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Abstract

The stock market, which has been investigated by various researchers, is a rather complicated environment. Most research
only concerned the technical indexes (quantitative factors), instead of qualitative factors, e.g., political e�ect. However, the
latter plays a critical role in the stock market environment. Thus, this study develops a genetic algorithm based fuzzy neural
network (GFNN) to formulate the knowledge base of fuzzy inference rules which can measure the qualitative e�ect on the
stock market. Next, the e�ect is further integrated with the technical indexes through the arti�cial neural network (ANN). An
example based on the Taiwan stock market is utilized to assess the proposed intelligent system. Evaluation results indicate
that the neural network considering both the quantitative and qualitative factors excels the neural network considering only
the quantitative factors both in the clarity of buying-selling points and buying-selling performance. c© 2001 Elsevier Science
B.V. All rights reserved.
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Nomenclature

p the sample number
Xp the input vector of sample p
Tp the target vector of sample p
Opk the output of kth output node
Oph the output of hth hidden node
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Wih the connection weight from ith input
node to hth hidden node

Whk the connection weight from hth hidden
node to kth output node

Netpk the net internal activity level of kth out-
put node

Netph the net internal activity level of hth hid-
den node

�j the bias of jth output node
Ep the cost function for sample p
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Eps the cost function of s-level’s �-cut set
for sample p

ELpks the cost function of the lower boundary
for s-level’s �-cut set of sample p

ELpks the cost function of the upper boundary
for s-level’s �-cut set of sample p

�Xp the fuzzy input for sample p
�Op the fuzzy output for sample p
�Wih; �Whk the fuzzy weights
��h; ��k the fuzzy biases
� the learning rate
� the momentum term
�∗[�]L, �∗[�]U the lower limit and the upper limit of

the �-cut of fuzzy number

1. Introduction

The stock market is one of the most popular invest-
ments owing to its high expected pro�t. However,
the higher the expected pro�t, the higher is the risk
implied. Thus, numerous investigations gave rise to
di�erent decision support systems for the sake of
providing the investors with an optimal prediction.
Conventional research addressing this research prob-
lem have generally employed the time series anal-
ysis techniques (i.e., mixed auto regression moving
average (ARMA)) [23] as well as multiple regres-
sion models. Most only consider the quantitative
factors, like technical indexes. Recently, arti�cial in-
telligence techniques, like arti�cial neural networks
(ANNs) and genetic algorithms (GAs), were applied
in this area, the above mentioned concern still exists
[1,30]. However, a number of qualitative factors, e.g.,
macro-economical or political e�ects, may seriously
inuence the stock tendency. Even the investigators’
psychology could result in the index oscillation as
well. Therefore, con�ning ourselves to some technical
indexes to predict the stock tendency is not enough
in such a complicated environment. It involves why
the “experienced” stock experts, or stock brokers, can
make more accurate decision than the common in-
vestors, since they do not only consider the technical
indexes but also consider qualitative factors based on
their experienced knowledge. Thus, it turns out to be
signi�cant to capture this unstructured knowledge.

Fuzzy logic has been applied in the area of control
and has shown highly promising results. This con-
cept attempts to capture experts’ knowledge, which
is vague. Hence, fuzzy logic appears to be a rather
promising candidate for simulating the stock experts’
knowledge. However, the setup of experts’ knowledge
is quite subjective which results from the membership
functions setup of fuzzy sets. Thus, this study aims
to develop a learning algorithm for fuzzy logic, con-
sisting in a genetic algorithm based fuzzy neural
network (GFNN), to capture the stock market
experts’ knowledge.
Basically, this study develops an intelligent stock

trading decision support system based on both quan-
titative and qualitative factors to assist the investors
to make the right decision. The proposed system con-
sists of (1) factors identi�cation, (2) qualitative model
(GFNN), and (3) decision integration (ANN). In the
initial part, the system collects the factors, no mat-
ter quantitative or qualitative, which may inuence
the stock market. Then, GFNN organizes the experts’
knowledge, or qualitative e�ect on the stock market,
and forms a knowledge base with fuzzy inference
rules. Finally, the stock market technical indexes are
integrated with the qualitative e�ect on the stock mar-
ket from GFNN using a feedforward neural network
with error backpropagation (EBP) learning algorithm
to provide the �nal decision.
The rest of this work is organized as follows. Sec-

tion 2 presents the general background. Section 3 dis-
cusses the proposed system while evaluation results
and discussion based on the Taiwan stock market are
summarized in Section 4. Concluding remarks are �-
nally made in Section 5.

2. Background

This section describes the general background of
ANN in stock trading system, fuzzy neural networks,
and genetic algorithms which will be employed in the
proposed system.

2.1. Arti�cial neural networks (ANNs) in stock
trading

Arti�cial neural network (ANN) is a system derived
through models of neuropshychology [9]. In general,
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it consists of a collection of simple nonlinear com-
puting elements whose inputs and outputs are tied to-
gether to form a network. Recently, owing to increase
of the computational speed, arti�cial neural networks
(ANNs) have also been applied in many areas, e.g.,
control, image processing and forecasting [5,29].
For stock market, Schoneburg [32] analyzed the

possibility of predicting stock prices on a short-term,
day-to-day basis with the help of neural networks
by studying three important German stocks selected
at random. Baba and Kozaki [1], applied modi�ed
EBP learning algorithm to predict the Japanese stock
market. The network structure consists of �fteen in-
put nodes and one output node representing the stock
market tendency. Jang et al. [13], employed dual
adaptive structure neural network to predict the stock
tendency for the Taiwan stock market. The simulation
�ndings revealed that the performance of the adaptive
structure network is better than the �xed structure
network. Similar research using ANN in �nance can
refer to [3–5,8,17,36]. A new genetic-algorithm-based
system was recently presented and applied to pre-
dict the future performances of individual stocks
[30]. The proposed system was compared to an es-
tablished neural network. The �nding revealed that
genetic-algorithm-based system outperforms neural
network. Though most of this research declared that
their systems can provide very good results, yet the
qualitative factors were still not included. However,
the qualitative factors sometimes have the most im-
portant e�ects on the stock market.

2.2. Fuzzy neural networks (FNNs)

An ANN, as employed for recognition purposes,
generally lacks the ability to be developed for a given
task within a reasonable time. On the other hand,
fuzzy modeling [24,25,37], as applied to fuse the de-
cisions from the di�erent variables, requires an ap-
proach to learn from experience (i.e., data collected
in advance). ANNs, fuzzy logic, and genetic systems
constitute the three independent research �elds regard-
ing sixth generation systems (SGS). ANNs and the
fuzzy model have been used in many application ar-
eas [24,25,29], each pairing its own merits and dis-
advantages. Therefore, how to successfully combine
these two approaches, ANNs and fuzzy modeling, is
a relevant concern for further studies.

Generally, the traditional fuzzy system mentioned
above is based on experts’ knowledge. However, it
is not very objective. Besides, it is very di�cult to
acquire robust knowledge and �nd available human
experts [15]. Recently, ANN’s learning algorithm
has been applied to improve the performance of a
fuzzy system and shown to be a new and promising
approach. Takagi and Hayashi [34] introduced a feed-
forward ANN into fuzzy inference. Each rule is repre-
sented by an ANN while all the membership functions
are represented by only one ANN. The algorithm is
divided into three major parts: (1) the partition of
inference rules; (2) the identi�cation of IF parts; and
(3) the identi�cation of THEN parts. Since each rule
and all the membership functions are represented by
di�erent ANNs, they are trained separately. In other
words, the parameters cannot be updated concurrently.
Jang [14–16] proposed a method which trans-

forms the fuzzy inference system into a functional
equivalent adaptive network, and then employs the
EBP-type algorithm to update the premise para-
meters and least square method to identify the con-
sequence parameters. Meanwhile, Wang and Mendel
[35], Shibata et al. [33], and Fukuda and Shibata [6]
also presented similar methods. Nakayama et al. [31]
proposed a so-called FNN (fuzzy neural network)
which has a special structure for realizing a fuzzy
inference system. Each membership function consists
of one or two sigmoid functions for each inference
rule. Due to the lack of a membership function setup
procedure, the rule determination and membership
function setup are decided by so-called experts where
the decision is very subjective. Lin and Lee [26,27]
proposed the so-called neural-network-based fuzzy
logic control system (NN-FLCS). They introduced
the low-level learning power of neural networks
in the fuzzy logic system and provided high-level
human-understandable meaning to the normal con-
nectionist architecture. Also, Kuo and Cohen [20]
introduced a feedforward ANN into fuzzy inference
represented by Takagi’s fuzzy modeling and applied
it to multi-sensor integration. Buckley and Hayashi
[2] surveyed recent �ndings on learning algorithms
and applications for FNNs. Furthermore, Buckley
introduced several methods in the EBP learning
algorithms.
The above-mentioned FNNs are only appropriate

for numerical data. However, the experts’ knowledge
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is always of a fuzzy type. Thus, some researchers have
attempted to address this problem. Ishibuchi et al. [11]
and Ishibuchi et al. [10], proposed learning methods
of neural networks to utilize not only numerical data
but also expert knowledge represented by fuzzy if–
then rules. Recently, Kuo and Xue [19,22] proposed
a novel fuzzy neural network whose inputs, outputs,
and weights are all asymmetric Gaussian functions.
The learning algorithm is EBP-type learning proce-
dure. Lin and Lee [28] also presented a FNN, capable
of handling both the fuzzy inputs and outputs.

2.3. Genetic algorithms (GAs)

Genetic algorithms (GAs) are general purpose,
search algorithms for solving complex problems.
Based on the mechanics of natural selection and nat-
ural genetics, GAs work by repeatedly modifying a
population of arti�cial structures through the applica-
tion of genetic operators. Fitness information, instead
of Gradient information, is the only requirement for
GAs. GAs can be applied in optimization or classi-
�cation. The advantages of GAs over conventional
parameter optimization techniques are that they are
appropriate for the ill-behaved problem, highly non-
linear spaces for global optima and adaptive algo-
rithm [7].
The parameters we are searching for are binary

coded. These binary numbers are combined together
as a string, or structure. It is called a chromosome and
each bit of the chromosome is treated as a gene. Next,
the GA starts with a population of n randomly gener-
ated structures, where each structure encodes a solu-
tion to the task at hand. The GA further processes a
�xed number of generations, or until it satis�es some
stopping criterion, by using three operators, selection,
crossover, and mutation sequentially. The structure
with the optimum, or largest, �tness value of the last
population is selected.
In the GA, reproduction is implemented by a se-

lection operator. Selection is the population improve-
ment or “survival of the �ttest” operator. It duplicates
structures with higher �tness values and deletes struc-
tures with lower �tness values. The probability of be-
ing duplicated for each gene is de�ned as

PSi =
fi∑s
i=1 fi

; (1)

where fi denotes the �tness function value of ith chro-
mosome and s is the population number.
Crossover, when combined with selection, yields

good components of good structures combining to
yield even better structures. Crossover forms n=2 pairs
of parents if the number of population is n. Each
pair produces two o�spring structures to the mutation
stage. The o�spring are the outcomes of cutting and
splicing the parent structures at various randomly se-
lected crossover points. The approaches for selecting
crossover points are one-point crossover, two-point
crossover, and uniform crossover.
Mutation creates new structures that are similar to

current ones. With a small, pre-speci�ed probabil-
ity, mutation randomly alters each component of each
structure. The reason for using mutation is to prevent
missing some signi�cant information during reproduc-
tion and crossover. This procedure would avoid the
local minimum.

3. Methodology

This study develops an intelligent stock trading
decision support system based on the viewpoint of
systems integration. The proposed system (see Fig.
1) consists of three parts: (1) factors identi�cation,
(2) qualitative model, and (3) decision integration. In
the following, each part is thoroughly discussed.

Fig. 1. The structure of the forecasting system.
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3.1. Factors identi�cation

To enhance accuracy of the decision, collecting the
e�ective information regarding the forecasted object
is highly prominent. In this aspect of the study, it
is assumed that the collected factors are complete
and adequate to support the decision support system
model. Both the quantitative and non-quantitative,
even vague, factors are identi�ed from the related
references.

3.2. Qualitative model (GFNN)

The proposed genetic-algorithm-based fuzzy neural
network (GFNN) is employed herein to capture the
stock experts’ knowledge and forms a fuzzy database.
Since both the inputs and outputs of GFNN are fuzzy
numbers, the fuzzy Delphi method is employed to cap-
ture the stock experts’ knowledge and transformed to
the acceptable format of GFNN. For the detailed pro-
cedures of fuzzy Delphi, refer to Kuo et al. [21].
Basically, the objective of using genetic algorithm

is to avoid local minima. Thus, the genetic algorithm is
implemented �rst in order to obtain a “rough” solution.
Then the FNN is employed to �ne-tune the results.
The derivation of GFNN is as follows.

3.2.1. GA integrated with FNN
This study founded by integrating GA with FNN is

that GA can provide the initial weights for the FNN.
This does not only decrease the training time but also
avoid the local minimum. The procedures of GA used
in this study are as follows:
Step 1. Generate n structures of population ran-

domly and set up the number of generation and �tness
function.
Step 2. Assess the �tness function value for each

chromosome.
Step 3. Process the chromosome operators, selec-

tion, crossover, and mutation.
Step 4. Evaluate the �tness function for each new

chromosome.
Step 5. Eliminate the chromosomes with lower �t-

ness function values and add the new chromosomes
with higher �tness function values.
Step 6. If the stop criterion is satis�ed, stop; other-

wise, go back to Step 3.

In this study, the �tness function is de�ned as

F =
N∑N

i=1 (Ti − Yi)2
; (2)

where N denotes the number of the populations, Ti
represents the ith desired output, and Yi is the ith actual
output. The coding method applied is the binary cod-
ing, since it is most used. For example, 12 can be repre-
sented as 00001100 for 8-digit value on the basis of 2.
The number of populations is set to be 50 in this study.

3.2.2. FNN architecture
The fact that the FNN architecture is based on the

fuzzy logic which possesses both the precondition,
accounts for why the precondition variables repre-
sent the e�ective factors, meanwhile, the stock mar-
ket tendency represents the consequence variable. This
component intends to modify the work of Ishibuchi
et al. [10]. In this work, the input, weight, and out-
put fuzzy numbers are symmetric triangular. However,
symmetric triangular membership function may cause
slow convergence [19,22]. Thus, this work replaces
the triangular fuzzy numbers with asymmetric Gaus-
sian functions. The input–output relation of the pro-
posed FNN is discussed in the following. However,
the operations on fuzzy numbers are presented �rst.

3.2.2.1. Operations on fuzzy numbers. Before de-
scribing the FNN architecture, fuzzy numbers and
fuzzy number operations are de�ned by the extension
principle. In the proposed algorithm, real numbers and
fuzzy numbers are denoted by the lowercase letters
(e.g., a; b; : : :) and a bar placed over uppercase letters
(e.g., �A; �B; : : :), respectively.
Since input vectors, connection weights and output

vectors of multi-layer feedforward neural networks are
fuzzi�ed in the proposed FNN, the addition, multipli-
cation and nonlinear mapping of fuzzy numbers are
necessary for de�ning the proposed FNN. Thus, they
are de�ned as follows:

�Z(z) = ( �X + �Y )(z)

=max{ �X (x) ∧ �Y (y) | z = x + y}; (3)

�Z(z) = ( �X · �Y )(z)
=max{ �X (x) ∧ �Y (y) | z = x · y}; (4)

�Z(z) = max{Net(x) | z = f(x)}; (5)
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Fig. 2. The FNN architecture.

where �X ; �Y ; �Z are fuzzy numbers, �∗(a) denotes the
membership function value of each fuzzy number as
the �-cut value is a, ∧ is the minimum operator, and
f(x) = (1 + exp(−x))−1 is the activation function of
hidden units and output units of the proposed FNN.
The �-cut of fuzzy number �X is de�ned as

�X [�] = {x | �X (x)¿�; x ∈ R} for 0¡�61;

where �X [�] represents �X [�] = [ �X [�]L; �X [�]U] and
�X [�]L and �X [�]U are the lower bound and the upper
bound of the �-cut set, respectively.

FNN learning algorithm
The proposed FNN learning algorithm is similar to

error backpropagation (EBP)-type learning algorithm.
Before discussing the algorithm, some assumptions
should be clari�ed as follows:
(1) Fuzzify a three-layer feedforward neural net-

work with nI input units, nH hidden units, and nO out-
put units (i.e., input vectors, target vectors connection
weights and thresholds are fuzzi�ed).
(2) The input vectors are non-negative fuzzy

numbers.
(3) These fuzzy numbers are asymmetric Gaussian-

shaped fuzzy numbers.
The input–output relation of the proposed FNN (see

Fig. 2) is de�ned by the extension principle [10] and
can be written as follows:
Input layer:

�Opi[�] = �Xpi[�]; i = 1; 2; : : : ; nI : (6)

Hidden layer:

�Oph[�] = f(Netph[�]); h= 1; 2; : : : ; nH ; (7)

Netph[�] =
nI∑
i=1

�Whi[�] · �Opi[�] + ��h[�]: (8)

Output layer:

�Opk [�] = f(Netpk [�]); k = 1; 2; : : : ; nO; (9)

Netpk [�] =
nO∑
k=1

�Wkh[�] · �Oph[�] + ��k [�]: (10)

From Eqs. (7)–(10), the �-cut sets of the fuzzy out-
put �Opk are calculated from the fuzzy inputs, fuzzy
weights, and fuzzy biases. If the �-cut set of the fuzzy
outputs �Opk is required, then the above relation can
be rewritten as follows:
Input layer:

�Opi[�] = [ �Opi[�]L; �Opi[�]U]

= [ �Xpi[�]L; �Xpi[�]U]; i = 1; 2; : : : ; nI : (11)

Hidden layer:

�Oph[�] = [ �Oph[�]L; �Oph[�]U]

= [f(Netph[�]L); f(Netph[�]U)];

h= 1; 2; : : : ; nH ; (12)

Netph[�]L =
nI∑
i=1

�Whi [�]
L¿0

�Whi[�]L · �Opi[�]L

+
nI∑
i=1

�Whi [�]
L¡0

�Whi[�]L · �Opi[�]U + ��h[�]L;

(13)

Netph[�]U =
nI∑
i=1

�Whi [�]
U¿0

�Whi[�]U · �Opi[�]U

+
nI∑
i=1

�Whi [�]
U¡0

�Whi[�]U · �Opi[�]L + ��h[�]U:

(14)

Output layer:

�Opk [�] = [ �Opk [�]L; �Opk [�]U]

= [f(Netpk [�]L); f(Netpk [�]U)];

k = 1; 2; : : : ; nO; (15)
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Netpk [�]L =
nO∑
k=1

�Wkh [�]
L¿0

�Wkh[�]L · �Oph[�]L

+
nO∑
k=1

�Wkh [�]
L¡0

�Wkh[�]L · �Oph[�]U + ��k [�]L;

(16)

Netpk [�]U =
nO∑
k=1

�Wkh [�]
U¿0

�Wkh[�]U · �Oph[�]U

+
nO∑
k=1

�Wkh [�]
U¡0

�Wkh[�]U · �Oph[�]L + ��k [�]U:

(17)

The objective is to minimize the cost function de-
�ned as

Ep =
∑
�

nO∑
k=1

�(ELk(�) + E
U
k(�)) =

∑
�

Ep(�); (18)

where

Ep(�) =
n0∑
k=1

�(ELk(�) + E
U
k(�)); (19)

ELk(�) =
1
2 ( �Tpk [�]

L − �Opk [�]L)2; (20)

EUk(�) =
1
2 ( �Tpk [�]

U − �Opk [�]U)2; (21)

where ELk(�) and E
U
k(�) can be viewed as the squared

errors for the lower bound and the upper bound of
the �-cut sets of a fuzzy weight. Other �-cut sets of
a fuzzy weight are independently modi�ed to reduce
Ep(�). Otherwise, the fuzzy numbers after modi�ca-
tions are distorted. Therefore, each fuzzy weight is
updated similar to but di�erent from the approach of
Ishibuchi et al. [10]. That is, in the proposed FNN, the
membership functions are asymmetric Gaussian func-
tions (i.e. a general shape) which is represented as

�A(x) =




exp

(
−1
2

(
x − �
�L

)2)
x¡�;

1; x = �;

exp

(
−1
2

(
x − �
�U

)2)
otherwise:

(22)

Thus, the asymmetric Gaussian fuzzy weights are
speci�ed by their three parameters (i.e., center right

width and left width). The gradient search method is
derived for each parameter. It is the amount of ad-
justment for each parameter using the cost function
Ep(�) as follows:

��kh(t) =−� @Ep(�)
@�kh

+ ���kh(t − 1); (23)

��Rkh(t) =−� @Ep(�)
@�Rkh

+ ���Rkh(t − 1); (24)

��Lkh(t) =−� @Ep(�)
@�Lkh

+ ���Lkh(t − 1): (25)

Appendix A provides a detailed derivation of Eqs.
(23)–(25). Basically, the derivation is based on the
chain rule as shown in the following:

@Ep(�)
@�kh

=
@Ep(�)
@ �Wkh[�]L

@ �Wkh[�]L

@�kh

+
@Ep(�)
@ �Wkh[�]U

@ �Wkh[�]U

@�kh
; (26)

@Ep(�)
@�Rkh

=
@Ep(�)
@ �Wkh[�]L

@ �Wkh[�]L

@�Rkh
; (27)

@Ep(�)
@�Lkh

=
@Ep(�)
@ �Wkh[�]U

@ �Wkh[�]U

@�Lkh
; (28)

where �Wkh is the asymmetric bell-shaped fuzzy num-
ber. Thus, �Wkh[�] = [ �Wkh[�]L; �Wkh[�]U] and

�Wkh[�]L = �kh − �Lkh(−2 ln �)1=2 when x6�;

�Wkh[�]U = �kh + �Rkh(−2 ln �)1=2 when x¿�:

Eqs. (26)–(28) can be written as

@Ep(�)
@�kh

=
@Ep(�)
@ �Wkh[�]L

1 +
@Ep(�)
@ �Wkh[�]U

· 1; (29)

@Ep(�)
@�Rkh

=
@Ep(�)
@ �Wkh[�]L

(−1)(−2 ln �)1=2; (30)

@Ep(�)
@�Lkh

=
@Ep(�)
@ �Wkh[�]U

(−2 ln �)1=2: (31)

The fuzzy weight �Wkh is updated by the following
rules:

�Wkh(t + 1) ∼ Gauss[ckh(t + 1); mkh(t + 1)]; (32)
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where

ckh(t + 1) = ckh(t) + ��ckh(t); (33)

mkh(t + 1) = mkh(t) + ��mkh(t): (34)

The fuzzy weight �Whi and the fuzzy biases ( ��k and
��h) are updated in the same method as the fuzzy
weight �Wkh. For the detailed derivation, refer to Kuo
and Xue [22].
Lastly, assume that m patterns (i.e., ( �Xpi; �Tpi); i =

1; 2; : : : ; nI ; p=1; 2; : : : ; m) of fuzzy input vectors are
given as training data, and also assume that S values of
�-cut are used for the learning of the proposed FNN.
In the case, the learning algorithm of the proposed
FNN can be written as follows:

Learning algorithm:
Step 1: Initialize the fuzzy weights and the fuzzy

biases through the GA.
Step 2: Repeat step 3 for �= {�1; �2; : : : ; �n} where

� is the �-cut set.
Step 3: Repeat the following procedures for p =

1; 2; : : : ; m where p is the number of training samples.
(1) Forward calculation: Calculate the �-cut set of

the fuzzy output vector �Op corresponding to the fuzzy
input vector �Xp.
(2) Back-propagation: Adjust the fuzzy weights and

the fuzzy biases using the cost function Ep(�).
Step 4: If the stop condition is not satis�ed, go to

step 2.

3.3. Decision integration

From the above two parts, quantitative and
non-quantitative models, the general stock market
tendency and special factor’s e�ect are obtained. To
obtain the �nal result, these two values are integrated
with time e�ect through the other ANN. Similarly,
the FNN is employed for the decision integration.
Thus, the FNN has three input nodes which represent
the time e�ect, stock market tendency without spe-
cial events, and events e�ect, respectively. The input
nodes are further connected with two hidden nodes
which are connected with one output node, the stock
market tendency. The investors can make a right
decision based on the proposed system’s support.

4. Model evaluation and discussion

The previous section has presented the proposed
decision support system. This section employed the
data collected from the Taiwan stock market in order
to evaluate the proposed system. There are two rea-
sons why to choose the Taiwan stock market. The �rst
one is that it is an environment where the authors are
familiar with and the second one is that the Taiwan
stock market is a kind of “light-tray” stock market. If
the proposed system can provide the acceptable fore-
cast, it will also be appropriate for the other kinds of
stock markets. Furthermore, the approaches with and
without qualitative factors will be implemented and
compared. The detailed discussion is as follows.

4.1. ANN without qualitative factors

As mentioned in Section 2, conventional research
employed multiple regression models to discover the
relationship between the factors and the stock index.
However, owing to complexity of the model determi-
nation and linear constraint, they generally cannot pro-
vide rather acceptable �ndings and it is so even when
the time-series analysis technique, ARMA, is applied.
Thus, this study employs the ANN.
Based on the literature survey, 25 quantitative fac-

tors, or technical indexes (Appendix B) are applied to
train the feedforward neural network with back propa-
gation learning algorithm. Owing to dynamic consid-
eration, the factors with “∗” are those whose previous
(one-day before) values are also included. Therefore,
there are 42 input variables in total. For the output
variable, two di�erent outputs are tested. They are de-
�ned as:

O1 =
Max(Nt0 ∼ Nt3)− Nt0

Max(Nt0 ∼ Nt3)−Min(Nt0 ∼ Nt3) (35)

Jang et al. [13] and

O2 =
Max(Nt0 ∼ Nt6)− Nt0

Max(Nt0 ∼ Nt6)−Min(Nt0 ∼ Nt6) ; (36)

where Nt0; Nt3, and Nt6 are the indexes of current day,
three days after, and six days after, respectively. Nt0 ∼
Nt6 means “from Nt0 to Nt6”. The training samples are
from 1994 to 1995, while the testing samples are from
January 1996 to April 1997. Since the network can
have more than one hidden layer, all hidden layers are
veri�ed. Consequently, the number of possible testing
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Table 1
Di�erent testing network structures

Type Input variables Output variable Number of Number of
hidden levels hidden nodes

1 Quantitative O1 1 20–110
2 Quantitative O1 2 20–110
3 Quantitative O2 1 20–110
4 Quantitative O2 2 20–110

Table 2
Results of ANN without qualitative e�ect

Type Input variables Output variable Number of Number of Forecasting MSE
hidden levels hidden nodes (training rate, momentum)

1 Quantitative O1 1 60 ∗0.09501(0.2, 0.8)
2 Quantitative O1 2 65 0.09512(0.5, 0.8)
3 Quantitative O2 1 30 0.08283(0.5, 0.8)
4 Quantitative O2 2 45 ∗0.07720(0.5, 0.8)

∗The best network.

networks is four, say types 1–4, as shown in Table 1.
Di�erent combinations of training rate and momentum
are also tested. The network will not stop training
until 50 000 epochs. According to the computational
results (Table 2), type 4 has the smallest MSE value,
0.0772, as the training rate and momentum are 0.5
and 0.8, respectively. Meanwhile, type 1 has second
smallest MSE value, 0.0942, as the training rate and
momentum are 0.2 and 0.8, respectively. Results of
these two networks are compared with the networks
while considering the qualitative factors in the next
two sections.

4.2. ANN with both quantitative and qualitative
factors

4.2.1. Qualitative factors identi�cation
In the above section, only quantitative, or techni-

cal indexes, are applied to train the ANN, while both
the quantitative and qualitative factors are employed
in this section. Initially, the factors are divided into
two categories, quantitative and qualitative, as men-
tioned above. All the possible qualitative events (fac-
tors), which may inuence the stock market, were
identi�ed from the related economics journals, gov-
ernment technical reports, and newspapers from 1991
to 1997. The experienced experts, or stock brokers,
eliminated the unnecessary events and then divided

the other events into six dimensions (political, �nan-
cial, economic, message, technical, and international)
based on their characteristics to formulate the �rst
questionnaire. The questionnaire for each event has
the following format:

IF event A occurs, THEN its e�ect on the stock
market is from to .

This kind of method is named fuzzy Delphi
method. For detailed procedures and discussion, refer
to Ishikawa et al. [12] and Kuo et al. [21]. The major
idea of fuzzy Delphi method is to capture expert’s
knowledge. After two runs of survey, the membership
functions of all the linguistic terms have converged
and are shown in Tables 3–8. These membership
functions are the fuzzy inputs of the GFNN.

4.2.2. Quantitative factors determination
Similar to the network without considering the qual-

itative factors, 42 technical indexes are selected.

4.2.3. Qualitative model (GFNN)
Each dimension owns its linguistic terms, or fuzzy

numbers. In fact, more than one event may occur in
one day. Using a single GFNN, one cannot handle
this condition. Therefore, a hierarchical structure is
proposed. For instance, three events, say A; B and C,
of political dimension and two events, D and E, of
�nancial dimension occur in one day. The political
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Table 3
The fuzzy numbers for political dimension

Linguistic term E�ect on Left standard � value when Right stand
stock market deviation �L membership value is 1 deviation �R

Possible 1.0580 −0.0330 1.0950
Low Positive 0.4716 2.1056 0.5726

Negative 0.5327 −2.5751 0.7520
Medium Positive 1.1108 5.0567 0.6747

Negative 1.3392 −5.1295 0.8810
High Positive 1.6310 9.6950 0.1017

Negative 0.1755 −9.4735 0.9627

Table 4
The fuzzy numbers for �nancial dimension

Linguistic term E�ect on Left standard � value when Right standard
stock market deviation �L membership value is 1 deviation �R

Possible 1.1546 0.1593 0.8685
Low Positive 0.6092 2.5771 0.6242

Negative 0.7563 −2.0585 0.6468
Medium Positive 0.9167 5.2723 0.7962

Negative 1.0173 −4.9064 0.9093
High Positive 0.7416 9.1454 0.2849

Negative 0.2242 −9.3273 1.5595

Table 5
The fuzzy numbers for economic dimension

Linguistic term E�ect on Left standard � value when Right standard
stock market deviation �L membership value is 1 deviation �R

Possible 0.7892 0.0242 0.5056
Low Positive 0.1390 1.7692 0.1417

Negative 0.4254 −2.0396 0.6469
Medium Positive 0.5591 4.6465 0.5185

Negative 1.1497 −4.8680 0.4558
High Positive ∗ ∗ ∗

Negative 0.6567 −7.2352 0.2965

GFNN combines events A and B �rst and then the
result is integrated with event C. It is also similar for
the �nancial GFNN. Finally, the fuzzy e�ects from
six-“dimensional” GFNN are integrated by using an
“integration” GFNN. Intuitively, each dimensional
GFNN has two input nodes and one output node. The
integration GFNN possesses six input nodes (from
six dimension) and one output node. The fuzzy num-
bers of output node is quite di�cult to obtain. For the
current application, the questionnaire may have more
than forty thousand rules. It is not practical. Thus, the
experts give each dimension a weight. The output is

from the multiplication of all the dimensional e�ects
and corresponding weights. The evaluation results for
dimensional GFNNs and integration GFNN are as
follows.

4.2.3.1. Dimensional GFNN. Since the training pro-
cedures for each dimensional GFNN are similar, the
political dimension is used to account for explain-
ing the whole procedures. The asymmetric Gaussian
fuzzy numbers as shown in Tables 3–8 are employed
to train the GFNN. The political dimension has 64
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Table 6
The fuzzy numbers for international dimension

Linguistic term E�ect on Right standard � value when Right standard
stock market deviation �L membership value is 1 deviation �R

Possible 0.5618 −0.0841 0.7063
Low Positive 0.5239 2.7245 0.5535

Negative 0.4097 −1.4606 0.4869
Medium Positive 0.4066 4.3479 0.2757

Negative 0.7878 −4.6398 0.7100
High Positive 0.3094 6.8896 0.2558

Negative 0.1404 −9.5789 0.9685

Table 7
The fuzzy numbers for message dimension

Linguistic term E�ect on Left standard � value when Right standard
stock market deviation �L membership value is 1 deviation �R

Possible 0.1875 −0.1962 0.2651
Low Positive 0.5032 2.8483 0.2545

Negative 0.6192 −0.9943 0.3314
Medium Positive 0.3906 4.5003 0.6594

Negative 0.8842 −5.4101 0.7437
High Positive 0.0968 8.8297 0.2796

Negative 0.1558 −9.5327 1.3417

Table 8
The fuzzy numbers for technical dimension

Linguistic term E�ect on Left standard � value when Right standard
stock market deviation �L membership value is 1 deviation �R

Possible 0.5594 −0.4307 0.7689
Low Positive ∗ ∗ ∗

Negative 0.5285 −1.2310 0.1025
Medium Positive 0.5785 5.2712 0.3421

Negative 1.0490 −4.3518 0.4981
High Positive ∗ ∗ ∗

Negative ∗ ∗ ∗

Table 9
The fuzzy IF–THEN rule tables for political dimension
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Table 10
The fuzzy IF–THEN rule tables for �nancial dimension

Table 11
The fuzzy IF–THEN rule tables for economic dimension

Table 12
The fuzzy IF–THEN rule tables for international dimension

Table 13
The fuzzy IF–THEN rule tables for message dimension
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Table 14
The fuzzy IF–THEN rule tables for
technical dimension

(8×8) fuzzy rules. The fuzzy rules of each dimen-
sion are shown in Tables 9–14. Since, so far, there is
no rule which can determine the hidden nodes num-
ber, di�erent network structures are tested in order to
�nd out the better network. In addition, some param-
eters must be set up for the GA. The procedures are
as follows:
1. Network structures: 2-4-1 (input-hidden-output),

2-5-1, and 2-6-1.
2. GA parameters setup:
(2.1.) Generations: 1000.
(2.2.) Crossover rate: 0.2.
(2.3.) Crossover type: two-point crossover.
(2.4.) Mutation rate: 0.8
(2.5.) After 1000 generations, �ve groups of

weights which are the �ve largest �tness function
values (Tables 15–20) are selected.
3. Apply the �ve groups of weights obtained from

the GA as the initial weights to train the FNN (Tables
15–20).
4. Select the best network based on the training

and testing MSE (mean square error) values. (Tables
15–20).
Tables 15–20 indicate that the network using the

initial weights with larger �tness function cannot guar-
antee the smaller MSE value. Just like political dimen-
sion, the network using the weights with the fourth
largest �tness function value has the smallest MSE
values both for training and testing. However, most
of the network using the initial weights with larger
�tness function value can yield a better estimation,
e.g. �nancial, international, and message dimensions
as summarized in Table 21.

4.2.3.2. Integration GFNN. Based on six-dimensional
GFNNs de�ned, six fuzzy numbers are obtained for
each day. These six fuzzy numbers are further input to
the integration GFNN to obtain the fuzzy qualitative
e�ect on the stock market. Thus, the integration GFNN

is trying to format the fuzzy relationship among six
dimensions. The fuzzy rule format can be expressed
as:

IF political dimension is “positive high” AND
�nancial dimension is “positive medium” AND
economic dimension is “positive medium” AND
international dimension is “positive high” AND
message dimension is “possible” AND
technical is “possible”

THEN integration dimension is “positive high”:

Each rule is a training sample to integrate GFNN.
Thus, the network structure has six input nodes while
the number of output nodes is still one. The training
fuzzy rules are presented in Table 22. Similarly, the
following procedures are veri�ed to discover the op-
timum forecasting result:
1. Network structures: 6-6-1 (input-hidden-output),

6-9-1, and 6-12-1.
2. GA parameters setup:
2.1. Generations: 1000.
2.2. Crossover rate: 0.2.
2.3. Crossover type: two-point crossover.
2.4. Mutation rate: 0.8
2.5. After 1000 generations, four groups of weights

which have the largest, second largest, middle, and
smallest �tness function value (Table 23) are selected.
3. Apply the above four groups of weights obtained

from the GA to train the FNN (Table 24).
4. Select the optima; network based on the train-

ing and testing MSE (mean square error) values
(Table 24).
Table 24 indicates that network 6-12-1 with ini-

tial weights from largest �tness function value has
the smallest MSE value, 0.006665, as both the train-
ing rate and momentum are 0.5. This network only
requires 8500 epochs of training to reach the mini-
mum. Basically, we can treat this integration GFNN
as a fuzzy knowledge base for the qualitative e�ect
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Table 15
Training and testing results for political dimension

Network type Source of weights Training MSE Testing MSE Training epochs

2-4-1 Largest �tness function value (FFV) 0.017392 0.011763 150
� = 0:2 Second FFV 0.012064 0.011537 200
� = 0:8 Third FFV 0.012040 0.011543 250

Fourth FFV 0.011910 ∗0.011334 300
Fifth FFV 0.012044 0.011543 260

2-5-1 Largest �tness function value (FFV) 0.035764 0.030959 1200
� = 0:5 Second FFV 0.028063 0.021201 460
� = 0:5 Third FFV 0.024256 0.017878 370

Fourth FFV 0.025907 0.019253 450
Fifth FFV 0.030459 0.023399 525

2-6-1 Largest �tness function value (FFV) 0.012881 0.022754 300
� = 0:8 Second FFV 0.018827 0.012512 50
� = 0:5 Third FFV 0.018874 0.012373 60

Fourth FFV 0.018918 0.012459 60
Fifth FFV 0.020782 0.013875 60

∗The best network.

Table 16
Training and testing results for �nancial dimension

Network type Source of weights Training MSE Testing MSE Training epochs

2-4-1 First �tness function value (FFV) 0.018071 0.012691 80
� = 0:2 Second FFV 0.018075 0.012697 80
� = 0:8 Third FFV 0.022059 0.015553 80

Fourth FFV 0.022066 0.015784 85
Fifth FFV 0.021996 0.015694 85

2-5-1 Largest �tness function value (FFV) 0.009878 0.007245 35
� = 0:5 Second FFV 0.010014 0.009583 35
� = 0:5 Third FFV 0.010094 0.010232 35

Fourth FFV 0.009967 0.009266 37
Fifth FFV 0.009984 0.008675 36

2-6-1 Largest �tness function value (FFV) 0.008567 ∗0.006567 800
� = 0:8 Second FFV 0.009027 0.006819 1000
� = 0:5 Third FFV 0.009039 0.006823 1000

Fourth FFV 0.008923 0.006889 1200
Fifth FFV 0.009027 0.006883 1100

∗The best network.
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Table 17
Training and testing results for economic dimension

Network type Source of weights Training MSE Testing MSE Training epochs

2-4-1 Largest �tness function value (FFV) 0.018154 0.017886 830
� = 0:2 Second FFV 0.021052 0.020710 650
� = 0:8 Third FFV 0.017922 ∗0.017665 860

Fourth FFV 0.018514 0.018226 880
Fifth FFV 0.019152 0.018850 900

2-5-1 Largest �tness function value (FFV) 0.027224 0.028871 200
� = 0:5 Second FFV 0.031807 0.030226 90
� = 0:5 Third FFV 0.047687 0.056506 140

Fourth FFV 0.032048 0.034069 90
Fifth FFV 0.078617 0.083166 170

2-6-1 Largest �tness function value (FFV) 0.025137 0.025014 70
� = 0:8 Second FFV 0.025101 0.025038 70
� = 0:5 Third FFV 0.024985 0.024850 70

Fourth FFV 0.025440 0.025319 70
Fifth FFV 0.025166 0.025035 70

∗The best network.

Table 18
Training and testing results for international dimension

Network type Source of weights Training MSE Testing MSE Training epochs

2-4-1 Largest �tness function value (FFV) 0.006486 0.006461 3600
� = 0:2 Second FFV 0.007714 0.007768 1700
� = 0:8 Third FFV 0.007497 0.007429 2500

Fourth FFV 0.007370 0.007312 2750
Fifth FFV 0.006836 0.006898 3800

2-5-1 Largest �tness function value (FFV) 0.033081 0.032987 54
� = 0:5 Second FFV 0.033560 0.033529 54
� = 0:5 Third FFV 0.033687 0.033524 55

Fourth FFV 0.033409 0.033317 55
Fifth FFV 0.033630 0.033580 55

2-6-1 Largest �tness function value (FFV) 0.007931 0.007612 2000
� = 0:8 Second FFV 0.008392 0.007910 3000
� = 0:5 Third FFV 0.008430 0.007943 3000

Fourth FFV 0.008363 0.007879 3250
Fifth FFV 0.008871 0.008639 2000
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Table 19
Training and testing results for message dimension

Network type Source of weights Training MSE Testing SE Training epochs

2-4-1 Largest �tness function value (FFV) 0.008835 ∗0.006999 5000
� = 0:2 Second FFV 0.008837 0.007002 5000
� = 0:8 Third FFV 0.008864 0.007036 5000

Fourth FFV 0.008849 0.007009 5000
Fifth FFV 0.008843 0.007005 5500

2-5-1 Largest �tness function value (FFV) 0.011558 0.009160 700
� = 0:5 Second FFV 0.011360 0.009021 750
� = 0:5 Third FFV 0.011008 0.008753 700

Fourth FFV 0.011409 0.009072 750
Fifth FFV 0.011412 0.009073 750

2-6-1 Largest �tness function value (FFV) 0.022099 0.019773 100
� = 0:8 Second FFV 0.022105 0.020191 100
� = 0:5 Third FFV 0.022233 0.020018 100

Fourth FFV 0.021793 0.020037 100
Fifth FFV 0.021788 0.019799 100

∗The best network.

Table 20
Training and testing results for technical dimension

Network type Source of weights Training MSE Testing MSE Training epochs

2-4-1 Largest �tness function value (FFV) 0.030062 0.029821 450
� = 0:2 Second FFV 0.029552 0.029316 500
� = 0:8 Third FFV 0.030093 0.029860 500

Fourth FFV 0.029599 0.029941 460
Fifth FFV 0.030020 0.029781 450

2-5-1 Largest �tness function value (FFV) 0.007725 0.007632 6300
� = 0:5 Second FFV 0.007732 0.007639 6300
� = 0:5 Third FFV 0.004760 0.004745 6000

Fourth FFV 0.005636 0.005607 5700
Fifth FFV 0.005027 0.004999 6000

2-6-1 Largest �tness function value (FFV) 0.003872 0.003848 3500
� = 0:8 Second FFV 0.003692 ∗0.003671 3250
� = 0:5 Third FFV 0.003734 0.003711 3500

Fourth FFV 0.003726 0.003698 3500
Fifth FFV 0.003747 0.003723 3500

∗The best network.

on the stock market. It can be integrated with the quan-
titative factors further to determine the stock market
tendency through any kinds of approaches, e.g. regres-
sion method or ANN.
Tables 15–20 and 24 show that the numbers of

training epochs are very small. This indicates that us-
ing the GA result as the initial weights for GFNN is

promising. For example, the network only needs 150
training epochs if the GFNN is applied, while more
than 50 000 training epochs are needed if only using
FNN.
Over here, one questionmay arise. Can �nal weights

be determined only using GA. Therefore, the test is
also conducted. The result showed that GA can �nd a
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Table 21
The results of each dimension

Dimension Network type Source of weights Training MSE Testing MSE

Political 2-4-1 Fourth 0.011910 0.011334
Financial 2-6-1 Largest 0.009984 0.006567
Economic 2-4-1 Third 0.017922 0.017665
International 2-4-1 Largest 0.006486 0.006461
Message 2-4-1 Largest 0.008835 0.006999
Technical 2-6-1 Second 0.003692 0.003671

Table 22
Asymmetric Gaussian fuzzy numbers of integration dimension

Linguistic term E�ect on Right standard � value when Right standard
stock market deviation �L membership value is 1 deviation �R

Possible Positive 0.9719 0.9175 0.6871
Negative 0.5917 −0.1860 0.7089

Low Positive 0.4494 2.4049 0.4293
Negative 0.5453 −1.7265 0.4944

Medium Positive 0.6604 4.8492 0.5445
Negative 1.0379 −4.8843 0.6997

High Positive 0.6947 8.6399 0.4534
Negative 0.2643 −9.2072 1.0569

Table 23
The GA results of integration dimension

Network type Largest �tness Second �tness Middle �tness Smallest �tness
function value function value function value function value

6-6-1 0.473510 0.475133 0.624284 0.903342
6-9-1 0.611257 0.618405 0.668547 0.751665
6-12-1 0.502640 0.503607 0.577028 0.951646

feasible solution after 100 000 generations. However,
it is still worse than the result of integration of ANN
and GA.

4.2.4. Decision integration
The integration ANN is the feedforward ANN with

EBP learning algorithm. Both the quantitative and
qualitative factors are inputs of the ANN, and should
be normalized in [0; 1]. Forty two factors exit for
the quantitative factors. Meanwhile, the number of
qualitative factors is 11. The reason that the num-
ber of qualitative factors is eleven is that the fuzzy
number obtained from integration GFNN is �-cut by
0.1, 0.3, 0.5, 0.7, 0.9, 1.0, respectively. Cumulatively,
there are 54 input nodes for the network after in-

cluding the time e�ect. The number of output nodes
is still one. However, similarly, two di�erent out-
puts, O1 and O2, are veri�ed. Since the network can
have more than one hidden layer, both one and two
hidden layers are tested. Consequently, the number
of possible testing network is four (types 5–8) as
shown in Table 25. The computational results (Table
26) indicate that type 6 and type 8 are two optimum
networks due to smaller MSE values. The MSE val-
ues of these two networks are 0.0386 and 0.0297,
respectively.

4.3. Discussion

According to Section 4.1, two networks (types 1 and
4) have been found to be the best without considering
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Table 24
Training and testing results for integration GFNN

Network type Source of weights Training MSE Testing MSE Training epochs

6-6-1 Largest �tness function value (FFV) 0.023676 0.024537 7000
� = 0:5 Second FFV 0.024707 0.024809 7500
� = 0:5 Middle FFV 0.012486 0.012612 9000

Smallest FFV 0.036133 0.036494 8500

6-9-1 Largest �tness function value (FFV) 0.009169 0.009444 8000
� = 0:5 Second FFV 0.011750 0.012220 8000
� = 0:5 Middle FFV 0.012435 0.013057 7500

Smallest FFV 0.014282 0.014710 8500

6-12-1 Largest �tness function value (FFV) 0.006534 ∗0.006665 8500
� = 0:5 Second FFV 0.007050 0.007192 8000
� = 0:5 Middle FFV 0.007501 0.075763 8500

Smallest FFV 0.007137 0.007494 9000

∗The best network.

Table 25
Testing network types

Type Input variables Output variables Number of Number of
hidden levels hidden nodes

5 Composite O1 1 20 ∼ 110
6 Composite O1 2 20 ∼ 110
7 Composite O2 1 20 ∼ 110
8 Composite O2 2 20 ∼ 110

Table 26
Results of di�erent network structures

Type Input variables Output variable Number of Number of Forecasting MSE
hidden levels hidden nodes (training rate, momentum)

5 Composite O1 1 65 0.04313(0.5, 0.8)
6 Composite O1 2 50 ∗0.0386(0.8, 0.5)
7 Composite O2 1 75 0.03114(0.2, 0.8)
8 Composite O2 2 65 ∗0.0297(0.5, 0.8)

∗The best network.

the qualitative e�ect, while types 6 and 8 considering
the qualitative e�ect can provide the best forecasting
results in Section 4.2.4. These four networks should
be further compared on the basis of the di�erent per-
formance measures as illustrated next.
(1) Based on the learning e�ciency: Table 27 lists

the computational results. The results indicate that two
networks with composite factors always outperform
the other two network with only quantitative factors.

In addition, the networks with O2 output are better
than the networks with O1 output. However, simply
comparing the MSE values is insu�cient. Checking
the clarity of the buy–sell points and the buy–sell
performance are also necessary.
(2) Based on the clarity of the buy–sell points:

The purchasing or selling activity is determined by the
buy–sell signal obtained from the proposed system. If
the signal is over the upper bound, then go ahead to
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Table 27
Computation results of di�erent alternatives

Output

O1 O2

Network type Type 1 Type 6 Type 4 Type 8
Network number No. 1 No. 2 No. 3 No. 4
Input Quantitative Composite Quantitative Composite
Number of hidden layer 1 2 2 2
Number of hidden layer nodes 60 50 45 65
Training rate 0.2 0.8 0.5 0.5
Momentum 0.8 0.5 0.8 0.8
MSE 0.09424 0.03869 0.07721 0.02966

buy the stock. If the signal is below the lower bound,
then sell the stock. Otherwise, keep the stock. Basi-
cally, six di�erent conditions are as follows.
(a) When the investor already has owned the stock:
1. if the signal is below the lower bound, then SELL

the stock.
2. if the signal is over the lower bound, then KEEP

the stock.
(b) When the investor has not owned the stock:
3. if the signal is below the upper bound, then keep

WAITING.
4. if the signal is over the upper bound, then BUY

the stock.
Figs. 3 and 4 illustrate the stock index curves and the

buy–sell curves for the networks No. 2. If we choose
interval [0:3; 0:7] as the “KEEP” instance, network No.
2 has the optimal best buy–sell clarity as presented
in Table 28. Moreover, the interval [0:2; 0:8] results
in the largest buy–sell clarity rate, 0.5066, as shown
in Table 29. This implies that the networks with qual-
itative factors can have the better buy–sell clarity rate.
Restated, it turns out to be more sensitive. However,
the higher clarity rate the higher transaction cost. Thus,
further discussion is still needed. Therefore, the next
comparison is based on the buy–sell performance.
(3) Based on the buy–sell performance: Based on

the six conditions, or transaction rules, mentioned
above, the buy–sell performance can be determined.
Basically, the generation of the performance is as
follows:

P = Ib − Is; (37)

where P denotes the performance, Ib represents the
index value when the stock was bought, and Is is the

index value when the stock was sold. Table 30 lists
the evaluation results. Network No. 2 has 27 transac-
tions and its performance is 8035.6 points, while the
network No. 4 has 17 times of transaction and its to-
tal performance is 6974.8 points. Clearly, the network
No. 2 outperforms network No. 4 in the total buy–sell
performance. In addition, it is also better than the to-
tal stock tendency, 3759.9 points. Thus, it is without
doubt that network No. 2 is the best selection. Table
31 summaries those results.

5. Conclusions

The model evaluation results have revealed that the
proposed intelligent decision support system can out-
perform the ANN only considering the quantitative
factors in the learning accuracy, buy–sell clarity and
the buy–sell performance. The proposed GFNN can
cover all the events that have occurred from 1991 to
1997 after checking with the historical events. These
events, no matter belonging to which dimension, inu-
ence the stock market more or less both in the long or
short terms. Thus, the stock market is, authentically,
a multiple dimension integrator.
Whenever the newly occurred event is not on the

database list, the user can evaluate himself=herself.
Once the fuzzy value has been well set up, the database
can calculate the e�ect value automatically. In addi-
tion, each dimension’s weight can be adjusted dynam-
ically if needed.
Upon the determination of layer number and node

number, so far, it is also an unsolved question. The
optimum and the worst method is the trial and error.
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Fig. 3. The forecasting results of network No. 2 where dark line is the index curve, thin line is the 6-day actual buy–sell signal curve and
dash line is the forecasting buy–sell signal curve.

Fig. 4. The forecasting results of network No. 2 where dark line is the index curve, thin line is the 6-day actual buy–sell signal curve and
dash line is the forecasting buy–sell signal curve.

Table 28
Comparison of clarity for boundary [0:3; 0:7]

Network number

No. 1 No. 2 No. 3 No. 4

Number of buying signals 126 178 127 169
Number of selling signals 91 116 71 88
Total number of days 379 379 379 379
The clarity rate of buying points 0.3325 0.4696 0.3351 0.4459
The clarity rate of selling points 0.2401 0.3061 0.1873 0.2322
The clarity rate of buying–selling points 0.5725 0.7757 0.5224 0.6781
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Table 29
Comparison of clarity for boundary [0:2; 0:8]

Network number

No. 1 No. 2 No. 3 No. 4

Number of buying signals 72 110 80 132
Number of selling signals 62 80 37 60
Total number of days 379 379 379 379
The clarity rate of buying points 0.1890 0.2902 0.2111 0.3483
The clarity rate of selling points 0.1636 0.2111 0.0976 0.1583
The clarity rate of buying–selling points 0.3526 0.5013 0.3087 0.5066

Table 30
The results of buying–selling performance

Network number

No. 1 No. 2 No. 3 No. 4

The number of transaction 20 27 15 17
The number of e�ective transaction (pro�t) 20 26 15 16
The number of ine�ective transaction (lost) 0 1 0 1
The buying–selling performance +6699.7 points +8035.6 points +6784.8 points +6974.8 points
The average buying–selling performance +335.0 points +297.6 points + 452.3 points +410.3 points
Total stock tendency +3759.9 points

Table 31
The summarized results of four di�erent networks

Network number

No. 1 No. 2 No. 3 No. 4

Forecasting year Jan. 1996–Apr. 1997

MSE 0.09424 0.03869 0.07721 0.02966
Dominant rate of buying signal 33.25% 46.96% 33.51% 44.59%
Dominant rate of selling signal 24.01% 30.61% 18.73% 23.22%
Dominant rate 57.25% 77.57% 52.24% 67.81%
Transaction times 20 27 15 17
E�ective transaction times 20 26 15 16
Ine�ective transaction times 0 1 0 1
Rate of e�ective transaction times 100% 96.30% 100% 94.12%
Performance of buying and selling 6699.7 8035.6 6784.8 6974.8
Average return of per transaction 335.0 297.6 452.3 410.3
Transaction cost 1000 1350 750 850
Net performance of buying and selling 5699.7 6685.6 6034.4 6124.8

The trade of stock index 3759.9

In addition, the setups of training rate and momentum
also waste plenty of time. The fuzzy models proposed
in [18] can be applied in the future.
Though it looks that the results of GFNN is pretty

good, the performance can be further improved. For

instance, this study used the binary coding approach.
In the future, the real-number coding approach can
be applied. In addition, di�erent ANNs can replace
the feedforward neural network with EBP learning
algorithm.
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Appendix A. Calculation of derivatives in the fuzzy
weights determination

From input layer to hidden layer, the derivatives
of @Ep(�)=@�kh; @Ep(�)=@�Lkh, and @Ep(�)=@�

R
kh for the

coe�cients �kh; �Lkh, and �
R
kh are as follows:

(1) If 06 �Wkh[�]L6 �Wkh[�]U, then
a. for �kh:

@Ep(�)
@�kh

=
@Ep(�)
@ �Wkh[�]L

@ �Wkh[�]L

@�kh

+
@Ep(�)
@ �Wkh[�]U

@ �Wkh[�]U

@�kh

=
@Ep(�)

@Netpk [�]L
@Netpk [�]L

@ �Wkh[�]L
@ �Wkh[�]L

@�kh

+
@Ep(�)

@Netpk [�]U
@Netpk [�]U

@ �Wkh[�]U
@ �Wkh[�]U

@�kh

where �Wkh[�]L and �Wkh[�]U are
1. when x6�,

�= exp

(
−1
2

( �Wkh[�]L − �kh
�Lkh

)2)

⇒ ln �=−1
2

( �Wkh[�]L − �kh
�Lkh

)2

So

�Wkh[�]L = �kh − �Lkh(−2 ln �)1=2:
2. When x¿�,

�Wkh[�]U = �kh + �Rkh(−2 ln �)1=2:
Therefore,

@ �Wkh[�]L

@�kh
= 1:

In addition, let

�k [�]L

=− @Ep(�)
@Netpk [�]L

= �( �Tpk [�]L − �Opk [�]L) · �Opk [�]L · (1− �Opk [�]L);

�k [�]U

=− @Ep(�)
@Netpk [�]U

= �( �Tpk [�]U− �Opk [�]U) · �Opk [�]U · (1− �Opk [�]U):

Therefore,

@Ep(�)
@Netpk [�]U

=−�k [�]U

and

@Ep(�)
@Netpk [�]L

=−�k [�]L:

So

@Eps
@�kh

=− �k [�]L �Oph[�]L · [− (−2 ln �)1=2]

+ (−�k [�]U · �Oph[�]U (−2 ln �)1=2)

= �k [�]L · �Oph[�]L (−2 ln �)1=2

− �k [�]U · �Oph[�]U (−2 ln �)1=2:
b. For �Lkh:

@Ep(�)
@�Lkh

=
@Ep(�)
@ �Wkh[�]L

@ �Wkh[�]L

@�Lkh

=
@Ep(�)

@Netpk [�]L
@Netpk [�]L

@ �Wkh[�]L
@ �Wkh[�]L

@�Lkh

=−�k [�]L · �Oph[�]L [− (−2 ln �)1=2]

= �k [�]L · �Oph[�]L (−2 ln �)1=2;
where

@ �Wkh[�]L

@�Lkh
=−(−2 ln �)1=2:
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c. For �Rkh:

@Ep(�)
@�Rkh

=
@Ep(�)
@ �Wkh[�]U

@ �Wkh[�]U

@�Rkh

=
@Ep(�)

Netpk [�]U
Netpk [�]U

@ �Wkh[�]U
@ �Wkh[�]U

@�Rkh

=− �k [�]U · �Oph[�]U (−2 ln �)1=2;
where

@ �Wkh[�]L

@�Rkh
= (−2 ln �)1=2:

(2) If �Wkh[�]L6 �Wkh[�]U ¡ 0, then similarly

@Ep(�)
@�kh

=− �k [�]L · �Oph[�]U − �k [�]U · �Oph[�]L;

@Ep(�)
@�Lkh

= �k [�]L · �Oph[�]U(−2 ln �)1=2;

@Ep(�)
@�Rkh

=−�k [�]U · �Oph[�]L(−2 ln �)1=2:

(3) If �Wkh[�]L¡ 06 �Wkh[�]U, then

@Ep(�)
@�kh

=− �k [�]L · �Oph[�]U − �k [�]U · �Oph[�]U;

@Ep(�)
@�Lkh

= �k [�]L · �Oph[�]U (−2 ln �)1=2;

@Ep(�)
@�Rkh

=−�k [�]U · �Oph[�]U(−2 ln �)1=2:

Since the derivatives of @Ep(�)=@��k , @Ep(�)=@�
L
�k ,

and @Ep(�)=@�R�k for the learning of �k can be calcu-
lated in the same manner as @Ep(�)=@�kh, @Ep(�)=@�Lkh,
and @Ep(�)=@�Rkh, the derivatives are as follows:

@Ep(�)
@��k

=
@Ep(�)

@Netpk [�]L
@Netpk [�]L

@ ��k [�]L
@ ��k [�]L

@��k

+
@Ep(�)

@Netpk [�]U
@Netpk [�]U

@ ��k [�]U
@ ��k [�]U

@��k

=− �k [�]L − �k [�]U;
@Ep(�)
@�L�k

= �k [�]L (−2 ln �)1=2;

@Ep(�)
@�R�k

= �k [�]U (−2 ln �)1=2:

Thereafter, the derivatives of @Ep(�)=@�hi, @Ep(�)=@�Lhi,
and @Ep(�)=@�Rhi from hidden layer to output layer are:
(1) If 06 �Whi[�]L6 �Whi[�]U, then

@Ep(�)
@�hi

=− �h[�]L · �Opi[�]L − �h[�]U · �Opi[�]U;

@Ep(�)
@�Lhi

= �h[�]L · �Opi[�]L(−2 ln �)1=2;

@Ep(�)
@�Rhi

=−�h[�]U · �Opi[�]U(−2 ln �)1=2;

where

�h[�]L =− @Ep(�)
@Netph[�]L

=− @Ep(�)
@ �Oph[�]L

@ �Oph[�]L

@Netph[�]L

=− �Oph[�]L(1− �Oph[�]L)

×
nO∑
k=1

(
@Ep(�)

@Netpk [�]L
· @Netpk [�]

L

@ �Oph[�]L

+
@Ep(�)

@Netpk [�]U
· @Netpk [�]

U

@ �Oph[�]L

)

= �Oph[�]L · (1− �Oph[�]L)

×


 nO∑

k=1
�Wkh [�]

L¿0

�k [�]L · �Wkh[�]L

+
nO∑
k=1

�Wkh [�]
U¡0

�k [�]U · �Wkh[�]U


 ;

�h[�]U =− @Ep(�)
@Netph[�]U

=− @Ep(�)
@ �Oph[�]U

@ �Oph[�]U

@Netph[�]U

=− �Oph[�]U(1− �Oph[�]U)

×


 nO∑

k=1
�Wkh [�]

L¡0

�k [�]L · �Wkh[�]L

+
nO∑
k=1

�Wkh [�]
U¿0

�k [�]U · �Wkh[�]U


 :

(2) If �Whi[�]L6 �Whi[�]U¡ 0, then

@Ep(�)
@�hi

=− �h[�]L · �Opi[�]U − �h[�]U · �Opi[�]L;
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@Ep(�)
@�Lhi

= �h[�]L · �Opi[�]U(−2 ln �)1=2;

@Ep(�)
@�Rhi

=− �h[�]U · �Opi[�]L(−2 ln �)1=2:

(3) If �Whi[�]L ¡ 06 �Whi[�]U, then

@Ep(�)
@�hi

=− �h[�]L · �Opi[�]U − �h[�]U · �Opi[�]U;

@Ep(�)
@�Lhi

= �h[�]L · �Opi[�]U(−2 ln �)1=2;

@Ep(�)
@�Rhi

=− �h[�]U · �Opi[�]U(−2 ln �)1=2:

Finally, the derivatives of @Ep(�)=@��h , @Eps=@�
L
�h ,

and @Eps=@�R�h for the learning of
��h are similar to

@Ep(�)=@�hi, @Ep(�)=@�Lhi, and @Ep(�)=@�
R
hi. The calcu-

lations are in the following:

@Ep(�)
@��h

=− �h[�]L − �h[�]U;

@Ep(�)
@�L�h

= �h[�]L(−2 ln �)1=2;

@Ep(�)
@�R�h

=− �h[�]U(−2 ln �)1=2:

Appendix B

1. Volume (∗)
2. Average volume for ten days (∗)
3. Rate of volume change (∗)
4. Index in open (∗)
5. Index in close (∗)
6. Index uctuation (∗)
7. Rate of index change (∗)
8. Linear weighted moving (∗) average
9. Financing buying(A) (∗)
10. Financing sell(B) (∗)
11. A-B
12. Remaining quota with �nancing(C)
13. Short “+” & “-”(D)
14. Remaining quota with stock
15. Q=T
16. Turnover rate (∗)

17. MACD (∗)
18. RSI (∗)
19. KD (∗)
20. TAPI (∗)
21. Psychological line
22. ADL
23. BIAS
24. ADR
25. VR
26. Momentum
27. Williams overbought=oversold index
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