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Evolutionary multiobjective optimization (EMO) is a very 
active research area in evolutionary computation.
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Evolutionary multiobjective optimization (EMO) is a very 
active research area in evolutionary computation.

Evolutionary Multiobjective Optimization

Major Evolutionary Computation Conferences
GECCO 2006 (Seattle, USA, July 8-12)
CEC 2006 (Vancouver, Canada, July 16-21)
PPSN 2006 (Reykjavik, Iceland, September 9-13)
EMO 2007 (Sendai, Japan, March 5-8)
GECCO 2007 (London, UK, July 7-11) 

Many papers are related to multiobjective optimization.
The number of EMO papers is still increasing.



Popularity of EMO Research
Most frequently cited papers published in IEEE Transactions on
Evolutionary Computation during 1999-2007 (All TEC papers in ISI)

1. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: A 
comparative case study and the Strength Pareto approach. Times 
Cited: 312

2. Deb K et al. (2002) A fast and elitist multiobjective genetic 
algorithm: NSGA-II. Times Cited: 309

3. Clerc M, Kennedy J (2002) The particle swarm - Explosion, stability, 
and convergence in a multidimensional complex space. Times Cited: 
162

4. Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in 
evolutionary algorithms. Times Cited: 129

5. Yao X, Liu Y, Lin GM (1999) Evolutionary programming made faster. 
Times Cited: 112

Data from ISI Web of Science, Thomson Scientific (July 21, 2007)



Popularity of EMO Research
Most frequently cited papers published in IEEE Transactions on
Evolutionary Computation in the recent 5 years (2003-2007)

1. Zitzler E et al. (2003) Performance assessment of multiobjective 
optimizers: An analysis and review. Times Cited: 66

2. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple 
objectives with particle swarm optimization. Times Cited: 43

3. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic 
search and local search in memetic algorithms for multiobjective 
permutation flowshop scheduling. Times Cited: 39

4. Lee CY, Yao X (2004) Evolutionary programming using mutations 
based on the Levy probability distribution. Times Cited: 37

5. Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to 
particle swarm optimization. Times Cited: 29

Data from ISI Web of Science, Thomson Scientific (July 21, 2007)



Multiobjective Optimization

Maximize f (x) = ( f1(x),  f2(x), …, fk(x))
Multiobjective optimization problem with k objectives:
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Pareto-Optimal
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A Pareto-optimal solution is a solution that 
is not dominated by any other solutions.
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Pareto-Optimal
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EMO algorithms are design to efficiently search 
for  Pareto-optimal solutions as many as possible 
in their single run.
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Maximize g(x) = w1 f1(x) + w2 f2(x)
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Comparison: Weighted Sum Approach

Only a single solution is obtained 
by the weighted sum approach.

Multiple solutions are obtained 
by an EMO algorithm.
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Region



• This approach is sensitive to the specification of the weight vector.
• This approach can not find any Pareto-optimal solutions in a 

non-convex region of the Pareto front in the objective space.
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• This approach is sensitive to the specification of the weight vector.
• This approach can not find any Pareto-optimal solutions in a 

non-convex region of the Pareto front in the objective space.
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Comparison of the Two Approaches

Two-objective maximization problem 
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Search Direction in Each Approach

Two-objective maximization problem 
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Difficulties in Fuzzy System Design
Accuracy-Complexity Tradeoff
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Fuzzy System Research in the 1990s

Accuracy maximization: Many studies on
- Universal approximators of nonlinear functions
- Neuro-fuzzy techniques for parameter learning
- Genetic-fuzzy techniques for parameter and structure 

learning

D. E. Rumelhart, J. L. McClelland and the PDP Research Group: 
Parallel Distributed Processing, MIT Press (1986).

D. E. Goldberg: Genetic Algorithms in Search, Optimization and 
Machine Learning, Addison-Wesley (1989). 
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A complicated fuzzy system with 
high accuracy was obtained.



Difficulty in Accuracy Maximization

Error minimization              Overfitting to training data
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Fuzzy System Research in Late 1990s

Search for a good accuracy-complexity tradeoff

Basic Idea
To combine the error minimization and the complexity 
minimization into a single scalar objective function



Fuzzy System Research in Late 1990s

Search for a good accuracy-complexity tradeoff

Basic Idea
To combine the error minimization and the complexity 
minimization into a single scalar objective function

Example: Combination of the average error rate and the 
number of fuzzy rules

Example of a scalar objective function: Weighted sum

)()()( Complexity2Error1 SfwSfwSf ⋅+⋅=



Fuzzy System Research in Late 1990s

Search for a good accuracy-complexity tradeoff

Basic Idea
To combine the error minimization and the complexity 
minimization into a single scalar objective function

Example: Combination of the average error rate and the 
number of fuzzy rules

V. N. Vapnik: Statistical Learning Theory, Wiley (1998).
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A fuzzy system with a good 
accuracy-complexity tradeoff 
was obtained.



Difficulty in Weighted Sum Approach

Sensitivity to the weight vector:
The obtained fuzzy system strongly depends on 
the specification of the weight vector.
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Minimize   w1 ·Error + w2 ·Complexity
When the weight for the complexity minimization is large:

A simple fuzzy system is obtained.

Difficulty in Weighted Sum Approach



Complexity

E
rr

or

Test data
accuracy

S*0

Training data
accuracy

Minimize   w1 ·Error + w2 ·Complexity
When the weight for the error minimization is large:

A complicated fuzzy system is obtained.

Difficulty in Weighted Sum Approach



Difficulty in Weighted Sum Approach

Complexity

E
rr

or

Test data
accuracy

S*0

Training data
accuracy

Minimize   w1 ·Error + w2 ·Complexity
When the two weights are appropriately specified:

A good fuzzy system is obtained. But the 
best complexity is not always found.
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To search for Pareto-optimal solutions with respect to 
the error minimization and the complexity minimization.



Current Trend in Fuzzy System Research

Multiobjective optimization of accuracy and complexity

Basic Idea
To search for Pareto-optimal solutions with respect to 
the error minimization and the complexity minimization.

Example: Two-objective problem
- minimize the average error rate
- minimize the number of fuzzy rules

Example of a multiobjective minimization problem

)}(),({Minimize ComplexityError SfSf



Current Trend in Fuzzy System Research

Multiobjective optimization of accuracy and complexity

Basic Idea
To search for Pareto-optimal solutions with respect to 
the error minimization and the complexity minimization.

Aggregation Approach

Multiobjective Approach

)}(),({Minimize ComplexityError SfSf

)()()( Complexity2Error1 SfwSfwSf ⋅+⋅=



Current Trend in Fuzzy System Research

Multiobjective optimization of accuracy and complexity

Basic Idea
To search for Pareto-optimal solutions with respect to 
the error minimization and the complexity minimization.

Example: Two-objective problem
- minimize the average error rate
- minimize the number of fuzzy rules

K. Deb: Multi-Objective Optimization using Evolutionary 
Algorithms, Wiley (2001).
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an EMO algorithm.
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Two Multiobjective Formulations

Multiobjective Design of Fuzzy Systems
Rule set-level multiobjective optimization

Multiobjective Search for Fuzzy Rules
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Two Multiobjective Formulations

Multiobjective Design of Fuzzy Systems
Rule set-level multiobjective optimization

Multiobjective Search for Fuzzy Rules
Rule-level multiobjective optimization
Different quality measures of fuzzy rules such as support 
and confidence in fuzzy data mining are simultaneously 
optimized.



Maximize {Confidence, Support}

Confidence maximization:

Support maximization:
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Pareto-Optimal Fuzzy Rules
Wisconsin Breast Cancer Data Set (Breast W)
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Pareto-Optimal Fuzzy Rules

Breast W
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Error Minimization and Complexity Minimization
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Fuzzy rules in a simple fuzzy system A are general rules.

Error rate: 7.8% (training) and 7.4% (test) 

Fuzzy Rules in Simple Fuzzy System A
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Fuzzy rules in A are Pareto-optimal or near Pareto-optimal.

Fuzzy Rules in Simple Fuzzy System A
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Error rate: 0.3% (training) and 3.7% (test) 

Rules in Complicated Fuzzy System B

x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 Consequent

R1 DC DC DC DC DC DC DC Class 0
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Some fuzzy rules in a complicated fuzzy system B is very 
specific rules with narrow antecedent fuzzy sets.



Selected Rules in Rule Set B
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Many fuzzy rules in B are far from the Pareto-optimal rules.



Error rate: 1.2% (training) and 3.4% (test) 

Fuzzy Rules in Good Fuzzy System C
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Some fuzzy rules in a good fuzzy system C are specific 
but not very specific.



Selected Rules in Rule Set C
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A single fuzzy rule in B is far from the Pareto-optimal rules 
but the other rules are near Pareto-optimal.



Multiobjective Machine Learning
Recently EMO algorithms were often used in other areas.

Multiobjective design of 
Neural Networks

Complexity
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Multiobjective Machine Learning

Multiobjective Design of Decision Trees
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Multiobjective Machine Learning

- Fuzzy Rule-Based Systems
- Multilayer Neural Networks
- RBF Networks
- Support Vector Machines
- Decision Trees
- GP Trees
- . . .
- . . .

EMO algorithms can be used for the multiobjective 
design of various intelligent systems such as 



Future Research Directions in MGFSs

Multiple objectives are usually involved in the design of 
any intelligent systems. So you will easily find many future 
research issues in this research area.

Especially, if you are using an aggregation-based method, 
you will be able to improve it by the EMO approach. 

Aggregation Approach

Multiobjective Approach

)}(),({Minimize ComplexityError SfSf

)()()( Complexity2Error1 SfwSfwSf ⋅+⋅=



Future Research Directions in MGFSs

Formulations of the Interpretability
- The number of fuzzy rules
- The number of antecedent conditions in each rule
- The number of input variables
- The separability of adjacent antecedent fuzzy sets

Handling of Large Data Sets
- Design of efficient EMO algorithms
- Subdivision of data sets
- Parallel implementation

Development of Special-Purpose EMO Algorithms
- Handling of many objectives
- Handling of both discrete and continuous variables



Future Research Directions in MGFSs

Development of New MGFS Methods with
- Multiobjective input selection algorithm
- Multiobjective fuzzy clustering algorithm
- Multiobjective fuzzy partition algorithm
- Multiobjective rule selection algorithm
- .  .  .

Visualization of Pareto-Optimal Fuzzy Systems
- Visualization of a single fuzzy system
- Visualization of multiple fuzzy systems
- Visualization of accuracy-complexity tradeoff

Ensemble Classifier Design
- Search for multiple fuzzy systems with a large diversity
- Choice of ensemble members and their combination



Future Research Directions in MGFSs

Incorporation of Other Ideas into MGFS
- FUZZ-IEEE 2007 Tutorial by Alexander Gegov on Rule 

Base Compression in Fuzzy Systems

- .   .   .

- .   .   .

- .   .   .



Webpage of EMOFRBSs

http://www2.ing.unipi.it/~o613499/emofrbss.html



Webpage of EMOFRBSs

http://www2.ing.unipi.it/~o613499/emofrbss.html



List of 80 MGFSs papers



End of My Presentation

Thank you very much !
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