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Fig. 1. Two-level taxonomy based on the type of the objectives optimized (1st level) and on the type of GFS used (second level).

and complexity, which involve different considerations when
applying MOEFSs.

This way, this taxonomy could help researchers to easily �nd
existing proposals that are related to a particular branch and to
focus on signi�cant further developments. Finally, we discuss
some current trends and prospects.

To keep this study up-to-date, improving its visibility and
providing additional materials, we have developed an associated
web page that can be found at http://sci2s.ugr.es/moefs-review/.
This web page includes some basic preliminary concepts that are
related to the topic of MOEFSs: introduction to FRBSs, intro-
duction to evolutionary multiobjective optimization (EMOO),
and a de�nition of MOEFSs as the application of EMOO to
FRBS derivation. It also presents the proposed taxonomy and
shows a summary of the state of the art, grouping the studied
contributions in the form of tables and including the links to
each paper digital object identi�er (DOI).

This paper is organized as follows. Section II introduces a
two-level taxonomy of proposals: �rst based on the multiobjec-
tive nature of the problem tackled and second based on the type
of FRBS components optimized. The following sections con-
tain the descriptions of the main studies that are related to each
�eld. Section III groups works that deal with MOEFSs applied
to the accuracy�interpretability tradeoff of FRBSs. Section IV
describes MOEFSs that are applied to multiobjective control
problems. Section V focuses on studies that apply MOEFSs to
mine fuzzy association rules. In Section VI, some new trends
and further developments are discussed. Finally, some conclu-
sions are drawn in Section VII.

II. TAXONOMY BASED ON THE APPLICATION OF

MULTIOBJECTIVE EVOLUTIONARY FUZZY SYSTEMS

In this paper, we take into consideration a collection of papers
in which MOEFSs are applied to different problem domains.
Because of the large number of contributions to the �eld, we
propose a two-level taxonomy, which is shown in Fig. 1, in order
to jointly analyze the different types of MOEFSs. The �rst level

gathers contributions depending on the multiobjective nature of
the handled problem, i.e., the type of the objectives optimized.
The second one groups papers depending on the type of FRBS
components optimized during the evolutionary process. In fact,
both of them affect the type and the complexity of the search
space, and therefore the way in which MOEFSs are applied.

This way, the �rst main category includes contributions in
which MOEFSs are designed to generate FRBSs with different
tradeoffs between accuracy and interpretability. In this case, at
least one of the objectives is always related to the interpretability
of the obtained model, regardless of the problem considered. A
considerable number of papers can be found in this group, since
interpretability is one of the most important aspects of FRBSs.
While the accuracy is dif�cult to improve, interpretability is
easy to obtain, since interpretable models can even be provided
by hand. These differences between both types of objectives
in�uence the optimization process.

The second main category gathers contributions in which
MOEFSs are applied to multiobjective control problems. The
considered objectives strictly depend on the particular kind of
problem that is taken into account, and usually all of them are
related to performance issues of the control system. Therefore,
the tradeoff and the search space will be different for each
problem and dependent on the problem itself.

The third main category groups contributions in which
MOEFSs are applied to fuzzy association rule mining. The aim
of rule mining is to �nd a set of fuzzy association rules that
reliably represents the knowledge hidden in a database. In this
case, the objectives are used to describe the quality of the ob-
tained rules, i.e., their accuracy and interestingness. To this end,
support and con�dence are the major factors in measuring the
quality of an association rule, although other metrics exist. The
aim of the optimization process is not only to improve the gen-
eral tradeoff between objectives for the whole set of rules, but
also to obtain a large number of rules, each of them satisfying
the objectives to different degrees.

This section illustrates the proposed taxonomy and includes
the description of subcategories for each main category.
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A. Multiobjective Evolutionary Fuzzy Systems Designed to
Generate Fuzzy Rule-Based Systems With Different Accuracy�
Interpretability Tradeoffs

One of the main uses of FRBSs is in the approximation
of a real system with a fuzzy model, which can be used to
explain, simulate, or predict the behavior of the original sys-
tem. Of course, the higher the accuracy, the more reliable the
model.

Initially, the interpretability of the obtained models was ne-
glected, since single-objective EAs permit the optimization of
only a single metric. The problem of improving accuracy while
maintaining or even improving the interpretability of a fuzzy
model was �rst faced in the mid-1990s by Ishibuchi and his
group [19], and the comprehensibility of fuzzy models began
to be integrated into the optimization process, thanks to the
application of MOEAs to fuzzy systems.

Ever since, interpretability has acquired an increasing im-
portance in the �eld of MOEFSs. Because of its subjectivity,
the main problem is to �nd a shared de�nition of interpretabil-
ity and to measure this characteristic in the obtained models,
since several issues need to be taken into account to obtain a
human-interpretable model.

Over the course of the past decade, several works have an-
alyzed the interpretability problem in FRBSs [20], looking for
interpretability measures that could be universally accepted by
the research community [21]�[23]. This effort has continued in
recent years, as demonstrated by the review papers presented
in [24]�[27], which aim to propose a well-established frame-
work to characterize and classify these measures.

Despite this, there are still no commonly accepted measures,
and even the terms used in the area (comprehensibility, read-
ability, completeness, consistency, etc.) are confusing and used
as synonyms, even if they refer to different concepts. Nowa-
days, researchers agree on the need to consider two groups of
interpretability measures:

1) complexity-based interpretability measures, which are
used to decrease the complexity of the fuzzy model (num-
ber of rules, number of antecedents in a rule, etc.);

2) semantic-based interpretability measures, which are used
to preserve the semantics associated with membership
functions (distinguishability, coverage, etc.) and rules
(consistency, etc.).

Classically, interpretability indices have only focused on the
former group, when evaluating the overall interpretability of a
fuzzy model. On the other hand, the de�nition of good semantic
interpretability measures is still an open problem, since they are
strongly affected by subjectivity. To this end, several indices
have been proposed recently [26], [28], [29].

Considering the importance of the accuracy-interpretability
tradeoff for the research community, this �rst category includes
contributions in which MOEFSs are designed to handle this
tradeoff that deals with this concept. Because of the huge
number of existent works, we organized them into a second-
level grouping, according to the taxonomy of GFSs presented
in [16] (see Fig. 1), and thus considering the components of the
FRBS that are managed by the optimization process (for further

information on the types of FRBSs and knowledge base (KB)
components, see the associated web page http://sci2s.ugr.es/
moefs-review/).

1) Tuning of FRBS components, combined or not, with a rule
set tuning process: A prede�ned KB is tuned by the opti-
mization process, i.e., the parameters of the system (shape
of membership functions in the data base (DB), inference
parameters, etc.) are modi�ed to obtain more accurate
systems. In order to keep the system simple or to reduce
complexity, in some cases a rule selection process, which
is used as a postprocessing method, can be integrated in
the optimization: From the initial rule base (RB), only nec-
essary rules are selected. This approach can be considered
a rule set tuning process. The contributions belonging to
this category are further divided into two subcategories,
named membership function tuning and inference param-
eter tuning.

2) KB learning: Papers belonging to this category consider
the learning of the DB and/or RB. This group is further di-
vided into three subcategories: learning by rule selection,
RB learning, and simultaneous learning of KB compo-
nents. In this case, the rule selection process is used to
perform a learning of the RB.

The majority of works use a linguistic fuzzy model, since it
is the most interpretable type of FRBS. However, there are a
small number of works in which interpretability is considered
even in a TSK-type FRBS. Because of their particularities, these
contributions will be described at the end of this section.

B. Multiobjective Evolutionary Fuzzy Systems Designed for
Multiobjective Control Problems

The performance of traditional controllers depends on their
accuracy in modeling the system�s dynamics. When designing a
controller, the �rst problem appears if the processes are impre-
cisely described or are controlled by humans, without recourse
to mathematical models, algorithms or a deep understanding
of the physical processes involved. A further problem concerns
how to design adaptive models, i.e., intelligent control systems
that involve a learning or adaptation process when system pa-
rameters change.

Thus, it can be dif�cult to identify an accurate dynamic model
to design a traditional controller. In these cases, fuzzy logic rep-
resents a powerful tool to deal with the problem of knowledge
representation in an environment of uncertainty and impreci-
sion. Furthermore, in control system design, there are often mul-
tiple objectives to be considered. These objectives are sometimes
con�icting, causing an inevitable tradeoff among them, and no
single design solution emerges as the best with respect to all
objectives. These considerations have led to the application of
MOEAs in the design of fuzzy logic controllers (FLCs).

The design of an FLC includes obtaining a structure for the
controller and the corresponding numerical parameters. MOEAs
can manage these problems by encoding both structure and pa-
rameters in one chromosome that represents the whole FLC.
Therefore, in this second group, works will be explained con-
sidering the following two categories [30]:
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multiobjective rule selection. In the second stage, they con-
sider two different objectives: maximization of the number of
correctly classi�ed training patterns and minimization of the
number of selected rules; therefore, the obtained classi�cation
systems consist of a small number of linguistic rules. In [52],
this rule selection method is extended to the case of classi�-
cation problems with many continuous attributes, by using a
prescreening procedure of candidate rules based on the number
of antecedent conditions of each rule.

To better control the dimensionality problem, the authors add
a third objective in [53]. An MOEA is used to extract a small
number of fuzzy rules from numerical data, taking into account
three objectives: to maximize the number of correctly classi�ed
training patterns, to minimize the number of fuzzy rules, and to
minimize the total number of antecedent conditions. The MOEA
presented in [19] is extended to a multiobjective genetic local
search (MOGLS) algorithm, in which a local search procedure
adjusts the selection process. Moreover, it is combined with a
learning algorithm to obtain rule weights.

In [54], two multiobjective genetic-based approaches are ap-
plied, to obtain FRBCs with a good tradeoff between accuracy
and complexity. The �rst approach was presented in [19], while
the second one is a hybrid multiobjective genetics-based ma-
chine learning (GBML) algorithm, which is a hybridization be-
tween the Michigan [55], [56] and Pittsburgh [57] approaches. It
considers the same three objectives as the previous model [53].

The same multiobjective GBML algorithm is used in [58],
but in this contribution it is implemented taking advantage of
the well-known NSGA-II and again consists of a hybrid version
of the Michigan and Pittsburgh approaches: each fuzzy rule is
represented by its antecedent fuzzy sets as an integer string of
�xed length; then the concatenation of these strings represents
an FRBC. The objectives remain the same as in [54].

In [59], NSGA-II is applied to the design of FRBCs belonging
to the accuracy-complexity Pareto optimal front. The accuracy
of each classi�er is measured as the number of correctly clas-
si�ed training patterns, whereas the complexity is computed as
the number of fuzzy rules and the total number of antecedent
conditions. Finally, an ensemble classi�er (also called a mul-
ticlassi�er) is designed by combining nondominated FRBCs,
and its performances are analyzed by performing computational
experiments on six benchmark datasets that are taken from the
University of California at Irvine (UCI) machine learning repos-
itory. The authors observe that the effect of combining several
FRBCs is problem dependent and that an ensemble of classi�ers
with high diversity usually has better performances.

2) Approaches to Performing Rule Base Learning: Most of
the approaches that are proposed to automatically learn the KB
from numerical information focus on RB learning using a pre-
de�ned DB.

In [60], an MOEA is used to generate FRBCs with a good
tradeoff between the complexity of the rule systems and their
re�ection of the data. This MOEA uses a measure based on Area
Under the receiver operating characteristic Curve (AUC) to de-
termine how well the classi�er re�ects the data. Moreover, some
concepts that are taken from SPEA2 are included: the �tness as-
signment of SPEA2 is used to avoid premature convergence, and

an external archive is maintained to store the best individuals
from all the solutions considered. In addition, a tailor-made rep-
resentation scheme is used to preserve the comprehensibility of
the rule systems, and a self-adaptation mechanism is included to
reduce the number of free parameters. Three objectives are opti-
mized: the accuracy, expressed as a measure based on the AUC,
and complexity, computed as the number of rules and conditions.

An example of rule learning for regression problems is pre-
sented in [61], in which the authors propose a modi�ed ver-
sion of the well-known (2+2)Pareto archived evolution strategy
(PAES), which is called (2+2)M-PAES, introduced in [62]. Un-
like classical (2+2)PAES, which only uses mutation to generate
new candidate solutions, (2+2)M-PAES exploits both crossover
and mutation. This approach considers a prede�ned DB uni-
formly distributed and enables a large set of RBs to be derived,
concurrently minimizing the accuracy and the complexity. The
accuracy is computed as the root mean squared error (RMSE),
whereas complexity is measured as the sum of the conditions
which compose each of the antecedents of the rules included in
the FRBS.

In [63], the accuracy�interpretability tradeoff is considered in
the context of imbalanced classi�cation problems. Usually, the
accuracy of a classi�er is measured as the percentage of correct
classi�cation, but this objective might not be suitable for prob-
lems that are characterized by highly imbalanced distributions
of patterns. In this proposal, the authors applied the well-known
NSGA-II to provide a set of binary FRBCs with a good tradeoff
between complexity and accuracy. In this case, complexity is
computed as the sum of the conditions in the antecedents of the
classi�er rules, whereas accuracy is expressed in terms of two
objectives: sensitivity and speci�city. These express how well
the system classi�es patterns belonging to the positive class and
the negative class, respectively.

3) Approaches to Simultaneous Learning of KB
Components: KB learning of linguistic FRBSs aims to
learn the DB and RB concurrently. This approach tackles a very
large search space, which is also dif�cult for EAs to handle.
Some approaches have been proposed to learn concurrently the
overall RB and DB.

In [64], the authors proposed a method for feature selection
and DB learning, to obtain FRBCs composed of a compact set
of comprehensible fuzzy rules with high classi�cation ability.
The DB learning involves both the number of labels for each
variable (granularity) and the form of each fuzzy membership
function. A nonlinear scaling function is used to adapt the fuzzy
partition contexts for the corresponding granularity. This ap-
proach uses an MOEA to evolve the DB and considers a simple
generation method to derive the RB. The MOEA has two goals:
to improve the accuracy, by minimizing the classi�cation error
percentage over the training dataset, and to obtain a compact
and interpretable KB, by penalizing fuzzy classi�ers with large
numbers of selected features and high granularity. The second
objective is expressed by the product of the number of selected
variables and their averaged granularity.

In [65], the authors proposed a technique to concurrently
perform the RB identi�cation and the DB learning of fuzzy
models for regression problems. Two MOEAs are exploited to



FAZZOLARI et al.: REVIEW OF THE APPLICATION OF MULTIOBJECTIVE EVOLUTIONARY FUZZY SYSTEMS 51

generate a set of linguistic FRBSs with different tradeoffs be-
tween accuracy and interpretability. The proposed approach can
learn RBs and membership function parameters of the associated
linguistic labels; therefore, the search space increases consid-
erably. To manage the size of the search space, the linguistic
two-tuple representation model [66] is included, which uses a
reduced number of parameters to perform the symbolic transla-
tion of labels. The �rst MOEA is (2+2)M-PAES, and it is com-
pared with the well-known NSGA-II. Two objectives are consid-
ered: the MSE and the number of antecedents activated in each
rule.

The same (2+2)M-PAES is exploited in [67] to generate lin-
guistic FRBSs for regression problems, with different tradeoffs
between complexity and accuracy. The presented approach aims
to learn the RB and the granularity of the uniform partitions
de�ned by the input and output variables concurrently. Conse-
quently, the concepts of virtual and concrete RBs are introduced:
the former is de�ned by uniformly partitioning each linguistic
variable with a �xed maximum number of fuzzy sets. The latter
takes into account, for each variable, the number of fuzzy sets
determined by the speci�c partition granularity of that variable.
RBs and membership function parameters are de�ned by the
virtual partitions and, whenever a �tness evaluation is required,
they are mapped to the concrete partitions. Two objectives are
considered: the accuracy of the FRBSs, measured as the MSE,
and their complexity, computed as the number of propositions
used in the antecedent of the rules contained in the concrete RB.

This work is extended in [68], in which the same MOEA is
used to concurrently learn not only the RB and partition gran-
ularity but membership function parameters as well. The same
approach is presented in [69], where a partition integrity index
is proposed as a third objective. This index measures to what
extent a partition is different from an initially interpretable one.
Furthermore, in [28] a novel interpretability index is proposed,
which combines RB complexity with DB integrity.

In [70], a speci�c MOEA, which is called Pitt-DNF, is pro-
posed to obtain FRBSs for regression problems. The Pittsburgh
approach is chosen; therefore, each chromosome encodes a com-
plete set of fuzzy rules. Antecedents of rules are represented in
disjunctive normal form (DNF), i.e., each input variable can
take an OR-ded combination of several linguistic terms as a
value, and the different input linguistic variables are combined
by an AND operator. Nevertheless, the authors wrongly call
conjunctive normal form these kinds of fuzzy rules. This repre-
sentation provides a high degree of compactness and improves
the interpretability of fuzzy models, but the combination of the
Pittsburgh approach with DNF-type fuzzy rules causes some
problems to generate the rules themselves. The proposed learn-
ing algorithm, which is based on NSGA-II, has been developed
to avoid the generation of DNF-type fuzzy rule sets with these
problems, and it gives a set of solutions with different tradeoffs
between complexity, computed as the number of DNF rules,
and accuracy, measured by the MSE. One crossover operator
and two mutation operators were speci�cally designed to take
into account the particular representation of fuzzy rules, thus
avoiding inconsistency, redundancy, overgenerality, and incom-
pleteness in fuzzy rules.

In [71], an MOEA is proposed to learn the granularities of
fuzzy partitions, tune the membership function parameters, and
learn the fuzzy rules of a linguistic FRBS for regression prob-
lems. A two-step evolutionary approach is applied: the fuzzy
models are initialized using a method that combines the ben-
e�ts of an ad hoc RB generation algorithm and decision-tree
algorithms, with the aim to reduce the search space. The initial
population is then optimized by an MOEA that reduces the num-
ber of rules, rule conditions, membership functions, and input
variables. The MOEA is based on NSGA-II, and the original
genetic operators are replaced with new ones that take into ac-
count dynamic constraints to ensure the transparency of fuzzy
partitions. Two objectives are optimized: accuracy, expressed
as the MSE, and complexity, computed as the total rule length
(number of active rule conditions).

In [72], a two-stage approach to obtain linguistic KBs in
classi�cation problems is proposed, based on the multiobjec-
tive fuzzy rule selection presented in [53] and by including a
lateral tuning [39] within the same process and by considering
the same three objectives: to maximize the number of correctly
classi�ed training patterns, to minimize the number of fuzzy
rules, and to minimize the total number of antecedent condi-
tions. The �rst stage determines appropriate granularities for
the DB and a set of candidate rules. The second stage per-
forms multiobjective rule selection and tuning, based on using
NSGA-II to obtain the �nal RB and the appropriate DB param-
eters.

A recent proposal can be found in [73], where the authors
focus on the scalability issue of linguistic FRBSs in 17 regres-
sion problems. The �rst stage uses an improved MOEA (based
on SPEA2) to perform an embedded genetic DB learning in-
cluding feature selection, granularities, and the reduced lateral
displacement of fuzzy partitions in order to control the dataset
dimensionality and obtain a reduced KB. For each DB de�ni-
tion an ad hoc RB is derived by adding a cropping mechanism
to avoid large RBs and to reduce the required computation time.
Two minimization objectives are used: MSE and number of
rules. Finally, a postprocessing stage for �ne tuning and rule
selection is applied to the obtained KBs using the same ob-
jectives. A speeded-up version of a previous MOEA, namely
exploration�exploitation-based SPEA2 (SP EA2E /E ), is pre-
sented by including a new approach to fast �tness estimation
which only uses a small percentage of the training data. Since
this mechanism is proposed for any kind of EA, the authors also
include it in the �rst stage in order to address the problem of
large datasets (many-instance datasets).

In [74], Alonso et al. propose embedding the high inter-
pretable linguistic knowledge (HILK) heuristic method [75]
in a three-objective EA, with the aim to get a good accuracy�
interpretability tradeoff when building FRBCs. The well-known
NSGA-II algorithm is employed, using two-point crossover and
Thrift�s mutation [76]. Three criteria are optimized: accuracy, by
maximizing the right classi�cation rate; readability, by minimiz-
ing the total rule length; and comprehensibility, by minimizing
the average number of rules �red at the same time (average �red
rules�AVR). Each chromosome includes a number of genes
equal to the number of input variables, and each gene represents
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TABLE II
SUMMARY OF THE PROPOSALS ON MOEFSS FOR MULTIOBJECTIVE FUZZY CONTROL PROBLEMS

scheduler with the aim to tune the optimal parameters of the
fuzzy PI controller at some operating points.

C. Summary of Multiobjective Evolutionary Fuzzy Systems De-
signed for Multiobjective Control Problems

All contributions on MOEFSs that are designed for fuzzy
control are grouped in Table II. Papers are divided based on the
aspects of the controller that are considered by the optimization
process. A description of this type of table is given for Table I.
In almost all cases, the objectives express a performance mea-
sure; therefore, the objective type does not appear in this table.
Because of the various application �elds of FLCs, the last col-
umn contains a brief description of the application framework.
Within each group, papers are sorted in chronological order.

In most cases, the proposal deals with the postprocessing of
FLC parameters, since it is the simplest approach and requires a
reduced search space. Earlier works consider �rst-generation
algorithms, and only very recently the best known second-
generation MOEAs have been applied. Finally, in almost all
papers, a Mamdani-type FRBS is used.

V. MULTIOBJECTIVE EVOLUTIONARY FUZZY SYSTEMS

DESIGNED FOR FUZZY ASSOCIATION RULE MINING

The knowledge which is extracted by the mining process can
be represented in several ways, for example, using association
rules. A general association rule is de�ned as an implication
X ⇒ Y , where both X and Y are de�ned as sets of attributes.
This implication is interpreted as follows: �for a speci�ed frac-
tion of the existing transactions, a particular value of attribute set
X determines the value of attribute set Y as another particular
value under a certain con�dence,� where a transaction consists
of a set of items I .

Two classic concepts are involved in association rules: sup-
port, which is the percentage of transactions that contains both
X and Y , and con�dence, that is, the ratio between the support
of X ∪ Y and the support of X . Thus, the problem of associ-
ation rule mining [34] consists of �nding all association rules
that satisfy user-speci�ed minimum support and con�dence.
Early works used Boolean association rules, which consider
only whether an item is present in a transaction or not, without
evaluating its quantity. To take into account this aspect, fuzzy
association rules [35] were introduced.

In the following, we describe those contributions that apply
MOEFSs to fuzzy association rule mining. Then, a brief sum-
mary of the existing works is provided.

A. Description of the Existent Contributions

Fuzzy association rule extraction can be performed using
MOEAs, as they obtain good results when dealing with prob-
lems involving several measures that could be contradictory to
some degree. Moreover, they could also include interpretability
concepts, since fuzzy association rules can explain the associa-
tions they represent.

For example, in [115], a speci�c Pareto-based multiobjective
evolutionary approach is presented for mining optimized fuzzy
association rules. Two different coding schemes are proposed:
the �rst one tries to determine the appropriate fuzzy sets in a
prespeci�ed rule, also called certain rule. In such cases, each in-
dividual represents the base values of membership functions of a
quantitative attribute in the DB. The second coding scheme tries
to �nd both rules and their appropriate fuzzy sets. In both ap-
proaches, three objectives are maximized: support, con�dence,
and comprehensibility of fuzzy association rules, where the last
one is expressed by a measure related to the number of attributes
in a rule.
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fuzzy set is introduced by Zadeh [132] as a generalization
of the concept of an ordinary fuzzy set, also referred to as
type-1 fuzzy set. A type-2 fuzzy set incorporates uncertainty
about the membership function into fuzzy set theory since its
membership function is 3-D, where the third dimension is the
value of the membership function at each point on its 2-D do-
main. If there is no uncertainty, a type-2 fuzzy set is reduced
to a type-1 fuzzy set. Such sets are useful when it is dif�-
cult to determine an exact membership function for a fuzzy
set.

As in the case of type-1 fuzzy systems, the hybridization of
type-2 fuzzy systems and GAs was proposed in [133], in order
to automatically design type-2 fuzzy systems, following which
several contributions have been published, in which GAs, and
in general EAs, are used to obtain type-2 fuzzy systems, mainly
in control applications [134]�[136].

Despite this, as far as we know, no proposals have yet been
presented to combine MOEAs with type-2 fuzzy systems; there-
fore, this may be a new and promising research �eld.

VII. CONCLUSION

The application of MOEAs to fuzzy systems has received
great attention from the research community for the past
15 years. MOEFSs can take into account multiple goals within
the same optimization process, thus generating a set of nondom-
inated fuzzy systems that represent a tradeoff among objectives.
MOEFSs have been applied in several �elds, due to their ability
to represent real-world problems in a simple way and to include
previous knowledge in the model. The number of contributions
in this area has increased greatly in recent years. This paper has
provided an overview of MOEFSs, suggesting an organization
of the contributions in this area according to their types.

To this end, in this contribution we have proposed a two-level
taxonomy, in which the �rst level is arranged depending on the
multiobjective nature of the problem tackled and the second one
on the type of GFS used.

The most proli�c category includes works on the application
of MOEFSs to the tradeoff between interpretability and accu-
racy. Therefore, many complex variations of existing MOEAs
have been proposed in order to obtain better performances.

The second category concerns works that deal with the appli-
cation of MOEFSs to multiobjective fuzzy control problems, in
which many contributions focus on �rst-generation algorithms,
probably due to the fact that they could be ef�ciently applied
in control problems, in spite of their simplicity. However, it
should be remembered that the introduction of the elitism con-
cept in second-generation MOEAs is a theoretical requirement
to assure convergence.

Only recently have MOEFSs been applied to extract fuzzy
knowledge from databases; therefore, this category comprises
few contributions. In addition, there are no well-described mea-
sures that consider fuzziness in association rules.

Finally, several current trends and open problems have been
highlighted, in order to draw the attention of the research com-
munity to their importance, since they are either unsolved or
have still not been addressed.
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