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Abstract — Evolutionary algorithms have been successfully 

used in many studies to design accurate and interpretable fuzzy 
systems under the name of genetic fuzzy systems. Recently 
evolutionary multiobjective algorithms have been used for 
interpretability-accuracy tradeoff analysis of fuzzy systems. We 
first review a wide range of related studies to multiobjective 
genetic fuzzy systems. Then we illustrate multiobjective design 
of fuzzy systems through computational experiments on some 
benchmark data sets. Finally we point out promising future 
research directions. 

I. INTRODUCTION 
 Since fuzzy systems are universal approximators of 
nonlinear functions [1]-[3] as neural networks [4]-[6], 
theoretically we can improve their approximation accuracy 
on training data to an arbitrarily specified level by increasing 
their complexity. For such an accuracy improvement task, 
evolutionary algorithms have been successfully used under 
the name of genetic fuzzy systems [7]-[9] since the early 
1990s [10]-[15]. Whereas learning techniques of neural 
networks such as the back-propagation algorithm were used 
mainly to fine-tune continuous parameters of fuzzy systems 
in neuro-fuzzy systems [16]-[19], evolutionary algorithms 
can be used to perform not only parameter tuning but also 
discrete optimization such as input selection, rule generation, 
rule selection and fuzzy partition. In those studies on genetic 
fuzzy systems and neuro-fuzzy systems, learning tasks can 
be viewed as the following optimization problem: 

Maximize Accuracy(S),            (1) 

where S is a fuzzy system, and Accuracy(S) is an accuracy 
measure (e.g., classification rate). 
 The main advantage of fuzzy systems over other non-
linear models such as neural networks is their linguistic 
interpretability. Accuracy improvement of fuzzy systems, 
however, often leads to deterioration in their interpretability. 
Since the late 1990s, the importance of interpretability in the 
design of fuzzy systems has been pointed out by some 
studies [20]-[31]. In other words, complexity minimization 
as well as accuracy maximization was taken into account to 
design accurate and interpretable fuzzy systems. Whereas 
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accuracy maximization and complexity minimization were 
simultaneously considered, the single-objective optimization 
framework based on the following scalarizing objective 
function was used in those studies: 

Optimize f(S) = f (Accuracy(S), Complexity(S)),      (2) 

where f (S) is a scalarizing objective function (i.e., a scalar 
fitness function), which combines an accuracy measure 
Accuracy(S) and a complexity measure Complexity(S). In 
some studies, the scalarizing objective function in (2) can be 
more appropriately written as 

Optimize f(S) = f (Accuracy(S), Interpretability(S)),     (3) 

where Interpretability(S) is an interpretability measure. 
 An example of the scalarizing objective function f (S) in 
(2) is the following weighted sum objective function [32]: 

Maximize  f (S) = w1
. Accuracy(S) − w2

. Complexity(S),    (4) 

where w = (w1, w2) is a non-negative weight vector. The 
number of correctly classified training patterns and the 
number of fuzzy rules were used as an accuracy measure and 
a complexity measure in [32], respectively. 
 One difficulty in the weighted sum-based approach is 
that the specification of an appropriate weight vector is not 
easy and problem-dependent whereas the finally obtained 
fuzzy system strongly depends on its specification. Almost 
all the above-mentioned studies with scalarizing objective 
functions share similar difficulties (i.e., it is not easy to 
determine an appropriate scalarizing objective function). 
 Whereas a single fuzzy system is obtained from single-
objective approaches, a large number of non-dominated 
fuzzy systems are obtained in multiobjective approaches by 
solving the following multi-objective problem: 

Maximize Accuracy(S)  and  minimize Complexity(S).    (5) 

For example, a two-objective fuzzy rule selection method 
was proposed in [33] to search for non-dominated fuzzy 
classifiers with respect to the maximization of the number of 
correctly classified training patterns and the minimization of 
the number of fuzzy rules. 
 In [34], not only the number of fuzzy rules but also the 
total number of antecedent conditions (i.e., the total rule 
length) was minimized. In this case, the multi-objective 
problem in (5) can be rewritten as follows:  

Maximize Accuracy(S)  and   
minimize Complexity1(S) and Complexity2(S),      (6) 
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where Complexity1(S) and Complexity2(S) are complexity 
measures. 
 The basic idea of multiobjective approaches is to search 
for a number of non-dominated fuzzy systems with different 
tradeoffs between accuracy and complexity. This idea is 
illustrated in Fig. 1 where each ellipsoid denotes a fuzzy 
system. Simple and inaccurate fuzzy systems are located in 
the upper left part of this figure while complicated and 
accurate ones are in the lower right part. There exist a large 
number of non-dominated fuzzy systems along the accuracy-
complexity tradeoff curve. Multiobjective approaches try to 
search for non-dominated fuzzy systems as many as possible. 
Evolutionary multiobjective optimization algorithms [35]-
[37] are used for this task. 
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Fig. 1.  Non-dominated fuzzy systems along the accuracy-complexity 
tradeoff curve. 

 
 Evolutionary multiobjective optimization (EMO) is one 
of the most active research areas in the field of evolutionary 
computation. A large number of EMO algorithms have been 
proposed in the literature [35]-[37]. Among them, NSGA-II 
[38], SPEA [39], and SPEA2 [40] are well-known and 
frequently-used EMO algorithms. Those EMO algorithms 
share some common ideas (with different implementation 
schemes) such as Pareto ranking-based fitness evaluation, 
diversity maintenance, and elitism. 
 The main advantage of EMO algorithms over non-
evolutionary techniques in the field of multi-criteria decision 
making (MCDM [41]) is that a number of non-dominated 
solutions with a wide range of objective values can be 
simultaneously obtained by their single run. On the contrary, 
multiple runs are required when we try to find a number of 
non-dominated solutions using MCDM techniques. 

II. RELATED STUDIES TO MULTIOBJECTIVE GENETIC FUZZY 
SYSTEMS 

 In this section, we briefly review a wide range of related 
studies to multiobjective genetic fuzzy systems in various 
research areas. Of course, our review is far from exhaustive. 
See [7]-[9] for genetic fuzzy systems, [42], [43], [51] for 
interpretability-accuracy tradeoff of fuzzy systems, [44] for 
multiobjective approaches in machine learning, and [45] for 
multiobjective data mining. 

A. Multiobjective Genetic Fuzzy Rule Selection 
 Two-objective genetic fuzzy rule selection for the design 
of fuzzy classifiers [33], which is a multiobjective version of 
weighted sum-based rule selection [32], is one of the earliest 
studies on multiobjective genetic fuzzy systems. In [33], first 
a large number of candidate fuzzy rules were extracted from 
numerical data by a heuristic rule extraction procedure. Then 
an EMO algorithm was used to search for a number of non-
dominated subsets of the candidate fuzzy rules with respect 
to accuracy maximization and complexity minimization. Let 
N be the number of the extracted candidate rules. A subset of 
the N candidate rules is represented by a binary string of 
length N and handled as an individual in two-objective 
genetic fuzzy rule selection. Since binary strings are used as 
individuals, we can directly apply existing EMO algorithms 
such as NSGA-II, SPEA and SPEA2 with standard genetic 
operators to two-objective genetic fuzzy rule selection. The 
two-objective formulation in [33] was extended to a three-
objective one in [34] by introducing the total number of 
antecedent conditions (i.e., the total rule length) as an 
additional complexity measure. A memetic EMO algorithm 
(i.e., a hybrid algorithm of EMO and local search) was used 
for three-objective genetic fuzzy rule selection in [46]. The 
same three-objective formulation as in [34], [46] was used 
for non-fuzzy rule selection in [47]. 

B. Multiobjective Fuzzy Genetics-Based Machine Learning 
 Studies on genetics-based machine learning algorithms 
are often divided into two classes: Pittsburgh and Michigan 
approaches (for example, see [48]-[50] for GBML and [7]-
[9], [51] for fuzzy GBML). A rule set is handled as an 
individual in the Pittsburgh approach while a single rule is 
handled as an individual in the Michigan approach. The 
finally obtained rule set is usually the best individual in the 
final population in the Pittsburgh approach while it is the 
final population in the Michigan approach. Another category 
of GBML is an iterative rule learning approach [26], [52], 
[53] where a single rule is obtained from its single execution. 
Thus multiple runs are required to generate a rule set in the 
iterative rule learning approach. Multiobjective GBML 
algorithms have usually been implemented in the framework 
of the Pittsburgh approach. In general, the antecedent part of 
each rule is coded as a substring in Pittsburgh-style GBML 
algorithms. A rule set is represented by a concatenated string. 
A substring of integers and/or real numbers is often used to 
represent a single rule.  
 A three-objective fuzzy GBML algorithm was compared 
with its rule selection version in [34]. A Pittsburgh-Michigan 
hybrid fuzzy GBML algorithm [54] was generalized as a 
multiobjective one for interpretability-accuracy tradeoff 
analysis in [55]. Other examples of multiobjective fuzzy 
GBML algorithms are found in [42]-[44], [56], [57] where 
various aspects of fuzzy systems are adjusted by EMO 
algorithms (e.g., input selection, membership function tuning, 
and rule selection). Multiobjective GBML algorithms were 
also implemented for non-fuzzy classifier design (e.g., [58]).  

914



C. Evolutionary Multiobjective Data Mining 
 Evolutionary algorithms have been applied in the field of 
knowledge discovery and data mining in various manners 
[50]. EMO algorithms have been used for two different 
tasks: One is to search for Pareto-optimal rules and the other 
is to search for Pareto-optimal rule sets.  
 In data mining techniques such as Apriori [59], support 
and confidence have frequently been used for rule evaluation. 
Other rule evaluation criteria, however, were also proposed. 
Among them are gain, variance, chi-squared value, entropy 
gain, gini, laplace, lift, and conviction [60]. It was shown for 
non-fuzzy rules that the best rule according to any of these 
measures is a Pareto-optimal rule of the following two-
objective rule discovery problem [60]: 

Maximize { )(RSupport , )(RConfidence },       (7) 

where R denotes a single rule. 
 The use of NSGA-II [38], which is a well-known and 
frequently-used EMO algorithm, was proposed in [61], [62] 
to search for Pareto-optimal classification rules of the two-
objective problem in (7). A dissimilarity measure between 
classification rules was used in [63] instead of the crowding 
measure in NSGA-II to increase the diversity of obtained 
Pareto-optimal rules. The Pareto-dominance relation used in 
NSGA-II was modified in [64] in order to search for not 
only Pareto-optimal classification rules but also near Pareto-
optimal dominated ones. Similar multiobjective formulations 
to (7) were used to search for Pareto-optimal association 
rules [65] and Pareto-optimal fuzzy association rules [66]. In 
[67], the tradeoff between the number of extracted fuzzy 
rules and the computation time for rule extraction was 
discussed in fuzzy data mining. 
 The above-mentioned studies on multiobjective genetic 
rule selection and GBML in the previous subsections can be 
viewed as data mining techniques for the search for Pareto-
optimal rule sets. In [68], the use of Pareto-optimal fuzzy 
rules as candidate rules was examined in rule selection.  

D. Evolutionary Multiobjective Feature Selection 
 Feature selection [69] is an important issue in modeling, 
classification, knowledge discovery and data mining. The 
basic idea of multiobjective feature selection is to minimize 
the size of a subset of features and maximize its performance. 
There exists a clear tradeoff relation between the size of 
feature subsets and their performance on training data. 
Evolutionary multiobjective feature selection was discussed 
in some studies (e.g., [70]-[72]). Feature selection was also 
discussed in the context of multiobjective genetic fuzzy 
systems [73]. 

E. Evolutionary Multiobjective Clustering 
 Fuzzy clustering [74] has frequently been used for fuzzy 
rule generation. In evolutionary multiobjective clustering 
[75]-[78], multiple measures of cluster quality are optimized 
simultaneously. Evolutionary multiobjective clustering will 
play a very important role in multiobjective design of fuzzy 
systems whereas it has not been used in many studies so far.  

F. Evolutionary Ensemble Design 
 A promising approach to the design of reliable classifiers 
is to combine multiple classifiers into a single one [79], [80]. 
Several methods have been proposed for generating multiple 
classifiers such as bagging [81] and boosting [82]. The point 
is to generate an ensemble of classifiers with high diversity. 
Ideally the classification errors by each individual classifier 
in an ensemble should be uncorrelated. 
 EMO algorithms have been used to generate an ensemble 
of classifiers with high diversity. Non-dominated neural 
networks were combined into a single ensemble classifier in 
[83]-[86]. The choice of ensemble members seems to be an 
interesting issue when a large number of non-dominated 
neural networks are obtained. Design of fuzzy ensemble 
classifiers was discussed in [87]. Feature selection was used 
for neural network ensemble design in [88], [89].  

G. Multiobjective Neural Network Design 
 In addition to ensemble design, EMO algorithms have 
also been used for multiobjective design of neural networks 
in various manners. An EMO algorithm was used to generate 
a number of non-dominated neural networks on a receiver 
operating characteristic curve in [90]. Non-dominated radial 
basis function (RBF) networks of different sizes were 
generated in [91]. A multiobjective memetic algorithm was 
used to speed up the back-propagation algorithm in [92] 
where a number of neural networks of different sizes were 
evolved to find an appropriate network structure. 

H. Multiobjective Genetic Programming 
 As in fuzzy systems and neural networks, there exists a 
clear tradeoff relation between training data accuracy and the 
size of trees in genetic programming. Multiobjective genetic 
programming has been discussed in some studies [93]-[97]. 
Multiobjective genetic programming is a promising tool for 
the multiobjective design of tree-structured fuzzy systems. 

III. ILLUSTRATION OF EVOLUTIONARY MULTIOBJECTIVE 
DESIGN OF FUZZY SYSTEMS 

 Through computational experiments on some data sets in 
the UCI machine learning repository, we show advantages of 
multiobjective approaches over single-objective ones. In our 
computational experiments, first we divided each data set 
into two subsets of the same size: training data and test data. 
Next we generated candidate fuzzy rules from training data. 
Then we performed three-objective genetic fuzzy rule 
selection to search for non-dominated rule sets (i.e., fuzzy 
classifiers) using training data. Finally the accuracy of each 
of the obtained non-dominated rule sets was evaluated for 
training data and test data. 
 Experimental results are shown in Fig. 2 and Fig. 3. It 
should be noted that all the non-dominated rule sets denoted 
by open circles in each figure were obtained by a single run 
of three-objective genetic fuzzy rule selection. In each figure, 
the left and right plots show the classification rates on 
training data and test data, respectively. As shown in Fig. 2 
(a) and Fig. 3 (a), similar tradeoff curves were obtained on 
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training data for many data sets. On the other hand, totally 
different tradeoff curves were obtained on test data as shown 
in Fig. 2 (b) and Fig. 3 (b). This observation suggests that 
the choice of an appropriate complexity with the highest 
generalization ability is problem-dependent. 
 Since a large number of rule sets were obtained by a 
single run of a multiobjective approach, we can perform 
tradeoff analysis as in Fig. 2 and Fig. 3. When we use a 
single-objective approach, we can not efficiently perform 
such tradeoff analysis because only a single rule set is 
obtained from its single run. 
 The choice of a final rule set from a large number of 
obtained non-dominated ones depends on the preference of a 
user. For example, simple rules may be chosen when he/she 
thinks that the interpretability of fuzzy systems is much 
more important than their accuracy (e.g., Fig. 4). 

Number of rules

C
la

ss
ifi

ca
tio

n 
ra

te
 (%

)

0 2 4 6 8 1090

92

94

96

98

100

   Number of rules

C
la

ss
ifi

ca
tio

n 
ra

te
 (%

)

0 2 4 6 8 1090

92

94

96

98

100

 
(a) Training data accuracy.                      (b) Test data accuracy. 

Fig. 2. Obtained rule sets for the Wisconsin breast cancer data [68]. 
 

Number of rules

C
la

ss
ifi

ca
tio

n 
ra

te
 (%

)

0 2 4 6 8 10 12 1450

60

70

80

   Number of rules

C
la

ss
ifi

ca
tio

n 
ra

te
 (%

)

0 2 4 6 8 10 12 1440

50

60

70

 
             (a) Training data accuracy.                       (b) Test data accuracy. 

Fig. 3. Obtained rule sets for the Cleveland heart disease data [68]. 
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   (a) Wisconsin breast cancer data.            (b) Cleveland heart disease data. 
Fig. 4. Examples of obtained non-dominated rule sets [98]. 

IV. FUTURE RESEARCH DIRECTIONS 
 One important issue is the formulation of interpretability 
of fuzzy systems as complexity measures. Various aspects 
are related to their interpretability (e.g., the number of inputs, 

the number of rules, rule length, fuzzy partition granularity, 
membership function separability, etc.). See [42], [43], [99], 
[100] for further discussions on interpretability. If we use 
those aspects as separate objectives, fuzzy system design is 
formulated as a many-objective problem. Pareto ranking-
based EMO algorithms, however, do not work well on such 
a problem with many objectives [101], [102].  
 Another issue is theoretical analysis for maximizing the 
generalization ability of fuzzy systems. As shown in Fig. 2 
and Fig. 3, multiobjective genetic fuzzy systems can be used 
for empirical analysis. Theoretical analysis such as statistical 
learning theory [103] seems to be required. Regularization 
methods can be discussed as multiobjective problems [104]. 
 Incorporation of user’s preference is a hot issue in the 
EMO community [105], [106]. User’s preference will be 
incorporated in multiobjective design of fuzzy systems. The 
use of multiobjective clustering and multiobjective genetic 
programming will be also examined soon. Finally we need 
efficient tricks for the handling of large data sets by 
evolutionary algorithms (e.g., stratification [107]). Parallel 
algorithms seem to be a promising research direction.  

V. CONCLUSIONS 
 First we briefly reviewed a wide range of related areas to 
multiobjective genetic fuzzy systems. Then we illustrated 
advantages of multiobjective approaches to the design of 
fuzzy systems over single-objective ones. Finally we pointed 
out promising future research directions. 
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