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Genetic Reinforcement Learning through Symbiotic
Evolution for Fuzzy Controller Design

Chia-Feng Juang, Jiann-Yow Lin, and Chin-Teng,l$enior Member, IEEE

Abstract—An efficient genetic reinforcement learning algorithm ~ complex system to find proper rules for the fuzzy system. To
for designing fuzzy controllers is proposed in this paper. The ge- cope with this difficulty, several approaches to generating fuzzy
netic algorithm (GA) adopted in this paper is based uporsymbiotic if-then rules from numerical data have been proposed [2]-[5].

evolutionwhich, when applied to fuzzy controller design, comple- Th thod d | df ised | Sk
ments the local mapping property of a fuzzy rule. Using this Symbi- €S€ MELnoas were aeveloped 10r sUpelvised learning, 1.e.,

otic-Evolution-based Fuzzy Controller (SEFC) design method, the the correct “target” output values are given for each input
number of control trials, as well as consumed CPU time, are con- pattern to guide the network's learning. If supervised learning
siderably reduced when compared to traditional GA-based fuzzy can be used in control, then it has been shown to be more
controller design methods and other types of genetic reinforcement efficient than reinforcement learning (e.g., [6], [7]). However,

learning schemes. Moreover, unlike traditional fuzzy controllers, f | Id trol licati . traini
which partition the input space into a grid, SEFC partitions the OF SOme Teal-world  control applications, precise training

input space in a flexible way, thus creating fewer fuzzy rules. In data are usually difficult and expensive, if not impossible,
SEFC, different types of fuzzy rules whose consequent parts are to obtain. For this reason, there has been a growing interest
singletons, fuzzy sets, or linear equations (TSK-type fuzzy rules) in reinforcement learning algorithms for fuzzy [8], [9] or
are allowed. Eurther, _the free parameters (e.g., centers and W|dths neural controller [10]-[12] design. Recently, the development
of membership functions) and fuzzy rules are all tuned automati- . . , -

cally. For the TSK-type fuzzy rule especially, which put the pro- of genetic algorlt_th (GAs) has provided anothe_r approz_;\ch
posed learning algorithm in use, only the significant input vari- for controller design when only sparse feedback information
ables are selected to participate in the consequent of a rule. The is available. GA's are probabilistic search procedures based
proposed SEFC design method has been applied to different simu- on the mechanics of natural selection [13]. They explore a
lated control problems, including the cart-pole balancing system, a solution space and have been employed in two major areas:

magnetic levitation system, and a water bath temperature control timizati d hine | . Si GA's d t -
system. The proposed SEFC has been verified to be efficient ang OPlimization and machine learning. since S do notrequire

superior from these control problems, and from comparisons with ~ derivative information, their most appropriate applications are

some traditional GA-based fuzzy systems. problems where gradient information is unavailable or costly
Index Terms—&Genetic reinforcement, fitness value, fuzzy parti- to Obtam' Reinforcement Ieam.'ng IS Or_]e example Qf such
tion, symbiotic evolution, TSK-type fuzzy rules. a domain, and the corresponding learning scheme is called

“genetic reinforcement learning.”
Some researchers have developed methods to design and im-
plement fuzzy controllers by GA's. Karr used a GA to generate
I. INTRODUCTION membership functions for a fuzzy controller [14]. However, in

UZZY SYSTEMS have supplanted conventional technoléﬁarr's work, the user needs to declare an exhaustive rule set and
F gies in some scientific applications and engineering s;%en use the GA o desfign the membership functions only. Singe
tems in the past decade, especially in control systems [1]. Fuf mgn;be_rshlp dfunlctlonts a_?r? Cr;'“"al\e dset_ arec(j:o-deps ”dfj‘t' fusmg
logic has the ability to express the ambiguity of human thinkin and- ﬁSIQSZ rule sde Wi b —h.es]lgne. memt ﬁrs CIEAL:an-
and translate expert knowledge into computable numerical d ns, or hand-designed membership functions with a GA-de-

Also, for real-time applications, its relatively low computationaﬁ;'gmad rule set does n_ot use the GAto its full advan,tage..ln [15],
complexity makes it a good candidate a fuzzy controller design method that used the GA's to find the

A fuzzy system consists of a set of fuzzy if-then rulegnembershipfunctions and the rule sets simultaneously was pro-

Conventionally, the selection of fuzzy if-then rules often reIie@Qied' “:][14|]| and [15], tthe mpfutspa_;:::‘hls part||t|o_?ﬁd mtq a%r_ld,
on a substantial amount of heuristic observation to expre\g eac cef rep;}esen}_ng a.uzrz]yl-h en rut()a. fefmajor l'S'
the knowledge of proper strategies. Obviously, it is difficuffi@vantage of such partitions is that the number of fuzzy rules,

for human experts to examine all the input-output data from""zgd henge the length pf each chromospme in the .GA’ Increases
exponentially as the dimension of the input space increases. To

reduce the number of rules required, in [16], an entry in the grid
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in their consequents. In [18], the GA is used to tune the cong®- Basic Concept of GAs
quent parameters of TSK-type fuzzy rules, as well as the mem-
bership functions in the precondition parts. Since the consequen®€netic algorithms are search algorithms inspired by the me-
of a TSK-type fuzzy rule is a linear combination of all the inpughanics of natural selection, genetics, and evolution. Itis widely
variables, the number of parameters increases as the dimen&gffPted that the evolution of living beings is a process that op-
of the input space increases. erates on chromosome-organic de_vicgs for gncoding the struc-
The fuzzy system design approaches mentioned above tire of living beings. Natural selectlon_ls the link between chro-
all based on the traditional GA's, with each chromosonf@0Somes and the performance of their decoded structures. Pro-
representing a fuzzy system. In this paper, the Symbiotic-EVg2SSes of natural selection cause chromosomes that encode suc-
lution-based Fuzzy Controller (SEFC) design method, a n&ﬁssfu_l §tructures to reproduce more often than those that do not.
genetic reinforcement learning algorithm, is proposed. Eathaddition to reproduction, mutations may cause the chromo-
chromosome represents only one fuzzy rule, andnamle SOMeSs of children to.be @fferent from those of thelr.b|olog|cal
fuzzy system is constructed by selecting and combinisbro- parents, ar_1d re(_:omblnatlon processes may create different chro-
mosomes from the population. Compared to normal evolutid®®Somes in children by combining material from the chromo-
symbiotic evolution promotes both cooperation and speci&°Mes of_thelrtwo pa_rents. In‘_aGA,aset of variables for a given
ization, which ensures diversity and prevents the populati@foPlem is encoded into a string, analogous to a chromosome.
from converging to suboptimal solutions [19]. In SEFC, whickach unitina st'rln.g is called an allele. Like natureZ GA’; solve
achieves fuzzy system design through symbiotic evolutiof?€ Problem of finding good chromosomes by manipulating the
because no single individual can perform one problem wéhaterials in the chromosomes ywthout any knpwledge_about the
alone, the GA can search many different areas of the solutigfif€ Of problem they are solving. The only information they
space concurrently. With the local property of a fuzzy rulé'® given is an evaluation of each chromosome they produce.
the fitness assignment performed by the symbiotic evolutidrinis evaluatlonils used to bias the. selection of chromosomes,
is quite representative. In this way, symbiotic evolution argf that those with the best evaluations tend to reproduce more
fuzzy system design can complement each other, which reffén than those with bad evaluations. GA's, using simple ma-
in a fast, efficient genetic search. We have shown that tmpulatlo_ns of chrom_osomes suc_h as encodlng and reproduction
proposed method requires fewer trials and less CPU time tHAgchanisms, can display complicated behavior and solve some
the traditional GA-based design methods for fuzzy Systerﬁeggtremely difficult problems without any knowledge of the de-
Moreover, with the proposed SEFC design method, a flexipf@ded world.
partition of the input space is achieved, and hence the number
of ruleg ?s relatively' small cqmpareq to the grid partition. N%_ Symbiotic Evolution and Fuzzy Systems
prepartition of the input variables is needed, so less design
effort is required. The SEFC design method can be used toThe idea of symbiotic evolution was first inspired by the
learn different types of fuzzy rules, including fuzzy rules withproposed implicit fitness sharing algorithm used in an immune
singleton consequents, fuzzy rules with fuzzy set consequenigstem model [20]. The authors developed artificial antibodies
and TSK-type fuzzy rules. This can further reduce the numbr match or identify artificial antigens. Because each anti-
of parameters to be learned. body can only match one antigen, a difference population of
This paper is organized as follows. Section Il describes tagtibodies is required to effectively defend against a variety
basic concept of symbiotic evolution and its link to fuzzy systeisf antigens. The similar model called co-adaptive genetic
design. A detailed implementation of the genetic reinforcemealigorithm is based on competition but not cooperation [21].
learning algorithm for the SEFC method is presented in Seer this system, each antibody must compete for survival with
tion Ill. In Section 1V, the SEFC design method is applied tether antibodies in the subpopulation to identify the given
three control problems: the cart-pole balancing system, a magitigen. And the fitness of each individual reflects how well
netic levitation control system, and a water bath temperatutematches its opposing antigen; not how well it cooperates
control system. Finally, conclusions and future works on thgith other individuals. The antibodies are thus not dependent
proposed SEFC design method are summarized in the last sg¢-other antibodies for identification of an antigen and only
tion. interact implicitly through competition. In [22], the author
has proposed a method that a learning classifier system (LCS)
can be mapped to a neural network. And each hidden node
II. DESIGN OFFUZZY SYSTEMS THROUGH SYMBIOTIC represents a classifier rule that must compete with other hidden
EVOLUTION nodes in a competition. In [23] and [24], the authors have
developed a symbiotic evolutionary strategy called cooperative
In this section, some basic concepts of GA's and symbiotimevolutionary genetic algorithm (CCGA) and have applied
evolution are briefly reviewed, and then the idea of incorpdt to both rule-based and neural network systems. Recently,
rating symbiotic evolution into the design of a fuzzy systerthe word “symbiotic evolution” was indeed appeared in [19].
is described. We shall show that the specialization property Dfie authors proposed a reinforcement learning method called
symbiotic evolution matches the local property of a fuzzy rulgymbiotic, adaptive neuro-evolution (SANE) which evolves a
well. This makes worthwhile the fuzzy system design achieveapulation of neurons through genetic algorithms to form a
via symbiotic evolution. neural network.
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Unlike normal genetic evolution algorithms, which operatbership function on each input variable which are to be opti-
on a population of full solutions to the problem, symbiotic evanized. Similarly, the term “ConPar” represents the free param-
lution assumes that each individual in the population represepters on the consequent of a rule, which are to be optimized.
only a partial solution to the problem; complete solutions aiach string (individual) in Fig. 1(b) represents one fuzzy rule
formed by combining several individuals. In a normal evolutioand is coded the same way as in Fig. 1(a).
algorithm, a single individual is responsible for the overall per-
formance, with the fitness value assigned to that individual ac- Ill. GENETIC REINFORCEMENTLEARNING ALGORITHM
cording to its performance. In symbiotic evolution, the fitness THROUGH SYMBIOTIC EVOLUTION
of an individual (a partial solution) is calculated by summing
the fitness values of all possible combinations of that individu arning algorithm for the SEFC is introduced in this section.

with other current individuals (partial solutions) and dividing b)ﬁike traditional GA's, this algorithm consists of three major

the total number of combinations. As shown in [19], partial S%’perators: reproduction, crossover, and mutation. Before going

Iynons can be characterlzed.asema.hzauonsThe specializa- .into the details of these three genetic operators, the issues of
tion property ensures diversity, which prevents the populati IE5ding, initialization, and fitness assignment are discussed.

from converging to suboptimal solutions [19]. A single parti oding concerns the way membership functions and fuzzy

solution cqnnot ‘.‘take over” a pop.ulation, since there mu;t li’&les of a fuzzy system are represented as chromosomes
other specializations present. Unlike the standard eVOIUt'On%rlyitable for symbiotic evolution. Initialization is the proper

approach, which always converges the population, hOpew"yzfgsignment of learning constants before entering the evolution

lth? gI?.b%I op'ulmtt_Jm, t?Ut dc_n‘ten atalocal one,éhe syrlnt;)_lotlc elv rocess. Fitness assignment gives a proper fitness value to each
ution finds solutions in diverse, unconverged populations [ zzy rule during the evolution process. The whole genetic

In addition to diversity, the symbiotic evolution appears to ber@inforcement learning algorithm is described step by step
faster and more efficient search scheme than the normal ev

tionary approaches. These properties of symbiotic evolution in- . . . .

spired our idea of incorporating it into fuzzy controller design.” Codmg_. The codmg_of a fuzzy rule ina chromosqme 'S
The basic idea of incorporating symbiotic evolution into the S.hOV.V” n Fig. 2 In th.'s paper, a Gaussian m_embershlp func-

design of a fuzzy system is to represent a single fuzzy rule by antion IS used with vanablem. ando representlng the cgnter

individual (i.e., a chromosome). The final fuzzy system is then and width ofthe membership function, respechyely. F.Ig' 2(2)

formed by combining: randomly selected rules from the popu- _denotes a fuzzy rule whose consequent part is a singleton;

lation. With the fithess assignment performed by symbiotic evo- I.e., the rule has the form of

lution, and the local property of a fuzzy rule, symbiotic evolu- | ;. s plmy,o1) and zois p(ma,02) and

tion and the fuzzy system design can complement each other. If

a normal GA evolution scheme is adopted for fuzzy system de-

sign, only the overall performance of a fuzzy system is known, wherey.(m;, o;) represents a Gaussian membership function
not the performance of each fuzzy rule. The best method to re-with centerm; and widths;. Fig. 2(b) denotes a TSK-type
place the unsuitable fuzzy rules that degrade the overall perfor-fuzzy rule whose Consequent part is a linear combination of

mance of a fuzzy system is through random crossover opera-+the input variables plus a constant value; i.e., the rule has the
tions, followed by observing the performance of the offspring. form of

Only when the overall performance of the fuzzy system is good

do we know that the unsuitable rules have been replaced. As for  IF z1 is p(my,o1) and xais u(me,02) and

using symbiotic evolution for neural network design [19], the <o and zjis p(my, o;)

performance of a neuron (coded as an individual) depends on  tHEN Y = wo + w1 + - +wja;.

the other neurons with which it combines. A neuron that coop-

erates well with one set of nheurons may cooperate badly with Unlike the traditional TSK-type fuzzy rule where all the

other sets of neurons. This problem also occurs in designing ainput variables are linearly combined in the consequent part,

neural network by a traditional GA method [25], [26]. Owing only some significant input variables are used in the conse-

to this highly dependent (i.e., global instead of local) relation- quent parts of our SEFC, as shown in Fig. 2(b). The terms

ship in neural networks, the performance of a symbiotic-evolu- not used are denoted by “0”. The problem of which terms

tion-based neural network is not as good as the proposed SEFCshould be present in the consequent part of each rule is left

Moreover, if there is @ priori knowledge about some rule as- for the genetic search in our algorithm.

signments (i.e., expert knowledge in the form of fuzzy if-then  For each chromosome, an gene is represented by a floating

rules), we can incorporate it into the fuzzy controller directly to point number or an integer. The integer coding is adopted

make our SEFC design more efficient. when only a limited choice of parameter values is allowed.
Codings of a fuzzy system which containduzzy rules by For example, if the width of the membership function is an

the normal and symbiotic evolutions are shown in Fig. 1(a) and element 0f{0.3,0.4,0.5,0.6}, then four integers “1,” “2,”

(b), respectively. For clarity, in Fig. 1 and the following figures, “3,” and “4” are used to represent the four candidate values.

a rule withj input variables and one output variable is shown. In A flexible partition of the domain of a fuzzy rule is allowed,

Fig. 1(a), a string (an individual) represents a fuzzy system. Theand no prepartition of the variables is required in the pro-

notation “MemFun” represents the free parameters of a mem-posed learning algorithm.

A detailed implementation of the genetic reinforcement

and T iSu(mj,aj) THENyiSwO
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Fig. 2. Coding of a fuzzy rule into a chromosome in symbiotic evolution. (a) A rule with a singleton in the consequence. (b) A TSK-type fuzzy rule.
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Fig. 1. Representation of a fuzzy system by (a) normal evolution, where an individual (a chromosome) represents a fuzzy system, and (b) syutibimtic evol
where an individual represents only a fuzzy rule.
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Fig. 3. Crossover operations on the rules (individuals). (a) Crossover at the precondition part of a rule. (b) Crossover at the consequenepart of a rul

« [Initialization. Before proceeding with the SEFC desigh, of each variable to its corresponding fuzzy sets,
individuals forming the initial population should be first gen- j )
erated randomly. The size of the population depends on the b= Hexp {_ (; —Qmi) }
complexity of a problem. Besides the population size, some iy 73

other parameters need to be specified. These are the number i 2

of fuzzy systems to be formed and evaluated per generation, =exp{ — Z M . 1)
. : o

Ny, the number of fuzzy rules that constitute a fuzzy system, el i

N, and the probability of mutation,. . The output of a fuzzy system is computed by

¢ Fitness assignment. As previously stated, for symbiotic evo- N
lution, the fithess value of a rule (an individual) is calcu- yt = 2t Pivi )
lated by summing the fitness values of all the possible com- Z?;Tl b

binations of that rule with all otheN,. — 1 randomly se- W
lected rules, and then dividing the summed value by the tota

number of combinations. The detailed steps for assigning the

fitness value are itemized as follows.

Step 1) Randomlychoogé. fuzzyrulesfromapopulation of
P, rules,andformafuzzy systemfromthégerules.

erey; is the control action recommended by rule
Reproduction. Reproductionis a process in which individual
strings are copied according to their fithess values. To per-
form the process, the population is first sorted according to
the fitness value of each individual. The top-half best-per-
forming individuals in the population will advance to the

Step 2) Evaluate the performance of the combined fuzzy oyt generation. The remaining half will be generated by per-

system to obtain a fitness value.

Step 3) Divide the fitness value by, and accumulate the
divided fitness value to the fithess record of the
selected rules with their fitness records set to zero
initially.

Step 4) RepeaV; times of the above process until each rule
has been selected for a sufficient number of times
and record the number of fuzzy systems in which
each individual has participated.

Step 5) Divide the accumulated fitness value of each indi-
vidual by the number of times it has been selected.

forming crossover operations on individuals in the top half of
the parent generation.

Crossover. Reproduction directs the search toward the best
existing individuals, but does not create any new individuals.
New individuals are created mainly by crossover operations.
In order to select the individuals for crossover, tournament
selection [15] is performed on the top-half best-performing
individuals. In the tournament selection, two or more indi-
viduals in the top-half population are selected at random,
and their fitness values are compared. The individual with
the highest fitness value is selected as one parent. The other

The average fitness value represents the performance of a ruleparent is selected in the same way. The offspring is created
For a TSK-type fuzzy rule, after computing the average fitness by performing crossover on the selected parents. Some
value of each rule, the average fitness value of each rule is fur-of the commonly used crossover techniques are one-point
ther divided by ‘K + number of parameters in a rule,” wheke crossover, two-point crossover, multiple-point crossover,
is a constant, so a rule with less parameters is assigned a higheshuffle-exchange crossover [27], and uniform crossover
fitness value. In this way, only the significant terms are selected [27]. In our problem, one-point crossover is used. Choosing
and used in the consequent part of a TSK-type fuzzy rule. a crossover site (a bit position) randomly on the two selected
In this paper, the firing strength of a fuzzy rule is calculated by parents above. The individuals are crossed and separated
performing the following “AND” operation on the truth values at the site as shown in Fig. 3(a) and (b). In Fig. 3(a), new
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controller found? .
To verify the performance of the proposed SEFC, three con-

trol examples—the cart-pole balancing system, a magnetic lev-
itation control system, and a water bath temperature control
system—are presented in this section. Since the first example
concerns a benchmark control problem attacked by several ex-
isting reinforcement learning algorithms, we shall compare the
performance of SEFC to that of other approaches based on this
problem. The other two examples illustrate the application of
SEFC on two more practical problems.
Example 1. Cart-Pole Balancing Systerm this example,
l we shall apply the SEFC design method to the classic control
problem of the cart-pole balancing. This problem is often used
as an example of inherently unstable and dynamic systems to
demonstrate both modern and classic control techniques [29],
l [30], or reinforcement learning schemes [11], [12], and is now
used as a control benchmark. As shown in Fig. 5, the cart-pole
balancing problem is the problem of learning how to balance
an upright pole. The bottom of the pole is hinged to a cart that
travels along a finite-length track to its right or left. Both the cart
individuals are created by exchanging some of the preccid the pole can move only in the vertical plane; thatis, each has
dition parts of parent rules. In Fig. 3(b), new individuals arenly one degree of freedom. There are four state variables in the
created by exchanging the consequent parts of parent ruk¢stems, the angle of the pole from an upright position (in de-
After operation, the individuals with poor performance wilgrees)g, the angular velocity of the pole (in degrees/seconds);
be replaced by the newly produced offsprings. x, the horizontal position of the cart's center (in meters);and
« Mutation. Mutation is an operator whereby the allele of the velocity of the cart (in meters/seconds). The only control ac-
gene is altered randomly. With mutation, new genetic mat#on is f, which is the amount of force (Newtons) applied to cart
rials can be introduced into the population. Mutation shoul@ move it toward left or right. The system fails when the pole
be used sparingly because it is a random search operator; s past a certain angles12° is used here) or the cart runs into
erwise, with high mutation rates, the algorithm will becom#he bounds of its track (the distance is 2.4 m from the center to
little more than a random search. In the following simulagach bound of the track). The goal of this control problem is to
tions, a mutation probability,,, = 0.01 is used. determine a sequence of forces applying to the cart to balance
The process mentioned above is done repeatedly, and ith§ Pole upright. The model and corresponding parameters of
stopped when the predetermined condition is achieved. A bldl€ cart-pole balancing system for our computer simulation are
diagram of the SEFC design method is shown in Fig. 4. The
SEFC design method can find a successful controller quicklyg(t + 1) = 6(t) + Ad(t) (3)
For complex design problems, the migration idea [28] is incor-
porated in the above algorithm for genetic search to increase the masin 6, — cos O [f 062 sin }
probability of global search and to reduce the effect of badinitiab(t_i_ 1) =6() + A g b P ¢
individual assignment which may cause a longer or even failure (4/3)ymf — myL cos? 0,
evolution. When the performance of the controller doesn't im- 4)

Are N, fuzzy
controllers tested?

Reproduction

Crossover and
Mutation

Fig. 4. Block diagram of the proposed SEFC design method.
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TABLE | TABLE I
CPU TiME AND NUMBER OF TRIALS CPU TiME AND NUMBER OF TRIALS REQUIRED TOFIND A SUCCESSFUL
REQUIRED TOFIND A SUCCESSFULCONTROLLER FROM A CENTERED CONTROLLER FROMRANDOM POLE AND CART POSITIONS WITH RANDOM
POLE AND CART IN EXAMPLE 1. THE RESULTS ARE COMPUTED OVER50 INITIAL VELOCITIES IN EXAMPLE 1. THE RESULTS ARE COMPUTED
SIMULATIONS FOR EACH METHOD OVER 50 SMULATIONS FOR EACH METHOD
CPU Seconds Pole Balance Trials CPU Seconds Pole Balance Trials
Method Moan | Best | Worst | SD | Mean | Best. ] Worst|. 8D Method Mean | Best | Worst | SD |:Mean | ‘Best | Worst | SD
GENITOR 30.9 13.0 146.3) 24.1| 1846 272 | 7052 | 1396 GENITOR | 319 13.0 | 1755 257 | 2578 415 112964 | 2092
SANE 19.2 13.0 28.0] 2.0 535 70 | 1910 329 SANE 16.5 13.0[ 293 3.6 | 1691 46 4461 984
TGEC 47.8 117 589.8] 86.1 880 4 | 8223 1889 TGEC 75.9 12.8 | 563.1| 126.5 | 2067 26 112691 | 2968
SEFC 1321 117 19.3 2.4 111 4 323 93 SEFC 15.2 12.8 314 2.5 661 10 5295 749
z(t+1) =z(t) + Az(t) (5) trials (which reflects the number of training episodes required)
and the CPU time (the time from the first trial to the end of
o ~~ a successful control) are measured. The simulation results of
. . Jo Ampt |67 sin b — 0y cos b, both experiments on the SEFC are shown in Tables | and Il
2(t+1)=z(t) + A (6) '

m Another fuzzy controller designed by the traditional GA's for
the same control problem is used here for comparison. In the tra-
where ditional genetic-fuzzy controller (TGFC) design, an individual
¢ 0.5m, the length of the pole; represents a fuzzy controller, and the coding of each variable
m 1.1 kg, combined mass of the pole and the cart;  into a chromosome as well as the genetic operators are the same
mp 0.1 kg, mass of the pole; as those of the SEFC design. The number of rules in a population
g 9.8 m/s?, acceleration due to the gravity; is set as in the SEFC design, so there are 40 individuals in a pop-
A 0.02 (s), sampling interval. ulation with five rules in each individual. For further compar-

The constraints on the variables ard2° < 6 < 12° isons, previous genetic reinforcement learning algorithms, the
—24m < z < 24 m, andf = £10 N. A control strategy GENITOR [26] and SANE (Symbiotic, Adaptive Neuro-Evo-
is deemed successful if it can balance a pole for 120000 tirugion) [19], are applied to the same control problem and the
steps. simulation results are listed in Tables | and II. In GENITOR,
In training, the SEFC for the cart-pole balancing problenthe normal evolution algorithm is used to evolve the weights
a fuzzy controller consisting of five rules with a singletorin a fully-connected two-layer neural network, with additional
value in the consequent part of each rule is designed (i.eonnections from each input unit to the output layer. The net-
N, = 5). The number of rules is chosen so that the total numbeork has five input units, five hidden units and one output unit.
of parameters is nearly the same as that of other previoustySANE, the symbiotic evolution algorithm is used to evolve
proposed genetic reinforcement learning algorithms [19], [26]two-layer neural network with five input units, eight hidden
applied to the same control problem. As in [19], the numbenits, and two output units. An individual in the SANE repre-
of individuals in the populatiod®; is set to 200. Two-hundred sents a hidden unit with five specified connections to input and
fuzzy controllers are formed and evaluated per generation (i.eutput units. The simulation data are adopted from [19] and the
Ny = 200), and the evaluation of a fuzzy controller consists dEPU time is converted to the CPU time of our working envi-
a single trial on the cart-pole system. On average, a fuzzy runment, a personal computer with Intel pentium-133 CPU in-
participates in five fuzzy controllers per generation. The fowide. Although the 50 random initial states used in the SEFC
state variable$9,9,x,ab) and f are normalized betweerl and TGFC are different from those used in [19], on average,
and 1 over the following ranges,: [-2.4,2.4], & : [-1.5,1.5], SEFC is superior to GENTOR and not second to SANE in the
6 : [-12°,12°], 6 : [-60°,60°], f : [-10,10]. The four number of control trials and consumed CPU time. In fact, the
normalized state variables are used as inputs to the fuzmpposed SEFC still obtains better (i.e., lower) values in most
controller. The coding of a rule in a chromosome is of the forperformance comparison indexes as shown in Tables | and II. It
in Fig. 2(a). The values: andwg are floating-point numbers is shown that the fuzzy system design through symbiotic evo-
randomly assigned betweenl and 1 initially. For simplicity, lution is feasible and effective. Also in [19], the performance
we allow o; to be values from{0.3,0.4,0.5,0.6}. Hence, the of SANE is shown to be much better than other reinforcement
value of g; is integer coded, with its value being “1,” “2,” learning schemes including the single-layer Adaptive Heuristic
“3,” or “4” representing the actual normalized value of 0.3Critic (AHC) [11], the two-layer AHC [12], and Q-learning
0.4, 0.5, or 0.6. The fitness value is the number of time stef&l]. Hence, the performance of these approaches are not com-
in which the pole remains balanced. pared to the proposed SEFC method. From the comparisons
Two experiments are performed on the SEFC. In the first Tables | and Il, we can see that the SEFC design method
experiment, the initial values ¢#, 6, z, ) are setto (0, 0, 0, 0). achieves not only the minimum number of trials but also the
In the second experiment, the initial values of the four states deast CPU time on average.
randomly assigned, with the values taken from the allowableThe CPU time conversion process in Tables | and Il is detailed
range of each variable. A control is considered successful ifas follows. To compare the performance of our system with
can balance the pole from any single starting state. For eabhat of other existing reinforcement learning systems, we re-
experiment, 50 simulations are run. The number of pole-balarpeat the single-layer AHC design of the Barto's original system
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TABLE I
CPU TiME AND NUMBER OF TRIALS REQUIRED TOFIND A SUCCESSFULFUZzY
CONTROLLER BY SEFCAND TGFCFOR THEMAGNETIC LEVITATION CONTROL
PROBLEM IN EXAMPLE 2

CPU Seconds Control Trials
Method = | Mean | Best: | Worst | = 8B * | Mean{ *Best [ Worst § = SD
TGEC 82.3 09 ]719.8 1419| 1854 14 11076 | 2414
SEEC 52 0.9 22.8 4.7 332 13 1054 | 238.8

for our computer simulation is

z(k +1) = z(t) + Az(¢) @

h-In+f
m g

F(t+1) =i+ A 8)

v — Bi(t) — RI(t)

I(t+1) =I(t) + A 7

)

Fig. 6. Magnetic levitation control system.

where

[11]. Two neuro-like adaptive elements are integrated in this g 9.8 m/s?, acceleration due to the gravity;
system. They are the Associative Search Element (ASE) usedn ~ 1.65 kg, mass of levitated object;
as a controller, and the Adaptive Critic Element (ACE) used asA  0.001 s, sampling interval;
a predictor. Temporal difference techniques and single-param-f 0.001, external disturbance;
eter stochastic exploration are used in the system. A bang-band. effective inductance of the magnetic circuit;
control scheme is used in the ASE, where the control outputcanB  effective flux density of the magnetic circuit;
have only two valuest+10 N and—10 N. We divide the four-di-  F;  the upward force;
mensional state space of the cart-pole system into disjoint re+3;  the downward force.
gions. Here, 162 regions corresponding to all of the combina-The control objective is to keep the levitated object balanced
tions of intervals are used. All of these settings are the samethe center. A fuzzy controller containing fuzzy rules with a
as those in [11] and [19]. The simulation is written in the Gingleton value in the consequent part of each rule is used. In-
program and runs on a Pentium-133 personal computer. YW&s of the fuzzy controller are position and velocityi of
have the average results computed over 50 simulations; it takes levitated object, and the output is the voltag@he ranges
424.8 s to find a successful controller from a centered pole aofithese variables are : [0.192,0.2] m andv : [—20,20]
cart position, and 160.8 s to find a successful controller fromy which are normalized t¢—1, 1]. The value ofz is normal-
random pole and cart positions with random initial velocitieszed by 0.2. The coding of a rule is the same as in Fig. 2(a).
Hence the AHC in our computation environment takes abothbe initial values ofn andwy are randomly assigned floating-
3.25 times of the CPU time taken by the same AHC in the comeint numbers betweenl and 1. Ther value is integer coded
putation environment in [19] to solve the same cart-pole bdly {1} ~ {4}, with the integer value representing a value
ancing problem. Since the exactly same AHC simulation was {0.3,0.4,0.5,0.6}. Five rules constitute a fuzzy controller
done in [19], we can treat our simulation result and the coufi-e., N, = 5). The number of individuals in one population is
terpart in [19] as a basis of CPU time conversion from an IBNP, = 100, and one hundred fuzzy systems are formed and eval-
workstation to a personal computer. In this way, we have transated per generatioftV; = 100), which allows each rule to
ferred the other simulation data in [19] into the counterparts participate in five fuzzy controllers per generation on average.
our working environment. A control process is considered to be successful if the levitated

Example 2. Magnetic Levitation Control Systeffine goal object is controlled within the range = [0.195,0.197] m for
of this example is to control a magnetic levitation system with2200 time steps, from both the top positior= 0.2 m and the
fuzzy controller. Most of the zero-power-consumption magnetimottom positionz = 0.192 m.
levitation (Maglev) systems are achieved by using hybrid mag- The performance of a controller is measured by the number of
nets. The basic form of the Maglev system controlled in this etime steps in which the controlled levitated object satisfies our
ample consists of a levitated object (rotor) and a pair of opposidgmands. The requests we set are that the position of the levi-
E-shaped controlled-PM electromagnets with coil winding, dated object should not touch the upper or lower bound during
shown in Fig. 6. The attractive force each electromagnet exettie control process, and after 150 control time steps, the posi-
on the levitated object is proportional to the square of the cuen of the levitated object should be withjd.195,0.197] m;
rentin each coil, and is inversely dependent on the square of ttherwise a failure occurs. The initial positions of the levitated
gap. The coil is highly inductive and the rate of change of thabject are randomly placed at the tap £ 0.2 m) or bottom
current is limited. The model of the magnetic levitation systerfx = 0.192) positions with zero velocityz = 0). If the control
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Fig. 7. Control results of the magnetic levitation system by the SEFC in Example 2. (a) Position of the levitated object. (b) Velocity of the lejétatéd)o
The control voltage.

from one initial position is satisfied then the control from the
i L . . GA Performance
other initial position is tried, with the total number of time steps evaluation
accumulated. Fifty runs of the SEFC are simulated, and a run | | _I/\I_
ends when a successful controller is found. The simulation re- y, (k+1)
sults are listed in Table Ill. The control results of one of the fifty
. — . .. . . —> F -
runs is shown in Fig. 7, where in addition to the trials starting - Co‘;:rzguer = Water bath
from the two boundary positions used in the training process, y (k)
the trials starting from other initial positions, = 0.198 and
L . ylk+1)
x = 0.194 with & = 0, are also performed for testing, and good | 7! |
results are obtained. The fuzzy rules learned in the SEFC are —
Rule 1: IF (k) I_S #(0.54,0.4) and i (k) is 1(0.95,0.4) Fig. 8. Temperature control configuration of the water bath system in
THEN v is —0.40. Example 3.
Rule 2. IF z(k) is 1(0.82,0.6) and &(k) is 1(0.21,0.3)
THEN v is 0.80. . GA algorithm and is constructed by integrating two feedforward
Rule3:  IFx(k)is 1(—0.26,0.3) andi(k) is 1(—0.13,0.3)  multilayer networks. One neural network acts as a critic net-
THEN v is —0.86. _ work for helping the learning of the other network, the action
Rule 4:  IFz(k)is u(—0.76,0.3) andi(k) is u(—0.77,0.4)  network, which determines the outputs of the TDGAR learning
THEN v is —0.96. system. In the simulation, a neural fuzzy network is used as the
Rule5:  IF z(k) is ¢(0.31,0.4) and &(k) is 1(0.21,0.3)

THEN v is 0.80.

action network. Given the current state of the plant, the action
network selects an action by implementing an inference scheme

where p(m;, 0;) represents a Gaussian membership functigsased on fuzzy control rules. It can be represented as a network
with centerm; and widthgo,.

A learning method called temporal difference and GA-basédzzy inference process. Comparing the simulation result of the
reinforcement (TDGAR) learning scheme has been also appliEDGAR learning system with that of our SEFC design, the latter
in the magnetic levitation system with the same simulation cohas similar control response time but less overshoot to maintain
ditions [32]. The TDGAR learning method is a kind of hybridthe levitated object around the equilibrium point.

with five layers of nodes, each layer performing one stage of the
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Fig. 9. Desired temperaturés- -) and the controlled temperatures ) by SEFC (a) as well as the control outputs (b) in Example 3.

Also, a traditional GA-based fuzzy controller (TGFC) is deapproximation. The system
signed for the same control problem to compare the learning
capability of the SEFC design. The number of rules in one pop- B (1 —eoTs)

(83

ulation is set as the same as that in the SEFC design, sothereare  y(k +1) = e~ Ty (k) + T4 os a0 k)
20 individuals in one population with each individual consisting 41— oY, (11)
of five rules. The coding and initial assignment of each variable
is the same as those in the SEFC design. Fifty runs using the .
TGFC are simulated and the results are listed in Table Iil. Frofh©Ptained, where: and;3 are some constant values describing
Table 111, we find that the SEFC design method requires not onfy 21dC. The system parameters used in this exampleware
fewer trials but also less CPU time during learning. 1.00151e™, f = 8.67973¢7°, andY, = 25.0(°C), which
Example 3. Water Bath Temperature Control Systéfhe Were obtained from a real water bath plant in [33]. The plant

goal of this example is to control the temperature of a watfiPutu(k) is limited between 0 and 5, and the sampling period
bath system given by is T; = 30. The system configuration is shown in Fig. 8, where

1 is the desired temperature of the controlled plant.
Unlike the previous two examples where only one desired

dy(t) _ u(t) n Yo —y(®) (10) target is set, the control target in this example may be any
d  C RC desired temperature in the controlled temperature range at
different times, and the output of the controller may change
where sharply, so a fuzzy controller containing fuzzy rules with a
y(t) system output temperature i; singleton in the consequent part of each rule cannot meet the

; TR . control requirement. This has been shown in our simulations.

?/(t) ?j:;ntge:](;v:rr;?ulrnevyard the system; Hence, the TSK-type fuzzy rule is used in the SEFC for this

° ) ' . control problem. The inputs to the fuzzy controller are the

¢ equivalent system thermal capacity; current temperaturg(k) of the water bath and the desired

R equivalent thermal resistance between the system b@mperaturey,.(k), and the consequent part of each rule is of
ders and surroundings. the form, ) = woy + wiy(k) + way,-(k). The two inputsy(k)
Assuming that? andC are essentially constant, we rewrite thand y,.(k) are positively linearly transformed froiffy, 100] to

system in (10) into discrete-time form with some reasonabl6,1]. The coding of a rule is the same as in Fig. 2(b). The
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Fig. 10. Testing reference temperatufes ) and the controlled temperatures ) (a) with the corresponding control outputs (b) in Example 3.

initial values ofm andwy are randomly assigned floating-pointRule 2:  IFy(k) is 12(0.12,0.4) andy..(k) is 1:(0.52, 0.6)

numbers between 0 and 1. As before, for simplicitis integer THEN y(k) = —26.4y(k).

coded by{1} ~ {4}, with the integer value representing a valu®ule 3:  IFy(k) is +(0.82,0.4) andy,.(k) is 1:(0.39, 0.5)
in {0.3,0.4,0.5,0.6}. The ranges ofv; andw, are unknown, THEN y(k) = —2.33 — 43.3y(k) + 18.2y, (k).
and a large rangp-45, 45] is assigned for them. Initial valuesRule 4:  IFy(k) is 12(0.54, 0.6) andy,.(k) is 1:(0.60, 0.3)
of w; andws are randomly assigned floating-point numbers THEN y(k) = —0.4 — 43.3y(k) + 30.8y.-(k).
in this range. A zero value of; in the chromosome meansRule 5:  IFy(k) is 11(0.57,0.6) andy,.(k) is u(0.81, 0.5)
that the corresponding term is not used. Initially, the number THEN y(k) = —0.6 — 28.9y(k) + 43.8y,.(k).

of terms used in the consequent part is assigned ra”dOTWHereu(mi,ai) represents a Gaussian membership function
for each rule. Five rules constitute a fuzzy controller (i.eytn centerm; and widthe;. The controlled temperature curve
N, = 5). The population size is set @ = 100. One hundred gptained by the SEFC and the corresponding control outputs are
fuzzy controllers are formed and evaluated per generation (ighown in Fig. 9. To test the generalization ability of the designed
Ny = 100). The desired temperature profile used for trainingontroller, another desired temperature profile is fed into the
is shown in Fig. 9. The fitness of the controller is measured Ryntroller. The desired temperature profile and the controlled
the number of time steps in which the controlled temperatugge are shown in Fig. 10. A good control result is achieved.
meets the constraint. The constraint is set as that for eachhe simulation results of the SEFC design are equivalent to
reassigned regulation temperatlite= 35, 55, and75in Fig. 9,  those of two other control algorithms, an on-line neural con-
starting from the current temperature and after 10 time steggier training method [33] and the neural fuzzy inference net-
the controlled temperature error should be with.5 °C; \york (NFIN) [34], for the same control problem. The on-line
otherwise a failure occurs. Since a TSK-type fuzzy rule is usegbyral controller training method is based on performing mul-
as mentioned in Section lll, the average fitness value of eaﬁ:ﬂe updating operations during each sampling period. It uses
rule is further divided by “3@-number of parameters in a rule."the direct inverse control error approach for small adjustments
In this way, only the significant terms are selected and useddfthe neural controller when it is already reasonably trained,

the consequent part of a TSK-type fuzzy rule. and the predicted output error approach for minimizing the con-
After 30 generations of training, a successful SEFC is obrol error and improving convergence of the controller. And

tained, where the fuzzy rules learned are the NFIN is inherently a modified TSK-type fuzzy rule-based

Rule 1:  IFy(k)is 1(0.11,0.5) andy,.(k) is 4(0.73,0.4) model possessing a neural network's learning ability. The rules

THEN y(k) = 37.7y(k) + 34.6y,-(k). in NFIN are created and adapted as on-line learning proceeds via
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simultaneous structure and parameter identifications. Though3]
the proposed SEFC method does not have superior performance
to these two control algorithms, however, the SEFC is basicall§/l4]
a reinforcement learning algorithm that takes the external rein-
forcement signal only after a long sequence of actions have beétp!
passed. And no a priori knowledge of the plant model or super-
vised input-output training data are required. Whereas these twos]
compared algorithms are both supervised learning algorithmﬁ?
that require exact supervised input-output training data. ]
[18]

V. CONCLUSION [19]

A new genetic reinforcement learning algorithm, called the,,,
SEFC design method, is proposed for designing fuzzy controller
in this paper. As compared to the traditional GA-based fuzzy
controller design methods, the proposed SEFC design meth
requires fewer trials and less CPU time. The input space of the
SEFC is partitioned in a flexible way. The rules used in thel22]
SEFC can be several types, e.g., a rule with a singleton in t 3]
consequent, or a TSK-type fuzzy rule. For the TSK-type fuzzy
rule, only the significant terms are selected and combined in the
linear equation of the consequent part. Sincapoiori knowl-
edge of the mathematical model of the controlled plant or su-
pervised input-output training data are required, application ddi25]
mains of the proposed SEFC design method are believed to be
numerous. Further works on the proposed SEFC design includes)
1) auto-determination of the number of fuzzy rules instead of
preassignment, 2) on-line adaptation ability to meet the varias,,
tions of the controlled plant or changing environments, and 3
coping with occasions when constraints on controller design ar[%8
set.
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