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Fuzzy System Design
Two Goals in Fuzzy Rule-Based System Design:
(1) Accuracy Maximization (Error Minimization)
(2) Interpretability Maximization (Complexity Minimization)
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Fuzzy System Design
Main Streams in Fuzzy System Design:
1970s - 1980s  (Linguistic Knowledge Extraction)
- Fuzzy systems were designed by human experts.
- Fuzzy systems were linguistic rule-based systems.
- Fuzzy systems were highly interpretable.

Early 1990s - (Learning from Numerical Data)
- Fuzzy systems were designed from numerical data.
- Various neural and genetic approaches were proposed.

Mid 1990s - (Interpretability-Accuracy Tradeoff)
- Interpretability maintenance was taken into account.
- Interpretability-accuracy tradeoff was discussed.

Late 1990s - (Multiobjective Design)
- Evolutionary multiobjective algorithms were used.
- Multiple non-dominated fuzzy systems were generated.  



Fuzzy Systems in 1970s - 1980s
Linguistic Systems with High Interpretability
- Fuzzy systems were design by human experts.
- Fuzzy systems were linguistic rule-based systems.
- Fuzzy systems were highly interpretable.

Fuzzy Boom in Japan in the Late 1980s
- Fuzzy air conditioner - Fuzzy vacuum cleaner
- Fuzzy air cleaner - Fuzzy oven
- Fuzzy rice cooker - Fuzzy washing machine
- Fuzzy camera - Fuzzy copy machine
- Fuzzy refrigerator - Fuzzy dryer
- Fuzzy ATM                 - Fuzzy automated cruise

More than 200 real-world applications in the SOFT website.

Less expensive controllers than others 



Direction of Fuzzy System Research 
Fuzzy Systems in 1970s - 1980s
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Interpretable fuzzy systems were 
manually generated and adjusted.



Difficulties in Fuzzy System Design
Difficulties in Fuzzy System Design by Human Experts
- Human experts are not always available.
- Knowledge extraction from human experts are time-consuming.
- Designed fuzzy systems do not always work well.

Fuzzy System Design from Numerical Data

Highly Cited Papers
[1] Takagi T, Sugeno M: Fuzzy Identification of Systems and Its 

Applications to Modeling and Control, IEEE TSMC (1985) 

[2] Wang LX, Mendel JM: Generating Fuzzy Rules by Learning from 
Examples, IEEE TSMC (1992)



Fuzzy Systems in the Early 1990s

Nonlinear Systems with High Accuracy
- Universal approximators of nonlinear functions
- Neural approaches to parameter learning
- Genetic approaches to parameter and structure learning

Increasing Popularity of Neural Networks and Genetic Algorithms
[1] D. E. Rumelhart, J. L. McClelland and the PDP Research Group: 

Parallel Distributed Processing, MIT Press (1986).
[2] D. E. Goldberg: Genetic Algorithms in Search, Optimization and 

Machine Learning, Addison-Wesley (1989). 



Highly Cited Neuro-Fuzzy Papers
[1]Jang JSR: ANFIS - Adaptive-Network-Based Fuzzy Inference 

System, IEEE Trans. on SMC (1993)

[2]Lin CT, Lee CSG: Neural-Network-Based Fuzzy-Logic Control 
and Decision System, IEEE Trans. on Computers (1991)

[3]Jang JSR, Sun CT: Neuro-Fuzzy Modeling and Control, 
Proceedings of The IEEE (1995)

[4]Horikawa S, Furuhashi T, Uchikawa Y: On Fuzzy Modeling 
using Fuzzy Neural Networks with the Back-Propagation 
Algorithm, IEEE TNN (1992)

[5]Berenji HR, Khedkar P: Learning and Tuning Fuzzy-Logic 
Controllers through Reinforcements, IEEE TNN (1992)



Highly Cited Genetic Fuzzy Papers
[1] Homaifar A, Mccormick E: Simultaneous Design of Membership 

Functions and Rule Sets for Fuzzy Controllers using Genetic 
Algorithms, IEEE TFS (1995)

[2] Karr CL, Gentry EJ: Fuzzy Control of pH using Genetic 
Algorithms, IEEE TFS (1993) 

[3] Ishibuchi H, et al.: Selecting Fuzzy If-Then Rules for Classifica-
tion Problems using Genetic Algorithms, IEEE TFS (1995)

[4] Ishibuchi H, et al.: Performance Evaluation of Fuzzy Classifier 
Systems for Multidimensional Pattern Classification Problems, 
IEEE Trans. on SMC Part B (1999) 

[5] Park D, Kandel A, Langholz G: Genetic-based New Fuzzy-
Reasoning Models with Application to Fuzzy Control, IEEE 
Trans. on SMC (1994)



Direction of Fuzzy System Research
Fuzzy Systems in the Early 1990s
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Complicated fuzzy systems with high 
accuracy were generated and trained.



Difficulties in Accuracy Maximization
Overfitting and Poor Interpretability
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Overfitting to Training Data

Explanation of Overfitting to Training Data
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Deterioration in Interpretability
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Fuzzy Systems in the Mid 1990s
Compromise between Interpretability and Accuracy

(Search for a good interpretability-accuracy tradeoff)

Basic Idea
To combine the error minimization and the complexity 
minimization into a single scalar objective function

Example: Combination of the average error rate and the 
number of fuzzy rules

Example of a scalar objective function: Weighted sum

)()()( Complexity2Error1 SfwSfwSf ⋅+⋅=



Direction of Fuzzy System Research
Fuzzy Systems in the Mid 1990s
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Accurate and interpretable fuzzy 
systems were generated. 



Highly Cited I-A Tradeoff Papers
[1] Ishibuchi H, et al.: Selecting fuzzy if-then rules for 

classification problems using genetic algorithms, IEEE TFS 
(1995) (Weighted sum of the accuracy and the number of fuzzy rules)

[2] Setnes M et al.: Similarity Measures in Fuzzy Rule Base 
Simplification, IEEE TSMC-Part B (1998) 

[3] Setnes M, Roubos H: GA-fuzzy modeling and classification: 
Complexity and performance, IEEE TFS (2000)

[4] Setnes M, et al.: Rule-based modeling: recision and 
transparency, IEEE TSMC-Part C (1998)

[5] Jin YC: Fuzzy modeling of high-dimensional systems: 
Complexity reduction and interpretability improvement, IEEE 
TFS (2000)
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When the weight for the complexity minimization is large:

A simple system is obtained.

Difficulty in Weighted Sum Approach
Sensitivity of the Result to the Weight Vector Specification
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Minimize w1·Error + w2·Complexity
When the weight for the error minimization is large:

A complicated system 
is obtained.

Difficulty in Weighted Sum Approach
Sensitivity of the Result to the Weight Vector Specification



Current Trend in Fuzzy System Design 
Multiobjective Fuzzy System Design (Late 1990s - )
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Goals 
- Accuracy Maximization
- Interpretability Maximization



Multiobjective Fuzzy System Design

Basic Idea
To search for a number of non-dominated fuzzy systems with 
respect to the accuracy maximization and the interpretability 
maximization (instead of searching for a single fuzzy system).

Aggregation Approach

Multiobjective Approach

)}(),({Minimize ComplexityError SfSf

)()()( Complexity2Error1 SfwSfwSf ⋅+⋅=



Direction of Fuzzy System Research
Multiobjective Fuzzy System Design (Late 1990s - )
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Complexity
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Multiobjective Design of Fuzzy Systems

Many non-dominated fuzzy systems can be obtained along 
the tradeoff surface by a single run of an EMO algorithm.



Highly Cited MoGFS Papers
[1] Ishibuchi et al. (1997) Single-objective and two-objective 

genetic algorithms for selecting linguistic rules for pattern 
classification problems. Fuzzy Sets & Systems.

[2] Ishibuchi et al. (2001) Three-objective genetics-based machine 
learning for linguistic rule extraction. Information Sciences.

[3] Ishibuchi & Yamamoto (2004) Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation 
measures in data mining. Fuzzy Sets & Systems.

[4] Wang et al. (2005) Multi-objective hierarchical genetic algorithm 
for interpretable fuzzy rule-based knowledge extraction. Fuzzy 
Sets & Systems. 

[5] Johansen & Babuska (2003) Multiobjective identification of 
Takagi-Sugeno fuzzy models. IEEE TFS.



Example: Obtained Rule Sets (Heart C)
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Obtained rule sets help us to find the optimal complexity of fuzzy 
systems. (Rule sets with six, seven and eight rules may be good)



A rule set with eight fuzzy rules

Some human users may prefer simpler rule sets.

A Rule Set with High-Generalization Ability
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A very simple rule set with only two fuzzy rules

A Rule Set with High Interpretability 
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Multiobjective Fuzzy System Design
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Use of EMO algorithms to search for a number 
of non-dominated fuzzy systems
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Multiobjective Optimization
Two-Objective Maximization Problem:
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Pareto-Optimal Solutions
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A Pareto-optimal solution is a solution that 
is not dominated by any other solutions.
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Pareto Front
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The set of all Pareto-optimal solutions is 
called the Pareto front of the problem.
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Pareto Front



Pareto-Optimal Solutions
(Pareto front)
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Evolutionary multiobjective optimization (EMO) 
algorithms have been designed to search for 
Pareto-optimal solutions in their single run.
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Maximize g(x) = w1 f1(x) + w2 f2(x)
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Comparison: Weighted Sum Approach

Only a single solution is obtained 
by the weighted sum approach.
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Only a single solution is obtained 
by the weighted sum approach.

Multiple solutions are obtained 
by an EMO algorithm.
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Difficulties in Weighted Sum Approach

- This approach is sensitive to the weight vector specification.
- This approach can not find any Pareto-optimal solutions in a 

non-convex region of the Pareto front in the objective space.
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Difficulties in Weighted Sum Approach

- This approach is sensitive to the weight vector specification.
- This approach can not find any Pareto-optimal solutions in a 

non-convex region of the Pareto front in the objective space.
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EMO Approach
- EMO approach can find Pareto-optimal solutions even in a non-

convex region of the Pareto front in the objective space.
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Comparison of the Two Approaches
Two-objective maximization problem 

EMO Approach                     Weighted Sum Approach
Experimental results of a single run of each approach
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Search Direction in Each Approach
Two-objective maximization problem 

EMO Approach                     Weighted Sum Approach
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Both the diversity and the convergence should be improved in EMO.



Highly Cited EMO Papers
Two Dominant Algorithms: NSGA-II and SPEA
1. Deb K et al. (2002) A fast and elitist multiobjective genetic 

algorithm: NSGA-II. IEEE TEC. NSGA-II
2. Zitzler E, Thiele L (1999) Multiobjective evolutionary 

algorithms: A comparative case study and the Strength 
Pareto approach. IEEE TEC. SPEA (=> SPEA2 in TIK-Report)

3. Fonseca CM, Fleming PJ (1998) Multiobjective optimization and 
multiple constraint handling with evolutionary algorithms (Part I): 
A unified formulation, IEEE SMC Part A.

4. Zitzler E, Thiele L, Laumanns M (2003) Performance assessment of
multiobjective optimizers: An analysis and review. IEEE TEC.

5. Ishibuchi H, Murata T (1998) A multi-objective genetic local search 
algorithm and its application to flowshop scheduling, IEEE SMC 
Part C.



Goal of EMO Algorithms
An EMO algorithm is designed to search for 
- all Pareto-optimal solutions
- uniformly distributed Pareto optimal solutions
- a solution set which approximates the Pareto front

in their single run.
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Basic Ideas in EMO Algorithm Design 
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Desired search behavior of EMO algorithms

Recently developed well-known EMO algorithms such as 
NSGA-II and SPEA have some common features.



(1) Pareto Dominance
Converge to the Pareto front
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Recently developed well-known EMO algorithms such as 
NSGA-II and SPEA have some common features:



Basic Ideas in Recent EMO Algorithms 

1. Pareto Dominance
2. Crowding
3. Elite Strategy 
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(2) Crowding
Diversity maintenance
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(1) Pareto Dominance
Converge to the Pareto front

Recently developed well-known EMO algorithms such as 
NSGA-II and SPEA have some common features:



Basic Ideas in EMO Algorithm Design 

Example: Crowding Distance in NSGA-II
Distance between adjacent individuals

0 Maximize  f1

M
ax

im
iz

e 
 f 2 C

B

A
a

b a+b

Infinitely
large value

Crowding distance of C  is  (a + b)



(3) Elitist Strategy
Non-dominated solutions are handled as elite solutions.
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(2) Crowding
Diversity maintenance

(1) Pareto Dominance
Converge to the Pareto front

Recently developed well-known EMO algorithms such as 
NSGA-II and SPEA have some common features:



Basic Ideas in Recent EMO Algorithms

(1) Pareto Dominance (Convergence to the Pareto front)
(2) Crowding (Diversity Maintenance)
(3) Elite Strategy (Non-Dominated Solutions)
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Hot Issues in EMO Research
Utilization of Decision Maker’s Preference
- Preference is incorporated into EMO algorithms.
- Interactive EMO approaches seem to be promising.

Handling of Many Objectives by EMO Algorithms
- Pareto dominance-based algorithms do not work well.
- More selection pressure is needed.

Hybridization with Local Search
- Hybridization often improves the performance of EMO.
- Balance between local and genetic search is important.

Design of New EMO Algorithms
- Indicator-based EMO algorithms 
- Scalarizing function-based EMO algorithms
- Use of other search methods such as PSO, ACO and DE.
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Hot Issue: Preference Incorporation
EMO Approach to Decision Making
Step 1: Evolutionary multiobjective optimization

==> Many non-dominated solutions (Candidates).
Step 2: Choice of a single solution by the decision maker.
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EMO Approach to Decision Making
Difficulty in Step 1: It is not always easy to find a set of non-
dominate solutions that covers the entire Pareto front.

Difficulty in Step 2: It is not always easy for the DM to choose a 
single solution form a large number of alternatives.

Step 1 Step 2



EMO Approach to Decision Making

One idea to tackle these two difficulties:
To search for a small number of non-dominate solutions.

Difficulty in Step 1: It is not always easy to find a set of non-
dominate solutions that covers the entire Pareto front.

Difficulty in Step 2: It is not always easy for the DM to choose a 
single solution form a large number of alternatives.



Utilization of Preference Information

Basic Idea: Concentration on the preferred region of the 
Pareto front. The decision maker is not always interested in 
all the Pareto-front. 
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Utilization of Preference Information

Difficulty: It is not easy to extract preference information 
from the decision maker (DM). It may be much simpler to 
compare different solutions. ==> Interactive Approaches.
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Extraction of Preference Information

Preference Extraction
(1) Relatively Easy Case
- Number of Objectives: Two
- Pareto Front: Known
- The DM knows the problem

(2) Very Difficult Case
- Number of Objectives: Many
- Pareto Front: Unknown
- The DM does not know the 

problem very well.

Example: Flight Tickets (Cost, # of Stops, Total Time)
Case 1: You are planning to buy a ticket to your home town.
Case 2: You are planning to buy a ticket to Easter Island.
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Another Hot Issue: 
Evolutionary Many-Objective Optimization

1. Many Objectives: Difficulty in Multiobjective Search
Selection pressure toward the Pareto front becomes very 
weak since almost all solutions are non-dominated.

2. Many Solutions: Difficulty in Approximation
A large number of non-dominated solutions are needed to 
approximate the entire Pareto front.

3. Many Solutions with Many Objectives: Presentation
It is very difficult to present a large number of obtained 
solutions in the high-dimensional object space to the 
decision maker in a visually understandable manner.

Why are many-objective problems difficult?



Difficulties in Many-Objective Optimization

Q. Why are many-objective problems hard for EMO ?
A. Solutions with many objectives are usually non-dominated 

with each other. This means very low selection pressure 
toward the Pareto front in Pareto dominance-based EMO.
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Five-Objective Maximization Example (Non-dominated Vectors)



Difficulties in Many-Objective Optimization

We randomly generate vectors in a k-dimensional space.
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Experimental Results of NSGA-II
Standard Implementation of NSGA-II
Generation Update: (100 + 100) ES

Current Population: 100 Individuals
Offspring Population: 100 Individuals
Next Population: The best 100 individuals from the current

population and the offspring population.

Fitness Evaluation: 1st Criterion: Pareto Dominance
2nd Criterion: Crowding Distance

Test Problems
k-objective 500-item knapsack problems (k-500 problem)
k = 2, 4, 6, 8, 10   



Number of Non-Dominated Solutions
(Among 200 solutions before the generation update in NSGA-II)
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All individuals are non-dominated solutions after a few generations 
(10-500 problem) and after about 200 generations (2-500 problem).

Next Generation:
100 Individuals

10-500:
10-objective 
500-item problem



Very Simple Measure of Convergence

The sum of the given objectives: g(x) =  f1(x) +  f2(x)

f1: Total profit from knapsack 1
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Very Simple Measure of Diversity
Range Measure
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Experimental Results of NSGA-II
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Observation: Only the convergence was improved in the early 
generations. After that, only the diversity was improved.



Approximation of the Pareto Front
Q:How many non-dominated solutions are needed to 

approximate the entire Pareto-front of the k-objective 
problem?  (k = 2, 3, 4, ...)   

A: Huge when k is large (It exponentially increases with k)

k = 2                                         k = 3
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Approximation with Finite Solutions

(1) Sparse Approximation           (2) Dense Approximation
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Two Strategies for Many-Objective Problems
(1) Sparse approximation of the entire Pareto front.
(2) Dense approximation of only a part of the Pareto front.

Dense approximation of the entire Pareto front is impossible in the 
case of many objectives.



Approximation with Finite Solutions

(1) Sparse Approximation                   (2) Dense Approximation

Two Strategies for Many-Objective Problems
(1) Sparse approximation of the entire Pareto front.
(2) Dense approximation of only a part of the Pareto front.

Dense approximation of the entire Pareto front is impossible in the 
case of many objectives.



Handling of Obtained Solutions
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Difficulty: How to show a large number of non-dominated solutions.



Another Hot Issue: Hybridization 
Multiobjective Memetic Algorithm (MOMA)

Multiobjective Memetic Algorithm: MOMA

Multiobjective 
evolutionary

algorithm

Multiobjective
local search

Multiobjective
memetic 
algorithm

+ =

Powerful Approach to Single-Objective Optimization: MA

Evolutionary
algorithm

Local
search

Memetic
algorithm+ =



Design of MA and MOMA
One important implementation issue:

Specification of the balance between evolutionary 
search and local search (or its dynamic adaptation). 

Evolutionary 
search

Local search

Ishibuchi H, Yoshida T, Murata T (2003) Balance between 
genetic search and local search in memetic algorithms for 
multiobjective permutation flowshop scheduling. IEEE Trans. 
on Evolutionary Computation.



New Trend in EMO Algorithm Design 
IBEA: Indicator-Based Evolutionary Algorithm

Maximize f1

M
ax

im
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e 
f 2

x1

x3

x2

Basic Idea
To maximize a performance indicator of a solution set 
(not a solution): Hypervolume is often used. 

Maximization of this area
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New Trend in EMO Algorithm Design 
IBEA: Indicator-Based Evolutionary Algorithm

(Maximization of an Indicator Function)

S : A set of solutions
N: A pre-specified number

of required solutions
X: A feasible region
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New Trend in EMO Algorithm Design 
MOEA/D: Use of Scalarizing Functions 

Its Basic Idea (Decomposition): A multi-objective problem 
is handled as a set of scalarizing function optimization 
problems with different weight vectors.

(a) Two-objective case          (b) Three-objective case

Weight vector

MOEA/D: Multi-objective evolutionary algorithm based on 
decomposition by Zhang and Li  (IEEE TEC 2007)



New Trend in EMO Algorithm Design 
Hybrid Method: Use of Scalarizing Functions 

Probability for scalarizing fitness functions: 
Parent selection: PPS Generation update: PGU

Initialization

Parent selection

Genetic operation

Generation update

PPS

PGU

1−PGU

1−PPS

End

Scalarizing fitness 
function

NSGA-II fitness 
evaluation mechanism

Ishibuchi et al. (PPSN 2006)



New Trend in EMO Algorithm Design 
Use of Other Meta-Heuristics (PSO, ACO, etc.) 
Highly Cited Papers
[1] Coello CAC, Pulido GT, Lechuga MS (2004) Handling Multiple 

Objectives with Particle Swarm Optimization, IEEE TEC

[2] McMullen PR (2001) An Ant Colony Optimization Approach to 
Addressing a JIT Sequencing Problem with Multiple 
Objectives, Artificial Intelligence in Engineering

[3] Ray T, Liew KM (2002) A Swarm Metaphor for Multiobjective 
Design Optimization, Engineering Optimization

[4] Li XD (2003) A Non-Dominated Sorting Particle Swarm 
Optimizer for Multiobjective Optimization, GECCO 2003.

[5] Ho SL et al. (2005) A Particle Swarm Optimization-Based 
Method for Multiobjective Design Optimizations, IEEE Trans. 
on Magnetics



For More Information
Webpage for EMO Papers: EMOO

http://www.lania.mx/~ccoello/EMOO/



For More Information
Webpage for EMO Algorithms and Problems: PISA 

http://www.tik.ee.ethz.ch/sop/pisa/



Webpage for Evolutionary Learning: KEEL

http://www.keel.es/

Maintained by Granada University, Spain



1. Introduction
- Overview of Fuzzy System Design from Numerical Data

2. Evolutionary Multiobjective Optimization (EMO) 
- Some Basic Concepts in Multiobjective Optimization
- Framework of Evolutionary Multiobjective Optimization

3. Genetic Fuzzy Systems (GFS) 
- Introduction to Genetic Fuzzy System Research
- Current State of Genetic Fuzzy Systems  

4. Interpretability-Accuracy Tradeoff of Fuzzy Systems
- Interpretability Issues in Fuzzy System Design
- Some Examples on the Tuning of Fuzzy Systems

5. Multiobjective Genetic Fuzzy Systems (MoGFS)
- Overview of MoGFS Research
- New Research Directions in MoGFS

Contents of This Tutorial



82

Brief Introduction

Taxonomy of Genetic Fuzzy Systems

Why do we use GAs?

The birth, GFSs roadmap, current state and most 

cited papers

Introduction to genetic fuzzy systems



83

Brief Introduction

Taxonomy of Genetic Fuzzy Systems

Why do we use GAs?

The birth, GFSs roadmap, current state and most 

cited papers

Introduction to genetic fuzzy systems



84

The use of genetic/evolutionary algorithms (GAs) to design 
fuzzy systems constitutes one of the branches of the Soft 
Computing paradigm: genetic fuzzy systems (GFSs)

The most known approach is that of genetic fuzzy rule-
based systems, where some components of a fuzzy rule-
based system (FRBS) are derived (adapted or learnt) using 
a GA

Some other approaches include genetic fuzzy neural 
networks and genetic fuzzy clustering, among others

Introduction to genetic fuzzy systems
Brief Introduction
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Evolutionary algorithms and machine learning:

Evolutionary algorithms were not specifically designed as 
machine learning techniques, like other approaches like 
neural networks

However, it is well known that a learning task can be 
modelled as an optimization problem, and thus solved 
through evolution

Their powerful search in complex, ill-defined problem spaces 
has permitted applying evolutionary algorithms successfully 
to a huge variety of machine learning and knowledge 
discovery tasks

Their flexibility and capability to incorporate existing 
knowledge are also very interesting characteristics for the 
problem solving.

Introduction to genetic fuzzy systems
Brief Introduction
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Genetic Fuzzy Rule-Based Systems:

Genetic Algorithm Based
Learning Process

Knowledge Base
Data Base + Rule Base

Fuzzy Rule-
Based System

Output InterfaceInput Interface

DESIGN PROCESS

Computation with Fuzzy Rule-Based Systems EnvironmentEnvironment

Introduction to genetic fuzzy systems
Brief Introduction
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Design of fuzzy rule-based systems:

An FRBS (regardless it is a fuzzy model, a fuzzy logic 
controller or a fuzzy classifier), is comprised by two main 
components:

The Knowledge Base (KB), storing the available problem 
knowledge in the form of fuzzy rules
The Inference System, applying a fuzzy reasoning method on 
the inputs and the KB rules to give a system output

Both must be designed to build an FRBS for a specific 
application:

The KB is obtained from expert knowledge or by machine 
learning methods
The Inference System is set up by choosing the fuzzy operator 
for each component (conjunction, implication, defuzzifier, etc.)
Sometimes, the latter operators are also parametric and 
can be tuned using automatic methods

Introduction to genetic fuzzy systems
Brief Introduction
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The KB design involves two subproblems, related to 
its two subcomponents:

– Definition of the Data Base (DB):
• Variable universes of discourse
• Scaling factors or functions
• Granularity (number of linguistic terms/labels) per 

variable
• Membership functions associated to the labels

– Derivation of the Rule Base (RB): fuzzy rule 
composition

Introduction to genetic fuzzy systems
Brief Introduction
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As said, there are two different ways to design the 
KB:

– From human expert information

– By means of machine learning methods guided by the 
existing numerical information (fuzzy modeling and 
classification) or by a model of the system being controlled

Introduction to genetic fuzzy systems
Brief Introduction
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Fuzzy rule-based system

input Fuzzification
Interface

Defuzzification
Interface

Rule
Base

Data
Base

Knowledge Base

Inference
Mechanism

output

R1: IF X1 is High AND X2 is Low 
THEN Y is Medium

R2: IF X1 is Low AND X2 is Low 
THEN Y is High

…

M
L

X1
S M L

X2
S M L

Y

S
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Genetic fuzzy systems

Genetic tuning 

Genetic KB 
learning

Genetic adaptive
defuzzification
methods

Genetic tuning of
KB parameters

Genetic adaptive
inference system

Genetic adaptive
inference engine

Genetic learning
of KB components
and inference
engine parameters

Genetic learning of
FRBS components

Introduction to genetic fuzzy systems
Taxonomy of Genetic Fuzzy Systems



Genetic KB
learning

Genetic rule
selection
(A priori rule
extraction) 

Genetic DB 
learning

Simultaneous 
genetic learning of
KB components

Genetic
learning
of linguistic
models 
RB and DB

Genetic fuzzy rules
learning 
(Approximate
Models, TS-rules ..)

Genetic RB 
learning
for prediction

Genetic
descriptive
rules 
extraction

Genetic rule
learning
(A priori DB)

Embedded
genetic
DB learning

A prioiri
genetic
DB learning
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Classically:
– performed on a predefined DB definition
– tuning of the membership function shapes by a 

GA

– tuning of the inference parameters

VS S M VLL

Introduction to genetic fuzzy systems
1. Genetic Tuning
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1. Genetic Tuning
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A predefined Data Base definition is assumed
– The fuzzy rules (usually Mamdani-type) are 

derived by a GA

Introduction to genetic fuzzy systems
2. Genetic Rule Learning
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Introduction to genetic fuzzy systems
2. Genetic Rule Learning
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– A predefined Rule Bases definition is 
assumed

– The fuzzy rules are selection by a GA for 
getting a compact rule base (more 
interpretable, more precise)

Introduction to genetic fuzzy systems
3. Genetic Rule Selection
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Example of genetic rule selection

Learning

1
e  = ( ),x y1 1

N
e  = ( ),x yN N

..
.

Data Set

Rule
selection

0 2

YX
S M L1 1 1 S M L2 2 2

0 2

Initial Data Base

X is THEN Y esIFR1= 2L S
X is THEN Y esIFR2= 2S M
X is THEN Y esIFR3= 2M L

1

1

1

Derived
Rule
Base

Selected Rule Base
X is THEN Y esIFR1= 2L S
X is THEN Y esIFR2= 2S M

1

1
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– Learning of the membership function shapes by a GA

Introduction to genetic fuzzy systems
4. Genetic DB Learning
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Introduction to genetic fuzzy systems
4. Genetic DB Learning
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The simultaneous derivation properly addresses the strong 
dependency existing between the RB and the DB

VS S M VLL

Introduction to genetic fuzzy systems
5. Simultaneous Genetic Learning of KB Components
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Introduction to genetic fuzzy systems
5. Simultaneous Genetic Learning of KB Components



105

R 1 R 2 R N R 1 R 2 R N R 1 R 2 R N

{ES3,..,EL3} {ES3,..,EL3} {ES3,..,EL3} β1 β2 βΝ α1 α2 αΝ… ……
… … …

CSCOR CSCCSD

Rule Base Connectives

ConjunctionDefuzWEIGTH

W

Example of the coding scheme for learning an RB and the inference 
connective parameters

Introduction to genetic fuzzy systems
6. Genetic Learning of KB Components and Inference Engine

Parameters



106

Evolutionary
Algorithm

Scaling
Functions

Fuzzy
Rules

Membership
Functions

Knowledge Base

Scaled
Input Fuzzification

Inference
Engine Defuzzification Scaled

Output

Fuzzy Processing

E
vo

lu
tio

na
ry

 D
es

ig
n

Introduction to genetic fuzzy systems



107

Brief Introduction

Taxonomy of Genetic Fuzzy Systems

Why do we use GAs?

The birth, GFSs roadmap, current state and most 

cited papers

Introduction to genetic fuzzy systems



108

Advantages of the Genetic Fuzzy Systems
We can code different FS components in a chromosome:

Identify relevant inputs

Scaling factors
Membership functions, shape functions, optimal shape of
membership funct., granularity (number of labels per
variable)
Fuzzy rules, Any inference parameter, .... 

We can define different mechanism for managing them
(combining genetic operators, coevolution,...)

Introduction to genetic fuzzy systems
Why do we use GAs?
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Advantages of the Genetic Fuzzy Systems

We can consider multiple objectives in the learning
model (interpretability, precision, ....)

Interpretability

A
cc

ur
ac

y
Pareto
Solutions

Introduction to genetic fuzzy systems
Why do we use GAs?
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Thrift’s ICGA91 paper (Mamdani-type Rule Base Learning. Pittsburgh approach)
Thrift P (1991) Fuzzy logic synthesis with genetic algorithms. In: Proc. of 4th 
International Conference on Genetic Algorithms (ICGA'91), pp 509-513 

Valenzuela-Rendón’s PPSN-I paper (Scatter Mamdani-type KB Learning. Michigan
approach)

Valenzuela-Rendon M (1991) The fuzzy classifier system: A classifier system for
continuously varying variables. In: Proc. of 4th International Conference on Genetic
Algorithms (ICGA'91), pp 346-353

Pham and Karaboga’s Journal of Systems Engineering paper (Relational matrix-
based FRBS learning. Pittsburgh approach)

Pham DT, Karaboga D (1991) Optimum design of fuzzy logic controllers using genetic 
algorithms. Journal of Systems Engineering 1:114-118).

Karr’s AI Expert paper (Mamdani-type Data Base Tuning)

Karr C (1991) Genetic algorithms for fuzzy controllers. AI Expert 6(2):26-33.

Almost the whole basis of the area were established in the first year!

The birth of GFSs: 1991

Introduction to genetic fuzzy systems
The birth, GFSs roadmap, current status and most cited papers



Thrift’s GFS:
P. Thrift, Fuzzy logic synthesis with genetic algorithms, Proc. Fourth Intl. 
Conf. on Genetic Algorithms (ICGA’91), San Diego, USA, 1991, pp. 509–513

– Classical approach: Pittsburgh – the decision table is encoded in a 
rule consequent array

– The output variable linguistic terms are numbered from 1 to n and 
comprise the array values. The value 0 represents the rule absence, 
thus making the GA able to learn the optimal number of rules

– The ordered structure allows the GA to use simple genetic operators
S M L

S

M

L

X 1
X2

R5

R1 R2 R3

R4 R6

R7 R8 R9 1    0    2    0    2    0   2    0   3 

Y {B, M, A}
1  2  3

MB

AM

M

__

____

__

Introduction to genetic fuzzy systems
The birth, GFSs roadmap, current status and most cited papers



1991-1996/7: INITIAL GFS SETTING: KB LEARNING:

Establishment of the three classical learning approaches in the GFS field: Michigan, 
Pittsburgh, and IRL

Different FRBS types: Mamdani, Mamdani DNF, Scatter Mamdani, TSK

Generic applications: Classification, Modeling, and Control

1995-…: FUZZY SYSTEM TUNING:

First: Membership function parameter tuning

Later: other DB components adaptation: scaling factors, context adaptation (scaling 
functions), linguistic hedges, …

Recently: interpretability consideration

GFSs roadmap

Introduction to genetic fuzzy systems
The birth, GFSs roadmap, current status and most cited papers



1998-…: APPROACHING TO MATURITY?
NEW GFS LEARNING APPROACHES:

New EAs: Bacterial genetics, DNA coding, Virus-EA, genetic local search (memetic
algorithms), …

Hybrid learning approaches: a priori DB learning, GFNNs, Michigan-Pitt hybrids, …

Multiobjective evolutionary algorithms

Interpretability-accuracy trade-off consideration

Course of dimensionality (handling large data sets and complex problems):
Rule selection (1995-…)
Feature selection at global level and fuzzy rule level
Hierarchical fuzzy modeling

“Incremental” learning

GFSs roadmap

Introduction to genetic fuzzy systems
The birth, GFSs roadmap, current status and most cited papers
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Number of papers on GFSs published in JCR journals

Source: The Thomson Corporation ISI Web of Knowledge
Query: (TS = (("GA-" OR "GA based" OR evolutionary OR "genetic algorithm*" OR "genetic 

programming" OR "evolution strate*" OR "genetic learning" OR "particle swarm" OR "differential 
evolutio*" OR "ant system*" OR "ant colony" OR "genetic optimi*" OR "estimation of distribution 
algorithm*") AND ("fuzzy rule*" OR "fuzzy system*" OR "fuzzy neural" OR "neuro-fuzzy" OR "fuzzy 
control*" OR "fuzzy logic cont*" OR "fuzzy class*" OR "fuzzy if" OR "fuzzy model*" OR "fuzzy 
association rule*" OR "fuzzy regression")) 

Number of papers: 1459 Number of citations: 5,237,630   
Average citations per paper: 5.23

Introduction to genetic fuzzy systems
Current state of the GFS area
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Most cited papers on GFSs
1. Homaifar, A., McCormick, E., Simultaneous Design of Membership Functions and rule sets for fuzzy 

controllers using genetic algorithms, IEEE TFS 3 (2) (1995) 129-139. Citations: 184

2. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H., Selecting fuzzy if-then rules for classification problems 
using genetic algorithms, IEEE TFS 3 (3) (1995) 260-270. Citations: 164

3. Setnes, M., Roubos, H., GA-fuzzy modeling and classification: complexity and performance, IEEE TFS 8 (5) 
(2000) 509-522 . Citations: 101

4. Ishibuchi, H., Nakashima, T., Murata, T., Performance evaluation of fuzzy classifier systems for 
multidimensional pattern classification problems, IEEE TSMC B 29 (5) (1999) 601-618. Citations: 93

5. Park, D., Kandel, A., Langholz, G., Genetic-based new fuzzy reasoning models with application to fuzzy 
control, IEEE TSMC B 24 (1) (1994) 39-47. Citations: 86

6. Herrera, F., Lozano, M., Verdegay, J.L., Tuning fuzzy-logic controllers by genetic algorithms, IJAR 12 (3-4) 
(1995) 299-315. Citations: 71

7. Shi, Y.H., Eberhart, R., Chen, Y.B., Implementation of evolutionary fuzzy systems, IEEE TFS 7 (2) (1999) 
109-119. Citations: 63

8. Carse B., Fogarty, TC., Munro, A., Evolving fuzzy rule based controllers using genetic algorithms, FSS 80 (3) 
(1996) 273-293. Citations: 63

9. Juang, C.F., Lin, J.Y., Lin, C.T., Genetic reinforcement learning through symbiotic evolution for fuzzy 
controller design, IEEE TSMC B 30 (2) (2000) 290-302. Citations: 59

10. Cordon, O., Herrera, F., A three-stage evolutionary process for learning descriptive and approximate fuzzy-
logic-controller knowledge bases from examples, IJAR 17 (4) (1997) 369-407. Citations: 58

Introduction to genetic fuzzy systems
Current state of the GFS area
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– F. Herrera, Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects. 
Evolutionary Intelligence 1 (2008) 27-46 doi: 10.1007/s12065-007-0001-5, 

– F. Herrera, Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions, 
International Journal of Computational Intelligence Research 1 (1) (2005) 59-67

– O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena, Ten Years of Genetic Fuzzy 
Systems: Current Framework and New Trends, FSS 141 (1) (2004) 5-31

– F. Hoffmann, Evolutionary Algorithms for Fuzzy Control System Design, Proceedings of the IEEE 
89 (9) (2001) 1318-1333

GENETIC FUZZY SYSTEMS
Evolutionary Tuning and Learning of Fuzzy 

Knowledge Bases.
O. Cordón, F. Herrera, F. Hoffmann, L. Magdalena

World Scientific, July 2001

H. Ishibuchi, T. Nakashima, M. Nii, Classification and Modeling 
with Linguistic Information Granules. Advanced Approaches to 
Linguistic Data Mining. Springer (2005)

Introduction to genetic fuzzy systems
Some References
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Highly used criteria: Complexity criteria in the 
learning of FRBSs.

Number of variables, labels, rules, conditions …

Interpretability Issues in Fuzzy System Design
Complexity Criteria
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Interpretability quality: associated to the meaning of 
the labels and the size of the rule base 

Interpretability Issues in Fuzzy System Design
Semantic Criteria
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Interpretability quality: associated to the meaning of 
the labels and the size of the rule base 

Interpretability Issues in Fuzzy System Design
Syntactic Criteria
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Interpretability quality: associated to the meaning of 
the labels and the size of the rule base 

Interpretability Issues in Fuzzy System Design
Strategies to Satisfy Interpretability
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Interpretability quality:

What is the most interpretable rule base?

Interpretability Issues in Fuzzy System Design
Still not Clear Concepts
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o Advanced RB Generation

o Linguistic Modifiers Use

o Using Double Consequent Rules

o Tuning of Membership Functions

o Using Weighted Rules

o Using Multiple Consequent Rules

Interpretability Issues in Fuzzy System Design
Some Approaches

Some Models to improve the Trade-Off:

−
+
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– A genetic tuning process that slightly adjusts the  shapes of the 
membership functions of a preliminary DB definition

– Each chromosome encodes a whole DB definition by joining the partial 
coding of the different membership functions involved

– The coding scheme depends on:
• The kind of membership function considered (triangular, trapezoidal, bell-

shaped, …) → different real-coded definition parameters
• The kind of FRBS:

– Grid-based: Each linguistic term in the fuzzy partition has a single 
fuzzy set definition associated

– Non grid-based (free semantics, scatter partitions, fuzzy graphs): 
each variable in each rule has a different membership function 
definition

Evolutionary Tuning of FRBSs
Tuning of Membership Functions
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– Example: Tuning of the triangular membership functions of 
a grid-based SISO Mamdani-type FRBS, with three 
linguistic terms for each variable fuzzy partition

– Each chrosome encodes a different DB definition:
• 2 (variables) · 3 (linguistic labels) = 6 membership functions
• Each triangular membership function is encoded by 3 real values (the 

three definition points):
• So, the chromosome length is

6 · 3 = 18 real-coded genes
(binary coding can be used but
but is not desirable)

– Either definition intervals have to be defined for each gene 
and/or appropriate genetic operators in order to obtain 
meaningful membership functions 

Evolutionary Tuning of FRBSs
Tuning of Membership Functions
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R1: IF X1 is Small THEN Y is Large
R2: IF X1 is Medium THEN Y is Medium

. . . 

The RB remains unchanged!

-0.5 0.5 0.5 0.50 0 1 1 1.5 -0.5 0.5 0.5 0.50 0 1 1 1.5

-0.5 0.5 0.5 0.50 0.25 0.75 1 1.5 -0.35 0.35 0.5 0.50 0.3 0.7 1 1.5

Small Small MediumMedium LargeLarge

X

X Y

Y

Small Small MediumMedium LargeLarge

Evolutionary Tuning of FRBSs
Tuning of Membership Functions
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– C. Karr, Genetic algorithms for fuzzy controllers, AI Expert 6 (2) (1991) 26–33
– C. Karr, E.J. Gentry, Fuzzy control of pH using genetic algorithms, IEEE TFSs

1 (1) (1993) 46–53
– J. Kinzel, F. Klawonn, R. Kruse, Modifications of genetic algorithms for 

designing and optimizing fuzzy controllers, Proc. First IEEE Conf. on 
Evolutionary Computation (ICEC’94), Orlando, FL, USA, 1994, pp. 28–33

– D. Park, A. Kandel, G. Langholz, Genetic-based new fuzzy reasoning models 
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J. Casillas, O. Cordón, M.J. del Jesus, F. Herrera, Genetic tuning of fuzzy rule deep 
structures preserving interpretability and its interaction with fuzzy rule set 
reduction,  IEEE TFS 13 (1) (2005) 13-29

Genetic tuning process that refines a preliminary KB 
working at two different levels:

– DB level: Linearly or non-linearly adjusting the 
membership function shapes

– RB level: Extending the fuzzy rule structure using 
automatically learnt linguistic hedges

Evolutionary Tuning of FRBSs
Genetic tuning of DB and RB using linguistic edges
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Tuning of the DB:
Linear tuning Non-linear tuning

Tuning of the RB: linguistic hedges ‘very’ and ‘more-or-less’

R  = IF X is S THEN Y es M

R  = IF X Is M THEN Y es L

R  = IF X Is L THEN Y es S

1

2

3

M LS M LS

R  = IF X is S THEN Y es M

R  = IF X Is M THEN Y es L

R  = IF X Is L THEN Y es S

1

2

3

M LS M LS

1

2

R  = IF X is more-or-less S THEN Y is M

R  = IF X is very L THEN Y is very S

R  = IF X is very M THEN Y is more-or-less L

M LS M LS

3

Evolutionary Tuning of FRBSs
Genetic tuning of DB and RB using linguistic edges



Triple coding scheme:

– Membership function
parameters (P) (DB linear
tuning): real coding

– Alpha values (A) (DB non
linear tuning): real coding

– Linguistic hedges (L)
(RB tuning): integer coding
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Evolutionary Tuning of FRBSs
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Initial Data Base

0 2

YX
S M L1 1 1 S M L2 2 2

0 2

X is THENIFR1 = L Y is 2S
X is THENIFR2 = S Y is 2M
X is THENIFR3 = M Y is 2L

1

1

1

Initial Rule Base

Genetic Tuning

S 1 M 1 L 1 S 2 M 2 L 2

CSa

0 0,650 1 1,40,6 1,9 2,210,15 0,55-0,2 0,8 1,60,5 1,75 2,21,1

CSb

R1 R2 R3
0 0 10 22

S 1 M 1 L 1 S 2 M 2 L 2

CSa

0 0,650 1 1,650,35 2 21,350 0,650 1 1,650,35 2 21,35

CSb

R1 R2 R3
1 1 11 11

YX
S M L1 1 1 S M L2 2 2

Tuned Data Base
0 20 2

X is THEN Y isIFR1 = 2L S
X is THEN Y isIFR2 = 2S M
X is THEN Y isIFR3 = 2M L

1

1

1

very

mol

mol

very

very

Tuned Rule Base

Evolutionary Tuning of FRBSs
Genetic tuning of DB and RB using linguistic edges
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• Learning method considered: Wang-Mendel

• Tuning method variants:

• Evaluation methodology: 5 random training-test partitions 80-
20% (5-fold cross validation) × 6 runs = 30 runs per algorithm

Evolutionary Tuning of FRBSs
Experimental Study on Electrical Line Problems
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Maintenance cost estimation for low and medium voltage lines in 
Spain: O. Cordón, F. Herrera, L. Sánchez, Solving electrical distribution 
problems using hybrid evolutionary data analysis techniques, Appl. 
Intell. 10 (1999) 5-24

Spain’s electrical market (before 1998): Electrical companies shared a 
business, Red Eléctrica Española, receiving all the client fees and 
distributing them among the partners

The payment distribution was done according to some complex 
criteria that the government decided to change

One of them was related to the maintenance costs of the power line
belonging to each company

The different producers were in trouble to compute them since:
As low voltage lines are installed in small villages, there were no actual 
measurement of their length

The goverment wanted the maintenance costs of the optimal medium 
voltage lines installation and not of the real one, built incrementally

Evolutionary Tuning of FRBSs
Experimental Study on Electrical Line Problems
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Goal: estimation of the low voltage electrical line length installed in 1000 
rural towns in Asturias

Two input variables: number of inhabitants and radius of village

Output variable: length of low voltage line

Data set composed of 495 rural nuclei, manually measured and  
affected by noise

396 (80%) examples for training and 99 (20%) examples for test
randomly selected

Seven linguistic terms for each linguistic variable

Evolutionary Tuning of FRBSs
Low Voltage Line Maintenance Cost Estimation
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Classical solution: numerical regression on different models 
of the line installation in the villages

Evolutionary Tuning of FRBSs
Low Voltage Line Maintenance Cost Estimation
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Goal: estimation of the maintenance cost of the optimal medium voltage 
electrical line installed in the Asturias’ towns

Four input variables: street length, total area, total area occupied by 
buildings, and supplied energy

Output variable: medium voltage line maintenance costs

Data set composed of 1059 simulated cities

847 (80%) examples for training and 212 (20%) examples for test randomly 
selected

Five linguistic terms for each linguistic variable

Evolutionary Tuning of FRBSs
Medium Voltage Line Maintenance Cost Estimation
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Tuning methods:

Other fuzzy modeling techniques and GFS:

Evolutionary Tuning of FRBSs
Obtained Results for the Medium Voltage Line Problem
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Example of one KB derived from the WM+PAL-tun method:

Before tuning: MSEtra/test = 58032 / 55150
After tuning: MSEtra/test = 11395 / 14465

Evolutionary Tuning of FRBSs
Obtained Results for the Medium Voltage Line Problem
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New coding schemes: 2- and 3-tuples:

IDEA: New fuzzy rule representation model allowing a more 
flexible definition of the fuzzy sets of the linguistic labels

– R. Alcalá, J. Alcalá-Fdez, M.J. Gacto, F. Herrera, Rule base reduction and 
genetic tuning of fuzzy systems based on the linguistic 3-tuples representation, 
Soft Computing 11 (5) (2007) 401-419

– R. Alcalá, J. Alcalá-Fdez, F. Herrera, A proposal for the genetic lateral tuning 
of linguistic fuzzy systems and its interaction with rule selection, IEEE 
Transactions on Fuzzy Systems 15:4 (2007) 616-635

Interpretability-Accuracy Trade-Off
Some Effective Approaches for FRBS Tuning
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New coding schemes: 2- and 3-tuples

IDEA: New fuzzy rule representation model allowing a more 
flexible definition of the fuzzy sets of the linguistic labels

– 2-tuples: label id. i and a displacement parameter αi ∈[-0.5,0.5]

– New rule structure:  
IF X1 IS (S1i, α1) AND … AND Xn IS (Sni, αn) THEN Y IS (Syi, αy)

Interpretability-Accuracy Trade-Off
Some Effective Approaches for FRBS Tuning
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– 3-tuples: label id. i, a displacement parameter αi ∈[-0.5,0.5], 
and a width parameter βi ∈[-0.5,0.5]

– New rule structure:  
IF X1 IS (S1i,α1,β1) AND … AND Xn IS (Sni,αn,βn) THEN Y IS 

(Syi,αy,βy)

Interpretability-Accuracy Trade-Off
Some Effective Approaches for FRBS Tuning
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New coding schemes: 2- and 3-tuples

COLATERAL ADVANTAGE: Both structures decreases the 
KB learning/tuning large scale problem, since the fuzzy sets are
encoded using a lower number of parameters

Existing proposals:

• Genetic 2-tuple/3-tuple DB global tuning: adjustment of the global 
fuzzy sets → full interpretability (usual fuzzy partitions)

• Genetic 2-tuple/3-tuple DB tuning at rule level→ lower 
interpretability, higher flexibility (like scatter Mamdani FRBSs)

• Genetic 2-tuple/3-tuple DB tuning + rule selection

Interpretability-Accuracy Trade-Off
Some Effective Approaches for FRBS Tuning
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Lateral 
Tuning
Scheme

P1 M1 G1 P2 M2 G2

0 0 0 0 0 0

Initial Data Base
X

P M G1 1 1

0 1

X is THEN Y isIfR1 = 2G P
X is THEN Y isIfR2 = 2P M
X is THEN Y isIfR3 = 2M G

1

1

1

Initial Rule Base

Y
P M G2 2 2

0 1

Genetic
Tuning

Interpretability-Accuracy Trade-Off
Some Effective Approaches for FRBS Tuning
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Medium voltage electrical network in towns

WM Wang and Mendel
Learning Method

S Rule Selection Method

GL Global Lateral Tuning

LL Local Lateral Tuning

T Classical Genetic Tuning

P
A
L

Tuning of: 

Parameters, 
Domains, and
Linguistic Modifiers

Five labels per linguistic variable
50000 Evaluations per run

5 data partitions 80% - 20%
6 runs per data partition
Averaged results from 30 runs
t-student Test with α = 0.05

Genetic 2-tuple tuning + rule selection method:

Interpretability-Accuracy Trade-Off
Some Effective Approaches for FRBS Tuning
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Obtained results for the low voltage line problem:

Genetic 2-tuple tuning + rule selection method:

• 5-fold cross validation × 6 runs = 30 runs per algorithm
• T-student test with 95% confidence

Interpretability-Accuracy Trade-Off
Some Effective Approaches for FRBS Tuning
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Obtained results for the low voltage line problem:

Example of one KB derived from the global tuning method:

After tuning+rule selection:   #R=13;   MSEtra/test = 187494 / 
176581

Interpretability-Accuracy Trade-Off
Some Effective Approaches for FRBS Tuning
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Example of genetic lateral tuning and rule selection

Interpretability-Accuracy Trade-Off
Some Effective Approaches for FRBS Tuning
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GENETIC FUZZY SYSTEMS (Acc/Int Trade-Off): 
APPLICATION TO A HVAC PROBLEM

JOULE-THERMIE JOE-CT98-0090

Aire de Retorno

Aire del Exterior

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

Aire de Salida

Aire Suministrado

A B C D E F G

H

IJ

Sala Sala1 n

+/-

h h

-/+

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

- Calentamiento

- Enfriamiento

Heating Ventilating and Air Conditioning Systems: 
Problem
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Fuzzy Logic Controllers for Energy 
Efficiency Consumption in Buildings

Heating Ventilating and Air Conditioning Systems: 
Problem

Energy consumption in buildings is the 40% of the total and more 
than a half is for indoor climate conditions

The use of specific technologies can save up to a 20% of the energy 
consumption

The use of appropriate automatic control strategies could result in 
energy savings ranging 15-85 %

Moreover, in current systems, several criteria are considered and 
optimized independently without a global strategy
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Generic Structure of an Office Building HVAC System

It maintain a good thermal quality in summer and winter

It dilutes and removes emissions from people, equipment and 
activities and supplies clean air

Fuzzy Logic Controllers for Energy 
Efficiency Consumption in Buildings
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Initial Data Base

17 Variables

Fuzzy Logic Controllers for Energy 
Efficiency Consumption in Buildings
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Fuzzy Logic Controllers for Energy Efficiency 
Consumption in Buildings

Initial Data Base
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Initial Rule Base and  FLC Structure

172 Rules

172 
Rules

Fuzzy Logic Controllers for Energy 
Efficiency Consumption in Buildings
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Fuzzy Logic Controllers for Energy Efficiency 
Consumption in Buildings
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Representation of the Test Cells

Two adjacent twin cells were available

A calibrated and validated model of this site was 
developed to evaluate each FLC

Fuzzy Logic Controllers for Energy 
Efficiency Consumption in Buildings
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Goal: multi-criteria optimization of an expert FLC for an HVAC system: reduction of 
the energy consumption but maintaining the required indoor comfort levels

INITIAL RESULTS

MODELS #R PMV>0.5
01

PMV<-0.5
02

C02

03

ENERGY
04 %

STABILITY
05 %

ON-OFF - 0,0 0 0 3206400 - 1136 -

FLC 172 0,0 0 0 2901686 9,50 1505 -32,48

Fuzzy Logic Controllers for Energy 
Efficiency Consumption in Buildings
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Improving the FLC Performance

The main objective was the reduction of the energy consumption
(10%), improving the stability of the controller, maintaining

the required indoor comfort levels

Genetic tuning of the Data Base
Local modification of the membership function definition
points

a b c

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Tuning
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Objectives (to be minimized)

Expert knowledge as objective weights:

000761667.0;0000017832.0

0000022833.0;0041511.0
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ooo
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www

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Tuning
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Problem Restrictions

Different-Criteria-Based Evaluation

Multiple Criteria Algorithms:

Multi-objective approach

Aggregation approach

Since trusted weights exist:
- The problem solving is easier
- Quicker algorithms can be designed

)()()( 11 xfwxfwxF nn ⋅++⋅= K

},,1{,10,1 niww ii K=≤≤=∑

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Tuning
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Problem Restrictions

The controller accuracy is assessed by means of simulations 
which approximately take 3-4 minutes

Efficient tuning methodologies:

Local adjustment of each tuned parameter

Steady-State Genetic Algorithms: quick convergence

2000 evaluations ⇒ 1 run takes approximately 4 days

Considering a small population (31 individuals)

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Tuning
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Genetic Tuning of the Data Base

A real coded steady-state genetic algorithm  for local tuning 
of the membership function  definition points.

Two individuals are selected to be crossed and four 
descendents are obtained

The two best offspring are included in the population 
replacing the two worst individuals if they are better 
adapted than the latter

A restarting approach is considered if the population 
converges

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Tuning
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Data Base Tuning: Algorithm (1)

Coding Scheme (with n variables and Li labels):

( )
n

i
L

i
L

i
L

iii
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GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Tuning
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Data Base Tuning: Algorithm (2)

Genetic operators:

The max-min-arithmetical
crossover. From parents Cv

and Cw, four offspring are
obtained:

Michalewicz’s non-uniform mutation.

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Tuning
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Obtained ResultsMODELS #R PMV>0.5
01

PMV<-0.5
02

C02

03

ENERGY
04 %

STABILITY
05 %

CLASSICAL
ON-OFF

- 0,0 0 0 3206400 - 1136 -

FLC 172 0,0 0 0 2901686 9,50 1505 -32,48

FLC
TUNING

172 0,0 0 0 2596875 19,01 1051 7,48

R. Alcalá, J.M. Benítez, J. Casillas, O. Cordón, R. Perez, Fuzzy control of HVAC 
systems optimised by genetic algorithms, Appl. Intell. 18 (2003) 155–177

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Tuning
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Tuned Data Base

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Tuning



GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Tuning
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Tuning Evolution Chart

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Tuning
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GENETIC RULE WEIGHT DERIVATION 
AND RULE SELECTION

OBJECTIVE OF GETTING:

a subset of rules presenting good cooperation

the weights associated to rules

IF X1 is A1 and ... and Xn is An THEM Y is B with [w], 
w∈[0,1]

We use a steady-state genetic algorithm with 
a double coding scheme.

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Rule Selection with Weights
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Weight Learning: Algorithm
A double coding scheme (C=C1+C2):

C1: The coding scheme generates binary-coded strings of length 
m (number of single rules in the previously derived rule set):

C2: The coding scheme generates real-coded strings of length m. 
Each gene represents the weight used in the corresponding rule

C1m C22C11

Two points crossover
Flip a gene at random

... ...

BLX-alpha + Arithmetical crossover
Random mutation

C2m......C21 C m-12

C1 C2

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Rule Selection with Weights



171

Obtained Results
MODELS #R PMV>0.5

01                

PMV<-0.5
02

C02

03

ENERGY
04 %

STABILITY
05 %

ON-OFF - 0,0 0 0 3206400 - 1136 -

FLC 172 0,0 0 0 2901686 9,50 1505 -32,48
TUNING 172 0,0 0 0 2596875 19,01 1051 7,48

SELECTION 147 0,2 0 0 2867692 10,56 991 12,76
SEL. + 

TUNING
109 0,1 0 0 2492462 22,27 989 12,94

SEL + 
WEIGTS

102 0,7 0 0 2731798 14,80 942 17,08

R. Alcalá, J. Casillas, O. Cordón, A. González, F. Herrera, A Genetic Rule Weighting 
and Selection Process for Fuzzy Control of Heating, Ventilating and Air 
Conditioning Systems. Engineering Applications of Artificial Intelligence 18:3 (2005) 
279-296

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Rule Selection with Weights
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Weighted Rule Base

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Rule Selection with Weights



GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Rule Selection with Weights

173



174

New coding schemes: 2- and 3-tuples:

R. Alcalá, J. Alcalá-Fdez, M.J. Gacto, F. Herrera, Improving Fuzzy Logic
Controllers Obtained by Experts: A Case Study in HVAC Systems. Applied
Intelligence, doi:10.1007/s10489-007-0107-6, 31:1 (2009) 10-35. 

– 2-tuples: label id. i and a displacement parameter αi ∈[-0.5,0.5]

N l t t

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Lateral Tuning and Rule Selection
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MODELS #R PMV>0.5
01                

PMV<-0.5
02

C02

03

ENERGY
04 %

ESTABILITY
05 %

ON-OFF - 0,0 0 0 3206400 - 1136 -

FLC 172 0,0 0 0 2901686 9,50 1505 -32,48
TUNING 172 0,0 0 0 2596875 19,01 1051 7,48

SELECTION 147 0,2 0 0 2867692 10,56 991 12,76
SELEC. + 
TUNING

109 0,1 0 0 2492462 22,27 989 12,94

SEL + 
WEIGHTS

102 0,7 0 0 2731798 14,80 942 17,08

GL 1 172 0,7 0 0 2378784 25,81 1069 5,90
GL 2 172 1,0 0 0 2327806 27,40 1066 6,16
GL 3 172 0,9 0 0 2268689 29,25 1080 4,93
LL 1 172 0,9 0 0 2386033 25,59 896 21,13
LL 2 172 0,8 0 0 2343409 26,92 943 16,99
LL 3 172 0,3 0 0 2377596 25,85 938 17,43

GENETIC LATERAL TUNING

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Lateral Tuning and Rule Selection
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MODELS #R PMV>0.5
01                

PMV<-0.5
02

C02

03

ENERGY
04 %

ESTABILITY
05 %

ON-OFF - 0,0 0 0 3206400 - 1136 -
FLC 172 0,0 0 0 2901686 9,50 1505 -32,48

TUNING 172 0,0 0 0 2596875 19,01 1051 7,48
SELECTION 147 0,2 0 0 2867692 10,56 991 12,76

SEL + 
TUNING

109 0,1 0 0 2492462 22,27 989 12,94

SEL + 
WEIGHTS

102 0,7 0 0 2731798 14,80 942 17,08

GL 2 172 0,9 0 0 2268689 29,25 1080 4,93
LL 1 172 0,9 0 0 2386033 25,59 896 21,13

GL - S 1 105 1,0 0 0 2218598 30,81 710 37,50
GL - S 2 115 0,4 0 0 2358405 26,45 818 27,99
GL - S 3 118 0,8 0 0 2286976 28,68 872 23,24
LL – S 1 133 0,5 0 0 2311986 27,90 788 30,63 
LL – S 2 104 0,6 0 0 2388470 25,51 595 47,62
LL – S 3 93 0,5 0 0 2277807 28,96 1028 9,51

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Lateral Tuning and Rule Selection
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Tuned Data Base (GL-S1):

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Lateral Tuning and Rule Selection
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Selected Rule Base (GL-S1):

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Lateral Tuning and Rule Selection
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The combination of lateral tuning (global and local) and rules 
selection allow us to eliminate redundant rules, tuning the
parameters, and geting and high behaviour reducting the energy
comsuption and with good stability.  

¿What is the reason of the good behavior?

The SBRDs tuning for an HVAC system is a large scale problem
wiht 17 variables and a lot of parameters, and the use of 1 
parameter per label allows us to reduce the search space, allowing
to get a better optimal local than using 3 parameters per label.

GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Lateral Tuning and Rule Selection
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Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule Selection



1. Heuristic Rule Extraction
A pre-specified number of candidate fuzzy rules are extracted from 
numerical data using a heuristic rule evaluation criterion (data mining).

2. Multiobjective Genetic Fuzzy Rule Selection
A small number of fuzzy rules are selected from the extracted 
candidate rules using a multi-objective genetic algorithm (evolutionary 
optimization).

Two-Stage Approach

H. Ishibuchi and T. Yamamoto, “Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation 
measures in data mining,” Fuzzy Sets and Systems, Vol. 141, 
pp. 59-88 (2004).

Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule Selection



Fuzzy Rules for n-dimensional Problems

If x1 is A1 and … and xn is An

then Class C with CF

Ai : Antecedent fuzzy set
Class C : Consequent class
CF : Rule weight (Certainty factor)

Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule Selection



Antecedent Fuzzy Sets (Multiple Partitions)

Usually we do not know an appropriate fuzzy partition for each input 
variable.

1.0

0.0
0.0 1.0

S２ L２
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0.0 1.0

S２ L２
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Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule Selection



Possible Fuzzy Rules
Total number of possible fuzzy rules

( ) ( ) ( )n15114114 =+×⋅⋅⋅×+

Don’t care Don’t care

… x1 xn

Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule Selection



Examined Fuzzy Rules

They only examine short fuzzy rules with only a 
few antecedent conditions.

If x1 is small and x48 is large
then Class 1 with 0.58

Different Models of Multiobjective GFSs
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Consequent Class
The consequent class of each fuzzy rule is determined by compatible 
training patterns (i.e., the dominant class in the corresponding fuzzy 
subspace).

S LM

L
S

M

Class 1
Class 2

If x1 is small and x2 is large
then Class 1 with 1.0

x2

x10
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Rule Weight (Certainty Factor)
The rule weight CF of each fuzzy rule is calculated from compatible 
training patterns.

L
S

M

S LM S LM

L
S

M
CF=1.0
(Maximum)

CF=0.37

Class 1
Class 2

Class 1
Class 2
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Heuristic Rule Extraction

They extract a pre-specified number of the best fuzzy rules with 
respect to a pre-specified heuristic rule evaluation criterion.

Numerical
data

Class 1

Class 2

Class 3

If · · · then Class 1
If · · · then Class 1

If · · · then Class 2
If · · · then Class 2

If · · · then Class 3
If · · · then Class 3

Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule Selection



Heuristic Rule Extraction
Possible fuzzy rules: (15)n rules

Restriction on the rule length :
Only short fuzzy rules

Rule evaluation criterion:
The best rules for each class
300 fuzzy rules for each class
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1. Heuristic Rule Extraction
A pre-specified number of candidate fuzzy rules are extracted from 
numerical data using a heuristic rule evaluation criterion (data mining).

2. Multiobjective Genetic Fuzzy Rule Selection
A small number of fuzzy rules are selected from the extracted 
candidate rules using a multi-objective genetic algorithm (evolutionary 
optimization).

Two-Stage Approach

H. Ishibuchi and T. Yamamoto, “Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation 
measures in data mining,” Fuzzy Sets and Systems, Vol. 141, 
pp. 59-88 (2004).
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Implementation of Multiobjective approach

Coding:
N: Total number of candidate rules
sj={0, 1}: Inclusion or exclusion of the j-th rule

Objectives: f1(S),  f2(S),  f3(S)
f1(S) : Number of correctly classified patterns by S
f2(S) : Number of selected rules in S
f3(S) : Total number of antecedent conditions in S

NsssS ⋅⋅⋅= 21
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(1) Two-objective approach

(2) Weighted sum of the two objectives

(3) Three-objective approach

(4) Weighted sum of the three objectives

Comparison of Four Approaches

Maximize  f1(S)  and minimize  f2(S) 

Maximize

Maximize  f1(S) and minimize  f2(S),  f3(S) 

Maximize 

)()( 2211 SfwSfw ⋅−⋅

)()()( 332211 SfwSfwSfw ⋅−⋅−⋅
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Data Sets

3317813Wine
2220860Sonar
331504Iris
35297*13Heart C
362149Glass
327688Diabetes
32683*9Breast W

LengthClassesPatternsAttributesData set
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Experimental Results (Cleveland Heart)
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We can observe the overfitting due to the increase in the number of fuzzy rules. 

(a) Error rates on training data (b) Error rates on test data
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Experimental Results (Sonar)
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The generalization ability is increased by increasing the number of fuzzy rules (i.e., 
the overfitting is not observed).  

(a) Error rates on training data (b) Error rates on test data
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Experimental Results (Diabetes)
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The effect of the increase in the number of fuzzy rules is not clear.
(a) Error rates on training data (b) Error rates on test data
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Experimental Results (Diabetes)

We can observe the overfitting due to the increase in the rule length in the right 
figure for rule sets with four fuzzy rules. 

(a) Rule sets with two rules (b) Rule sets with four rules
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Observation
(1) Experimental results showed that each test problem has a different 

tradeoff structure.
(2) Knowledge on the tradeoff structure is useful in the design of fuzzy 

rule-based classification systems.Error

Complexity

Test Data

Training Data
0

Error

Complexity

Test Data

Training Data
0
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MULTIOBJECTIVE TUNING AND RULE SELECTION IN REGRESSION 
PROBLEMS

R. Alcalá, J. Alcalá-Fdez, M.J. Gacto, F. Herrera, A multi-objective genetic 
algorithm for tuning and rule selection to obtain accurate and compact 
linguistic fuzzy rule-based systems, International Journal of Uncertainty, 
Fuzziness and Knowledge-Based Systems, 15:5 (2007) 539–557
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R. Alcalá, J. Alcalá-Fdez, M.J. Gacto, F. Herrera, A multi-objective genetic algorithm for 
tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based 
systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 
15:5 (2007) 539–557,

Multi-objective EAs are powerful tools to generate GFSs but they 
are based on getting a large, well distributed and spread off, 
Pareto set of solutions

– The two criteria to optimize in GFSs are accuracy and 
interpretability. The former is more important than the latter, 
so many solutions in the Pareto set are not useful

– Solution: Inject knowledge through the MOEA run to bias the 
algorithm to generate the desired Pareto front part
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Pareto front classification in an interpretability-accuracy GFSs:
Bad rules zone: solutions with bad 
performance rules. Removing them 
improves the accuracy, so no Pareto 
solutions are located here

Redundant rules zone: solutions with 
irrelevant rules. Removing them does 
not affect the accuracy and improves 
the interpretability

Complementary rules zone: solutions 
with neither bad nor irrelevant rules. 
Removing them slightly decreases the 
accuracy

Important rules zone: solutions with 
essential rules. Removing them 
significantly decreases the accuracy

Different Models of Multiobjective GFSs
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Accuracy-oriented modifications performed:

– Restart the genetic population at the middle of the run 
time, keeping the individual with the highest accuracy 
as the only one in the external population and 
generating all the new individuals with the same 
number of rules it has

– In each MOGA step, the number of chromosomes in the 
external population considered for the binary 
tournament is decreased, focusing the selection on the 
higher accuracy individuals
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Obtained results for the medium voltage line problem:

Multi-objective genetic tuning + rule selection method:

• 5-fold cross validation × 6 runs = 30 runs per algorithm
• T-student test with 95% confidence
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STUDY ON SEVERAL ALTERNATIVE APPROACHES AND 
IMPROVEMENTS

M.J. Gacto, R. Alcalá, F. Herrera, Adaptation and Application of Multi-
Objective Evolutionary Algorithms for Rule Reduction and Parameter 
Tuning of Fuzzy Rule-Based Systems. Soft Computing 13:5 (2009) 419-436
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To perform the study we have applied six different approaches
based on the two most known and successful MOEAs:

Application of SPEA2 and NSGA-II
Two versions of NSGA-II for finding knees, NSGA-IIA and NSGA-IIU

Two extensions for specific application SPEA2Acc and SPEA2Acc2

Two objectives are considered: MSE and Number of Rules

Proper operators have to be selected.

The determination of the population size becomes an 
important issue. Specially in the case of NSGA-II
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NSGA-II FOR FINDING KNEES

A variation of NSGAII in order to find knees in the Pareto
front by replacing the crowding measure by either an angle-
based measure or an utility-based measure

In our case, a knee could represent the best compromise
between accuracy and number of rules.

J. Branke, K. Deb, H. Dierolf, and M. Osswald, “Finding Knees in Multi-objective 
Optimization,” Proc. Parallel Problem Solving from Nature Conf. - PPSN VIII, LNCS 3242, 
(Birmingham, UK, 2004) 722–731.

Angle Based
Approach

Utility Based
Approach

Two different
approaches
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Objective: to improve the search with a more intelligent 
operator replacing the HUX crossover in SPEA2ACC

Once BLX is applied a normalized euclidean distance is 
calculated between the centric point of the MFs used by each 
rule of the offpring and each parent

The closer parent determines if this rule is selected or not for 
this offpring

Whit this crossover operator, mutation can be particularly used 
to remove rules

Extension of SPEA2Acc (SPEA2Acc2)
A New Crossover Operator for the Rule Part

Different Models of Multiobjective GFSs
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Obtained results for the medium voltage line problem:

• 5-fold cross validation × 6 runs = 30 runs per algorithm
• T-student test with 95% confidence
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Comparison of the SPEA2acc2 and classical GA 
for  for the medium voltage line problem:
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Convergence and an example model
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MULTIOBJECTIVE LEARNING OF DB AND RB (REGRESSION)

R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, F. Marcelloni, A Multi-
Objective Evolutionary Approach to Concurrently Learn Rule and Data 
Bases of Linguistic Fuzzy Rule-Based Systems, IEEE Transactions on Fuzzy 
Systems, doi:10.1109/TFUZZ.2009.2023113, in press (2009)
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R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, F. Marcelloni, A Multi-
Objective Evolutionary Approach to Concurrently Learn Rule and Data Bases 
of Linguistic Fuzzy Rule-Based Systems, IEEE Transactions on Fuzzy
Systems, doi:10.1109/TFUZZ.2009.2023113, in press (2009),

Rule bases and parameters of the membership functions of the 
associated linguistic labels are learnt concurrently.

Accuracy and interpretability are measured in terms of 
approximation error (MSE) and rule base complexity 
(#Conditions), respectively.

To manage the size of the search space, the linguistic 2-tuple 
representation model, which allows the symbolic translation of a 
label by only considering one parameter, has been exploited
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ThisThis proposalproposal decreasesdecreases thethe tuningtuning complexitycomplexity, , sincesince thethe 3 3 parametersparameters
perper labellabel ofof thethe classicalclassical tuningtuning are are reducedreduced toto onlyonly 1 1 translationtranslation
parameterparameter ((thethe tuningtuning isis appliedapplied toto thethe levellevel ofof linguisticlinguistic partitionspartitions))
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Coding Scheme and Operators

A double coding scheme (C = CRB+ CDB)

Crossover operator: one point + BLX-α crossovers (2 offsprings)

Mutation operators:

Rule Adding: It adds  γ random rules to the RB, where γ is
randomly chosen in [1, γmax]
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Modify RB: It randomly changes  δ elements of the RB 
part. The number δ is randomly generated in [1, δmax]

Modify DB: It changes a gene value at
random in the DB part

PAES, NSGA-II and SOGA 
were applied using this
representation and
crossover

Operators and Selection Schemes
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Analysed Methods

Different population sizes were probed for these MOEAs showing
better results when the population used for parent selection has similar 
sizes than those considered by single objective oriented algorithms.

300,000 evaluations to allow complete convergence in all the
algorithms

64(Rule Base + Data Base) learning with SOGASOGAKB

64(Rule Base + Data Base) learning with SOGANSGA-IIKB

64(Rule Base + Data Base) learning with SOGAPAESKB

64Rule Base learning with SOGAPAESRB

64Rule Base learning with SOGANSGA-IIRB

Rule Base learning with SOGA

DescriptionDescription

64SOGARB

Pop. sizePop. sizeMethodMethod
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Average Pareto Fronts and average solution by SOGA 
(medium voltage lines problem) 

1. Most accurate
solution is selected
from each Pareto

2. Average values are 
computed and
represented

3. These solutions are 
no more used

4. Repeat to extract
the desired avarage
Pareto

Only the first 20 
solutions are 
considered

5 Data partitions 80% - 20%
6 Runs per partition
A total of 30 Runs
Test t-student α = 0.05
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REMINDER
5 Data partitions 80% - 20%
6 Runs per partition
A total of 30 Runs
Test t-student α = 0.05

Statistical Analysis

Statistical comparison among MOEAs

Statistical comparison of the best MOEA with SOGA
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Convergence
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The models obtained by these new approaches 
presented a better trade-off than those obtained by 
only considering performance measures.

Between both multi-objective experimented, namely a 
modified (2+2)PAES and the classical NSGA-II, the 
modified (2+2)PAES has shown a better behaviour
than NSGA-II.

Finally, the liguistic 2-tuples representation presented 
has shown a good positive synergy.
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Webpage of EMOFRBSs

http://www2.ing.unipi.it/~g000502/emofrbss.html



Webpage of EMOFRBSs

http://www2.ing.unipi.it/~g000502/emofrbss.html
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Future Research Directions in MGFSs

Formulations of the Interpretability
- The number of fuzzy rules
- The number of antecedent conditions in each rule
- The number of input variables
- The separability of adjacent antecedent fuzzy sets

Handling of Large Data Sets
- Design of efficient EMO algorithms
- Subdivision of data sets
- Parallel implementation

Development of Special-Purpose EMO Algorithms
- Handling of many objectives
- Handling of both discrete and continuous variables



Future Research Directions in MGFSs

Development of New MGFS Methods with
- Multiobjective input selection algorithm
- Multiobjective fuzzy partition algorithm
- .  .  .

Visualization of Pareto-Optimal Fuzzy Systems
- Visualization of a single fuzzy system
- Visualization of multiple fuzzy systems
- Visualization of accuracy-complexity tradeoff

How to compare MGFSs
- A statistical Analysis is needed
- Use of non-parametric statistical tests

Ensemble Classifier Design
- Search for multiple fuzzy systems with a large diversity
- Choice of ensemble members and their combination


