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Abstract

This paper examines the interpretability-accuracy tradeoff in fuzzy rule-based classifiers using a
multiobjective fuzzy genetics-based machine learning (GBML) algorithm. Our GBML algorithm
is a hybrid version of Michigan and Pittsburgh approaches, which is implemented in the framework
of evolutionary multiobjective optimization (EMO). Each fuzzy rule is represented by its antecedent
fuzzy sets as an integer string of fixed length. Each fuzzy rule-based classifier, which is a set of fuzzy
rules, is represented as a concatenated integer string of variable length. Our GBML algorithm simul-
taneously maximizes the accuracy of rule sets and minimizes their complexity. The accuracy is mea-
sured by the number of correctly classified training patterns while the complexity is measured by the
number of fuzzy rules and/or the total number of antecedent conditions of fuzzy rules. We examine
the interpretability-accuracy tradeoff for training patterns through computational experiments on
some benchmark data sets. A clear tradeoff structure is visualized for each data set. We also examine
the interpretability-accuracy tradeoff for test patterns. Due to the overfitting to training patterns, a
clear tradeoff structure is not always obtained in computational experiments for test patterns.
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1. Introduction

There are two main goals in the design of fuzzy rule-based systems: one is the accuracy
maximization and the other is the complexity minimization. In the 1990s, emphasis was
placed on the accuracy maximization. Various approaches have been proposed to improve
the accuracy of fuzzy rule-based systems using learning algorithms of neural networks and
optimization techniques in evolutionary computation (e.g., see Cordon et al. [1] for a
review on various evolutionary optimization techniques for the design of fuzzy rule-based
systems). Those approaches usually improve the accuracy of fuzzy rule-based systems at
the cost of their interpretability. That is, the complexity of fuzzy rule-based systems usu-
ally increases as a result of the accuracy maximization. Some researchers tried to simulta-
neously perform the accuracy maximization and the complexity minimization in order to
design fuzzy rule-based systems with high accuracy and high interpretability [2–4]. It is,
however, impossible to simultaneously optimize these two objectives. Thus the existence
of the accuracy-complexity tradeoff in the design of fuzzy rule-based systems has been
realized [5,6]. Recently, the accuracy maximization and the complexity minimization have
been often discussed as multiobjective optimization problems [5–9]. The accuracy-
complexity tradeoff has been also studied for the design of neural networks [10,11]. In
the field of fuzzy rule-based systems, the accuracy-complexity tradeoff is often referred
to as the interpretability-accuracy tradeoff. This is because high interpretability is the main
advantage of fuzzy rule-based systems over other nonlinear systems such as neural
networks.

One of the first attempts to simultaneously perform the accuracy maximization and the
complexity minimization of fuzzy rule-based classifiers was GA-based rule selection of
Ishibuchi et al. [12,13] in the mid-1990s. They used the following fitness function for fuzzy
rule selection:

fitnessðSÞ ¼ w1 � f1ðSÞ � w2 � f2ðSÞ; ð1Þ

where S is a set of fuzzy rules (i.e., S is a fuzzy rule-based classifier), f1(S) is the number of
correctly classified training patterns by S, f2(S) is the number of fuzzy rules in S, and w1

and w2 are prespecified positive constants. A standard single-objective genetic algorithm
was used to maximize the fitness function in (1). The GA-based rule selection method
was extended to two-objective rule selection in [14], where a simple multiobjective genetic
algorithm was used to find a large number of non-dominated rule sets with respect to the
following two objectives:

Maximize f 1ðSÞ and minimize f 2ðSÞ: ð2Þ
This formulation was further extended to three-objective rule selection in [15,16] as

follows:

Maximize f 1ðSÞ; minimize f 2ðSÞ; and minimize f 3ðSÞ; ð3Þ
where f3(S) is the total number of antecedent conditions (excluding ‘‘don’t care’’ condi-
tions) of fuzzy rules in S. Since the number of antecedent conditions of each fuzzy rule
is often referred to as the rule length, f3(S) can be viewed as the total rule length. While
only the number of fuzzy rules was considered as a complexity measure in the two-objec-
tive formulation in (2), the length of each fuzzy rule was also taken into account in the
three-objective formulation in (3).
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GA-based rule selection in [12–16] consists of two stages: heuristic generation of candi-
date rules and genetic rule selection. In the handling of low-dimensional problems such as
the iris data set with four attributes, all possible fuzzy rules can be used as candidate rules
[12–14]. Heuristic prescreening of candidate rules, however, is necessary in the candidate
rule generation stage [15,16] when a GA-based rule selection method is to be applied to
high-dimensional problems such as the wine data set with 13 attributes and the sonar data
set with 60 attributes. A data mining technique was used in [16] to generate a prespecified
number of promising candidate rules. Genetic algorithms were used in the rule selection
stage where each rule set was coded as a binary string. The string length is the same as
the number of candidate rules.

A number of fuzzy genetics-based machine learning (GBML) algorithms have already
been proposed in the literature [1] where fuzzy rule-based systems are generated from
numerical data through genetic operations. Fuzzy GBML algorithms are usually classified
into two categories as in the case of standard non-fuzzy GBML algorithms: Michigan
approach and Pittsburgh approach. A single rule is handled as an individual in the Mich-
igan approach while a rule set is handled as an individual in the Pittsburgh approach. As a
result, the evolution of fuzzy rule-based systems is indirectly driven by the fitness evalua-
tion of each fuzzy rule in the Michigan approach while it is directly driven by the fitness
evaluation of each rule set in the Pittsburgh approach. There is another category of fuzzy
GBML algorithms: iterative rule learning approach where a single rule is obtained from
each execution of a GBML algorithm. A fuzzy rule-based system is constructed by its iter-
ative execution (for details, see [1]).

In our former studies [17,18], we showed that fuzzy rule-based classifiers can be gener-
ated for high-dimensional problems with many attributes by a Michigan-style GBML
algorithm even when we use simple grid fuzzy partitions of the pattern space. Those stud-
ies demonstrated the necessity of the use of ‘‘don’t care’’ conditions in the handling of
high-dimensional problems. We also combined the Michigan and Pittsburgh approaches
into a single hybrid algorithm [19]. In this paper, we extend the hybrid fuzzy GBML algo-
rithm to the case of multiobjective optimization. Through computational experiments
using a hybrid multiobjective fuzzy GBML algorithm on six benchmark data sets in the
UCI Machine Learning Repository (http://www.ics.uci.edu/~mlearn/), we examine the
interpretability-accuracy tradeoff in the design of fuzzy rule-based classifiers.

This paper is organized as follows. First we explain some basic concepts in multiobjec-
tive optimization in Section 2. We also explain the NSGA-II algorithm of Deb et al. [20] in
Section 2. Next we explain fuzzy rule-based classifiers, three formulations of their multi-
objective design, and our hybrid multiobjective fuzzy GBML algorithm in Section 3.
Our GBML algorithm is implemented in the framework of the NSGA-II algorithm. Then
we examine the interpretability-accuracy tradeoff in fuzzy rule-based classifiers in detail
through computational experiments on benchmark data sets in Section 4. We also com-
pare the three formulations of multiobjective fuzzy rule-based classifier design with each
other in Section 4. Our GBML algorithm is compared with the multiobjective fuzzy rule
selection method in Section 5. Finally we conclude this paper in Section 6.

2. Evolutionary multiobjective optimization

Evolutionary multiobjective optimization (EMO) is one of the most active research
areas in the field of evolutionary computation [21–24]. In this section, we briefly explain

http://www.ics.uci.edu/~mlearn/
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some basic concepts in multiobjective optimization and one of the most well-known and
frequently-used EMO algorithms: NSGA-II of Deb et al. [20].

2.1. Multiobjective optimization problems

Let us consider the following k-objective maximization problem:

Maximize fðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fkðxÞÞ subject to x 2 X; ð4Þ

where f(x) is the objective vector, fi(x) is the ith objective to be maximized, x is the decision
vector, and X is the feasible region in the decision space.

When the following two conditions are satisfied, a feasible solution x 2 X is said to be
dominated by another feasible solution y 2 X (i.e., y dominates x: y is better than x)

8i; f iðxÞ 6 fiðyÞ and 9j; f jðxÞ < fjðyÞ: ð5Þ

If there is no feasible solution y that dominates x, x is said to be a Pareto-optimal solution
of the multiobjective optimization problem in (4). The set of all Pareto-optimal solutions is
the Pareto-optimal solution set. The image of the Pareto-optimal solution set onto the
objective space is the Pareto front. The Pareto dominance relation in (5) can be also ap-
plied to a solution set (i.e., a population). If there is no solution y in a population that
dominates x, x is said to be a non-dominated solution in that population.

2.2. Evolutionary multiobjective optimization algorithms

The task of evolutionary multiobjective optimization (EMO) algorithms is to find well-
distributed Pareto-optimal or near Pareto-optimal solutions as many as possible. The
main advantage of EMO algorithms over other multiobjective optimization methods is
that many non-dominated solutions can be simultaneously obtained by their single run.
A number of EMO algorithms have been proposed in the literature [21–24]. The
NSGA-II algorithm of Deb et al. [20] is one of the most well-known and frequently-used
EMO algorithms in the literature.

As in other evolutionary algorithms, first the NSGA-II algorithm generates an initial
population. This is usually performed randomly. Then an offspring population is gener-
ated from the current population by selection, crossover and mutation. The next popula-
tion is constructed from the current and offspring populations. The generation of an
offspring population and the construction of the next population are iterated until a pre-
specified stopping condition is satisfied. The NSGA-II algorithm has two features, which
make it a high-performance EMO algorithm. One is the fitness evaluation of each solution
based on Pareto ranking and a crowding measure, and the other is an elitist generation
update procedure.

Each solution in the current population is evaluated in the following manner. First,
Rank 1 is assigned to all non-dominated solutions in the current population. All solutions
with Rank 1 are tentatively removed from the current population. Next, Rank 2 is
assigned to all non-dominated solutions in the reduced current population. All solutions
with Rank 2 are tentatively removed from the reduced current population. This procedure
is iterated until all solutions are tentatively removed from the current population (i.e., until
ranks are assigned to all solutions). As a result, a different rank is assigned to each
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solution. Solutions with smaller ranks are viewed as being better than those with larger
ranks. Among solutions with the same rank, an additional criterion called a crowding
measure is taken into account. The crowding measure for a solution calculates the distance
between its adjacent solutions with the same rank in the objective space (for details, see
[20,21]). Less crowded solutions with larger values of the crowding measure are viewed
as being better than more crowded solutions with smaller values of the crowding measure.
A pair of parent solutions are selected from the current population by binary tournament
selection based on the Pareto ranking and the crowding measure.

When the next population is to be constructed, the current and offspring populations
are combined into a merged population. Each solution in the merged population is eval-
uated in the same manner as in the selection phase of parent solutions using the Pareto
ranking and the crowding measure. The next population is constructed by choosing a pre-
specified number (i.e., population size) of the best solutions from the merged population.
Elitism is implemented in the NSGA-II algorithm in this manner.

An outline of the NSGA-II algorithm is written as follows:

[NSGA-II Algorithm]
Step 1: Generate an initial population with Npop solutions where Npop is the population

size.
Step 2: Generate an offspring population by iterating the following procedures Npop

times:
(1) Choose a pair of parent solutions from the current population using binary

tournament selection.
(2) Generate an offspring from the selected parent solutions by crossover and

mutation.

Step 3: Combine the current population and the offspring population into a merged one.

Then choose the best Npop solutions from the merged population to construct the
next population.

Step 4: If a prespecified stopping condition is not satisfied, return to Step 2. Otherwise
terminate the execution of the algorithm. In the latter case, we choose all
the non-dominated solutions in the merged population in Step 3 as the final
solutions.

3. Multiobjective design of fuzzy rule-based classifiers

In this section, we explain fuzzy rule-based classifiers, three formulations of their mul-
tiobjective design, and a hybrid multiobjective fuzzy GBML algorithm.

3.1. Fuzzy rule-based classifiers

Let us assume that we have m training patterns xp = (xp1, . . . ,xpn), p = 1,2, . . . ,m from
M classes where xpi is the attribute value of the pth training pattern for the ith attribute
(i = 1,2, . . . ,n). We also assume that the n-dimensional pattern space has already been nor-
malized into the n-dimensional unit hyper-cube [0, 1]n. That is, we assume that we have an
M-class pattern classification problem with m training patterns in the n-dimensional pat-
tern space [0,1]n. For this problem, we use fuzzy rules of the following form:
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Rule Rq : If x1 is Aq1 and . . . and xn is Aqn then Class Cq with CF q; ð6Þ
where Rq is the label of the qth rule, x = (x1, . . . ,xn) is an n-dimensional pattern vector, Aqi

is an antecedent fuzzy set, Cq is a class label, and CFq is a rule weight.
We define the compatibility grade of each training pattern xp with the antecedent part

Aq = (Aq1, . . . ,Aqn) of the fuzzy rule Rq in (1) using the product operator as

lAq
ðxpÞ ¼ lAq1

ðxp1Þ � lAq2
ðxp2Þ � � � � � lAqn

ðxpnÞ; p ¼ 1; 2; . . . ;m; ð7Þ

where lAqi
(Æ) is the membership function of Aqi.

To determine the consequent class Cq and the rule weight CFq, we first calculate the
confidence of the fuzzy rule ‘‘Aq) Class h’’ for each class h as follows (see the textbook
on fuzzy data mining [25] for fuzzy versions of some basic concepts in data mining such as
confidence and support):

cðAq ) Class hÞ ¼
X

xp2Class h

lAq
ðxpÞ

,Xm

p¼1

lAq
ðxpÞ; h ¼ 1; 2; . . . ;M : ð8Þ

The consequent class Cq is specified as the class with the maximum confidence:

cðAq ) Class CqÞ ¼ maxfcðAq ) Class hÞ j h ¼ 1; 2; . . . ;Mg: ð9Þ
Rule weights have a significant effect on the classification accuracy of a fuzzy rule-based
classifier [26]. Several methods were examined to determine the rule weight of each fuzzy
rule in [27] where good results were obtained from the following specification:

CF q ¼ cðAq ) Class CqÞ �
XM

h¼1
h 6¼Cq

cðAq ) Class hÞ: ð10Þ

We use the above definition in this paper. When the rule weight is not positive, we do not
generate the corresponding fuzzy rule.

Let S be a fuzzy rule-based classifier (i.e., a set of fuzzy rules). When an input pattern xp

is to be classified by the fuzzy rule-based classifier S, a single winner rule Rw is chosen from
S as follows:

lAw
ðxpÞ � CF w ¼ maxflAq

ðxpÞ � CF q j Rq 2 Sg: ð11Þ

The input pattern xp is assigned to the consequent class Cw of the winner rule Rw. When
multiple rules with different consequent classes have the same maximum value in (11), the
classification of the input pattern xp is rejected. The classification of xp is also rejected
when there is no compatible fuzzy rules with positive compatibility grades for xp. In this
case, all fuzzy rules have the same maximum value of zero in the right-hand side in (11).
For other types of fuzzy rules and fuzzy reasoning in fuzzy rule-based classifiers, see
[28,29].

3.2. Multiobjective formulations of fuzzy rule-based classifier design

As we have already explained in Section 1, the following three objectives have been con-
sidered in fuzzy rule selection [12–16]:



10 H. Ishibuchi, Y. Nojima / Internat. J. Approx. Reason. 44 (2007) 4–31
f1(S): the number of correctly classified training patterns by S,
f2(S): the number of fuzzy rules in S,
f3(S): the total number of antecedent conditions of fuzzy rules (i.e., total rule length) in S.
It should be noted that ‘‘don’t care’’ conditions are not counted in the calculation of the

third objective.

In this paper, we use the following three formulations of multiobjective optimization
problems (MOPs) for the interpretability-accuracy tradeoff analysis:

MOP-1: Maximize f1(S) and minimize f2(S),
MOP-2: Maximize f1(S) and minimize f3(S),
MOP-3: Maximize f1(S), minimize f2(S), and minimize f3(S).

For comparison, we also use the following three formulations of single-objective opti-
mization problems (SOPs):

SOP-1: Maximize w1 Æ f1(S) � w2 Æ f2(S),
SOP-2: Maximize w1 Æ f1(S) � w3 Æ f3(S),
SOP-3: Maximize w1 Æ f1(S) � w2 Æ f2(S) � w3 Æ f3(S),
where w1, w2 and w3 are prespecified non-negative weights.
The Pareto dominance relation in (5) in Section 2 is modified when it is applied to each
of the three multiobjective optimization problems. For example, the Pareto dominance
relation is modified for MOP-3 as follows: A rule set Sx is said to be dominated by another
rule set Sy (i.e., Sy dominates Sx: Sy is better than Sx) when all the following inequalities
hold:

f1ðSxÞ 6 f1ðSyÞ; f 2ðSxÞP f2ðSyÞ; f 3ðSxÞP f3ðSyÞ ð12Þ

and at least one of the following inequalities holds:

f1ðSxÞ < f1ðSyÞ; f 2ðSxÞ > f2ðSyÞ; f 3ðSxÞ > f3ðSyÞ: ð13Þ

Roughly speaking, when a rule set Sx has lower classification accuracy and higher com-
plexity than another rule set Sy, Sx is said to be dominated by Sy in all the three multiob-
jective optimization problems.
3.3. Hybrid multiobjective fuzzy GBML algorithm

We use a hybrid multiobjective fuzzy GBML algorithm to efficiently find a large num-
ber of non-dominated rule sets (i.e., fuzzy rule-based classifiers) of the three multiobjective
optimization problems: MOP-1, MOP-2, and MOP-3. Our GBML algorithm can be
viewed as a Pittsburgh-style algorithm except that a Michigan-style algorithm is applied
to each rule set as a kind of mutation. Our GBML algorithm is implemented in the frame-
work of the NSGA-II algorithm as follows:
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[Hybrid Multiobjective Fuzzy GBML Algorithm]
Step 1: Generate an initial population of Npop rule sets where Npop is the population size.
Step 2: Generate an offspring population by iterating the following procedures Npop

times:
(1) Select a pair of parent rule sets from the current population using binary tour-

nament selection.
(2) Generate an offspring from the selected pair of parent rule sets by crossover

and mutation.
(3) Apply a single iteration of a Michigan-style GBML algorithm to the offspring

rule set with a prespecified probability (0.5 in our computational
experiments).

Step 3: Combine the current population and the offspring population into a merged one.
Then choose the best Npop rule sets from the merged population to construct the
next population.

Step 4: If a prespecified stopping condition is not satisfied, return to Step 2. Otherwise
terminate the execution of the algorithm. In the latter case, we choose all the
non-dominated rule sets in the merged population in Step 3 as the final solutions.

Each rule set is evaluated based on the Pareto ranking and the crowding measure as
explained in Section 2 in the same manner as the NSGA-II algorithm. Our GBML algo-
rithm has high search ability of Michigan approach to efficiently find good fuzzy rules as
well as direct optimization ability of Pittsburgh approach to optimize rule sets. In the fol-
lowing, we explain our GBML algorithm in detail.

Each fuzzy rule is represented by its antecedent part Aq as an integer string of length n,
where n is the dimensionality of the pattern space (i.e., n is the number of attributes). The
consequent class and the rule weight of each fuzzy rule are specified from training patterns
as described in Section 3.1. For each attribute, we use 14 antecedent fuzzy sets in Fig. 1.
We also use ‘‘don’t care’’ as an additional antecedent fuzzy set. The membership value of
this special antecedent fuzzy set is always unity for any input values ("x, ldon’t care(x) = 1).
We use 15 symbols (e.g., 0,1, . . . , 9,a,b,c,d,e) to represent don’t care and the 14 antecedent
fuzzy sets in Fig. 1. For example, an integer string ‘‘0102d0’’ denotes the fuzzy rule ‘‘If x2 is
1.0 

0.0 
0.0 1.0 

1 2 

S2 L2 

1.0 

0.0 
0.0 1.0 

3 5 4 

S3 M3 L3 

1.0 

0.0 
0.0 1.0 

6 9 7 

S4 MS4 L4 ML4

8 1.0 

0.0 
0.0 1.0 

a e b 

S5 MS5 L5 ML5

c d 

M5 

Fig. 1. Four fuzzy partitions used in our computational experiments. The superscript of each fuzzy set means the
granularity of the fuzzy partition. Each of the 14 fuzzy sets is represented by one of the 14 symbols (i.e.,
1,2, . . . , 9,a,b,c,d,e) as shown in this figure.
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S2 and x4 is L2 and x5 is ML5 then Class Cq with CFq’’ where don’t care conditions on x1,
x3 and x6 represented by 0s in the string are omitted. It should be noted that the number of
antecedent conditions (i.e., rule length) of this rule is three because don’t care conditions
are not counted. The total number of possible combinations of the antecedent part Aq is
15n for our n-dimensional pattern classification problem.

A rule set S is handled as an individual and coded as a concatenated integer string
where each substring of length n represents a single fuzzy rule. It should be noted that
the number of fuzzy rules in each rule set is not fixed in our hybrid multiobjective fuzzy
GBML algorithm.

It was shown in [16,17] that the search ability of Michigan-style fuzzy GBML algo-
rithms was drastically improved by directly generating initial fuzzy rules from training pat-
terns in a heuristic manner. We use a similar heuristic method to generate an initial
population of rule sets in Step 1 of our GBML algorithm. First we randomly select a pre-
specified number of training patterns (say, Nrule training patterns). Next we generate a
fuzzy rule Rq from each training pattern xp = (xp1, . . . ,xpn) by probabilistically choosing
an antecedent fuzzy set Aqi for each attribute value xpi from the 14 candidate fuzzy sets
Bk (k = 1,2, . . . , 9,a,b,c,d,e) in Fig. 1. Each candidate fuzzy set Bk has the following selec-
tion probability for the attribute value xpi:

P ðBkÞ ¼
lBk
ðxpiÞPe

j¼1lBj
ðxpiÞ

; k ¼ 1; 2; . . . ; 9; a; b; c; d; e: ð14Þ

That is, the antecedent part Aq = (Aq1, . . . ,Aqn) is specified from xp = (xp1, . . . ,xpn) so that
Aqi has a large compatibility grade with xpi. Then each antecedent fuzzy set of the gener-
ated fuzzy rule is replaced with don’t care using a prespecified probability Pdon’t care. In this
manner, Nrule initial fuzzy rules are generated. An initial rule set consists of these fuzzy
rules. By iterating this procedure, we generate Npop initial rule sets (i.e., an initial
population).

In Step 2 (1) of our GBML algorithm, a pair of parent rule sets are selected from the
current population by binary tournament selection based on the Pareto ranking and the
crowding measure as in the NSGA-II algorithm. Let the selected rule sets be S1 and S2.
Some fuzzy rules are randomly selected from each parent to construct a new rule set by
crossover in Step 2 (2). The number of fuzzy rules to be inherited from each parent to
the new rule set is randomly specified. Let N1 and N2 be the number of fuzzy rules to
be inherited from S1 and S2, respectively. We randomly specify N1 and N2 in the intervals
[1, jS1j] and [1, jS2j], respectively, where jSij is the number of fuzzy rules in the rule set Si. In
order to generate a new fuzzy rule, N1 and N2 fuzzy rules are randomly chosen from S1

and S2, respectively. The generated new rule set has (N1 + N2) fuzzy rules. This crossover
operation is applied to the selected pair of parent rule sets using a prespecified crossover
probability PC. When the crossover operation is not applied, one of the two parent rule
sets is viewed as an offspring. Each antecedent fuzzy set of the newly generated offspring
rule set is randomly replaced with a different antecedent fuzzy set using a prespecified
mutation probability PM.

The point of our crossover operation is that the string length is not fixed. In our compu-
tational experiments, we use an upper limit on the number of fuzzy rules in each rule set to
find compact rule sets with high interpretability. The upper limit is specified as 40 in this
paper. When the number of fuzzy rules is more than 40 in the generated rule set (i.e.,
N1 + N2 > 40), we randomly select 40 fuzzy rules and remove the other rules from the rule set.
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After the crossover and mutation operations in Step 2 (2), a single iteration of the fol-
lowing Michigan-style algorithm is applied to the newly generated offspring rule set in Step
2 (3):

[Single Iteration of Michigan-Style Fuzzy GBML Algorithm]
Step 1: An offspring rule set S is given by the main part of our GBML algorithm.
Step 2: Classify each training pattern by the rule set S. The fitness value of each rule is the

number of correctly classified training patterns by that rule.
Step 3: Generate Nreplace fuzzy rules from the existing rules in S by genetic operations and

from misclassified and/or rejected training patterns.
Step 4: Replace the worst Nreplace fuzzy rules in S with the newly generated Nreplace rules.
Step 5: Return the updated rule set S to the main part of our GBML algorithm.

The fitness of each fuzzy rule Rq (i.e., fitness(Rq)) is the number of correctly classified
training patterns by Rq in Step 2 of our Michigan-style algorithm. Since we use the single
winner-based fuzzy reasoning method (i.e., since a single fuzzy rule is responsible for the
classification of each training pattern), the following relation always holds:

f1ðSÞ ¼
X
Rq2S

fitnessðRqÞ: ð15Þ

In Step 3 of our Michigan-style algorithm, Nreplace fuzzy rules are to be newly generated. We
generate at least a half of new fuzzy rules (i.e., at least Nreplace/2 rules) by genetic operations
from the existing rules in S. The probabilistic specification of each antecedent fuzzy set by
(14) and the replacement with don’t care using the probability Pdon’t care are also used to gen-
erate new fuzzy rules. Let NMR be the sum of the number of misclassified and rejected train-
ing patterns by the rule set S. When NMR is less than or equal to Nreplace/2, all the NMR

training patterns are used to generate new fuzzy rules. In this case, NMR fuzzy rules are gen-
erated from the NMR training patterns. Other fuzzy rules (i.e., (Nreplace � NMR) rules) are
generated by genetic operations. On the other hand, when NMR is larger than Nreplace/2,
Nreplace/2 training patterns are randomly chosen from the NMR training patterns. Then
Nreplace/2 fuzzy rules are directly generated from the chosen patterns. Other fuzzy rules
are generated by genetic operations.

The number of replaced fuzzy rules (i.e., Nreplace) is specified as d0.2 · jSje for each rule
set S where d0.2 · jSje is the minimum integer not smaller than 0.2 · jSj. For example, one
fuzzy rule is replaced when the number of fuzzy rules in S is less than or equal to five. In
this case, the heuristic rule generation procedure and the genetic operation-based proce-
dure are randomly evoked with the same probability when at least one training pattern
is misclassified or rejected by the rule set S.

When we generate a new fuzzy rule by genetic operations, first a pair of parent fuzzy
rules are selected from the rule set S using binary tournament selection. Then the standard
uniform crossover operation is applied to the selected pair to generate a new fuzzy rule.
Finally the same mutation operation as in the main part of our GBML algorithm is
applied to each antecedent fuzzy set of the newly generated fuzzy rule. This procedure
is iterated to generate a required number of new fuzzy rules.

A new rule set is generated in our GBML algorithm by selection, mutation, crossover
and a single iteration of the Michigan-style algorithm. When a new rule set includes
meaningless fuzzy rules with non-positive rule weights, those fuzzy rules are removed from
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the rule set. This procedure is iterated Npop times to generate an offspring population of
Npop rule sets. The next population is constructed from the merged population of the cur-
rent and offspring populations in the same manner as the NSGA-II algorithm. When a
prespecified stopping condition is satisfied, our GBML algorithm returns all the non-dom-
inated rule sets in the merged population.

When our GBML algorithm is applied to the single-objective optimization problems
(i.e., SOP-1, SOP-2, and SOP-3), each rule set is evaluated by the scalar fitness function
(i.e., weighted sum of multiple objectives) instead of the Pareto ranking and the crowding
measure in the main part of our GBML algorithm. Except for this change in the fitness
evaluation of each rule set, our GBML algorithm can be applied to each single-objective
optimization problem with no modifications.

4. Computational experiments

In this section, we examine the interpretability-accuracy tradeoff of fuzzy rule-based
classifiers through computational experiments on six benchmark data sets.

4.1. Conditions of computational experiments

We use six data sets with many numerical attributes: Wisconsin breast cancer, Diabetes,
Glass, Cleveland heart disease, Sonar, and Wine, which are available from the UCI
Machine Learning Repository (http://www.ics.uci.edu/~mlearn/). Table 1 shows the num-
ber of attributes, the number of patterns, and the number of classes in each data set. Some
data sets include incomplete patterns with missing values. Those patterns are not used in
our computational experiments. This is because the performance of classification methods
usually depends on the choice of a handling method of missing values.

In the last two columns of Table 1, we show benchmark results on these data sets. They
are error rates reported in Elomaa and Rousu [30] where six variants of the C4.5 algorithm
[31,32] were examined. The six variants were different from each other in their discretiza-
tion methods of continuous attributes. The performance of each variant was evaluated by
10 independent iterations (with different data partitions) of the whole 10-fold cross-valida-
tion (10-CV) procedure (i.e., 10 · 10-CV) in [30]. We use the same performance evaluation
procedure (i.e., 10 independent iterations of the whole 10-CV procedure) in our computa-
Table 1
Data sets used in our computer simulations

Data set Number of attributes (n) Number of patterns (m) Number of classes (M) C4.5 in
Elomaa and
Rousu [30]

Best Worst

Breast W 9 683a 2 5.1 6.0
Diabetes 8 768 2 25.0 27.2
Glass 9 214 6 27.3 32.2
Heart C 13 297a 5 46.3 47.9
Sonar 60 208 2 24.6 35.8
Wine 13 178 3 5.6 8.8

a Incomplete patterns with missing values are not included.

http://www.ics.uci.edu/~mlearn/
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tional experiments when the interpretability-accuracy analysis is performed for test
patterns.

We use the following parameter specifications in our GBML algorithm:

Number of fuzzy rules in each initial rule set: 20 rules,
Probability of don’t care (Pdon’t care): 0.95 (Sonar data set) and 0.8 (the other data sets),
Population size: 200 rule sets,
Crossover probability in the main part: 0.9,
Crossover probability in the Michigan-style part: 0.9,
Mutation probability in the main part: 1/n,
Mutation probability in the Michigan-style part: 1/n,
Stopping condition: 5000 generations.

These parameter specifications mean that the multiobjective evolution of rule sets is
performed for 5000 generations from an initial population of 200 rule sets with 20 rules.
During a single run of our GBML algorithm, 1,000,000 (i.e., 200 · 5000) rule sets are
examined to find non-dominated rule sets. The relation between the number of generations
and the performance of our GBML algorithm is discussed through computational exper-
iments later.

When our GBML algorithm is applied to the single-objective optimization problems
(i.e., SOP-1, SOP-2 and SOP-3), we specify the weight values as w1 = 10 and
w2 = w3 = 1. The dependency of the performance of our GBML algorithm on the choice
of weight values is also discussed through computational experiments later.

4.2. Illustrative computational experiments

Before performing the interpretability-accuracy analysis of fuzzy rule-based classifiers
in detail, we demonstrate how our GBML algorithm works for the single-objective and
multiobjective optimization problems through illustrative computational experiments on
the diabetes data set. For illustration purpose, we randomly divided the 768 patterns of
this data set into 384 training patterns and 384 test patterns. This setting of computational
experiments is to easily show the error rates of each non-dominated fuzzy rule-based clas-
sifier on training patterns and test patterns. In the next subsection, we show experimental
results based on the 10-fold cross-validation (10-CV) technique.

Our GBML algorithm was applied to each of the six formulations (SOP-1 �MOP-3) of
fuzzy rule-based classifier design using the 384 training patterns of the diabetes data set.
After 5000 generations in each trial, multiple non-dominated rule sets were obtained from
each of the three multiobjective formulations. This is because our GBML algorithm was
executed for each multiobjective formulation in the framework of evolutionary multiob-
jective optimization where a number of non-dominated solutions (i.e., non-dominated rule
sets) were obtained as a result of optimization. On the other hand, a single rule set was
obtained from each of the three single-objective formulations. This is because our GBML
algorithm was executed for each single-objective formulation in the framework of evolu-
tionary single-objective optimization where a single optimal solution (i.e., optimal rule set)
with respect to the corresponding weighted sum scalar fitness function was obtained as a
result of optimization.
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The obtained non-dominated rule sets from MOP-1 with f1(S) and f2(S) are shown in
Fig. 2(a) together with the three rule sets obtained from the three single-objective formu-
lations. The vertical axis of Fig. 2(a) is the error rate on the training patterns. In Fig. 2(a),
the rejection of classification is counted as an error. Strictly speaking, the vertical axis is
the sum of the error rate and the rejection rate. It should be noted that multiple non-dom-
inated rule sets denoted by open circles in Fig. 2(a) were obtained by a single run of our
GBML algorithm. This result clearly demonstrates that our multiobjective GBML algo-
rithm can find a number of non-dominated rule sets by its single run. One of the obtained
non-dominated rule sets from MOP-1 includes only a single fuzzy rule (i.e., f2(S) = 1),
which is not shown in Fig. 2(a) because its error rate is out of the range of the vertical axis
(i.e., 31.78% on the training patterns).

Fig. 2(b) shows the error rates on the test patterns of the obtained rule sets in Fig. 2(a).
For comparison, the reported results in [30] by the C4.5 algorithm are also shown in
Fig. 2(b).

We can observe a clear interpretability-accuracy tradeoff structure between the number
of fuzzy rules and the error rate on the training patterns in Fig. 2(a). That is, small rule sets
with a few fuzzy rules are interpretable but not accurate. Fig. 3 shows the obtained rule set
with two fuzzy rules, which has a 18.35% error rate on the training patterns in Fig. 2(a).
The rule set in Fig. 3 is interpretable but does not have high accuracy on the training pat-
terns. On the other hand, larger rule sets with more fuzzy rules in Fig. 2(a) are more accu-
rate but not interpretable.

The interpretability-accuracy tradeoff structure of fuzzy rule-based classifiers is not so
clear in Fig. 2(b) with respect to their error rates on the test patterns. For example, the two
fuzzy rules in Fig. 3 have high generalization ability (i.e., a 26.51% error rate on the test
patterns) in Fig. 2(b) while they have the worst error rate on the training patterns in
Fig. 2(a). The generalization ability (i.e., error rates on the test patterns) is somewhat
degraded by the increase in the number of fuzzy rules due to the overfitting to the training
patterns in Fig. 2(b).
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Fig. 4 shows experimental results by MOP-2 with f1(S) and f3(S). The horizontal axis is
the total rule length (i.e., the total number of antecedent conditions of fuzzy rules) in Fig. 4
while it was the number of fuzzy rules in Fig. 2. We can observe a clear interpretability-
accuracy tradeoff structure in Fig. 4(a) with respect to error rates on the training patterns.
On the other hand, such a tradeoff structure is not clear in Fig. 4(b) with respect to error
rates on the test patterns. From the comparison between Figs. 2 and 4, we can see that
more non-dominated rule sets were obtained from MOP-2 than MOP-1.

Fig. 5 shows experimental results by MOP-3 with f1(S), f2(S), and f3(S). The horizontal
axis in Fig. 5 is the number of fuzzy rules as in Fig. 2. Since we use both f2(S) and f3(S) as
complexity measures in MOP-3, some non-dominated rule sets have the same number of
fuzzy rules. Those rule sets are different from each other in the total rule length. For exam-
ple, the total rule length is 1 in the simplest non-dominated rule set with two fuzzy rules
(with a 26.87% error rate on the training patterns, which is out of the range of Fig. 5(a))
while it is 6 in the most complicated non-dominated rule set with two fuzzy rules (with a
19.64% error rate on the training patterns in Fig. 5(a)). The best rule set among those with
the same number of fuzzy rules is depicted by a closed circle in Fig. 5(a). The same rule set
is also depicted by a closed circle in Fig. 5(b). Whereas the lowest error rates on the test
patterns are also obtained by the closed circles in Fig. 5(b), this is not always the case as we
will show later (see Fig. 18). That is, high accuracy on the training patterns among rule sets
with the same number of fuzzy rules does not always mean high accuracy on the test
patterns.
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Experimental results in Figs. 2, 4 and 5 also show that rule sets from the single-objective
formulations do not always have high accuracy on the test patterns in the right plot of
each figure while their accuracy is high on the training patterns in the left plot. Since only
a single rule set can be obtained from a single run for a single-objective formulation, multi-
ple runs with different weight specifications are required for the interpretability-accuracy
tradeoff analysis of fuzzy rule-based classifiers. On the other hand, we can perform the
interpretability-accuracy tradeoff analysis using experimental results from a single run
for a multiobjective formulation. This is the main advantage of multiobjective formula-
tions of fuzzy rule-based classifier design over single-objective formulations.

4.3. Interpretability-accuracy analysis for each data set

Since the number of fuzzy rules is an intuitively acceptable criterion to measure the
interpretability of fuzzy rule-based classifiers, we performed the interpretability-accuracy
analysis using MOP-1 with f1(S) and f2(S). That is, we applied our GBML algorithm to
MOP-1. Our GBML algorithm was also applied to the three single-objective formulations
for comparison. We used the 10-fold cross-validation (10-CV) method to evaluate the gen-
eralization ability of fuzzy rule-based classifiers for test patterns. Each data set was ran-
domly divided into 10 subsets of the same size in the 10-CV method. Nine subsets were
used as training patterns while one subset was used as test patterns. This training-test pro-
cedure was iterated 10 times so that each subset was used as test patterns once. We iterated
the whole 10-CV procedure 10 times (i.e., 10 · 10-CV). That is, our GBML algorithm was
executed 100 times for each data set.

When our GBML algorithm was applied to one of the three single-objective formula-
tions, a single rule set was obtained from a single run. Thus the average result was simply
calculated over 100 rule sets from 100 runs for each data set. On the other hand, multiple
rule sets were obtained from a single run when our GBML algorithm was applied to MOP-
1 as shown in Fig. 2. Different rule sets were usually obtained from different runs because
different training patterns were used in each run of the 10-CV procedure and because our
GBML algorithm is a stochastic search algorithm. The number of obtained rule sets from
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each run was not always the same over 100 runs, either. Thus the calculation of average
results is not straightforward in the case of multiobjective design of fuzzy rule-based clas-
sifiers. We calculated the average error rate over rule sets with the same number of fuzzy
rules when MOP-1 was used. For example, 100 rule sets with two fuzzy rules were
obtained from 100 runs of our GBML algorithm on MOP-1 for the diabetes data set.
The average error rate was calculated over those 100 rule sets. Other average error rates
were also calculated for other values of the number of fuzzy rules. When rule sets with
a particular number of fuzzy rules were obtained only from 50 or less runs, the average
error rate over those rule sets is not reported in this paper since such an average result
is not reliable. That is, reported average error rates in this paper were always calculated
over more than 50 runs.

Over 10 independent runs of the whole 10-CV procedure, we calculated average error
rates on training patterns as well as on test patterns. Experimental results were summa-
rized in Figs. 6–11. Left plots are results on training patterns while right plots are results
on test patterns. From these figures, we can see that the six data sets have similar interpret-
ability-accuracy tradeoff structures for training patterns in Figs. 6–11(a). The six data sets,
however, have totally different tradeoff structures for test patterns in Figs. 6–11(b).

In Figs. 6–11(a), rule sets with high accuracy on training patterns were obtained from
the single-objective formulations for all the six data sets. Good rule sets in terms of gen-
eralization ability, however, were not always obtained from the single-objective formula-
tions in Figs. 6–11(b). This observation suggests an advantage of multiobjective
formulations of fuzzy rule-based classifier design over single-objective formulations for
some data sets.

4.4. Comparison among three multiobjective formulations

In order to compare the three multiobjective formulations (i.e., MOP-1, MOP-2 and
MOP-3) with each other, we also executed the whole 10-CV procedure 10 times for each
data set using MOP-2 and MOP-3. In Table 2, we summarized the average number of
obtained non-dominated rule sets from each formulation where bold face shows the
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Fig. 6. Experimental results on the Wisconsin breast cancer data set: (a) error rates on training patterns; (b) error
rates on test patterns.
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Fig. 7. Experimental results on the diabetes data set: (a) error rates on training patterns; (b) error rates on test
patterns.
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largest average number for each data set. From this table, we can see that more non-dom-
inated rule sets were obtained from MOP-2 and MOP-3 than MOP-1. That is, the use of
the total rule length as a complexity measure increased the number of obtained non-dom-
inated rule sets.

Table 3 summarizes the average value of the best error rate on training patterns among
the obtained non-dominated rule sets from each run of our GBML algorithm over 10 inde-
pendent executions of the whole 10-CV procedure. For comparison, we also show the
average result for each of the three single-objective formulations. From Table 3, we can
see that the best results on training patterns were obtained by SOP-1 for all the six data
sets. On the other hand, Table 4 summarizes the average value of the best error rate on
test patterns among the obtained non-dominated rule sets from each run. Table 4 clearly
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Fig. 10. Experimental results on the sonar data set: (a) error rates on training patterns; (b) error rates on test
patterns.
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demonstrates a potential advantage of multiobjective formulations over single-objective
ones for some data sets with respect to the generalization ability of obtained fuzzy rule-
based classifiers. We can also see from Table 4 that good results were obtained from dif-
ferent formulations for different data sets.

The three multiobjective formulations are compared with each other in terms of error
rates on test patterns in Figs. 12–17. The horizontal axis is the number of fuzzy rules in the
left plot of each figure while it is the total rule length in the right plot. The same experi-
mental results were shown in the left and right plots of each figure using different coordi-
nates. In the case of MOP-2, the average error rate on test patterns was calculated for rule
sets with the same total rule length over 100 runs. When rule sets with a particular value of
the total rule length were not obtained from more than 50 runs, the average error rate is
not reported for that total rule length. In the case of MOP-3, the average error rate on test
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Fig. 11. Experimental results on the wine data set: (a) error rates on training patterns; (b) error rates on test
patterns.

Table 2
Average number of obtained non-dominated rule sets

Data set MOP-1 MOP-2 MOP-3

Breast W 12.09 13.32 12.25
Diabetes 9.71 15.80 17.06

Glass 13.98 16.49 27.09

Heart C 11.56 22.17 18.59
Sonar 10.01 20.47 17.66
Wine 11.45 9.96 11.81

Table 3
Average best error rates on training patterns among the obtained rule sets from each formulation

Data set MOP-1 MOP-2 MOP-3 SOP-1 SOP-2 SOP-3

Breast W 1.59 1.71 1.74 1.08 1.44 1.51
Diabetes 19.48 19.79 19.59 17.74 18.37 18.41
Glass 25.11 27.08 25.94 17.81 21.92 22.36
Heart C 33.43 35.05 34.59 25.72 29.65 29.98
Sonar 8.55 8.69 8.42 3.55 5.89 5.82
Wine 0.01 0.10 0.03 0.00 0.00 0.00

Table 4
Average best error rates on test patterns among the obtained rule sets from each formulation

Data set MOP-1 MOP-2 MOP-3 SOP-1 SOP-2 SOP-3

Breast W 2.93 2.74 2.66 3.88 3.69 3.56
Diabetes 23.27 22.32 21.80 25.26 25.00 24.20
Glass 35.55 33.93 34.05 35.76 39.21 38.36
Heart C 42.57 42.85 42.64 44.83 45.80 45.44
Sonar 23.18 17.32 17.51 24.04 23.47 24.29
Wine 3.99 3.65 3.04 7.30 6.49 6.52
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patterns was calculated for rule sets with the same number of fuzzy rules and the same
total rule length over 100 runs. Only when rule sets with a particular combination of
the number of fuzzy rules and the total rule length were obtained from more than 50 runs,
the average error rate is reported as a result of MOP-3.

From Figs. 12–17 (as well as Table 4), we can see that good results were obtained from
different formulations for different data sets. The best rule sets with respect to the gener-
alization ability were obtained from MOP-3 for three data sets in Figs. 12–17 (see Table 4).
This observation suggests a potential usefulness of the use of both complexity measures
(i.e., the number of fuzzy rules and the total rule length) as a safeguard against the over-
fitting of fuzzy rule-based classifiers to training patterns.

One advantage of the three-objective formulation MOP-3 over the two-objective for-
mulations MOP-1 and MOP-2 is that MOP-3 enables us to examine the relation between
the generalization ability and the average rule length among multiple rule sets with the
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Fig. 12. Experimental results on the Wisconsin breast cancer data set.
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Fig. 13. Experimental results on the diabetes data set.
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Fig. 14. Experimental results on the glass data set.
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Fig. 15. Experimental results on the Cleveland heart disease data set.
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same number of fuzzy rules. In Fig. 18, we show an example of such tradeoff analysis on
the Cleveland heart disease data set. Fig. 18 is generated from Fig. 15 by concentrating on
rule sets with two fuzzy rules and three fuzzy rules.

4.5. Parameter specifications

In this subsection, we briefly discuss the specification of two parameters: the total num-
ber of generations in our GBML algorithm and the weight vector in each single-objective
formulation. In our computational experiments, the total number of generations was spec-
ified as 5000. As we will show in Section 5, our GBML algorithm has a huge search space.
Thus we may need more computation to obtain near-optimal non-dominated rule sets. In
Figs. 19 and 20 we show experimental results of a single run on the diabetes data set after
20,000 generations and 50,000 generations, respectively. The corresponding results after
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Fig. 16. Experimental results on the sonar data set.
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Fig. 17. Experimental results on the wine data set.
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Fig. 18. Experimental results on the Cleveland heart disease data set: (a) rule sets with two rules; (b) rule sets with
three rules.
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5000 generations were shown in Fig. 2 in Section 4.2. From Figs. 2(a), 19(a), and 20(a), we
can see that error rates on training patterns were improved further by increasing the num-
ber of generations. This means that 5000 generations were not enough to obtain near-opti-
mal non-dominated rule sets. This also suggests the necessity to improve the search ability
of our GBML algorithm while it is based on the state-of-the-art EMO algorithm: NSGA-
II. On the other hand, we can see from Figs. 2(b), 19(b) and 20(b) that the improvement in
error rates on training patterns did not always lead to the improvement in error rates on
test patterns (i.e., the improvement in the generalization ability of fuzzy rule-based
classifiers).

The weight values in the single-objective formulations were specified as w1 = 10, w2 = 1,
and w3 = 1 in our computational experiments. In general, obtained solutions strongly
depend on weight values when we use the weighted sum of multiple objectives as a scalar
fitness function to solve multi-objective optimization problems as single-objective ones. In
Tables 5–7, we show the dependency of experimental results by SOP-1 on the specification
of the weight vector w = (w1,w2). In these tables, we examined six combinations of the
weight values w1 and w2 using 10 independent executions of the whole 10-CV procedure
(i.e., 10 · 10-CV) as in Tables 2–4. From these tables, we can see that totally different
results were obtained from different specifications of the weight values. We can also see
from these tables that the weight vector (10, 1) seems to be a good compromise between
the accuracy and the complexity.

4.6. Choice of a single fuzzy rule-based classifier

As we have already explained, multiple fuzzy rule-based classifiers are obtained from a
single run of our GBML algorithm when we use one of the three multiobjective formula-
tions. In a real-world application of our GBML algorithm, we usually have to choose a
single fuzzy rule-based classifier as a final solution from our GBML algorithm. In this
case, our GBML algorithm may be used in the following manner.
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Fig. 19. Experimental results of a single run of our GBML algorithm on the diabetes data set after 20,000
generations. Corresponding results after 5000 generations were shown in Fig. 2: (a) error rates on training
patterns; (b) error rates on test patterns.
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Fig. 20. Experimental results of a single run of our GBML algorithm on the diabetes data set after 50,000
generations: (a) error rates on training patterns; (b) error rates on test patterns.

Table 5
Average number of fuzzy rules

Data set (1000, 1) (100,1) (10,1) (1,1) (1,10) (1,100)

Breast W 22.84 22.84 5.13 3.37 2.00 2.00
Diabetes 31.53 32.97 9.43 6.56 2.13 1.00
Glass 28.32 28.32 9.06 7.09 3.02 1.00
Heart C 28.37 28.65 8.91 7.33 1.04 1.00
Sonar 30.23 29.67 6.81 5.40 2.03 1.01
Wine 4.80 4.70 4.34 3.50 3.00 1.00

Table 6
Average best error rates on training patterns among the obtained rule sets

Data set (1000,1) (100,1) (10,1) (1,1) (1,10) (1,100)

Breast W 1.01 1.01 1.51 1.87 2.67 2.69
Diabetes 17.86 17.78 18.41 18.79 22.12 34.90
Glass 17.91 17.91 22.36 23.77 35.19 64.98
Heart C 26.02 26.00 29.98 31.67 45.95 46.13
Sonar 3.75 3.56 5.82 6.49 18.02 46.34
Wine 0.00 0.00 0.00 0.49 1.60 60.11

Table 7
Average best error rates on test patterns among the obtained rule sets

Data set (1000,1) (100,1) (10,1) (1,1) (1,10) (1,100)

Breast W 3.87 3.87 3.56 3.83 4.03 4.14
Diabetes 24.86 25.16 24.20 25.03 25.50 34.97
Glass 37.03 37.03 38.36 38.52 42.93 73.66
Heart C 46.06 45.79 45.44 46.10 46.48 46.25
Sonar 24.84 24.01 24.29 23.58 29.59 47.41
Wine 7.02 7.02 6.52 7.99 8.71 61.01
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First we divide the available training patterns into two subsets. One subset is used to
generate multiple fuzzy rule-based classifiers by our GBML algorithm. The other subset
is used to evaluate the generalization ability of each fuzzy rule-based classifier. By iterating
this training-and-testing procedure several times using different partitions of the available
training patterns, we can visualize the interpretability-accuracy tradeoff structure for test
patterns. Next we choose an appropriate complexity level of fuzzy rule-based classifiers
using the visualized tradeoff structure. In this stage, we can take into account both the
interpretability and the generalization ability of fuzzy rule-based classifiers. Then our
GBML algorithm is used to generate multiple non-dominated fuzzy rule-based classifiers
using all the available training patterns. Finally one fuzzy rule-based classifier whose com-
plexity is similar to the specified appropriate complexity level is chosen as the final solution
from the obtained non-dominated fuzzy rule-based classifiers. In this manner, we can
choose a single fuzzy rule-based classifier using the visualized interpretability-accuracy
tradeoff structure for test patterns.

5. Comparison with multiobjective fuzzy rule selection

In our GBML algorithm, each fuzzy rule for an n-dimensional classification problem is
represented as an integer string of length n using 15 antecedent fuzzy sets. The total num-
ber of such strings is 15n. Each rule set with r fuzzy rules is represented by an integer string
of length n Æ r. The total number of such strings is 15nÆr. In our computational experiments,
we specified the upper bound on the number of fuzzy rules as 40. Thus the size of the
search space is calculated as

P40
r¼115n�r, which depends on the dimensionality of the pattern

space (i.e., n).
On the other hand, first a prespecified number of candidate fuzzy rules are generated

from training patterns in multiobjective fuzzy rule selection [15,16]. Then an evolutionary
multiobjective optimization (EMO) algorithm is used to find non-dominated rule sets from
the candidate fuzzy rules. Let N be the number of candidate fuzzy rules. In this case, each
rule set is represented by a binary string of length N. Thus the size of the search space in
multiobjective fuzzy rule selection is 2N, which depends on the number of candidate fuzzy
rules (i.e., N).

In Table 8, we compare the size of the search space between the two approaches to mul-
tiobjective design of fuzzy rule-based classifiers. We can see from Table 8 that the size of
the search space exponentially increases with the dimensionality of the pattern space (i.e.,
n) in our GBML algorithm while it exponentially increases with the number of candidate
fuzzy rules (i.e., N) in multiobjective fuzzy rule selection. We can also see from Table 8 that
the size of the search space in multiobjective fuzzy rule selection is much smaller than that
in our GBML algorithm for high-dimensional pattern classification problems.

The difference in the size of the search space between the two approaches in Table 8
suggests the difficulty in searching for good fuzzy rule-based classifiers by our GBML
algorithm. Experimental results in this paper, however, showed that good fuzzy rule-based
classifiers were obtained by our GBML algorithm (whereas further improvement in the
search ability of our GBML algorithm is required as shown in Section 4.5). As demon-
strated in [19] for single-objective design of fuzzy rule-based classifiers, the search ability
of fuzzy GBML algorithms strongly depends on the heuristic generation procedure of ini-
tial rules from training patterns. Since we used good initial rules generated from training
patterns in a heuristic manner, our GBML algorithm could efficiently find good fuzzy rule-



Table 8
Comparison in the search space size between the two approaches to multiobjective design of fuzzy rule-based
classifiers

Multiobjective GBML approach

Dimensionality (n) 10 20 40 60 80 100
Search space size 2.7 · 10470 7.5 · 10940 5.6 · 101881 4.2 · 102822 3.1 · 103763 2.3 · 104704

Multiobjective fuzzy rule selection

Candidate rules (N) 100 200 400 600 800 1000
Search space size 1.3 · 1030 1.6 · 1060 2.6 · 10120 4.1 · 10180 6.7 · 10240 1.1 · 10301
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based classifiers. If we use randomly generated initial fuzzy rules, it is very difficult to find
good fuzzy rule-based classifiers in the huge search space (see [19]). In our computational
experiments for the three single-objective formulations, we used the same generation
update procedure as the NSGA-II algorithm. That is, the best rule sets were selected from
the current and offspring populations. Slightly better results were obtained in this paper
than Ishibuchi et al. [19] where the generation update procedure was based on a single elite
solution.

On the other hand, the performance of non-dominated rule sets obtained from multi-
objective rule selection strongly depends on the quality of candidate fuzzy rules. When
the quality of candidate fuzzy rules is not high, it is very difficult for any EMO algorithms
to find good non-dominated rule sets with high classification performance. Thus the smal-
ler search space size in multiobjective rule selection does not always mean better non-dom-
inated rule sets than the case of our GBML algorithm with the larger search space size.

6. Concluding remarks

In this paper, we examined the interpretability-accuracy tradeoff of fuzzy rule-based
classifiers through computational experiments on some benchmark data sets using a
hybrid multiobjective fuzzy GBML algorithm. Experimental results showed that there
exists a clear interpretability-accuracy tradeoff structure in each data set with respect to
error rates on training patterns. Such a tradeoff structure is not always clear with respect
to error rates on test patterns. That is, our interpretability-accuracy tradeoff analysis
showed that each data set has a different relation between the complexity of fuzzy rule-
based classifiers and their generalization ability for test patterns. Our experimental results
also suggested potential advantages of multiobjective formulation over single-objective
ones. That is, the use of the number of fuzzy rules and/or the total rule length as a com-
plexity measure worked well as a safeguard against the overfitting of fuzzy rule-based clas-
sifiers to training patterns.

In some computational experiments (e.g., Fig. 2(a)), lower error rates were obtained
from the single-objective formulations than the multiobjective ones. This observation sug-
gests the necessity of the improvement in the search ability of our GBML algorithm. As
shown in [33], it is not easy for EMO algorithms to find a variety of Pareto-optimal (or
near Pareto-optimal) solutions with a wide range of objective values of large-scale multi-
objective combinatorial optimization problems. Multiobjective design of fuzzy rule-based
classifiers is an example of such a large-scale multiobjective combinatorial optimization
problem. It is left for future research to improve the search ability of EMO algorithms
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to find a variety of fuzzy rule-based classifiers with a wide range of objective values (espe-
cially to find fuzzy rule-based classifiers with high accuracy on training patterns).
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