.40 1.91 7.56 1.90 9.18 −0.51 1.85
40 0.50 17.31 −3.58 10.18 1.22 2.05 0.89 5.71 0.30 8.22 −1.54 3.26
50 6.06 11.78 1.13 5.99 0.90 3.78 1.50 6.89 2.78 7.84 −0.54 2.59

Mean 5 −0.05 2.64 0.01 2.46 −0.69 1.55 0.02 0.76 0.25 4.09 −0.09 1.27
10 0.65 1.61 −1.94 4.81 −0.56 2.75 −0.04 0.59 1.31 5.98 −0.77 2.61
20 5.81 9.97 −2.96 3.46 −0.51 2.47 0.30 1.12 1.87 8.11 −1.01 2.24
30 0.56 5.34 −3.12 5.30 −0.05 2.83 0.02 0.08 0.67 5.44 −1.43 3.60
40 2.87 9.23 −3.25 7.56 0.01 0.20 0.00 1.39 0.13 5.04 −1.43 2.99
50 5.55 12.75 1.20 3.31 0.37 1.45 −0.05 2.32 2.06 9.17 −1.25 2.99

Complete data (improvement
over classification with a given
amount of missing data)

5 0.25 2.03 0.25 2.84 0.19 2.27 2.10 5.39 0.52 4.12 0.02 2.02

10 2.73 4.39 0.52 3.71 1.63 5.62 2.50 7.45 2.24 7.46 −0.38 1.56
20 7.80 9.93 2.24 2.58 2.75 6.45 6.13 13.01 4.29 5.67 0.84 1.95
30 6.29 7.89 3.75 6.91 3.58 6.28 6.83 15.04 4.23 10.74 0.10 2.84
40 8.59 12.97 5.01 8.32 3.96 5.50 6.54 15.12 4.28 10.20 −0.22 2.04
50 11.51 17.24 6.80 8.97 4.25 5.55 7.38 17.02 7.27 11.76 0.31 3.42

Best results are shown in bold.

imputing missing values (when compared with classification on
missing data) are shown in Fig. 6. On average, imputation re-
duces the error rates by about 1%, while individual improvements
(computed over all datasets) can be as high as 6.52% for RIP-
PER classifier and Poly imputation method for 20% of missing
values, and individual accuracy losses due to imputation (com-
puted over all datasets) can be as high as 3.58% for C4.5 classifier
and Poly imputation method for 40% of missing values. Later in
this section we show that imputation in general helps RIPPER
classifier to improve its performance and therefore is recom-
mended. On the other hand C4.5 can handle the missing val-
ues internally and imputation in some cases may result in the
loss of classification accuracy. Two of the other maximal losses
(about 3% loss) for 20% and 30% of missing values are due to the
use of mean imputation method, which is shown to be outper-
formed by other considered imputation methods; see Sections 3.4
and 3.5.

3.4. Analysis of the results with respect to different classifiers

We show a detailed analysis of the results from Section 3.3,
which considers individual classifiers and different amounts of miss-
ing data. We analyze the statistical significance of differences in ac-
curacy between using the imputation methods and directly apply-
ing the data with missing values based on paired t-tests at the 95%
significance level. In this experiment we compare whether mean ac-
curacies of the prediction for a given classifier and given imputation
method with and without the imputation are different. The mean
is computed over a set of 15 datasets. We use the “paired” t-test
in which each member of one numerical set is assumed to have a
unique relationship with a particular member of the other set. Al-
though we have 15 different datasets, their classification accuracy
is computed using the same imputation procedure for each dataset
(we compare results for the same dataset with and without imputed
missing values). The statistical significance of the classification error
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Fig. 5. Average, over the six classifiers, classification error rates.
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Fig. 6. Average improvement in classification error rates due to using imputation when compared with classification on missing data.

Table 5
Statistical significance of the difference between classification on imputed data and on data with missing values, which were classified with each of the considered classifiers
(columns)

Imputation
method

Classifiers

RIPPER
significance
(t-value)

C4.5
significance
(t-value)

SVMR
significance
(t-value)

SVMP
significance
(t-value)

NB
significance
(t-value)

KNN
significance
(t-value)

Average
significance
(t-value)

FHD + + (2. 4) − − (−3. 2) + + (3. 4) ∼ (−0. 1) − − (−3. 3) + + (3. 2) ∼ (1. 8)
HD + + (2. 8) − − (−4. 7) + + (2. 7) ∼ (−0. 1) − − (−2. 3) + + (3. 3) ∼ (−1. 0)
FNB + + (3. 3) − − (−3. 7) + + (6. 2) ∼ (0. 7) − − (−4. 2) + + (3. 5) + + (2. 4)
NB + + (3. 1) − − (−2. 8) + + (3. 6) ∼ (1. 3) − − (−3. 4) + + (3. 7) + + (2. 4)
Poly + + (2. 1) ∼ (−1. 1) + + (2. 7) + + (6. 1) − − (−2. 8) + + (3. 5) ∼ (2. 0)
Mean + + (2. 4) −(−2. 2) ∼ (0. 8) ∼ (0. 7) − − (−4. 8) + + (3. 1) ∼ (0. 7)

“++” indicates that using a given imputation method (rows) gives statistically significantly better classification errors, “−−” indicates that it gives statistically significantly
worse classification errors, “∼” indicates that the difference in the errors is insignificant; positive t-value means that classification errors for the imputed data were better,
while negative values means that classification errors for the data with missing values were better.

differences for different classifiers and between using imputed and
missing data is summarized in Table 5.

The results show that the impact of the imputation varies for dif-
ferent classifiers. The largest improvements are achieved for SVMR,
KNN, RIPPER, and SVMP. The results for C4.5 and Na�̈ve-Bayes show
that imputation does not improve the subsequent classification and
indicate that C4.5 and Na�̈ve-Bayes are on average missing data re-
sistant, i.e., they can produce accurate classification in the presence
of missing data. The imputation performed for the SVMR, RIPPER,
and KNN classifiers almost always results in significantly better clas-

sification error, except for mean imputation for SVMR. In the case of
SVMP, the Poly imputation method provides a significant improve-
ment, while the remaining imputation methods for this classifier
result in statistically insignificant differences. The last column in
Table 5 shows the average improvement for all the six classifiers.

Fig. 7 shows the classification improvement with imputed data
against increasing amounts of missing values for the RIPPER, C4.5,
SVMR, SVMP, Na�̈ve-Bayes, and KNN classifiers, respectively. Similar
to Fig. 5, it shows the classification improvements for the six impu-
tation methods, as well as the complete data.
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Fig. 7. Classification improvement for the RIPPER (top left), C4.5 (top right), SVM with RBF kernel (middle left), SVM with polynomial kernel (middle right), Na�̈ve-Bayes
(bottom left), and KNN (bottom right) classifiers.

For the RIPPER classifier, all the imputation methods improve its
classification accuracy for data with more than 10% missing values.
Here the application of NB imputation results on average in the im-
provement of classification performance of up to 6% for 20% and 50%
of missing data. In this case, the mean imputation is characterized by
similar performance as other imputation methods. Also, for the low
amounts of missing values, i.e., 5%, all imputation methods perform
similarly.

The C4.5 classifier can handle missing data on its own. The only
improvements due to the imputation are observed for larger amounts
of missing data, i.e., 50%, in which case Poly and mean imputations
provide superior results when compared with the other imputation
methods included in this study.

The SVM classifier with RBF kernel (SVMR) is shown to benefit
from the imputation since its performance with missing data is, on
average, the worst. This is true for all considered imputation meth-
ods, except for mean imputation, in which case the improvements
are achieved for datasets with at least 40% of missing data. The
best improvements are achieved with data imputed by FNB, and the
differences are as large as 2–3% across the entire spectrum of the
amounts of missing values. Therefore, imputation of missing values
while working with SVMR is recommended.

The accuracy of SVM classifier with polynomial kernel (SVMP) is
also improved due to using imputation methods. In particular, the
polytomous regression based imputation provides superior results
across virtually all amounts of missing values. This method, on aver-
age, improved the classification accuracy by 2% when compared to
using missing data.

We also note that the SVMP's average error rate on complete data
is the lowest among the classifiers included in this study at 35.5%,
which suggests that this classifier provides high quality classifica-
tions. Most importantly, when working with missing data SVMP's
classifications can be further improved (when compared to results
on missing data) by using the imputation methods. This shows that
using imputation and classification in tandem gives the best results.

Na�̈ve-Bayes classifier is shown to bemissing data resistant across
different amounts of missing values, i.e. classifications on missing
data are better than those which use imputed data.

Finally, KNN classifier is shown to be the most susceptible to
missing data. Its performance with data that contain missing values
is always worse than the performance when an imputation method
is used. The highest classification improvements, on average, are
achieved with data imputed by both framework based methods, and
the average improvement in classification accuracy between the best
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Fig. 8. Classification improvement on the Tic dataset for the RIPPER (top left), C4.5 (top right), SVM with RBF kernel (middle left), SVM with polynomial kernel (middle
right), Na�̈ve-Bayes (bottom left), and KNN (bottom right) classifiers.

FHD method and using the un-imputed (missing) data is about 5%
for datasets with 50% of the values missing.

3.5. Analysis of results for Spl and Tic datasets

In addition to average results reported in Section 3.3, we provide
results for the considered imputation methods and the six classifiers
obtained on two representative datasets, Spl and Tic. The motiva-
tion behind this selection is that they cover different sizes of the
datasets (3200 samples in Spl and 960 samples in Tic) and differ-
ent number of attributes and classes (61 attributes and 3 classes in
Spl and 10 attributes and 2 classes in Tic). The classification error
improvement (lift) for Tic and Spl datasets based on the six impu-
tation methods as well as the complete data for all six classifiers
are shown in Figs. 8 and 9, respectively. Imputation of missing val-
ues has a positive impact on the classification performance of SVMP,
SVMR, and KNN for both datasets, and RIPPER for the Tic dataset.
Similar to average results shown in the previous section, C4.5 and
Na�̈ve-Bayes classifiers can appropriately handle the missing values
for both datasets and they show little or no improvement as a re-
sult of imputation. The results on these two datasets show that the

improvements can be quite significant, up to 25% better for SVMP
on the Tic dataset, although the difference is usually smaller, and
in case of the Spl dataset it stays below 5%. These results demon-
strate that the amount of improvement due to using imputation of
missing values varies for different datasets and classifiers. In some
cases, such as Tic dataset, the benefits could be significant confirm-
ing the necessity of performing the imputation. However, in case of
the other datasets, such as Spl, the difference is less significant and
depends on the classifier that is used. Here, imputation performed
for data classified with KNN and SVMR provides improvements for
high amounts of missing values, while for some other classifiers, like
Na�̈ve-Bayes, the imputation may even have a detrimental effect.

3.6. Analysis of the results with respect to different amounts of missing
data

The statistical significance of the difference between the classi-
fication errors when an imputation method is used and when clas-
sification is performed without imputation on data with different
amounts of missing values is summarized in Table 6. The significance
is computed for each of the six amounts of missing data and six
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Fig. 9. Classification improvement on the Spl dataset for the RIPPER (top left), C4.5 (top right), SVM with RBF kernel (middle left), SVM with polynomial kernel (middle
right), Na�̈ve-Bayes (bottom left), and KNN (bottom right) classifiers.

Table 6
Statistical significance of the difference between using imputed and missing data for each of the considered imputation methods (columns) for different amounts of missing
values (rows)

Amount of
missing data

Imputation methods

FHD
significance
(t-value)

HD
significance
(t-value)

FNB
significance
(t-value)

NB
significance
(t-value)

Poly
significance
(t-value)

Mean
significance
(t-value)

5% ∼ (−0. 4) ∼ (−1. 0) ∼ (−0. 7) ∼ (−1. 0) ∼ (−0. 3) ∼ (−0. 7)
10% ∼ (−0. 1) ∼ (0. 2) ∼ (−0. 1) ∼ (−0. 3) ∼ (1. 1) ∼ (−0. 5)
20% ∼ (1. 6) ∼ (1. 0) ∼ (1. 3) ∼ (1. 1) + + (2.3) ∼ (0. 5)
30% ∼ (1. 5) ∼ (0. 7) ∼ (1. 7) ∼ (2. 0) + + (2.2) ∼ (−0. 9)
40% ∼ (−0. 3) ∼ (−0. 9) ∼ (−0. 4) ∼ (1. 9) ∼ (−0. 8) ∼ (−0. 3)
50% ∼ (0. 4) ∼ (0. 5) ∼ (0. 9) ∼ (0. 8) + + (3.5) ∼ (1. 4)

“++” indicates that using a given imputation method gives statistically significantly better classification errors for a given amount of missing data, “−” indicates that it
gives statistically significantly worse classification errors, “∼” indicates that the difference in the errors is insignificant; positive t-value means that classification errors for
the imputed data were better, while negative values means that classification errors for the data with missing values were better.

The statistically significant results are shown in bold.

imputation methods based on average classification errors across the
six classifiers and the fifteen datasets.

The table shows that for 20%, 30% and 50% amounts of missing
data and all imputation methods, except the mean imputation, im-

putation improves classification errors (the corresponding t-values
are positive). The results also show that imputation performed when
5% and 40% of the data is missing does not, on average, improve the
classification. Virtually all differences are statistically insignificant,
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and there are no clear trends that would indicate the relationship
between the quality of the imputation and the amount of missing
data. Only three statistically significant improvements in classifica-
tion errors occurred for 20%, 30%, and 50% of missing data for the
Poly method. At the same time, the mean imputation is shown on
average to consistently provide negative t-values, which means that
the corresponding classification accuracy was lower than using the
missing data. The low statistical significance of the differences stems
from using the C4.5 and Na�̈ve-Bayes classifiers, which on their own
are shown to be missing data resistant. We conclude that on average
for most non-trivial (i.e., above 10%) amounts of missing values and
across various classifiers, performing imputation is shown to result
in improved (smaller) classification errors.

4. Summary and conclusions

The need for missing data imputation methods is stimulated by
the existence of numerous industrial and research databases that
contain missing values. In this paper we examine the impact of per-
forming missing data imputation on the subsequently performed
classification.

To this end, we performed a comprehensive experimental study,
which includes six single andmultiple imputationmethods thatwere
used to impute missing values in 15 discrete datasets. The imputed
data were used to perform classification with six modern classifiers
to investigate the effect of imputation on the classification errors.
We also considered imputations for six different amounts of missing
data (i.e., 5%, 10%, 20%, 30%, 40%, and 50%) for each of the datasets,
and compared the results obtained from classification on imputed
data with the ones on missing data.

Based on the above experiments, we conclude that, on average,
imputation improves the subsequent classification, except for the
mean imputation method which provides improvements only when
used for a substantial (50%) amount of missing data. Although these
results in general agree with the results presented by Grzymala-
Busse and Hu [11], a substantially more comprehensive and detailed
analysis is presented in this paper. Our study shows that the im-
pact of the imputation varies between different classifiers. The major
(and statistically significant) improvements were achieved for the
KNN, SVMs with RBF kernels, SVM with polynomial kernels and RIP-
PER classifiers, while the C4.5 and Na�̈ve-Bayes classifiers are shown
to be missing data resistant. We also conclude that imputation is
beneficial for most amounts of missing data above 5% and that the
amount of improvement does not depend on the amount of missing
data. The performed experimental study also shows that there is no
universally best imputation method. Na�̈ve-Bayes based imputation
is shown to be the best for RIPPER and datasets with high, i.e., 40%
and 50%, amount of missing data. The multiple imputation polyto-
mous regression method is shown to be the best for the SVM with
polynomial kernel for all amounts of missing values and for C4.5 for
datasets with high (50%) amount of missing data. Also the applica-
tion of the recently proposed imputation framework is shown to be
best for SVM with RBF kernel and KNN. Finally, the mean imputation
is shown to be the least beneficial.
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