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Selecting Fuzzy If-Then Rules for Classification 
Problems Using Genetic Algorithms 

Hisao Ishibuchi, Member, ZEEE, Ken Nozaki, Naohisa Yamamoto, and Hideo Tanaka, Member, ZEEE 

Abstract- This paper proposes a genetic-algorithm-based 
method for selecting a small number of significant fuzzy if-then 
rules to construct a compact fuzzy classification system with high 
classification power. The rule selection problem is formulated 
as a combinatorial optimization problem with two objectives: 
to maximize the number of correctly classified patterns and to 
minimize the number of fuzzy if-then rules. Genetic algorithms 
are applied to this problem. A set of fuzzy if-then rules is coded 
into a string and treated as an individual in genetic algorithms. 
The fitness of each individual is specified by the two objectives 
in the combinatorial optimization problem. The performance of 
the proposed method for training data and test data is examined 
by computer simulations on the iris data of Fisher. 

I. INTRODUCTION 

UZZY logic has been mainly applied to control problems F with fuzzy if-then rules [1]-[2]. In most fuzzy control 
systems fuzzy if-then rules were derived from human experts. 
Recently several approaches have been proposed for automat- 
ically generating fuzzy if-then rules from numerical data (for 
example, see [3]-[5]). Self-learning methods have been also 
proposed for adjusting membership functions of fuzzy sets in 
fuzzy if-then rules (for example, see [6]-[lo]). Since fuzzy 
control systems in these methods can be trained by learning 
schemes of neural networks, they are often called fuzzy neural 
networks [lo]. Michalski and Chilausky [ l l ]  was one of the 
first attempts to generate if-then rules (and also other rules) 
from the given data in the field of many-valued logics. 

Genetic algorithms [ 121-[ 131 have been also employed 
for generating fuzzy if-then rules and adjusting membership 
functions of fuzzy sets. For example, membership functions 
were adjusted by genetic algorithms in Karr [ 141 and Karr and 
Gentry [15]. Fuzzy partitions of input spaces were determined 
in Nomura et al. [16]. That is, both the number of fuzzy 
sets and the membership function of each fuzzy set were 
determined. In Thrift [17], an appropriate fuzzy set in the 
consequent part of each fuzzy if-then rule was selected. These 
approaches applied genetic algorithms to fuzzy control prob- 
lems by coding a fuzzy rule table (i.e., a set of fuzzy if-then 
rules) as an individual. On the other hand, Valenzuela-Rendon 
[18] proposed a fuzzy classifier system where a single fuzzy 
if-then rule was coded as an individual. Appropriate fuzzy sets 
in the antecedent and consequent parts of each fuzzy if-then 
rule were selected by the fuzzy classifier system in [18]. 
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Fig. 1. An example of the fuzzy partition by a simple fuzzy grid. 

While various methods have been proposed for generating 
fuzzy if-then rules and adjusting membership functions, only 
a few approaches have dealt with classification problems. 
Ishibuchi ef  al. [19] proposed a generation method of fuzzy 
if-then rules from numerical data for classification problems. 
Generation of fuzzy if-then rules from numerical data consists 
of two phases: fuzzy partition of a pattern space into fuzzy 
subspaces and determination of a fuzzy if-then rule for each 
fuzzy subspace. In [19], the fuzzy partition by a simple fuzzy 
grid was employed. An example of such a fuzzy partition 
is shown in Fig. 1 where a two-dimensional pattern space 
is divided into 5’ = 25 fuzzy subspaces. The performance 
of a fuzzy classification system based on fuzzy if-then rules 
depends on the choice of a fuzzy partition. If a fuzzy partition 
is too coarse, the performance may be low (i.e., many patterns 
may be misclassified). If a fuzzy partition is too fine, many 
fuzzy if-then rules cannot be generated because of the lack 
of training patterns in the corresponding fuzzy subspaces. 
Therefore the choice of a fuzzy partition is very important. 

Let us consider a two-class classification problem in Fig. 
2 where closed circles and open circles denote the patterns 
in Class 1 and Class 2, respectively. For this classification 
problem, a fine fuzzy partition is required for the left half of 
the pattern space but a coarse fuzzy partition is appropriate 
for the right half. Therefore the choice of an appropriate fuzzy 
partition based on a simple fuzzy grid is difficult for such a 
classification problem as shown in Fig. 2. 

To cope with this difficulty, the concept of distributed 
fuzzy if-then rules was proposed in [19] where all fuzzy 
if-then rules corresponding to several fuzzy partitions were 
simultaneously employed in fuzzy inference. That is, multiple 
fuzzy rule tables were simultaneously employed in a single 
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Fig. 2. A classification problem. 
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Fig. 3. A fuzzy classification system based on multiple fuzzy rule tables. 

fuzzy classification system as shown in Fig. 3. In Fig. 3, 
a single fuzzy classification system consists of 90 (= 22 + 
32 + 42 + 52 + S2) fuzzy if-then rules corresponding to five 
fuzzy rule tables. Since fuzzy if-then rules corresponding 
to coarse fuzzy partitions as well as fine fuzzy partitions 
are simultaneously employed in a single fuzzy classification 
system, this approach remedies the above-mentioned difficulty 
in choosing an appropriate fuzzy partition. The main drawback 
of this approach is that the number of fuzzy if-then rules 
becomes enormous especially for classification problems with 
high-dimensional pattern spaces. 

If unnecessary fuzzy if-then rules are removed and rel- 
evant fuzzy if-then rules are selected, the performance of 
the selected rule set may be high with much fewer fuzzy 
if-then rules. This paper proposes a genetic-algorithm-based 
method for removing unnecessary rules from fuzzy if-then 
rules corresponding to several fuzzy partitions. The aim of 
the proposed method is to find a compact rule set with high 
classification power. A compact fuzzy classification system 
based on a small number of fuzzy if-then rules has the 
following advantages: 

i) It does not require a lot of storage. 
ii) The inference speed for new patterns is high. 
iii) Each fuzzy if-then rule can be carefully examined by 

The last advantage suggests the possibility of knowledge 
acquisition. When a small number of fuzzy if-then rules are 
selected, it is possible that a user acquires new knowledge 
by carefully examining the selected rules. On the contrary, 
if hundreds of fuzzy if-then rules are included in a fuzzy 
classification system, it is a quite troublesome task to examine 
all the rules. 

In this paper, a generation method of fuzzy if-then rules 
for classification problems is first described. Next the rule 

users. 

selection problem to construct a compact fuzzy classification 
system is formulated as a combinatorial optimization problem. 
This problem has two objectives: to maximize the number 
of correctly classified patterns and to minimize the number 
of fuzzy if-then rules. Genetic algorithms are applied to 
this problem. A set of fuzzy if-then rules is coded as an 
individual in genetic algorithms. The fitness of each individ- 
ual is specified by the two objectives in the combinatorial 
optimization problem. Last the performance of the proposed 
method for training data and test data is examined by computer 
simulations on the iris data of Fisher [20]. 

II. FUZZY CLASSIFICATION METHOD 
WITH FUZZY IF-THEN RULES 

In this section, we briefly describe the fuzzy classification 
method based on fuzzy if-then rules proposed in Ishibuchi et 
al. [19]. Let us assume that a pattern space is the unit square 
[O, 11 x [O, 11 for the simplicity of notation. The extension 
to the case of more general multidimensional pattern spaces 
will be discussed in Section IV. Suppose that m patterns 
xp = (xpl,xp2), p = 1,2, . . . ,m,  are given as training 
patterns from M(M << m) classes: Class 1 (Cl), Class 2 
(C2),. . e ,  Class M(CM). That is, the classification of each xp, 
p = 1,2, .... m, is known as one of M classes. Our problem 
is to generate fuzzy if-then rules that divide the pattern space 
into M disjoint decision areas. 

Let us assume that each axis of the pattem space is parti- 
tioned into K fuzzy subsets {Af , AF,  . . , A:} where A? 
is the ith fuzzy subset (the superscript K is attached to 
indicate the number of fuzzy subsets on each axis, i.e., K 
denotes the fineness of a fuzzy partition). We can use any 
type of membership functions (e.g., triangular, trapezoid and 
exponential) for A?. In this paper, the following symmetric 
triangular membership function is employed for A?, i = 
1 ,2 ,  * .  . , K 

vK(x) = max{l - 12 - a r l / b K , ~ ) ,  i = 1 , 2 , . - . , ~  (1) 

where 

a x  = (2 - l ) / (K-  l ) ,  i = 1,2,...,K, (2) 
bX = 1/(K - 1). ( 3 )  

If we use the same fuzzy subsets { A Y ,  A 5  ..... A:} for the 
two axes of the pattern space, we have K Z  fuzzy subspaces 
AY x A;, i = 1,2 , . . . ,K;  j = l , 2 , . . . ,K  . The fuzzy 
partition of the pattern space corresponding to K = 5 is 
shown in Fig. 1 where the pattern space is divided into 
25 fuzzy subspaces. In this paper, we use the same fuzzy 
subsets { A Y ,  A f  ..... A:} for the two axes of the pattern 
space because the domain intervals of the two attribute values 
zpl and xp2 are the same. If the two domain intervals are 
totally different from each other, we should use different fuzzy 
subsets for the two axes. This issue will be discussed in Section 
V. 

Since each fuzzy subspace has one fuzzy if-then rule, the 
number of fuzzy if-then rules in a single fuzzy rule table is 
also K2. For M-class classification problems in the pattern 
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space [0,1] x [0,1], we use the following fuzzy if-then rules 
corresponding to the K 2  fuzzy subspaces. 

Rule RE; If xpl is A? and xP2 is Aj" 
then xp belongs to Class C c  

with CF = CF;, 
i =  1 , 2 , . . . , K ; j = l , 2 , . . . , K  (4) 

where R$ is the label of the fuzzy if-then rule, A: and Aj" 
are triangular fuzzy subsets on the unit interval [0, 11, C t  is 
the consequent (i.e., one of M classes), and CFiY is the grade 
of certainty of the fuzzy if-then rule. 

The consequent C: and the grade of certainty CF: of 
the fuzzy if-then rule in (4) are determined by the following 
procedure. 

Procedure 1-Generation of Fuuy  +then Rules: 
Step 1: Calculate PCT for each class T(T = 1 , 2 , .  . . , M )  

as 

PCT = $(xpl) ' pr(xp2) ( 5 )  
x ,€CT 

where PCT is the sum of the compatibility of xp's 
in Class T to the fuzzy if-then rule RZ in (4). 

Step 2: Find Class X ( C X )  such that 

PCX = m~{PCl,PC2t".rPCM). (6) 

If two or more classes take the maximum value 
in (6) or all the PCT'S are zero, the consequent 
C t  of the fuzzy if-then rule corresponding to the 
fuzzy subspace A: x A? can not be determined 
uniquely. In this case, let C t  be 4. If a single class 
takes the maximum value in (6), C t  is determined 
as CX in (6). 

Step 3: If a single class takes the maximum value in (6), 
CF; is determined as 

M 

where 
M 

T=l  
T # X  

In this procedure, the consequent CK is determined as Class 
X ( C X )  that has the largest sum of pf(xp1).$(xp2) over the 
M classes in (6). Fuzzy if-then rules with 4 in the consequent 
part are dummy rules that have no effect on fuzzy inference 
for classifying new patterns. If there is no pattern in the fuzzy 
subspace A? x A T ,  a dummy rule is generated at that fuzzy 
subspace because all the PCT'S become zero in this case. 
The certainty CFiY specified by (7)-(8) has the following 
intuitively acceptable two properties: 

i) If all the patterns in the fuzzy subspace A? x AT belong 
to the same class, i.e., if PCX > 0 and PCT = 0 for 

T # X in (6), then CF; = 1 (the maximum certainty). 
In this case, it is certain that any pattern in A? x A? 
belongs to the consequent class of the generated fuzzy 
if-then rule. 

are not so different from each 
other, i.e., if Pcl M P C ~  % M PCM in (6), then 
CF; M 0 (the minimum certainty). In this case, it is 
uncertain that a pattern in AT x A? belongs to the 
consequent class of the generated fuzzy if-then rule. 

Let us denote the set of the generated K 2  fuzzy if-then 

ii) If all the values of 

rules by S K  

That is, S K  is the rule set corresponding to the K x K 
fuzzy rule table. In the approach based on the concept of 
distributed fuzzy if-then rules, multiple fuzzy rule tables are 
simultaneously employed as shown in Fig. 3. Let us denote the 
set of all fuzzy if-then rules corresponding to K = 2,3, . . . , L 
by SALL 

where L is an integer that should be specified depending on 
the characteristics of each classification problem. The choice of 
an appropriate value of L may require computer simulations 
with different values of L. This issue will be discussed in 
Section IV. By specifying K = 2 ,3 , . . . ,  L in Procedure 1, 
22 + 32 + . . . + L2 fuzzy if-then rules in SALL are generated. 
Let us denote a subset of SALL by S. The main aim of this 
paper is to propose a method for selecting fuzzy if-then rules 
from SALL to find a compact rule set S with high classification 
power. This issue will be discussed in the next section. 

When a rule set S is given, a new pattern xp = (zpl ,  xP2) 

is classified by the following procedure based on the fuzzy 
~~ 

if-then rules in S. 
Procedure 2-ClassiJcation of a New Pattem 

Step 1 : Calculate (YCT for each Class T (  T = 1 , 2  . 
(Xpl, xp2): 

as 

xp = 

Step 2: Find Class X ( C X )  such that 

If two or more classes take the maximum value in 
(12) or all the QCT'S are zero, then the classification 
of xp is rejected (i.e., xp is left as an unclassi- 
fiable pattern), else assign xp to Class X ( C X )  
determined by (12). 
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(a) (b) 
Fig. 4. The rule set S5 and the classification result. (a) Fuzzy rules. (b) 
Boundary. 

(a) (b) 
Fig. 5.  
Boundary. 

The rule set s6 and the classification result. (a) Fuzzy rules. (b) 

In this procedure, the inferred class is the consequent 
of the fuzzy if-then rule that has the maximum value of 
~ ~ ( x ~ I ) . ~ ~ ( x ~ ~ ) . C F . ~  over all the fuzzy if-then rules in S. 

Using the classification problem in Fig. 2, we explain 
Procedure 1 and Procedure 2. We applied Procedure 1 with 
K = 5 to the classification problem in Fig. 2. The generated 
fuzzy if-then rules, i.e., the rule set S5 in (9), are shown in 
Fig. 4(a) where hatched areas, dotted areas and painted areas 
represent the following: 

Hatched area: The consequent of the generated fuzzy 

a? 

if-then rule in this area is Class 1 
(closed circles). 
The consequent of the generated fuzzy 
if-then rule in this area is Class 2 
(open circles). 

Painted area: The consequent of the generated fuzzy 
if-then rule in this area is 4, i.e., a 
dummy rule is generated. 

Dotted area: 

From Fig. 4(a), we can see that 14 rules with Class 1 in 
the consequent part, seven rules with Class 2 and four dummy 
rules were generated by Procedure 1. By Procedure 2 with the 
rule set S5 in Fig. 4(a), the pattern space was classified into 
the two disjoint decision areas. The class boundary is shown 
in Fig. 4(b). From Fig. 4(b), we can see that two patterns from 
Class 1 were misclassified as Class 2. 

In Fig. 5(a), we show the generated fuzzy if-then rules 
corresponding to K = 6. That is, the rule set S6 is shown in 

Fig. 6. The rule set S ~ L L  and the classification result. (a) 1<=2. (b) I<=3. 
(c) h-=4 (d) Ic=5 (e) I<&. (f) Boundary. 

in Fig. 5(b) where a painted area denotes that the classification 
of a new pattern in this area is rejected. From Fig. 5(b), we 
can see that all the given patterns were correctly classified. 

The rule set SALL with L = 6, i.e., SALL = S2 U S3 U S4 U 
S5 U S6, is shown in Fig. 6(aHe). The classification result by 
the rule set SALL is shown in Fig. 6(f). From Fig. 6(f), we 
can see that there is no painted rejection area. 

In. APPLICATION OF GENETIC ALGORITHMS 

A. Formulation of a Combinatorial Optimization Problem 

Using Procedure 1 in Section 11, the fuzzy if-then rules 
corresponding to K = 2 , 3 , . . . ,  L are generated from the 
training patterns xp, p = 1,2,  . . . , m. That is, the rule set SALL 
in (10) is obtained. Our problem in this section is to select 
fuzzy if-then rules from SALL to construct a compact rule set 
S with high classification power. Therefore the objectives of 
our problem are to maximize the number of correctly classified 
patterns by S and to minimize the number of fuzzy if-then 
rules in S. This problem can be formulated as the following 

Fig. 5(a). The classification result by the rule set S6 is shown two-objective combinatorial optimization problem. 



264 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 3, AUGUST 1995 

Problem I :  Maximize NCP(S) and Minimize [SI 

subject to S c SALL 

where NCP( S) is the number of correctly classified patterns 
by S and (SI is the cardinality of S (i.e., the number of fuzzy 
if-then rules in S). 

Since Problem 1 has two objectives, it is difficult to directly 
apply genetic algorithms to this problem. Thus we modify 
Problem 1 by introducing positive weights W ~ c p  and WS as 
follows. 

Problem 2: Maximize f(S) = W N C ~ . N C P ( S ) - W ~ . I S I  

subject to S C_ SALL. 

In general, the classification power of a classification system 
is more important than its compactness. Therefore the weights 
in Problem 2 should be specified as 0 < WS << WNCP. The 
objective function f(S) is treated as the fitness function in 
genetic algorithms. 

B. Coding 

In genetic algorithms, each feasible solution of Problem 2 
is treated as an individual. That is, a rule set S should be 
represented by a string. Let us denote a rule set S by a string 
s1s2 . . . SN as S = ~ 1 ~ 2 . .  . SN where 

N = 22 + 32 + . . . + L2 (i.e., N is the total number 

s, = 1 denotes that the rth rule belongs to S. 
s, = -1 denotes that the rth rule does not belong to S. 
s, = 0 denotes that the rth rule is a dummy rule. 

of rules in SALL). 

The index T of the fuzzy if-then rule RE is determined as 

2(i - 1) + j, if K = 2, 

E h 2  + K(i  - 1) + j ,  if K 2 3. (13) 

h=2 

The indexes of fuzzy if-then rules corresponding to K = 2,3  
are shown in Fig. 7. 

Since dummy rules have no effect on fuzzy inference in 
the classification phase (i.e., on Procedure 2 in Section n), 
they should be excluded from a rule set S. Therefore they 
are represented as s, = 0 in this coding to prevent S from 
including them. A string sls2 . . SN is decoded as 

(14) S = {I?; I S, = 1; T =  1 , 2 , . . * , N } .  

C. Operations of Genetic Algorithms 

The following genetic operations are employed to generate 
and handle a set of strings (i.e., a population) in genetic 
algorithms of this paper. 

i) Initialization: Generate an initial population containing 
Npop strings where Npop is the number of strings in each 
population. In this operation, each string is generated by 
assigning zero to dummy rules and randomly assigning 
one or - 1 to the other rules. This initialization operation 
can be explained as follows. From the viable rule space, 
a population is chosen. Each string consists of a set of 

(b) 

Fig. 7. Labels and indexes of fuzzy if-then rules. (a) k=2. (b) K=3. 

rules. Each rule, which is randomly included in each 
string, has a 50% chance of being chosen for inclusion 
in any string. It should be noted that we can use more 
than a 50% chance of rule inclusion. 

ii) Selection: Select Npop/2 pairs of strings from the cur- 
rent population. The selection probability P ( S )  of a 
string S in a population 9 is specified as 

~ ( s )  = {f(S)-frnin(@))/  {f(S')-fmin(*)) (15) 
St€* 

where 

f m i n ( 9 )  = min{f(s)  I S E 9). (16) 

iii) Crossover: Perform the following one-point crossover 
operation on the selected NpOp/2 pairs 

SlSz ' ' s,-lsrSr+l . ' 's, sls2 * ' * Sr-lSrS,+l . ' ' S N  

iv) 

v) 

vi) 

A crossover point is chosen randomly. By this crossover 
operation, Npop strings are generated. 
Mutation: Perform the following mutation with the 
mutation probability P, on each bit of the generated 
strings by the crossover operation 

s, := sr x (-1). (17) 

Elitist Strategy: Randomly remove one string from the 
Npop strings generated by the above operations, and add 
the best string with the maximum fitness in the previous 
population to the current one. 
Termination Test: If a stopping condition is not satisfied, 
return to Step ii). The total number of generations is used 
as a stopping condition in this paper. 
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Fig. 8. 
Ii=2. (b) Ii=3. (c) I i4 .  (d) Ii=5. (e) Ii=6. (0 Boundary. 

Selected five fuzzy if-then rules and the classification result. (a) 

D. Numerical Example 

specifications to the classification problem in Fig. 2 
We applied a genetic algorithm with the following parameter 

Values of weights: WNCP = 10, WS = 1, 
Population size: Npop = 10, 

Initial population: 50% chance of rule inclusion 

Mutation probability: P,,, = 0.01, 
Stopping condition: lo00 generations. 

in each string, 

As the rule set SALL, we used the fuzzy if-then rules in 
Fig. 6(a)-(e). That is, we specified SALL as SALL = S2 U S3 U 
S4 U S5 U S6. Our problem is to find a compact rule set S 
with high classification power by selecting fuzzy if-then rules 
from those in Fig. 6(a)-(e). The number of the fuzzy if-then 
rules including dummy rules is 22 + 32 + 42 + 52 + 62 = 90. 
Therefore, the length of each string is 90. Since the 90 fuzzy 
if-then rules in SALL include 16 dummy rules (see Fig. 
6(a)-(e)), the total number of solutions of our problem is 

Number of generations 

Fig. 9. The number of fuzzy if-then rules by the best individual in each 
generation (average results over 10 trials). 

D 

i 00 SO0 loo0 
Number of generations 

Fig. 10. The number of fuzzy if-then rules by the best individual in each 
generation (different values of the weight U'S for the number of fuzzy if-then 
rules). 

274 x 1.9 x 10". It should be noted that 274 solutions include 
some meaningless solutions. For example, a rule set with a 
single rule is meaningless. Since at least one rule for each of 
the two classes should be included in a rule set, the number 
of meaningful solutions of our problem is (246 - 1) . (228 - 1) 
where 46 and 28 are the numbers of the fuzzy if-then rules 
with the Class 1 consequent (hatched areas in Fig. 6) and the 
Class 2 consequent (dotted areas in Fig. 6), respectively. 

The genetic operations in Section III-C were applied to 
this problem. The selected fuzzy if-then rules after lo00 
generations and the corresponding classification result are 
shown in Fig. 8. In Fig. 8(a)-(e), the selected fuzzy if-then 
rules with the Class 1 and Class 2 consequents are represented 
by hatched areas and dotted areas, respectively. From Fig. 8(f), 
we can see that all the training patterns are correctly classified 
by the selected five fuzzy if-then rules. From the comparison 
of Fig. 8 with Figs. 4-6, we can observe the effectiveness of 
the proposed method. All the training patterns were correctly 
classified in Fig. 8 by much fewer fuzzy if-then rules in 
comparison with Figs. 4-6. In Fig. 9, we show the number of 
fuzzy if-then rules by the best individual in each generation. 
Fig. 9 is not the result of a single trial but the average of ten 
trials. Fig. 9 shows how the number of fuzzy if-then rules 
decreased. 

To examine the effect of the positive weights WNCP and 
Ws on the proposed rule selection procedure, we performed 
the same computer simulation by using different values of the 
weight Ws for the number of fuzzy if-then rules in S. We 
examined two parameter specifications: One is W ~ c p  = 10 
and Ws = 0.1, and the other is WNCP = 10 and Ws = 10. 

Average results of 10 trials with each parameter specification 
are shown in Fig. 10. Fig. 10 shows how the number of fuzzy 
if-then rules decreased in the same manner as Fig. 9. From 
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A. Extension of the Proposed Method to 
Multidimensional Problems 

In the above sections, we explained our method in the 
two-dimensional pattern space [0, 13’. Since the classification 
problem of the iris data has four attributes, our method should 
be modified. In this subsection, we briefly explain how our 
method can be extended to the four-dimensional classification 
problem. 

The K 2  fuzzy if-then rules in (4) are extended to the 
following K4 rules for the iris data 

Rule R t k l :  If xpl is A: and xp2 is A: and 

xp3 is A f  and xp4 is A: 
then xp belongs to Class Ctkl 

with C F  = CF:kl. 

Fig. 11 .  The number of fuzzy if-then rules by the best individual in each 
generation (different initial population). 

Fig. 10, we can see that the number of fuzzy if-then rules 
more rapidly decreased with Ws = 10 than Ws = 0.1. 

We also examined the effect of an initial population on the 
proposed rule selection procedure. We used a 90% chance for 
each rule of being included in each initial string. This means i =  1,2 : . . ,K; j=  1 , 2 , ‘ . . , K ;  

IC = 1 , 2 , . . . , K ; l  = l , 2 , . . . , K  that we assigned 1 and -1 to each rule with the probabilities of (21) 
0.9 and 0.1, respectively. Simulation results with W ~ c p  = 10 
and Ws = 1 are shown in Fig. 11. From the comparison 
between Figs. 9 and 11, we can see that the number of fuzzy 
if-then rules in Fig. 11 was larger than that in Fig. 9. This is 
because initial strings in Fig. 11 included more fuzzy if-then 
rules than those in Fig. 9. 

Iv .  PERFORMANCE EVALUATION 
In this section, the performance of the proposed method 

for training data and test data is examined by the well-known 
iris data in Fisher [20]. The iris data consist of the following 
four-dimensional pattern vectors from three classes: 

Class I (his setosa): xp = ( x p ~ , ~ p z , ~ p 3 , ~ p 4 ) ~  

Class 2 (Iris versicolor): xI’ = (xpl , xp2, xp3, x p 4 ) ,  

class 3 (his virginica): xp = ( xP l ,  xp2, xp3, z p q ) ,  

p =  1,2 , . . . ,50 ,  

p = 51,52,. . . , 100, 

p = 101,102,. . . ,150 

where xpl is the sepal length, xp2 is the sepal width, xp3 is 
the petal length, and xp4 is the petal width. In computer simu- 
lations of this session, all the attribute values were normalized 
into real numbers in the unit interval [0, 11 as 

xpi := (xpi - min{xpi})/(niax{xp~} - min{z,i}), 
p =  1,2 , . . - ,150;  i = 1,2 ,3 ,4  (18) 

where 

min{x,i} = min{xpi I p = 1,2 , .  . . ,150}, 
max{xpi) = max{xpi I p = 1,2 , .  . . ,150). 

(19) 
(20) 

Therefore the classification problem of the iris data was 
transformed into a three-class classification problem in the 
four-dimensional unit cube [0, lI4. 

where R z k l  is the label of the fuzzy if-then rule, A:, A T ,  
A: and AY are triangular fuzzy subsets on the unit interval 
[0, 11, CK is the consequent (i.e., one of the three classes), 

The rule set corresponding to the K x K x K x K fuzzy rule 
table is denoted by S K  as 

and CFi jk l  2 k l  is the grade of certainty of the fuzzy if-then rule. 

S K -  - {  R K  i j k l  I i = l , 2 , . . . , K ; j = l , 2 , . . . , K ;  

I C =  1 , 2 , . . . , K :  I =  1 , 2 , . . ’ , K } .  (22) 

The rule set corresponding to K = 2,3, . . . , L is denoted by 
SALL as 

(23) 

The rule generation procedure (i.e., Procedure 1) in Section 
I1 can be applied to the classification problem of the iris data 
by modifying the definition of PCT in (5) as 

S*LL = s2 U s3 u.. . U sL. 

PCT = PK(xp1) . PjK(xp2)  . Pf(Zp3) . PLIK(2p4). (24) 
x,ECT 

In the same manner, the fuzzy reasoning procedure (i.e., 
Procedure 2) in Section I1 can be applied to the iris data by 
modifying the definition of CXCT in (1  1) as 

W T  = max{CLK(xpd . I*jK(xp2) . Pf(”p3) . Pt((Zp4) 
. CFGkl 1 C:k( = CT and Rck, E s}. (25) 

The genetic algorithm in Section 111 can be applied to 
the iris data by specifying the index r of each of the N (= 
24 + 34 + . . . + L ~ )  fuzzy if-then rules Rgkl’s in sALL as 

23(i - 1) + P ( j  - 1) + 2(k - 1) + I, if K = 2, 

h4 + K3(i - 1) + K2(j  - 1) + K ( k  - 1) + I ,  
h=2 

if K 2 3. 
(26) 

B. Pe~ormance for Training Data 
Under various parameter specifications in genetic algo- 

rithms, the proposed method was applied to the iris data. Three 
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TABLE I 
AVERAGE CLASSIFICATTON RATE (%) 

Mutation robabili N p p  = 5 N p p  = 10 N p p  = 50 
P,=Ol 
p . , = O O l  
p,=ooo1 
P, = 0 0001 
P, = P," 9920 9941 9913 

p., = P,' 9827 9933 9920 
P", = P," 9933 9947 9973 

population sizes were examined: Npop = 5, 10, 50. The 
total number of generations was specified as 1000O/Npop, 
i.e., 2000 generations for Npop = 5,1000 generations for 
Npop = 10, and 200 generations for Npop = 50. The 
weights WNCP and WS were specified as WNCP = 10 
and W .  = 1. Four mutation probabilities were examined: 
P, = 0.1, 0.01, 0.001, 0.0001. In addition, the following 
three types of biased mutations were also examined 

0.1, sr = 1 -+ sr = -1, 
0.01) s, = -1 + s, = 1, 

0.01, s, = 1 + s, = -1, 
0.001) s, = -1 --$ s,  = 1, 

Type B: PE = 

0.001, s, = 1 + s, = -1, 
0.0001) s, = -1 + s, = 1. 

Type C: P z  = 

In these biased mutations, the probabilities are biased toward 
the mutation from s, = 1 to s, = -1 (i.e., toward the 
reduction of the number of fuzzy if-then rules). 

First, fuzzy if-then rules corresponding to K = 2,3 ,4 ,5 ,6  
were generated by Procedure 1 in Section LI from the 150 
patterns in the iris data (i.e., we specified L as L = 6). The 
number of the fuzzy if-then rules is 24 + 34 + 44 + 54 + 64 = 
2274 including 1582 dummy rules. Therefore the length of 
each string is 2274. Since the 1582 dummy rules are detected 
in the coding, our problem is to construct a compact fuzzy 
classification system by selecting significant fuzzy if-then 
rules from the other 692 rules. 

Simulation results by genetic algorithms with the above- 
mentioned various parameter specifications are summarized in 
Tables 1-111. These tables show the average results over five 
trials for each value of Npop and P,. From these tables, we 
can observe the following. 

i) From Table I: High classification rates over 99% were 
obtained by almost all the parameter specifications in the 
case of Npop = 10 and Npop = 50. The worst classifi- 
cation rate (97.87%) was obtained by the combination of 
the smallest population size ( Npop = 5) and the lowest 
mutation probability (P, = 0.0001). 

ii) From Table 11: The number of fuzzy if-then rules was 
very sensitive to parameter specifications. 

iii) From Table 11: Biased mutations (P, = P,", P,", P,") 
had a significant effect on the reduction of the number 
of fuzzy if-then rules. 

iv) From Table 111: The best fitness value (1479) was 
obtained by P, = P," and Npop = 10. In this case, the 
number of fuzzy if-then rules was reduced from 692 to 
12.6 (1.82%). 

TABLE II 
AVERAGE NUMBERS OF Fuzzy IFTHEN RULES 

P,=OI 
P , = O O I  
P, =0001 

K, = p.f 1100 

TABLE III 
AVERAGE VALUES OF THE FITNESS FUNCTION 

Uutation robabili NFP = 5  NVP = 10 NPP =50 
p,=o1 
I;, = 0 01 

/ : ,=OOOOl 

1' - p H  

r , = o 0 0 1  1462 1460 1324 

I:, = P"; 1464 1467 1454 
1478 1479 1464 
1461 1477 1378 

n8 - m 

In the above computer simulations, the maximum value of 
K (i.e., L in the definition of SALL) was specified as L = 6 in 
consideration of available computation power at hand. Since 
the length of strings is N = 2" + 3* + . + L" in the case 
of n-dimensional classification problems, N becomes long 
as the value of L increases. Therefore the computation time 
for the execution of genetic algorithms also becomes long. 
Simulation results with different values of L are shown in 
Table IV. Table IV shows the average results over five trials 
on a workstation (37 MIPS). In computer simulations, we 
used the best parameter specifications in the above computer 
simulations (i.e., P, = P," and Npop = 10). From Table 
IV, we can see that the computation time drastically increased 
with the value of L. On the contrary, the performance was not 
sensitive to the value of L in the range of L = 5-8. Therefore 
the choice of L (i.e., the choice of SALL) is not a serious issue 
from the point of view of the performance. 

For comparison, we classified the 150 patterns in the ins 
data by the fuzzy classification system based on a single fuzzy 
rule table. That is, the fuzzy if-then rules corresponding to 
a single value of K were employed for classifying the 150 
patterns. Simulation results are summarized in Table V. In 
Table V, the number of fuzzy if-then rules does not include 
dummy rules. From the comparison of Table V with Tables I 
and 11, we can see the effectiveness of the proposed method. 
That is, almost all the patterns were classified by a small 
number of fuzzy if-then rules in the proposed method (i.e., 
99.47% by 12.6 rules on the average in the case of the 
best parameter specifications) while the best classification 
rate 98.67% was obtained by 295 fuzzy if-then rules in the 
classification method based on a single fuzzy rule table. 

C. Pet$omance for Test Data 

In the above subsection, we have demonstrated high clas- 
sification power of the proposed method for training data. 
Since the proposed method selects fuzzy if-then rules based 
on the performance for training data, it may suffer from the 
overfitting to training data. To examine the performance of the 
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L: Maximum number of K 
Classification rate (%) 
Numberoffuzzyrules 
Computation time (min.) 

TABLE IV 
SIMULATION RESULTS WITH DIFFERENT VALUES OF L 

L=4 L=5 L = 6  L=7 L=8 
96.67 99 20 99.47 99.47 99.60 
8.8 11.8 12.6 14.8 19.0 

15.7 33.2 68.2 122.3 216.9 

K:FuzzyPattihon 
Classification rate (%) 
Numberoffuzzyrules 

K=2 K=3 K=4 K = 5  K=6 
67.33 94.M) 92.67 96.00 98.67 

16 62 129 190 295 

proposed method for test data, we performed the leaving-one- 
out technique [21] for the iris data. In the leaving-one-out 
technique, a single pattern was left as a test pattern and 
the other 149 patterns were used as training patterns. This 
procedure was iterated until all the given 150 patterns were 
used as a test pattern. 

The genetic algorithm with the best parameter specifications 
in the last subsection (i.e., P, = P," and Npop = 10) 
was employed to examine the performance of the proposed 
method for test data by the leaving-one-out technique. The 
rule set SALL was generated from 149 training patterns by 
specifying K = 2, 3, 4, 5, 6 in each iteration of the leaving- 
one-out technique. The following result was obtained after 
1000 generations: 

Classification rate: 94.67%, 
Error rate: 4.00%, 
Rejection rate: 1.33%, 
Average number of selected rules: 12.90. 

For comparison, simulation results by the classification 
method based on a single fuzzy rule table are shown in Table 
VI. The last row in Table VI shows the number of fuzzy if-then 
rules excluding dummy rules. From Table VI, we can see that 
a large number of fuzzy if-then rules were necessary to high 
performance in the case of the classification method based 
on a single fuzzy rule table. From the comparison of Table 
VI with the above result, we can see that the performance of 
the proposed method for test data was higher than that of the 
fuzzy classification method based on a single fuzzy rule table 
in the case of K = 2, 3, 4. In the case of K = 5, 6, the 
classification rate of a single fuzzy rule table was higher than 
that of the proposed method by 0.66-2.00%, but the single 
rule table approach requires more than 10 times fuzzy if-then 
rules in comparison with the proposed method. 

A slight deterioration of the generalization ability of the 
proposed method for test data is due to the overfitting to train- 
ing data. If our aim is to maximize the classification rate (i.e., 
to minimize the error rate) for test data, we should carefully 
choose the number of iterations of the proposed method as in 
the case of the learning of neural networks. To appropriately 
specify the number of generations in genetic algorithms, 
we monitored the performance of the proposed method for 
test data every 10 generations by using the leaving-one-out 
technique. From these computer simulations, we observed that 
the generalization ability of the proposed method was high 

Numberofgenerations 
P, = cy, W,,, = IO, Wy = 1 
e, = P:, W, = IO, W\ = 0 I 

TABLE VI 
PERFORMANCE FOR TEST DATA OF THE CLASSIFICATION 

h'f€THOD BASED ON A SINGLE FUZZY RULE TABLE 

I O  20 30 40 50 100 

96 67 96 67 96 67 96 00 96 00 96 00 
95 33 96 67 97 33' 96 00 97 33* 95 33 

~ ~ ~ p a ~ t i i  1:;:: t+;7 K=; :,p 1 
Classification rate (%) 67.33 93.33 89.33 95.33 96 67 
Error rate (%) 
Rejection rate(%) 000 0.00 0.00 0.00 0.00 

62.0 128.9 189.8 294.5 Number of fu rules 

when the number of generations was small. Simulation results 
by the leaving-one-out technique with various numbers of 
generations are shown in Table VII. In Table VII, we show 
the results with two parameter specifications for the weights: 
W ~ c p  = 10, W .  = 1 and W ~ c p  = 10, Ws = 0.1. From 
the comparison between Tables VI and VII, we can see that 
the best result (97.33% classification rate and 2.67% error 
rate) by the proposed method slightly outperforms that of the 
single rule table approach. In addition, it outperforms all the 
results reported by Grabisch and Dispot [22] for nine fuzzy 
classification methods (five methods based on fuzzy pattern 
matching, three methods based on fuzzy clustering and a fuzzy 
k-nearest neighbor method). In [22], error rates of the fuzzy 
classification methods for test data were estimated by the 
leaving-one-out technique on the iris data as follows: 

3.3-8.0% (five methods based on fuzzy pattern matching), 
4.7-6.7% (three methods based on fuzzy clustering), 
3.3% (fuzzy Ic-nearest neighbor method). 

D. Selected Fuzzy If-Then Rules 
Since a small number of significant fuzzy if-then rules 

are selected by the proposed method, it can be viewed as a 
knowledge acquisition tool. We applied the genetic algorithm 
with the best parameter specifications for training data (i.e., 
P, = P,", Wpy~cp = 10, Ws = 1 and Npop = 10) to the 
iris data. In Fig. 12, we show the selected fuzzy if-then rules 
after loo00 generations. All the 150 patterns were correctly 
classified by the selected 13 fuzzy if-then rules. The number 
of correctly classified patterns by each fuzzy if-then rule is 
listed in the column labeled patterns. 

We can find several characteristic features of the iris data 
in the selected fuzzy if-then rules. For example, we can see 
from the comparison of the first three rules with the other rules 
that the patterns in Class 1 are characterized by small attribute 
values of the third and fourth attributes (i.e., 2 3  and 24) .  We 
can also see that the second attribute (i.e., 22) of the patterns 
in Class 1 can take large values as well as small values. It 
is possible to find these characteristic features by examining 
the selected rules because the number of fuzzy if-then rules 
was drastically reduced by the proposed method. If there are 
hundreds of fuzzy if-then rules in a fuzzy classification system, 
it is practically impossible to carefully examine all of them. 
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Fig. 12. Selected fuzzy if-then rules. 

V. FUTURE EXTENSIONS 
As we have already explained, our genetic-algorithm-based 

approach to the construction of fuzzy classification systems 
consists of the following two parts. 

Purr 1: Generation of a set of fuzzy if-then rules. The rule 
generation procedure was described in Section II. 

Purr 2: Selection of significant fuzzy if-then rules from the 
rule set generated in the first part. The rule selection procedure 
was described in Section III. 

Since the rule selection procedure in the second part can 
handle any rule set, we do not have to restrict candidate 
rules within the rule set S A L L  defined in (10) or (23). One 
possible extension of the rule set SALL is to use different 
fuzzy subsets for each axis of the pattern space as shown in 
Fig. 13 where the horizontal axis is divided into five fuzzy 
subsets while the vertical axis is divided into three. Fuzzy 
if-then rules corresponding to 5 x 3 fuzzy subspaces in Fig. 
13 can be generated from given training patterns by slightly 
modifying the rule generation procedure in Section 11. The 
generated rules can be added to the rule set SALL and treated 
as candidate rules in the rule selection procedure in Section 
111. We can also use different types of membership functions 
for fuzzy partition as shown in Fig. 14 where both triangular 
and trapezoid membership functions are used. In this way, we 
can generate enormous fuzzy if-then rules as candidate rules 
for the rule selection procedure (see also [23]). On the other 
hand, the computation time required for the execution of the 
rule selection procedure becomes long as the rule set SALL 
becomes large (for example, see Table IV). In addition, since 
the length of each string in the rule selection procedure is 
the same as the cardinality of SALL, the larger SALL is, the 
larger the required memory is. Therefore we can not include 
too many rules in SALL from a practical point of view. 

~~ ......+............. '.......... ....I..............,...... 

......(..............,..............*.............,...... il m- 

Fig. 13. Fuzzy partition by a 5 x 3 fuzzy grid. 

mm 

Fig. 14. Fuzzy partition with triangular and trapezoid membership functions. 

In this paper, we generated candidate fuzzy if-then rules 
in SALL by using the same fuzzy subsets for each axis of a 
pattern space as shown in Figs. 1 and 2. Since our approach 
can handle any membership function and any fuzzy partition, 
this restriction of SALL can be. relaxed as mentioned above. 
But the relaxation of this restriction may lead to a huge rule 
set SALL and long computation time. Therefore a method 
for effectively restricting the rule set SALL within tractable 
size will be necessary. The extension of the rule set SALL 
and its restriction are left for future work. The adjustment of 
membership functions should be also addressed together with 
the above-mentioned issues in future (see [241). 

VI. CONCLUDING REMARKS 

In this paper, we proposed a genetic-algorithm-based 
method for selecting significant fuzzy if-then rules to construct 
a compact fuzzy classification system with high classification 
power. By computer simulations on the iris data, we showed 
that the number of fuzzy if-then rules was reduced to less 
than 2% of the generated 692 rules. The biased mutation 
probabilities played an important role in reducing the number 
of fuzzy if-then rules. The classification power of selected 
fuzzy if-then rules was also examined. It was shown by 
computer simulations on the iris data that the performance of 
selected fuzzy if-then rules was very high for training data. 
That is, the classification rates for training data were above 
99% in almost all the parameter specifications of genetic 
algorithms. The performance of the proposed method for 
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test data was also high when the number of generations in 
genetic algorithms was small. The best result obtained by 
the proposed method outperformed all the results reponed in 
1221 for nine fuzzv classification methods. Since the DroDosed 

[22] M. Grabisch and F. Dispot, “A comparison of some methods of fuzzy 
classification on real data,” in Proc. of IIZUKA ’92, Iizuka, Japan, July 
17-22, 1992, pp. 659462. 

[23] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Construction of 
fuzzy classification systems with rectangular fuzzy rules using genetic 

I I  - -  
algorithms,” Fuzzy Sits and Syst., vol. 65,  pp. 237-253, 19941 - 

classification rules by genetic algorithms,” in Proc. of FUZZ-ZEEWIFES 

method selects significant fuzzy if-then rules, it can be viewed ,241 T, Muram and H, Ishibuck, ‘.Adjusting membership functions of fuzzy 
as a knowledge acquisition tool for classification problems. 
Knowledge about a particular classification problem may be ’95 Yokohama, Japan,-Mar. 20-24, 1995, pp. 181S1824. 

found out by carefully examining selected fuzzy if-then rules. 
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