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A Dynamically Constrained Multiobjective Genetic
Fuzzy System for Regression Problems

Pietari Pulkkinen and Hannu Koivisto

Abstract—In this paper, a multiobjective genetic fuzzy system
(GFS) to learn the granularities of fuzzy partitions, tuning the
membership functions (MFs), and learning the fuzzy rules is pre-
sented. It uses dynamic constraints, which enable three-parameter
MF tuning to improve the accuracy while guaranteeing the trans-
parency of fuzzy partitions. The fuzzy models (FMs) are initialized
by a method that combines the benefits of Wang–Mendel (WM)
and decision-tree algorithms. Thus, the initial FMs have less rules,
rule conditions, and input variables than if WM initialization were
to be used. Moreover, the fuzzy partitions of initial FMs are always
transparent. Our approach is tested against recent multiobjective
and monoobjective GFSs on six benchmark problems. It is con-
cluded that the accuracy and interpretability of our FMs are al-
ways comparable or better than those in the comparative studies.
Furthermore, on some benchmark problems, our approach clearly
outperforms some comparative approaches. Suitability of our ap-
proach for higher dimensional problems is shown by studying three
benchmark problems that have up to 21 input variables.

Index Terms—Genetic fuzzy systems (GFSs), initialization,
accuracy, interpretability, Mamdani fuzzy models (FMs).

I. INTRODUCTION

INTERPRETABILITY-accuracy tradeoff of fuzzy models
(FMs) has recently attained a lot of research interest [1]–[9].

Since it is not possible to maximize these contradicting ob-
jectives simultaneously, multiobjective evolutionary algorithms
(MOEAs) have recently been used to find a Pareto optimal set
of FMs that present different tradeoffs between the objectives.
These approaches are also called multiobjective genetic fuzzy
systems (GFS) [10], [11].

Accuracy is often measured by mean-squared error (MSE)
when regression problems are considered. However, there is no
exact measure for interpretability of FMs [2] and it tends to be
somewhat subjective. Nevertheless, the definition by Ishibuchi
and Yamamoto [12] is often used. It defines interpretability by
four factors: 1) transparency of fuzzy partitions; 2) complex-
ity of FMs (e.g., the number of fuzzy rules and input variables);
3) complexity of fuzzy-rule base (e.g., type of rules and the num-
ber of rule conditions); and 4) complexity of fuzzy reasoning
(e.g., defuzzification method).

Factor 1) is often satisfied by using fixed fuzzy partitions (uni-
formly distributed or known by a priori knowledge) [3], [12].
However, a priori knowledge is often not available. Further-
more, if fuzzy partitions do not present the real distribution of
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data, the accuracy of FMs is deteriorated [13]. Thus, it is im-
portant to not only optimize the rules and rule conditions, but
also the membership-function (MF) parameters. However, this
increases the search space and may deteriorate the transparency
of fuzzy partitions.

There are also studies in which fuzzy partitions are not fixed
and factor 1) is taken into account by other means. Merging of
highly similar fuzzy sets was used in [14] and [15] to improve
the transparency of fuzzy partitions. Parameters of a fuzzy set
that cover another fuzzy set were automatically adjusted in [4].
Penalties were issued in [5], if the intersection point of two fuzzy
sets was not between user-specified boundaries. This approach
not only avoided highly overlapping fuzzy sets, but also en-
sured that the whole universe of discourse (UoD) was strongly
covered. The approach [5] was extended in [16] to reduce the
effects of relaxed covering [4]. Here, [16] is followed; however,
instead of minimizing the penalties, dynamic constraints are
used to ensure that the fuzzy partitions are always transparent.
This increases the selection pressure and improves the search
efficiency [17].

This paper deals with regression (or function estimation)
problems, which have not yet received as much research efforts
as classification problems [6]. We apply Mamdani FMs [18],
which are also called linguistic FMs. When regression problems
are considered, the population is usually initialized randomly or
by Wang and Mendel (WM) method [19]. Unfortunately, ran-
dom initialization does not guarantee a good starting point for
further optimization, and WM method usually leads to high
number of rules and rule conditions when high-dimensional
problems and/or problem with many data points are considered.
Recently, we proposed a decision-tree (DT) based initialization
method for regression problems [20], which reduces the num-
ber of input variables and leads to less rules and rule conditions
than WM initialization. However, it does not necessarily create
transparent fuzzy partitions. WM algorithm, on the other hand,
creates rules for a priori given fuzzy partitions; thus, trans-
parency of fuzzy partitions is usually high. Here, we combine
the benefits of WM and DT initialization. Therefore, the ini-
tial fuzzy partitions are transparent, and the initial FMs contain
less rules, rule conditions, and input variables than when WM
algorithm is used.

The initial population is then optimized by multiobjective
GFS that uses dynamic constraints to ensure the transparency
of fuzzy partitions. It also reduces the number of rules, rule
conditions, MFs, and input variables. The proposed initializa-
tion method and multiobjective GFS therefore aid to satisfy the
aforementioned factors [1)–3)]. Factor 4), which is the com-
plexity of fuzzy reasoning, is taken into account by applying
simple-weighted-average-defuzzication method.
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TABLE I
SECOND-GENERATION MULTIOBJECTIVE GFSS APPLIED TO IDENTIFICATION OF LINGUISTIC FMS

Our multiobjective GFS is tested on a set of nine benchmark
problems having 2 up to 21 input variables. For six of them,
there are results of other recently proposed GFSs available. Our
results are compared to them, and it is shown that our results are
comparable or better in terms of accuracy and interpretability.

This paper is organized as follows. First, a brief survey of
recently proposed multiobjective GFSs is given. Based on this,
novelty of our multiobjective GFS is clearly pointed out. Then,
the interpretability of FMs is discussed and a special attention
is paid to transparency of fuzzy partitions. Then, in Section IV,
the proposed initialization method is introduced. After this, in
Section V, dynamically constrained multiobjective GFS is pre-
sented. The results comparisons are performed in Section VI
and conclusions are given in Section VII.

II. MULTIOBJECTIVE GENETIC FUZZY SYSTEMS FOR

LINGUISTIC-FUZZY-MODEL IDENTIFICATION:
STATE OF THE ART

Recently, several researchers have focused on designing mul-
tiobjective GFSs to identify of compact and accurate linguistic
FMs. Ishibuchi’s research group has published several papers
that consider fuzzy classification. Nonetheless, until recently,
there were hardly any papers that considered multiobjective
GFSs in regression problems [23].

Table I presents multiobjective GFSs for classification and
regression problems. For the sake of brevity, it includes only
the recent approaches that apply the second-generation MOEAs
(e.g., the nondominated sorting genetic algorithm II (NSGA-II),
the strength pareto evolutionary algorithm 2 (SPEA2), and the
pareto archived evolution strategy (PAES)). It also excludes
those approaches that apply first-order Takagi–Sugeno FMs. In
this table, rule selection means that a rule is either included
or not included into an FM, whereas rule learning means that
appropriate rule conditions are learned by GFS. It is seen that
usually either rule learning or rule selection is applied, and there
is only one approach [27] that applies neither of them.

MFs of fuzzy rules are taken from four different fuzzy par-
titions in [1], which means that the resulting global fuzzy par-
titions are not always transparent. Granularities of global fuzzy
partitions are learnt in [24], which improves the transparency.
The most trivial way to obtain transparent fuzzy partitions is to
use evenly distributed uniformly shaped MFs, like in [3]. How-
ever, MFs tuning is often applied because it usually improves the

accuracy. Unfortunately, it often deteriorates the transparency
of fuzzy partitions. In the area of regression problems, there are
some methods [21], [22], [25]–[27] that apply MFs tuning and
have appropriately considered this factor. One of them [27] is
a context-adaptation approach that only performs MFs tuning,
requiring the whole rule base to be provided by the user. MF pa-
rameters are learnt using a linguistic two-tuple tuning scheme [9]
in [21] and [22]. Piecewise-linear-transformation techniques are
applied in [25] and a wrapper-based embedded process is used
in [26]. The approaches [8], [20], [23] apply conventional three-
parameter MFs tuning with static constraints, which does not
guarantee transparency of fuzzy partitions.

In this paper, three-parameter MFs tuning with dynamic con-
straints is applied. The search space is therefore larger compared
to two-tuple representation, which only modifies the lateral dis-
placements of the MFs. On the other hand, it is excepted that the
proposed approach improves the accuracy. Moreover, because
of dynamic constraints, it is guaranteed that the whole UoD is
strongly covered and there is no highly overlapping MFs. Our
approach also does not require that MFs are uniformly shaped
as long as the transparency conditions, which are introduced
later in Section III-A, are met. In some cases, uniformly shaped
MFs can actually be misleading if they do not present the real
distribution of the data. In some cases, it is therefore necessary
that some fuzzy sets are, for example, wide, whereas some oth-
ers are narrow. Finally, granularities of global fuzzy partitions
are also learnt by our approach. These properties guarantee that
our approach maintains the transparency of fuzzy partitions at a
good level.

Input-variable selection before applying GFS (i.e., in initial-
ization phase) reduces the number of parameters to be opti-
mized. This has been applied by some approaches; however,
in the field of regression, there is only one approach [20] that
applies this. Usually, regression problems with 2 up to 10 input
variables are studied in the literature, and therefore, the role of
input-variable selection is not crucial. However, in this paper,
its role becomes more important as problems up to 21 input
variables are studied.

The difference between the proposed approach and the ap-
proach [16] is more than just a different problem type. Trans-
parency of fuzzy partitions was obtained in [16] by minimizing
a transparency index. It means that the transparency indexes of
FMs in population may be very different. There may be some
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FMs with highly transparent fuzzy partitions and some other
FMs with unacceptable fuzzy partitions. Naturally, by constrain-
ing the range in which the value of transparency index can vary
reduces the variation. However, in this case, the offspring popu-
lation will usually contain some infeasible FMs (FMs for which
the transparency index is not acceptable). This deteriorates the
search efficiency of GFS. In this paper, transparency of fuzzy
partitions is guaranteed by dynamic constraints. This reduces
the number of fitness objectives by one, which increases the
selection pressure [17].

Based on this brief analysis, it can be concluded that the
proposed multiobjective GFS is novel. Indeed, to the best of
our knowledge, there exist no multiobjective GFS applicable to
regression, which performs rule learning and three-parameter
MFs tuning, while preserving transparency of fuzzy partitions.
Moreover, input variables are selected in two ways. First, dur-
ing the initialization phase. Second, during the multiobjective-
GFS-search process, which can select input variables among the
remaining ones after the initialization.

III. INTERPRETABILITY OF FUZZY MODELS

As mentioned previously, in this paper, the factors 2) and 3)
of the interpretability definition [12] are satisfied by minimizing
the complexity of FMs and factor 4) by application of simple-
weighted-average defuzzification. However, because the MFs
are tuned, factor 1)—transparency of fuzzy partitions—requires
a special attention. In the next section, a definition for this is
given. It applies only to input variables, because in this paper,
singleton output MFs are used. Because singleton MFs can be
presented with only one parameter, it is sufficient to apply static
constraints, introduced later in Section V-B, to maintain the
transparency of output partition at a good level.

A. Transparency of Fuzzy Partitions

As in [27], this paper uses the transparency definition by de
Oliveira [28], which states that a transparent fuzzy partition
must meet the conditions, which are given as follows.

1) The number of MFs per variable is moderate.
2) MFs are distinguishable, i.e., two MFs do not present the

same or almost the same linguistic meaning.
3) Each MF is normal. An MF is normal if it has membership

value 1 at least at one point of UoD.
4) UoD is strongly covered. At least one MF receives a mem-

bership value β (where β > 0) at any point of UoD.
Condition 1) is easily met by constraining the maximum num-

ber of MFs to a moderate number (for example, 9). Also, con-
dition 3) is met by applying normal MFs and genetic operators
that do not alter their normality. Meeting conditions 2) and 4) is
more challenging. In this paper, it is considered that they are met
if globally defined MFs are used and the following conditions
are met.

1) Symmetry condition: The shapes of all MFs are sym-
metrical. For example, Gaussian MF and generalized-bell
(gbell) MF are symmetrical by definition. Also, other MF
types, such as triangular and trapezoidal MFs can be easily
made symmetrical.

Fig. 1. Examples of fuzzy partitions that are considered to be transparent. MF
centers are marked with dotted vertical lines. (a) Gaussian MFs. (b) gbell MFs.
(c) Symmetrical trapezoidal MFs. (d) Symmetrical triangular MFs.

2) α-condition: At any intersection point of two MFs, the
membership value is at most α.

3) γ-condition: At the center of each MF, no other MF re-
ceives membership value larger than γ. Center of an MF
depends on which MF type is used. For gbell MF (with
parameters a, b, and c) and Gaussian MF (with param-
eters c and σ), center is the parameter c. For triangu-
lar MF (with parameters a < b < c), b is the center. For
trapezoidal MF (with parameters a < b < c < d), center
is b + ((c − b)/2) (see also Fig. 1).

4) β-condition: UoD is strongly covered, i.e., at each point
of UoD, at least one MF has membership value at least β.

Fig. 1 shows examples of fuzzy partitions with settings β =
0.05, γ = 0.25, and α = 0.8. Section III-B describes how β, γ,
and α must generally be selected in order to apply the dynamic-
tuning strategy.

In this paper, gbell MFs are used. They are defined as

µ(x; a, b, c) =
1

1 + |((x − c)/a)|2b
(1)

where a, b, and c define the width, shape, and center of an MF,
respectively. As gbell MFs are symmetrical, first of the previous
conditions is met. Fulfillment of the rest three conditions rely
largely on computing the values of x, for which an MF receives
a certain membership value µ. Because of the symmetry of gbell
MFs, any membership value µ ∈ (0, 1) is received on the left
and right side of the center c. These points are denoted here by
IL and IR

IL(µ,p) = c − a (κ(µ))1/2b , µ ∈ (0, 1) (2)

IR(µ,p) = c + a (κ(µ))1/2b , µ ∈ (0, 1) (3)

where p = [a, b, c]T is a vector containing the MF parameters
and

κ(µ) =
1 − µ

µ
, µ ∈ (0, 1). (4)
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Equations (2) and (3) are used to formulate the α, γ, and β
conditions. For the sake of clarity, each of them is split into two
parts, denoted here by left and right. They ensure the fulfillment
of the conditions on the left or right side of the center of an MF,
respectively. Let the active MFs of a variable be indexed as j =
1, . . . ,MA , where MA is the number of currently active MFs of
that variable. It will be shown later that our multiobjective GFS
maintains the ordering of MFs, i.e., if i > j, then ci > cj , where
ci and cj are the gbell parameters c of MFs i and j. Moreover, in
this paper, the fuzzy partitions with only one MF are not allowed,
because they are not considered transparent. Hence, throughout
this paper, it is known that if j = 1, then MF is the leftmost
MF and its neighboring MF is j + 1. If 1 < j < MA , then MF
is in the middle of neighboring MFs j − 1 and j + 1. Finally,
if j = MA , then MF is the rightmost MF and the neighboring
MF is j − 1. Thus, the transparency conditions can be written
as follows

Right α-condition

IR(α,pj )) ≤ IL(α,pj+1), if j < MA .

Left α-condition

IL(α,pj )) ≥ IR(α,pj−1), if j > 1.

Right γ-condition

IR(γ,pj ) ≤ cj+1 ∧ cj ≤ IL(γ,pj+1), if j < MA .

Left γ-condition

IL(γ,pj ) ≥ cj−1 ∧ cj ≥ IR(γ,pj−1), if j > 1.

Right β-condition:

{
IR(β,pj ) ≥ IL(β,pj+1), if j < MA
IR(β,pj ) ≥ χhigh , if j = MA

Left β-condition:

{
IL(β,pj )) ≤ IR(β,pj−1), if j > 1
IL(β,pj ) ≤ χlow , if j = 1

where the variable range is χ = χhigh − χlow , where χlow and
χhigh are the lower and upper bounds of the variable, respec-
tively. These conditions are the basis of the proposed dynamic
constraints, which require that the fuzzy partitions of initial FMs
are transparent. Thus, two simple partition algorithms to create
transparent fuzzy partitions are introduced next.

B. Partitioning Algorithm to Create Evenly Distributed Fuzzy
Partition

This algorithm creates a fuzzy partition consisting of MA
evenly distributed uniformly shaped MFs, and it is only used
when creating the first FM of the initial population. Because
MFs are uniformly shaped, the gbell parameter a for each MF
j is

aj = aeven =
χ

2(MA − 1)
, j = 1, . . . ,MA . (5)

It is required that each aj ≥ amin = 0.025χ to avoid very nar-
row MFs. This limits the maximum value of MA to 21; however,
in practice, more than nine MFs are hardly ever assigned. The

minimum value of MA is 2. Centers are distributed evenly as

c1 = χlow , and cj = cj−1 +
χ

MA − 1
, j = 2, . . . ,MA .

(6)
Assigning the values for a and c according to (5) and (6)
guarantees that UoD is strongly covered and the membership
value of each MF pair at their intersection point is 0.5. Thus,
0 < β < 0.5 and 0.5 < α < 1 must be selected in order to apply
the dynamic-tuning strategy. Because the membership value at
each intersection point is 0.5, the β and α conditions are ful-
filled. Moreover, because gbell MFs are symmetrical, the sym-
metry condition is satisfied as well. The γ-condition requires
that at the center of each MF, no other MF receives membership
value larger than γ. This algorithm selects b, such that, at the
center of each MF, the neighboring MF(s) receive the member-
ship value γ∗ = 0.05. Thus, γ∗ < γ < 0.5 must be selected in
order to apply the dynamic-tuning strategy. The following for-
mula for selecting b can be derived by starting from either (2)
or (3):

bj =
ln κ(γ∗)

2 ln(dcenter,j /aj )
, j = 1, . . . , MA (7)

where

dcenter,j =




min(cj − cj−1 , cj+1 − cj ), if 1 < j < MA
cj+1 − cj , if j = 1
cj − cj−1 , if j = MA

(8)
denotes the minimum distance from cj to the nearest center(s)
of neighboring MF(s).

Because MFs are evenly distributed, dcenter,j =
χ/(MA − 1) ∀j. Thus, (7) can be written as

bj =
ln κ(γ∗)

ln 4
, j = 1, . . . , MA . (9)

There is no upper limit for the value of b in the sense that larger
b values will not violate the transparency conditions. However,
very large b values are not desired as they make gbell MFs similar
to crisp sets and because b is the exponent in (1). Therefore, value
of b for each MF is defined by (9) by this algorithm.

C. Partitioning Algorithm to Create Unevenly Distributed
Fuzzy Partition

As there is no a priori knowledge about the distribution of
MFs, it is also beneficial to create unevenly distributed nonuni-
formly shaped MFs. The following algorithm is used for this
purpose, and it is applied to create the fuzzy partitions of the
rest FMs of the initial population and as a part of genetic oper-
ators. It selects c and a as follows:

a1 = max(amin , r1aeven), and c1 = χlow (10)

aj = max
(

amin , rj

(
(2j − 1)aeven − (cj−1 + aj−1)

2

))

(11)

where j = 2, . . . ,MA − 1

cj = cj−1 + aj−1 + aj , j = 2, . . . ,MA − 1 (12)
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Fig. 2. Example of (a) unevenly distributed fuzzy partition and (b) its inverse.

aMA = χhigh − (cMA −1 + aMA −1), and cMA = χhigh

(13)

where r1 , r2 , . . . , rMA −1 ∈ [0, 1] are random real numbers;
aeven and amin were defined in the previous section. It can be
easily verified that by selecting r1 = r2 = · · · = rMA −1 = 1,
this algorithm is identical to the algorithm in the previous
section.

Unlike in the previous partition algorithm, here, parameter
b values are randomly selected from interval [1, 10]. However,
they are not allowed to be less than the corresponding minimum
values computed according to (7). Thus, it is guaranteed that
at the center of each MF, the neighboring MF(s) receive the
membership value less than or equal to γ∗.

It is seen from (10), (11), and (13) that the more narrow MFs
are more likely to be located on the left side of the range and the
wider MFs on the right side of the range. There is, naturally, no
justification for this. Hence, by uniform chance, the parameters
are defined either by (10)–(13) or by their inversion as follows:

a∗
j = aMA −j+1 , b∗j = bMA −j+1 , c∗j = χhigh − cMA −j+1

(14)
where j = 1, . . . , MA .

As an example, consider creating a fuzzy partition with five
MFs in range [0, 1]. From (5), it follows that aeven = 1/8.
Let r1 = 1/2, r2 = 1, r3 = 1/2, and r4 = 1/2. Thus, a1 =
a∗

5 = 1/16, c1 = 0, a2 = a∗
4 = 5/32, c2 = 7/32, a3 = a∗

3 =
1/16, c3 = 7/16, a4 = a∗

2 = 3/32, c4 = 19/32, a5 = a∗
1 =

5/16, and c5 = 1 and c∗1 = 0, c∗2 = 13/32, c∗3 = 9/16, c∗4 =
25/32, and c∗5 = 1. The minimum values for b1 = b∗5 , b2 =
b∗4 , b3 = b∗3 , b4 = b∗2 , and b5 = b∗1 , according to (7), are 1.1752,
4.3755, 1.6067, 2.8820, and 5.6114, respectively. Fig. 2(a)
shows the resulting partition when centers are computed ac-
cording to (10)–(13), whereas Fig. 2(b) depicts the resulting
partition when (14) is used instead. It is seen that although MFs
are nonuniformly shaped and unevenly distributed, the fuzzy
partitions are transparent and reasonable linguistic values could
be given. In Fig. 2, β = 0.05, γ = 0.25, and α = 0.8.

Fig. 3. Procedure of creating the first FM of the population.

IV. POPULATION INITIALIZATION

Whenever a GFS is used, the population needs to be initialized
first. In order to reduce the search space, it is desirable that the
initialization method is able to select the relevant input variables.
Thus, in [15], the C4.5 [29] DT-based method for classification
problems was proposed. Recently, in [20], it was made suitable
for regression problems. Although this method is capable of
selecting relevant input variables, its main limitations are that:
1) it does not guarantee transparent fuzzy partitions and 2) it
may create far more rules than necessary when applied to noisy
datasets.

In this paper, DT initialization is neither used to create the rule
base nor to initialize MF parameters, but to select relevant input
variables, to reduce the number of input MFs, and rule condi-
tions. MF parameters are determined by the introduced partition
algorithms (see Section III-B and Section III-C), which guar-
antee transparency of fuzzy partitions. Rule base is created by
slightly modified WM algorithm [19]. The proposed two mod-
ifications are that: 1) when a data point is matched to MFs in
order to generate a rule, the data point is not always matched to
MFs of all possible input variables. Instead, it is first classified
by the constructed DT, and only those input variables that were
used by DT to classify the data point are used for matching
and 2) as WM algorithm may create large number of rules for
datasets with many data points and/or input variables, the gener-
ated rules are divided among the members of initial population
and only a portion of them is allowed to be included into one
FM.

A. Creation of the First Fuzzy Method of the Population

The procedure of creating the first FM is shown in Fig. 3.
It is started by discretizing the continuous output data in or-
der to apply C4.5 algorithm. This is done by dividing the
output to Mout crisp regions. Each continuous output value
falls into one of these Mout regions and it is replaced with
corresponding class label S ∈ {1, . . . ,Mout}, which represents
these regions. Then, C4.5 algorithm can be applied and a DT
constructed.

All input variables which are not used by DT are then re-
moved. Then, fuzzy partitions for the remaining input variables
and for the output are created. A user is required to provide
the number of input MFs Min and the number of output MFs
Mout . However, the DT can be used to limit the number of
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input MFs. First, the DT is transformed into an FM, according
to [15]. After this, the number of MFs for each input variable
j in the resulting FM is checked and denoted by MDT j

. Then,
instead of partitioning each input variable with Min MFs, each
input partition is created with min(MDT j

,Min ) MFs. The out-
put is partitioned with Mout MFs. These partitions consist of
uniformly shaped evenly distributed MFs and are created by the
algorithm introduced in Section III-B.

Then, a slightly modified WM algorithm is used. As men-
tioned previously, when a rule is generated, each data point
is first classified by the constructed DT and only those in-
put variables that were used by DT to classify the data point
are used for matching and become conditions of the gener-
ated rule. All other parts of the classical WM algorithm remain
unchanged.

After creating the rule base, the number of active MFs MA ,j

for each input variable j is checked (an MF is active if it is
part of at least one of the rules). If MA ,j < min(MDT j

,Min ),
then there is a gap in fuzzy partition and the whole UoD is
not strongly covered. If this is the case and if MA ,j ≥ 2, then
a new evenly distributed partition with MA ,j MFs is created.
If MA ,j < 2, then input variable j is removed and MA ,j is set
to 0. The maximum number of MFs, i.e.,Mmaxj

= MA ,j , that
each FM of the population can use in input variable j is de-
termined by this phase. Also, all the input variables that are
not removed until now form the set of candidate input vari-
ables. The number of these remaining input variables is denoted
by ns .

The generated rule base may contain large amount of rules.
However, in this paper, each FM can contain at most Rmax = 30
rules. If the rule base has more than Rmax rules, then Rmax
rules are randomly selected out of it. Otherwise, the rule base
is taken as a whole. If rules are randomly selected, it may
result into some gaps in the fuzzy partition, which is not al-
lowed. In this case, it is required that the number of active
MFs for each input variable must be Mmaxj

and the number
of active output MFs must be Mout . If this is not the case,
then max(Mmax1 ,Mmax2 , . . . ,Mmaxn s

,Mout) randomly se-
lected rules are replaced with some rules, thus making all the
inactive MFs active. In this paper, these rules are created, such
that, in the first of the rules, all antecedents and the consequent
are 1. In the second rule, they are all 2. This is continued un-
til all inactive MFs have become active. Of course, it must be
taken care that the antecedents for input variable j are at most
Mmaxj

and, for the consequent, at most Mout . This rule replace-
ment is necessary only if the rule base contains more than Rmax
rules. Otherwise, it is certain that there are no gaps in the fuzzy
partition.

B. Mamdani Fuzzy Model and Its Coding for Multiobjective-
Genetic-Fuzzy-System Optimization

The original dataset contains n input variables; however,
the initialization method selects ns ≤ n of them. Therefore,
a dataset with D data points is denoted as Z = [X y], where
X is D × ns input matrix, and y is D × 1 output vector. The
first FM and all other FMs in this paper are Mamdani FMs.

Mamdani fuzzy rules are expressed as

Ri : If x1 is Bi,1 . . . and xn s is Bi,n s , then Ci

where Bi,j , with j = 1, . . . , ns and i = 1, . . . , R, is an input
fuzzy set, Ci is an output fuzzy set, and R is the number of
rules. To reduce the computational costs, the output of FMs is
computed by approximation of centroid of gravity method [3],
[30] as

ŷk =
∑R

i=1 βi(xk )C̄i∑R
i=1 βi(xk )

, k = 1, . . . , D (15)

where C̄i is the center value of Ci , and βi(xk ) =∏n s
j=1 Bi,j (xk,j ) is the degree of rule activation. When the

slightly modified WM algorithm was used to create the rule
base, gbell output MFs were used. However, at the optimiza-
tion phase, application of gbell MFs is not necessary anymore,
since C̄ is the only output MF parameter affecting the outcome.
Therefore, all gbell output MFs are replaced with singleton MFs
as

µ(x, C̄) =
{

1, if x = C̄
0, if x �= C̄

where C̄ is the corresponding gbell MF parameter c. For the
purpose of multiobjective GFS optimization, the antecedents of
the rule base are presented with an integer-coded matrix A. It
specifies for each rule i = 1, . . . , R that MF is used for input
variable j = 1, . . . , ns

A =




a1,1 a1,2 . . . a1,n s

a2,1 a2,2 . . . a2,n s

...
...

. . .
...

aR,1 aR,2 . . . aR,n s


 (16)

ai,j ∈ {0, 1, . . . ,Mmaxj
}, where Mmaxj

is the maximum-
number MFs in input variable j. If ai,j = 0, input variable j
is not used in rule i. Input variable j is not used in an FM if
∀i, ai,j = 0, and rule i is not used in an FM if ∀j, ai,j = 0. Input
MF parameters to which each ai,j is referring are defined in a
real-coded matrix P as

P =




p1,1 p1,2 . . . p1,δ

p2,1 p2,2 . . . p2,δ

...
...

. . .
...

pρ,1 pρ,2 . . . pρ,δ


 (17)

where ρ is the number of parameters used to define an MF. In
this paper, ρ = 3, because gbell MFs are used. The maximum
number of MFs in an FM is denoted by δ =

∑n s
j=1 Mmaxj

.
Thus, for any ai,j �= 0, the corresponding input MF parameters
are p1,l , p2,l , and p3,l , where

l =
{

ai,j , if j = 1
ai,j +

∑j−1
k=1 Mk, if j > 1.

(18)

Similarly as A states the input MFs used in the rules, an
integer-coded vector s defines the output MFs (singletons)
used in the rules. Formally, s = [s1 , s2 , . . . , sR ]T , where si ∈
{1, . . . , Mout}, with i = 1, . . . , R. The maximum number of
output MFs is denoted by Mout . The output MF parameters to
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which each si is referring are defined in a real-coded vector o =
[o1 , o2 , . . . , oM o u t ]

T . The total number of parameters to be opti-
mized by a multiobjective GFS is θ = Rns + ρδ + R + Mout ,
i.e., the sum of the cardinalities of A, P , s, and o.

C. Mamdani-Fuzzy-Model Coding: An Example

Let us assume that the first FM of the initial population has
four rules and uses two input variables x1 and x2 , which are par-
titioned, respectively, with three and two gbell MFs. The output
is partitioned with four singleton MFs. Both input variables and
the output are in the range of [0, 1]. The partitions are uniformly
shaped and evenly distributed. The rule base is given as follows.

Rule1: If x1 is 1 and x2 is 1, then output is 1.
Rule2: If x1 is 2 and x2 is 2, then output is 2.
Rule3: If x1 is 2 and x2 is 1, then output is 3.
Rule4: If x1 is 3 and x2 is 2, then output is 4.
This FM is coded as

A =




1 1
2 2
2 1
3 2


 , s =




1
2
3
4


 , o =




0
1/3
2/3
1




P =


 0.25 0.25 0.25 0.5 0.5

2.124 2.124 2.124 2.124 2.124
0 0.5 1 0 1




where the first, second, and third row of P contain the gbell
parameters a, b, and c, respectively. The first three columns of
P contain the gbell parameters of the three MFs of x1 and the
rest two columns contain the gbell parameters of the two MFs of
x2 . These parameters are computed according to the algorithm
in Section III-B.

D. Creation of the Rest of the Population

The first FM defines the maximum number of rules, maximum
number of input variables, and maximum number of MFs per
input variable for all the rest Npop − 1 FMs of the population,
where Npop is the population size.

If the rule base generated by slightly modified WM algorithm
has more than Rmax rules, it means that some of the randomly
selected rules in the first FM were replaced in order to avoid
gaps in the fuzzy partition. In this case, one of the Npop −
1 FMs receives the rule base (i.e., A and s) of the first FM
without any replacements. Then, A and s of the rest Npop −
2 FMs are created by randomly selecting Rmax rules from the
generated rule base.

If the generated rule base has at most Rmax rules, then the
rule conditions A of Npop − 1 FMs are created by modifying the
rule conditions of the first FM by replacing them with random
conditions [7]. However, do-not-care conditions (i.e., conditions
that are 0) are not allowed here, as it was pointed out in [8] that it
is easier to obtain compact than accurate FMs. Rule consequents
s for all Npop − 1 FMs are the same as in the first FM.

After creating A and s of the rest Npop − 1 FMs, the input
MF parameters P are assigned based on A of each individual
FM. For each input variable j of each FM, the number of active
MFs MA ,j is first checked. If MA ,j ≥ 2, then a new unevenly

distributed fuzzy partition with MA ,j MFs is created by using
the algorithm in Section III-C. If MA ,j < 2, then all nonzero
rule conditions, if any, of that input variable are forced to zero.
After this, this input variable has no active MFs, and the value
of MF parameters for this input variable can be assigned to any
value. However, if the genetic operators at a later stage cause at
least two MFs to be active, then the value of these parameters is
determined by the algorithm in Section III-C. Finally, the output
MF parameters o for all Npop − 1 FMs are the same as in the
first FM.

E. Creation of the Rest of the Population: An Example

Let us return to the example from Section IV-C and consider
creating one of the rest Npop − 1 FMs. Since the initial FM has
only 4 ≤ Rmax rules, the rules are created by modifying the
rules of the first FM. Assume that as a result, the condition If
x1 is 1 of the first rule was changed to If x1 is 3. Now, the FM
has no rule in which the condition If x1 is 1 is part of. Thus,
the input MF 1 of x1 is inactive and a new unevenly distributed
partition is created with two MFs and assigned to input MFs 2
and 3 of x1 , such that their order is maintained. Similarly, a new
unevenly distributed partition with two MFs is also created for
x2 , which still has two active MFs. The following could be the
result after these operations:

A =




3 1
2 2
2 1
3 2


 , s =




1
2
3
4


 , o =




0

1/3

2/3
1




P =


 0.25 0.3 0.7 0.8 0.2

2.124 3 9 7 4
0 0 1 0 1




where the operated parameters are indicated with boldface. The
parameter values of input MF 1 in x1 are indicated with italics,
because they are currently not important. If at some point of
optimization, MF 1 becomes active again, the values will be
assigned by the algorithm in Section III-C. Before this, none of
the genetic operators will operate on these parameters.

V. DYNAMICALLY CONSTRAINTED MULTIOBJECTIVE GENETIC

FUZZY SYSTEM

After the initialization, the further optimization is performed
by popular NSGA-II [31]. Other parts of the algorithm are
left unchanged; however, the original genetic operators are re-
placed with operators applying dynamic constraints, thus ensur-
ing transparency of fuzzy partitions.

A. Fitness Objectives

Two objectives are to be minimized, which are as follows.
1) MSE = (1/2D)

∑D
k=1(yk − ŷk )2 , where yk and ŷk are

the actual and predicted outputs for data point k, and D
is the number of data points. This objective is actually
MSE/2, but it is denoted here as MSE, which is quite
common in the field of GFSs.
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2) Number of active-rule conditions (total rule length):
Rcond .

The MSE objective is constrained, such that, each FM need
to have MSE ≤ 1.5 × MSEinitial , where MSEinitial is the MSE
of the first FM of the initial population created in Section IV-A.
This constraint is fairly easy to meet as it will be seen in
Section VI that the accuracy can be significantly improved by
multiobjective GFS optimization. However, it guarantees that
the population does not contain some FMs only because they
are very compact. Their accuracy must be reasonable as well.

B. Static Constraints for Output Membership Functions

As singleton output MFs are used, there is only one parameter
to be optimized (lateral displacement). Therefore, they can be
constrained by allowing them to slightly move left/right from
their initial positions. The applied static constraints for output
MF parameters are

χlow − χ

Mout − 1
≤ o1 ≤ χlow +

χ

2(Mout − 1)

χlow +
(2k − 3)χ

2(Mout − 1)
≤ ok ≤ χlow +

(2k − 1)χ
2(Mout − 1)

where k = 2, . . . ,Mout − 1

χh − χ

2(Mout − 1)
≤ oM o u t ≤ χhigh +

χ

Mout − 1
.

This way of tuning resembles lateral-tuning method [9], and
it guarantees transparency of output fuzzy partition to a good
level.

C. Dynamic Constraints to Ensure the Transparency of Input
Fuzzy Partition

This section presents the dynamic constraints guaranteeing
transparent input fuzzy partition in case that a parameter of
an MF is modified. The genetic operators assuring transparent
input fuzzy partition in case that the number of MFs is altered
are introduced later in Section V-D. A prerequisite for these
dynamic constraints is that initially (i.e., before modification)
the input fuzzy partition is transparent. This is guaranteed by the
two partition algorithms, which have already been introduced
in Section III-B and Section III-C.

MF parameters are modified one at a time. After each modifi-
cation, the resulting fuzzy partition must satisfy the transparency
conditions defined in Section III-A. As the initial fuzzy parti-
tions are created by the algorithms in Section III-B and III-C, the
ordering of MFs is initially known. The ordering is also known
after each modification, because the dynamic constraints and
the genetic operators in Section V-D do not allow to change
it. Therefore, for any two MFs with parameters ai, bi , and ci ,
and aj , bj , and cj , where j, i,∈ [1,MA], with i �= j, of an input
variable that currently has MA active MFs, it is guaranteed that
if i > j, then ci > cj and vice versa. This is beneficial to design
the dynamic constraints.

Besides the dynamic constraints, some static constraints also
need to be satisfied; aj ∈ [alow , ahigh ], where alow = 0.005χ,
and ahigh = χ. Furthermore, bj ≥ blow = 1, and it is preferred

that bj ≤ bhigh = 10; however, due to partition algorithms, it
may be that initially bj > bhigh . In this case, bj is not al-
lowed to increase anymore. Finally, cj ∈ [clow , chigh ], where
clow = χlow , and chigh = χhigh . Next, the dynamic constraints
are introduced. They can all be derived starting from (2) and (3).

1) Dynamic Constraints for Parameter a: If aj is increased
(i.e., MF j becomes wider), the upper limit satisfying the γ-
condition is

aγ ,j =
dcenter,j

(κ(γ))1/2bj

where κ(γ) and dcenter,j are computed according to (4) and (8),
respectively.

The upper limit satisfying the α-condition is

aα,j =
dα,j

(κ(α))1/2bj

where

dα,j =




min(IL(α,pj+1) − cj , cj − IR(α,pj−1)),
if 1 < j < MA

cj − IR(α,pj−1), if j = MA
IL(α,pj+1) − cj , if j = 1

is the minimum distance from cj to the point in which a neigh-
boring MF receives membership value α. IL , and IR are com-
puted according to (2) and (3), respectively.

If aj is decreased (i.e., MF j becomes more narrow), the
lower limit satisfying the β-condition is

aβ,j =




dβ,j

(κ(β))1/2bj
, if dβ,j > 0

alow , if dβ,j ≤ 0

where

dβ,j =




max(IL(β,pj+1) − cj , cj − IR(β,pj−1)),
if 1 < j < MA

max(χhigh − cj , cj − IR(β,pj−1)), if j = MA
max(cj − χlow , IL(β,pj+1) − cj ), if j = 1

is computed depending on the location of MF j. If dβ,j ≤ 0,
UoD will be strongly covered regardless of the decrement in
the value of aj . In this case, the lower limit satisfying the β-
condition is simply the static constraint alow .

Combining the constraints yields to

max(alow , aβ ,j ) ≤ aj ≤ min(aγ ,j , aα,j , ahigh).

2) Dynamic Constraints for Parameter b: If bj is increased
(i.e., MF j becomes crisper), the following upper limit guaran-
tees the fulfillment of α-condition:

bα,j =




lnκ(α)
2 ln (dα,j /aj )

, if dα,j < aj

bhigh , if dα,j ≥ aj .

If dα,j ≥ aj , MF j receives at most a membership value α at
any intersection point, regardless of the increment in the value
of bj . In this case, the upper limit is the static constraint bhigh .
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The following upper limit guarantees the fulfillment of β-
condition:

bβ ,j =




ln κ(β)
2 ln (dβ,j /aj )

, if dβ,j > aj

bhigh , if dβ,j ≤ aj .

If dβ,j ≤ aj , MF j receives at least a membership value β
at the intersection point(s) of its neighboring MF(s), which is
regardless of the increment in bj . In this case, the upper limit is
the static constraint bhigh .

If bj is decreased (i.e., MF j becomes fuzzier), the following
lower limit satisfies the γ-condition:

bγ ,j =
ln κ(γ)

2 ln(dcenter,j /aj )
.

Combining the constraints yields to1

max(blow , bγ ,j ) ≤ bj , if bj ≥ bhigh

max(blow , bγ ,j ) ≤ bj ≤ min(bhigh , bα,j , bβ ,j ),

if bj < bhigh .

3) Dynamic Constraints for Parameter c: If cj is increased
(MF j is moving toward right), the following upper limit guar-
antees the fulfillment of α-condition (only the right α-condition
needs to be taken into account):

c+
α,j =

{
chigh , if j = MA
cj + (IL(α,pj+1) − IR(α,pj )), if j < MA .

Furthermore, the following upper limit guarantees the fulfill-
ment of β-condition (only the left β-condition needs to be taken
into account):

c+
β ,j =

{
cj + (IR(β,pj−1) − IL(β,pj )), if j > 1
cj + (χlow − IL(β,pj )), if j = 1.

Finally

c+
γ ,j =

{
chigh , if j = MA
cj + min(cj+1 − IR(γ,pj ), IL(γ,pj+1) − cj ),

if j < MA

is the upper limit guaranteeing the fulfillment of γ-condition
(only the right γ-condition needs to be taken into account).

If the value of c is decreased (MF j is moving toward left),
the applied constraints are

c−α,j =
{

cj − (IL(α,pj ) − IR(α,pj−1)), if j > 1
clow , if j = 1

c−β ,j =
{

cj − (IR(β,pj ) − χhigh), if j = MA
cj − (IR(β,pj ) − IL(β,pj+1)), if j < MA

c−γ ,j =




cj − min(IL(γ,pj ) − cj−1 , cj − IR(γ,pj−1)),
if j > 1

clow , if j = 1.

Combining the constraints yields to

max
(
c−α,j , c

−
β ,j , c

−
γ ,j

)
≤ cj ≤ min

(
c+
α,j , c

+
β ,j , c

+
γ ,j

)
.

1Recall that bj can be increased only if bj < bhigh .

D. Genetic Operators

Five mutation and crossover operators are used. Some of them
are not always applicable; therefore, when mutation or crossover
is applied, one of the currently applicable operators is randomly
selected by uniform chance. Crossover is applied with proba-
bility Pc = 0.1 + (G/GTot), where G is the current generation,
and GTot is the total number of generations. If crossover was
applied, mutation is applied with probability Pm = 0.1, and
if crossover was not applied, mutation is always applied. This
strategy is similar to strategy applied in [3].

Upper and lower limits for each modified parameter are
computed according to Sections V-B and C and denoted by
Lupper and Llower . Number of currently active MFs in an in-
put variable is denoted by MA and a random real number by
r ∈ [0, 1] .

1) Mutation Operators: Operator 1 modifies the parameters
of input MFs. First, the number of input variables that have at
least two active MFs is determined. This number is denoted here
by nactive . Then, out of nactive input variables, nselect of them
are randomly selected, where nselect ∈ [1, nactive ] is a random
integer. From each of these nselect input variables, an active MF
is randomly selected. Then, for each of them, a gbell parameter
(a, b, or c) is randomly selected. They are denoted by pi,l ,
where i is 1, 2, or 3 depending upon which gbell parameter is
modified, and l is the index of an active MF in P [see (17) and
(18)]. Each pi,l is replaced by randomly selecting one of the
following replacement formulas: pi,l ← pi,l + r(Lupper − pi,l)
or pi,l ← pi,l − r(pi,l − Llower).

Operator 2: The mutation operator 1 modifies input MF pa-
rameters individually; however, sometimes more drastic mod-
ification may be necessary. Therefore, this operator selects an
input variable for which MA ≥ 2 and creates a new unevenly
distributed partition with MA MFs using the algorithm defined
in Section III-C.

Operator 3 modifies the rule base by randomly selecting
nrulecond rule conditions ai,j [see (16)], where nrulecond ∈
[1, 10] is a random integer. The selected rule conditions are
replaced with random rule conditions; however, as it is easier
to obtain compact than accurate FMs [8], this operator favors
nonzero-replacement conditions during the first half of the total
number of generations GTot . Therefore, if G < GTot/2, then
the probability that a replacement condition is selected from
[0,Mmaxj

] is Pz = 2G/GTot , and the probability that it is se-
lected from [1,Mmaxj

] is 1 − Pz . When G ≥ GTot/2, replace-
ment conditions are always selected from [0,Mmaxj

].
The resulting input fuzzy partition may not be transparent if

some MFs have become active or inactive, thus resulting into
highly overlapping MFs or gaps in the fuzzy partition. Thus, the
set of these input variables that use different MFs in the rules
than before this operator is determined. Then, MA for each of
these input variables is determined. For these input variables for
which MA ≥ 2, new unevenly distributed partition with MA
MFs is created. If MA < 2, all nonzero conditions, if any, of
that input variable are forced to zero. This operation is called
repair operator, and it guarantees transparency of input fuzzy
partition.
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Operator 4 modifies a consequent si, where i = 1, . . . , R,
of a randomly selected active rule by replacing it by random
consequent chosen from [1,Mout ]. A rule is active if it has at
least one nonzero-rule condition.

Operator 5 modifies the lateral displacement of a randomly
selected active-output-MF center (an output MF is active if it
is used in at least one of the active rules). The selected output-
MF center oi, where i = 1, . . . , Mout , is replaced by randomly
selecting one of the following formulas: oi ← oi + r(Lupper −
oi) or oi ← oi − r(oi − Llower).

2) Crossover Operators: All five crossover operators ran-
domly select two FMs as parents and produce two FMs as chil-
dren. They replace their parents in the offspring population. The
crossover operators 1, 4, and 5 resemble the mutation operators
1, 4, and 5.

Operator 1 modifies the parameters of active input MFs us-
ing BLX-0.5 crossover [23], [32]. It can be applied to input
variables, which have the same amount (at least 2) of active
MFs in both parents. The number of input variables meeting
these requirements is denoted by nactive . Out of them, nselect
are randomly selected, where nselect ∈ [1, nactive ] is a random
integer. For each of these nselect input variables, an active MF
j ∈ [1,MA] is randomly selected (the same j from both par-
ents). Then, from each of these selected active MFs, a gbell
parameter (a, b, or c) is randomly selected (the same parameter
from both parents).

Let p1
i,l1

and p2
i,l2

denote the selected parameters from parents
1 and 2, respectively. The index i is 1, 2, or 3 depending on which
gbell parameter is selected [see (17)]. The indexes l1 and l2 are
determined according to (18). The parameters are replaced by
randomly selecting either pk

i,lk
← pk

i,lk
+ r(min(I, Lupper −

pk
i,lk

)) or pk
i,lk

← pk
i,lk

− r(min(I, pk
i,lk

− Llower)), where k =
1 and 2, and I = 0.5|p1

i,l1
− p2

i,l2
|.

Operator 2: First, an input variable, for which at least one of
the parents has at least two active MFs, is randomly selected.
After this, all rule conditions and input MF parameters of this
input variable are pairwisely swapped. Therefore, child 1 re-
ceives all the parameters of parent 1, except rule conditions and
input MF parameters of the selected input variable, which are
received from parent 2. Likewise, child 2 gets all the parameters
of parent 2, except rule conditions and input MF parameters of
the selected input variable, which are received from parent 1.

Operator 3 swaps some rules of the parents. It is applicable
to those rules that are active in at least one of the parents. Out of
these rules, Nselect of them are selected and their rule conditions
are pairwisely swapped (Nselect is a random integer chosen from
[1, 5]).

After this operator, input fuzzy partitions may not be trans-
parent. Therefore, for both children separately, the same repair
operator as with the mutation operator 3 is applied.

Operator 4 modifies the rule consequents si, where i =
1, . . . , R. This operator is possible for those rules that are active
in at least one of the parents. The operator selects one of these
rules randomly and swaps consequents of this rule.

Operator 5 modifies the lateral displacement of output MF
centers. This operator is possible for those output MF cen-

TABLE II
PROPERTIES OF THE DATASETS AND THE APPLIED PARAMETERS

ters that are active in both of the parents. Out of them,
one is randomly selected from both parents (the same from
both parents). They are denoted here by o1

i and o2
i , where

i = 1, . . . ,Mout . They are replaced by randomly selecting one
of the following formulas: ok

i ← ok
i + r(min(I, Lupper − ok

i ))
or oi ← ok

i − r(min(I, (ok
i − Llower)), where k = 1 and 2, and

I = 0.5|o1
i − o2

i |.

VI. EXPERIMENTS

Our multiobjective GFS is validated using nine datasets,
which represent different number of input variables and data
points (see Table II). For all datasets, five-fold cross-validation
was repeated six times (6× 5CV) with different random seeds.
The data partitions for Ele1, Ele2, Abalone, Mortgage, Trea-
sury, and Computer problems were downloaded from KEEL
Website.2 MG and Lorenz datasets were generated according
to [3] and [20]. Finally, Gas dataset was obtained from the
Website of Greg Reinsel.3 For Mackey–Glass (MG), Lorenz,
and Gas problems, the same data partitions as in the comparative
study [20] were used. C4.5 was run with its default parameters
defined in [29]. Population size was fixed to 100 and the number
of generations was altered, such that, the same amount of fitness
evaluations was used as in the comparative studies. The settings
α = 0.8, β = 0.05, and γ = 0.25 are used in the experiments
performed in Section VI-B–F. Furthermore, in VI-G, experi-
ments with α = 0.6, β = 0.4, and γ = 0.1 will be performed
in order to study the tradeoff between transparency of fuzzy
partitions and accuracy.

For six of the datasets (Ele1, Ele2, MG, Lorenz, Abalone, and
Gas), there exist results of one or more recent GFSs presented
in Table III. For these problems, the number of input and output
MFs (Min and Mout) were selected the same as in the compar-
ative studies. For treasury, mortgage, and computer problems,
our method is compared against a baseline method. For these
higher dimensional problems, Min and Mout were both set to 3
in order to reduce the search space.

Since MOEAs are applied, it is interesting to visualize the
Pareto fronts. However, it is not meaningful to visualize the
Pareto fronts of all 30 CV runs for each dataset. The aver-
aged results of the ith most accurate FMs from each of the
30 Pareto fronts were shown in [8] for five of the most accu-
rate FMs (i.e., i = 1, . . . , 5). These averages were computed,

2http://sci2s.ugr.es/keel/datasets.php
3http://www.stat.wisc.edu/∼reinsel/bjr-data/index.html
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TABLE III
PROPERTIES OF THE COMPARATIVE GFSS

such that, none of the 30 Pareto fronts were excluded from
computing the averages. Thus, in each of the Pareto fronts,
there were at least five distinct FMs. In this paper, the max-
imum value of i (imax ) is not the same for all datasets, but
depends on the minimum number of distinct FMs on the 30
Pareto fronts. More formally, imax = min(L1 , L2 , . . . , L30),
where Lj , with j = 1, . . . , 30, is the number of distinct FMs
on the jth Pareto front of a given dataset. Thus, the length of the
averaged Pareto front equals to the length of the shortest Pareto
front of the 30 runs.

Besides the Pareto fronts, the number of rules R, rule con-
ditions Rcond , input MFs, and the number of input variables F
for some of the ith most accurate FMs are tabulated. Moreover,
the unequal variance t-test4 (denoted by t) with 95% confidence
is reported for the MSEtrn and MSEtst . The same notations as
in [6], [8], and [23] are used; 
 stands for the best averaged
result in the column, + means that the performance of the cor-
responding row is worse than the best result, and = means that
there is no significant statistical difference compared to the best
result.

A. Comparative Genetic Fuzzy Systems

The comparative approaches global lateral tuning (GL),
global lateral tuning with rule selection (GL+S), global lat-
eral amplitude tuning (GLA), and global lateral amplitude tun-
ing with rule selection (GLA+S) minimize only one objective,
namely, MSE, whereas the rest minimize two or more objectives
simultaneously and obtain a set of Pareto optimal FMs. All GFSs
use globally defined MFs. The approaches [6], [8], [23] create
the initial populations using WM algorithm, whereas in [20],
C4.5 algorithm is used. In this paper, the initial population is
created by a method combining the benefits of C4.5 and WM
algorithms.

Performance of GFS designs depends on their individual com-
ponents, such as initialization method and MFs tuning strategy.
For example, by applying different initialization methods, per-
formance of a GFS can be significantly improved or deteriorated.

4Also called Welch’s t-test [33], [34]. If our multiobjective GFS could be
compared to other GFSs in all problems, nonparametric tests would be preferred.

This is because appropriate initialization eases the derivation of
better FMs due to reduction in the search space [15]. Because
this paper and the comparative studies apply different initial-
ization methods, the purpose of the results comparisons is not
to assess the superiority of any individual components, but to
assess the superiority of different approaches as a whole. As-
sessing the superiority of individual components is, of course,
important, but requires another study in the future. It should be
noted, however, that the results comparisons can be considered
fair, because the same amount of fitness evaluations, the same
data partitions, and the same amount of input and output MFs
are used, as in the comparative studies. Also, our approach does
not require any more a priori knowledge about the datasets than
the comparative methods.

To evaluate the transparency of fuzzy partitions, we fol-
low [6], which states that two-tuple representation leads to
more transparent fuzzy partition than three-tuple representation.
Moreover, three-tuple representation is more transparent than
classic three-parameter representation with static constraints.
In [8] and [23], static constraints were defined, such that, MF
parameters can vary within small intervals, whereas in [20],
larger intervals were used. Therefore, we consider the trans-
parency of fuzzy partitions in [20], which is the poorest among
the comparative GFSs. Both two-tuple presentation and the pro-
posed dynamic constraint approach maintain the transparency
of fuzzy partitions at a good level. Since the approaches are
quite different and because transparency of fuzzy partitions is
a subjective matter, it is difficult to judge which one of them
yields into more transparent fuzzy partitions. Therefore, their
interpretability is considered equal.

B. Estimating the Length of Low-Voltage Lines (Ele1)

For this problem, 50 000 fitness evaluations were used in this
paper and in [6]. Table IV shows that GLA+S has the lowest
MSEtrn , and our most accurate FM (Final-1) has practically
the same value. There is no statistical difference between the
lowest MSEtrn and three of our most accurate FMs (Final-1,
Final-2, and Final-3). The lowest MSEtst is obtained by GLA,
but again, there is no statistical difference between the lowest
MSEtst and three of our most accurate FMs. There is no clear
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TABLE IV
RESULTS COMPARISON FOR ELE1 PROBLEM

TABLE V
RESULTS COMPARISON FOR ELE2 PROBLEM

difference between different approaches for this problem, be-
cause the search space is small due to small amount of input
variables. It is also noticed that although Min was set to 5, the
initial FM uses on average nine input MFs. Therefore, one of
the input variables is usually partitioned with four and the other
one with five input MFs.

C. Estimating the Maintenance Costs of Medium-Voltage Lines
(Ele2)

This problem is more interesting as it contains four input vari-
ables. First, our multiobjective GFS was run for 50 000 fitness
evaluations and compared to [6] and [23], which use the same
amount of fitness evaluations. Table V shows that our multiob-
jective GFS has the lowest MSE in train and test sets. There
is also statistical difference between our approach and all other
approaches when MSEtst is considered. When MSEtrn is con-
sidered, there is statistical difference between our approach and
all other approaches, except TS-SPEA2Acc . Our FMs can also
be considered as the most interpretable, because they are clearly
the most compact, and the transparency of fuzzy partitions is at
least the same as in the comparative FMs (see also Table III).

Our approach was also run for 100 000 fitness evaluations (the
same amount as in [8]). Table V shows that our FMs are the most

accurate according to t-test. They are also clearly more compact
than the FMs in [8]. Finally, because in [8], three-parameter MFs
tuning with static constraints was used, the fuzzy partitions of
our FMs can be considered more transparent.

D. Predicting the Age of Abalone

This problem has eight input variables and a very high noise
level. According to [8], usually the learning methods yields into
similar accuracy. Thus, it may not be possible to improve the
accuracy, but only to improve the interpretability, compared to
existing methods in the literature. In this paper and also in the
comparative study [8], the number of fitness evaluations was
set to 100 000. According to Table VI, there is no clear differ-
ence in accuracy between different GFSs. The lowest MSEtrn
was obtained by TS-SPEA2Acc and the lowest MSEtst by our
approach (Final-1). On the other hand, our approach presents a
significant improvement in interpretability. Our FMs are clearly
more compact than the comparative FMs. They have much less
rule conditions and use much less input variables. Furthermore,
according to Table III, our fuzzy partitions can be considered
more transparent than the fuzzy partitions in [8].
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TABLE VI
RESULTS COMPARISON FOR ABALONE PROBLEM

TABLE VII
RESULTS COMPARISON FOR MG, LORENZ, AND GAS PROBLEMS

E. Mackey–Glass, Lorenz, and Gas Problems

Our multiobjective GFS is compared to our former multiob-
jective GFS [20], which was run for 210 000 fitness evaluations
on these problems. The same amount of fitness evaluations is
used here. Table VII shows that our most accurate FMs are
significantly more accurate than the most accurate FMs of our
former study. On the other hand, they also contain much more
rules and rule conditions than FMs in [20].

The least accurate FMs of the averaged Pareto fronts for each
problem are also presented and denoted by Final-8, Final-4, and
Final-9. One can notice that they are still more accurate than
the most accurate FMs in [20]. On the other hand, they are
also more complex with regards to number of rules and rule
conditions. The number of input variables and the number of
MFs is approximately the same. Table III shows that the FMs
in [20] have the worst transparency of fuzzy partitions and our
FMs have the best.

F. Higher Dimensional Problems: Treasury, Mortgage, and
Computer Activity

Our approach was run for 100 000 fitness evaluations on these
problems. To the best of our knowledge, there are no results of
other GFSs available for these problems.5 Nonetheless, it is
important to include a baseline method in order to have an idea

5At the time of writing the final version of this paper, this statement no longer
holds true. There are recently published results available for some [26] and
all [22] of these problems. However, the experimental setup in those papers
differ significantly from the experimental setup of this paper. Thus, our results
are not compared to them.

about the performance of our approach. Thus, Genfis3, a fuzzy-
c-means (FCM) clustering-based method was used to identify
Mamdani FMs. This method is part of MATLAB’s Fuzzy Logic
Toolbox 2. All settings, besides the type of FM, were kept at
their default values and 6× 5CV with the same data partitions
as with our multiobjective GFS was performed.

Table VIII shows that our FMs are significantly more accu-
rate than the comparative FMs. Moreover, they have less input
variables and input MFs than the comparative FMs. The compar-
ative FMs usually have less rules, but more rule conditions, than
our FMs. By visual inspection, it was noticed that the fuzzy par-
titions by Genfis3 often contain many highly overlapping MFs
and the UoD may not be strongly covered.

G. Fuzzy Partition Transparency Versus Accuracy Tradeoff

The experiments in Section VI-B–VI-F were performed with
α = 0.8, β = 0.05, and γ = 0.25. If one requires higher trans-
parency of fuzzy partitions, the settings α = 0.6, β = 0.4, and
γ = 0.1 could be used. The 6× 5CV procedures for all nine
problems were repeated with these settings. The averaged re-
sults of the most accurate FMs are shown in Table IX along with
the best and the worst results from Tables IV–VIII. In Fig. 4,
the averaged Pareto fronts for five of the studied problems are
shown. It is seen from Table IX and Fig. 4 that by improving
transparency of fuzzy partitions, accuracy is deteriorated, but
remains at a reasonable level.

Transparency of fuzzy partitions is evaluated against a fuzzy
partition, which has three desirable properties: 1) The member-
ship values at the intersections of neighboring MFs are always
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TABLE VIII
RESULTS COMPARISON FOR HIGHER DIMENSIONAL PROBLEMS

TABLE IX
AVERAGED RESULTS OF THE MOST ACCURATE FMS USING α = 0.6, β = 0.4, AND γ = 0.1

Fig. 4. Averaged Pareto fronts over 30 CV runs for Ele2 with 50 000 and 100 000 fitness evaluations, Abalone, Gas, Mortgage, and Computer problems. TP
stands for transparent fuzzy partitions obtained by α = 0.8, β = 0.05, and γ = 0.25, whereas HT stands for highly transparent fuzzy partitions obtained by
α = 0.6, β = 0.4, and γ = 0.1.
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TABLE X
COMPARISON OF THE AVERAGED FUZZY-PARTITION QUALITY INDEXES OF THE MOST ACCURATE FMS AND THE AVERAGE LENGTH

OF THE PARETO FRONTS WITH DIFFERENT SETTINGS OF α, β , AND γ

Fig. 5. Ele2 (50 000 fitness evaluations). Examples of the most accurate FMs of one run using the same data partition. (Left) α = 0.8, β = 0.05, γ = 0.25,
MSEtrn = 13277, MSEtst = 12884, QInt = 0.27, QM id = 0.23, and QExt = 0.00. (Right) α = 0.6, β = 0.4, γ = 0.1, MSEtrn = 18272, MSEtst =
19439, QInt = 0.09, QM id = 0.10, and QExt = 0.00.

0.5; 2) in the center of an MF, all other MFs receive membership
value 0; and 3) at the extreme points χlow and χhigh of UoD,
one MF receives membership value 1. Three quality indexes are
therefore computed for each fuzzy partition: 1) QInt : the max-
imum absolute difference from the desired intersection mem-
bership value 0.5; 2) QMid : the maximum membership value
of an MF in the center of another MF; and 3) QExt : the max-
imum absolute difference from the desired membership value
1 at the extreme points of UoD. For a strong fuzzy partition,
QInt = QMid = QExt = 0. One must, however, note that even
a strong fuzzy partition can be poorly transparent, for example,
when some of the MFs are very close to each other. These qual-
ity indexes do not take into account this kind of transparency
aspects.

Table X compares the averaged quality-index values of the
most accurate FMs for different settings of α, β, and γ. More-
over, the average number ND and standard deviation σND of
distinct FMs on a Pareto front are shown. It is clearly seen that
with the settings α = 0.6, β = 0.4, and γ = 0.1, more transpar-
ent fuzzy partitions are obtained (i.e., the quality-index values
are lower). The average length of Pareto fronts is, however,
not clearly affected by the settings, but depends on the charac-
teristics of each problem. As the number of rule conditions is
one of the two fitness objectives, the Pareto fronts tend to be
longer if the number of rule conditions in initial FM is high (see
Tables IV–VIII).

Figs. 5 and 6 show examples of the most accurate FMs for
Ele2 and Mortgage problems with different settings of α, β,
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Fig. 6. Mortgage: Examples of the most accurate FMs of one run using the same data partition. (Left) α = 0.8, β = 0.05, γ = 0.25, MSEtrn = 0.028,
MSEtst = 0.072, QInt = 0.35, QM id = 0.11, and QExt = 0.00. (Right) α = 0.6, β = 0.4, γ = 0.1, MSEtrn = 0.036, MSEtst = 0.090, QInt = 0.09,
QM id = 0.10, and QExt = 0.00.

and γ. It is seen that the fuzzy partitions are more transparent
when α = 0.6, β = 0.4, and γ = 0.1. One may notice that our
approach performs input-variable selection, rule learning, gran-
ularity learning, and MF-parameters tuning. For example, it can
be seen that one of the input variables for Mortgage problem is
partitioned with three MFs, whereas the others are partitioned
with two MFs. Moreover, these example FMs for Mortgage
problem use only three or four input variables, even though the
problem has 15 input variables.

VII. CONCLUSION

A dynamically constrained multiobjective GFS to learn the
granularities of fuzzy partitions, tuning the MFs, and learning
the fuzzy rules was proposed. It uses dynamic constraints, which
enable application of three-parameter MFs tuning to improve
the accuracy without deteriorating the transparency of fuzzy
partitions. A new initialization method was also proposed. It
combines the benefits of WM and DT algorithms, and reduces
the number of rules, rule conditions, and input variables, while
preserving the transparency of fuzzy partitions. Being a heuristic
and suboptimal method, its main purpose is not to obtain very
accurate and compact initial FMs, rather, its main purpose is
to reduce the search space and, therefore, to ease the further
optimization.

Nine benchmark problems having 2 up to 21 input variables
were studied, and our multiobjective GFS was tested against 11

recently proposed multiobjective and monoobjective GFSs on
six of these nine problems. It was seen that our approach always
results into at least comparable accuracy and interpretability
with the comparative approaches. Moreover, on some bench-
mark problems, it clearly outperformed some of the compara-
tive approaches. On the rest three datasets, which have up to 21
input variables, it was tested against a FCM clustering method.
It was seen that our FMs are more accurate and interpretable
than the FMs obtained by FCM.

Our approach is suitable for both lower and higher dimen-
sional problems. Suitability to higher dimensional problems is
aided by the initialization method, which usually reduces the
number of input variables. Naturally, if none of the input vari-
ables can be removed in initialization phase, the search space
will be larger. This poses a challenge to any GFS and requires
further research. By our approach, fuzzy partitions with differ-
ent levels of transparency can be obtained by different settings
of α, β, and γ. It was shown that there exists a clear tradeoff
between transparency of fuzzy partitions and accuracy. Finally,
in this paper, regression problems were considered. However,
our approach can be made suitable for classification problems
as well [35].
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[8] M. J. Gacto, R. Alcalá, and F. Herrera, “Adaptation and application of
multi-objective evolutionary algorithms for rule reduction and parameter
tuning of fuzzy rule-based systems,” Soft Comput., vol. 13, no. 5, pp. 419–
436, Mar. 2009.
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