
NORTH. HOIIAND 

Tuning Fuzzy Logic 
Controllers by Genetic 

Algorithms* 
F. Herrera, M. Lozano, and J. L. Verdegay 

Department of Computer Science and Artificial Intelligence 
University of Granada, Spain 

ABSTRACT 

The performance of  a fuzzy logic controller depends on its control rules and 
membership functions. Hence, it is very important to adjust these parameters to the 
process to be controlled. A method is presented for tuning fuzzy control rules by genetic 
algorithms to make the fuzzy logic control systems behave as closely as possible to the 
operator or expert behavior in a control process. The tuning method fits the membership 
functions of  the fuzzy rules given by the experts with the inference system and the 
defuzzification strategy selected, obtaining high-performance membership functions by 
minimizing an error function defined using a set of  evaluation input-output data. 
Experimental results show the method's good performance. 

KEYWORDS:  f u z ~  logic control systems, tuning, genetic algorithms 

1. INTRODUCTION 

Recently fuzzy control techniques have been applied to many industrial 
processes. Fuzzy logic controllers (FLCs) are rule-based systems which are 
useful in the context of complex ill-defined processes, especially those 
which can be controlled by a skilled human operator without knowledge of 
their underlying dynamics. 

The essential part of the FLC system is a set of fuzzy control rules 
(FCRs) related by means of a fuzzy implication and the compositional rule 
of inference. 
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FCRs are usually formulated in linguistic terms, in the form of IF-THEN 
rules, and there are different modes for deriving them [1]. In all cases, the 
correct choice of the membership functions of the linguistic label set plays 
an essential role in the performance of an FLC, it being difficult to 
represent the experts' knowledge perfectly by linguistic control rules. 

The fuzzy-control-rule base has many parameters, and its control de- 
pends on the tuning of the control system. Therefore, an FLC contains a 
number of sets of parameters that can be altered to modify the controller 
performance. They are [2]: 

• the scaling factors for each variable, 
• the fuzzy set representing the meaning of linguistic values, 
• the IF-THE N rules. 
Each of these sets of parameters have been used as controller parame- 

ters to be adapted in different adaptive FLCs. 
In this paper we present an adaptive FLC that modifies the fuzzy set 

definitions (it alters the shapes of the fuzzy sets defining the meaning of 
linguistic values) to determine the membership functions that produce 
maximum FLC performance according to the inference system (fuzzy 
implication and compositional operator) and the defuzzification strategies 
used--that  is, to tune the FCR so as to make the FLC behave as closely as 
possible to the operator or expert behavior. This method relies on having a 
set of training data against which the controller is tuned. 

Recent work has centered on the use of mathematical optimization 
techniques to alter the set definition, so that the FLC matches a suitable 
set of reference data as closely as possible. This procedure is carried out 
off line and so tunes the controller before it is used. Among the proposed 
methods are the following: Nomura et al. reported a self-tuning method 
for fuzzy inference rules employing a descent method for Takagi-Sugeno 
fuzzy rules with constant outputs, and isosceles-triangular fuzzy numbers 
[3]. Glorennec presented an adaptive controller using fuzzy logic and 
connectionnist methods [4]. Gu61y and Siarry used the gradient descent 
method for optimizing Takagi-Sugeno rules with symmetric and asymmet- 
ric triangular membership functions and output functions (standard Sugeno 
rules), proposing the "centered Takagi-Sugeno rules" for avoiding a spe- 
cific class of local minima [5]. Zheng proposed a computer-aided tuning 
technique for fuzzy control by gradient analysis, input variables with width 
on each side equal to the interval between the two adjacent peaks, and 
output variables using symmetrical, equal-width, triangular membership 
functions [6]. On the other hand, some approaches using genetic algo- 
rithms (GAs) for designing an adaptive FLC have been presented in the 
literature [7-10]. 

We propose a tuning method for obtaining high-performance fuzzy 
control rules by means of special GAs. The tuning method using GAs fits 
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the membership functions of the fuzzy rules dealing with the parameters of 
the membership functions, minimizing a squared-error function defned by 
means of an input-output data set for evaluation. 

In order to do this, we set up the paper as follows. In the next section we 
describe the family of FLC systems that we study. Section 3 introduces the 
GA as a tool used for tuning knowledge-based rules. Section 4 presents a 
study of tuning fuzzy control rules, and Section 5 presents some examples. 
Finally we make some remarks thereon. 

2. FUZZY LOGIC CONTROLLERS 

Our FLC uses approximate reasoning to evaluate rules. We assume a 
family S = (T', T, I, G, D) of FLCs, with T' and T fuzzy conjunction 
connectives (like t-norms), I an implication function, G a disjunctive 
connective (like a t-conorm), and D a defuzzification method. Then we can 
represent the fuzzy logic control process as 

yO = S(xO), 

where x ° represents the value of the state variables and y0 the value of 
the control variables associated by means of the fuzzy controller. 

More concretely: 
1. The rule set is composed of a finite number of rules with the form 

IF X 1 is Ail  AND X 2 is Ai2 AND. . .AND x n is Ain THEN y is Bi, 

where xl . . . . .  xn, and y are linguistic variables representing the 
process state variables and the control variables respectively; and 
A / I , . . .  , Zin , Bi, i = 1 , . . . ,  m, are the linuguistic values of the linguis- 
tic variables xl . . . . .  Xn, y in the universes of discourse U1,..., Un, V. 

2. Linguistic labels A/j and B i have the form of trapezoidal-shaped 
functions. Fuzzy sets (linguistic terms) are used for obtaining the 
fuzzy rules from the expert. The parametric representation of the 
trapezoidal membership functions is achieved by the 4-tuple 
(q ,  ai, bi, di), which characterizes the membership functions. 

3. The fuzzy inference is made with T as a fuzzy conjunction and the 
generalized modus ponens constructed from T' and I. The inference 
process is the following: 

IF X 1 is Agl AND X 2 is Ai2 AND. . .  AND x n is Ain THEN y is B i 

x i s A '  

y i s  B' 

B~(y) = s u p { T ' ( A ' ( x ) ,  I ( A i ( x ) ,  B i (y ) ) ) [x  ~ Rn}, 

A i ( x  ) = T ( A i l ( X I )  . . . . .  A in(Xn)) .  
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Since the input is a point x --- x °, 

A ' ( x ) =  [1  if x ° = x ,  
0 if x ° #: 0; 

then the result is translated into 

B~(y) = T'(1, I (Ai(x°) ,  Bi(y))) = I(Ai(x°) ,  Bi(Y) ). 

4. The integration of all fuzzy rules is made by means of the disjunctive 
connective G: 

B'(y)  = G({Bi(y)}). 

5. The defuzzification method produces the control action that best 
represents the possibility distribution of an inferred fuzzy control 
action, 

yO = D(B'(y)) .  

Several methods, for example, the center of gravity or center of area, 
mean of maximum, weight average of the center of gravity by the 
heights, and maximal-height methods (max criteria, max gravity cen- 
ter) (see [11, 12]), can be considered. 

Most of the existing FLCs are based on the fuzzy reasoning method 
called the "min-max-gravity method" by Mamdani [13]. However, different 
fuzzy implications as well as compositional operators and defuzzification 
strategies often employed in an FLC have been described in the literature 
[14, 15, 11, 12]. We will use the max-min inference system (I  = MIN, 
G = MAX), T = MIN, and all the aforementioned defuzzification strategies. 

3. GENETIC ALGORITHMS 

GAs are search algorithms that use operations found in natural genetics 
to guide the trek through a search space. GA are theoretically and 
empirically proven to provide robust search in complex spaces, offering a 
valid approach to problems requiring efficient and effective search (see 
[16]). 

Any GA starts with a population of randomly generated solutions 
(chromosomes) and advances toward better solutions by applying genetic 
operators, modeled on genetic processes occurring in nature. In these 
algorithms we maintain a population of solutions for a given problem; this 
population undergoes evolution in a form of natural selection. In each 
generation, relatively good solutions reproduce to give offspring that 
replace the relatively bad solutions, which die. An evaluation or fitness 
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function plays the role of the environment in distinguishing between good 
and bad solutions. 

Although there are many possible variants of the basic GA, the funda- 
mental underlying mechanism operates on a population of individuals, and 
consists of three operations: 

1. evaluation of individual fitness, 
2. formation of a gene pool, and 
3. recombination and mutation. 

The initial population P(0) is chosen randomly, and the individuals result- 
ing from these three operations form the next generation's population. 
The process is iterated until the system ceases to improve. Generally, each 
individual in the population is represented by a fixed-length binary string 
which encodes values for variables. 

During iteration t, the GA maintains a population P ( t )  of solutions 
xtl . . . . .  xtR (the population size R remains fixed). Each solution, x~, is 
evaluated by a function E(.), with E ( x [ )  being a measure of the fitness of 
the solution. The fitness value determines the relative ability of an individ- 
ual to survive and produce offspring in the next generation. In the 
(t + 1)th iteration a new population is formed on the basis of the opera- 
tors (2) and (3). 

Figure 1 shows the structure of a simple GA. 
The recombination is produced using the crossover operator, which 

combines the features of two parent structures to form two similar off- 
spring; this is applied under a random position cross with a probability of 
performance (the crossover probability) Pc. The mutation operator arbi- 
trarily alters one or more components of a selected structure so as to 
increase the structural variability of the population. Each position of each 
solution vector in the population undergoes a random change according to 
a probability defined by the mutation rate (the mutation probability) pro. 

Procedure genetic algorithm 
begin (1) 

t = 0; 
inicialize P(t); 
evaluate P(t); 
While (Not terminationc-condition) do 
begin (2) 

t = t + l  
select P(t)  from P(t - 1); 
recombine P( t ); 
evaluate P(t); 

end (2) 
end (1) 

Figure 1. GA structure. 
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Thus, it is generally accepted that any GA for solving a problem must 
take into account the following five points: 

1. a genetic representation of  solutions to the problem, 
2. a way to create an initial population of  solutions, 
3. an evaluation function that gives the fitness of  each individual, 
4. genetic operators that alter the genetic composition of  children during 

reproduction, and 
5. values for the parameters that the GA uses (population size, probabili- 

ties o f  applying genetic operators, etc.). 
The robustness and simple mechanism of GA make them a potentially 

useful tool to search for a good parameter configuration for the set of 
fuzzy control rules in the input/output spaces, which justify its use for 
tuning FLCs. 

4. TUNING FUZZY CONTROL RULES 

Training data (TRDs) are necessary for tuning fuzzy controllers. A 
group of TRDs is a pair of input-output data, in which the output data are 
desired output values, and the input data are relevant fuzzy input values. 
These tuning data represent the skilled-operator control behavior. 

The difficulty in tuning a fuzzy controller can be attributed to the 
interference between fuzzy tunable parameters. A skilled operator's behav- 
ior can be described by many groups of tuning data, and one fuzzy control 
action comes from the synthesis of all rules' degrees of fulfillment [6], that 
is, the result of matching every input value in the antecedent with the 
corresponding membership functions. 

Therefore, tuning any membership function usually affects more than 
one rule, and every rule may affect each fuzzy control action. Hence, a key 
problem is how to take tuning actions to provide the closest match for 
controller actions covering the entire range of tuning data. 

We propose a tuning method for obtaining high-performance FCRs by 
means of special GAs, whose components are described as follows. 

4.1. Representation 

In the population of our special GAs a candidate solution C r ,  r = 

1 . . . . .  R, represents an FCR, and a rule 

IF x! is Ail AND X 2 is Ai2 AND... AND X n is Ain THEN y is Bi 

is represented by a piece of chromosome Cri, i = 1 , . . . ,  m. Therefore, a 
base of m FCRs is represented by the chromosome Cr: 

C r = Cr l  Cr2 . . .  Grin.  
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Since a label has the form of a trapezoidal-shaped function with a 
parametric representation by a 4-tuple, the Ai j  will be represented by the 
4-tuple (c u, aij, bij, dij) ,  and B i by (c'i, a'i, b~, d'i), i = 1 , . . . ,  m ,  j = 1 . . . . .  n. 
Then Cri codes the vector values 

Cr i  = ( c /1  , all ,  bil, d / l , . . . ,  Cin, ain , bin, din , c'i, a' i, b~, d'i). 

In [17, p. 75] Michalewicz wrote: 

The binary representation traditionally used in genetic algorithms has some draw- 
backs when applied to multidimensional, high-precision numerical problems. For 
example, for 100 variables with domains in the range [ - 500, 500] where a precision 
of six digits after the decimal point is required, the length of the binary solution 
vector is 3000. This, in turn, generates a search space of about 101°°°. For such 
problems genetic algorithms perform poorly. 

That is our case. For example with n = 2, m = 7, we have 84 real 
values; supposing a domain in the range [ - 1 ,  1] where a precision of six 
digits after the decimal point is required, the length of the binary solution 
vector is 1.764. This generates a search space of about 105°°. 

We propose to approach this problem with real coded genes together 
with special genetic operators for them. Then an FCR set would be a 
chromosome vector coded as a vector of floating-point numbers, the 
nearest to a natural representation of the problem. The precision of such 
an approach depends on the underlying machine, but is generally much 
better than that of the binary representation. We can always increase the 
precision of the binary representation by introducing more bits, but it 
increases the size of the search space exponentially, and this slows down 
the algorithm considerably (see [18, 17]). 

Finally, we represent a population of R rules by C, and it is set up as 
follows: 

C = ( C 1  . . .  CR)" 

4.2. Formation of an Initial Population or Gene Pool 

The initial gene pool is created from the initial FCR set given by the 
expert. This initial FCR set is a chromosome, which is denoted as C 1. As 
we want to tune the FCRs, we define for every gene c h of C1, h = 1 , . . . ,  H, 
H = (n + 1) x 4, an interval of performance for it, [c~, c~], which will be 
the interval of adjustment of this variable, Ch ~ [Cth, C~h]. 
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If t mod4 = 1, then c t is the left value of the support of a fuzzy number. 
The fuzzy number is defined by the four parameters (ct, Ct+a, c t +  2, ct+3), 
and the intervals of performance that we define are the following: 

l r [ Ct +1 -- Ct Ct+l -- Ct ] 
c, 2 , c , +  , 

, r  [ ct+,-c, 
c,+ 1 ~ [ c , + l , c , + , ]  = c,+, 2 ' C t + l  -[- 2 ' 

C 1 r [ Ct+2 -- Ct+l  Ct+3 -- C t + 2 ]  
Ct+ 2 E~_ [ t+2 ,¢ t+2 ]  = Ct+ 2 2 'Ct+2 nL 2 ' 

1 [ Ct+3 -- Ct+2 Ct+3 -- Ct+2 ] 
c ' + 3 ~  [ c ' + 3 ' c t ' + 3 ]  = c '+3  2 ' c ' + 3  + 2 " 

Figure 2 shows these. 
The initialization process is very simple: we create a population of 

chromosomes, with C1, and with the remaining chromosomes initialized 
randomly, each gene being in the respective interval of performance. 

4.3. Evaluation of Individual Fitness 

We consider a training input-output data set of size K, 

{ (x i ,  Yi) = (Xil . . . . .  x i , ,  Y i ) ,  i = 1 . . . .  , K } .  

/ ! ' "  i 
/ 

/ 
/ i i \ ' ,  

/ /  ; ! " \  
/ ; "\ 

r r .r Ct+2 Ct+2 Ct÷3 Ct+3 C~ C t C[ ct+ l ct+ t 
c[+,  ' c ' , . ,  Ct+2 

Figure 2. Intervals of performance. 
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The inference error  of an FLC, S, with an FCR set BR and the 
input-output data set TRD,  is calculated as the sum of the quadratic 
errors. It is specified by the function 

1 K 
E ( S , B R ,  TRD)  = ~ ~ [Yi  - S(xi)]  2. 

i=1 

The fitness function of the GA for a chromosome Cj coding an FCR set 
BRj and the training data TRD is defined as follows: 

1 K 
F ( C j )  - - E ( S ,  BR~,TRD) = ~ ~ [ y i -  S(x~)] e 

i=1 

in order  to minimize the fitness function. 

4.4. Genetic Operators  

During the reproduction phase of the GA we use two classical genetic 
operators: mutation and crossover. 

We propose to use the nonuniform mutation proposed by Michalewicz 
[17]. If C~ = (c 1 . . . . .  c k . . . . .  c1_ 1)  is a chromosome and the element c k was 
selected for this mutation (the domain of c k is l r [cg, ck]), the result is a 
vector Cry + 1 = (Cl . . . . .  c~ . . . . .  c1-i), with k ~ 1 . . . . .  H, and 

c k + A(t, Ckr - c k )  if a random digit is 0, 
! 

C k = 
c k - A(t, c k - Ck t )  if a random digit is 1, 

where the function A(t, y)  returns a value in the range [0, y] so that the 
probability of A( t ,y )  being close to 0 increases as t increases. This 
property causes this operator  to make a uniform search in the initial space 
when t is small, and very locally at later stages. 

In relation to the crossover operator,  we use two different operators: 
1.  S i m p l e  c r o s s o v e r .  It is defined in the usual way, with a crossover 

point. If Ctv = (c I . . . .  , ck  . . . .  , ci-I)  and Ctw = (c' 1 . . . . .  c~, . . . .  , c~/) are 
to be crossed, and assuming that the crossover point is (randomly) 
selected before the k th  gene, the two resulting offspring are 

! ( ] t + l  = (C1, ' • C . ) ,  - - v  " ' ' ~ C k - l , e k ,  " ' ~  

c t + l  = (Ctl , Ck  ' C H ) .  w ' ' ' ' ' C k - l ~  " ' ' ~  
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2. Max-min-arithmetical crossover. If Cry and Ct~ are to be crossed, we 
generate 

C~ +1 = aC t + (1 - a)Ct,, C~ +1 = aCt + (1 - a)Ctw, 

, _t+ 1 = max{ck ' c~,}. C~ +1 with ~3k-t+l = min{ck, Ck}, C~ +~ with C4k 

This operator  can use a parameter  a which is either a constant, or a 
variable whose value depends on the age of the population. The 
resulting offspring are the two best of the four aforementioned 
offspring. 

4.5. Parameters 

We carry out our experiments with the following parameters: 
• Population size: 61. 
• Probability of crossover: Pc = 0.6 (max-min-arithmetical crossover, 

a = 0.35). 
• Probability of mutation: 

Probability of chromosome update: Pm = 0.6. 
Probability of gene mutation: Pm~gen) = 0.007140. 

• Selection procedure: Stochastic universal sampling; the number of 
offspring of any structure is bounded by the floor and ceiling of the 
expected number of offspring [19]. 

The following section presents some experimental results for such a 
genetic system for tuning fuzzy logic controllers. 

5. EXPERIMENTAL RESULTS 

An inverted pendulum is a very good example for control engineers to 
verify a modern control process. Figure 3 shows the system. 

angle / i  

Figure 3. "inverted pendulum. 
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On the assumption that I01 << 1 (radian), the nonlinear differential 
equation which controls the behaviour of pendulum can be simplified to 

L dE0 L - F + m g s i n O - k  
m 3  dt 2 2 ' 

where k dO~dr is an approximation of the friction force. 
The state variables are 0, the angle; w, the angular speed; and the 

control variable f ,  the force. For  every (00, w o) we try to find the force 
that we must apply to the center of gravity of the pendulum for a constant 
time in order  to take the pendulum to the vertical position. 

We consider the linguistic rules proposed by Yamakawa [20], but instead 
of the speed of the cart pole considered by him, we consider the force as 
an output variable. 

The linguistic term set is 

{Negative Large (NL), Negative Medium (NM), Negative Small (NS), 

Zero (ZR), 

Positive Small (PS), Positive Medium (PM), Positive Large (PL)}, 

and the fuzzy linguistic rules are: 

Rule 1. IF 0 is PM AND to is ZR  THEN f is PM. 
Rule 2. IF 0 is PS AND to is PS THEN f is PS. 
Rule 3. IF 0 is PS AND to is NS THEN f is ZR. 
Rule 4. IF 0 is NM AND to is ZR  THEN f is NM. 
Rule 5. IF 0 is NS AND to is NS THEN f is NS. 
Rule 6. XF 0 is NS AND to is PS THEN f is ZR. 
Rule 7. IF 0 is ZR  AND to is ZR  THEN f is ZR. 

A pendulum weighing 5 kg and 5 m long has been considered in a real 
simulation, applying the force to the gravity center, for a constant time of 
10 ms. Under  these parameters the universes of discourse of the variables 
are the following: 

0 ~ [ - 0.5240, 0.5240] rad, to ~ [ - 0.8580, 0.8580] r ad / s ,  

f c [ - 2980.0, 2980.0] N. 

Initially the membership functions corresponding to each element in the 
linguistic term set must be defined. We have considered the discretization 
of the universes presented in [21]. 

Since any optimum values always depend on specific models, we use the 
max-min inference system ( I  = MIN, G = MAX), T = MIN, and the follow- 
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Table 1. Error Reduction: Quadratic Error 

QE 

Strategy Initial FCR GA1-FCR GA2-FCR 

COA 669.406, 2500 58.968, 8984 64.044, 7500 
MOM 2.028.396, 7500 193.374, 7188 250.266, 0312 
WECOA 630.547, 8750 54.619, 2188 58.459, 5000 
MC 1.248.722, 1250 796.287, 8125 863.310, 3750 
MCOA 1.248.722, 2 5 0 0  501.209,1250 522.959, 0625 

ing defuzzification strategies: center of area (COA), mean of maximum 
(MOM), weight average of the center or area by the heights (WECOA), 
and the maximal-height methods: max-maximum criterion (MC) and max- 
center of area (MCOA) [11, 12]. 

Experimentally we have obtained a TRD with 68 input-output data 
(TRD-1) in the intervals 

[-0.275,0.275], [-0.454,0.454], and [1576.681, 1576.681] 

for 0, to, and f respectively. 
We apply the two proposed GAs for obtaining the high-performance 

FCR: GA1 with simple crossover, GA2 with max-min-arithmetical 
crossover, for T -- 5000 iterations. 

Tables 1 and 2 show the behavior of the initial FCR, the FCR obtained 
by GA1 (GA1-FCR), and the FCR obtained by GA2 (GA2-FCR), present- 
ing the quadratic error (QE) and the linear error (LE). In all cases the 
behavior of the final set of fuzzy linguistic rules has been improved. 

REMARKS GA1 and GA2 have been run for every defuzzification 
method, obtaining high-performance FCR sets associated to every de- 

Table 2. Error Reduction: Linear Error 

LE 

Strategy Initial FCR GA1-FCR GA2-FCR 

COA 4.149, 4062 1.005, 0128 1.174, 9415 
MOM 10.407, 3691 3.270, 4431 3.392, 4426 
WECOA 3.100, 4968 0.730, 9796 0.848, 7941 
MC 7.267, 7412 6.131, 2129 6.424, 4795 
MCOA 7.267, 7417 5.439, 5615 5.571, 3335 
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1000 - 5000  ITERATIONS 

. . . . . . . . . .  

t l l l ~  

GENETIC ALGORITHM 1 t }~'' . . . . . .  
CONVEGENCE FROM INITIAL GENE POOL ' "  

J ' \1-~ 
TO FINAL POPULATION , . , . , , t - - -~  . 

1400  r -~  , - -  I l l "  1 , ¢ ~  ~ m t d ~  ~ I q D ~ t l O l ' U L  

,2oo;- . . . .  IN.IT!AL. FCR; 6 6 9 . 4 0 6 , 2 5  . 
,r looo~ i M E A N I N I T . , - P O P U L ' - 1 , 2 0 0 , 5 5 7  ! 
. soo~ . . . . .  B E S T F C R :  5 8 ; 9 6 7 ; 5 5 1  . . . .  ! 
I 800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ' 

• ,oo ~ I / M E A i ~ .  B E S T .  POPUL.~ .5B.967 ,71711  

3600 - 5000  ITERATIONS 
0 0 .8  1 1.6 2 2,6 3 3.15 4 4,8 5 

I t e r a t i o n s  - T h o u s a n d  

- -  BEST  FCR ~ MEAN OF FCR-POPUL .  =e, ny  . . . . . . . . . . . .  

Q U A D R A T I C  E R R O R  ...... ~ \  . . . . . . . . . . . . .  

MAX-MIN - COA -.*.,I.-- ~-\ ......... i 

U~JUIL I  • 4.~ 4 . t 4 . 44 .44J4 .04 , r  ~4J  * 
i ~  - Thaumml  

Figure 4. Convergence of genetic algorithm 1. 

fuzzification method. In the second and third columns of the tables we 
evaluate the ten FCR sets obtained using GA1 and GA2. 

Figures 4 and 5 show the behavior of both GAs in the case of COA 
defuzzification methods. 

Figures 6-9 show the behavior of the inverted pendulum with the 
max-min inference system and the defuzzification methods COA and 
WECOA, and with the three fuzzy control rule sets. The force is applied 
every 600 ms. The graphics represent the position of the pendulum (0 in 
milliradians) and its stabilizations. 

We observe that the best stabilization of the FLC in time occurs with 
the tuning FCR sets obtained by the GA that we have proposed. 

Next, we use the MOM defuzzification method. As we can observe in 
the tables, the error of this method is greater than the error associated 
with COA and WECOA. Here we can notice that it is necessary to apply 
the force in smaller intervals of time, due to the bad behavior of the MOM 
method. In the case of applying force every 600 ms, the initial FCR and 
the GA1-FCR lose control of the inverted pendulum, whilst the GA2-FCR 
set keeps control. The initial FCR set has the worst behavior. Figures 8 
and 9 show this. 
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1 0 0 0  - 5 0 0 0  I T E R A T I O N S  

. . . . . . . . . . . . . . . . . .  i 

~,~,~ . . . . . . . . . . . . . . . . . . . . . . .  j 

G E N E T I C  A L G O R I T H M  2 - - i  --)'~-..~ . . . . . . . . . .  
CONVERGENCE FROM INITIAL GENE POOL ......... 
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Figure 5. Convergence of genetic algorithm 2. 
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Figure 7. Inverted pendulum: max-min, WECOA. 

6. CONCLUSIONS 

In this paper we have presented a tuning method for fuzzy control rules 
by means of Gas. The usefulness of this method is verified by some 
numerical examples. As shown by the results, the FCRs obtained greatly 
improve the behavior of the FLC systems: clearly the quadratic and the 
linear error have been decreased. We conclude by pointing out the 
effectiveness of the proposed tuning method, and that high-performance 
FCRs are obtained. 
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Figu re  8. I n v e r t e d  p e n d u l u m :  max-min ,  M O M ,  600 ms. 
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Figure 9. Inverted pendulum: max-rain, MOM, 200 ms. 
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