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The use of genetic/evolutionary algorithms (GAs) to design 
fuzzy systems constitutes one of the branches of the Soft 
Computing paradigm: genetic fuzzy systems (GFSs)

The most known approach is that of genetic fuzzy rule-
based systems, where some components of a fuzzy rule-
based system (FRBS) are derived (adapted or learnt) using 
a GA

Some other approaches include genetic fuzzy neural 
networks and genetic fuzzy clustering, among others
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GFSs and Soft Computing:
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Evolutionary algorithms and machine learning:

Evolutionary algorithms were not specifically designed as machine 
learning techniques, like other approaches like neural networks

However, it is well known that a learning task can be modelled as 
an optimization problem, and thus solved through evolution

Their powerful search in complex, ill-defined problem spaces has 
permitted applying evolutionary algorithms successfully to a huge 
variety of machine learning and knowledge discovery tasks

Their flexibility and capability to incorporate existing knowledge 
are also very interesting characteristics for the problem solving.
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Genetic Fuzzy Rule-Based Systems:

1. Brief introduction to genetic fuzzy systems

Genetic Algorithm Based
Learning Process

Knowledge Base
Data Base + Rule Base

Fuzzy Rule- 
Based System

Output InterfaceInput Interface

DESIGN PROCESS

Computation with Fuzzy Rule-Based Systems EnvironmentEnvironment
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Design of fuzzy rule-based systems:

An FRBS (regardless it is a fuzzy model, a fuzzy logic controller or 
a fuzzy classifier), is comprised by two main components:

The Knowledge Base (KB), storing the available problem knowledge in 
the form of fuzzy rules
The Inference System, applying a fuzzy reasoning method on the 
inputs and the KB rules to give a system output

Both must be designed to build an FRBS for a specific application:
The KB is obtained from expert knowledge or by machine learning 
methods
The Inference System is set up by choosing the fuzzy operator for each 
component (conjunction, implication, defuzzifier, etc.)
Sometimes, the latter operators are also parametric and can be tuned 
using automatic methods
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1. Brief introduction to genetic fuzzy systems

The KB design involves two subproblems, related to its two 
subcomponents:

Definition of the Data Base (DB):
Variable universes of discourse
Scaling factors or functions
Granularity (number of linguistic terms/labels) per variable
Membership functions associated to the labels

Derivation of the Rule Base (RB): fuzzy rule composition

As said, there are two different ways to design the KB:

From human expert information

By means of machine learning methods guided by the existing 
numerical information (fuzzy modeling and classification) or by a 
model of the system being controlled

1. Introduction to 
GFSs

2. GFSs roadmap and 
milestones

3. Evolutionary tuning of 
FRBSs

4. Classical GFS learning 
approaches

5. Some real-world 
applications

6. Advanced GFS 
approaches

7. Conclusions. What’s 
next?

OUTLINE



9/166 Genetic Fuzzy Systems
I ECSC Summer Course. Mieres, 9-13 July 2007

1. Brief introduction to genetic fuzzy systems

Fuzzy rule-based system
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1. Brief introduction to genetic fuzzy systems

Classical Taxonomy of GFRBSs:

There are there different groups of GFRBSs according to 
the KB components, DB and/or RB, included in the learning 
process:

Genetic definition of the FRBS Data Base

Genetic derivation of the FRBS Rule Base

Genetic derivation of the FRBS Knowledge Base

Additionally:
Genetic design of the Inference Mechanism (less usual)
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1. Brief introduction to genetic fuzzy systems

1. Genetic definition of the Data Base:

Classically:

performed on a predefined DB definition

tuning of the membership function shapes by a GA

VS S M VLL
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1. Brief introduction to genetic fuzzy systems

2. Genetic Derivation of the Rule Base:

A predefined Data Base definition is assumed

The fuzzy rules (usually Mamdani-type) are derived by a 
GA
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1. Brief introduction to genetic fuzzy systems

3. Genetic Derivation of the Knowledge Base:

The simultaneous derivation properly addresses the strong 
dependency existing between the RB and the DB
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1. Brief introduction to genetic fuzzy systems
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1. Brief introduction to genetic fuzzy systems
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Thrift’s ICGA91 paper (Mamdani-type Rule Base Learning. 
Pittsburgh approach)

Valenzuela-Rendón’s PPSN-I paper (Scatter Mamdani-type KB 
Learning. Michigan approach)

Pham and Karaboga’s Journal of Systems Engineering paper 
(Relational matrix-based FRBS learning. Pittsburgh approach)

Karr’s AI Expert paper (Mamdani-type Data Base Tuning)

Almost the whole basis of the area
were established in the first year!
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1991-1996/7: INITIAL GFS SETTING: KB LEARNING:

Establishment of the three classical learning approaches in the GFS field: 
Michigan, Pittsburgh, and IRL

Different FRBS types: Mamdani, Mamdani DNF, Scatter Mamdani, TSK

Generic applications: Classification, Modeling, and Control

1995-…: FUZZY SYSTEM TUNING:

First: Membership function parameter tuning

Later: other DB components adaptation: scaling factors, context adaptation 
(scaling functions), linguistic hedges, …

Recently: interpretability consideration
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1998-…: APPROACHING TO MATURITY?
NEW GFS LEARNING APPROACHES:

New EAs: Bacterial genetics, DNA coding, Virus-EA, genetic local search 
(memetic algorithms), …

Hybrid learning approaches: a priori DB learning, GFNNs, Michigan-Pitt 
hybrids, …

Multiobjective evolutionary algorithms

Interpretability-accuracy trade-off consideration

Course of dimensionality (handling large data sets and complex problems):
Rule selection (1995-…)
Feature selection at global level and fuzzy rule level
Hierarchical fuzzy modeling

“Incremental” learning
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GLOBAL GFS EVOLUTION SNAPSHOT:

2. GFSs roadmap

From: To:

Binary coding Real coding

Simple/basic EAs Sophisticated EAs

Accuracy-driven GFSs Accuracy-interpretability trade-off in 
GFSs

Single-objective optimization Multi-objective optimization

Strict GFRBS structures

Relaxed GFS structures:
Fuzzy logic for knowledge 

representation and reasoning
EAs for learning and tuning fuzzy 

models

Small data sets –

simple problems
Large data sets (DM applications) and 
complex problems ??????
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1991: four pioneering papers

1995: Geyer-Schulz’s book: “Fuzzy Rule-Based Expert Systems and Genetic 
Machine Learning”. Physica-Verlag

First GFSs book. Very specific: fuzzy classifier systems (Michigan approach) and 
RB learning with genetic programming

1996: Herrera and Verdegay’s edited book “Genetic Algorithms and Soft 
Computing”. Physica-Verlag

1997:

Sanchez, Shibata and Zadeh’s edited book “Genetic Algorithms and 
Fuzzy Logic Systems. Soft Computing Perspectives”. World Scientific

Pedrycz’s edited book “Fuzzy Evolutionary Computation”. Kluwer

Herrera’s special issue on “GFSs for Control and Robotics”, IJAR 17:4

Herrera and Magdalena’s two special sessions on “GFSs” at IFSA’97

1998: Herrera and Magdalena’s special issue on “GFSs”, IJIS 13:10-11
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2000: Cordón and Herrera’s two special sessions on “GFSs: Issues and 
Applications” at IPMU’2000

2001:

Cordón-Herrera-Hoffmann-Magdalena’s book on “GFSs. Evolutionary 
Tuning and Learning of Fuzzy Knowledge Bases”, World Scientific
First general GFSs book, covering the overall state of the art of GFSs by that time

2001: Cordón-Herrera-Hoffmann-Magdalena’s special issue on “Recent 
Advances in GFSs”, Information Science 136:1-4

2001: Cordón-Gomide-Herrera-Hoffmann-Magdalena’s minitrack on 
“GFSs: New Developments” at Joint IFSA-NAFIPS

2002: Angelov’s book “Evolving Rule-Based Models. A Tool for Design of 
Flexible Adaptive Systems”. Physica-Verlag

2003: Carse-Pipe’s two special sessions on “Evolutionary Fuzzy Systems” at 
EUSFLAT’2003
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2004: Cordón-Gomide-Herrera-Hoffmann-Magdalena’s special issue on 
“GFSs: New Developments”, FSS 141:1

Position paper from the editors: “Ten years of GFSs: current framework and new 
trends”. 35 citations (June 2007)

2005:

Carse-Casillas-Pipe’s three special sessions on “Evolutionary Fuzzy 
Systems: Models and Applications” at EUSFLAT’2005

Ishibuchi-Nakashima-Nii’s book on “Classification And Modeling With 
Linguistic Information Granules: Advanced Approaches To Linguistic 
Data Mining”, Springer

First International Workshop on GFSs. Granada (Spain)

2006-…:

2 workshops (EFS’06, GEFS’08)

4 special issues (IJAR, IJIS, IEEE TFS, Soft Computing)

6 special sessions (WCCI’06, FuzzIEEE2007), …
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3. Evolutionary Tuning of FRBSs

Evolutionary Data Base Tuning

1. Tuning of scaling functions
2. Tuning of membership functions
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3. Evolutionary Tuning of FRBSs

1. Tuning of scaling functions
They apply the universes of discourse of the input and output 
variables to the domain where the fuzzy sets are defined

Their adaptation allows the scaled universe of discourse to match 
the variable range in a better way

Definition parameters:
Scaling factor

Upper and lower bounds (linear scaling function)

Contraction/dilation parameters (non linear scaling function)

Coding scheme: fixed length
real-coded chromosome
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3. Evolutionary Tuning of FRBSs

Especially useful for fuzzy control applications, where the scaling 
function represents the gain from a control viewpoint1. Introduction to GFSs
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3. Evolutionary Tuning of FRBSs

References:
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3. Evolutionary Tuning of FRBSs

2. Tuning of membership functions
A genetic tuning process that slightly adjusts the  shapes of the 
membership functions of a preliminary DB definition

Each chromosome encodes a whole DB definition by joining the 
partial coding of the different membership functions involved

The coding scheme depends on:
The kind of membership function considered (triangular, trapezoidal, 
bell-shaped, …) → different real-coded definition parameters

The kind of FRBS:
Grid-based: Each linguistic term in the fuzzy partition has a single fuzzy set 
definition associated
Non grid-based (free semantics, scatter partitions, fuzzy graphs): each 
variable in each rule has a different membership function definition

1. Introduction to GFSs

2. GFSs roadmap and 
milestones

3. Evolutionary tuning 
of FRBSs

4. Classical GFS learning 
approaches

5. Some real-world 
applications

6. Advanced GFS 
approaches

7. Conclusions. What’s 
next?

OUTLINE



28/166 Genetic Fuzzy Systems
I ECSC Summer Course. Mieres, 9-13 July 2007

3. Evolutionary Tuning of FRBSs

Example: Tuning of the triangular membership functions of a 
grid-based SISO Mamdani-type FRBS, with three linguistic terms 
for each variable fuzzy partition

Each chrosome encodes a different DB definition:
2 (variables) · 3 (linguistic labels) = 6 membership functions

Each triangular membership function is encoded by 3 real values (the 
three definition points):

So, the chromosome length is
6 · 3 = 18 real-coded genes
(binary coding can be used but
but is not desirable)

Either definition intervals have to be defined for each gene 
and/or appropriate genetic operators in order to obtain 
meaningful membership functions 
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3. Evolutionary Tuning of FRBSs

R1: IF X1 is Small THEN Y is Large
R2: IF X1 is Medium THEN Y is Medium

. . . 
The RB remains unchanged!
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3. Evolutionary Tuning of FRBSs
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Genetic derivation of the FRBS Rule Base
Michigan learning approach
Pittsburgh learning approach
Iterative Rule learning approach
Fuzzy rule coding
Examples

Genetic selection of fuzzy rule sets

Genetic derivation of the FRBS Knowledge Base
Single-stage GFSs
Multi-stage GFSs

4. Classical GFS learning approaches
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1. Genetic derivation of the FRBS Rule Base

The genetic learning of the RB assumes the existence of a 
predefined DB definition and looks for an optimal fuzzy rule set

It only deals with grid-based Mamdani-type FRBSs
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4. Classical GFS learning approaches

Michigan Learning Approach:
Each chromosome encodes a single fuzzy rule and the derived RB 
is composed of the whole population

Reinforcement mechanisms (reward (credit apportion) and weight 
penalization) are considered to adapt the rules through a GA

Low weight (bad performing) rules are substituted by new rules 
generated by the GA

The key question is to induce collaboration in the derived RB as
the evaluation procedure is at single rule level (cooperation vs. 
competition problem (CCP))

Mainly used in on-line learning (fuzzy control applications)
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4. Classical GFS learning approaches

Michigan Learning Approach:
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4. Classical GFS learning approaches

Pittsburgh Learning Approach:
Each chromosome encodes a whole fuzzy rule set and the derived 
RB is the best individual of the last population

The fitness function evaluates the performance at the complete 
RB level, so the CCP is easy to solve

However, the search space is huge, thus making difficult the 
problem solving and requiring sophisticated GFS designs

Mainly used in off-line learning (fuzzy modeling and classification 
applications)
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Pittsburgh Learning Approach:
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4. Classical GFS learning approaches

Iterative Rule Learning Approach:
Intermediate approach between the Michigan and Pittsburgh 
ones, based on partitioning the learning problem into several 
stages and leading to the design of multi-stage GFSs

As in the Michigan approach, each chromosome encodes a single 
rule, but a new rule is learnt by an iterative fuzzy rule generation 
stage and added to the derived RB, in an iterative fashion, in 
independent and successive runs of the GA

The evolution is guided by data covering criteria (rule 
competition). Some of them are considered to penalize the 
generation of rules covering examples already covered by the 
previously generated fuzzy rules (soft cooperation)
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4. Classical GFS learning approaches

Iterative Rule Learning Approach:
A second post-processing stage is considered to refine the 
derived RB by selecting the most cooperative rule set and/or 
tuning the membership functions (cooperation induction)

Hence, the CCP is solved taking the advantages of both the 
Michigan and Pittsburgh approaches (small search space and 
good chances to induce cooperation)

Mainly used in off-line learning (fuzzy modeling and classification 
applications). Not applicable for fuzzy control
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4. Classical GFS learning approaches

Fuzzy rule coding:
The RB can be represented as a relational matrix, a 
decision table, or a list of rules

The two former ones are only useful when the FRBS has a 
reduced number of variables (huge chromosomes with 
more than two or three input variables)

The list of rules is the most used representation and can 
be adapted to the three classical genetic learning 
approaches: Michigan, Pittsburgh and IRL
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4. Classical GFS learning approaches

Thrift’s GFS:
P. Thrift, Fuzzy logic synthesis with genetic algorithms, Proc. Fourth Intl. Conf. on 
Genetic Algorithms (ICGA’91), San Diego, USA, 1991, pp. 509–513

Classical approach: Pittsburgh – the decision table is encoded in a 
rule consequent array

The output variable linguistic terms are numbered from 1 to n and 
comprise the array values. The value 0 represents the rule absence, 
thus making the GA able to learn the optimal number of rules

The ordered structure allows the GA to use simple genetic operators

S M L

S

M

L

X 1
X2

R5

R1 R2 R3

R4 R6

R7 R8 R9 1    0    2    0    2    0   2    0   3 

Y {B, M, A}
1  2  3

MB

AM

M

__

____

__
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4. Classical GFS learning approaches

Coding by a list of fuzzy rules:
The problem of Thrift’s decision table coding scheme is that it is 
difficult to reduce the RB size by only using the null value

A good solution is to consider the list of rules representation, 
where each rule is individually coded and then the partial 
encodings are concatenated (Pittsburgh approach)
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4. Classical GFS learning approaches

Example: Two inputs-one output fuzzy control problem 
with an existing DB definition:

Error {N, Z, P}      ΔError {N, Z, P}      Power {S, M, L}

Permutation of clauses results in the same rule!

2   6   9

2    6    9    1    6    8   1  ...       

(2) (6)

(9)

1  2  3 4  5  6 7  8  9

R1: IF Error is Zero and ΔError is Positive 
THEN Power is Large

R2R1
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4. Classical GFS learning approaches

Often the number of rules in the list is variable (having in 
some cases an upper limit)

Other chance is to use variable-length chromosomes: the 
population encode RBs with different number of rules

The problem anyway is that the genetic operators are 
more complicated since no rule ordering happens in the 
coding

Other chance is that the individual contains the code of a 
single rule (Michigan and IRL approaches)
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4. Classical GFS learning approaches

A common approach to code individual rules is the use of the 
disjunctive normal form (DNF) represented in the form of a fixed
length binary string

A DNF fuzzy rule allows an antecedent variable to take a 
disjunction of linguistic terms from its domain as a value:

IF Femur_length is (medium or big-medium or big) and Head_diameter is 
(medium) and Foetus_sex is (male or female or unknown) THEN 
Foetus_weight is normal

Femur_length ={small,small-medium, medium, big-medium,big}

Head_diameter ={small,medium,big}

Foetus_sex ={male,female,unknown}

Foetus_weight = {low, normal, high}

0    1    1    1    0    1   0    1   1   1   0   1    1
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They carry some advantages such as the variable selection at rule 
level: 

IF Femur_length is (medium or big-medium or big) and Head_diameter is 
(medium) and Foetus_sex is (male or female or unknown) THEN 
Foetus_weight is normal

or the label groupings making the rules more interpretable:

IF Femur_length is (not small) and Head_diameter is (medium) THEN 
Foetus_weight is normal

They are thus usually considered for classification problems

DNF rules have also been derived when working with variable 
length codes based on messy GAs

4. Classical GFS learning approaches
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4. Classical GFS learning approaches

Hoffmann-Pfister’s GFS:
F. Hoffmann, G. Pfister, Evolutionary design of a fuzzy knowledge base for a mobile 
robot, IJAR 17 (4) (1997) 447–469

Variable-length Pittsburgh GA to learn DNF fuzzy rules with the 
list of rules representation

Messy GAs:
position independent encoding

gene functionality defined by additional enumeration

variable length chromosome

Genetic crossover → cut and splice

Over- and under-specification

(4,0)gene

functionality allelic value

(1,1)(4,0) (4,1) (5,0) (4,0) (2,0) (3,1)

1 00 1 0
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4. Classical GFS learning approaches

Fuzzy rule over-specification:

Multiple output terms:

Positional dominance

IF X1 is medium and X2 is small THEN Y is large

Multiple input terms:

Or-combination of terms
for the same variable

IF X1 is medium and X2 is (small or medium) THEN Y is large

1 2 2 13 23 4 1 2 2 13 23 4

1 2 2 13 22 2
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4. Classical GFS learning approaches

Fuzzy rule under-specification:

Missing output term:

Randomly generate
output clause

IF X1 is medium and X2 is small THEN Y is small

Missing input variable:

DNF rule variable selection

IF X1 is medium THEN Y is small

2 11 2 3 2

3 21 2
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4. Classical GFS learning approaches
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4. Classical GFS learning approaches

References:
Pittsburgh Approach:

P. Thrift, Fuzzy logic synthesis with genetic algorithms, Proc. Fourth Intl. 
Conf. on Genetic Algorithms (ICGA’91), San Diego, USA, 1991, pp. 509–
513 (decision table)

D.T. Pham, D. Karaboga, Optimum design of fuzzy logic controllers using 
genetic algorithms, J. System Eng. 1 (1991) 114–118 (relational matrix)

F. Hoffmann, G. Pfister, Evolutionary design of a fuzzy knowledge base 
for a mobile robot, IJAR 17 (4) (1997) 447–469 (list of DNF fuzzy rules)

L. Magdalena, Crossing unordered sets of rules in evolutionary fuzzy 
controllers, IJIS 13 (10-11) (1998) 993-1010 (list of Mamdani fuzzy rules)

1. Introduction to GFSs

2. GFSs roadmap and 
milestones

3. Evolutionary tuning of 
FRBSs

4. Classical GFS 
learning 
approaches

5. Some real-world 
applications

6. Advanced GFS 
approaches

7. Conclusions. What’s 
next?

OUTLINE



51/166 Genetic Fuzzy Systems
I ECSC Summer Course. Mieres, 9-13 July 2007

4. Classical GFS learning approaches
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2. Genetic selection of fuzzy rule sets
MOTIVATION:

In high-dimensional problems, the number of rules in the RB 
grows exponentially as more inputs are added

Hence, a fuzzy rule generation method is likely to derive fuzzy rule 
sets including:

redundant rules: whose actions are covered by other rules,

wrong rules: badly defined and perturbing the system performance, 
and

conflicting rules: that worsen the system performance when co-existing 
with other rules in the RB

Rule reduction methods are used as postprocessing techniques to 
solve the latter problems

4. Classical GFS learning approaches
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There are two different rule reduction approaches:
Combination of the membership functions of two or more rules, reducing 
them to a single ones (scatter partition FRBSs)
Selection of fuzzy rules, getting rule subsets with a good cooperation from 
the initial RB (descriptive and scatter FRBSs)

4. Classical GFS learning approaches

Learning
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4. Classical GFS learning approaches

Example: Binary GA for rule selection

The coding scheme considers binary strings of fixed length m 
(number of rules of the initial RB):

Allele ‘0’ ⇒

 

the corresponding rule IS NOT selected
Allele ‘1’ ⇒

 

the corresponding rule IS NOT selected

Initial population generation:

Genetic operators:
Two-point crossover

Bit flipping mutation

[ ] { }
[ ] { } 1,,,1,0

,,1,1

1

1
1

≠∀=
∀=

pmkkC
mkkC
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4. Classical GFS learning approaches
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3. Genetic derivation of the FRBS Knowledge Base

The genetic learning process of the KB must jointly determine:
Membership function definitions • Fuzzy rules

and sometimes also:
Scaling factors/functions  • Linguistic terms (fuzzy partition granularity)

4. Classical GFS learning approaches
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4. Classical GFS learning approaches

Information items to be encoded into a chromosome:

Scaling factors

Membership functions

Fuzzy rules

Each information level is an independent chromosome part 
(multi-chromosomes)

Different ways to adapt this two-level structure (DB and RB 
information) through crossover:

As a single one, by merging the substructures

As two unrelated substructures, applying a parallel process

As two related substructures, applying a sequential process where the 
result of crossing over one of them affects the crossover of the other

Fixed or variable-length 
coding scheme
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4. Classical GFS learning approaches

Example: SISO fuzzy control problem with 3 labels per 
variable:

Error {N, Z, P} Power {S, M, L}

R1: IF Error is Negative THEN Power is Large

R2:  ...

0 0 0.5 0.3 0.5 0.8

Error Power Rules

0.8 1 1.3 0 0 0.3 0.2 0.5 0.8 0.7 1 1 1 5 9 ..
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4. Classical GFS learning approaches

The search space is thus very large and complex, causing 
problems to the Pittsburgh approach:

Variable-length chrosomes, or

one rule per chromosome (Michigan or IRL) with scatter 
partitions, or

multi-stage GFSs

The problem is simpler for the case of scatter partition 
Mamdani-type FRBSs, since each rule has its own 
semantics and so the chromosome has a single information 
level (list of rules representation)
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4. Classical GFS learning approaches

Some approaches partition the learning problem and try to 
improve the DB definition, once the RB has been derived (multi-
stage GFSs):

1. Initial genetic RB learning (predefined DB)

2. Genetic DB learning (tuning) (derived RB from the previous step)

This is the usual case for GFSs based on the IRL approach
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4. Classical GFS learning approaches
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4. Classical GFS learning approaches
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4. Classical GFS learning approaches
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descriptive and approximate fuzzy logic controller knowledge bases from 
examples, IJAR 17 (4) (1997) 369–407 (grid-based and scatter Mamdani
fuzzy rules for control/modeling problems)

O. Cordón, M.J. del Jesus, F. Herrera, Genetic learning of fuzzy rule-based 
classification systems cooperating with fuzzy reasoning methods, IJIS 13 
(10–11) (1998) 1025–1053 (Mamdani fuzzy rules for classification 
problems)

O. Cordón, F. Herrera, A two-stage evolutionary process for designing 
TSK fuzzy rule-based systems, IEEE TSMC 29 (6) (1999) 703–715 (TSK 
fuzzy rules for classification problems)

O. Cordón, M.J. del Jesus, F. Herrera, M. Lozano, MOGUL: a methodology 
to obtain genetic fuzzy rule-based systems under the iterative rule 
learning approach, IJIS 14 (11) (1999) 1123–1153 (generic methodology 
for different kinds of fuzzy rules and problems)
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Control:
Inverted pendulum, Cart-pole

Biped robot walking (Magdalena, 1994)

Fossil power plant operation supervision (Magdalena-Velasco, 1995)

Control strategies for trains (Bonissone, 1996; Hwang, 1998)

Industrial processes (Huang, 1998)

Mobile Robotics: basic behaviors (obstacle avoidance, wall following, 
…); behavior coordination, visual systems (Bonarini, 1996,1997; 
Hoffmann, 1996; Muñoz-Salinas, 2006; …)

Helicopter control (Hoffmann, 2001)

Photovoltaic Systems (Magdalena, 2001)

HVAC systems (Alcalá, 2003, 2005)

Hybrid resonant-driven linear piezoelectric ceramic motor (Wai, 2007)

F16 aircraft flight controller (Stewart, 2007)
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Modeling/Forecasting:
Food quality evaluation by sensorial tests (Ishibuchi, 1994; Guilleaume, 
2002)

Dental development age prediction (Lee, 1996)

Electrical distribution problems (Sanchez, 1997; Cordón, 1999)

Intelligent consumer products (dish washer, microwave oven, …) 
(Shim, 1999)

Color prediction for paint production (Mizutani, 2000)

Wind forecasting for power generation in wind farms (Damousis, 2001)

Decision systems for insurance risk assessment (Bonissone, 2002)

Ecological problems (Van Broekhoven, 2007)

Environmental modeling (Nebot, 2007)

5. Some real-world applications
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Classification/Diagnosis:
Myocardial infarction diagnosis (González, 1995)

Classification of defects in sheets of glass (Sánchez, 1998)

Breast cancer diagnosis (Peña-Reyes, 1999)

Cardio-vascular diseases risk prediction (Cordón, 2002)

Classification of amino acid sequences (Bandyopadhyay, 2005)

Matrix crack detection in thin-wafled composite beam (Pawar, 2005)

Intrusion detection (Abadeh, 2007)

Microcalcification classification in digital mammograms (Jiang, 2007)

Structural health monitoring of helicopter rotor blades (Pawar, 2007)

Optimization:
Railway networks timetable (Voget, 1998)

Supply strategies for the electrical market (Sánchez, 2003)

Scheduling (Gomide, 2000; Franke, 2007)

5. Some real-world applications
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Biped robot walking control
L. Magdalena, F. Monasterio, A fuzzy logic controller with learning through 
the evolution of its knowledge base, IJAR 16 (3–4) (1997) 335–358

• Anthropomorphic structure

•
 

Searching for the sequence
of movements allowing
continuous and regular walking

•
 

Magdalena’s Pittsburgh GFS to
learn different gait controls

5. Some real-world applications
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Biped robot walking control

5. Some real-world applications
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Mobile robotics: obstacle avoidance

5. Some real-world applications

Mobile Robot 
&

Sensors

Fuzzy
Controller

control action

Sensor Data
Preprocessing 

sensor readingsperception vector
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simulated 
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Mobile robotics: obstacle avoidance

5. Some real-world applications

Initial RB

Evolved RB

Perception

Action

Thrift’s GFS
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Obtained results in the real environment

5. Some real-world applications
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Maintenance cost estimation for low
and medium voltage lines in Spain:

O. Cordón, F. Herrera, L. Sánchez, Solving electrical distribution problems using 
hybrid evolutionary data analysis techniques, Appl. Intell. 10 (1999) 5-24

Spain’s electrical market (before 1998): Electrical companies shared a 
business, Red Eléctrica Española, receiving all the client fees and 
distributing them among the partners

The payment distribution was done according to some complex criteria
that the government decided to change

One of them was related to the maintenance costs of the power line
belonging to each company

The different producers were in trouble to compute them since:
As low voltage lines are installed in small villages, there were no actual 
measurement of their length

The goverment wanted the maintenance costs of the optimal medium voltage 
lines installation and not of the real one, built incrementally

5. Some real-world applications
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Low voltage line maintenance cost estimation:

Goal: estimation of the low voltage electrical line length installed in 
1000 rural towns in Asturias

Two input variables: number of inhabitants and radius of village

Output variable: length of low voltage line

Data set composed of 495 rural nuclei, manually measured and  
affected by noise

396 (80%) examples for training and 99 (20%) examples for test
randomly selected

Seven linguistic terms for each linguistic variable

5. Some real-world applications
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Low voltage line maintenance cost estimation:

Classical solution: numerical regression on different models of the 
line installation in the villages

5. Some real-world applications
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5. Some real-world applications

Performance comparison of different fuzzy modeling methods

Method #R MSEtra MSEtest

Wang-Mendel 24 222,623 240,566

Cordón-Herrera 32 267,923 249,523

Ishibuchi

 

(simp. TSK) 32 173,230 190,808

Thrift 47 185,204 168,060

Shan-Fu 45 1,281,547 1,067,993

ANFIS 49 256,605 268,451

FCM 49 163,615 198,617

Chiu+FCM 37 200,999 222,362

3rd order polynomial 
regression

49 nodes, 
2 pars. 235,934 202,991

NN 2-25-1 102 par. 169,399 167,092

1. Introduction to GFSs

2. GFSs roadmap and 
milestones

3. Evolutionary tuning of 
FRBSs

4. Classical GFS learning 
approaches

5. Some real-world 
applications

6. Advanced GFS 
approaches

7. Conclusions. What’s 
next?

OUTLINE



76/166 Genetic Fuzzy Systems
I ECSC Summer Course. Mieres, 9-13 July 2007

Medium voltage line maintenance cost estimation:

Goal: estimation of the maintenance cost of the optimal medium 
voltage electrical line installed in the Asturias’ towns

Four input variables: street length, total area, total area occupied 
by buildings, and supplied energy

Output variable: medium voltage line maintenance costs

Data set composed of 1059 simulated cities

847 (80%) examples for training and 212 (20%) examples for test 
randomly selected

Five linguistic terms for each linguistic variable

5. Some real-world applications
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5. Some real-world applications

Performance comparison of different fuzzy modeling methods

Method #R MSEtra MSEtest

Wang-Mendel (3 labels) 28 197,313 174,400

Wang-Mendel 66 71,294 80,934

Cordón-Herrera (TSK)  
multi-stage GFS 268 11,073 11,836

Thrift 534 34,063 42,116

2nd order polynomial 
regression

77 nodes, 
15 par. 103,032 45,332

NN 4-5-1 35 par. 86,469 33,105
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Fuzzy control of Heating Ventilating and Air 
Conditioning (HVAC) systems:

R. Alcalá, J.M. Benítez, J. Casillas, O. Cordón, R. P&erez, Fuzzy control of HVAC 
systems optimised by genetic algorithms, Appl. Intell. 18 (2003) 155–177

Goal: multi-criteria optimization of an expert FLC for an HVAC system: 
reduction of the energy consumption but maintaining the required indoor 
comfort levels

HVAC system structure

5. Some real-world applications
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Genetic tuning of the HVAC FLC:

Goals to optimize: 

Hence, the fitness function is multi-criteria. In this case, an 
aggregation approach is preferred to a Pareto-based one since:

Weight values are provided by the human experts defining the 
importance of each objective

The search space is smaller

Quicker GAs can be designed

5. Some real-world applications
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Genetic tuning of the HVAC FLC (2):

Problem restriction: the simulation model used to evalute the 
performance of a DB definition takes 3-4 minutes

An efficient genetic tuning methodology is mandatory:
Local adjustment of each membership function definition parameter

GA with quick convergence: steady-state (just 2000 evaluations will 
take around 4 days)

Small population size (31 individuals)

Real-coded steady-state GA:
Two parents are selected and crossed over (max-min-arithmetical) and 
mutated (Michalewicz), obtaining four offspring

The two best of them compete with the two worst individuals in the 
population to enter into it

A restart is applied if the GA has stagnated

5. Some real-world applications
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Genetic tuning of the HVAC FLC (3):

Coding scheme: n variables and Li linguistic terms

5. Some real-world applications
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Obtained results:

5. Some real-world applications
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New learning schemes
KB derivation through a priori genetic DB learning

Coevolutionary GFSs

Incremental Learning

InterpretabilityInterpretability--Accuracy tradeAccuracy trade--offoff
MultiMulti--objective genetic learning and selection of fuzzy rulesobjective genetic learning and selection of fuzzy rules

New fuzzy model structures. Combined parameter learning and New fuzzy model structures. Combined parameter learning and 
rule selectionrule selection

Advanced tuning approachesAdvanced tuning approaches

6. Advanced GFS approaches
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6. Advanced GFS approaches

KB derivation through a priori genetic DB learning:

GFS based on the decomposition of the learning problem in two 
intertwined stages:

Learning of the DB

Derivation of the RB

The DB learning algorithm
wraps the RB derivation
method. The quality of each
candidate DB is given by the performance of the whole KB

Advantages (with respect to the joint DB+RB generation):
Reduction of the search space

More chances to find optimal solutions
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The GA used to learn the DB can consider any of the following 
components:

The variable domain (scaling factor allowing a brief enlargement)

The non-linear scaling function for each fuzzy partition including areas
with different “sensibility” in the variable domain

The number of labels per variable (granularity)

The membership function shapes

The rule generation method must be quick, since the evaluation 
of each DB definition requires its run

Due to this, ad-hoc data-driven method are usually considered, 
such as Wang y Mendel’s

6. Advanced GFS approaches
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Non-linear scaling function for context definition:

f: [-1,1] →
 

[-1,1] f(x) = sign(x) · |x|a with a > 0

a=1

a>1 a<1

6. Advanced GFS approaches
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Non-linear scaling function for context definition:

That scaling function is good for symmetrical fuzzy partitions

We add a new parameter to distinguish non-linearities with 
asymmetric shape (S ∈ {0,1})

S=1 , a>1 S=1 , a<1

6. Advanced GFS approaches

1. Introduction to GFSs

2. GFSs roadmap and 
milestones

3. Evolutionary tuning of 
FRBSs

4. Classical GFS learning 
approaches

5. Some real-world 
applications

6. Advanced GFS 
approaches

7. Conclusions. What’s 
next?

OUTLINE



91/166 Genetic Fuzzy Systems
I ECSC Summer Course. Mieres, 9-13 July 2007

Chromosome structure:

Scaling factors (C1):   C1 = (R1, R2, ..., RN); Ri = (riinf, risup)

Sensibility parameters (C2):   C2 = (a1, a2, ..., aN, S1, S2, ..., SN)

Granularity (C3):   C3 = (E1, E2, ..., EN)
(integer coding)

Membership function shapes (C4):

C4i = (V1i1 , V2i1 , V3i1 , ..., V1iE , V2iE , V3iE )

C4 = (C41 , C42 , ..., C4N )

6. Advanced GFS approaches
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DB learning options:

BASIC OPTIONS:

Only linear scaling functions (variable domains): C= C1 = (R1, R2, ..., RN)

Only sensibility parameters: C= C2 = (a1, a2, ..., aN) or
C= C2 ’ = (a1 , a2 , ..., aN , S1 , S2 , ..., SN ) 

Only granularity: C= C3 = (E1, E2, ..., EN)

Only membership function shapes: C= C4 = (C41, C42, ..., C4N)

COMBINATIONS:

Scaling factors + Granularity: C = (C1, C3)

Non-linear scaling functions + membership functions: C = (C2, C4)

...

6. Advanced GFS approaches
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Chromosome evaluation:

Build the DB from the parameters encoded in the chromosome

Run the RB generation on that DB definition

Compute the performance measure (MSEtra, classification error or 
control error) of the obtained KB (DB+RB)

To improve the generalization capability in modeling/ 
classification, KBs with a large number of rules (NR) can be 
slightly penalized:

F(C) = ω1 · MSEtra + ω2 · NR

with ω1 = 1 and ω2 computed from the results of the FRBS with 
the maximum granularity

6. Advanced GFS approaches
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Obtained results in the medium voltage line problem:

6. Advanced GFS approaches

 

Method Granul. NR MSEtra MSEtest 

WM 9 9 9 9 9 130 32.337,4 33.504,9 

WM + Tun 9 9 9 9 9 130 13.442,5 17.585,7 

9 9 9 9 9 133 17.441,1 21.184,6 
FJ 

9 9 9 9 9 139 18.654,5 19.112,8 

4 3 9 9 9 96 9.163,5 11.121,3 Gr.+m.f. 
(C3+C4) 3 3 9 7 9 68 9.987,7 10.414,1 

Scaling factor + Gr + Scal. 
function 1 (C1+C2+C3) 

5 4 9 9 9 65 9.799,3 9.966,9 

Scaling factor + Gr + Scal. 
function 2 (C1+C2+C3) 

4 5 9 9 9 82 9.424,2 9.312,9 
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Advanced GFSs: MOGFSs

References:

O. Cordón, F. Herrera, L. Magdalena, P. Villar, A genetic learning process 
for the scaling factors, granularity and contexts of the fuzzy rule-based 
system data base, Inf. Sci. 136 (1-4) (2001) 85-107

O. Cordón, F. Herrera, P. Villar, Generating the knowledge base of a fuzzy 
Rule-based system by the genetic learning of data base. IEEE TFS 9 (4) 
(2001) 667-674

O. Cordón, F. Herrera, J. De la Montaña, A.M. Sánchez, P. Villar, A 
prediction system of cardiovascularity diseases using genetic fuzzy rule-
based systems. In: F.J. Garijo et al. (Eds.), Advances in Artificial 
Intelligence IBERAMIA 2002, LNCS 2527, Springer, 2002, pp. 381-391

1. Introduction to GFSs

2. GFSs roadmap and 
milestones

3. Evolutionary tuning of 
FRBSs

4. Classical GFS learning 
approaches

5. Some real-world 
applications

6. Advanced GFS 
approaches

7. Conclusions. What’s 
next?

OUTLINE



96/166 Genetic Fuzzy Systems
I ECSC Summer Course. Mieres, 9-13 July 2007

6. Advanced GFS approaches

Coevolutionary genetic fuzzy systems:

Coevolutionary algorithms are advanced evolutionary techniques 
proposed to solve decomposable complex problems

They involve several species (populations) that permanently 
interact among them by a coupled fitness

In the cooperative approach all the species cooperate to build the 
problem solution

They are recommendable when:
The search space is huge

The problem may be decomposable in subcomponents

Different coding schemes are used

The subcomponents present strong interdependencies
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Cooperative coevolutionary algorithm

Cooperators
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  Algorithm

Population

Species 1

1
1

1

1 1

1

2

Problem solution
1
2

Individual
      to be
 evaluated

Fitness
1

Cooperators

. . .

Evolutionary
  Algorithm
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6. Advanced GFS approaches

Peña-Reyes’ Fuzzy CoCo GFS:
Peña-Reyes, C.A., Sipper, M., Fuzzy CoCo: a cooperative-coevolutionary approach to 
fuzzy modeling, IEEE TFS 9 (5) (2001) 727-737

Coevolutionary GFS with two binary-coded species:
Data Base: definition of all the membership functions

Rule Base: fuzzy rules

Designed for the Breast cancer classification problem: 9 inputs

Two linguistic labels per variable (genes 1 and 2). Genes 0 and 3 are used 
for feature selection at rule level
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6. Advanced GFS approaches

Obtained results:

Results from 495 runs

The number between parenthesis is the number of variables of 
the most complex rule in the RB
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6. Advanced GFS approaches

Obtained results:

Best evolved KB with 2 rules:

Classification rate: 98.54%
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6. Advanced GFS approaches

Obtained results:

Best evolved KB with 7 rules:

Classification rate: 98.98%
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Incremental learning:
Hoffmann, F., Koo, T.-J., Shakernia, O., Evolutionary design of a helicopter 
autopilot, In: Advances in Soft Computing - Engineering Design and Manufacturing, 
Part 3: Intelligent Control, Springer-Verlag, 1999, pp. 201-214

GFS that learns TSK fuzzy rules incrementally:

IF X1 IS A1 AND X2 IS A2 … THEN y=c0 +c1 ·x1 + c2 ·x2 + … + cn ·xn

The system starts from a single, very simple rule, covering the whole 
input space and with a linear output

An evolution strategy is considered to iteratively partition the fuzzy 
input subspaces, keeping the linear outputs

Alternatively, new terms are added to the consequent weighted 
combination to get a non linear mapping in the output
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IF x1 IS A1 AND x2 IS B1 … THEN F =c0 c0
s0

partition input space along one variable 

A1

B1

x2

x1 x1
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x1A2 x1

IF x1 IS A2 AND x2 IS B1 … THEN F=c2
0
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0
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6. Advanced GFS approaches

IF x1 IS A1 AND x2 IS B1 … THEN F =c0 c0
s0

add a term to the linear output 

A1

B1

x2

x1 x1

IF x1 IS A1 AND x2 IS B1 … THEN F=c0 +cx

x2

B1

x1A1

mutate

expand:
cx =0
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cx
sx

x1
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6. Advanced GFS approaches

IF x1 IS A1 AND x2 IS B1 … THEN F =c0 c0
s0
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x2

x1 x1

IF x1 IS A2 AND x2 IS B1 … THEN F=c2
0 +c2
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x1
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sample the best 
chromosomes from
the current population
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Obtained results in the cart pole problem:
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Order of genome expression in the cart pole problem:
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Obtained results in a mobile robot problem:
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Experiments on the real robot:
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New learning schemesNew learning schemes
Learning Learning KBsKBs through through a priori a priori genetic DB learninggenetic DB learning

CoevolutionaryCoevolutionary GFSsGFSs

Incremental LearningIncremental Learning

Interpretability-Accuracy trade-off
Multi-objective genetic learning and selection of fuzzy rules

New fuzzy model structures. Combined parameter learning and 
rule selection

Advanced tuning approaches
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Interpretability-accuracy trade-off in fuzzy system design

Every model must satisfy two basic requirements:
Accuracy: Actually represent the modeled reality

Interpretability: Describe the system in a readable way

To obtain high degrees for both is a contradictory purpose and, in 
practice, one of the two properties prevails over the other

A very simple model does not properly represent the system and 
a complex model is difficult to understand and generalizes badly

Obtaining accurate and comprehensible fuzzy models/classifiers/ 
controllers is known as the interpretability-accuracy trade-off

0

Error

Interpretability

Trade-off

Error

S* Interpretability

Test Data

Training Data
0
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6. Advanced GFS approaches

Multi-objective genetic learning
and selection of fuzzy rules:

Goal: To find a large number of fuzzy rule sets with different 
interpretability-accuracy trade-offs

Problem: Classification problems present a large number of input 
variables → many rule antecedents and huge number of possible 
Mamdani fuzzy rules

Error

Complexity

Test Data

Training Data

0
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6. Advanced GFS approaches

Two-stage genetic fuzzy system:
H. Ishibuchi, T. Yamamoto, Fuzzy rule selection by multi-objective genetic 
local search algorithms and rule evaluation measures in data mining, FSS 
141 (2004) 59-88

1. Heuristic Rule Extraction: A pre-specified number of candidate 
fuzzy rules of different granularity are extracted from numerical 
data using a heuristic rule evaluation criterion

# of possible rules:

x1 … xn

(14+1) ×
 

… ×
 

(14+1) = 15n

Don’t care Don’t care

…
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2. Genetic Rule Selection: A small fuzzy rule set is selected from the 
extracted candidate rules using a multi-objective GA

Binary coding scheme

Objectives:
f1(S) : Number of correctly classified patterns by S

f2(S) : Number of selected rules in S

f3(S) : Total number of antecedent conditions in S

Multicriteria approaches:

1. Two-objective approach: Maximize f1 (S) and minimize f2 (S)

2. Weighted sum of the two objectives: Maximize w1 ·f1 (S) - w2 ·f2 (S)

3. Three-objective approach: Maximize f1 (S) and minimize f2 (S), f3 (S)

4. Weighted sum of the three objectives: Max w1 ·f1 (S)-w2 ·f2 (S)-w3 ·f3 (S)
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Example of the obtained results (Diabetes):

A single rule set is obtained by the weighted sum approach

6. Advanced GFS approaches

 
Er

ro
r r

at
e 

on
 tr

ai
ni

ng
 p

at
te

rn
s (

%
) 

Number of fuzzy rules

Weighted scalar rule selection 
Three-objective rule selection 

2 3 4 5 6 7

22

23

24

25

26

 

Er
ro

r r
at

e 
on

 te
st

 p
at

te
rn

s (
%

) 

Number of fuzzy rules

Weighted scalar rule selection 
Three-objective rule selection 

2 3 4 5 6 7

24

25

26

27

28

1. Introduction to GFSs

2. GFSs roadmap and 
milestones

3. Evolutionary tuning of 
FRBSs

4. Classical GFS learning 
approaches

5. Some real-world 
applications

6. Advanced GFS 
approaches

7. Conclusions. What’s 
next?

OUTLINE



117/166 Genetic Fuzzy Systems
I ECSC Summer Course. Mieres, 9-13 July 2007

Example of the obtained results (Diabetes):

The effect in the rule increase is not clear

6. Advanced GFS approaches
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Example of the obtained results (Sonar):

The generalization ability is increased by increasing the
number of fuzzy rules (i.e., the overfitting is not observed)
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References:
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6. Advanced GFS approaches

New fuzzy model structures:

Use of linguistic hedges:

Use of more than one consequent for each rule:

Use of weighted rules:

The creation of this new fuzzy rule models require sophisticated 
(genetic) learning approaches and selection methods to promote 
rule cooperation

R. Alcalá, J. Alcalá-Fdez, J. Casillas, O. Cordón, F. Herrera, Hybrid learning models to 
get the interpretability-accuracy trade-off in fuzzy modelling, Soft Computing 10 (9 
(2006) 717-734
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IF X1 is lhX1 A1 AND … AND Xn IS lhXn An THEN Y IS lhY B

IF X1 is A1 AND … AND Xn IS An THEN Y IS {B1 , …, Bc }

IF X1 is A1 AND … AND Xn IS An THEN Y IS B with [w]
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References:
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Joint weight derivation-rule selection process:
R. Alcalá, J. Casillas, O. Cordón, A. González, F. Herrera, A genetic rule weighting 
and selection process for fuzzy control of Heating, Ventilating and Air Conditioning 
Systems, Engineering Applications of Artificial Intelligence 18 (3) (2005) 279-296

GA with a two-level coding scheme: C = (C1 ,C2 )

C1 (selection): binary chromosome of length m (# of simple Mamdani-
type rules derived in a first learning stage)

C2 (weights): real-coded chromosome of length m. Each gene encodes 
the weight ([0,1]) for the corresponding rule

Genetic operators: cooperatively working in the two-level structure:
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Obtained results for the HVAC FLC tuning problem:

6. Advanced GFS approaches
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Joint coevolutionary double consequent fuzzy 
rule weight derivation- selection process:

R. Alcalá, J. Casillas, O. Cordón, F. Herrera, Linguistic modeling with weighted 
double-consequent fuzzy rules based on cooperative coevolutionary learning.  
Integrated Computer Aided Engineering 10 (4) (2003) 343-355

Cooperative coevolutionary GA with two species:

S1 (rule selection): binary chromosome of length m (# of rules 
derived in a first learning stage). Double-consequent rules are 
reduced to simple rules
Two-point crossover and flip mutation

S2 (weight derivation): real-coded chromosome of length m. Each 
gene encodes the weight ([0,1]) for the corresponding rule
Max-min-arithmetical crossover and random mutation

1. Introduction to GFSs

2. GFSs roadmap and 
milestones

3. Evolutionary tuning of 
FRBSs

4. Classical GFS learning 
approaches

5. Some real-world 
applications

6. Advanced GFS 
approaches

7. Conclusions. What’s 
next?

OUTLINE



126/166 Genetic Fuzzy Systems
I ECSC Summer Course. Mieres, 9-13 July 2007

Experimental study for the low voltage power line problem:

6. Advanced GFS approaches

Method Description

WM Ad hoc data-driven method

ALM The ALM double-consequent fuzzy rule method

WRL The WRL weighted fuzzy rule method

WALM A simple GA that learns weighted double-consequent 
fuzzy rules as a first approximation to the problem

WALM-CC The proposed cooperative coevolutionary

 

GA to learn 
weighted double-consequent fuzzy rules
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Obtained results for the low voltage power line problem:

6. Advanced GFS approaches

Method #R MSEtra MSEtst

WM 24 222,654 239,962

ALM 20 155,866 178,601

WRL 24 149,303 182,249

WALM 26 151,359 182,997

WALM-CC 22 144,290 176,057

NN 2-25-1 102 par. 169,399 167,092
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Obtained fuzzy model:
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Genetic tuning of DB and RB using linguistic hedges:
J. Casillas, O. Cordón, M.J. del Jesus, F. Herrera, Genetic tuning of fuzzy rule deep 
structures preserving interpretability and its interaction with fuzzy rule set reduction,  
IEEE TFS 13 (1) (2005) 13-29

Genetic tuning process that refines a preliminary KB working at 
two different levels:

DB level: Linearly or non-linearly adjusting the membership 
function shapes

RB level: Extending the fuzzy rule structure using automatically 
learnt linguistic hedges
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6. Advanced GFS approaches

Tuning of the DB:
Linear tuning Non-linear tuning

Tuning of the RB: linguistic hedges ‘very’ and ‘more-or-less’

R  = IF

 

X is S

 

THEN

 

Y es M

R  = IF

 

X Is M THEN Y es L

R  = IF

 

X Is L

 

THEN Y es S
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R  = IF

 

X is more-or-less S
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6. Advanced GFS approaches

Triple coding scheme:

Membership function
parameters (P) (DB linear
tuning): real coding

Alpha values (A) (DB non
linear tuning): real coding

Linguistic hedges (L)
(RB tuning): integer coding

⎩
⎨
⎧

∈⋅+
−∈+

=
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ij
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6. Advanced GFS approaches

Initial Data Base

0 2

YX
S M L1 1 1 S M L2 2 2

0 2

X is THENIFR1 = L Y is 2S
X is THENIFR2 = S Y is 2M
X is THENIFR3 = M Y is 2L

1

1
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Initial Rule Base

Genetic

 

Tuning

S 1 M 1 L 1 S 2 M 2 L 2

CSa

0 0,650 1 1,40,6 1,9 2,210,15 0,55-0,2 0,8 1,60,5 1,75 2,21,1

CSb

R1 R2 R3
0 0 10 22

S 1 M 1 L 1 S 2 M 2 L 2

CSa

0 0,650 1 1,650,35 2 21,350 0,650 1 1,650,35 2 21,35

CSb

R1 R2 R3
1 1 11 11

YX
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Tuned Data Base
0 20 2

X is THEN Y isIFR1 = 2L S
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1

1

1
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Experimental study for the medium voltage line problem:

• Learning method considered: Wang-Mendel

• Tuning method variants:

• Evaluation methodology: 5 random training-test partitions 80-20% 
(5-fold cross validation) ×

 
6 runs = 30 runs per algorithm

6. Advanced GFS approaches
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Obtained results for the medium voltage line problem:

Tuning methods:

Other fuzzy modeling techniques and GFS:

6. Advanced GFS approaches
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Obtained results for the medium voltage line problem:

Example of one KB derived from the WM+PAL-tun method:

Before tuning: MSEtra/test = 58032 / 55150
After tuning: MSEtra/test = 11395 / 14465

6. Advanced GFS approaches
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• GFSs statistics

• Critical view of GFSs

• What’s next?

7. Conclusions. What’s  next?
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Number of papers on GFSs published in JCR journals:

Source: The Thomson Corporation ISI Web of Knowledge
Query: (evolutionary OR "genetic algorithm*" OR “genetic programming” OR “evolution 
strate*”) AND ("fuzzy rule*" OR "fuzzy system*" OR "fuzzy neural" OR "neuro-fuzzy" OR "fuzzy 
control*" OR "fuzzy logic control*" OR "fuzzy classif*")

Date: July, 5, 2007 Number of papers: 1080
Number of citations: 5403 Average citations per paper: 5.0

7. Conclusions. What’s  next?
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7. Conclusions. What’s  next?

Most cited papers on GFSs:

1. Homaifar, A., McCormick, E., Simultaneous Design of Membership Functions and rule sets for fuzzy controllers using 
genetic algorithms, IEEE TFS 3 (2) (1995) 129-139. Citations: 161

2. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H., Selecting fuzzy if-then rules for classification problems using 
genetic algorithms, IEEE TFS 3 (3) (1995) 260-270. Citations: 151

3. Setnes, M., Roubos, H., GA-fuzzy modeling and classification: complexity and performance, IEEE TFS 8 (5) (2000) 
509-522 . Citations: 86

4. Park, D., Kandel, A., Langholz, G., Genetic-based new fuzzy reasoning models with application to fuzzy control, IEEE 
TSMC B 24 (1) (1994) 39-47. Citations: 82

5. Ishibuchi, H., Nakashima, T., Murata, T., Performance evaluation of fuzzy classifier systems for multidimensional 
pattern classification problems, IEEE TSMC B 29 (5) (1999) 601-618. Citations: 79

6. Herrera, F., Lozano, M., Verdegay, J.L., Tuning fuzzy-logic controllers by genetic algorithms, IJAR 12 (3-4) (1995) 
299-315. Citations: 64

7. Shi, Y.H., Eberhart, R., Chen, Y.B., Implementation of evolutionary fuzzy systems, IEEE TFS 7 (2) (1999) 109-119. 
Citations: 57

8. Carse B., Fogarty, TC., Munro, A., Evolving fuzzy rule based controllers using genetic algorithms, FSS 80 (3) (1996) 
273-293. Citations: 54

9. Linkens, D.A., Nyongesa, H.O., Genetic algorithms for fuzzy control. 1. Offline system-development and application. 
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS 142 (3) (1995) 161-176. Citations: 51

10. Cordon, O., Herrera, F., A three-stage evolutionary process for learning descriptive and approximate fuzzy-logic- 
controller knowledge bases from examples, IJAR 17 (4) (1997) 369-407. Citations: 50

Date: July, 5, 2007
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7. Conclusions. What’s  next?

Authors with the largest publication record on GFSs:

Date: July, 5, 2007
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Order Author Record 
count

% of 
1080

GFS h 
index

1 Oh, S.K. 36 3.3333% 6

2 Herrera, F. 33 3.0556% 11

3 Pedrycz, W. 30 2.7778% 6

4 Cordón, O. 25 2.3148% 11

5 Ishibuchi, H. 18 1.6667% 8

6 Wong, C.C. 13 1.2037% 5

7 Rojas, I. 12 1.1111% 4

8 Ahn, T.C. 11 1.0185% 1

8 Hoffmann, F. 11 1.0185% 6

8 Linkens, D.A. 11 1.0185% 5

8 Pratihar, D.K. 11 1.0185% 3
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7. Conclusions. What’s  next?

Critical view of GFSs:

What is the actual GFS competence?

• Advantages and drawbacks with respect to other 
Computational Intelligence techniques

• Capability to solve real-world problems

• Visibility of GFSs outside the fuzzy community

• Impact of GFSs in a broader research community
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7. Conclusions. What’s  next?

What are GFS researchers doing badly?

Experimental setup:

• Extended use of toy problems in journal papers

• Just one (or at most a few) algorithm run. No statistical 
test use for the performance checking

• “Soft comparison” against other classical and 
Computational Intelligence tools for the problem tackled

• Need of benchmark problem databases (only existing for 
classification applications (UCI))
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7. Conclusions. What’s  next?

What’s next in GFSs:

Forecasting:

• New learning approaches and coding schemes

• New application areas: Internet, Bioinformatics, …

• More multi-objective approaches

• Increasing interest on the interpretability-accuracy trade- 
off

• More real-world applications

• Scaling up to high-dimensional problems
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• New coding schemes
GFSs based on 2 and 3-tuple fuzzy rule representation

• New learning schemes
New Michigan GFS

New multi-objective GFS for the interpretability-accuracy 
trade-off

• New kinds of problems
GFSs for handling inherently fuzzy data

7. Conclusions. What’s  next?
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7. Conclusions. What’s  next?

New coding schemes: 2- and 3-tuples:

IDEA: New fuzzy rule representation model permitting a more 
flexible definition of the fuzzy sets of the linguistic labels

2-tuples: label id. i and a displacement parameter αi ∈[-0.5,0.5]

New rule structure:  

IF X1 IS (S1
i , α1 ) AND … AND Xn IS (Sn

i , αn ) THEN Y IS (Sy
i , αy )
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7. Conclusions. What’s  next?

3-tuples: label id. i, a displacement parameter αi ∈[-0.5,0.5], 
and a width parameter βi ∈[-0.5,0.5]

New rule structure:  

IF X1 IS (S1i ,α1 ,β1 ) AND … AND Xn IS (Sni ,αn ,βn ) THEN Y IS (Syi ,αy ,βy )
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7. Conclusions. What’s  next?

New coding schemes: 2- and 3-tuples:

COLLATERAL PRO: Both structures decreases the KB 
learning/tuning complexity, since the fuzzy sets are 
encoded using a lower number of parameters

Existing proposals:

Genetic 2-tuple/3-tuple DB global tuning: adjustment of the global 
fuzzy sets → full interpretability (usual fuzzy partitions)

Genetic 2-tuple/3-tuple DB tuning at rule level→ lower interpretability, 
higher flexibility (like scatter Mamdani FRBSs)

Genetic 2-tuple/3-tuple DB tuning + rule selection

KB derivation through a priori genetic 2-tuple/3-tuple DB learning: 
granularity and 2-tuple/3-tuple parameter learning → full 
interpretability (usual fuzzy partitions)
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Obtained results for the medium voltage line problem:

Genetic 2-tuple tuning + rule selection method:

• 5-fold cross validation ×
 

6 runs = 30 runs per algorithm
• T-student test with 95% confidence

7. Conclusions. What’s  next?
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Obtained results for the medium voltage line problem:

Example of one KB derived from the global tuning method:

After tuning+rule selection:   #R=13;   MSEtra/test = 187494 / 176581

7. Conclusions. What’s  next?
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Obtained results for the HVAC FLC tuning problem:

7. Conclusions. What’s  next?
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Tuned Data Base (GL-SS1 ):

7. Conclusions. What’s  next?
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7. Conclusions. What’s  next?
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7. Conclusions. What’s  next?

References:
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7. Conclusions. What’s  next?

New learning schemes: A new Michigan GFS:

J. Casillas, B. Carse, L. Bull, Fuzzy-XCS: a michigan genetic fuzzy system. IEEE TFS, 
in press

Rule generalization (compact rule-based descriptions of state-action 
relationships) and the interplay between general and specific rules in the 
same evolving population have received a great attention in non-fuzzy 
classifier systems (e.g., XCS research)

but not in Michigan-style fuzzy rule systems due to the difficulty in 
extending the discrete-valued system operation to the continuous case

Generalized rules allow more compact rule bases, scalability to higher 
dimensional spaces, faster inference, and better linguistic interpretability

It would be a nice solution to the GFS interpretability-accuracy trade-off

PROPOSAL: fuzzy XCS system for single-step reinforcement 
problems
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Traditional evolutionary reinforcement learning algorithms are 
“strength-based”: a rule accrues strength during interaction with 
the environment (through rewards and/or penalties)

A different approach is that were a rule’s fitness is based on its 
“accuracy”, i.e. how well a rule predicts payoff whenever it fires

This accuracy concept is different from the fuzzy modeling one

Broadly speaking, the strength is the mean of the obtained 
payoffs and the accuracy is the corresponding standard deviation

Pros of the accuracy-based approach: avoiding overgeneral rules, 
obtaining optimally general rules, and learning of a complete 
“covering map”
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7. Conclusions. What’s  next?

XCS was the first accuracy-based EA and it is currently of major 
interest to the research community in this field. However, all the 
proposals of Michigan-style GFSs are strength-based

Casillas et al. propose an accuracy-based Michigan-style GFS, 
Fuzzy-XCS, based on XCS but properly adapted to fuzzy systems

The proposed system interacts with the environment by means of 
continuous actions

The on-line behavior involves two cycles: action and learning

A DNF rule representation is considered to maximize the payoff
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7. Conclusions. What’s  next?

Accuracy-based Fuzzy XCS structure:
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New learning schemes: New multi-objective GFS 
for the interpretability-accuracy trade-off:

R. Alcalá, J. Alcalá-Fdez, M.J. Gacto, F. Herrera, A multi-objective genetic algorithm 
for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule- 
based systems, IJUFKBS, 15(5) (2007) 539-557

Multi-objective EAs are powerful tools to generate GFSs but they 
are based on getting a large, well distributed and spread off, 
Pareto set of solutions

The two criteria to optimize in GFSs are accuracy and 
interpretability. The former is more important than the latter, so 
many solutions in the Pareto set are not useful

Solution: Inject knowledge through the MOEA run to bias the 
algorithm to generate the desired Pareto front part
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7. Conclusions. What’s  next?

Pareto front classification in an interpretability-accuracy GFSs:

Bad rules zone: solutions with bad 
performance rules. Removing them improves 
the accuracy, so no Pareto solutions are 
located here

Redundant rules zone: solutions with irrelevant 
rules. Removing them does not affect the 
accuracy and improves the interpretability

Complementary rules zone: solutions with 
neither bad nor irrelevant rules. Removing 
them slightly decreases the accuracy

Important rules zone: solutions with essential 
rules. Removing them significantly decreases 
the accuracy
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7. Conclusions. What’s  next?

Accuracy-oriented modifications performed:

Restart the genetic population at the middle of the run time, 
keeping the individual with the highest accuracy as the only one
in the external population and generating all the new individuals 
with the same number of rules it has

In each MOGA step, the number of chromosomes in the external 
population considered for the binary tournament is decreased, 
focusing the selection on the higher accuracy individuals
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Obtained results for the medium voltage line problem:

Multi-objective genetic tuning + rule selection method:

• 5-fold cross validation ×
 

6 runs = 30 runs per algorithm
• T-student test with 95% confidence

7. Conclusions. What’s  next?
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Comparison of the SPEA2 – SPEA2acc convergence:

7. Conclusions. What’s  next?
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7. Conclusions. What’s  next?

GFSs for handling inherently fuzzy data:

There are many practical problems requiring learning models 
from  uncertain data:

Those with coarse-grained digital data, as obtained when weighing 
small objects in a low resolution scale, or

with values comprising both a numerical measure and one or more 
confidence intervals defining its imprecision (e.g., the position given by 
a GPS sensor)

In either case, there is an unknown difference between the true 
measure and the observed one

Assuming it to be stochastic noise is an oversimplification. 
Intervals or fuzzy sets are best suited to represent the 
uncertainty in the observation
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7. Conclusions. What’s  next?

Fuzzy systems have been extensively applied to learning problems dealing 
with crisp data, that can be also solved by many other classical
(statistical) and computational intelligence techniques

However, their intrinsic characteristics make them one of the few and 
most adapted tools to deal with the latter problems!

Moreover, an interval or fuzzy-based representation can also be used to:
reconcile different measurements of a feature in a given object, and

to describe incomplete knowledge about a value (for example, a missing input 
value can be codified by an interval spanning the whole range of the variable)

IDEA:
advocate the use of fuzzy data to learn and evaluate GFSs, and
raise the use of fuzzy-valued fitness functions to formulate that kind of 
problems
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Some examples of practical applications:
Crisp data with hand-added fuzziness: increase
of fuzzy models/classifiers robustness:

Transformations of data based on semantic
interpretations of fuzzy sets: factor
evaluation of questionnaires in marketing

Inherently fuzzy data: taximeter
calibration with a GPS

7. Conclusions. What’s  next?
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