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Abstract—This paper presents a multiobjective evolutionary
algorithm to optimize radial basis function neural networks
(RBFNNSs) in order to approach target functions from a set
of input-output pairs. The procedure allows the application of
heuristics to improve the solution of the problem at hand by
including some new genetic operators in the evolutionary process.
These new operators are based on two well-known matrix trans-
formations: singular value decomposition §VD) and orthogonal
least squares QLS), which have been used to define new mutation
operators that produce local or global modifications in the radial
basis functions (RBFs) of the networks (the individuals in the
population in the evolutionary procedure). After analyzing the
efficiency of the different operators, we have shown that the global
mutation operators yield an improved procedure to adjust the
parameters of the RBFNNSs.

Index Terms—Evolutionary computation, neural networks, ra-
dial basis functions (RBFs), orthogonal transformations, heuris- T1 Tk Zq
tics.

Fig. 1. Structure of a RBFNN.
I. INTRODUCTION

ADIAL BASIS function neural networks (RBFNNS)
[8] consist of neurons which are locally tuned. A
RBFNN can be regarded as a feedforward artificial neural o |z — ¢ ||?
network (ANN) [37] with a single layer of hidden units, whose ¢j(z; e’ 1) = exp (W) (2)
responses are the output of radial basis functions (RBFs), as
shown in Fig. 1. Formally, an RBFNN can be described by theherec’ is the RBF center and determines where it is allocated

RBFs that satisfy this condition [47], [69], [70], [81], although
nthe most commonly used RBF is the Gaussian function

following equation in the input space, and is its radius, which indicates how the
. basis function response decreases as the input vecemedes
' . J
.7:(1‘;‘1)79)22(4)]"(/)]'(1:;6]77‘j) 1) from ¢/,

RBFNNSs as presented earlier have been shown to be universal
approximators [61], [62] even when using the same radius for

whered is the input space dimensionality ands the number of all the RBFs in the net, although if a different raditisis used
hidden units. The output of the n&tdepends on the input vectorfor €ach RBFj;, it is possible to obtain a better fitted model
z = (z1,...,24)7,andonthe sets of RBAS = {1, ..., ¢,,} USiNg fewer hidden units [59].

and weight€2 = {wy,...,w,,}, as explicitly indicated in (1). Due to their simple structure, compared with other ANNs
Each RBF locally contributes to the net output. This contrib@lch as multilayer perceptrons (MLPs) [38], there has been
tion will depend on the distance from the input vectato the increasing research interest in RBFNNs and their applicability
centere’ of each RBR$;, and is 1 if|z — ¢/|| = 0 and tends to @S function approximators, plant controllers, and classifiers

0 as||z — ¢/ || increases. There are many possibilities to choode recent years [44], [47], [51], [71], [69], [70], [68]. The
optimum values for the weights i can be obtained by

sglving an overdetermined linear system of equations once

Manuscript received February 26, 2002; revised August 22, 2002 and Mar; . .
3, 2003. This work was supported in part by the Spanish Ministerio de Cien(',:he RBFs in® have been fixed [5]' [57]' There are several

y Tecnologia under Project DP12001-3219. well known methods to perform this task, such as Cholesky
The authors are with the Department of Computer Architecture and Compuéﬁﬁcomposition [67] [66] the orthogonal least squares (OLS)

Technology, E.T.S. Ingenieria Informatica, University of Granada, E. 18071 . L.
Granadagépain_ 9 Y method [15], or singular value decomposition (SVD) [45].

Digital Object Identifier 10.1109/TNN.2003.820657 Thus, the problem can be reformulated as one of how to set

i=1

1045-9227/03$17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 23:26:08 UTC from IEEE Xplore. Restrictions apply.



GONZALEZ et al: SIZE, SHAPE, AND POSITION PARAMETERS OF RBF NETWORKS 1479

the parameters concerning each RBF (its center and radiuspperators are compared with a random (blind) type mutation

order to minimize an error criterion. In the literature, severah Section V, and some experimental results are presented in

algorithms to identify these parameters have been publish&ction VI, where the MOEA is applied to several benchmark

especially because one-stage gradient-descent algorithms tmeblems and the results are compared with those obtained

stability problems when dealing with spread parameters by other approaches used to solve function approximation

RBFs [5], [47], [46]. problems. Finally, some interesting conclusions are presented
One of the first, proposed in [57], consists in allocating thie Section VII.

centers of the RBFs using a clustering technique such as the

C-means algorithm [24] or the fuzzy-means algorithm [4], es- [I. ORTHOGONAL TRANSFORMATIONS

timating the radii by using heuristics like tihenearest neighbor Once the parameters concerning the RBFs have been fixed,

(KNN), the closest input vector (CIV) [47], or other heuriStictheir associated weights can be optimally calculated using a

criteria. for two-_stage RBF I_earnmg, e.g., those proposed ﬁxear systems solver. Equation (1) can be seen as a special case
Bruzzoneet al. in classification tasks [9]. These approache

o . of linear regression
are useful for classification problems, where clustering algo- -
rithms perform well. Nevertheless, the use of clustering algo- k _ o k

rithms may not produce a good initialization in the set of RBFs v Zpk] wite ktl..n ®)
for a function approximation problem. In [34], based on the en-
hanced LEG algorithm [63], the clustering for function approi’—v
imation (CFA) algorithm is proposed to obtain the initial posi- Prj = ;e ) (4)
tion of the RBFs taking into account the target function output
variability. Other recent works have proposed different sophisp-
cated algorithms such as the resource allocation network (RA&I-
[64], or the growing radial basis function [47], which add neu-
rons to the net until a stopping criterion is met. An enhanced y=Pw+e (5)
version of RAN that performs node pruning based on SVD aRgherey = [y',...,y"]T € R™ is the column vector containing

QRcp (QR . with column pivoting) decompositions has beeR| the expected output®, = [p, .. .., p,,] € R"*™ is a matrix
proposed recently [75], [76]. This new algorithm allows the dggnose columng; = [p1;, ... ,pn;]T € R" represent the output
termination of the optimal number of RBFs in the network agf the jth basis function for all the input vectors. The vector
well as the ideal input space configuration for time series prg-— [e',...,e"]T € R" contains all the errors committed by the
diction applications. model (assumed to be uncorrelated), arisla vector containing
Evolutionary Algorithms (EAs) [56] have also been applieghe net weights. Henceforth in this pagewill be the activation
to optimize the parameters defining RBFNNs [50], [54], [83]matrix of the RBEFNN andPw will be the predictor of the model.
[84]. However, EAs are a generic optimization technique whos@e number of training samplesis usually greater than the

results can be improved if some expert knowledge about thgmber of RBFsn, and so we only have to solve the following
problem to be solved is incorporated [2]. This hybridization Qfyerdetermined linear system

the robustness and strength of EAs and the expertness of the

heuristics improves the optimization procedure. Thus, adapted y=rw (6)

EAs obtain better results than generic ones because they t@minimize the approximation error of the net and find the op-
guide the search toward solutions that an expert knowledgetiohal weights (in the least squares sense). There are several ways
the problem expects to be superior. The incorporation of expestsolve overdetermined linear systems. The following sections
knowledge has been carried out in this paper by constructipgesent two of the most commonly used methods: OLS and
some problem-specific mutation operators. These operat®gD.

differ from the original ones in that they do not produce blind

changes to the individuals they affect, but attempt to improve OLS

the mutated individual by analyzing and altering it according to This method was originally employed in [15] to calculate the
some heuristics [33]. Specifically, in the problem of optimizingptimum weights of an RBFNN. It also estimates the relevance
the parameters that define an RBFNN from training samplest,each RBFp; in the output of the net by assigning it an error
there exist two good heuristics to determine the relevance ofajuction ratiderr],;. OLS transforms the columns of the acti-
basis function in the net output: OLS and SVD [86]. vation matrixP into a set of orthogonal vectots. This trans-

This paper presents a brief review of the orthogonal transf@srmation is performed by applying the Gram-Schmidt orthog-
mations OLS and SVD in Section II. Section Il summarizes thénalization method [32] and produces
concept of MultiObjective Evolutionary Algorithm (MOEA) P_UR @
and justifies its use. Section IV describes some expert muta- - :
tion operators based on the OLS and SVD transformationsNote that (7) gives the same information as the “standard”
specifically designed for the optimization of RBFNNs. Thes®R decomposition oP (P = QR) [32]. Substituting (7) in (5)
we obtain

1QR is a widely used orthogonal matrix decomposition withorthogonal
andR upper triangular, the reader is referred [32] for further reading. y=URw+e=Ug+e (8)

j=1
herepy; is given by

In this regression modepy,; are the regressors;; the pa-
meters, and* are the residual errors for each input veatbr
enn input-output samples, (3) can be expressed as
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whereg = Rw. Asu; andw,; are orthogona¥; # /, the sum of [48], [49], which maintains the original order of the columns,

squares of/*(yTy) can be written as but is much slower, although easy to parallelize [7], [6], [13].
m In the following section we present a multiobjective evolu-
yly = Z g]?ufuj +ele (9) tionary algor{thm that allows the determlnatlon.of the optl_mal
= number, position and shape of RBFs for function approxima-

tion problems. In this algorithm we also introduce new genetic
qperators that are based on the orthogonal transformations pre-
ented in this section.

Dividing both sides of (9) by, it can be seen how the model
variance(y”y/n) is decomposed into explained and residu
variances

yTy B E}"’:l gj?u]Tuj N & (10) I1l. M ULTIOBJECTIVE EVOLUTIONARY ALGORITHMS
n n n The automatic optimization of a RBFNN from training data

[68], [69] is a problem in which two clearly competing objec-
tives must be satisfied. The model's prediction error must be
minimized in order to achieve a well fitted model, while the

gjuf uj number of RBFs should be as low as possible to obtain a reliable

[err]; = yTy Vi=L...,m (11) interpolator. The problem here is how to satisfy both objectives

This ratio can be used to rank the RBFs according to thglmultaneously. Improving one of them will probably worsen

So, asg7u; u;/n is the contribution ok; to the total output
variance, we can define the error reduction ratiapés [15]

contribution to the reduction of the approximation error. If w e other. This kind of problem is known as a.MuItl-C.)bJectlve
want to keep the most relevant RBF& < m), we will select roblem (MOP.) [60], [40], [12].’ [3.6]’ .and thelr solutions are
ther basis functions that have the highest error reduction rati ually sub-optimal for each objective in particular, but “accept-

This method can be used to prune the least relevant RBFs in 'ée” taking ?‘” the objectives into account, where *acceptable”
net, thus obtaining a simpler model whose approximation enjgrfl?;a"y lsubj.?r(]:tlve and prob(;em-d;]per}f:enti i truct
is as close as possible to the error of the original net. A more Fl?lNa ngI‘I ms prcl)pose Ilrll €l (:r?jure 0 cons r(;Jcl
detailed discussion of the OLS transformation can be foundFiilB S from examples usually try 1o find a unique mode

[14]-[16], [86] with a compromise between its complexity and its prediction
’ ' error. This is not an adequate approach. In MOPs there is usu-
B. SVD ally more than one alternative optimal solution (each making

different compromises between multiple objectives) that can
be considered equivalent. Thus, it is very difficult to adapt
P=Uxv"T (12) conventional optimization techniques to solve MOPs because
they were not designed to deal with more than one solution
simultaneously [25]. Nevertheless, EAs maintain a population
| ) of potential solutions for the problem, thus making it easier to
zero and are called singular valuesigfandV € R™*™ is an - 5qant them to solve MOPs [25]. In particular, the fitness of the
orthogonal matrix. o individuals must be adapted to comprise all the objectives to be

Each of the columna; in U is related to an RBF of the net, gayisfied and new mutation operators must be designed to alter
and has an associated singular vaty¢hat estimates its degreehe structure of RBENNS.
of linear independence in the system. The highgs, themore e great difference between single objective and multiple
linearly independentia; in U. So, if we only want to select the e ctive problems is that the set of solutions is not completely
r most relevant basis functions for network prunitg< 1),  grdered for MOPs. Generally, in the case of a problem wiih
we only have to maintain theRBFs with the highest assomatedcompeting objectives, each one of them measured by the objec-
singular values [32] tive functionf;(i = 1, ..., n.p;), we can define a global objec-

P, =U,% VT (13) tive functionf that meets the following relations for two poten-
tial solutions for the probleny, and.,

The SVD of the activation matri® produces

whereU € R™*™ is a matrix with orthogonal columng; €
R™*™ is a diagonal matrix whose elements are positive or

where}’,. is a diagonal matrix containing the highestingular )

values, and/, andV, keep the columns df andV associated Fln) = fQ2) <= filu) = fi(s2) Vi €1,2,... nob;

with the singular values il,.. This is an easy method to discard  f(t1) < f(e2) <= fi(t1) < filt2) Vi € 1,2,... non;

them — r least relevant RBFs in the net [45], [58], [58], [85], f(11) < f(12) <= fi(11) < fi(e2) A (f(e1) # f(12)). (14)
[86]. e . Taking into account the above relations, the Pareto-domi-
_ SvD d_eco_mposmon is a C(_)mpllcated orthogonal trar!sformﬁénce criterion can be defined as

tion and its implementation is beyond the scope of this paper.

Here, we will only mention that there are two possible imple- t1 < t2 (¢1 dominates ¢2)

mentations, faster of which is SVD-QRcp, described in [32], < f(u1) < f(e2)
[73], [74]. This implementation uses Householder transforma- 11 < 15 (11 weakly dominates ¢»)
tions for faster obtention of SVD, but obtains the columns of = f(1) < f(1n)
U with an altered order, so it is necessary to apply the QR al- A A
gorithm with Column Pivoting (QRcp) to get an estimation of t1 ~ t2 (¢ is indifferent to ¢2)

their true order. The other method is the Kogbetliantz algorithm < f(u11) £ fle2) A fle2) £ f(e1) (15)
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where.; < 12 means thai; is a better global solution than ® ' ' ' ' ' ' ‘ -
t2,11 = 1o means that; is better or equal thary, andi;, ~ ¢ ol
means that; and., are not comparable solutions.

A Pareto-optimum solution [60] is defined as an individua 4} ... 48
that cannot be dominated by any one in the solution set ISP IR PR IPTIPEE SYPIRIRIIRTRONS -
12 . : -

A €Dy <. (16) ¢ R

1of : : |

Ol

A good multiobjective algorithm should find as many Paretc §
optimum solutions as possible, to provide the final user wit3
the possibility of choosing the right solution following his own 4}
criteria. 5 : : ,

Multi-Objective Evolutionary Algorithms (MOEAS) CONSti-  4f i :
tute a robust optimization technique that has been successfi A S S
applied to several optimization problems [19], [26], [27], [42] : : _ v :
[79]. Its strength is based on its simplicity and easy impleme L . & | : i i ; i L
tation. In this case, the problem is to construct an RBFNN fc ~ ° %' 2 % oxmanonemron o % %
function approximation from examples, and the two competing
objectives are the net complexity (number of RBFs) and its afp9- 2. Ranking of the solutions.
proximation error.

~ We have also incorporated a fine tuning step into the algo-once each individual has been assigned a rank, a scalar
rithm to improve the precision of the solutions in the populaiummy fitness is obtained for all the individuals following the
tion. This step applies, in each generation, a few iterations gforithm.

the Levenberg-Marquardt minimization algorithm [22], [55] to 1) Rank the RBFNNS in the population according to their
the nondominated individuals in the population. As these indi- rank value

vidugis are gxpected to have.a higher _number of copies in.thez) Assign an initial dummy scalar fitness to each RBFNN by
next generation, the local adjustment introduced by the mini- a linear interpolation between the lower and higher rank
mization algorithm is propagated to the whole population in a values in the population

few generations [33_]'_ ) .. 3) Obtain the final scalar dummy fithess of each RBFNN as
After the MOEA finishes and returns a set of solutions with the mean of the initial dummy fitness scalar values of all
different compromises between their structural complexity and the RBFNNs having the same rank value

their approximation error, the minimization algorithm is applied . . .
bp 9 PP Table | shows the execution of this algorithm for the popu-

to each one of them to reach the closest local optimum in the, N o o ,
search space. Patlon ranked in Fig. 2. This simple modification in the fithess

As stated earlier, the expert knowledge has been incorpora?é’&luat'on of the RBFs allows a generic EA to solve an MOP

into the algorithm by constructing evolutionary operators thgtansparently, that is, without changing any other of its compo-

apply heuristic-based changes to the individuals in the popuﬂaems' As an example, the selection scheme can remain unal-

tion. These mutation operators are based on the SVD and téed an_? selec_:(tj the SOlu“fnS according to th(:l{hscallar q?hmmy
transformations presented in Section Il. itness. To avoid a premature convergence of the algorithm a

niching strategy has also been incorporated. The niching scheme
used in this paper is fully discussed in [31], [21], [77].

A. Ranking the Solutions

As stated above, the set of solutions is not completely ordered
in a MOP. The Pareto-dominance criterion allows comparing
two different solutions, but it can not measure the difference This section presents some new evolutionary operators
between them. There have been proposed several approagRgsifically designed for the problem of optimizing the pa-
in the literature to overcome this problem, such as the MOGA&Meters of an RBFNN. These new operators apply random
presented in [25] or the NSGA described in [77]. In this papghanges to the individuals they affect to maintain the diversity
we use the approach proposed in [25], which defines the concépthe population and to provide mechanisms to escape from

IV. PROPOSEDEVOLUTIONARY OPERATORS

of rank of a solution as local minima [30], [39], but they apply different criteria.
We will present a crossover operator, together with some mu-
rank (LE) =1+ dom; (17) tation operators that can be organized into two groups: operators

to change the structure of the net and operators to adjust the pa-
wheredornﬁ- represents the number of individuals dominatingameters of the RBFNNSs.
Lj in the current population. Note that rank improves when be- The former group contains SVD-based Pruning (SVDP),
comes smaller, that is, as the rankLpfgets a lower valuez,§ OLS based-Pruning (OLSP), and the Splitting of RBFs
represents a better solution for the MOP, thus, all the Pareto-¢gPLIT).
timum solutions will be assigned a rank value of one. Fig. 2 The latter group is composed of the Locally Random
shows an example of rank assignment. Mutation (LRM), a blind operator, and heuristically guided
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TABLE |
DumMY FITNESS ASSIGNMENT FOR THEPOPULATION DEPICTED IN FIG. 2

Step Rank and Dummy Fitness Description
1 1 1 1 1 1 2 3 5 Sorting by Rank
2 1 1.57 214 271 329 386 4.43 5 | Initial Dummy Fitness
3 214 214 214 214 214 386 4.43 5 | Final Dummy Fitness

operators such as the Local OLS-based Mutation (LOLSM), thethogonal transformation has been used to guide a mutation
Local SVD-based Mutation (LSVDM), the Global OLS-base@perator to select the right RBF to be deleted. In order to
Mutation (GOLSM), and the Global SVD-based Mutatiominimize the effect of the mutation on the net approximation
(GSVDM). One important characteristic, analyzed in Section ¥rror, OLS is employed to assign a deletion probability to each
is the scope of the changes they perform, which can be lo&BF according to its relevance in the output. An RBFis

to an RBF (LRM, LOLSM, and LSVDM), or global within the assigned a pruning probabilip; that is inversely proportional
input space (GOLSM and GSVDM). to its error reduction ratiferr];:

A. RBFNN Crossover pj=1- G (19)

This operator takes two RBFNNs and returns two offspring, Lp=lerl
combining the genetic information from their ancestors. The After the pruning probability for each RBF is obtained, one of
offspring are generated by interchanging several RBFs in tHem is randomly deleted and the optimum weights of the new
original nets. Some RBFs are selected randomly in one of @t are calculated.
ancestors and are replaced by the closest RBFs in the input space "
belonging to the second progenitor, in order to avoid the genef- SPLIT: Splitting of RBFs
tion of two new RBFNNSs that could leave input regions uncov- The objective of this mutation operator is to detect the input
ered. After the exchange of information, the optimum weightweas that are worse modeled by the RBFNN, i.e., those with a

are obtained for the descendants. higher approximation error, and to increase the number of RBFs
) in these areas in order to increase the variance of the data ex-
B. SVDP: SVD-Based Pruning plained by the net. To carry out this task, the operator estimates

One of the orthogonal transformations described in Sectiorilie contribution of each RBF to the whole approximation error
to obtain a measure of the relevance of each RBF is to perfousing the following expression

the SVD of the net’s activation matrix. This decomposition pro- n ¢, (z")
vides a set of singular values, one per RBF. High singular valueg’ = Z mj—'k|.7-"(z"') —y*, j=1,...,m. (20)
identify important RBFs, while low singular values detect less k=1 2l $i(ah)

relevant basis functions. This heuristic is well known and has p high value ofe’ means that the RBE; is not able to model

been applied as a pruning criterion by some algorithms in tagyrectly the training data that most activate it, so, it would

literature [45], [58], [85], [86]. _ _ be desirable to increment the number of RBFs in this input
Taking this information into account, this mutation operatGone, in order to minimize the approximation error caused by

assigns a pruning probabilipy to each RBFp; thatis inversely - the training examples that activage. Thus, the mutation oper-

proportional to its associated singular value ator assigns a splitting probability to each RBFproportional
1% o its contribution to the approximation erret. This means
p; =1 i R (18) toit tribution to the app t et. Th
> ket Ok that those RBFs with a higher contribution to the approxima-

Less-important RBFs are assigned a greater pruning prokian error will have more probability of being split. Once that all
bility than more relevant ones. Once these pruning probabilititee RBFs have been assigned a splitting probability, one basis
have been calculated, an RBF is randomly selected and delefadlction is randomly selected according to these probabilities
and the optimum weights for the remaining RBFs are obtainatlstribution.

. After the RBF¢; has been selected, the 2-means algorithm
C. OLSP: OLS-Based Pruning is run with the input examples that are closer to the center of

The other orthogonal transformation described in Sectiongl; than to any other RBF center, obtaining two new positions
is OLS. This method also assigns a relevance value to each RiBF,two new RBFs$;1 and ¢;», which will substituteg; in
but with an important difference: OLS takes into account the ettie affected net. The radii faf;; and¢;» are calculated using
pected output for each input vector in the training set. Thus, thiee k-Nearest Neighbor (KNN) heuristic [57], [47], and the op-
relevance of each RBF is closely related to its contribution tomum weights for all the weights of the new net are obtained
the reduction of the training error. The RBFs making a biggeising the Cholesky method.
contribution to the training error reduction will be more sensi- A similar splitting criterion was used in [47], where the RBFs
tive to the pruning than those making a smaller contribution. with higher classification error were split in a similar way. The

OLS has been widely applied as a pruning heuristic falifference between the proposed criterion and the one presented
RBFNNs and fuzzy systems [14]-[16], [86]. In this case, thig [47] is the way of measuring the error committed by each
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RBF. In [47] it was an easy issue because the RBFNNs wexberem,; and M; are defined as

used to solve classification problems, thus, the error committed o l _

i . mi—mm{xi}, l=1,...,n (26)
by each RBF was the number of misclassified patterns. In a 1
function approximation problem, this task becomes quite more M; = max {xﬁ} , 1=1,...,n. (27)

difficult because all the RBFs contribute in the final output, h ) hatth . fth il
so the approximation error has to be shared in any way pe.l Nese constraints ensure that the new position of the RBF wi

tween the RBFs. In this case, it has been used the sum-of-%QW it to be activated by some training samples. Without them,

solute-values metric, although the euclidean norm was anotﬁé?wts_t'on could plljlce an RBE far fro? the training data, and
possibility [82]. Nevertheless, both metrics are able to assigf'S this RBF would not contribute to the net output.

a higher splitting probability to those RBFs that make a major 2) -ocally Random Change of the Radius of an RBfis
contribution to the approximation error. alteration also applies a random offset, in this case to the radius

of the RBF
E. LRM: Locally Random Mutation () = i + sign() - u(0, ) (28)

This operator is a direct adaptation of the classical blind

genetic mutation operator [39]. All the parameters concerning The expression allows the radius to change according to its

the RBFs of the net have the same probability of being alterd¥rm. Once the alteration has been performed, some constraints

and once a parameter is selected, it undergoes a locally rand¥#¥e to be met. The first one is that the new radius must be a

change. Due to the large number of parameters defining g,lf_ficiently large positive real number, so that the RBF can be

RBENN, there are several possible implementations for tta§tivated

operator. The chosen implementation will alter only the centers IF (/) <U, THEN (/) =U (29)

and radii of the net, because the weights can be optimall . . e

calculated once these parameters have been fixed, as descrvgfé e 'sa lower threshgld for the RBF radii .to aqu division

in Section Il. Basically, this operator performs the followin y zero in (2). An RBF. W.'th such a small radius wil p_robably
ot be activated, but this is not really a problem. Mutation oper-

steps. ators have to add diversity to the population, and if they produce

* Randomly select an RBF tp be altered. All the RBFs ha\éebad solution, it will probably not survive in the next genera-
the same probability of being chosen. .

) . ; . ) tion.
» Decide whether to alter its radius or its center. This decl- Another two constraints to be satisfied are

sion is made randomly, using a probability of 0.5 for each

of the possibilities. e+(r?) = mi, (30)
» Perform a local alteration of the center or the radius fol- c—(r7) < M; (31)
lowing the steps detailed in Sections IV-E-1 and IV-E-2

' These restrictions force all the RBFs whose centers are far
from the training data to have a sufficiently large radius to be
activated by some input vectors.

[35].
» Obtain the optimum weights for the new net.
1) Locally Random Change of the Center of an RBIFe
center of an RBF is modified by applying an offset vector. The |SVDM: Local SVD-Based Mutation
norm of this offset is smaller than the RBF radius, to preserve

. " ; . Th f singul I i lyi VD I
the relative positions of all the RBFs in the input space e setof singularvalues obtained by applying SVD can also

be used to estimate the sensitivity of each RBF to a random
(@) =& +of 7, (loffi|<r),j=1,...,m. (21) displacement.If we move an RBF having a high singular value,
we will probably obtain a worse-fitted net. On the other hand,

Each one of the components in the offset veotbf is obtained RBFs whose singular values are nearly zero are not making any
using the following expression significant contribution to the net output, so they can be altered

P ; ) freely without increasing the net error.

of fi =sign() - u(0,r%), i=1,....d (22) With this idea in mind, this mutation operator selects a basis

whered is the input space dimensionality asign() is a func- function to be altered with a probability that is inversely pro-

tion defined as portional to its associated singular value. Less relevant RBFs
1 i W(0.1) < 0.5 will have more probability of being altered while more impor-
sign() = { . i)tllllcgrx;vis)e< 2 (23) tant RBFs will be more change-protected [35]. Once an RBF

has been chosen, a local modification is applied to its center or
and the functionu(a, b) randomly returns a real number chosenadius as described in Sections IV-E-1 and IV-E-2.
uniformly in the intervalla, b). )

Once the offset is applied, there is a restriction that has ® LOLSM: Local OLS-Based Mutation
be checked to validate the mutation: the new center must beOLS calculates a vector of error reduction rates (11) in
sufficiently close to the set of training data, so that the followinghich there is arferr]; for each RBRp; in the net. The higher
expressions are satisfied [err]; is, the more sensitivg; is to a random change. Thus, this
; mutation operator constructs a probability distribution where
mq =17, (24) eachg; has a probability of being altered that is inversely pro-
M; + 17 (25) portional to its associated error reduction rgtiar]; [35]. An

7
C

’

IN IV

C

(OSSPSR
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RBF is chosen using this distribution and a local change is apheres’ is calculated from (33).
plied to its center or radius as described in Sections IV-E-l andOnce the alteration has been performed, the new RBFNN
IV-E-2. must satisfy constraints (29), (30) and (31) to be accepted.

H. GSVDM: Global SVD-Based Mutation . GOLSM: Global OLS-Based Mutation

Another way of hybridization between SVD and a mutation Thjs evolutionary operator implements exactly the same steps
operator is to select the RBF to be altered uniformly (all thgs above, but uses OLS instead of SVD to detect the relevance
RBFs have the same likelihood of being chosen) and applysfthe RBFs. All the basis functions have the same likelihood
random displacement according to its associated singular valgepeing altered, and when one RBF is chosen, its center
Basis functions with small singular values will undergo larggy its radius undergoes a random displacement that is inversely
movements, while only small perturbations will be applied tBroportional to its error reduction ratferr]; (11).
sensitive RBFs. 1) Globally OLS-Based Random Change of the Center of

This behavior can be implemented by applying a randogh RBF: This alteration is analogous to the one performed by
shift to the center or the radius of the selected RBF whoggsypM. The only difference is the calculation of the constant

modulus varies inversely with the magnitude of its singulafi \which is now based on the error reduction ratios
value. The steps to perform the alterations are detailed later

(Sections 1V-H-1 and IV-H-2). si — [err] max — [err]; A
1) Globally SVD-Based Random Change of the Center of an " Tert]max — [e1T]min
RBF: To alter the position of an RBF globally, a random dis-
placement is applied to its center. The great difference from tere [err] . and [err,,;, are the maximum and minimum
mutation operators described earlier is that in this case, the R&fror reduction ratios obtained by the OLS decomposition re-
movement can be made toward any point in the whole inpsipectively,err]; is the error reduction ratio of the chosen RBF,
space. The modulus of the displacement applied increasesand A7 is obtained by applying (34).
the RBF becomes less important, allowing large movements toAgain, the random displacement applied to the RBF must
basis functions that contribute insignificantly to the net outputeet restrictions (24) and (25) to produce a valid RBFNN.
Relevant RBFs will only undergo small alterations, to avoid a 2) Globally OLS-Based Random Change of the Radius of an
large change in net performance. RBF: This alteration also performs a random displacement of
Each one of the offset components is calculated as followghe current RBF radius. This change is applied according to

(36)

off; = sign() - (0,77 + &) (32) (r1) =7 + sign() - u(0,77 + 67) (37)

wheresign() is the function described in (23) is the radius wheres’ is obtained with (36).

of the selected basis functiay, andé/ is a constant that is  This random alteration must also satisfy constraints (29), (30)
inversely proportional to the singular value associated wjth and (31) to be validated.

51 = Tmax 795 NS, (33)

Omax — Omin
V. COMPARISON OF THEPARAMETER ADJUSTMENT

In the above equatiom,,., ando,,;, are the maximum and MUTATION OPERATORS

minimum singular values, respectivety; is the singular value
corresponding t@;, and A’ is the maximum allowed move-

. . . As commented in Section Il, SVD and OLS have been
ment for thejth basis function

widely applied as heuristics to prune the less relevant units
i of an RBFNN [14]-[16], [45], [58], [85], [86]. Nevertheless,
G —mi }) this paper also uses them to guide the adjustment of the net
1<i<d (34) parameters.The effectofthis new use of these heuristics has not
yet been analyzed, and so this section presents an experiment
M; andm; are defined in (26) and (27) respectively, ahgs 10 gain an insight into the behavior of the adjustment of the
the input space dimensionality. parameters for each mutation operator. This experiment is
Moreover, this random displacement must satisfy constrairigdated to the approximation of the target function
(24) and (25) to ensure that the altered RBF will be activated by
some training data. f(z) =3z(z — 1)(z — 1.9)(x + 0.7)(z + 1.8),
2) Globally SVD-Based Random Change of the Radius of an r€e[-21,2.1] (38)
RBF: This alteration is also performed by a random shift ap-
plied to the RBF radius. The change of the radius is describggbposed in [23] from a set of 100 equi-distributed samples. This
as function was approximated with several EAs, each one con-
taining the crossover operator and only one of the parameter ad-
(1) =77 4 sign() - u (0,77 + 6%) (35) justment mutation operators presented earlier (LRM, LSVDM,

AJ = max (m?X{‘Mi — cf‘} ,IH?X{
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Fig. 3. Effect of LRM operator.

LOLSM, GSVDM, GOLSM?}. These EAs were used with dif-

0.5

50
GENERATION

Fig. 4. Effect of LOLSM operator.

ferentinitial populations and all the executions were started wi
the same random seed. All the EAs used a population compos  oasf-
of 30 individuals each with 7 RBFs, and all of them were run fc |
100 generations. These parameters were fixed arbitrarily, but 4
they are identical for all the EAs, they provide a fair compariso osst
between the mutation operators.

The index used to estimate the approximation error of tt |
RBFNNSs is the normalized root mean squared error (NRMSI£ 025
[65], defined as =

0.3

0.2

n k_ F(gk:-d. Q))2
NRMSE = Zk:l(yn k(x ’, 27 )) (39) 0.15
k:l(y —9) o
wherey* are the expected outputs for theraining examples
andy represents their mean. 008

Figs. 3—7 show the evolution of the different EAs. The solic

line represents the mean of the best individuals in each gen
ation, and the dashed line indicates the minima and maxima of

50
GENERATION

the best individuals found in every generation. These figureig. 5. Effect of LSVDM operator.

suggest that LRM achieves a very good solution, even better
than LOLSM and LSVDM.This detail reveals that even with

expert knowledge the search can be trapped in local minima
it is not correctly usedAs LOLSM and LSVDM only perform

local changes to the individuals, they prevent less relevant RB
from moving freely in the input space. Although less importar

045

RBFs are given more chances of being altered, as the rand o3sf+-

changes are always made in a local way, they only affect cc
tiguous regions in the input space. These local alterations do 1,
allow an RBF which makes little contribution to the net outpug‘l25
to move to a region in the input space where it could reduce t
approximation error, if this region is not close to the RBF. Thut
these two mutation operators tend to trap the population in loc
minima, andbhis is just the opposite function a mutation opera
tion should perform

On the other hand, the GOLSM and GSVDM operators ot 00
tain much better results. This is because GOLSM and GSVD

0.2

0.1

0

0
2Note that as in this section we only intend to analyze the behavior of the pa-
rameter adjustment mutation operators, we only use an EA with a fixed number
of RBFs for all the RBFNNSs, not the MOEA described in Section Ill. Fig. 6.

50
GENERATION

Effect of GOLSM operator.
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Fig. 7. Effect of GSVDM operator.
Fig. 8. Combined effect of GOLSM and GSVDM operators.

TABLE I
MEAN, STANDARD DEVIATION, MINIMUM , AND MAXIMUM OF THE BEST the population in local minima, instead of facilitating a way

SOLUTIONS FOUND FOREACH MUTATION OPERATOR of escaping from them. Nevertheless, global mutation operators

. . can move less relevant (less activated) RBFs through the whole
Operator Mean St. Dev. Minimum Maximum . . . .
input space, facilitating the allocation of these useless RBFs in
LRM 0.0186  0.0022  0.0150 0.0219  other positions where they might become more activated and
LOLSM 0.0507  0.0159 0.0316 0.0753 perform a higher contribution to the approximation error reduc-
LSVDM 0.0481  0.0253 0.0208 0.0864 tion. This conclusion is in line with the state-of-the-art quantiza-
GOLSM 0.0178  0.0173 0.0039 0.0510 tion algorithm known as E_LBG [63], where local minima in the
parameter space are avoided throughout a genetic-based global
GSVDM 0.0192  0.0141 0.0013 0.0392 migration procedure to allow codewords to move through non-
GOLSM + GSVDM | 0.0039  0.0031 0.0002 0.0093 contiguous Voronoi polyhedra.
perform global changes to the individuals using displacements VI. EXPERIMENTAL RESULTS

that are inversely proportional to the relevance of the RBF theyHaving analyzed the parameter adjustment mutation opera-

affect. Thus, important basis functions will only undergo loc !)rs, this section shows some experimental results obtained by

pelr:t.urba6tionsda7n d rl]ess rﬁlevgrgfsBl\IZS Wi(;' t();esa\tj)l:l)eMto move frle He MOEA described in Section |II incorporating the crossover
_mgs.oan show that an require les perator, the pruning operators SVDP, OLSP, the RBF splitting
iterations than LRM to reach EA convergence. Starting wi

I . erator SPLIT, and the parameter adjustment mutation opera-
the same |n|t|§1l popl_JIatlons, GOI.‘SM. and GSVDM are able rs GOLSM and GSVDM. The proposed multiobjective evo-
discover solutions with an approximation error that is half that ?utionary algorithm has been checked in the fields of function
the EA using LRM in the same generation. This result justifi

h lecti f GOLSM and GSVDM h . approximation and chaotic time series.
the s€ ection o an as the most appropriaté pq gescribed earlier, the proposed algorithm is able to ob-
mutation operators for this problem.

It ttention 1o the last i LR tain in only one execution several optimum solutions for dif-
GOLVSVI(\E/I nov(\j/ gg}(/;Men '03 0 the _Ias generations, i rent configurations (a Pareto-optimum frontier of solutions)
an produce similar mean approxima IO'If“oragiventraining set of examples. Thus, in the tables that sum-

errors, although the best solution is always better for GOI‘SMarize the experimental results will be presented RBFNNs with

::g ?aSb\I/eDII:/L This comparison is graphically shown in Fig. geveral complexities together with their approximation error.

Finally, as we can add as many mutation operators as we want
to an EA, the same experiments were run with an EA combini
GOLSM and GSVDM. When an individual is chosen to be al- The first experiment tests the MOEA proposed in this paper
tered, one of these two operators is applied. The applicatimapproximate several one-dimensional (1-D) and two-dimen-
probability was 0.5 for each of them. This final EA shows asional (2-D) target functions proposed in the literature.
easy way of combining the effects of several operators. Figs. 8-9) 1-D Functions: In this section the proposed algorithm is
and Table Il show that this combination produces even better sested with three 1-D functions previously used by other authors.
lutions than when each operator is applied separately. The results obtained are compared with the solutions presented

As a conclusion, the idea of a local mutation operator iskay other authors in terms of the error committed by the model
contradiction, given that applying local changes tend to tramd its complexity.

Application to Function Approximation
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LRM LOLSM LSVDM GOLSM GSVDM GOLSM +
GSVDM
MUTATION OPERATORS
Fig. 9. Comparison of the different mutation operators.

TABLE Il
COMPARISON OF THEOBTAINED RESULT WITH OTHER APPROACHESUSED TO APPROXIMATE THE 1-D
TARGET FUNCTION dick; m REPRESENTS THENUMBER OF RBFS OR RULES
(DEPENDING ON THEMODEL), AND 7, IS THE NUMBER OF FREE PARAMETERS

Algorithm m | np MSE NRMSE
Different wr =1 94.65 -
Dickerson | weights for | wr = 1/vk 28.25 -
& Kosco, therules | wr=1/v2 | 6 | — 10.53 -
1996 Not supervised 7.927 -
Supervised 3.069 -
5| 8 5.01 0.329
Pomares 6 | 10 1.35 0.17
7 |12 0.46 0.10
319 557 £0 0.3455 £ 0
Proposed approach 4 | 12 | 0.99 £ 0.49 | 0.1415 + 0.0390
5 | 15 | 0.30 & 0.02 | 0.0797 & 0.0023

The first 1-D target function used in this section was origiybrid neuro-fuzzy system with ellipsoidal rules trained by sev-
inally proposed by Dickerson and Kosko in [23]. It has beeeral learning methods, while Pomares proposed a fuzzy system
previously used in Section V to test the behavior of the muthased on a complete table of rules using triangular membership
tion operators and in this section it will be used as a test functi@umctions. The error is compared using two different indexes:
to compare the proposed algorithm with other models and #te MSE proposed originally in [23], and the NRMSE proposed
gorithms proposed in the literature for function approximatioiin [65]. It can be observed that the standard deviations over the

The function is defined as mean approximation error are quite low for the different struc-
dick(z) = 32(z — 1)(z — 1.9)(z + 0.7)(x + 1.8), tures found by the proposed a!gorithm, yvhich reveals the_ ro-
bustness of the proposed algorithm for different random initial

r € [-2.1,2.1]. (40) populations.

The MOEA was run several times with different populations The other two 1-D target functions used to test the proposed
of 25 RBFNNs. The training set used was composed of 1@@gorithm were proposed in [80], one of the first works that ad-
examples equidistributed in the input interyal2.1,2.1] and dressed the problem of function approximation from a set of
the test set contained 1000 test data also equidistributed in tteéning examples. This algorithm generated a fuzzy rule-table
same input range. having one rule for each training example and later selected the

Table Il shows the approximation error reached by the algoore activated rules to construct the model. Later on, Sudkamp
rithms proposed in [23], [65]. Dickerson and Kosko applied and Hamell [78] improved this algorithm to make it noise resis-
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TABLE IV
COMPARISON OF THEOBTAINED RESULT WITH OTHER APPROACHESUSED TO APPROXIMATE THE 1-D
TARGET FUNCTION winr(x); m REPRESENTS THENUMBER OF RBFsS OR RULES
(DEPENDING ON THEMODEL), AND n,, IS THE NUMBER OF FREE PARAMETERS

Algorithm m | np Mean Err. NRMSE
15 | — 0.029 -~
Wang & Mendel, 1992

25 | — 0.018 -

Wang & Mendel Improvement | 15 | — 0.079 -

(in Sudkamp & Hamell, 1994) 25 | — 0.088 -
15 | — 0.044 -

Sudkamp & | Region Growing

25 | — 0.021 -

Hamell,
15 | — 0.044 -

1994 Weighted Average
25 | — 0.021 -
4 6 0.026 0.080
Pomares, 2000 6 | 10 0.011 0.032
8 | 14 0.006 0.017
2 0.0057 £ 0.0007 | 0.0171 + 0.0018
3 9 | 0.0042 £ 0.0005 | 0.0134 & 0.0011
Proposed Algorithm

4 | 12 | 0.0001 £ 5.4E-5 | 0.0004 &+ 0.0002
5 | 15 | 2.1E-5 £ 1.8E-5 | 6.8E-5 £ 5.7E-5

tant and also proposed other two methdrisgion Growingand TABLE V
Weighted Aveage. To test the algorithms both works used th e OMPARISON OF THEOBTAINED RESULT WITH OTHER APPROACHESUSED TO
. APPROXIMATE THE 1-D TARGET FUNCTION wim r7(); m REPRESENTS
target functions THE NUMBER OF RBFSOR RULES (DEPENDING ON THEMODEL), AND
n, 1S THENUMBER OF FREE PARAMETERS

_ .3
wm](x) =77, 1€ [_17 1] (41) Algorithm m | np Mean Err. NRMSE
wmyr(z) = sin(2nx ze|[—1,1]. 42 - _
11(2) (27z), [-1,1] (42) Wang & Mendel, 1092 15 0.060
25 | — 0.026 .
. . W & Mendel I 1 - . -
These two functions were also used by Pomares to testitss a’;g - e“;Hmp’;’lvemem 5 0.0m
tematic learning algorithm for the identification of rule-base( i Sidkamp & Hamell, 1994) | 25 | - 0031 -
H 15| — 0.131 -
fuzzy systems in [65]. Sudkamp & | Region Growing i
. . . . 25 | — 0.052 -
The algorithm proposed in this paper was run several timi Hamell, " o150
with different populations of 25 RBFNNSs. The training setuse 1994 Weighted Average |— 0'082
to learn these two functions were constructed with 100 exar s 1o 0'068 s
ples equidistributed in their input range, while the test sets wi b 2000 T . '0473 . ;)823
. . . . . omares, . X
formed by 1000 examples uniformly distributed in the same ir
terval 10 | 18 0.0262 0.0237
' 3| 9 | 0.0582 % 0.0003 | 0.1169 + 4.0E-5
Tables IV and V compare the results of the proposed alg + 1 12 | 00107 < 00111 | 0.0200 = 0.0237
rithm with the obtained by the other approaches introduced e: Proposed algorithm 5 115 | 0.0068 < 00005 | 0.0143 < 00173
lier. In this case, the error index used in [80], [78] was the mee o 18 00028 < 0.0013 | 0,002 % 0.0093

error (mean of the absolute errors). Pomares also used in [65]
the NRMSE, so the results are compared taking into account the
two indexes. As can be seen, the proposed algorithm obtaft{$§he modei. It can be appreciated that the proposed algorithm
approximations with a lower approximation error, even usig’gable to explqre _the Pareto—optimum f_rontjer, finding solutions
fewer free parameters. The standard deviation of the approlat are superior in both competing objectives.
mations obtained after several runs also show that the algorithnf) 2-D Functions: In this section, we have used the 2-D
is quite robust. This can be deduced because it is able to refi#tetions f5 and f7 (Figs. 12 and 13) originally proposed
similar solutions starting with different random initial populain [18]. This work presented a comparative study of several
tions. paradigms applied to function approximation, such as Pro-
Fig. 10 and 11 rank the solutions obtained by all the algéfction Pursuit (PP) [28], Multivariate Adaptive Regression
rithms compared in this section according to the two ObjeCti\/eS"The complexity is measured using the number of rules (or RBFs in an
being minimized: the approximation error and the complexityBFNN).
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Fig. 10. Comparison of the proposed algorithm with others applied in the
literature to approximate thee target functiom ().
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Fig. 11. Comparison of the proposed algorithm with others applied in the, was also used as a test function in [10], [11]. These works
lierature to approximate thee target functiom  (:r). describe the G-Prop algorithm, an evolutionary algorithm for
multilayer perceptrons.
Splines (MARS) [29], Constrained Topological Mapping The training sets for the experiments presented in these sec-
(CTM), and a multilayer perceptron (MLP) with 15 neuronsions have been constructed taking a random point from each
in the hidden layer. These two target functions are defined @sll of a 20x 20 grid partition of the input space, obtaining sim-
follows: ilar training sets to the ones used in [17]. The test sets were
Fo(n, ) = 42,659 (0'1 v (0'05 ot — 10022 + 51:3)) \flt\?irt'?zd(glyxggll) zcr)ilglts obtained by dividing the input interval
z1,22 € [-0.5,0.5] (43)  As can be appreciated in Tables VI and VII, the models ob-
fr(zy,0) = 1.9(1.35 + €™ sin(13(x; — 0.6)%)e™ "2 sin(7z)) tained for each target function are superior to all classic ap-
w100 €[0,1]. (44) proaches (MLP, PP, CTM y MARS), as they obtain quite lower
’ approximation errors. The MLPs obtained by Cherkassia/.
Later on, this functions were also used in [17], a papén [17] and by Castillo in [10], [11] are also outperformed in
presenting a very optimized method to construct MLPs #&pproximation error and in the complexity of the models in the
presented, and in [65], where a robust algorithm for thepproximation off~.
identification of rule-based fuzzy systems is used in function The fuzzy systems obtained in [65] present a very low approx-
approximation problems. This algorithm was able to usdmation error due to the great number of linear parameters that
different types of membership functions, such as a trianguleain be optimally calculated in rule-based fuzzy systems. This
partition (TP) of the input space, free triangular (FT) menfact becomes maximized when the membership functions are
bership functions in the input space, Gaussian functions (@)triangular partition of the input space. Due to this character-
and free pseudo-Gaussian (FPG) functions. The target functistic, the results obtained by the proposed approach are similar
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TABLE VI TABLE VI
COMPARISON OF THEOBTAINED RESULT WITH OTHER APPROACHES COMPARISON OF THEOBTAINED RESULT WITH OTHER APPROACHESUSED
USED TO APPROXIMATE THE 2-D TARGET FUNCTION f5, 1 REPRESENTS To APPROXIMATE THE 2-D TARGET FUNCTION f7; 1 REPRESENTS
THE NUMBER OF RBFSOR RULES (DEPENDING ON THEMODEL), AND THE NUMBER OF RBFSOR RULES (DEPENDING ON THEMODEL), AND
n, IS THENUMBER OF FREE PARAMETERS n, IS THENUMBER OF FREE PARAMETERS
- Algorithm m np Test NRMSE
Algorithm m np Test NRMSE
MLP (Cherkassky, 1991) 15 61 0.227
MLP (Cherkassky, 1991) 15 61 0.308 PP (Friedman, 1981) _ _ 0.206
PP (Friedman, 1981) - - 0.504 CTM (Cherkassky, 1991) - - 0.197
CTM (Cherkassky, 1991) - - 0.131 MARS (Friedman, 1991) - - 0.179
MARS (Friedman, 1991) - - 0.190 Cherkassky et al, 1996 40 161 0.034
Cherkassky et al, 1996 40 161 0.038 4x4  (PT) 20 0.161
4x5 (PT) | 25 0.194 Pomares, 2000 5x5 (PT) 31 0.109
Pomares, 2000 6x6 (PT) | 44 0.090 <6 _(*PD| 0.059
G-Prop (fn) | 118 + 39 0.21 + 0.01
8x8 (PT) | 76 0.044
Castillo, 2000 G-Prop f) 105 + 34 0.23 £ 0.01
6 24 | 0.2864 + 4.6E-5 G-Prop  (fd) | 115 + 36 0.22 + 0.02
8 32 | 0.1170 =+ 0.0852 5 20 0.2639 + 0.0002
9 36 | 0.0738 £ 0.0681 6 24 0.2019 + 0.0243
10 40 | 0.0689 = 0.0517 7 28 0.1426 & 0.0190
11 44 | 0.0422 % 0.0207 8 32 | 01306 + 0.0189
_ 12 48 | 0.0285 + 0.0109 i 36 | 01086 + 00316
Proposed Algorithm 10 40 0.0780 + 0.0080
13 52 | 0.0235 &+ 0.0008
p 4 Algorith 11 44 0.0711 £ 0.0093
Topose: orithm
14 56 | 0.0216 & 0.0055 g 12 48 0.0608 + 0.0165
15 60 | 0.0175 £ 0.0059 13 52 0.0590 =+ 0.0103
16 64 | 0.0168 X 0.0096 14 56 0.0557 + 0.0141
17 68 | 0.0154 + 8.5E-5 15 60 0.0493 £ 0.0057
18 72 0.0138 + 0.0054 16 64 0.0474 £ 0.0062
19 76 | 0.0121 + 0.0038 17 68 | 00443 + 0.0032
18 72 0.0393 =+ 0.0024
19 76 0.0324 + 0.0050
to those presented in [65] for functiofi. Nevertheless, func-
tion f5 has been learned better for the proposed algorithm, ** ‘ ‘ f ' T =
can be seen in Fig. 14. : o pomares”
L . O : : L —%— Proposed Algorithm | |

3) Robustness to Noise in the Training Dat&he experi- 08
ments above have been performed with ideal training sets : :
order to compare the proposed algorithm to others in the | 25 : : AR ‘ e ]
erature. Nevertheless, in real experiments, data usually are :
fected some noise. To give an insight of the proposed algoritr o2
behavior modeling noisy data, in this experiment a 5% of whil2
noise has been added to the training data used before to le” o.s
the target functiorys. The effect of this noise can be observec
in Fig. 15. o

The proposed algorithm has been trained several times w
the noisy training data and with the same configuration us¢
in Section VI-A-2. The obtained results, shown in Table VIII
show the robustness of the proposed algorithm facing noisy de | ; ; ; : . . .
As the number of RBFs increases, the data are better mode 2 40 € N BER OF ARAVETERS 1O 160 180
and the test error diminishes, until a sufficient number of RBF§y. 14. Comparison of the proposed algorithm with others applied in the
is reached, nine in this case (see Fig. 16). RBFNNs having mdtesature to approximate thee target functifn
than nine RBFs also learn some of the noise added to the training
data, thus the test error increases. This threshold for the m#ecting more complex RBFNNs with higher test approximation
imum number of RBFs allowed can be easily found when defrors.

0.05
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Fig. 15. Noisy training data used to learn the target funcfion Fig. 16. Approximation of functiorfs with nine RBFs after training with
noisy data.
TABLE VIII
TRAINING AND TEST APPROXIMATION ERRORSOBTAINED USING A NOISY As in [43], the time series values at integer points were ob-

TRAINING SETTO LEARN THE f5 tained applying the fourth-order Runge-Kutta method to find the

. numerical solution for the above equation. The val =
Num. Training NRMSE Test NRMSE 1.2,7 = 17, ands(t) = 0 for ¢t < 0 were assumed. B‘Ij'(ﬁl?s data
RBFs | Min. Mean St Dev. | Min. Mean St.Dev.  getcan be found in the file mgdata.dat belonging to thezF
2 | 09118 09118 0 0.8922  0.8922 0 LoGIC TOOLBOX OF MATLAB 5.
3 | 0738 0.7385 0 0.7014  0.7014 0 1) Short-Term Prediction:Following the conventional set-
4 0.6423  0.6423 0 0.6013  0.6013 0 tlngs. to perform a short-term prediction of these time series, we
predict the values(t + 6) from the current value(t) and the
5 | 05435 0.5518  0.0099 | 0.4967 0.5027  0.0072 past values (t — 6), s(t — 12), ands(t — 18); thus, the training
6 0.4137  0.4137 0 0.3044  0.3044 0 vectors for the model have the following format
7 03237 03740 0.0294 | 0.0985 0.2401  0.0795 [s(t — 18), s(t — 12), 5(t — 6), 5(£), s(t + 6)]. (46)
8 | 0.3200 0.3405 0.0277 | 0.1054 0.1763  0.0619
9 0.3205 03256  0.0060 | 0.1047 01410  0.0357 The first 500 input vectors were used to train the model and
the next 500 vectors were used to test the RBFNNs obtained.
10 | 03123 03208 00065 | 0.1186 0.1852  0.0955 The proposed algorithm was run several times with a population
11 103145 03167 0.0030 | 0.1304 0.1902  0.0445 of 25 individuals for 1000 generations, and the Levenberg-Mar-
12 | 03117 0.3140  0.0022 | 0.1314 0.7012  1.0595 quardt minimization algorithm was applied to the best solutions
13 | 03085 03127 00038 | 0.1332 02361  0.0897 found to fine-tune their parameters. Table IX compares the ob-
14 | 03026 03081 00042 | 01498 04082  0.2608 taln_ed result with other presented in the Ilf[erature in terms of
their root mean squared error (RMSE), defined as
15 | 0.2992 0.3065 0.0051 | 0.1566 0.2333  0.0990
16 | 02982 03042 00053 | 0.1738 04449  0.4624 RMSE — \/ D= (0F = F(ah; @, Q)2 7)
17 | 03020 0.3034 0.0020 | 0.1586 0.2493  0.0732 n
18 | 02942 03010 0.0050 | 02202 04500  0.3662 The compari_son of these results with those obtained_by the
proposed algorithm reveals that the use of expert mutation op-
19 | 02967 02992 00022 | 04745 08283 0.4047 erators significantly enhances the search results. This can be ob-

served in the standard deviations from the mean RMSE, which

B. Application to Time Series Forecasting are small enough to establish the robustness of our approach.
ig. 17 shows the Pareto-optimum solutions found by the pro-
) sed algorithm and compares them with other solutions in the
iterature. It can be observed that the proposed approach is able
to find a wide range of solutions with different compromises
ds(t) _ o- s(t—7) Bs(t) (45) between the number of RBFs and the approximation error, and

di L+ s10(t —7) ' that all the solutions are found in only one execution of the al-

Following previous studies [84], the parameters were fixed gorithm.

a = 0.2, = 0.1, thus obtaining a chaotic time series with no 2) Long-Term Prediction:Although the short-term predic-
clearly defined period; it does not converge or diverge, andtisn of the Mackey-Glass time series has been used as a test
very sensitive to initial conditions. benchmark by several classical methods, as discussed in [52],

The MOEA proposed in this paper has also been tested WlI:t
the time series generated by the Mackey-Glass time-delay
ferential equation [53]
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TABLE IX 0.022 . , : . , : : ,
COMPARISON OF THEPROPOSEDALGORITHM WITH OTHERSAPPLIED IN THE 002k o——= Pomares (PT)
LITERATURE TO PREDICT THE $(t 4 6) VALUE OF THE MACKEY-GLASS TIME ' s—= gomafes (PGL) |7
SERIES m REPRESENTS THENUMBER OF RBFSOR RULES (DEPENDING ON oorsh Proposed algorithm |
THE MODEL), AND n,, |S THE NUMBER OF FREE PARAMETERS ’
0.016 -
Algorithm m Ny Test RMSE
Linear Predictive Method _ - 0.55 oomr ]
Auto-Regresive Model — - 0.19 ué 0.012| B
o
T-N : Prod. - -
LX. Wang orm: Pro 0.0907 ootk ]
T-Norm: Min. - - 0.0904
Cascade Correlation ANN - - 0.06 0.008 - 4
6" Order Polynomial - - 0.04 0006 |
D. Kim y C. Kim 5x5x5x5 (TL) | 665 0.0492
(Genetic Algorithm TxTxTx7 (TL) | 2457 0.0423 0.004r 1
+ Fuzzy System) I9Ix9x9x9 (TL) | 6633 0.0379 0.002 i i L i 1 i i i
0 50 100 150 200 250 300 350 400 450
Retropropagation ANN - - 0.02 NUMBER OF PARAMETERS
ANFIS (ANN + Fuzzy Logic) - - 0.007
Fig. 17. Comparison of the proposed algorithm with others applied in the
2x3x3x3 (PT) 57 0.0109 literature to predict the(t + 6) value of the Mackey-Glass time series.
3x4x4x4 (PT) | 199 0.0071
Pomares, 2000 4x4x5x5 (PT) 410 0.0063 . . . . .
proposed in [72], which include the Givens QR decomposition
2x2x2x2 (PGL) | 24 0.0203 . . .
(RAN-GQRD) to obtain the weights of the net and a pruning
3x3x3x3 (PGL) | 101 0.0058 . .
criterion (RAN-P-GQRD) to reduce the complexity of the net.
4 24 0.0151 & 0.0019 . .
; w0 T 00120 £ 00026 The results are compared with other paradigms too. One of them
: : [3] presents two different algorithms to train fuzzy systems, one
6 36 0.0090 =+ 0.0014 . . .
using brute force and another incremental, and it is shown that
7 42 0.0075 =+ 0.0009 .
the brute force approach presents an unstable behavior as the
8 48 0.0064 + 0.0012 . . .
number of rules is increased and it not reaches the approxima-
9 54 0.0060 =+ 0.0010 . . . .
" o o005 20,0010 tion errors obtained by the incremental algorithm. The other one
- - [20] applies EGA4Breeder Genetic Algorithm#) train MLPs.
11 66 0.0049 + 0.0010 L . . .
b A . " > 100007 20,000 Again, it can be appreciated that the proposed algorithm is able
'0pose roac. R .| . . . .
Toposec AP to find a set of Pareto-optimum solutions that dominate all the
13 78 0.0043 & 0.0011 . . . . .
solutions in the table. Fig. 18 summarizes graphically the re-
14 84 0.0045 % 0.0007
sults.
15 90 0.0039 £ 0.0002
16 96 0.0036 + 0.0006
VIl. CONCLUSION
17 102 | 0.0034 & 0.0003
18 108 | 0.0032 % 0.0007 This paper presents a set of new mutation operators specially
19 114 | 0.0030 +0.0006  designed to evolve RBFNNs. These operators incorporate ex-
20 120 | 0.0029 =+ 0.0006 pert knowledge of the problem in order to favor random changes

that may improve the affected individuals instead of performing

only blind changes. The orthogonal transformations OLS and
[57], the prediction lead time (the number of steps in the futu®VvD were applied to the activation matrix of the model. As these
to be predicted) should be greater than the characteristic timermafhsformations provide a way of ranking the RBFs according to
this chaotic time series. They and most of the authors who hdteir relevance in the net, they are used by the mutation opera-
this time series as a serious benchmark predict at least 85 titoes to decide which hidden unit should be modified to improve
steps into the future, i.e., they predict the value of time seriesthé net approximation error.
time ¢ + 85 from the four values a timest — 6,7 — 12, and Neverthelessthe incorporation of expert knowledge and
1 — 18. As argued by Moody and Darken in [57], this predictiomeuristics into the mutation operators does not always produce
problem is a significant challenge in which classical methods @ogood EA This paper has shown two clear examples (LOLSM
little better than chance, thus the use of RBFNNs is justified.and LSVDM) where expert mutation operators do not favor the

As in the case of short-term prediction, the first 500 ve@onvergence to good local optima. The objective of mutation

tors have been used in the training step and the remaining %@ rators is to add diversity to the population and to provide
have been used o validate the RBFNNs returned by the MOBAechanisms to favor the exploration of the search space. If
Table X compares the results returned by the proposes algorittita expert knowledge limits this objective in any way, the EA
with several approaches used to solve this problem in the litevill not search properly and will tend to get stuck in a local
ature. Some of them are also based on RBFNNSs, such as dpb@mum. On the other hand, if the heuristics cleverly guide the
model RAN [64], which iteratively constructs an RBFNN anaalterations toward better solutions, an EA using such operators
lyzing the novelty of the input data, or the modifications of RANan achieve better solutions than a blind one. This is illustrated
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TABLE X 04 T T T T T T T
COMPARISON OF THEPROPOSEDALGORITHM WITH OTHERSAPPLIED IN THE — e .
LITERATURE TOPREDICT THE 5(t 4 85) VALUE OF THE MACKEY-GLASS TIME
SERIES m REPRESENTS THENUMBER OF RBFSOR RULES (DEPENDING ON 0351 .
THE MODEL), AND n,, IS THE NUMBER OF FREE PARAMETERS
03k L . : 1
Algorithm m | np | Test NRMSE . '
A
MLP + BGA (De Falco et al. 1998) | 16 | 80 0.2666 w00 g 8
[2]
€=0.1 57 | 342 0.378 g
RAN €=0.05 92 | 552 0.376 ozr i
(Platt 1991) €=0.02 | 113 | 678 0.373
0151 .
=001 | 123|738 0.374 —
e=01 14 | 84 0.206 & RAN-caRD
0.1 -4~ RAN-P-GQRD
RAN-GQRD e =0.05 24 | 144 0.170 X 3252:21 zﬁ';':nf:r:f;;
(Rosipal et al. 1998) e =0.02 44 | 264 0.172 0.05 - i i ; ; - Proposed Algorithm
0 100 200 300 400 500 600 700 800
e =0.01 55 330 0.165 NUMBER OF PARAMETERS
=01 14 ] 84 0.206 Fig. 18. Comparison of the proposed algorithm with others applied in the
RAN-P-GQRD €=0.05 24 | 144 0.174 literature to predict the(t 4 85) value of the Mackey-Glass time series.
(Rosipal et al. 1998) € =0.02 31 | 186 0.160
€=0.01 38 | 228 0.183 comparison of the processing time, we should compare the pro-
10 | 190 0.1086 cessing tlmg per solution found. _
1 200 01008 The algorithm proposed has also presented a robust behavior.
- The small standard deviations over the mean solutions show that
Fuzzy Systems | o Force 22| 228 0.1026 itis able to find similar solutions starting from different random
(Bersini et al. 1997) 13 | 247 0.2235 initial populations. It is also robust to noise in the training data,
14 | 266 0.1568 as shown in Section VI.
15 | 285 0.1028
Incremental 14 | 266 0.0965 REFERENCES
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