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Fuzzy System Design

Two Goals in Fuzzy Rule-Based System Design:

(1) Accuracy Maximization (Error Minimization)
(2) Interpretability Maximization (Complexity Minimization)
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Fuzzy System Design

Main Streams in Fuzzy System Design:

1970s - 1980s (Linguistic Knowledge Extraction)
- Fuzzy systems were designed by human experts.
- Fuzzy systems were linguistic rule-based systems.
- Fuzzy systems were highly interpretable.
Early 1990s - (Learning from Numerical Data)
- Fuzzy systems were designed from numerical data.
- Various neural and genetic approaches were proposed.
Mid 1990s - (Interpretability-Accuracy Tradeoff)
- Interpretability maintenance was taken into account.
- Interpretability-accuracy tradeoff was discussed.

Late 1990s - (Multiobjective Design)
- Evolutionary multiobjective algorithms were used.
- Multiple non-dominated fuzzy systems were generated.



Fuzzy Systems in 1970s - 1980s

Linguistic Systems with High Interpretability
- Fuzzy systems were design by human experts.
- Fuzzy systems were linguistic rule-based systems.
- Fuzzy systems were highly interpretable.

Less expensive controllers than others

Fuzzy Boom in Japan in the Late 1980s
- Fuzzy air conditioner - Fuzzy vacuum cleaner

- Fuzzy air cleaner - Fuzzy oven

- Fuzzy rice cooker - Fuzzy washing machine
- Fuzzy camera - Fuzzy copy machine

- Fuzzy refrigerator - Fuzzy dryer

- Fuzzy ATM - Fuzzy automated cruise

More than 200 real-world applications in the SOFT website.



Direction of Fuzzy System Research

Fuzzy Systems in 1970s - 1980s

Interpretable fuzzy systems were
manually generated and adjusted.
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Difficulties in Fuzzy System Design

Difficulties in Fuzzy System Design by Human Experts

- Human experts are not always available.
- Knowledge extraction from human experts are time-consuming.
- Designed fuzzy systems do not always work well.

Fuzzy System Design from Numerical Data

Highly Cited Papers

[1] Takagi T, Sugeno M: Fuzzy Identification of Systems and Its
Applications to Modeling and Control, IEEE TSMC (1985)

[2] Wang LX, Mendel JM: Generating Fuzzy Rules by Learning from
Examples, IEEE TSMC (1992)



Fuzzy Systems in the Early 1990s

Nonlinear Systems with High Accuracy

- Universal approximators of nonlinear functions

- Neural approaches to parameter learning

- Genetic approaches to parameter and structure learning

Increasing Popularity of Neural Networks and Genetic Algorithms

[1] D. E. Rumelhart, J. L. McClelland and the PDP Research Group:
Parallel Distributed Processing, MIT Press (1986).

[2] D. E. Goldberg: Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley (1989).



Highly Cited Neuro-Fuzzy Papers

[1]Jang JSR: ANFIS - Adaptive-Network-Based Fuzzy Inference
System, IEEE Trans. on SMC (1993)

[2]Lin CT, Lee CSG: Neural-Network-Based Fuzzy-Logic Control
and Decision System, IEEE Trans. on Computers (1991)

[3]Jang JSR, Sun CT: Neuro-Fuzzy Modeling and Control,
Proceedings of The IEEE (1995)

[4]Horikawa S, Furuhashi T, Uchikawa Y: On Fuzzy Modeling
using Fuzzy Neural Networks with the Back-Propagation
Algorithm, IEEE TNN (1992)

[5]Berenji HR, Khedkar P: Learning and Tuning Fuzzy-Logic
Controllers through Reinforcements, IEEE TNN (1992)



Highly Cited Genetic Fuzzy Papers

[1] Homaifar A, Mccormick E: Simultaneous Design of Membership
Functions and Rule Sets for Fuzzy Controllers using Genetic
Algorithms, IEEE TFS (1995)

[2] Karr CL, Gentry EJ: Fuzzy Control of pH using Genetic
Algorithms, IEEE TFS (1993)

[3] Ishibuchi H, et al.: Selecting Fuzzy If-Then Rules for Classifica-
tion Problems using Genetic Algorithms, IEEE TFS (1995)

[4] Ishibuchi H, et al.: Performance Evaluation of Fuzzy Classifier

Systems for Multidimensional Pattern Classification Problems,
IEEE Trans. on SMC Part B (1999)

[5] Park D, Kandel A, Langholz G: Genetic-based New Fuzzy-

Reasoning Models with Application to Fuzzy Control, IEEE
Trans. on SMC (1994)



Direction of Fuzzy System Research

Fuzzy Systems in the Early 1990s

Complicated fuzzy systems with high
accuracy were generated and trained.
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Difficulties in Accuracy Maximization

Overfitting and Poor Interpretability

Accuracy maximization Overfitting

A

Error

Test data

/ accuracy
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Overfitting to Training Data

Explanation of Overfitting to Training Data
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Deterioration in Interpretability

Ny, ®
.'.’Qlllll‘
2 4

fuzzy system

'..

X1g X411 | Conseguent
(D) Class 1
R1 DC

% (0.26)

Class 2
- R2 DC (100) X1 X3 Xy Xg X7 Xg X10 X711 Xq2 | Consequent
|nterpretab|e Ri|[pc | [nc | M [pc]|[pc][pc][pc][pc] K ‘o
., R, [oc | [ [pc|[pc][pc][pc][pc | KX | oo
fuzzy system / . Rs|[nc] [pc ] [pc | [pc | [pc] [ [pe | [bc ] [pc ]| %5
O, ., R| )00 [pc | &Y [pc | [pc | [ | [pc | K [DC]| o
| - * ass
o ’;‘~..__ TS ‘ Rs | pc ] [pc ] [pc | [O04 [pc][pc ][] [GKN AN ‘oo

n a
- %, gessem=nagdy, | Ro|[nc][pc][pc][nc][pc][pc] 0 [pc][pc] o
* i /

LL] e oo L .ass R0 [pc][c][nc] [bC] [bC] Lol [DC][OCH| ‘o

EEn )
’ Rs|[pC|[pC|[pC]|[DC| [ [DC|[DC][DC]|[DC] Dot

Accurate
@©
0p

Simple €—— Complexity =——= Complicated



Fuzzy Systems in the Mid 1990s

Compromise between Interpretability and Accuracy
(Search for a good interpretability-accuracy tradeoff)

Basic Idea

To combine the error minimization and the complexity
minimization into a single scalar objective function

Example: Combination of the average error rate and the
number of fuzzy rules

Example of a scalar objective function: Weighted sum

F(S) =Wy TError(S)+Ws - feomplexity (S)



Direction of Fuzzy System Research

Fuzzy Systems in the Mid 1990s

Accurate and interpretable fuzzy
systems were generated.
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Highly Cited I-A Tradeoff Papers

[1] Ishibuchi H, et al.. Selecting fuzzy if-then rules for

classification problems using genetic algorithms, IEEE TFS
(1995) (Weighted sum of the accuracy and the number of fuzzy rules)

[2] Setnes M et al.. Similarity Measures in Fuzzy Rule Base
Simplification, IEEE TSMC-Part B (1998)

[3] Setnes M, Roubos H: GA-fuzzy modeling and classification:
Complexity and performance, IEEE TFS (2000)

[4] Setnes M, et al.. Rule-based modeling: recision and
transparency, IEEE TSMC-Part C (1998)

[5] Jin YC: Fuzzy modeling of high-dimensional systems:

Complexity reduction and interpretability improvement, IEEE
TFS (2000)



Difficulty in Weighted Sum Approach

Sensitivity of the Result to the Weight Vector Specification

Minimize wy-Error + w,-Complexity
When the weight for the complexity minimization is large:

A . . .
' A simple system is obtained.
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Difficulty in Weighted Sum Approach

Sensitivity of the Result to the Weight Vector Specification

Minimize w,-Error + w,-Complexity

When the weight for the error minimization is large:
A

Error

A complicated system Test data
IS obtained. accuracy

Training data
accuracy

>
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Current Trend in Fuzzy System Design

Multiobjective Fuzzy System Design (Late 1990s - )

Goals
- Accuracy Maximization
- Interpretability Maximization
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Multiobjective Fuzzy System Design

Basic Idea

To search for a number of non-dominated fuzzy systems with
respect to the accuracy maximization and the interpretability
maximization (instead of searching for a single fuzzy system).

Aggregation Approach
F(S)=wyg- TEror(S) +Wa - Teomplexity (S)
Multiobjective Approach

Minimize {Tgpor(S), Tcomplexity (S)}



Direction of Fuzzy System Research

Multiobjective Fuzzy System Design (Late 1990s - )
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Multiobjective Design of Fuzzy Systems

Many non-dominated fuzzy systems can be obtained along
the tradeoff surface by a single run of an EMO algorithm.
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Highly Cited MoGFS Papers

[1]

[2]

[3]

[4]

[3]

Ishibuchi et al. (1997) Single-objective and two-objective
genetic algorithms for selecting linguistic rules for pattern
classification problems. Fuzzy Sets & Systems.

Ishibuchi et al. (2001) Three-objective genetics-based machine
learning for linguistic rule extraction. Information Sciences.

Ishibuchi & Yamamoto (2004) Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation
measures in data mining. Fuzzy Sets & Systems.

Wang et al. (2005) Multi-objective hierarchical genetic algorithm

for interpretable fuzzy rule-based knowledge extraction. Fuzzy
Sets & Systems.

Johansen & Babuska (2003) Multiobjective identification of
Takagi-Sugeno fuzzy models. IEEE TFS.



Example: Obtained Rule Sets (Heart C)
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Obtained rule sets help us to find the optimal complexity of fuzzy
systems. (Rule sets with six, seven and eight rules may be good)



A Rule Set with High-Generalization Ability

A rule set with eight fuzzy rules
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Some human users may prefer simpler rule sets.



Error rate (%)

A Rule Set with High Interpretability

A very simple rule set with only two fuzzy rules
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Multiobjective Fuzzy System Design

Use of EMO algorithms to search for a number
of non-dominated fuzzy systems
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Multiobjective Optimization

Two-Objective Maximization Problem:
Maximize f(x)=(f;(x), f,(x))

fa(x)
A

Maximize

. > (X
Maximize 1( )




Comparison between Two Solutions

Maximize f(x)=(f,(x), f,(x))

Y ® A dominates
:>E:< is dominated by A
S .
(A Is better than

. > (X
Maximize 1( )

)



Comparison between Two Solutions

Maximize f(x)=(f,(x), f,(x))

fi (x) A
O A and C are non-dominated
cg QC with each other.

S

) > (X
Maximize 1(X)




Pareto-Optimal Solutions

A Pareto-optimal solution is a solution that
IS not dominated by any other solutions.

> f1(x)

Maximize




Pareto Front

The set of all Pareto-optimal solutions iIs
called the Pareto front of the problem.

> f1(X)

Maximize




EMO Algorithms

Evolutionary multiobjective optimization (EMO)
algorithms have been designed to search for
Pareto-optimal solutions in their single run.
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Comparison: Weighted Sum Approach

Maximize ¢g(x) =wq f1(X) + wy fo(X)

f5(x)
A Only a single solution is obtained

by the weighted sum approach.
W = (W, Wp)

Maximize

, 1(X)

Maximize



Comparison: EMO Approach

Maximize fq(x), fo(X)

f5(x)
A Only a single solution is obtained
by the weighted sum approach.
~ Multiple solutions are obtained
c by an EMO algorithm.
P
(©
=
> fl(x)

Maximize



Difficulties in Weighted Sum Approach

- This approach is sensitive to the weight vector specification.

- This approach can not find any Pareto-optimal solutions in a
non-convex region of the Pareto front in the objective space.

f,(X)

Maximize

Maximize



Difficulties in Weighted Sum Approach

- This approach is sensitive to the weight vector specification.

- This approach can not find any Pareto-optimal solutions in a
non-convex region of the Pareto front in the objective space.

f,(X)

Maximize

> fl (X)

Maximize



EMO Approach

- EMO approach can find Pareto-optimal solutions even in a non-
convex region of the Pareto front in the objective space.

f,(X)

Maximize

Regio

> fl (X)

Maximize



Comparison of the Two Approaches

Two-objective maximization problem
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Search Direction in Each Approach

Two-objective maximization problem
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Both the diversity and the convergence should be improved in EMO.



Highly Cited EMO Papers

Two Dominant Algorithms: NSGA-Il and SPEA

1. Deb K et al. (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-IIl. IEEE TEC. NSGA-II

2. Zitzler E, Thiele L (1999) Multiobjective evolutionary
algorithms: A comparative case study and the Strength
Pareto approach. IEEE TEC. SPEA (=> SPEA2 in TIK-Report)

3.Fonseca CM, Fleming PJ (1998) Multiobjective optimization and
multiple constraint handling with evolutionary algorithms (Part 1):
A unified formulation, IEEE SMC Part A.

4.Zitzler E, Thiele L, Laumanns M (2003) Performance assessment of
multiobjective optimizers: An analysis and review. IEEE TEC.

5.1shibuchi H, Murata T (1998) A multi-objective genetic local search
algorithm and its application to flowshop scheduling, IEEE SMC
Part C.



Goal of EMO Algorithms

An EMO algorithm is designed to search for

- all Pareto-optimal solutions

- uniformly distributed Pareto optimal solutions
- a solution set which approximates the Pareto front

In their single run.
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Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as
NSGA-Il and SPEA have some common features.
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Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as
NSGA-Il and SPEA have some common features:

_ high fitness
(1) Pareto Dominance

Converge to the Pareto front

— Maximize

low fitness Maximize



Basic Ideas in Recent EMO Algorithms

1. Pareto Dominance o 51009
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Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as
NSGA-Il and SPEA have some common features:

(1) Pareto Dominance @ high fitness
Converge to the Pareto front € ¢ fitness
X
. S | e |
(2) Crowding > ° . high
_ _ _ 1 ® o fitness
Diversity maintenance ®e . ® o Q
>

— Maximize



Basic Ideas in EMO Algorithm Design

Example: Crowding Distance in NSGA-II
Distance between adjacent individuals

A

®--o. B

@ bj Ces a+b

E \ a /.\A

>< \

S .

= Infinitely

large value ~®
— >
0 Maximize f,

Crowding distance of C is (a + b)



Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as
NSGA-Il and SPEA have some common features:

(1) Pareto Dominance

Converge to the Pareto front

(2) Crowding

Diversity maintenance

— Maximize

(3) Elitist Strategy

Non-dominated

solutions
(Elite solutions)

— Maximize

Non-dominated solutions are handled as elite solutions.



Basic Ideas in Recent EMO Algorithms

(1) Pareto Dominance (Convergence to the Pareto front)
(2) Crowding (Diversity Maintenance)
(3) Elite Strategy (Non-Dominated Solutions)
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Hot Issues In EMO Research

Utilization of Decision Maker’s Preference
- Preference is incorporated into EMO algorithms.
- Interactive EMO approaches seem to be promising.

Handling of Many Objectives by EMO Algorithms
- Pareto dominance-based algorithms do not work well.
- More selection pressure is needed.

Hybridization with Local Search
- Hybridization often improves the performance of EMO.
- Balance between local and genetic search is important.

Design of New EMO Algorithms
- Indicator-based EMO algorithms
- Scalarizing function-based EMO algorithms
- Use of other search methods such as PSO, ACO and DE.



Hot Issue: Preference Incorporation

EMO Approach to Decision Making

Step 1: Evolutionary multiobjective optimization
==> Many non-dominated solutions (Candidates).

Step 2: Choice of a single solution by the decision maker.
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EMO Approach to Decision Making

Difficulty in Step 1. It is not always easy to find a set of non-
dominate solutions that covers the entire Pareto front.

Difficulty in Step 2: It is not always easy for the DM to choose a
single solution form a large number of alternatives.

DTLZ2




EMO Approach to Decision Making

Difficulty in Step 1. It is not always easy to find a set of non-
dominate solutions that covers the entire Pareto front.

Difficulty in Step 2: It is not always easy for the DM to choose a
single solution form a large number of alternatives.

One idea to tackle these two difficulties:
To search for a small number of non-dominate solutions.

DTLZ2




Utilization of Preference Information
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Basic ldea: Concentration on the preferred region of the
Pareto front. The decision maker is not always interested in
all the Pareto-front.



Utilization of Preference Information
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Difficulty: It is not easy to extract preference information
from the decision maker (DM). It may be much simpler to
compare different solutions. ==> Interactive Approaches.



Extraction of Preference Information
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Preference Extraction

(1) Relatively Easy Case

- Number of Objectives: Two
- Pareto Front: Known

- The DM knows the problem

(2) Very Difficult Case
- Number of Objectives: Many
- Pareto Front: Unknown

- The DM does not know the
problem very well.

Example: Flight Tickets (Cost, # of Stops, Total Time)

Case 1: You are planning to buy aticket to your home town.
Case 2: You are planning to buy a ticket to Easter Island.



Another Hot Issue:

Evolutionary Many-Objective Optimization

Why are many-objective problems difficult?

1. Many Objectives: Difficulty in Multiobjective Search
Selection pressure toward the Pareto front becomes very
weak since almost all solutions are non-dominated.

2. Many Solutions: Difficulty in Approximation
A large number of non-dominated solutions are needed to
approximate the entire Pareto front.

3. Many Solutions with Many Objectives: Presentation

It is very difficult to present a large number of obtained
solutions in the high-dimensional object space to the
decision maker in a visually understandable manner.



Difficulties in Many-Objective Optimization

Q. Why are many-objective problems hard for EMO ?

A. Solutions with many objectives are usually non-dominated
with each other. This means very low selection pressure
toward the Pareto front in Pareto dominance-based EMO.

Five-Objective Maximization Example (Non-dominated Vectors)
f, f, f,

fs f, 1s f, f5 f

f fs

f f f
% Looks good 3 4 Notbad ° f4 Looks poor



Difficulties in Many-Objective Optimization

Percentage of Non-Dominated Vectors

We randomly generate vectors in a K-dimensional space.
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Experimental Results of NSGA-II

Standard Implementation of NSGA-II
Generation Update: (100 + 100) ES

Current Population: 100 Individuals
Offspring Population: 100 Individuals

Next Population: The best 100 individuals from the current
population and the offspring population.

Fithess Evaluation: 1st Criterion: Pareto Dominance
2nd Criterion: Crowding Distance

Test Problems

K-objective 500-item knapsack problems (kK-500 problem)
k=2 4,6,8, 10



Number of Non-Dominated Solutions

(Among 200 solutions before the generation update in NSGA-II)

----- 2-500 —— 4-500 —— 6-500 = 8-500 —— 10-500

200 — — — —
10-500:

10-objective

500-item problem

50 ll Next Generation:

100 Individuals

150

1 10 100 1000 10000 100000
Number of Generations

All individuals are non-dominated solutions after a few generations
(10-500 problem) and after about 200 generations (2-500 problem).

Number of Non-Dominated Solutions



Very Simple Measure of Convergence

The sum of the given objectives: ¢(Xx) = f,(X) + ,(X)
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f,: Total profit from knapsack 2
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f,: Total profit from knapsack 1
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Very Simple Measure of Diversity

Range Measure

20000 i
~
£ 10000 Range=A+B
<
(qv]
=
o
18000 i
_ — — - Pareto front \\
o Obtained solution \ |
\
| 1 | \ |
17000 18000 19000 20000

f,: Maximize



Experimental Results of NSGA-II

----- 2-500 —— 4-500 —— 6-500 === 8-500 === 10-500 ----.2-500 —— 4-500 —— 6-500 == 8-500 === 10-500
130 T T T T T T T T T 250 T T T T T T T T
g cg,zoo
[
E ks
2 o) 150
[¢)
g 5
— (40
= E 100
é
% 50
1 I 1I0 I 1(I)0 ' 1OI00 ' 10(;00 ' 100000 O1 . 1|0 l 1(!)0 l 10I00 l 10(|)00 . 100000
Number of Generations Number of Generations
MaxSum: Convergence Range: Diversity of solutions

Observation: Only the convergence was improved in the early
generations. After that, only the diversity was improved.



Approximation of the Pareto Front

Q:How many non-dominated solutions are needed to
approximate the entire Pareto-front of the K-objective
problem? (k=2,3,4,..)

A: Huge when K is large (It exponentially increases with K)

DTLZ2

.d~~
O s
200001 Oxe.
O‘\
i [o)%
O*.
o~
O\
19000 O
[N
o'
O\
18000 o
A
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M 1 M | M I‘
17000 18000 19000 20000

k=2



Approximation with Finite Solutions

Two Strategies for Many-Objective Problems

(1) Sparse approximation of the entire Pareto front.

(2) Dense approximation of only a part of the Pareto front.

Dense approximation of the entire Pareto front is impossible in the
case of many objectives.

ammp @7 1 moF e
*.. o,
19000 . . 19000F bb
o, |
\ \
‘ )
AN ‘
18000 YT 18000 \\
\
----Pareto front é. | | -~ --Pareto front Y
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. ! . )

17000

(1) Sparse Approximation

|0 00 2000

17000

|00 1900 200

(2) Dense Approximation




Approximation with Finite Solutions

Two Strategies for Many-Objective Problems

(1) Sparse approximation of the entire Pareto front.

(2) Dense approximation of only a part of the Pareto front.

Dense approximation of the entire Pareto front is impossible in the
case of many objectives. o122

11 ‘ f

(1) Sparsé Approxima’fion (2) Dense Approximation



Handling of Obtained Solutions

Difficulty: How to show a large number of non-dominated solutions.

f1 f1 fl fl fl
fs f, fs f, fs f, fs f, fs @ f,
f, f5 f, fs fy fs fy fs fs f3
f, fy fy fy f
fs f, fs f, fs f, fs f, fs @ f,
f, fs f, fs f, fs f, f f, f



Another Hot Issue: Hybridization

Multiobjective Memetic Algorithm (MOMA)

Powerful Approach to Single-Objective Optimization: MA

Evolutionary + Local Memetic
algorithm search algorithm

Multiobjective Memetic Algorithm: MOMA

Multiobjective e Multiobjective
: + Multiobjective | — )
evolutionary — memetic
. local search :
algorithm algorithm



Design of MA and MOMA

One important implementation issue:

Specification of the balance between evolutionary
search and local search (or its dynamic adaptation).

Ishibuchi H, Yoshida T, Murata T (2003) Balance between
genetic search and local search in memetic algorithms for
multiobjective permutation flowshop scheduling. IEEE Trans.
on Evolutionary Computation.

Evolutionary
search

|_ocal search




New Trend in EMO Algorithm Design

IBEA: Indicator-Based Evolutionary Algorithm

Basic Ildea

To maximize a performance indicator of a solution set
(not a solution): Hypervolume is often used.

Maximize f,




New Trend in EMO Algorithm Design

IBEA: Indicator-Based Evolutionary Algorithm

Maximize | (S) (Maximization of an Indicator Function)

subject to|S|< N where S = {x|xe X}

S: A set of solutions

N: A pre-specified number
of required solutions

Maximize f,

X: A feasible region

Maximize f,



New Trend in EMO Algorithm Design

MOEA/D: Use of Scalarizing Functions

MOEA/D: Multi-objective evolutionary algorithm based on
decomposition by Zhang and Li (IEEE TEC 2007)

Its Basic ldea (Decomposition): A multi-objective problem
IS handled as a set of scalarizing function optimization

problems with different weight vectors.

; Weight vector

V4
l, _->*

-

1,7
- >0—>

(a) Two-objective case (b) Three-objective case



New Trend in EMO Algorithm Design

Hybrid Method: Use of Scalarizing Functions

Initialization
Scalarizing fitness
Parent selection ( function
Genetlc operatlon

PS
Generation update ‘ NSGA-I1 fitness

1-P¢ | evaluation mechanism
End

Probability for scalarizing fitness functions:
Parent selection: Pps Generation update: P,

Ishibuchi et al. (PPSN 2006)



New Trend in EMO Algorithm Design

Use of Other Meta-Heuristics (PSO, ACO, etc.)

Highly Cited Papers

[1] Coello CAC, Pulido GT, Lechuga MS (2004) Handling Multiple
Objectives with Particle Swarm Optimization, IEEE TEC

[2] McMullen PR (2001) An Ant Colony Optimization Approach to
Addressing a JIT Sequencing Problem with Multiple
Objectives, Artificial Intelligence in Engineering

[3] Ray T, Liew KM (2002) A Swarm Metaphor for Multiobjective
Design Optimization, Engineering Optimization

[4] Li XD (2003) A Non-Dominated Sorting Particle Swarm
Optimizer for Multiobjective Optimization, GECCO 2003.

[5] Ho SL et al. (2005) A Particle Swarm Optimization-Based
Method for Multiobjective Design Optimizations, IEEE Trans.
on Magnetics




For More Information

Webpage for EMO Papers: EMOO

< EMOO Home Page — Windows Internet Explorer = X

@fﬂv |@J lania. mx "| rri R |.‘!ﬂ- |'° e
— .

L ORIE REE TR BEEANE w-llD AJLTHHE

TA? @ EMOO Home Page

Complete List of References
In alphabetical oraer

http://www.lania. mx/~ccoel|o/EI\/IOO/




For More Information

Webpage for EMO Algorithms and Problems:

Z ETH — SOP — PISA - Windows Internet Explorer

G:J' |’“" Fttp/ Aesin tik e ethz oh/sop/pisa/ i |-*)§.;_X_I |’f Live Search ||PI-

CPIWE REE ETW BRIEANA Y-lD AT
e |!u= ETH - SOP - PISA ‘ |

SYSTEMS OPTIMIZATION

ETH Zirich - D-ITET - TIK - SOP - PISA

i

PISA
M Pisa

g+ Principles and
Documentation

‘@ PISA for Beginners A Platform and Programming Language

Independent Interface for Search
Algorithms

http://www.tik.ee.ethz. ch/sop/plsa/
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Webpage for Evolutionary Learning: KEEL

Maintained by Granada University, Spain

~ keel.es — Windows |

« Vi [ e [t | Moy e :
@ .Iuv :‘ tEo S wanen kel es v. 5| R I* ~ e p -

B REE =T BRICADE YD ALTRE

T E heeles

KNOWLEDGE
EXTRACTION 1727 7
EVOLUTIONARY
LEARNING

List of References of Specific Areas

KEEL Description

Members Knowledge Extraction based on Evolutionary Algorithms

Evolutionary Algorithms for Extracting Association Rules

KEEL Blog Evolutionary Feature Selection
ot Evolutionary Neural Networks Using Products Units
KEEL Publications Evolutionary Prototype/Instance Selection
: Evolutionary RBF
List of Rgferences Genetic Programming Learning and Rules Extraction
by Specific Areas Multiobjective Genetic Algorithms and Rule Learning

KEEL-dataset Software for Evolutionary Computation

Knowledge Discovery and Data Mining
KEE,II .LTELETEntEd | Analysis of Data and Experiments
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Introduction to genetic fuzzy systems

Brief Introduction

The use of genetic/evolutionary algorithms (GAs) to design
fuzzy systems constitutes one of the branches of the Soft
Computing paradigm: (GFSs)

The most known approach is that of
, where some components of a fuzzy rule-

based system (FRBS) are derived (adapted or learnt) using
a GA

Some other approaches include genetic fuzzy neural
networks and genetic fuzzy clustering, among others

84



Introduction to genetic fuzzy systems

Brief Introduction
Evolutionary algorithms and machine learning:

Evolutionary algorithms were not specifically designed as
machine learning techniques, like other approaches like
neural networks

However, it is well known that a learning task can be
modelled as an optimization problem, and thus solved
through evolution

Their powerful search in complex, ill-defined problem spaces
has permitted applying evolutionary algorithms successfully
to a huge variety of machine learning and knowledge
discovery tasks

Their flexibility and capability to Incorporate existing
knowledge are also very interesting characteristics for the
problem solving. 85



Introduction to genetic fuzzy systems

Brief Introduction

Genetic Fuzzy Rule-Based Systems:

DESIGN PROCESS

Genetic Algorithm Based
Learning Process

A

Knowledge Base

Data Base + Rule Base
A

4

A

Input Interface

A 4

Output Interface

\ 4

Fuzzy Rule-
Based System

Environment | Computation with Fuzzy Rule-Based Systems | Environment
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Introduction to genetic fuzzy systems

Brief Introduction

Design of fuzzy rule-based systems:

o« An FRBS (regardless it is a fuzzy model, a fuzzy logic
controller or a fuzzy classifier), iIs comprised by two main

components:

e The , storing the available problem
knowledge in the form of fuzzy rules

e The , applying a fuzzy reasoning method on

the inputs and the KB rules to give a system output

Both must be designed to build an FRBS for a specific
application:

e The KB is obtained from expert knowledge or by machine
learning methods

e The Inference System is set up by choosing the fuzzy operator
for each component (conjunction, implication, defuzzifier, etc.)

Sometimes, the latter operators are also parametric and
can be tuned using automatic methods 87



Introduction to genetic fuzzy systems

Brief Introduction

The KB design involves two subproblems, related to
Its two subcomponents:

— Definition of the (DB):
» Variable universes of discourse
 Scaling factors or functions

e Granularity (number of linguistic terms/labels) per
variable

 Membership functions associated to the labels

— Derivation of the (RB): fuzzy rule
composition

88



Introduction to genetic fuzzy systems

Brief Introduction

As said, there are two different ways to design the
KB:

— From information

— By means of guided by the
existing numerical information (fuzzy modeling and
classification) or by a model of the system being controlled

89



Introduction to genetic fuzzy systems

Brief Introduction

' Knowledge Bese

Rule Data
Base Base

input | Fuzzification Inference Defuzzification | output
Interface | Mechanism | | Interface

Fuzzy rule-based system
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Introduction to genetic fuzzy systems

Taxonomy of Genetic Fuzzy Systems

Genetic fuzzy systems

/\A

Genetic tuning Genetic learning of
/\ FRBS components
Genetic tuning of Genetic adaptive Genetic KB Genetic learning
KB parameters inference engine learning of KB components

and inference
/\ engine parameters
Genetic adaptive Genetic adaptive

inference system defuzzification
methods

92



Introduction to genetic fuzzy systems

Taxonomy of Genetic Fuzzy Systems

Genetic KB
learning
Genetic rule | | Genetic rule Simultaneous
learning selection Genetic DB genetic learning of
(A priori DB) | | (A priori rule learning KB components
/\ extl’aCtion)A/\‘ /\
Genetic Genetic RB Genetic Genetic fuzzy rules
descriptive learning A prioiri Embedded learning learning
rules for prediction genetic genetic of linguistic || (Approximate
extraction DB learning || DB learning || models Models, TS-rules ..)
RB and DB
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Introduction to genetic fuzzy systems

1. Genetic Tuning

Classically:
— performed on a predefined DB definition

— tuning of the membership function shapes by a

GA

— tuning of the inference parameters

TT

94



Introduction to genetic fuzzy systems

1. Genetic Tuning

X3
& < 5 R3 R6 RO
g- =) R R3 RS
=] L,
?_',
=/ -
= § -y Rl R4 RT
Pl P2 p3 / X
RB Learning . . . A/
S Genetic Tuning Lowdid B
. " Evaluation
' " Module
Y
Definitive : DB/
RB - Inference Engine
Parameters
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Introduction to genetic fuzzy systems

2. Genetic Rule Learning

A predefined Data Base definition is assumed

— The fuzzy rules (usually Mamdani-type) are
derived by a GA

X-H P ML o

P :
B 1

M B . B
G

=,

Rule Base ‘

(R.=F ¥ s
L 1

THEM

R, = IF ¥ s THEN
1

T -

R, =1F X s THEM
1

THEM

Lo} Lo} Lo} L]
B omm oo

a Z T =
an an an an
[ [ [ (o
sl sl - sy
(k] (k] [ h] (k]
ol ol ol o
a2 2 =

R, = IF X s
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Introduction to genetic fuzzy systems

2. Genetic Rule Learning

Genetic Rule
=== > Learning
: Process

Predefined RB *
DB

Evaluation
Module
(RB)
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Introduction to genetic fuzzy systems

3. Genetic Rule Selection

— A predefined Rule Bases definition is
assumed

— The fuzzy rules are selection by a GA for
getting a compact rule base (more
Interpretable, more precise)

98



Introduction to genetic fuzzy systems

3. Genetic Rule Selection

Rule Extraction Genetic Rule
Process Selection

Evaluation
Module
| : Y
Rule L RB
set
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Introduction to genetic fuzzy systems
3. Genetic Rule Selection

Initial Data Base
Selected Rule Base
Ry=IFXis L, THEN YesS,
Ry=IFXis S; THEN YesM,

Derived [R;=1Fxis L, THEN YesS,
Ry=IFXis S, THEN YesM,
Ry=IFXis M, THEN VYesl,

Example of genetic rule selection

100



Introduction to genetic fuzzy systems

4. Genetic DB Learning

— Learning of the membership function shapes by a GA

08}

06
1

04

02}
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Introduction to genetic fuzzy systems

4. Genetic DB Learning

A priori Genetic[ """ """ T TTTTTTTTTTA :’" RB Learning
DB Learning P Process

Evaluation
Module

(DB) s
+ Definitive
DB DB RB
'
Embedded Genetic ..~ Rule Learning
DB Learning : Process

E Evaluation
' Module
. (DB+RB)

DB --------- RB

I .02




Introduction to genetic fuzzy systems

5. Simultaneous Genetic Learning of KB Components

The simultaneous derivation properly addresses the strong
dependency existing between the RB and the DB

VS S L VL

K

Rule Base

(R, =F X is THEN
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, = Fx s THEN
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Introduction to genetic fuzzy systems

5. Simultaneous Genetic Learning of KB Components

-
|

.......................

Small Normal Big

Genetic KB NGNS T
Learning Process VNS

Low Mid  High

Evaluation
Module

' (KB)
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Introduction to genetic fuzzy systems

6. Genetic Learning of KB Components and Inference Engine
Parameters

Rule Base Connectives
DefuzweicTh Conjunction
R, R, Ry RiR> RynIR1 RS Ry
{ES3,..,EL3} {ES3,..,EL3} {ESg,..,ELg} Bl Bz BN 01 |0y ON
CSCOR CSD CSC

W

Example of the coding scheme for learning an RB and the inference
connective parameters
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Introduction to genetic fuzzy systems
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Introduction to genetic fuzzy systems

Why do we use GAS?

= We can code different FS components in a chromosome:
m ldentify relevant inputs

m Scaling factors

m Membership functions, shape functions, optimal shape of

membership funct., granularity (number of labels per
variable)

m Fuzzy rules, Any inference parameter, ....

We can define different mechanism for managing them
(combining genetic operators, coevolution,...)

C. C=
011 o === Clm Cz:. sz b - sz—‘.l. sz
[ 1 I
Two points crossover BLX-alpha
Flip a gene at random Random mutation




Introduction to genetic fuzzy systems

Why do we use GAs?

= We can consider multiple objectives in the learning
model (interpretability, precision, ....)

Pareto
Solutions

Accuracy

Interpretability
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Introduction to genetic fuzzy systems

The birth, GFSs roadmap, current status and most cited papers

The birth of GFSs: 1991

Thrift's ICGA91 paper (Mamdani-type Rule Base Learning. approach)

Thrift P (1991) Fuzzy logic synthesis with genetic algorithms. In: Proc. of 4th
International Conference on Genetic Algorithms (ICGA'91), pp 509-513

Valenzuela-Renddn’s PPSN-I paper (Scatter Mamdani-type KB Learning.
approach)

Valenzuela-Rendon M (1991) The fuzzy classifier system: A classifier system for

continuously varying variables. In: Proc. of 4th International Conference on Genetic
Algorithms (ICGA'91), pp 346-353

Pham and Karaboga’'s Journal of Systems Engineering paper (Relational matrix-
based FRBS learning. approach)

Pham DT, Karaboga D (1991) Optimum design of fuzzy logic controllers using genetic
algorithms. Journal of Systems Engineering 1:114-118).

Karr's Al Expert paper (Mamdani-type Data Base )

Karr C (1991) Genetic algorithms for fuzzy controllers. Al Expert 6(2):26-33.
Almost the whole basis of the area were established in the first year!



Introduction to genetic fuzzy systems

The birth, GFSs roadmap, current status and most cited papers

P. Thrift, Fuzzy logic synthesis with genetic algorithms, Proc. Fourth Intl.
Conf. on Genetic Algorithms (ICGA’91), San Diego, USA, 1991, pp. 509-513

— Classical approach: Pittsburgh — the decision table is encoded in a
rule consequent array

— The output variable linguistic terms are numbered from 1 to n and
comprise the array values. The value 0 represents the rule absence,
thus making the GA able to learn the optimal number of rules

— The ordered structure allows the GA to use simple genetic operators

X\2X1 S M L
o _H RZ IM 123
— Y > {B, M, A}
Ry RJ Rq
M — M —

R7 Rd [Rd > [1] 0 2 d 4 44 ¢ :

L M — A




Introduction to genetic fuzzy systems

The birth, GFSs roadmap, current status and most cited papers

GFSs roadmap

o Establishment of the three classical learning approaches in the GFS field: Michigan,
Pittsburgh, and IRL

o Different FRBS types: Mamdani, Mamdani DNF, Scatter Mamdani, TSK

o Generic applications: Classification, Modeling, and Control

o First: Membership function parameter tuning

o Later: other DB components adaptation: scaling factors, context adaptation (scaling
functions), linguistic hedges, ...

o Recently: interpretability consideration



Introduction to genetic fuzzy systems

The birth, GFSs roadmap, current status and most cited papers

GFSs roadmap

o New EAs: Bacterial genetics, DNA coding, Virus-EA, genetic local search (memetic
algorithms), ...

o Hybrid learning approaches: a priori DB learning, GFNNs, Michigan-Pitt hybrids, ...
o Multiobjective evolutionary algorithms
o Interpretability-accuracy trade-off consideration

o Course of dimensionality (handling large data sets and complex problems):
e Rule selection (1995-...)
e Feature selection at global level and fuzzy rule level
e Hierarchical fuzzy modeling

“Incremental” learning



Introduction to genetic fuzzy systems

Current state of the GFS area

Number of papers on GFSs published in JCR journals

Published Items in Each Year Citations in Each Year
180 - 1200 -
160 -
1000 -
1410 1
120 - 8O0
100 - 600
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Years Years

Source: The Thomson Corporation 1S1 Web of Knowledge

Query: (TS =(("GA-" OR "GA based" OR evolutionary OR "genetic algorithm*" OR "genetic
programming’ OR "evolution strate*" OR "‘genetic learning" OR "'particle swarm' OR "'differential
evolutio*" OR "ant system*"* OR ""ant colony"* OR "‘genetic optimi*** OR *‘estimation of distribution
algorithm*") AND (*'fuzzy rule*"" OR "fuzzy system*" OR "fuzzy neural’ OR "neuro-fuzzy" OR "fuzzy
control*" OR "'fuzzy logic cont*" OR "'fuzzy class*"" OR "'fuzzy if"* OR "‘fuzzy model*" OR "fuzzy
association rule*"* OR "'fuzzy regression™)) 115

Number of papers: 1459 Number of citations: 5,237,630
Average citations per paper: 5.23



Introduction to genetic fuzzy systems

Current state of the GFS area

Most cited papers on GFSs

1. Homaifar, A., McCormick, E., Simultaneous Design of Membership Functions and rule sets for fuzzy
controllers using genetic algorithms, IEEE TFS 3 (2) (1995) 129-139. Citations: 184

2. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H., Selecting fuzzy if-then rules for classification problems
using genetic algorithms, IEEE TFS 3 (3) (1995) 260-270. Citations: 164

3. Setnes, M., Roubos, H., GA-fuzzy modeling and classification: complexity and performance, IEEE TFS 8 (5)
(2000) 509-522 . Citations: 101

4. Ishibuchi, H., Nakashima, T., Murata, T., Performance evaluation of fuzzy classifier systems for
multidimensional pattern classification problems, IEEE TSMC B 29 (5) (1999) 601-618. Citations: 93

5. Park, D., Kandel, A., Langholz, G., Genetic-based new fuzzy reasoning models with application to fuzzy
control, IEEE TSMC B 24 (1) (1994) 39-47. Citations: 86

6. Herrera, F., Lozano, M., Verdegay, J.L., Tuning fuzzy-logic controllers by genetic algorithms, 1JAR 12 (3-4)
(1995) 299-315. Citations: 71

7. Shi, Y.H., Eberhart, R., Chen, Y.B., Implementation of evolutionary fuzzy systems, IEEE TFS 7 (2) (1999)
109-119. Citations: 63

8. Carse B., Fogarty, TC., Munro, A., Evolving fuzzy rule based controllers using genetic algorithms, FSS 80 (3)
(1996) 273-293. Citations: 63

9. Juang, C.F., Lin, J.Y., Lin, C.T., Genetic reinforcement learning through symbiotic evolution for fuzzy
controller design, IEEE TSMC B 30 (2) (2000) 290-302. Citations: 59

10. Cordon, O., Herrera, F., A three-stage evolutionary process for learning descriptive and approximate fuzzy-
logic-controller knowledge bases from examples, 1JAR 17 (4) (1997) 369-407. Citations: 58
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Some References

GENETIC FUZZY SYSTEMS
Evolutionary Tuning and Learning of Fuzzy
Knowledge Bases.

O. Cordon, F. Herrera, F. Hoffmann, L. Magdalena
World Scientific, July 2001

Classification and
Modelling with
Linguistic Information

L H. Ishibuchi, T. Nakashima, M. Nii, Classification and Modeling
with Linguistic Information Granules. Advanced Approaches to
Linguistic Data Mining. Springer (2005)

— F. Herrera, Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects.
Evolutionary Intelligence 1 (2008) 27-46 doi: 10.1007/s12065-007-0001-5,

—  F. Herrera, Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions,
International Journal of Computational Intelligence Research 1 (1) (2005) 59-67

— 0. Cordon, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena, Ten Years of Genetic Fuzzy
Systems: Current Framework and New Trends, FSS 141 (1) (2004) 5-31

— F. Hoffmann, Evolutionary Algorithms for Fuzzy Control System Design, Proceedings of the IEEE
89 (9) (2001) 1318-1333
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Interpretability Issues in Fuzzy System Design

Complexity Criteria

Highly used criteria: Complexity criteria in the

learning of FRBSs.

x
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Interpretability Issues in Fuzzy System Design

Semantic Criteria

Interpretability quality: associated to the meaning of
the labels and the size of the rule base

Interpretability considerations: semantic criteria

Semantics: the study of meanings

@ Distinguishability: Each linguistic label has semantic meaning
@ Number of elements: Compatible with human capabilities
@® Coverage: Any element belongs to at least one fuzzy set
@ Normalization: At least one element has unitary membership
@® Complementarity: For each element. the sum of memberships is one
_J Cold Cool Warm Hot l Cold Cool Warm ~ Hot

/ 1
/

Vi Temperature Temperature
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Interpretability Issues in Fuzzy System Design

Syntactic Criteria

Interpretability quality: associated to the meaning of
the labels and the size of the rule base

Interpretability considerations: syntactic criteria

Syntax: the way in which linguistic elements are put together

@® Completeness: for any input. at least one rule must fire
® Rule—base simplicity: Set of rules as small as possible
@® Rule readability: small number of conditions in rule antecedents

@ Consistency: rules firing simultaneously must have similar consequents

A R 4 7 ™ 4 7 A
| R7| Re | Ry RB L Rg |

L M . k. A A
4 ! AT =y " [ |

| R4 Rs | Rs R4 Rs| Ra . ! Rs| Ra
s — {1 l}_ — ilﬁ- o -:: \-r‘—“t,_ —_ 4 : s = =1

| R | R| R RH{RQ R |

W i A h, J A\ A e N : %, A

M _>Q<— —><><— 121



Interpretability Issues in Fuzzy System Design

Strategies to Satisfy Interpretabillity

Interpretability quality: associated to the meaning of
the labels and the size of the rule base

Strategies to satisfy interpretability criteria

@ Linguistic labels shared by all rules

® Normal. orthogonal membership functions

® Don’t care conditions

4 4 A
4 Cold Warm Hot | R-B | |
N B EE
\H ."'/ \s,. /‘ N B i
y f - |Rs|Ra
/\ /\ ' Ro i |
/\ / N . N N,
17 20 6 29 M
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Interpretability Issues in Fuzzy System Design

Still not Clear Concepts

Interpretability quality:

Y

What is the most interpretable rule base?
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Interpretability Issues in Fuzzy System Design

Some Approaches

Some Models to improve the Trade-Off:

o Advanced RB Generation +
o Linguistic Modifiers Use
o Using Double Consequent Rules

o Tuning of Membership@'

o Using Weighted Rules

Interpretability

4
o Using Multiple Consequent Rules |
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Evolutionary Tuning of FRBSs

Tuning of Membership Functions

— A genetic tuning process that slightly adjusts the shapes of the
membership functions of a preliminary DB definition

— Each chromosome encodes a whole DB definition by joining the partial
coding of the different membership functions involved

— The coding scheme depends on:

» The kind of membership function considered (triangular, trapezoidal, bell-
shaped, ...) — different real-coded definition parameters

 The kind of FRBS:

— Grid-based: Each linguistic term in the fuzzy partition has a single
fuzzy set definition associated

— Non grid-based (free semantics, scatter partitions, fuzzy graphs):
each variable in each rule has a different membership function
definition
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Evolutionary Tuning of FRBSs

Tuning of Membership Functions

. Tuning of the triangular membership functions of
a grid-based SISO Mamdani-type FRBS, with three
linguistic terms for each variable fuzzy partition

— Each chrosome encodes a different DB definition:
o 2 (variables) - 3 (linguistic labels) = 6 membership functions
« Each triangular membership function iTsTencoded by 3 real values (the

three definition points): A
e S0, the chromosome length is /
6 - 3 =18 real-coded genes \
(binary coding can be used but = = v ¢ -
but is not desirable)
— Either definition intervals have to be defined for each gene
and/or appropriate genetic operators in order to obtain

meaningful membership functions
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Evolutionary Tuning of FRBSs

Tuning of Membership Functions

-0.5 0 |05 0|05 1 |05 1 1.5|—O.5 0 |05 0]05]1 |05 1 1.5

Small Medium Large Small Medium Large

-0.5 0 |0.5]0.2%0.5[0.7%0.5]| 1 1.5|—O.35 0] 0.350.3]0.5]0.7] 0.5 1 1.5

Small Medium Large Small Mediu Large
W X Y

R1: IF X1 is Small THEN Y is Large

The RB remains unchan !
e SUEUERUIE LR o5 |F X1 is Medium THEN Y is Med
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Evolutionary Tuning of FRBSs

Genetic tuning of DB and RB using linguistic edges

J. Casillas, O. Corddn, M.J. del Jesus, F. Herrera, Genetic tuning of fuzzy rule deep

structures preserving interpretability and its interaction with fuzzy rule set
reduction, IEEE TFS 13 (1) (2005) 13-29

Genetic tuning process that refines a preliminary KB
working at two different levels:

— DB level: Linearly or non-linearly adjusting the
membership function shapes

— RB level: Extending the fuzzy rule structure using
automatically learnt linguistic hedges
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Evolutionary Tuning of FRBSs

Genetic tuning of DB and RB using linguistic edges

e Tuning of the DB:
Linear tuning Non-linear tuning

R =IFXisSTHENY es M R =IFXisSTHENY es M
R =IFXIsMTHEN YesL R =IFXIsMTHEN Y es L
R =IFXISLTHENY esS R =IFXISsLTHENY es S

e Tuning of the RB: linguistic hedges ‘very’ and ‘more-or-less’

STHEN Y is M
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Evolutionary Tuning of FRBSs

Genetic tuning of DB and RB using linguistic edges

Triple coding scheme:

— Membership function NIANI AN VAN
parameters (P) (DB linear
tuning): real coding

A = LA
— Alphavalues (A) (DBnon |, — 1+cj, A S! Ci/i e[-10]
linear tuning): real coding 1+4.cy, sicy€]0]]

0 < ‘very’
1 <> no hedge
2 <« ‘more-or-less’

Ci
— Linguistic hedges (L) c;
(RB tuning): integer coding Ci
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Evolutionary Tuning of FRBSs

Genetic tuning of DB and RB using linguistic edges

Initial Data Base Initial Rule Base

Ri1=IF Xis L; THEN Yis S,
Ro=1IF Xis S; THEN Yis M,
R3=IF Xis M;THEN Yis L,

)

Genetic Tuning

Ml I-1 S2

Ri=IFXis very 'y THEN Yis very S,
R,=IF Xis mol S; THEN Yis very M,
Rz=IF X is M;THEN Yis mol L,

Tuned Data Base Tuned Rule Base 132



Evolutionary Tuning of FRBSs

Experimental Study on Electrical Line Problems

Learning method considered: Wang-Mendel

Tuning method variants:

TunmMNG PROCESSES CONSIDERED IN THIS EXPERIMENTAL STUDY

Method Basic m.f. o m.f. Surface structure
parameters parameter with linguistic hedges

P-tun W3

A-tun e

L-tun "

PA-tun o 7

FL-tun e v

AL-tun < v

PAL-tun v =

Evaluation methodology: 5 random training-test partitions 80-
20% (5-fold cross validation) x 6 runs = 30 runs per algorithm
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Evolutionary Tuning of FRBSs

Experimental Study on Electrical Line Problems

Maintenance cost estimation for low and medium voltage lines in

Spain: O. Cordoén, F. Herrera, L. Sdnchez, Solving electrical distribution
problems using hybrid evolutionary data analysis techniques, Appl.
Intell. 10 (1999) 5-24

Spain’s electrical market (before 1998): Electrical companies shared a
business, Red Eléctrica Espaifola, receiving all the client fees and
distributing them among the partners

The payment distribution was done according to some complex
criteria that the government decided to change

One of them was related to the maintenance costs of the power line
belonging to each company

The different producers were in trouble to compute them since:

e As low voltage lines are installed in small villages, there were no actual
measurement of their length

e The goverment wanted the maintenance costs of the optimal medium

voltage lines installation and not of the real one, built incrementally 134



Evolutionary Tuning of FRBSs

Low Voltage Line Maintenance Cost Estimation

Goal: estimation of the low voltage electrical line length installed in 1000
rural towns in Asturias

Two input variables: number of inhabitants and radius of village
Output variable: length of low voltage line

Data set composed of 495 rural nuclei, manually measured and
affected by noise

396 (80%) examples for training and 99 (20%) examples for test
randomly selected

Seven linguistic terms for each linguistic variable
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Evolutionary Tuning of FRBSs

Low Voltage Line Maintenance Cost Estimation

Classical solution: numerical regression on different models

of the line installation in the villages
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Evolutionary Tuning of FRBSs

Medium Voltage Line Maintenance Cost Estimation

Goal: estimation of the maintenance cost of the optimal medium voltage
electrical line installed in the Asturias’ towns

Four input variables: street length, total area, total area occupied by
buildings, and supplied energy

Output variable: medium voltage line maintenance costs
Data set composed of 1059 simulated cities

847 (80%) examples for training and 212 (20%) examples for test randomly
selected

Five linguistic terms for each linguistic variable
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Evolutionary Tuning of FRBSs

Obtained Results for the Medium Voltage Line Problem

Tuning methods:

Flectrical Problem
T k-7 Tz
Method #R MSE,,, MSE,, hms #R MSE,, MSE,, | #R MSE,. MSE,.,
W 65 56,135 56,350 0:.00:00 0.0 1,498 4685 | — — —
WM+P-tun 65 18,305 22,136 0:22:41 00 778 3200 | — 1,110  1.988
WM+ A-tun 65 37243 38837 03188 | 0.0 455 1816 | — 125 572
W+ L-tun 65 20,067 23,420 0.0 632 3207 | — 336 1,430
WM+PA-tun | 65 17,067 21377 03802 00 1078 1625 | — 2133 2628
WM+PL-tun | 65 9,617 13,519 02533 00 263 3153 | — 604 1500
WM+AL-tun | 65 20544 23907  0:34:55 0.0 834 2701 | — 797 1,430
WM+PAL-tun | 65 |1L222 14741 | 0:38:12 0.0 380 1,315 | — 801 2,136
Other fuzzy modeling techniques and GFS:
Eleetrical Problem
T E.T;-fi_ -r?mi
Method | #R MSE,, MSE,., h:m:s | #R MSE,., MSE,, | #R MSE,, MSE,.,
Nozaki 5] | 532 26,705 27,710 0:00:00 | 0.0 764 2,006 | — — —
Thrift [38] |8653 31208 3770 31305 | 26 1,018 7,279 | 61 2,110 3,609
Liska [45] | 6240 400263 56080 7-13:34 | 0.1 2,356 4,628 | 0.1 7522 11,191
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Evolutionary Tuning of FRBSs

Obtained Results for the Medium Voltage Line Problem

Example of one KB derived from the WM+PAL-tun method:

Streat Town Building
Sst g8 M L Lat Sst 8 M L Lst Sst 8 M L Lat
1 N " " " 11 : " 4 q ; " "
0.5 ; ' 0.5 \ / . ' 0.5
0 | | . o4 ! . | o ; , .
0.5 3125 5.79 8.375 11 0.15 2.25 4.35 6.45 B8.55 1.64 J6.855 T207  107.285 1425
Energy Costs
S5t = M L Lst =5t 5 it L Lst
1 4 " | " , 1 " N N "
0.5 - 0.5 -
0 T 0 y :
L . 1 _-IE 33_ 124 B 165 ) E_-ﬂ-_r-l_}? 2184 ?_ﬁ 43'.?525 EldEEﬁd ) BME.EB L L
_Hli:; El W i i o Y .l w 1 o
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Interpretability-Accuracy Trade-Off

Some Effective Approaches for FRBS Tuning

IDEA: New fuzzy rule representation model allowing a more
flexible definition of the fuzzy sets of the linguistic labels

— R. Alcala, J. Alcala-Fdez, M.J. Gacto, F. Herrera, Rule base reduction and
genetic tuning of fuzzy systems based on the linguistic 3-tuples representation,
Soft Computing 11 (5) (2007) 401-419

— R. Alcala, J. Alcala-Fdez, F. Herrera, A proposal for the genetic lateral tuning
of linguistic fuzzy systems and its interaction with rule selection, IEEE
Transactions on Fuzzy Systems 15:4 (2007) 616-635
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Interpretability-Accuracy Trade-Off

Some Effective Approaches for FRBS Tuning

IDEA: New fuzzy rule representation model allowing a more
flexible definition of the fuzzy sets of the linguistic labels

. label id. 1 and a displacement parameter a; €[-0.5,0.5]

|—|-_-|-—|
So 54 Sz S3
-03
l L :"—I L
0 1 Va2 3
'
(52 5-0-3)

a) Simbolic Translation of a label b) Lateral Displacement of a Membership function

— New rule structure:
IF X1 IS (S%, a1) AND ... AND Xp IS (SN, an) THEN Y IS (&Y, ay) 4%



Interpretability-Accuracy Trade-Off

Some Effective Approaches for FRBS Tuning

. label id. 1, a displacement parameter ai €[-0.5,0.5],
and a width parameter Bi €[-0.5,0.5]

L = -0.0
ES ¥ S k= ¥a | M L Lo - EL

Peipres = e = = - B=_g£5

— New rule structure:
IF X1 IS (S%,01,B1) AND ... AND Xn IS (SMi,an,Bn) THEN Y IS
(Si,ay,By) 142



Interpretability-Accuracy Trade-Off

Some Effective Approaches for FRBS Tuning

COLATERAL ADVANTAGE: Both structures decreases the
KB learning/tuning large scale problem, since the fuzzy sets are
encoded using a lower number of parameters

Genetic 2-tuple/3-tuple DB global tuning: adjustment of the global
fuzzy sets — full interpretability (usual fuzzy partitions)

Genetic 2-tuple/3-tuple DB tuning at rule level— lower
interpretability, higher flexibility (like scatter Mamdani FRBSSs)

Genetic 2-tuple/3-tuple DB tuning + rule selection
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Interpretability-Accuracy Trade-Off

Some Effective Approaches for FRBS Tuning

Initial Data Base

P
Late_ral ojdjdjdjd]b Initial Rule Base
Tuning
Scheme

Ro=1If Xis P;  THEN Yis M;

Ri=1If Xis G; THEN Yis P,
Rz=1If Xis M; THEN Yis Gy

144

Tuned Data Base



Interpretability-Accuracy Trade-Off

Some Effective Approaches for FRBS Tuning

Medium voltage electrical network in towns

Genetic 2-tuple tuning + rule selection method:

WM | wang and Mendel Method| R MS5Eirq  7erg t=test M5E:= Farap (=05t
Learning Method WM 63 IT603 2841 - 37934 4T3 -
S Rule Selection Method o 0.8 41080 1322 Ll 294l 53] +
T [ 19602 1211 = 2log6 3386 =
GL Global Lateral Tuning PAL & L0343 178 T 13¢73 1688 +
LL Local Lateral Tuning T+% 41.9 14987 Ml = 18973 3772 =+
- Classical Genetic Tuning Pale-d | 3T 12831 ¥z - 16834 1462 =
L [ 20t 1478 = 23g84 2611 =
Tuning of- LL &3 Joed M = 958 1798 =
P g of: ~
A ; . GL-% 4,1 18801 2eeg = 22386 3330 -
ram rs,
| bomains, and LL+5 | 38.0 3821 383 = 6339 2164 m
Linguistic Modifiers
5 data partitions 80% - 20%

6 runs per data partition
Averaged results from 30 runs
t-student Test with a = 0.05 145

Five labels per linguistic variable
50000 Evaluations per run



Interpretability-Accuracy Trade-Off

Some Effective Approaches for FRBS Tuning

Obtained results for the low voltage line problem:

Genetic 2-tuple tuning + rule selection method:

Method #R MSE ;- Tirn =test MSE; Tiap T=TeST

Approaches without tuning
WM 12.4 234712 32073+ 242147 24473+

5 | 0.0 226135 19875 A 241883 19410
Approaches with global semantics
T 12.4 158062 6495+ 221613 29986+

T+5 8.9 156313 2067+ 193477 49912 =
Gl ﬁ 166274 11480 + 189216 14743 =

GLgatS 160081 7ile + |BO844 22448 =
Approaches with local semantics

PAL 12.4 141638 4340 4 189279 19523 =

PAL+S 106 145712 444 I 191922 16987

LLgs 124 13918 355 o« 191604 18243

LLgg+S 10.5 141446 3444 186746) 15762 «

5-fold cross validation x 6 runs = 30 runs per algorithm

T-student test with 95% confidence 146



Interpretability-Accuracy Trade-Off

Some Effective Approaches for FRBS Tuning

Obtained results for the low voltage line problem:

Example of one KB derived from the global tuning method:

W'=(1,-0.5) 12'=(2.0.4) B'=(13.0.5} 14'=(13,-0.3) 15'={15,0.4)

X1
2l el el el |
x1 . . .
|1 i1 Izq 2 2" I3 ‘ | 11 | 12 | 13 | 14 I 15 ]
_— | | ] ] '=(11,0.3)  @=(20.1) B=(800) W=(4,-05) 15" ={15,0.1)
12 I 12 12 13’
131 12 15 13" X2
14/ Chn T 1 1 13 T ®m [ & ]
[zl W=il-00)  2=(200) =302 W=(40.3) 15'=(15-0.4)
I5] 13

Y

After tuning-+rule selection: #R=13; MSEa/test = 187494 /
176581
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Interpretability-Accuracy Trade-Off

Some Effective Approaches for FRBS Tuning

| [Fh =If Xis H{ THENY is La]

L, My Hy L, M, H Y\ Ry R, R,

0 0 0 0 0 0 1 1 1

Lateral Tuning + Rule
Selection Process
L+ My Hy L Mz H: Ry Rz Rj

02 {04) o [02]-03|-05] 1 1
C, 1 C,

L N Y Lo Mz H» Ri=f XisH{ THENYisLs
X ’ ks I,,m
P \ b ,’, s : ;

5 0 ] Ra=If Xis M{THENYisH>

Example of genetic lateral tuning and rule selection

FVE
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GENETIC FUZZY SYSTEMS (Acc/Int Trade-Off):

APPLICATION TO A HVAC PROBLEM

Heating Ventilating and Air Conditioning Systems:

Problem
© G
del Exterior d
—
re de Retorno n n
de Salid
[
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Fuzzy Logic Controllers for Energy

Efficiency Consumption in Buildings

Heating Ventilating and Air Conditioning Systems:
Problem

and more
than a half is for indoor climate conditions

The use of specific technologies can save up to a 20% of the energy
consumption

The use of strategies could result in
energy savings ranging

Moreover, in current systems, are considered and
optimized independently without a global strategy
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Fuzzy Logic Controllers for Energy

Efficiency Consumption in Buildings

Generic Structure of an Office Building HVAC System

A B CDEVF G

Outside Air R

Return Air

Exhaust Air 5
J

| I

- Cooling
- Heating

Room Room

It maintain a good thermal quality in summer and winter

It dilutes and removes emissions from people, equipment and

activities and supplies clean air 151



Fuzzy Logic Controllers for Energy

Efficiency Consumption in Buildings

Initial Data Base

— M m——l /Mm\ 17 Variables
T B 0N B i
gy I e
AOOONH |tz [ | [ DO
| V2 Thermal prefermnce | I m&

*%§ E-___M_J B

TN == /S
AN ==t [ 200 ]-
M o
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V3: Thermal preferance

-15.00 15.00
V4: Tout-Tin

/PN

-3.00 3.00
V3: Thermal preferance

/DO

-2.00 2.00
V5: Required heat

Initial fuzzy sets

V4: Tout-Tin

0.00 16.00
V9: Integral of PMV

/POOIN

770.00 860.00
V6: CO2

2000.00 10000.00
V10: Integral of energy
consumption

/XN

-0.20 D.20
V7: dCO2/dt

-3.00 2.00
Va: Alr qualhy
preference

/PRI

-1.00 1.00
V11: Thermal/Enerqgy
priority

0.00 100.00
V13: Valve old poslition

V5: Required heat

V11: Thermal/Energy
priority

0.00 100.00
Vi4: Valve new poslition

0.00 3.00
V15: Fan coll speed

7 |

0.00 1.00
V12: Ventilation/Energy
priority

Vi2: Ventllatlon/Energy
priority

Va: Alr quallty
preference

D.00 100.00
V16: Old extract
fan speed

0.00 100.00
V17: New extract
fan speed




Fuzzy Logic Controllers for Energy

Efficiency Consumption in Buildings

Initial Rule Base and FLC Structure

——————————————————————————————————————————————

] ™ : 1 | )
H il L1|L2|L3|L4|L5“ : ¥13: Vaive old poslion ki 11izfisfiafis
vi: PV el B[] ] 5 o] : i T aT ar &% &
E FCEXEE i EER R ERoEs
. WECEE RN 1 [ (S0 S0 £ [X
R Helcfbtal | ey o P
' 1o 1] L Laf ur| i s i E 1 uf_;g
H — H H | el = Zlele]s ] ERENEN] o
1 -in wil = H [ [T [ [ [E
V3:iThenml Bl (17 [ [ i i % [ : 1] T T .
projerencs = M I ) HE 1 !
' ENEEy = i ' Ef i
: CEEER ' . 2 &
V4; ToukTin z me| I : -
L4 La] La| 1 I3 iz Jit Qi
1 L] 1 U -
| LEetete ] E
1
(W [T
' 1 g : WHz: Vantiation/Energy pricdy
1 [ ]
el | - 172
e B
L1': N W L1_: L1_: . : b ] iz "
0 ] 0 6 ) ) ! s]a] 5
| | BRI DEEEN Rules
————— I EEE
_______________________
i Layer 2: Prioritiea ERE
1
VI:AHI EEEE shoad
Mm 1
| ' V16: DU ket CEEEE '
: : FanSpeed 7 LEEE :
1 1 1
............................................ 4
_ 172 Rules
Layer 1: System Demands Layer 3: Control Declslons

Module 1a. : Thermal Demands Madule 2: Energy Priarities
Module 1a,: Thermal Preferance  Module 3a: Required HVAC System Statue
Module 1b: Air Quakity Demands  Module 8b: Required VYentiation System Staius
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Layer 1: System Demands

Layer 3: Control Decisions

Module 1&, : Thermal Demands

Module 2: Energy Priorities

Module 1a.: Thermal Preference Module 3a: Required HVAC System Status

Module 1b: Air Quality Demands

Module 3b: Required Ventilation System Status



Fuzzy Logic Controllers for Energy

Efficiency Consumption in Buildings

Representation of the Test Cells

= 0 . ATC Test Cells
= PASSAGEWAY \
CONTROL \. - Builtin 1992.
. RO - Volume: 30 or 60 m?3

- Full control of temperature range (-15/45°C).
- Full control of relative humidity (10/90%).

- Maximum heating/cooling power: 48 kW.

- Fully configurable test cells.

- Equiped with various sensors for indoor
climate evaluation: air flow velocity,
relative humidity, CO2 concentration, etc.

N° 5

Two adjacent twin cells were available

A calibrated and validated model of this site was

developed to evaluate each FLC 156



Fuzzy Logic Controllers for Energy

Efficiency Consumption in Buildings

Goal: multi-criteria optimization of an expert FLC for an HVAC system: reduction of
the energy consumption but maintaining the required indoor comfort levels

O: Upper thermal comfort limit 3: §f PMV > 0.5,0; = 01 + (PMV - 0.5).

Oz Lower thermal comfort limit: ¢f PMV < —0.5,03 = Oz + (—PMV —0.5).

Os IAQ requirement: if CO5 conc. > 800ppm,Os = O3 + (CO; — 800).

O4 Energy consumption: Oy = O4+ Power at time t.

O; System stability: C5 = Cs+ System change from time ¢ to (¢ — 1).

MODELS | #R | PMV>0.5 | PMv<-05 | CoO, ENERGY STABILITY
ON-OFF - 0,0 0 0 3206400 - 1136 -
FLC 172 0,0 0 0 2901686 | 9,50 | 1505 | -32,48
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GFS Models for Fuzzy Control of HVAC Systems:

Genetic Tuning

Improving the FLC Performance

m Local modification of the membership function definition
points
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GFS Models for Fuzzy Control of HVAC Systems:

Genetic Tuning

Objectives (to be minimized)

O: Upper thermal comfort limit 3: ¢f PMV > 0.5,0; = 01 + (PMV - 0.5).
O3 Lower thermal comfort limit: ¢f PMV < —0.5,02 = Oz + (—PMV - 0.5).
Os IAQ requirement: if CO3 cone. > 800ppm,Os = Og + (CO; — 800).

O4 Energy consumption: O4 = Os+ Power at time &.

Os System stability: C5 = Cs+ System change from time ¢ to (¢ — 1).

Expert knowledge as objective weights:

w? = w2 =0.0041511 ; w? = 0.0000022833
w? = 0.0000017832 ; w? = 0.000761667
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GFS Models for Fuzzy Control of HVAC Systems:

Genetic Tuning

Problem Restrictions

Different-Criteria-Based Evaluation

Multiple Criteria Algorithms:

Multi-objective approach fo®)
'} .A
0 ® o
olwe © o
®
F(x)=w,- f,(X)+ ... +w,_-f_(x) O LM e
0© o0 0 o
. o oW
Zwi: ,  0<w <1 i={l..,n} N o'_‘}l(x)
Since exist:

- The problem solving is easier
- Quicker algorithms can be designed
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GFS Models for Fuzzy Control of HVAC Systems:

Genetic Tuning

Problem Restrictions

The controller accuracy is assessed by means of simulations
which approximately take 3-4 minutes

Efficient tuning methodologies:

of each tuned parameter
teady-State Genetic Algorithms:
2000 evaluations = 1 run takes approximately 4 days

Considering a (31 individuals)

161



GFS Models for Fuzzy Control of HVAC Systems:

Genetic Tuning

Genetic Tuning of the

A steady-state genetic algorithm for local tuning
of the membership function definition points.

Two individuals are selected to be crossed and four
descendents are obtained

The two best offspring are included in the population
replacing the two worst individuals if they are better
adapted than the latter

A restarting approach is considered if the population
converges
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GFS Models for Fuzzy Control of HVAC Systems:

Genetic Tuning

Data Base Tuning: Algorithm (1)

Coding Scheme (with n variables and £, labels):

C = (ai,bli,ci,...,a[i,b‘Li,c:‘Li ) i=1...,n
C — C1C2 . 'Cn Label j-1 Label j Label j+1

i o= i=L,1 = RI= i
L"H“L."l‘ AL o), = .bI'RaH

163



GFS Models for Fuzzy Control of HVAC Systems:

Genetic Tuning

Data Base Tuning: Algorithm (2)

Genetic operators:
O‘U
O‘w

(C1y:49Chyee ey CH)
(ChyeverCasennsCle)

The max-min-arithmetical
crossover. From parents ¢V ol = a0 + (1-a)C®

and ¢, four offspring are 0? — a0 + (1-a)Cv

obtained: C? with cg = min{cg, ¢} }
C?* with cg = max{cp, ¢ }

Michalewicz’'s non-uniform mutation.
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GFS Models for Fuzzy Control of HVAC Systems:

Genetic Tuning

MODELS | #R | PMv>05 PMV<-0.5 Co, ENERGY STABILITY
0, 0, 0, 0, % 0 %
CLASSICAL - 0,0 0 0 3206400 - 1136 -
ON-OFF
FLC 172 0,0 0 0 2901686 9,50 1505 -32,48
- 172 ] 00 0 0 2506875 | 19.01 | 1051 | 7.48

R. Alcala, J.M. Benitez, J. Casillas, O. Cordodn, R. Perez, Fuzzy control of HVAC
systems optimised by genetic algorithms, Appl. Intell. 18 (2003) 155-177

165



GFS Models for Fuzzy Control of HVAC Systems:

Genetic Tuning

Tuned Data Base
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GFS Models for Fuzzy Control of HVAC Systems:

Genetic Tuning

Tuning Evolution Chart

— Fitness
-25 PMVsup/inf/CO2
— -20 Energy
2 _
L2 15 - Stability
w -10 11.48,250
= ,l’ ( )
dEJ -5
(ab] 0 (0.81,131) (-1.88,500)
= 5
=
Q. 10 (-12.13,402)
E 157 ]
20 - (-15.88,131) (_19.4:250) EEL e r ey (-19.66,500)
25

0

50 100 150 200 250 300 350 400 450 500
Generation
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GFS Models for Fuzzy Control of HVAC Systems:

Genetic Rule Selection with Weights

GENETIC RULE DERIVATION
AND RULE

OBJECTIVE OF GETTING:

~~=asubset of rules presenting good cooperation-
“»the weights associated to rules /

X1is A; and ... and X, Is A, Y is B with [w],
we[0,1]

We use a steady-state genetic algorithm with

a double coding scheme.
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GFS Models for Fuzzy Control of HVAC Systems:

Genetic Rule Selection with Weights

Weight Learning: Algorithm
A double coding scheme (C=C,+C)):

C,: The coding scheme generates binary-coded strings of length
m (number of single rules in the previously derived rule set):

C,. The coding scheme generates real-coded strings of length m.
Each gene represents the weight used in the corresponding rule

C. C,
Cll Tt - T Clm C21 C22 Tt st C2 m-1 C2m
| I |
Two points crossover BLX-alpha + Arithmetical crossover
Flip a gene at random Random mutation

170



GFS Models for Fuzzy Control of HVAC Systems:

Genetic Rule Selection with Weights

Obtained Results

MODELS | #R | PMV>0.5 | PMV<-0.5 | CO, ENERGY STABILITY
0, 0, 0, 0, % of %
172 | 0,0 0 0 Wl 2596875 | 19,01 | 1051 | 7,48
JMl 147 | 02 0 0
109 | 01 0 0 WM 2492462 | 22,27 | 989 | 12,94
102 | 07 0 0 | | 2731798 | 14,80 | 942 | 17,08

R. Alcala, J. Casillas, O. Cordon, A. Gonzélez, F. Herrera, A Genetic Rule Weighting
and Selection Process for Fuzzy Control of Heating, Ventilating and Air
Conditioning Systems. Engineering Applications of Artificial Intelligence 18:3 (2005)
279-296
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GFS Models for Fuzzy Control of HVAC Systems:

Genetic Lateral Tuning and Rule Selection

R. Alcala, J. Alcala-Fdez, M.J. Gacto, F. Herrera, Improving Fuzzy Logic
Controllers Obtained by Experts: A Case Study in HVAC Systems. Applied
Intelligence, doi:10.1007/s10489-007-0107-6, 31:1 (2009) 10-35.

. label id. 1 and a displacement parameter a,; €[-0.5,0.5]

(s ,:0.3)

a} Simbolic Translatlon of a label b) Lateral Displacement of a Membership function
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GFS Models for Fuzzy Control of HVAC Systems:

Genetic Lateral Tuning and Rule Selection

GENETIC LATERAL TUNING

MODELS

#R | PMV>0.5 | PMV<-0.5 | CO,

ENERGY

0

ESTABILITY

0,

TUNING 172 0,0 0 0 2596875 | 19,01 | 1051 7,48
SELECTION | 147 0,2 0 0

SELEC. + 109 0,1 0 0 2492462 | 22,27 989 12,94
SEL + 102 0,7 0 0 2731798 | 14,80 942 17,08
172 0,7 0 0 2378784 | 25,81 | 1069 5,90|

172 1,0 0 0 2327806 | 27,40 | 1066 6,16|

172 0,9 0 0 2268689 | 29,25 | 1080 4,93|

172 0,9 0 0 2386033 | 25,59 | 896 21,13|

172 0,8 0 0 2343409 | 26,92 | 943 16,99|

172 0,3 0 0 2377596 | 25.85 | 938 17.43




GFS Models for Fuzzy Control of HVAC Systems:
Genetic Lateral Tuning and Rule Selection

MODELS | #R | PMV>0.5 | PMV<-0.5 | CO, ENERGY ESTABILITY
0, 0, 0, 0, % 0. %

TUNING 172 0,0 2596875 | 19,01 | 1051 7,48
SELECTION | 147 0,2 2867692 | 10,56 | 991 12,76
SEL + 109 0,1 2492462 | 22,27 989 12,94
SEL + 102 0,7 2731798 | 14,80 942 17,08

172 0,9
172 0,9
105 1,0
115 0,4
118 0,8
133 0,5
104 0,6
93 0,5

2268689 | 29,25 | 1080 | 4,93
2386033 | 25,59 | 896 | 21,13
2218598 | 30,81 | 710 | 37,50
2358405 | 26,45 | 818 | 27,99
2286976 | 28,68 | 872 | 23,24
2311986 | 27,90 | 788 | 30,63
2388470 | 25,51 | 595 | 47,62
2277807 | 28,96 | 1028 8’81

o) o) ol ol ok o) fol ol ol ok foN )
o) o) ol ol joh o) fol foh ol ok fo N )




GFS Models for Fuzzy Control of HVAC Systems:

Genetic Lateral Tuning and Rule Selection

Tuned Data Base (GL-S;)
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GFS Models for Fuzzy Control of HVAC Systems:

Genetic Lateral Tuning and Rule Selection

Selected Rule Base (GL-S;):
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GFS Models for Fuzzy Control of HVAC Systems:

Genetic Lateral Tuning and Rule Selection

=The combination of lateral tuning (global and local) and rules
selection allow us to eliminate redundant rules, tuning the
parameters, and geting and high behaviour reducting the energy
comsuption and with good stability.

= ¢What is the reason of the good behavior?
The SBRDs tuning for an HVAC system is a large scale problem
wiht 17 variables and a lot of parameters, and the use of 1

parameter per label allows us to reduce the search space, allowing
to get a better optimal local than using 3 parameters per label.
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Different Models of Multiobjective GFSs

Bibliography on Interpretability/Accuracy

Year Ref. Problem MOEA/Gen. #0bjs. RS FS RL LP

MAMDANI LINGUISTIC MODELS

1995/7/8 [12}-[14]  Class.  MOGA/1s* 2/ / - -
2001 [11] Class.  MOGA/1st 2 - / / -
2001 [15].[16]  Class.  MOGA/1* 3  / / / - Ishibuchi et all.
| 2004 [18] Class. MOGLS/1** 3/ / - -]
2005 [20] Class. NSGA-*/2"? 3/ / - -
2007 [19] Class. NSGA-I*/27d 3 -/ / -
2008 [21] Class. NSGA-II*/2nd 3 - ./ / / o _
2008 [22 Class. NSGA-dI*/2nd 3 - ./ ./ ,/ | Kowisto, Pulkkinen
2003 [17] Regr.  MOGA/1* 3/ / y - | Ishibuchi et all
2007 [24] Reer.  PAES*27d 2 - / ./ - | Marcelloni et all
| 2007/2009 [26], [27] Regr. SPEA2*/27d 2 ./ - - /|| Alcalaetall
2009 [28] Regr. NSGA-II*/27¢ 2 - - - /| Marcelloni et all
L - In press Regr.  PAES*/2"¢ 2 - / / /|| Alcala — Marcelloni et all
TAKAGI-SUGENO MODELS
2001 [38], [39] Regr. Specific/1st 3 - -/ /
2005 [40] Regr.  MOGA*/1t 5  / / /
2005 [41] Regr. NSGA-II*/2"¢ 5  / /

RS = Rule Selection, FS = Feature Selection, RL. = Rule Learning, LP =
Learnin cE/Tuning of parameters; Class./Regr.: Classification/Regression;
15t/2™%; First/second generation of MOEAs; * based on that algorithm.



Different Models of Multiobjective GFSs

MODEL 1: Multiobjective Rule Selection

MULTIOBJECTIVE RULE SELECTION (CLASSIFICATION)

H. Ishibuchi, T. Yamamoto, Fuzzy rule selection by multi-objective genetic
local search algorithms and rule evaluation measures in data mining, Fuzzy
Sets and Systems, Vol. 141, pp. 59-88 (2004)




Different Models of Multiobjective GFSs

MODEL 1: Multiobjective Rule Selection

Two-Stage Approach

1.

Heuristic Rule Extraction

A pre-specified number of candidate fuzzy rules are extracted from
numerical data using a heuristic rule evaluation criterion (data mining).

Multiobjective Genetic Fuzzy Rule Selection

A small number of fuzzy rules are selected from the extracted
candidate rules using a multi-objective genetic algorithm (evolutionary
optimization).

H. Ishibuchi and T. Yamamoto, “Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation
measures In data mining,” Fuzzy Sets and Systems, Vol. 141,
pp. 59-88 (2004).




Different Models of Multiobjective GFSs

MODEL 1: Multiobjective Rule Selection

Fuzzy Rules for n-dimensional Problems

Ifx, 1ISA;and ... and x_ IS A,

then Class C with CF
A Antecedent fuzzy set
Class C . Consequent class
CF: Rule weight (Certainty factor)



Different Models of Multiobjective GFSs

MODEL 1: Multiobjective Rule Selection

Antecedent Fuzzy Sets (Multiple Partitions)

1.OA\ /I 1.0,}\\

s2 L3
1.0

0.0

0.0 DC 1.0

A
1.0 \. 0.0 >

0.0 1.0
S4 v C ML5 L5

0.0 0.0 >

0.0 1.0 0.0
Usually we do not know an appropriate fuzzy partition for each Input

variable.



Different Models of Multiobjective GFSs

MODEL 1: Multiobjective Rule Selection

Possible Fuzzy Rules
Total number of possible fuzzy rules

>

Don’t care

>

Don’t care

Xn

- x(14+1)=(15)



Different Models of Multiobjective GFSs

MODEL 1: Multiobjective Rule Selection

Examined Fuzzy Rules

They only examine short fuzzy rules with only a
few antecedent conditions.

IT X, 1s small and x,g4 Is large
then Class 1 with 0.58



Different Models of Multiobjective GFSs

MODEL 1: Multiobjective Rule Selection

Consequent Class

The consequent class of each fuzzy rule Is determined by compatible
training patterns (i.e., the dominant class in the corresponding fuzzy

b .
su spag(ez)

@ Class 1
o Class 2

If x, 1s small and x, is large
X, then Class 1 with 1.0




Different Models of Multiobjective GFSs

MODEL 1: Multiobjective Rule Selection

Rule Weight (Certainty Factor)

The rule weight CF of each fuzzy rule is calculated from compatible
training patterns.
gp O Class 1 ¢ CIaSS 1

o Class 2 ° Class 2

CF=1.0

(Maximum)




Different Models of Multiobjective GFSs

MODEL 1: Multiobjective Rule Selection

Heuristic Rule Extraction

They extract a pre-specified number of the best fuzzy rules with
respect to a pre-specified heuristic rule evaluation criterion.

L If - - - then Class 1
Class 1| If - - - then Class 1

If . - - then Class 2
If . - - then Class 2

Class 3 —,|IT - - - then Class 3
If - - - then Class 3

Numerical

| -
data Class 2 |




Different Models of Multiobjective GFSs

MODEL 1: Multiobjective Rule Selection

Heuristic Rule Extraction
Possible fuzzy rules: (15)" rules

Restriction on the rule length
1 Only short fuzzy rules

Rule evaluation criterion:
The best rules for each class




Different Models of Multiobjective GFSs

MODEL 1: Multiobjective Rule Selection

Two-Stage Approach

1.

Heuristic Rule Extraction

A pre-specified number of candidate fuzzy rules are extracted from
numerical data using a heuristic rule evaluation criterion (data mining).

Multiobjective Genetic Fuzzy Rule Selection

A small number of fuzzy rules are selected from the extracted
candidate rules using a multi-objective genetic algorithm (evolutionary
optimization).

H. Ishibuchi and T. Yamamoto, “Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation
measures in data mining,” Fuzzy Sets and Systems, Vol. 141,
pp. 59-88 (2004).




Different Models of Multiobjective GFSs

MODEL 1: Multiobjective Rule Selection

Implementation of Multiobjective approach

Coding: S =SS, -+* Sy
N: Total number of candidate rules
5;={0, 1}: Inclusion or exclusion of the j-th rule

Objectives: f,(S), 1,(S), f3(S)
f,(S) : Number of correctly classified patterns by S
f,(S) : Number of selected rules in S
f3(S) : Total number of antecedent conditions in S



Different Models of Multiobjective GFSs

MODEL 1: Multiobjective Rule Selection

Comparison of Four Approaches

(1) Two-objective approach
Maximize f,(S) and minimize f,(S)

(2) Weighted sum of the two objectives
Maximizay, - f (S)—w, - f,(S)

(3) Three-objective approach
Maximize f,(S) and minimize f,(S), f3(S)

(4) Weighted sum of the three objectives
Maximize w, - f,(S)=w, - f,(S)—w, - f,(S)



Different Models of Multiobjective GFSs

MODEL 1: Multiobjective Rule Selection

Data Sets
Dataset  Attributes Patterns Classes Length
Breast W 9 683* 2 3
Diabetes 8 768 2 3
Glass 9 214 6 3
Heart C 13 297+ 5 3
Iris 4 150 3 3
Sonar 60 208 2 2
Wine 13 178 3 3




Different Models of Multiobjective GFSs

MODEL 1: Multiobjective Rule Selection

Experimental Results (Cleveland Heart)

O Three-objective rule selection
@ Two-objective rule selection

O Three-objective rule selection
@® Two-objective rule selection
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(a) Error rates on training data

Number of fuzzy rules
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We can observe the overfitting due to the increase in the number of fuzzy rules.
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MODEL 1: Multiobjective Rule Selection

Experimental Results (Sonar)
O Three-objective rule selection O Three-objective rule selection

® Two-objective rule selection ® Two-objective rule selection
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Number of fuzzy rules Number of fuzzy rules
(a) Error rates on training data (b) Error rates on test data

The generalization ability is increased by increasing the number of fuzzy rules (i.e.,
the overfitting is not observed).
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MODEL 1: Multiobjective Rule Selection
Experimental Results (Diabetes)

O Three-objective rule selection O Three-objective rule selection
@ Two-objective rule selection ® Two-objective rule selection
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(a) Error rates on training data (b) Error rates on test data

The effect of the increase in the number of fuzzy rules is not clear.
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Experimental Results (Diabetes)
A training O :test

A :training O :test
28 . . .
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Average rule length Average rule length
(a) Rule sets with two rules (b) Rule sets with four rules

We can observe the overfitting due to the increase in the rule length in the right
figure for rule sets with four fuzzy rules.
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MODEL 1: Multiobjective Rule Selection

Observation

(1) Experimental results showed that each test problem has a different
tradeoff structure.

(2) Knowledge on the tradeoff structure is useful in the design of fuzzy
rule-based classification systems.
Error

Test Data

.
IS e®
° as®

Training Data Training Data

Complexity 0 Complexity
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MODEL 2: Multiobjective Tuning and Rule Selection

MULTIOBJECTIVE TUNING AND RULE SELECTION IN REGRESSION
PROBLEMS

R. Alcala, J. Alcala-Fdez, M.J. Gacto, F. Herrera, A multi-objective genetic
algorithm for tuning and rule selection to obtain accurate and compact
linguistic fuzzy rule-based systems, International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 15:5 (2007) 539-557
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MODEL 2: Multiobjective Tuning and Rule Selection

R. Alcala, J. Alcala-Fdez, M.J. Gacto, F. Herrera, A multi-objective genetic algorithm for
tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based
systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
15:5 (2007) 539-557,

Multi-objective EAs are powerful tools to generate GFSs but they
are based on getting a large, well distributed and spread off,
Pareto set of solutions

— The two criteria to optimize in GFSs are accuracy and
Interpretability. The former is more important than the latter,
so many solutions in the Pareto set are not useful

— Solution: Inject knowledge through the MOEA run to bias the
algorithm to generate the desired Pareto front part

205
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Pareto front classification in an interpretability-accuracy GFSs:

ERROR

+

| | |

| | |

| | |

~ — |

| TS

| | |

| |

| |
Bad | | Complefment
Rules | |Rules |

| Redundant |

:Rules |

| |

+ RULES

— Desired pareto zone
== (ptimal pareto frontier

- solutions with bad
performance rules. Removing them
improves the accuracy, so no Pareto
solutions are located here

- solutions with
irrelevant rules. Removing them does
not affect the accuracy and improves
the interpretability

- solutions
with neither bad nor irrelevant rules.
Removing them slightly decreases the
accuracy

- solutions with
essential rules. Removing them
significantly decreases the accuracy
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Accuracy-oriented modifications performed:

, keeping the individual with the highest accuracy
as the only one in the external population and

generating all the new individuals with the same
number of rules it has

— In each MOGA step,

, focusing the selection on the
higher accuracy individuals
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Obtained results for the medium voltage line problem:

Multi-objective genetic tuning + rule selection method:

Method #R MSE,., o,, t-test MSE,, o, t-test

WM 65 57605 2841 + 57934 4733 +
W4T 65 18602 1211 + 22666 3386 +
WM+5 410.8 41056 1322 + 59942 4431 +
WM4TS 411.9 14957 341 + 18973 3772 +
NSGAII 11.0 14488 965 + 18419 3054 +
NSGAIlsce 481 16321 1636 + 20423 3138 +
SPEA2 33 12272 1265 + 1533 3226 +

b

SPEA24cc 4.5 11081} 1186 14161 2191 *

5-fold cross validation x 6 runs = 30 runs per algorithm

T-student test with 95% confidence 208
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STUDY ON SEVERAL ALTERNATIVE APPROACHES AND
IMPROVEMENTS

M.J. Gacto, R. Alcala, F. Herrera, Adaptation and Application of Multi-
Objective Evolutionary Algorithms for Rule Reduction and Parameter
Tuning of Fuzzy Rule-Based Systems. Soft Computing 13:5 (2009) 419-436
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MODEL 2: Multiobjective Tuning and Rule Selection

To perform the study we have applied six different approaches
based on the two most known and successful MOEAS:

m ApMethod Description
ok i’S Tui;i; idgjf;::ion e AN SPEAZACCZ
T obj S R UOER: 61 T e of Rules
TS-NSGA-II Tuning & Selection by NSGA-II

Proper ¢ TS-NSGA-IIL4 Tuning & Selection by NSGA-TI;n 416
TS-NSGA-II;; Tuning & Selection by NSGA-ITyitity
Extended MOEASs for specific application )
The de TS-SPEA2 4. Accuracy-Oriented SPEA?2 size becomes an

impO rta TS-SPEA2,, - Extension of SPEA2 4 .- 5A-11
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NSGA-11 FOR FINDING KNEES

J. Branke, K. Deb, H. Dierolf, and M. Osswald, “Finding Knees in Multi-objective
Optimization,” Proc. Parallel Problem Solving from Nature Conf. - PPSN VIII, LNCS 3242,
(Birmingham, UK, 2004) 722—-731.

A variation of NSGAII in order to find knees in the Pareto
front by replacing the crowding measure by either an angle-
based measure or an utility-based measure

Angle Based X | ;
Two different | APProach B |
approaches — ‘ R
Utility Based 3 2
Approach j .

. x ai A0
01 2 3 4 5 8 T & 8 0 1 2 3 4 5 6 7 8

In our case, a knee could represent the best compromise
between accuracy and number of rules.



Different Models of Multiobjective GFSs

MODEL 2: Multiobjective Tuning and Rule Selection

A New Crossover Operator for the Rule Part

Objective: to improve the search with a more intelligent
operator replacing the HUX crossover in SPEA2 .

Once BLX is applied a normalized euclidean distance is
calculated between the centric point of the MFs used by each
rule of the offpring and each parent

The closer parent determines if this rule is selected or not for
this offpring

Whit this crossover operator, mutation can be particularly used
to remove rules
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MODEL 2: Multiobjective Tuning and Rule Selection

Obtained results for the medium voltage line problem:

Method #R MSE,,. Cira t MSE Ot t
100,000 evaluations
WM 65.0 57605 2841 + 57934 4733 +
65.0 17020 1893 + 21027 4225 +
S 40.9 41158 1167 + 42988 4441 +
TS 41.3 13387 1153 + 17784 3344 +
TS-SPEA2 28.9 11630 1283 + 15387 3108 +
TS-NSGA-II 31.4 11826 1354 + 16047 4070 +
TS-NSGA-I1, 29.7 11798 1615 + 16156 4091 +
TS-NSGA-11, 30.7 11954 1768 + 15879 4866 +
TS-SPEA2, . 32.3 10714 1392 = 14252 3181 =
TS-SPEA2, ., 29.8 10325 1121 * 13935 2759 *

5-fold cross validation x 6 runs = 30 runs per algorithm
T-student test with 95% confidence
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Comparison of the SPEA2acc? and classical GA
for for the medium voltage line problem:

SPEA2, (and WM+TS —e—)

5000 Evaluations

O 100000

" 15000 O 50000
25000 A 30000

S & 20000
T 35000 Q 15000
45000 W 10000

+ 55000 A 7500
@ 5000

P00 55 45 35 25 15 [©_3000
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Convergence and an example model

niE w W I5 1z 13" L 15
X1 X2
50000 —
“1 —— SPEA2p. (training) TS (raining)
i, ==~ SPEA2pqe2 (test) TS (training)
i Y n -IE' 13 [E A L n" 2 13 14 IE
420001|! X3 X4
b
b
340001 'l |I1.r1 I ;. I I:l uwl E_I|5. I A I ) - |
L \ Y Labelling the final MFs:
g ! 11" = Very Small
L | 12" = Small
I3 = Medium
260007 15000 4000 8000 ' 12000 | N\ :g::bargem
= Ve r
' 33 ! ' A
33 28 28 #R: 28 MSE-tra: 8232 MSE-tst: 14670
! . . X1 X2 X3 X4 Y
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MULTIOBJECTIVE LEARNING OF DB AND RB (REGRESSION)

R. Alcald, P. Ducange, F. Herrera, B. Lazzerini, F. Marcelloni, A Multi-

Objective Evolutionary Approach to Concurrently Learn Rule and Data
Bases of Linguistic Fuzzy Rule-Based Systems, IEEE Transactions on Fuzzy
Systems, doi:10.1109/TFUZZ.2009.2023113, in press (2009)
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MODEL 3: Multiobjective Learning of DB and RB

R. Alcala, P. Ducange, F. Herrera, B. Lazzerini, F. Marcelloni, A Multi-
Objective Evolutionary Approach to Concurrently Learn Rule and Data Bases
of Linguistic Fuzzy Rule-Based Systems, IEEE Transactions on Fuzzy
Systems, doi:10.1109/TFUZZ.2009.2023113, in press (2009),

Rule bases and parameters of the membership functions of the
associated linguistic labels are learnt concurrently.

Accuracy and interpretability are measured In terms of
approximation error (MSE) and rule base complexity
(#Conditions), respectively.

To manage the size of the search space, the linguistic 2-tuple
representation model, which allows the symbolic translation of a
label by only considering one parameter, has been exploited
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MODEL 3: Multiobjective Learning of DB and RB

4 08 05 1
|_M_I
'ﬁ‘F‘I '&‘f 2 ﬁ‘-:a ‘&‘M ‘&‘f&
-0.3
l I | | |
| 2'_{ | | 1
1 2 "3 4 5
}
1
!
(Aga,-0.3)
a) $lmbellc Translation of a label b} Lateral Displacement of a Membership function

This proposal decreases the tuning complexity, since the 3 parameters
per label of the classical tuning are reduced to only 1 translation
parameter ( )
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Coding Scheme and Operators

A double coding scheme (C= Crz+ Cpp)

1 M
R R Pl Iy F+l
A A A A
s N s N N - ™
1 1| M M| M
Jrl I J'JL J'.F-I-I. - J'rl. - JIII-‘ J'.F'I'I. {ILI - HLTI - HF+LI - R}'""Lr_,l'ﬂ
b N A
T el
' zp (integer coding) ' 1 (real coding)

Crossover operator: one point + BLX-a crossovers (2 offsprings)

Mutation operators:

It adds y random rules to the RB, where y is
randomly chosen in [1, v,
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Operators and Selection Schemes

It randomly changes o6 elements of the RB
part. The number 6 is randomly generated in [1, 6,,..]

It changes a gene value at

random in the DB part [p1, p2] = selsctien{archive/pepulaticn);
1f (zand() < Prges) |
[81, 8] = crossover (Pi.pl:
Plipg = ©.21;
else
1 = Faf
By = Paf
Pligg = 1;
, and endit
- . . L i=1,2
were applied using this P it (rend () < Ima
. 1f trmnd <Pigaal
representatlon and g; = add rule();
else
crossover g, = medify_rule bage();
endif
endit
if (rand(} « Pugg!
§; = mutate DE();
endif
endLeop
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Analysed Methods

Method Description Pop. size

SOGA,, Rule Base learning with SOGA 64
NSGA-11 . Rule Base learning with SOGA 64

PAES ., Rule Base learning with SOGA 64

SOGA,, (Rule Base + Data Base) learning with SOGA 64
NSGA-II,, (Rule Base + Data Base) learning with SOGA 64

PAES,, (Rule Base + Data Base) learning with SOGA 64

Different population sizes were probed for these MOEAs showing
better results when the population used for parent selection has similar
sizes than those considered by single objective oriented algorithms.

300,000 evaluations to allow complete convergence in all the

algorithms
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Average Pareto Fronts and average solution by SOGA
(medium voltage lines problem)

5 Data partitions 80% - 20%
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Statistical Analysis

Statistical comparison among MOEAs

Using the Pareto most accurate solution Using the Parto median solution Using the Pamto simplest solution
(FIrsT) (MEDIAN) (LAsT)

Me thod # RC E;py oprg 18 Epgy dpge t(# RIC Eypp oppg Bt By opg | # RIC Ky oypg O Egyy oy 1

NSGA-llpp | 3Ved 17116 4283 + 19834 4996 25/48 18833 4672 + 21533 5149 1830 23649 3852 26660 6342

+ + + + +
PAES ;g Va3 15454 3882 + 17135 4234 + | 2751 16378 4112 + 18472 4740 + | 2M38 18332 4631 + 20238 5410 +
NSGA-Ilg g | 2967 13137 3378 + 15387 43806 + | 2346 15073 42126 + 17381 3853 + [ 17729 21629 12156 + 25716 14722 +
PAESKk g Ves 11044 2771 7 12607 3106 Y | 2530 12133 3380 v 13622 3353 v | 20035 14297 4449 * 15951 4405 ¢

Statistical comparison of the best MOEA with SOGA

!I-']Eﬂ'll]d #R.“: EL-r.; Tira t-l ]{.:5[ gt I-I.
S00A g 0083 24340 5450 + 28633 11861 +
SOGAK B IVES 16502 5136 o 19112 6273 o
PAES, g (FiRsT) | 30/65 11044 2771 - 12607 3106 -
PAES;  (MEDIAN) | 25/50 12133 3380 - 13622 3353 - REMINDER
] _ - . 5 Data partitions 80% - 20%
PAES, p (LAST) | 20035 14207 4440 =% 15051 4405 - AR e
¥ It is i-) with 91% confidence A total of 30 Runs

Test t-student a = 0.05
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Convergence
Evolution of SOGA and PAES s (FIRST) Pareto evolution of PAESks and SOGA evolution
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The models obtained by these new approaches
presented a better trade-off than those obtained by
only considering performance measures.

Between both multi-objective experimented, namely a
modified (2+2)PAES and the classical NSGA-II, the
modified (2+2)PAES has shown a better behaviour
than NSGA-II.

Finally, the liguistic 2-tuples representation presented
has shown a good positive synergy.
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Future Research Directions in MGFSs

Formulations of the Interpretability

- The number of fuzzy rules

- The number of antecedent conditions in each rule
- The number of input variables

- The separability of adjacent antecedent fuzzy sets

Handling of Large Data Sets

- Design of efficient EMO algorithms
- Subdivision of data sets
- Parallel implementation

Development of Special-Purpose EMO Algorithms

- Handling of many objectives
- Handling of both discrete and continuous variables



Future Research Directions in MGFSs

Development of New MGFS Methods with

- Multiobjective input selection algorithm
- Multiobjective fuzzy partition algorithm

Visualization of Pareto-Optimal Fuzzy Systems

- Visualization of a single fuzzy system
- Visualization of multiple fuzzy systems
- Visualization of accuracy-complexity tradeoff

How to compare MGFSs
- A statistical Analysis is needed
- Use of non-parametric statistical tests

Ensemble Classifier Design

- Search for multiple fuzzy systems with a large diversity
- Choice of ensemble members and their combination



