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Abstract—This paper presents a multiobjective evolutionary
algorithm to optimize radial basis function neural networks
(RBFNNs) in order to approach target functions from a set
of input-output pairs. The procedure allows the application of
heuristics to improve the solution of the problem at hand by
including some new genetic operators in the evolutionary process.
These new operators are based on two well-known matrix trans-
formations: singular value decomposition (SVD) and orthogonal
least squares (OLS), which have been used to define new mutation
operators that produce local or global modifications in the radial
basis functions (RBFs) of the networks (the individuals in the
population in the evolutionary procedure). After analyzing the
efficiency of the different operators, we have shown that the global
mutation operators yield an improved procedure to adjust the
parameters of the RBFNNs.

Index Terms—Evolutionary computation, neural networks, ra-
dial basis functions (RBFs), orthogonal transformations, heuris-
tics.

I. INTRODUCTION

RADIAL BASIS function neural networks (RBFNNs)
[8] consist of neurons which are locally tuned. An

RBFNN can be regarded as a feedforward artificial neural
network (ANN) [37] with a single layer of hidden units, whose
responses are the output of radial basis functions (RBFs), as
shown in Fig. 1. Formally, an RBFNN can be described by the
following equation

(1)

where is the input space dimensionality andis the number of
hidden units. The output of the netdepends on the input vector

, and on the sets of RBFs
and weights , as explicitly indicated in (1).
Each RBF locally contributes to the net output. This contribu-
tion will depend on the distance from the input vectorto the
center of each RBF , and is 1 if and tends to
0 as increases. There are many possibilities to choose
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Fig. 1. Structure of a RBFNN.

RBFs that satisfy this condition [47], [69], [70], [81], although
the most commonly used RBF is the Gaussian function

(2)

where is the RBF center and determines where it is allocated
in the input space, and is its radius, which indicates how the
basis function response decreases as the input vectorrecedes
from .

RBFNNs as presented earlier have been shown to be universal
approximators [61], [62] even when using the same radius for
all the RBFs in the net, although if a different radiusis used
for each RBF , it is possible to obtain a better fitted model
using fewer hidden units [59].

Due to their simple structure, compared with other ANNs
such as multilayer perceptrons (MLPs) [38], there has been
increasing research interest in RBFNNs and their applicability
as function approximators, plant controllers, and classifiers
in recent years [44], [47], [51], [71], [69], [70], [68]. The
optimum values for the weights in can be obtained by
solving an overdetermined linear system of equations once
the RBFs in have been fixed [5], [57]. There are several
well known methods to perform this task, such as Cholesky
decomposition [67], [66], the orthogonal least squares (OLS)
method [15], or singular value decomposition (SVD) [45].
Thus, the problem can be reformulated as one of how to set
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the parameters concerning each RBF (its center and radius) in
order to minimize an error criterion. In the literature, several
algorithms to identify these parameters have been published,
especially because one-stage gradient-descent algorithms have
stability problems when dealing with spread parameters of
RBFs [5], [47], [46].

One of the first, proposed in [57], consists in allocating the
centers of the RBFs using a clustering technique such as the

-means algorithm [24] or the fuzzy-means algorithm [4], es-
timating the radii by using heuristics like the-nearest neighbor
(KNN), the closest input vector (CIV) [47], or other heuristic
criteria for two-stage RBF learning, e.g., those proposed by
Bruzzoneet al. in classification tasks [9]. These approaches
are useful for classification problems, where clustering algo-
rithms perform well. Nevertheless, the use of clustering algo-
rithms may not produce a good initialization in the set of RBFs
for a function approximation problem. In [34], based on the en-
hanced LEG algorithm [63], the clustering for function approx-
imation (CFA) algorithm is proposed to obtain the initial posi-
tion of the RBFs taking into account the target function output
variability. Other recent works have proposed different sophisti-
cated algorithms such as the resource allocation network (RAN)
[64], or the growing radial basis function [47], which add neu-
rons to the net until a stopping criterion is met. An enhanced
version of RAN that performs node pruning based on SVD and
QRcp (QR1 . with column pivoting) decompositions has been
proposed recently [75], [76]. This new algorithm allows the de-
termination of the optimal number of RBFs in the network as
well as the ideal input space configuration for time series pre-
diction applications.

Evolutionary Algorithms (EAs) [56] have also been applied
to optimize the parameters defining RBFNNs [50], [54], [83],
[84]. However, EAs are a generic optimization technique whose
results can be improved if some expert knowledge about the
problem to be solved is incorporated [2]. This hybridization of
the robustness and strength of EAs and the expertness of the
heuristics improves the optimization procedure. Thus, adapted
EAs obtain better results than generic ones because they can
guide the search toward solutions that an expert knowledge of
the problem expects to be superior. The incorporation of expert
knowledge has been carried out in this paper by constructing
some problem-specific mutation operators. These operators
differ from the original ones in that they do not produce blind
changes to the individuals they affect, but attempt to improve
the mutated individual by analyzing and altering it according to
some heuristics [33]. Specifically, in the problem of optimizing
the parameters that define an RBFNN from training samples,
there exist two good heuristics to determine the relevance of a
basis function in the net output: OLS and SVD [86].

This paper presents a brief review of the orthogonal transfor-
mations OLS and SVD in Section II. Section III summarizes the
concept of MultiObjective Evolutionary Algorithm (MOEA)
and justifies its use. Section IV describes some expert muta-
tion operators based on the OLS and SVD transformations
specifically designed for the optimization of RBFNNs. These

1QR is a widely used orthogonal matrix decomposition withQ orthogonal
andR upper triangular, the reader is referred [32] for further reading.

operators are compared with a random (blind) type mutation
in Section V, and some experimental results are presented in
Section VI, where the MOEA is applied to several benchmark
problems and the results are compared with those obtained
by other approaches used to solve function approximation
problems. Finally, some interesting conclusions are presented
in Section VII.

II. ORTHOGONAL TRANSFORMATIONS

Once the parameters concerning the RBFs have been fixed,
their associated weights can be optimally calculated using a
linear systems solver. Equation (1) can be seen as a special case
of linear regression

(3)

where is given by

(4)

In this regression model, are the regressors, the pa-
rameters, and are the residual errors for each input vector.
Given input-output samples, (3) can be expressed as

(5)

where is the column vector containing
all the expected outputs, is a matrix
whose columns represent the output
of the th basis function for all the input vectors. The vector

contains all the errors committed by the
model (assumed to be uncorrelated), andis a vector containing
the net weights. Henceforth in this paperwill be the activation
matrix of the RBFNN and will be the predictor of the model.
The number of training samples is usually greater than the
number of RBFs , and so we only have to solve the following
overdetermined linear system

(6)

to minimize the approximation error of the net and find the op-
timal weights (in the least squares sense). There are several ways
to solve overdetermined linear systems. The following sections
present two of the most commonly used methods: OLS and
SVD.

A. OLS

This method was originally employed in [15] to calculate the
optimum weights of an RBFNN. It also estimates the relevance
of each RBF in the output of the net by assigning it an error
reduction ratio . OLS transforms the columns of the acti-
vation matrix into a set of orthogonal vectors . This trans-
formation is performed by applying the Gram-Schmidt orthog-
onalization method [32] and produces

(7)

Note that (7) gives the same information as the “standard”
QR decomposition of [32]. Substituting (7) in (5)
we obtain

(8)
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where . As and are orthogonal , the sum of
squares of can be written as

(9)

Dividing both sides of (9) by , it can be seen how the model
variance is decomposed into explained and residual
variances

(10)

So, as is the contribution of to the total output
variance, we can define the error reduction ratio ofas [15]

(11)

This ratio can be used to rank the RBFs according to their
contribution to the reduction of the approximation error. If we
want to keep the most relevant RBFs , we will select
the basis functions that have the highest error reduction ratios.
This method can be used to prune the least relevant RBFs in the
net, thus obtaining a simpler model whose approximation error
is as close as possible to the error of the original net. A more
detailed discussion of the OLS transformation can be found in
[14]–[16], [86].

B. SVD

The SVD of the activation matrix produces

(12)

where is a matrix with orthogonal columns,
is a diagonal matrix whose elements are positive or

zero and are called singular values of, and is an
orthogonal matrix.

Each of the columns in is related to an RBF of the net,
and has an associated singular valuethat estimates its degree
of linear independence in the system. The higheris, the more
linearly independent is in . So, if we only want to select the

most relevant basis functions for network pruning ,
we only have to maintain theRBFs with the highest associated
singular values [32]

(13)

where is a diagonal matrix containing the highestsingular
values, and and keep the columns of and associated
with the singular values in . This is an easy method to discard
the least relevant RBFs in the net [45], [58], [58], [85],
[86].

SVD decomposition is a complicated orthogonal transforma-
tion and its implementation is beyond the scope of this paper.
Here, we will only mention that there are two possible imple-
mentations, faster of which is SVD-QRcp, described in [32],
[73], [74]. This implementation uses Householder transforma-
tions for faster obtention of SVD, but obtains the columns of

with an altered order, so it is necessary to apply the QR al-
gorithm with Column Pivoting (QRcp) to get an estimation of
their true order. The other method is the Kogbetliantz algorithm

[48], [49], which maintains the original order of the columns,
but is much slower, although easy to parallelize [7], [6], [13].

In the following section we present a multiobjective evolu-
tionary algorithm that allows the determination of the optimal
number, position and shape of RBFs for function approxima-
tion problems. In this algorithm we also introduce new genetic
operators that are based on the orthogonal transformations pre-
sented in this section.

III. M ULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

The automatic optimization of a RBFNN from training data
[68], [69] is a problem in which two clearly competing objec-
tives must be satisfied. The model’s prediction error must be
minimized in order to achieve a well fitted model, while the
number of RBFs should be as low as possible to obtain a reliable
interpolator. The problem here is how to satisfy both objectives
simultaneously. Improving one of them will probably worsen
the other. This kind of problem is known as a Multi-Objective
Problem (MOP) [60], [40], [12], [36], and their solutions are
usually sub-optimal for each objective in particular, but “accept-
able” taking all the objectives into account, where “acceptable”
is totally subjective and problem-dependent.

The algorithms proposed in the literature to construct
RBFNNs from examples usually try to find a unique model
with a compromise between its complexity and its prediction
error. This is not an adequate approach. In MOPs there is usu-
ally more than one alternative optimal solution (each making
different compromises between multiple objectives) that can
be considered equivalent. Thus, it is very difficult to adapt
conventional optimization techniques to solve MOPs because
they were not designed to deal with more than one solution
simultaneously [25]. Nevertheless, EAs maintain a population
of potential solutions for the problem, thus making it easier to
adapt them to solve MOPs [25]. In particular, the fitness of the
individuals must be adapted to comprise all the objectives to be
satisfied and new mutation operators must be designed to alter
the structure of RBFNNs.

The great difference between single objective and multiple
objective problems is that the set of solutions is not completely
ordered for MOPs. Generally, in the case of a problem with
competing objectives, each one of them measured by the objec-
tive function , we can define a global objec-
tive function that meets the following relations for two poten-
tial solutions for the problem and

(14)

Taking into account the above relations, the Pareto-domi-
nance criterion can be defined as

(15)
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where means that is a better global solution than
means that is better or equal than , and

means that and are not comparable solutions.
A Pareto-optimum solution [60] is defined as an individual

that cannot be dominated by any one in the solution set

(16)

A good multiobjective algorithm should find as many Pareto-
optimum solutions as possible, to provide the final user with
the possibility of choosing the right solution following his own
criteria.

Multi-Objective Evolutionary Algorithms (MOEAs) consti-
tute a robust optimization technique that has been successfully
applied to several optimization problems [19], [26], [27], [42],
[79]. Its strength is based on its simplicity and easy implemen-
tation. In this case, the problem is to construct an RBFNN for
function approximation from examples, and the two competing
objectives are the net complexity (number of RBFs) and its ap-
proximation error.

We have also incorporated a fine tuning step into the algo-
rithm to improve the precision of the solutions in the popula-
tion. This step applies, in each generation, a few iterations of
the Levenberg-Marquardt minimization algorithm [22], [55] to
the nondominated individuals in the population. As these indi-
viduals are expected to have a higher number of copies in the
next generation, the local adjustment introduced by the mini-
mization algorithm is propagated to the whole population in a
few generations [33].

After the MOEA finishes and returns a set of solutions with
different compromises between their structural complexity and
their approximation error, the minimization algorithm is applied
to each one of them to reach the closest local optimum in the
search space.

As stated earlier, the expert knowledge has been incorporated
into the algorithm by constructing evolutionary operators that
apply heuristic-based changes to the individuals in the popula-
tion. These mutation operators are based on the SVD and OLS
transformations presented in Section II.

A. Ranking the Solutions

As stated above, the set of solutions is not completely ordered
in a MOP. The Pareto-dominance criterion allows comparing
two different solutions, but it can not measure the difference
between them. There have been proposed several approaches
in the literature to overcome this problem, such as the MOGA
presented in [25] or the NSGA described in [77]. In this paper
we use the approach proposed in [25], which defines the concept
of rank of a solution as

(17)

where represents the number of individuals dominating
in the current population. Note that rank improves when be-

comes smaller, that is, as the rank ofgets a lower value,
represents a better solution for the MOP, thus, all the Pareto-op-
timum solutions will be assigned a rank value of one. Fig. 2
shows an example of rank assignment.

Fig. 2. Ranking of the solutions.

Once each individual has been assigned a rank, a scalar
dummy fitness is obtained for all the individuals following the
algorithm.

1) Rank the RBFNNs in the population according to their
rank value.

2) Assign an initial dummy scalar fitness to each RBFNN by
a linear interpolation between the lower and higher rank
values in the population.

3) Obtain the final scalar dummy fitness of each RBFNN as
the mean of the initial dummy fitness scalar values of all
the RBFNNs having the same rank value.

Table I shows the execution of this algorithm for the popu-
lation ranked in Fig. 2. This simple modification in the fitness
evaluation of the RBFs allows a generic EA to solve an MOP
transparently, that is, without changing any other of its compo-
nents. As an example, the selection scheme can remain unal-
tered and select the solutions according to their scalar dummy
fitness. To avoid a premature convergence of the algorithm a
niching strategy has also been incorporated. The niching scheme
used in this paper is fully discussed in [31], [21], [77].

IV. PROPOSEDEVOLUTIONARY OPERATORS

This section presents some new evolutionary operators
specifically designed for the problem of optimizing the pa-
rameters of an RBFNN. These new operators apply random
changes to the individuals they affect to maintain the diversity
in the population and to provide mechanisms to escape from
local minima [30], [39], but they apply different criteria.

We will present a crossover operator, together with some mu-
tation operators that can be organized into two groups: operators
to change the structure of the net and operators to adjust the pa-
rameters of the RBFNNs.

The former group contains SVD-based Pruning (SVDP),
OLS based-Pruning (OLSP), and the Splitting of RBFs
(SPLIT).

The latter group is composed of the Locally Random
Mutation (LRM), a blind operator, and heuristically guided
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TABLE I
DUMMY FITNESSASSIGNMENT FOR THEPOPULATION DEPICTED IN FIG. 2

operators such as the Local OLS-based Mutation (LOLSM), the
Local SVD-based Mutation (LSVDM), the Global OLS-based
Mutation (GOLSM), and the Global SVD-based Mutation
(GSVDM). One important characteristic, analyzed in Section V,
is the scope of the changes they perform, which can be local
to an RBF (LRM, LOLSM, and LSVDM), or global within the
input space (GOLSM and GSVDM).

A. RBFNN Crossover

This operator takes two RBFNNs and returns two offspring,
combining the genetic information from their ancestors. The
offspring are generated by interchanging several RBFs in the
original nets. Some RBFs are selected randomly in one of the
ancestors and are replaced by the closest RBFs in the input space
belonging to the second progenitor, in order to avoid the genera-
tion of two new RBFNNs that could leave input regions uncov-
ered. After the exchange of information, the optimum weights
are obtained for the descendants.

B. SVDP: SVD-Based Pruning

One of the orthogonal transformations described in Section II
to obtain a measure of the relevance of each RBF is to perform
the SVD of the net’s activation matrix. This decomposition pro-
vides a set of singular values, one per RBF. High singular values
identify important RBFs, while low singular values detect less
relevant basis functions. This heuristic is well known and has
been applied as a pruning criterion by some algorithms in the
literature [45], [58], [85], [86].

Taking this information into account, this mutation operator
assigns a pruning probability to each RBF that is inversely
proportional to its associated singular value

(18)

Less-important RBFs are assigned a greater pruning proba-
bility than more relevant ones. Once these pruning probabilities
have been calculated, an RBF is randomly selected and deleted,
and the optimum weights for the remaining RBFs are obtained.

C. OLSP: OLS-Based Pruning

The other orthogonal transformation described in Section II
is OLS. This method also assigns a relevance value to each RBF,
but with an important difference: OLS takes into account the ex-
pected output for each input vector in the training set. Thus, the
relevance of each RBF is closely related to its contribution to
the reduction of the training error. The RBFs making a bigger
contribution to the training error reduction will be more sensi-
tive to the pruning than those making a smaller contribution.

OLS has been widely applied as a pruning heuristic for
RBFNNs and fuzzy systems [14]–[16], [86]. In this case, this

orthogonal transformation has been used to guide a mutation
operator to select the right RBF to be deleted. In order to
minimize the effect of the mutation on the net approximation
error, OLS is employed to assign a deletion probability to each
RBF according to its relevance in the output. An RBF is
assigned a pruning probability that is inversely proportional
to its error reduction ratio

(19)

After the pruning probability for each RBF is obtained, one of
them is randomly deleted and the optimum weights of the new
net are calculated.

D. SPLIT: Splitting of RBFs

The objective of this mutation operator is to detect the input
areas that are worse modeled by the RBFNN, i.e., those with a
higher approximation error, and to increase the number of RBFs
in these areas in order to increase the variance of the data ex-
plained by the net. To carry out this task, the operator estimates
the contribution of each RBF to the whole approximation error
using the following expression

(20)

A high value of means that the RBF is not able to model
correctly the training data that most activate it, so, it would
be desirable to increment the number of RBFs in this input
zone, in order to minimize the approximation error caused by
the training examples that activate. Thus, the mutation oper-
ator assigns a splitting probability to each RBFproportional
to its contribution to the approximation error. This means
that those RBFs with a higher contribution to the approxima-
tion error will have more probability of being split. Once that all
the RBFs have been assigned a splitting probability, one basis
function is randomly selected according to these probabilities
distribution.

After the RBF has been selected, the 2-means algorithm
is run with the input examples that are closer to the center of

than to any other RBF center, obtaining two new positions
for two new RBFs, and , which will substitute in
the affected net. The radii for and are calculated using
the -Nearest Neighbor (KNN) heuristic [57], [47], and the op-
timum weights for all the weights of the new net are obtained
using the Cholesky method.

A similar splitting criterion was used in [47], where the RBFs
with higher classification error were split in a similar way. The
difference between the proposed criterion and the one presented
in [47] is the way of measuring the error committed by each
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RBF. In [47] it was an easy issue because the RBFNNs were
used to solve classification problems, thus, the error committed
by each RBF was the number of misclassified patterns. In a
function approximation problem, this task becomes quite more
difficult because all the RBFs contribute in the final output,
so the approximation error has to be shared in any way be-
tween the RBFs. In this case, it has been used the sum-of-ab-
solute-values metric, although the euclidean norm was another
possibility [82]. Nevertheless, both metrics are able to assign
a higher splitting probability to those RBFs that make a major
contribution to the approximation error.

E. LRM: Locally Random Mutation

This operator is a direct adaptation of the classical blind
genetic mutation operator [39]. All the parameters concerning
the RBFs of the net have the same probability of being altered,
and once a parameter is selected, it undergoes a locally random
change. Due to the large number of parameters defining an
RBFNN, there are several possible implementations for this
operator. The chosen implementation will alter only the centers
and radii of the net, because the weights can be optimally
calculated once these parameters have been fixed, as described
in Section II. Basically, this operator performs the following
steps.

• Randomly select an RBF to be altered. All the RBFs have
the same probability of being chosen.

• Decide whether to alter its radius or its center. This deci-
sion is made randomly, using a probability of 0.5 for each
of the possibilities.

• Perform a local alteration of the center or the radius fol-
lowing the steps detailed in Sections IV-E–1 and IV-E–2,
[35].

• Obtain the optimum weights for the new net.
1) Locally Random Change of the Center of an RBF:The

center of an RBF is modified by applying an offset vector. The
norm of this offset is smaller than the RBF radius, to preserve
the relative positions of all the RBFs in the input space

(21)

Each one of the components in the offset vector is obtained
using the following expression

(22)

where is the input space dimensionality and is a func-
tion defined as

(23)

and the function randomly returns a real number chosen
uniformly in the interval .

Once the offset is applied, there is a restriction that has to
be checked to validate the mutation: the new center must be
sufficiently close to the set of training data, so that the following
expressions are satisfied

(24)

(25)

where and are defined as

(26)

(27)

These constraints ensure that the new position of the RBF will
allow it to be activated by some training samples. Without them,
a mutation could place an RBF far from the training data, and
thus this RBF would not contribute to the net output.

2) Locally Random Change of the Radius of an RBF:This
alteration also applies a random offset, in this case to the radius
of the RBF

(28)

The expression allows the radius to change according to its
norm. Once the alteration has been performed, some constraints
have to be met. The first one is that the new radius must be a
sufficiently large positive real number, so that the RBF can be
activated

(29)

where is a lower threshold for the RBF radii to avoid division
by zero in (2). An RBF with such a small radius will probably
not be activated, but this is not really a problem. Mutation oper-
ators have to add diversity to the population, and if they produce
a bad solution, it will probably not survive in the next genera-
tion.

Another two constraints to be satisfied are

(30)

(31)

These restrictions force all the RBFs whose centers are far
from the training data to have a sufficiently large radius to be
activated by some input vectors.

F. LSVDM: Local SVD-Based Mutation

The set of singular values obtained by applying SVD can also
be used to estimate the sensitivity of each RBF to a random
displacement. If we move an RBF having a high singular value,
we will probably obtain a worse-fitted net. On the other hand,
RBFs whose singular values are nearly zero are not making any
significant contribution to the net output, so they can be altered
freely without increasing the net error.

With this idea in mind, this mutation operator selects a basis
function to be altered with a probability that is inversely pro-
portional to its associated singular value. Less relevant RBFs
will have more probability of being altered while more impor-
tant RBFs will be more change-protected [35]. Once an RBF
has been chosen, a local modification is applied to its center or
radius as described in Sections IV-E–1 and IV-E-2.

G. LOLSM: Local OLS-Based Mutation

OLS calculates a vector of error reduction ratios (11) in
which there is an for each RBF in the net. The higher

is, the more sensitive is to a random change. Thus, this
mutation operator constructs a probability distribution where
each has a probability of being altered that is inversely pro-
portional to its associated error reduction ratio [35]. An
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RBF is chosen using this distribution and a local change is ap-
plied to its center or radius as described in Sections IV-E-l and
IV-E–2.

H. GSVDM: Global SVD-Based Mutation

Another way of hybridization between SVD and a mutation
operator is to select the RBF to be altered uniformly (all the
RBFs have the same likelihood of being chosen) and apply a
random displacement according to its associated singular value.
Basis functions with small singular values will undergo large
movements, while only small perturbations will be applied to
sensitive RBFs.

This behavior can be implemented by applying a random
shift to the center or the radius of the selected RBF whose
modulus varies inversely with the magnitude of its singular
value. The steps to perform the alterations are detailed later
(Sections IV-H-1 and IV-H-2).

1) Globally SVD-Based Random Change of the Center of an
RBF: To alter the position of an RBF globally, a random dis-
placement is applied to its center. The great difference from the
mutation operators described earlier is that in this case, the RBF
movement can be made toward any point in the whole input
space. The modulus of the displacement applied increases as
the RBF becomes less important, allowing large movements to
basis functions that contribute insignificantly to the net output.
Relevant RBFs will only undergo small alterations, to avoid a
large change in net performance.

Each one of the offset components is calculated as follows:

(32)

where is the function described in (23), is the radius
of the selected basis function , and is a constant that is
inversely proportional to the singular value associated with

(33)

In the above equation, and are the maximum and
minimum singular values, respectively, is the singular value
corresponding to , and is the maximum allowed move-
ment for the th basis function

(34)

and are defined in (26) and (27) respectively, andis
the input space dimensionality.

Moreover, this random displacement must satisfy constraints
(24) and (25) to ensure that the altered RBF will be activated by
some training data.

2) Globally SVD-Based Random Change of the Radius of an
RBF: This alteration is also performed by a random shift ap-
plied to the RBF radius. The change of the radius is described
as

(35)

where is calculated from (33).
Once the alteration has been performed, the new RBFNN

must satisfy constraints (29), (30) and (31) to be accepted.

I. GOLSM: Global OLS-Based Mutation

This evolutionary operator implements exactly the same steps
as above, but uses OLS instead of SVD to detect the relevance
of the RBFs. All the basis functions have the same likelihood
of being altered, and when one RBF is chosen, its center
or its radius undergoes a random displacement that is inversely
proportional to its error reduction ratio (11).

1) Globally OLS-Based Random Change of the Center of
an RBF: This alteration is analogous to the one performed by
GSVDM. The only difference is the calculation of the constant

, which is now based on the error reduction ratios

(36)

where and are the maximum and minimum
error reduction ratios obtained by the OLS decomposition re-
spectively, is the error reduction ratio of the chosen RBF,
and is obtained by applying (34).

Again, the random displacement applied to the RBF must
meet restrictions (24) and (25) to produce a valid RBFNN.

2) Globally OLS-Based Random Change of the Radius of an
RBF: This alteration also performs a random displacement of
the current RBF radius. This change is applied according to

(37)

where is obtained with (36).
This random alteration must also satisfy constraints (29), (30)

and (31) to be validated.

V. COMPARISON OF THEPARAMETER ADJUSTMENT

MUTATION OPERATORS

As commented in Section II, SVD and OLS have been
widely applied as heuristics to prune the less relevant units
of an RBFNN [14]–[16], [45], [58], [85], [86]. Nevertheless,
this paper also uses them to guide the adjustment of the net
parameters. The effect of this new use of these heuristics has not
yet been analyzed, and so this section presents an experiment
to gain an insight into the behavior of the adjustment of the
parameters for each mutation operator. This experiment is
related to the approximation of the target function

(38)

proposed in [23] from a set of 100 equi-distributed samples. This
function was approximated with several EAs, each one con-
taining the crossover operator and only one of the parameter ad-
justment mutation operators presented earlier (LRM, LSVDM,
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Fig. 3. Effect of LRM operator.

LOLSM, GSVDM, GOLSM)2 . These EAs were used with dif-
ferent initial populations and all the executions were started with
the same random seed. All the EAs used a population composed
of 30 individuals each with 7 RBFs, and all of them were run for
100 generations. These parameters were fixed arbitrarily, but as
they are identical for all the EAs, they provide a fair comparison
between the mutation operators.

The index used to estimate the approximation error of the
RBFNNs is the normalized root mean squared error (NRMSE)
[65], defined as

(39)

where are the expected outputs for thetraining examples
and represents their mean.

Figs. 3–7 show the evolution of the different EAs. The solid
line represents the mean of the best individuals in each gener-
ation, and the dashed line indicates the minima and maxima of
the best individuals found in every generation. These figures
suggest that LRM achieves a very good solution, even better
than LOLSM and LSVDM.This detail reveals that even with
expert knowledge the search can be trapped in local minima if
it is not correctly used.As LOLSM and LSVDM only perform
local changes to the individuals, they prevent less relevant RBFs
from moving freely in the input space. Although less important
RBFs are given more chances of being altered, as the random
changes are always made in a local way, they only affect con-
tiguous regions in the input space. These local alterations do not
allow an RBF which makes little contribution to the net output
to move to a region in the input space where it could reduce the
approximation error, if this region is not close to the RBF. Thus,
these two mutation operators tend to trap the population in local
minima, andthis is just the opposite function a mutation opera-
tion should perform.

On the other hand, the GOLSM and GSVDM operators ob-
tain much better results. This is because GOLSM and GSVDM

2Note that as in this section we only intend to analyze the behavior of the pa-
rameter adjustment mutation operators, we only use an EA with a fixed number
of RBFs for all the RBFNNs, not the MOEA described in Section III.

Fig. 4. Effect of LOLSM operator.

Fig. 5. Effect of LSVDM operator.

Fig. 6. Effect of GOLSM operator.
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Fig. 7. Effect of GSVDM operator.

TABLE II
MEAN, STANDARD DEVIATION, MINIMUM , AND MAXIMUM OF THE BEST

SOLUTIONS FOUND FOREACH MUTATION OPERATOR

perform global changes to the individuals using displacements
that are inversely proportional to the relevance of the RBF they
affect. Thus, important basis functions will only undergo local
perturbations and less relevant RBFs will be able to move freely.

Figs. 6 and 7 show that GOLSM and GSVDM require less
iterations than LRM to reach EA convergence. Starting with
the same initial populations, GOLSM and GSVDM are able to
discover solutions with an approximation error that is half that of
the EA using LRM in the same generation. This result justifies
the selection of GOLSM and GSVDM as the most appropriate
mutation operators for this problem.

If we now pay attention to the last generations, LRM,
GOLSM and GSVDM produce similar mean approximation
errors, although the best solution is always better for GOLSM
and GSVDM. This comparison is graphically shown in Fig. 9
and Table II.

Finally, as we can add as many mutation operators as we want
to an EA, the same experiments were run with an EA combining
GOLSM and GSVDM. When an individual is chosen to be al-
tered, one of these two operators is applied. The application
probability was 0.5 for each of them. This final EA shows an
easy way of combining the effects of several operators. Figs. 8–9
and Table II show that this combination produces even better so-
lutions than when each operator is applied separately.

As a conclusion, the idea of a local mutation operator is a
contradiction, given that applying local changes tend to trap

Fig. 8. Combined effect of GOLSM and GSVDM operators.

the population in local minima, instead of facilitating a way
of escaping from them. Nevertheless, global mutation operators
can move less relevant (less activated) RBFs through the whole
input space, facilitating the allocation of these useless RBFs in
other positions where they might become more activated and
perform a higher contribution to the approximation error reduc-
tion. This conclusion is in line with the state-of-the-art quantiza-
tion algorithm known as ELBG [63], where local minima in the
parameter space are avoided throughout a genetic-based global
migration procedure to allow codewords to move through non-
contiguous Voronoi polyhedra.

VI. EXPERIMENTAL RESULTS

Having analyzed the parameter adjustment mutation opera-
tors, this section shows some experimental results obtained by
the MOEA described in Section III incorporating the crossover
operator, the pruning operators SVDP, OLSP, the RBF splitting
operator SPLIT, and the parameter adjustment mutation opera-
tors GOLSM and GSVDM. The proposed multiobjective evo-
lutionary algorithm has been checked in the fields of function
approximation and chaotic time series.

As described earlier, the proposed algorithm is able to ob-
tain in only one execution several optimum solutions for dif-
ferent configurations (a Pareto-optimum frontier of solutions)
for a given training set of examples. Thus, in the tables that sum-
marize the experimental results will be presented RBFNNs with
several complexities together with their approximation error.

A. Application to Function Approximation

The first experiment tests the MOEA proposed in this paper
to approximate several one-dimensional (1-D) and two-dimen-
sional (2-D) target functions proposed in the literature.

1) 1-D Functions: In this section the proposed algorithm is
tested with three 1-D functions previously used by other authors.
The results obtained are compared with the solutions presented
by other authors in terms of the error committed by the model
and its complexity.
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Fig. 9. Comparison of the different mutation operators.

TABLE III
COMPARISON OF THEOBTAINED RESULT WITH OTHER APPROACHESUSED TO APPROXIMATE THE 1-D

TARGET FUNCTION dick;m REPRESENTS THENUMBER OF RBFS OR RULES

(DEPENDING ON THEMODEL), AND n IS THE NUMBER OF FREE PARAMETERS

The first 1-D target function used in this section was orig-
inally proposed by Dickerson and Kosko in [23]. It has been
previously used in Section V to test the behavior of the muta-
tion operators and in this section it will be used as a test function
to compare the proposed algorithm with other models and al-
gorithms proposed in the literature for function approximation.
The function is defined as

(40)

The MOEA was run several times with different populations
of 25 RBFNNs. The training set used was composed of 100
examples equidistributed in the input interval and
the test set contained 1000 test data also equidistributed in the
same input range.

Table III shows the approximation error reached by the algo-
rithms proposed in [23], [65]. Dickerson and Kosko applied a

hybrid neuro-fuzzy system with ellipsoidal rules trained by sev-
eral learning methods, while Pomares proposed a fuzzy system
based on a complete table of rules using triangular membership
functions. The error is compared using two different indexes:
the MSE proposed originally in [23], and the NRMSE proposed
in [65]. It can be observed that the standard deviations over the
mean approximation error are quite low for the different struc-
tures found by the proposed algorithm, which reveals the ro-
bustness of the proposed algorithm for different random initial
populations.

The other two 1-D target functions used to test the proposed
algorithm were proposed in [80], one of the first works that ad-
dressed the problem of function approximation from a set of
training examples. This algorithm generated a fuzzy rule-table
having one rule for each training example and later selected the
more activated rules to construct the model. Later on, Sudkamp
and Hamell [78] improved this algorithm to make it noise resis-
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TABLE IV
COMPARISON OF THEOBTAINED RESULT WITH OTHER APPROACHESUSED TO APPROXIMATE THE 1-D

TARGET FUNCTION wm (x);m REPRESENTS THENUMBER OF RBFs OR RULES

(DEPENDING ON THEMODEL), AND n IS THE NUMBER OF FREE PARAMETERS

tant and also proposed other two methods:Region Growingand
Weighted Average. To test the algorithms both works used the
target functions

(41)

(42)

These two functions were also used by Pomares to test its sys-
tematic learning algorithm for the identification of rule-based
fuzzy systems in [65].

The algorithm proposed in this paper was run several times
with different populations of 25 RBFNNs. The training set used
to learn these two functions were constructed with 100 exam-
ples equidistributed in their input range, while the test sets was
formed by 1000 examples uniformly distributed in the same in-
terval.

Tables IV and V compare the results of the proposed algo-
rithm with the obtained by the other approaches introduced ear-
lier. In this case, the error index used in [80], [78] was the mean
error (mean of the absolute errors). Pomares also used in [65]
the NRMSE, so the results are compared taking into account the
two indexes. As can be seen, the proposed algorithm obtains
approximations with a lower approximation error, even using
fewer free parameters. The standard deviation of the approxi-
mations obtained after several runs also show that the algorithm
is quite robust. This can be deduced because it is able to reach
similar solutions starting with different random initial popula-
tions.

Fig. 10 and 11 rank the solutions obtained by all the algo-
rithms compared in this section according to the two objectives
being minimized: the approximation error and the complexity

TABLE V
COMPARISON OF THEOBTAINED RESULT WITH OTHER APPROACHESUSED TO

APPROXIMATE THE1-D TARGET FUNCTION wm (x);m REPRESENTS

THE NUMBER OF RBFsOR RULES (DEPENDING ON THEMODEL), AND

n IS THE NUMBER OF FREE PARAMETERS

of the model3. It can be appreciated that the proposed algorithm
is able to explore the Pareto-optimum frontier, finding solutions
that are superior in both competing objectives.

2) 2-D Functions: In this section, we have used the 2-D
functions and (Figs. 12 and 13) originally proposed
in [18]. This work presented a comparative study of several
paradigms applied to function approximation, such as Pro-
jection Pursuit (PP) [28], Multivariate Adaptive Regression

3The complexity is measured using the number of rules (or RBFs in an
RBFNN).
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Fig. 10. Comparison of the proposed algorithm with others applied in the
literature to approximate thee target functionwm (x).

Fig. 11. Comparison of the proposed algorithm with others applied in the
literature to approximate thee target functionwm (x).

Splines (MARS) [29], Constrained Topological Mapping
(CTM), and a multilayer perceptron (MLP) with 15 neurons
in the hidden layer. These two target functions are defined as
follows:

(43)

(44)

Later on, this functions were also used in [17], a paper
presenting a very optimized method to construct MLPs is
presented, and in [65], where a robust algorithm for the
identification of rule-based fuzzy systems is used in function
approximation problems. This algorithm was able to use
different types of membership functions, such as a triangular
partition (TP) of the input space, free triangular (FT) mem-
bership functions in the input space, Gaussian functions (G),
and free pseudo-Gaussian (FPG) functions. The target function

Fig. 12. Functionf .

Fig. 13. Functionf .

was also used as a test function in [10], [11]. These works
describe the G-Prop algorithm, an evolutionary algorithm for
multilayer perceptrons.

The training sets for the experiments presented in these sec-
tions have been constructed taking a random point from each
cell of a 20 20 grid partition of the input space, obtaining sim-
ilar training sets to the ones used in [17]. The test sets were
formed by 961 points obtained by dividing the input interval
with a (31 31) grid.

As can be appreciated in Tables VI and VII, the models ob-
tained for each target function are superior to all classic ap-
proaches (MLP, PP, CTM y MARS), as they obtain quite lower
approximation errors. The MLPs obtained by Cherkasskyet al.
in [17] and by Castillo in [10], [11] are also outperformed in
approximation error and in the complexity of the models in the
approximation of .

The fuzzy systems obtained in [65] present a very low approx-
imation error due to the great number of linear parameters that
can be optimally calculated in rule-based fuzzy systems. This
fact becomes maximized when the membership functions are
a triangular partition of the input space. Due to this character-
istic, the results obtained by the proposed approach are similar

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 23:26:08 UTC from IEEE Xplore.  Restrictions apply. 



1490 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 6, NOVEMBER 2003

TABLE VI
COMPARISON OF THEOBTAINED RESULT WITH OTHER APPROACHES

USED TOAPPROXIMATE THE2-D TARGET FUNCTION f ;m REPRESENTS

THE NUMBER OF RBFsOR RULES (DEPENDING ON THEMODEL), AND

n IS THE NUMBER OF FREE PARAMETERS

to those presented in [65] for function. Nevertheless, func-
tion has been learned better for the proposed algorithm, as
can be seen in Fig. 14.

3) Robustness to Noise in the Training Data:The experi-
ments above have been performed with ideal training sets in
order to compare the proposed algorithm to others in the lit-
erature. Nevertheless, in real experiments, data usually are af-
fected some noise. To give an insight of the proposed algorithm
behavior modeling noisy data, in this experiment a 5% of white
noise has been added to the training data used before to learn
the target function . The effect of this noise can be observed
in Fig. 15.

The proposed algorithm has been trained several times with
the noisy training data and with the same configuration used
in Section VI-A–2. The obtained results, shown in Table VIII,
show the robustness of the proposed algorithm facing noisy data.
As the number of RBFs increases, the data are better modeled
and the test error diminishes, until a sufficient number of RBFs
is reached, nine in this case (see Fig. 16). RBFNNs having more
than nine RBFs also learn some of the noise added to the training
data, thus the test error increases. This threshold for the max-
imum number of RBFs allowed can be easily found when de-

TABLE VII
COMPARISON OF THEOBTAINED RESULT WITH OTHER APPROACHESUSED

TO APPROXIMATE THE 2-D TARGET FUNCTION f ;m REPRESENTS

THE NUMBER OF RBFsOR RULES (DEPENDING ON THEMODEL), AND

n IS THE NUMBER OF FREE PARAMETERS

Fig. 14. Comparison of the proposed algorithm with others applied in the
literature to approximate thee target functionf .

tecting more complex RBFNNs with higher test approximation
errors.
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Fig. 15. Noisy training data used to learn the target functionf .

TABLE VIII
TRAINING AND TEST APPROXIMATION ERRORSOBTAINED USING A NOISY

TRAINING SET TO LEARN THE f

B. Application to Time Series Forecasting

The MOEA proposed in this paper has also been tested with
the time series generated by the Mackey-Glass time-delay dif-
ferential equation [53]

(45)

Following previous studies [84], the parameters were fixed to
, thus obtaining a chaotic time series with no

clearly defined period; it does not converge or diverge, and is
very sensitive to initial conditions.

Fig. 16. Approximation of functionf with nine RBFs after training with
noisy data.

As in [43], the time series values at integer points were ob-
tained applying the fourth-order Runge-Kutta method to find the
numerical solution for the above equation. The values

, and for were assumed. This data
set can be found in the file mgdata.dat belonging to the FUZZY

LOGIC TOOLBOX OF MATLAB 5.
1) Short-Term Prediction:Following the conventional set-

tings to perform a short-term prediction of these time series, we
predict the value from the current value and the
past values , and ; thus, the training
vectors for the model have the following format

(46)

The first 500 input vectors were used to train the model and
the next 500 vectors were used to test the RBFNNs obtained.
The proposed algorithm was run several times with a population
of 25 individuals for 1000 generations, and the Levenberg-Mar-
quardt minimization algorithm was applied to the best solutions
found to fine-tune their parameters. Table IX compares the ob-
tained result with other presented in the literature in terms of
their root mean squared error (RMSE), defined as

(47)

The comparison of these results with those obtained by the
proposed algorithm reveals that the use of expert mutation op-
erators significantly enhances the search results. This can be ob-
served in the standard deviations from the mean RMSE, which
are small enough to establish the robustness of our approach.
Fig. 17 shows the Pareto-optimum solutions found by the pro-
posed algorithm and compares them with other solutions in the
literature. It can be observed that the proposed approach is able
to find a wide range of solutions with different compromises
between the number of RBFs and the approximation error, and
that all the solutions are found in only one execution of the al-
gorithm.

2) Long-Term Prediction:Although the short-term predic-
tion of the Mackey-Glass time series has been used as a test
benchmark by several classical methods, as discussed in [52],
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TABLE IX
COMPARISON OF THEPROPOSEDALGORITHM WITH OTHERSAPPLIED IN THE

LITERATURE TOPREDICT THEs(t + 6) VALUE OF THE MACKEY-GLASS TIME

SERIES; m REPRESENTS THENUMBER OF RBFsOR RULES (DEPENDING ON

THE MODEL), AND n IS THE NUMBER OF FREE PARAMETERS

[57], the prediction lead time (the number of steps in the future
to be predicted) should be greater than the characteristic time of
this chaotic time series. They and most of the authors who have
this time series as a serious benchmark predict at least 85 time
steps into the future, i.e., they predict the value of time series at
time from the four values a times , and

. As argued by Moody and Darken in [57], this prediction
problem is a significant challenge in which classical methods do
little better than chance, thus the use of RBFNNs is justified.

As in the case of short-term prediction, the first 500 vec-
tors have been used in the training step and the remaining 500
have been used o validate the RBFNNs returned by the MOEA.
Table X compares the results returned by the proposes algorithm
with several approaches used to solve this problem in the liter-
ature. Some of them are also based on RBFNNs, such as the
model RAN [64], which iteratively constructs an RBFNN ana-
lyzing the novelty of the input data, or the modifications of RAN

Fig. 17. Comparison of the proposed algorithm with others applied in the
literature to predict thes(t + 6) value of the Mackey-Glass time series.

proposed in [72], which include the Givens QR decomposition
(RAN-GQRD) to obtain the weights of the net and a pruning
criterion (RAN-P-GQRD) to reduce the complexity of the net.
The results are compared with other paradigms too. One of them
[3] presents two different algorithms to train fuzzy systems, one
using brute force and another incremental, and it is shown that
the brute force approach presents an unstable behavior as the
number of rules is increased and it not reaches the approxima-
tion errors obtained by the incremental algorithm. The other one
[20] applies EGAs(Breeder Genetic Algorithms)to train MLPs.
Again, it can be appreciated that the proposed algorithm is able
to find a set of Pareto-optimum solutions that dominate all the
solutions in the table. Fig. 18 summarizes graphically the re-
sults.

VII. CONCLUSION

This paper presents a set of new mutation operators specially
designed to evolve RBFNNs. These operators incorporate ex-
pert knowledge of the problem in order to favor random changes
that may improve the affected individuals instead of performing
only blind changes. The orthogonal transformations OLS and
SVD were applied to the activation matrix of the model. As these
transformations provide a way of ranking the RBFs according to
their relevance in the net, they are used by the mutation opera-
tors to decide which hidden unit should be modified to improve
the net approximation error.

Nevertheless,the incorporation of expert knowledge and
heuristics into the mutation operators does not always produce
a good EA. This paper has shown two clear examples (LOLSM
and LSVDM) where expert mutation operators do not favor the
convergence to good local optima. The objective of mutation
operators is to add diversity to the population and to provide
mechanisms to favor the exploration of the search space. If
the expert knowledge limits this objective in any way, the EA
will not search properly and will tend to get stuck in a local
optimum. On the other hand, if the heuristics cleverly guide the
alterations toward better solutions, an EA using such operators
can achieve better solutions than a blind one. This is illustrated
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TABLE X
COMPARISON OF THEPROPOSEDALGORITHM WITH OTHERSAPPLIED IN THE

LITERATURE TOPREDICT THEs(t+ 85) VALUE OF THE MACKEY-GLASS TIME

SERIES; m REPRESENTS THENUMBER OF RBFsOR RULES (DEPENDING ON

THE MODEL), AND n IS THE NUMBER OF FREE PARAMETERS

in Section VI where these expert mutation operators have
been incorporated into a multiobjective evolutionary algorithm
providing remarkable solutions for different approximation
problems using really small population sizes.

Another important feature of the proposed approach is that it
is able to find a set of Pareto-optimum solutions in only one ex-
ecution. When the algorithms finishes, it returns a complete set
of solutions with different compromises between the two objec-
tives, while other approaches, which obtain only one solution
per execution, have to be executed several times with different
configurations to obtain separate solutions, thus, to make a fair

Fig. 18. Comparison of the proposed algorithm with others applied in the
literature to predict thes(t + 85) value of the Mackey-Glass time series.

comparison of the processing time, we should compare the pro-
cessing time per solution found.

The algorithm proposed has also presented a robust behavior.
The small standard deviations over the mean solutions show that
it is able to find similar solutions starting from different random
initial populations. It is also robust to noise in the training data,
as shown in Section VI.
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