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Abstract

This paper presents the fuzzy classifier sys-
tem which merges the ideas behind classi-
fier systems and fuzzy controllers. The fuzzy
classifier system learns by creating fuzzy rules
which relate the values of the input vari-
ables to internal or output variables. It
has credit assignment mechanisms which re-
assemble those of common classifier systems,
but with a fuzzy nature. The fuzzy classi-
fier system employs a genetic algorithm to
evolve adequate fuzzy rules. Preliminary re-
sults show that the fuzzy classifier system can
effectively create fuzzy rules that imitate the
behavior of simple static systems.

1 INTRODUCTION

In spite of the potential of classifier systems as a learn-
ing paradigm, they have found little application in
the adaptive control of processes. It can be said that
this is due in part to the limitations of the classifier
syntax when representing continuously varying vari-
ables. Fuzzy controllers are a controller design ap-
proach which is not based on a mathematical descrip-
tion of the process being controlled. A fuzzy controller
models the knowledge used by human operators as a
set of rules in which variables take linguistic values
[13].

In a fuzzy controller, relations between inputs and out-
puts are expressed as fuzzy rules. The fuzzy controller
implements a fuzzy relation between all the possible
values of the inputs and the indicated values of the
outputs. This concept has been successfully applied
in many occasions: control of a cement kiln [5], traffic
control [9], robot arm control [11], and temperature
contro] of a heated air-stream [6], are only a few ex-
amples. In a typical fuzzy controller [7], fuzzy rules
are derived either from manuals of operation or from
human operators that have successfully controlled the
system and which have acquired their rules through

experience. Algorithms that modify the fuzzy rela-
tion implemented by the fuzzy controller have been
proposed [8, 10]. The fuzzy classifier system (FCS)
is motivated by the ideas of fuzzy controllers, but de-
parts from previous implementations in the manner in
which it creates new rules and adjusts the contribution
of the existing rules to the system outputs.

The FCS merges the credit assignment mechanisms of
common classifier systems [4, 2] and the use of fuzzy
logic of fuzzy controllers. It represents its fuzzy rules
as binary strings on which a genetic algorithm oper-
ates, therefore allowing for the evolution of adapted
rule sets. The FCS allows inputs, outputs, and in-
ternal variables to take continuous values over given
ranges, thus it could be applied for the identification
and control of dynamic systems. In the rest of this
paper, the FCS will be described. Preliminary results
will be presented that show that the FCS can success-
fully identify simple static systems.

2 FUZZY LOGIC

Similarly to fuzzy controllers, the FCS represents all
its knowledge by means of fuzzy rules. To introduce
the concept of fuzzy rules, let us first review fuzzy sets
and their operations.

2.1 FUZZY SETS AND OPERATIONS

Fuzzy set theory [1, 13] can be defined as a generaliza-
tion of common set theory in which the membership of
an element to a set is defined by a membership func-
tion. In this way, an element can partially belong to a
set. In fuzzy set parlance, common sets are also called
cTisp.

Set operations can be defined over fuzzy sets analo-
gously to crisp set operations. The generalization of
these crisp set operations to fuzzy sets can be per-
formed in different ways. The following definitions are



one of such possible manners, they constitute a con-
sistent framework, and they are the most commonly
used.

Let A and B be fuzzy sets over the variable & € [zo, 2]
where 2o, 2y € . Let A and B be defined by the mem-
bership functions pa(z) € [0,1] and pp(z) € [0,1],
respectively.

Definition 1 The union of A and B, denoted by AU
B, is defined by the following membership function:

paup(z) = max(pa(z), us(z)).

Definition 2 The intersection of A and B, denoted
by AN B, is defined by the following membership func-
lion:

pans(z) = min(pa(z), pp(2)).

Definition 3 The complement of A, denoted by A’,
ts defined by the following membership function:

pa(z) =1-pa(z).
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Figure 2: Fuzzy union of sets cold and hot.

For example, consider two fuzzy sets, cold and hot, over
Lhe variable ¢ (temperature in Celsius degrees), and de-
fined by the membership functions shown in Figure 1.
"The membership functions of the union and the inter-
seclion of these sets are shown in Figures 2 and 3.
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Figure 3: Fuzzy intersection of sets cold and kot.

2.2 FUZZY RULES AND RELATIONS

A fuzzy rule is an if-then expression in which condi-
tions and action are fuzzy sets over given variables.
Fuzzy rules are also called linguistic rules, because
they represent the way in which people usually for-
mulate their knowledge about a given process. The
following are examples of fuzzy rules:

tf the temperature is high,
then slightly reduce the gas intake;

if the pavement is very wet,
then moderately reduce your driving speed.

A fuzzy relation maps one or more independent vari-
ables into a dependent variable. A set of fuzzy rules, in
which the antecedents refer to the same independent
variables and the consequences refer to a same depen-
dent variable, form a fuzzy relation. In other words, a
way of expressing a fuzzy relation is by a set of fuzzy
rules. Expressing a fuzzy relation as a set of fuzzy
rules is computationally convenient because in general
it requires less memory storage than expressing the
relation in tabular form.

2.3 FUZZY RULES IN THE FCS

The FCS operates over variables that can be inputs,
outputs, or internal. The FCS relates the values of
the inputs and the internal variables and generates
outputs according to fuzzy rules, similarly to a fuzzy
controller. These rules or classifiers are represented as
binary strings that encode the membership functions
of the fuzzy sets involved in the fuzzy rule. To allow
for a uniform procedure, the FCS linearly maps all
variables to the range [0,1]. For each variable, n com-
ponent fuzzy sets are defined so that their membership
functions span the interval [0,1]. The number of these
component sets is defined by the user according to the
precision required. The peaks of the membership func-
tions of the component sets that span a variable are
equally spaced. The following expression defines the



membership function of the i-th fuzzy set for the vari-
able z € [wo, zy]:

e~ (&=hi}/o
- (1 + e—(’”—hi)/a)2 ’

)\(.’L', hi) (1)

where
8) — -6
h,-:(i—l)(xf+ ) = (=0 )+(xo-6),
n-—1
fori =1,2,...,n. The parameter ¢ controls the width

of the component sets. The user must choose a value
of o according to the value of n so that the interval
is adequately covered. The parameter § expands the
effect of the component sets outside the range of z
thus increasing the precision for values near zo and
zj. The user must choose a value of § according to
the sensitivity of his application to values of z close to
Zo OF Zj.

All the membership function used by the FCS are gen-
erated from Equation 1 with different values of i and
o. Conditions and recommended actions are binary
coded so that the number of bits in a condition or
an action is the number of fuzzy sets defined over the
given variable. A “1” indicates that the corresponding
fuzzy set is part of the condition or action. Addi-
tionally, a non-fuzzy binary tag is attached. This tag
indicates to which variable the condition or action is
referring to. Tags are followed by a colon. Consider
for example the classifier 0:110/1:001 in which three
component sets are defined over variables 2 and ;.
The membership functions of condition 0:110 and ac-
tion 1:001 are shown in Figures 4 and 5. The rule
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Figure 4: Membership function of condition 0:110.

represented by these sets can be expressed in words as
“if xo is low or medium then z; should be high.” No-
tice that the FCS syntax does not include the wildcard
character #.
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Figure 5: Membership function of action 1:001.

3 OPERATION OF THE FCS

The operation of the FCS is similar to that of a com-
mon classifier system. Figure 6 presents a block dia-
gram of an FCS. The basic cycle of a FCS is as follows:

1. The input unit receives input values, encodes
them into fuzzy messages, and adds these mes-

sages to the message list.

2. The classifier list is scanned to find all classifiers
whose conditions are satisfied by the messages in
the message list.

3. The message list is erased.

4. All matched classifiers are fired, and the messages
produced are stored in the message list.

5. The output unit detects the output messages, and
erases these messages from the message list.

6. In the output unit, output messages are decom-
posed into minimal messages.

7. Minimal messages are defuzzified and transformed
into output values.

8. Payoff from the environment and classifiers is
transmitted through the messages to the classi-
fiers.

The following subsections explain the operation details

of the FCS.

3.1 FUZZY MESSAGES AND FUZZY
MATCHING

The values taken by variables are broadcast to the clas-
sifiers as messages. Each classifier will verify if its con-
ditions are matched, 1.e. satisfied, by the messages, and
if so, will post a new message according to its indicated
action.

There are two alternative and equivalent ways in which
the process of a fuzzy rule being matched can be
viewed. First, a fuzzy rule can be thought of as re-
ceiving real valued variables, and performing a fuzzy
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Figure 6: Block diagram of the FCS.

match between the values of these variables and the
fuzzy sets defined in its condition. A second view is
possible, one more convenient when handling sets of
rules. A fuzzy rule can be thought of as receiving
fuzzy values, and performing a perfect match between
these fuzzy values and its condition.

Suppose for example two classifiers, 0:010/1:100 and
0:001/1:001, each with a condition over the input vari-
able o and an action over the output variable z;; also
suppose that zo takes the value of 0.3. It is equivalent
Lo say that classifier 0:010/1:100 is matched with a de-
gree of A(0.3, ko) and classifier 0:001/1:001 is matched
with a degree of A(0.3,h3), or to say that the mes-
zages 0:010 and 0:001 are present with activity lev-
els of A(0.3, hy) and A(0.3, h3) respectively, and that
classifiers 0:010/1:100 and 0:001/1:001 are perfectly
matched by these messages.

The I'CS implements the second approach by having
ay input unit that fuzzifies inputs into fuzzy messages.
Fach message has an associated activity level which
measures the degree of belonging of the input variable
tor Lhe luzzy set defined by the membership function
irpresented by the message. Fuzzy classifiers match
these miessages and generate new messages with activ-
ity levels that correspond to the degree in which the
comditions of the classifier are satisfied. This fuzzifi-
ration of inputs 1s accomplished by creating minimal
messages one for each fuzzy set defined over the vari-
alile. A minimal message has a single “1.”

The malehing of a condition in a classifier by a message
i+ donein two steps. First, the tags of the message and
condilion are compared; if they are the same they refer

to the same variable, if so, the rest of the message and
condition are compared. Second, if at least there is
one position in which the condition has a “1” and the
message also has a “1,” then the condition is satisfied.?
The satisfaction level of a condition is equal to the
maximum activity level of the messages that match
this condition; this implements a fuzzy union. The
activity level of a classifier is equal to the minimum of
the satisfaction levels of all its conditions; therefore,
implementing a fuzzy intersection. When a classifier
fires, it generates a new message with an activity level
proportional to the classifier’s own activity level.

3.2 DEFUZZIFICATION IN THE OUTPUT
UNIT

The FCS must translate messages referring to output
variables into real values. This process of defuzzifica-
1ion 1s accomplished in the output unit by decomposing
each output message into its corresponding minimal
messages. The activity levels of minimal messages cor-
responding to the same variable and component set are
added up and the messages are substituted by a single
message. For each output variable, a fuzzy union is
performed over the component sets represented by the
minimal messages multiplied by their activity levels.
Then, the gravity center of the union is taken. This

!This can be explained by recalling that a condition
is a fuzzy union of the fuzzy sets that correspond to the
bits that are “1.” A condition as 0:101 in words would be
“variable 0 takes the value low or high.” This is satisfied
by any of the messages 0:100, 0:001, 0:101, 0:110, 0:011, or
0:111.
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gravity center is the output value.

The total gravity center can be obtained by first cal-
culating the gravity center of the contribution of each
minimal message. Then the total gravity center G is

calculated as:
_ 2o Aigs
G = S 4,

where A; is the area contribution of the ¢-th minimal
message, and g; is the gravity center of A;. Figure 7
shows the intersection of three minimal messages with
activity levels of 1.0, 0.6, and 0.8. Ay, A, and A3 are
the area contributions of these messages.
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Figure 7: Intersection of three minimal messages and
their area contributions.

3.3 CREDIT ASSIGNMENT AND FUZZY
BUCKET BRIGADE

After the output unit has produced an output value,
the environment judges this output, and accordingly,
gives payoff to the output unit. The output unit dis-
tributes this payoff through the minimal messages to
the classifiers that produced the output messages. The
payoff is distributed in such a manner that classifiers
that contributed more to the output taking a specific
value receive a larger share of the payoff. In this way,
classifiers that are directly involved in producing cor-
rect outputs receive increases in their strength.

Payoff to other classifiers that do not produce outputs,
but post messages that allow for others to fire and re-
ceive payoff, is distributed following the bucket brigade
algorithm of common classifier systems. According to
the bucket brigade algorithm, matched classifiers bid
a small portion of their strength for the right to fire.
Firing classifiers pay their bids to those that posted
the messages that allowed them to fire. In this way,
a competitive economic system is established in which
classifiers that produce or help produce good outputs
have their strengths increased, and other have their
strengths decreased. A basis against classifiers that do
not participate in the competition is achieved through

a living tax by which all classifiers have a small portion
of their strength deducted every time step.

3.4 CREATION OF NEW RULES
THROUGH A GENETIC ALGORITHM

In a FCS, classifiers are selected by a genetic algo-
rithm (GA) [2, 3] for reproduction according to their
strength: stronger classifiers are selected more than
weaker ones. Pairs of classifiers for mating are ob-
tained by choosing classifiers randomly according to
their selection probabilities. Each couple reproduces,
creating new rules by crossover. After crossover, mu-
tation occurs with a specified small probability. To
keep constant the size of the classifier list, weak clas-
sifiers are deleted.

4 A LEARNING TASK

As afirst test for the FCS, a simplified task was chosen: -
the imitation of static one-input one-output systems in
which the output depends only on the present input
and not on past states of the system.

4.1 IDENTIFICATION WITH A
STIMULUS-RESPONSE FCS

For this task we only require a stimulus-response FCS.
A stimulus-response FCS is one in which classifiers
post only output messages, and classifiers only respond
to input messages. In this way, the bucket brigade
does not need to operate. The FCS and the system
are setup as shown in Figure 8. The FCS and the sys-
tem to be identified receive the same input generated
randomly among a range of possible inputs by an in-
pul generator. The output of the FCS is compared to
that of the system, and a payoff is assigned to the FCS
by a performance evaluator. The FCS receives higher
payoff when it best imitates the behavior of the sys-
tem. In this way, the FCS constructs a fuzzy model of
the system.

The performance evaluator assigns payoff to the FCS
output according to the following equation:

P:P0|u—y|>

where Py is a constant, u is the FCS output, and y is
the system output. The output unit distributes this
payoff to the minimal output messages. Each minimal
message receives a portion according to its contribu-
tion to the output.

The i-th minimal message receives a payoff given by
the following expression:

pi = ¢(—sgn(e,)e;) - P,
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Figure 8: FCS in the identification setup.

where
- if 2 < ~n9;
pz) =<1 if 2 > ng;
(L +m)(x +n2)%/4n2 —ny  otherwise.

The output error €, and message error ¢; are calculated
as follows: ~

€0 =
& =

U=y
h,‘—y.

To understand these expressions, note that the prod-
uct —sgn(e,)e; is positive if, and only if, o and &;
have opposite signs. Furthermore, note that this im-
plies that one of the following is true: u < y < h; or
h; < y < u. Therefore, an adequate increase in the
i-th minimal message activity level could reduce the
output error to zero. Function ¢(z) gives a large posi-
tive payoff to messages satisfying the above conditions,
and gives a lower payoff to all others. The constants
71 and 72 must be chosen according to the problem.

This payoff distribution scheme assures that minimal
messages that would contribute to minimize the error
will receive a higher payoff.?

4.2 PAYOFF DISTRIBUTION IN THE
STIMULUS-RESPONSE FCS

In the stimulus-response FCS, the specificity of the
classifiers is involved in the payoff distribution scheme.
A specificity p is defined only for the action of a clas-
sifier in the following manner:

_ {14 number of 0’s 2
B action length

A message has a specificity equal to that of the classi-
fier that posted it. '

Isach minimal message distributes its payoff to its cor-
responding messages according to their activity level
and to their specificity. The payoff to a message m is

*I'his payoff distribution scheme involves information
aboul Lhe correct output, and thus, it is not a blind rein-
forcement scheme.

the sum of all the payoffs it receives from its minimal
messages:

pm (activity level, )
activity level,

)

payoff to message m = Z bi
iEM

where M is the set of minimal messages posted by
message m. The activity level of a message is equal to
the sum of the activity level multiplied by the bid of
the classifiers who posted it.

Firing classifiers pay a bid B equal to a small fraction
k of their strength S. Each classifier receives a pay-
ment proportional to its specificity and activity level,
the payofl received by the message it posted, and di-
vided by the number of classifiers that posted the same
message.

4.3 RESULTS

The stimulus-response FCS just described was trained
to imitate a system in which the output is equal to
the input, i.e., ¥y = x. The value of § was set to 0
for the input and 0.2 for the output. The parameters
o = 0.11, gy = 0.15, and 5, = 1.0 were obtained
by trial and error. The genetic algorithm ran over a
population of 40 classifiers.

After learning, the payoff distribution scheme and the
genetic algorithm were turned off; and the input range
was scanned to obtain the input-output behavior of
the FCS. Figure 9 shows the performance obtained
from the fuzzy rules found by the FCS using four fuzzy
intervals after 64,000 cycles. The FCS approximates
the straight line with an absolute error® of 1.72%.

3The absolute error was calculated as

» .
/ |z — y|dz.
Ty — Zo Zo

absolute error =
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Figure 9: FCS imitation of the straight line y = « using four fuzzy component sets.

When analyzing this result, we must consider the fol-
lowing step-ladder function:

1/2n f0<az<1/n;

3/2n ifl/n<z<2/n
() = _.

@2n-1)/2n if(n—-1)/n<z<].

A learning system based on crisp intervals would tend
to approximate the function y = « with the step-ladder
function. For a given number of intervals, the FCS
finds a set of fuzzy rules that produces a smaller error
than the step-ladder function.

The FCS was also setup to imitate the function y =
4(z ~ 0.5)2. Figure 10 shows the performance of the
FCS after 53,000 cycles. The absolute error was of

3.76%.

The previous results indicate that the FCS can learn
to imitate simple, static systems. More experiments,
involving other more complex systems, are required.

5 FUTURE WORK

Many issues remain open for research. Among the
most important are increasing speed convergence while
retaining stability; implementing pure reinforcement
learning, so control as opposed to identification can
be performed; allowing rule chaining, so that dynamic
systems can be identified and controlled; allowing the
FCS to adaptively change the membership functions of
the component sets, so that greater sensitivity can be
achieved where required; and implementing a scheme

for continuous time output.

Efforts are currently being made to improve the con-
vergence speed of the FCS while retaining stability.
The following enhancements are now under evaluation.

e Mating restrictions
For each classifier to be crossed, the genetic al-
gorithm selects n classifiers and then chooses the
one which is most similar to the classifier to be

crossed.

¢ Replacement restriction
When a classifier is created, the genetic algorithm
selects the m weakest classifiers, then it deletes
the one most similar to the new born classifier.

o Aging classifiers
Classifiers have an age equal to the number of time
cycles since their creation. Age limits for repro-
duction and death are defined. Classifiers under
age are not selected for reproduction or deletion
by the genetic algorithm.

e Limiting the weights of young classifiers
Classifiers under a given age have a reduced
weight in the decision of an output. The reduc-
tion is proportional to the difference between the
age of the classifiers and a given age limit. This
is possible because all classifiers help produce a
single output. Reducing the weight of young clas-
sifiers on the output should improve the stability
of the system.
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Figure 10: FCS imitation of the parabola y = 4(z — 0.5)2 using four fuzzy component sets.

Acknowledgements

The author gratefully acknowledges the useful com-
ments received from the reviewers.

References

[1] D. Dubois and H. Prade. Fuzzy Sets and Systems:
Theory and Applications. Academic Press, New
York, 1980.

[2] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley, Reading, MA, 1989.

[3] J. H. Holland. Adaptation in Natural and Artifi-
cial Systems. University of Michigan Press, Ann
Arbor, MI, 1975.

[1] J. H. Holland, K. J. Holyoak, R. E. Nisbett, and
P. R. Thagard. Induction: Processes of Inference,
Learning, and Discovery. MIT Press, Cambridge,
1986.

[5] J.-J. Holmblad, L. P. @stergaad. Control of a ce-
ment kiln by fuzzy logic. In M. M. Gupta and
E. Sénchez, editors, Fuzzy Information and De-
cision Processes, pages 389-399. North-Holland,
Amsterdam, 1982.

[6] A.Ollero and A. J. Garcia-Cerezo. Direct digital
control, auto-tuning and supervision using fuzzy
logic. Fuzzy Sels and Sysiems, 30:135-153, 1988.

[7] W. Pedrycz. Fuzzy Control and Fuzzy Systems.
John Wiley, New York, 1989.

[8] T.J. Procyk and E. H. Mamdani. A linguistic self-
organizing process controller. Automatica, 15:15-

30, 1979.

[9] 1. Saski and T. Akiyama. Traffic control process
of expressway by fuzzy logic. Fuzzy Sets and Sys-
tems, 26:165-178, 1988.

[10] S. Shao. Fuzzy self-organizing controller and its
application for dynamic processes. Fuzzy Sets and
Systems, 26:151-164, 1988.

[11] R. Tanscheit and E. M. Scharf. Experiments with
the use of a ruled-based self-organising controller
for robotics applications. Fuzzy Seis and Sysiems,
26:195-215, 1988.

[12] M. Valenzuela-Rendén. The fuzzy classifier sys-
tem: motivations and first results. In H.-P. Schwe-
fel and R. Méinner, editors, Parellel Problem
Solving from Nature, 330-334, Springer (Verlag),
Berlin, 1991.

[13] H. J. Zimmermann. Fuzzy Set Theory—and Iis
Applications. Kluwer, Boston, 1988.



